
MULTIPLE-DESCRIPTION CODED STREAMING
VIDEO MULTICAST OVER SOFTWARE-DEFINED

NETWORKS

A Thesis

by

Kyoomars Alizadeh Noghani

Submitted to the
Graduate School of Sciences and Engineering
In Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in the
Department of Computer Science

Özyeğin University
August 2014

Copyright c© 2014 by Kyoomars Alizadeh Noghani

MULTIPLE-DESCRIPTION CODED STREAMING
VIDEO MULTICAST OVER SOFTWARE-DEFINED

NETWORKS

Approved by:

Assoc. Prof. Dr. M. Oğuz Sunay, Advisor
Department of Computer Science
Özyeğin University

Prof. Dr. Reha Civanlar
Department of Computer Science
Özyeğin University

Assist. Prof. Dr. Ali Özer Ercan
Department of Computer Science
Özyeğin University

Date Approved: 28 August 2014

To my Mother and Father,

who have blessed me with an admiration of nature

and to my Wife,

Farzaneh,

whose love and confidence is a constant source of inspiration and

encouragement.

iii

ABSTRACT

Video has become one of the most prominent applications of the Internet. Many

of the video streaming applications involve the distribution of content from a CDN

source to a large population of interested clients. However, widespread support of

IP-Multicast has been unavailable to a large extent due to technical and economical

reasons, all stemming from the non-programmable nature of today’s Internet. As

a solution, streaming multicast video is commonly operated using application level

multicast. However, this technique introduces excessive delays for the clients and

increased traffic load for the network. This thesis is concerned with the introduction

of a SDN based framework that allows the network controller to not only deploy IP-

Multicast between a source and subscribers, but also control, via a simple northbound

interface, the distributed set of sources where multiple-description coded video content

is available. Standard and premium users are envisioned. While standard subscribers

are to receive one of the descriptions of the video, premium subscribers will receive

multiple descriptions, each from a different source, simultaneously and combine these

descriptions prior to playback for increased video quality. In the framework, the

controller constructs and maintains a dynamic multicast tree from each source and

formulates the associated multicast routes. An experimental testbed has been setup

on Mininet to assess the performance of the SDN-based streaming multicast video

application using QoS performance metrics on a well-known test videos. We observe

that for medium to heavily loaded networks, relative to todays solution of application

layer multicast in a non-SDN network, the SDN-based streaming multicast video

framework increases the PSNR of the received video significantly, from a level that is

practically unwatchable to one that has good quality.

iv

ÖZETÇE

Video internetin en önemli uygulamalarından biri haline geldi. Video akışı sağlıyan

uygulamaların birçoğu CDN kaynağından, video talep eden çokça kullanıcıya dağıtılır.

Fakat, günümüz internetinin programlanabilir olmayan yapısından dolayı, IP-Multicast

tabanlı uygulamaların geniş kitlelere ulasamamaktadır. Multicast video akışı için

kullanılan çözümlerden birisi, uygulama katmanında multicast yapmaktır. Fakat

bu teknik, iletişim ağı için ise trafik yoğunluğunun ve kullanıcılar için gecikmenin

artmasına sebep olur. Bu calısma, SDN tabanlı, ag denetleyicisinin bir kaynak ve

kullanıcılar arası IP-Multicast servisini sagladığı gibi, basit bir üst seviye yönelimli

(northbound) arayüz ile coklu betimlenmis video icerigi barındıran dağıtık kaynakları

da kontrol ettigi bir cerceve uzerinedir. Bu çalışmada standart ve öncelikli (pre-

mium) kullanıcılar olduğunu varsaydık. Standart kullanıcılar video nun tek betim-

lemesini (description) alırken, öncelikli kullanıcılar birden fazla betimlemesini ala-

biliyor. Öncelikli kullanıcılar, farklı kaynaklardan, aynı anda sözbu betimlemeleri alıp,

oynatımdan önce birleştirerek, video kalitesini arttırmaktadırlar. Bu çalışmada kon-

trolör -kullanıcılardan aldığı bilgi ışığında- dinamik bir multicast ağacı inşa edip, bu

ağacın yenilenmesini sürdürerek, multicast rotaları oluşturur. SDN tabanlı multicast

video akışının performansını değerlendirme amacıyla, deneysel kurulum Mininet ile

inşa edildi. Bu çalışmada, SDN tabanlı multicast video akış metodolojisinin, günümüz

SDN tabanlı olmayan uygulama katmanındaki multicast çözümlerine oranla, yoğun

trafik bulunan ağlar için, video PSNR değerini kayda değer şekilde arttırdığı gözlemlenmiştir.

v

ACKNOWLEDGEMENTS

I would like to express my endless gratitude to Assoc. Prof. M. Oğuz Sunay for

his excellent advisory, reliable guidance and full support. This thesis have not been

written without his profound knowledge. I also extend my gratitude to Prof. Reha

Civanlar and Assist. Prof. Ali Özer Ercan for being in my thesis committee and for

their valuable time.

My special appreciation goes to Dr. Volkan Yazici for his friendship, encourage-

ment, guidance, and number of fruitful discussions. I thank my friends Ali Arsal and

Kıvanç Çakmak, for making these two years enjoyable.

Last but not least, I thank to my mother, Akram, my father Mehdi, my brother

Siamak and my sister Mahsa for their everlasting love and support. Obviously, I

thank the first light of my life, Farzaneh, for her eternal love and support.

vi

TABLE OF CONTENTS

DEDICATION . iii

ABSTRACT . iv

ÖZETÇE . v

ACKNOWLEDGEMENTS . vi

LIST OF TABLES . ix

LIST OF FIGURES . x

GLOSSARY . xi

I INTRODUCTION . 1

II LITERATURE REVIEW . 7

2.1 Streaming video . 7

2.1.1 Multiple Description Coding 8

2.1.2 Path Diversity . 9

2.1.3 Distributed Video Streaming 11

2.2 Multicasting . 12

2.2.1 Multicasting in Today’s Networks 13

2.3 Software-Defined Networking . 15

III MULTICASTING OVER SDN . 18

3.1 Streaming Video Multicast Control Application 19

3.1.1 Routing Algorithms . 19

3.1.2 Link Status Discovery . 21

3.2 Streaming Video Multicast Service 23

3.3 Subscribers . 24

IV PROPOSED MULTICAST ARCHITECTURE PERFORMANCE 28

4.1 Traditional Multicast Routing Protocols 28

4.2 Performance Comparison . 31

vii

V PROPOSED ARCHITECTURE & IMPLEMENTATION 49

5.1 Architecture . 49

5.2 Implementation . 50

5.2.1 OpenFlow Controller . 50

5.2.2 Topologies . 54

5.2.3 Multicast Data Structure . 55

5.2.4 Description Providers . 56

5.2.5 Multicast Clients . 57

5.2.6 Cross Traffic Generators . 58

VI EXPERIMENT SETUP & EVALUATION 60

6.1 Test Setup . 60

6.2 Packet Loss . 61

6.3 Denied Service . 63

6.4 Downgrade/Pause . 64

6.5 Pre-Roll Delay . 67

6.6 PSNR . 69

VII CONCLUSION & FUTURE WORKS 75

7.1 Conclusion . 75

7.2 Future Directions . 76

7.2.1 Scalable Video Coding (SVC) 76

7.2.2 Enhance System Development 77

REFERENCES . 79

VITA . 87

viii

LIST OF TABLES

1 Performance comparison of different multicast implementation models 33

2 Number of Downgrades . 65

3 Number of Pauses . 66

4 Pre-Roll Delay . 68

ix

LIST OF FIGURES

1 Multicasting vs Unicasting . 12

2 Software-Defined Networking Structure 16

3 Streaming Video Multicast Framework 18

4 Routing algorithms used for routing multicast packets 20

5 Implemented system to record statistics 22

6 Procedure of client joining . 25

7 Procedure of client leaving . 26

8 Network topology under consideration 35

9 Multicast tree generated using traditional sparse mode 41

10 Multicast tree generated using BFS in traditional sparse mode 42

11 Multicast trees generated using sparse mode (no RP) 43

12 Multicast trees generated using sparse mode and load balancing (no RP) 44

13 Multicast trees generated using BFS in dense mode 45

14 Multicast trees generated using kruskal algorithm in dense mode . . . 46

15 Multicast trees generated using dijkstra algorithm 47

16 Multicast trees generated using minimax algorithm 48

17 General perspective . 51

18 Packet Loss . 62

19 Denied Service . 64

20 Sample Video Frame from the Test Videos 69

21 Foreman - PSNR Values . 72

22 Football - PSNR Values . 73

23 Soccer - PSNR Values . 74

x

GLOSSARY

ALM Application Layer Multicast, p. 4.

BFS Breadth First Search, p. x.

CDN Content Delivery Network, p. iv.

DF Designated Forwarder, p. 30.

DFS Depth First Search, p. 34.

DiffServ Differentiated services, p. 77.

DM Dense Mode, p. 28.

DP Description Provider, p. 19.

DPI Deep Packet Inspection, p. 17.

DR Designated Router, p. 29.

IGMP Internet Group Management Protocol, p. 17.

ISM Internet Standard Multicast, p. 31.

ISP Internet Service Providers, p. 13.

LC Layer Coding, p. 8.

LLDP Link Layer Discovery Protocol, p. 21.

MD Multiple-Description, p. 8.

MDC Multiple-Description Coding, p. 2.

MST Minimum Spanning Tree, p. 37.

P2P Peer-to-Peer, p. 11.

PIM Protocol Independent Multicast, p. 28.

PSNR Peak Signal-to-Noise Ratio, p. iv.

QoE Quality of Experience, p. 4.

QoS Quality of Service, p. iv.

RP Rendezvous Point, p. x.

RPT Rendezvous Point Tree, p. 30.

xi

SDN Software-Defined Networking, p. iv.

SM Sparse Mode, p. 28.

SSM Source Specific Multicast, p. 28.

STP Spanning Tree Protocol, p. 52.

SVC Scalable Video Coding, p. viii.

VoD Video on Demand, p. 15.

xii

CHAPTER I

INTRODUCTION

Due to the explosive growth of the Internet and increasing demand for multimedia

information on the web, streaming video over the Internet has received tremendous

attention from academia and industry [1]. However, video streaming over best-effort

networks (i.e. today’s Internet) is always challenged by a number of factors such as

high bit rates, delay, and loss sensitivity. To this end, many solutions have been

proposed from different perspectives such as source and channel coding, protocols

and network perspective.

In addition, decreasing total network traffic by means such as deploying IP-

Multicast (which subsequently leads to decrease the probability of network conges-

tion) or utilization of Quality of Service (QoS) for multimedia traffics would be also

helpful to enhance the end-to-end multimedia packets likelihood. However, many

parts of the Internet architecture were developed 30 years ago and its structure is not

secure, robust, manageable and flexible for fundamental changes [2]. Hence, fulfill-

ing the dreams of utilizing innovative ideas such as QoS and IP-Multicast in its real

application are not simply achievable.

By combining solutions for efficient video streaming over best-effort networks with

network solution for decreasing network congestion level, we designed and implement

video streaming framework which is practical, resilient to packet loss and has good

streaming performance over heavily loaded networks in comparison to today’s video

streaming frameworks. The proposed streaming video multicast framework is built

on following pillars:

1. Path Diversity

1

2. Multiple Description Coding (MDC)

3. Distributed Video Streaming

4. IP Mulitcast

5. Software-Defined Networking (SDN)

Path diversity is a transmission technique that sends data simultaneously through

two or more paths in a packet-based network. By using multiple paths at the same

time (from single or multiple sources) the end-to-end video application effectively sees

an ”average” path behavior. We refer to this as path diversity. Generally, seeing this

average path behavior provides better performance than seeing the behavior of any

randomly chosen individual path. The benefits of path diversity include:

• The application sees a virtual average path which exhibits a smaller variability

in communication quality than exists over an individual path,

• Burst packet losses are converted to isolated packet losses,

• The probability of an outage (where all packets in the packet stream are lost

for the duration of the outage) is greatly reduced.

Above mentioned improvements provide some interesting benefits to video commu-

nication performance under packet loss, and may also simplify general packet-based

communication system design.

When path diversity is properly combined with adaptive encoding solutions such

as MDC [3], the definition of multiple end-to-end paths from the server to the client

can dramatically improve the quality of service. MDC addresses the problem of en-

coding a source for transmission over a communication system with multiple channels.

MDC coding produces two or more bitstreams, or descriptions, each of roughly equal

importance and it has two important properties. First, each description can be in-

dependently decoded to provide a usable reproduction of the original signal. Second,

2

the multiple descriptions contain complementary information so that the quality of

the decoded signal improves with the number of descriptions received. MDC coding

enables a useful reproduction of the signal when any description is received.

Path diversity and MDC combines particularly well with multiple sources, in which

the different descriptions are explicitly distributed over servers at different physical

locations. General framework offered by overlay networks such as Content Delivery

Network (CDN) architectures are realizing multiple sources fact by making content

available at multiple sources. Originally CDN idea has been developed to overcome

performance problems, such as network congestion and server overload by using edge

architecture and make content available at multiple sources. Since content is delivered

from the closest edge server and not from the origin server, the content is sent over

a shorter network path, thus reducing the request response time, the probability of

packet loss, and the total network resource usage.

Our proposed method use MDC schemes because video content which coded this

scheme can be easily distributed among multiple servers over different locations (by

leveraging infrastructure like CDN) and it could easily be adapted to take advantage

of path diversity idea. The main motivation in doing so is to exploit path diversity

in order to achieve higher throughput, and to increase tolerance to packet loss and

delay due to network congestion. In addition we implemented multicasting at IP

level for streaming video packets to decrease the probability of network congestion

and subsequently enhance the end-to-end multimedia packets likelihood.

It is predicted that approximately 73% of all IP traffic will be video by 2017 [4],

of which some 14% will be from Internet video to TVs. Not surprisingly, streaming

of live content is increasingly more prevalent on the Internet replacing the traditional

means of TV broadcasting. One well-known method to alleviate the traffic load due

to streaming video is to use IP-Multicast, which has been in existence for a long time.

However, in today’s networks, IP-Multicast has remained largely undeployed due to

3

concerns on security, reliability and scalability, not to mention the requirement to have

all routers in the network support the related protocols and be appropriately config-

ured [5]. For this reason, Application-Layer Multicast (ALM) has found prominence

in the Internet where transmission of the content to the subscriber group is managed

at the application layer and IP-unicast is used in the network layer for delivery with

multiple copies of the same data transmitted over common links, incurring heavy

loads on the Internet traffic. Additionally, compared to the IP-Multicast, ALM in-

curs longer latencies. The fundamental reasons behind the prevalence of ALM despite

its shortcomings, are its immediate deployability, adaptability and updatability [6].

The rapid emergence of SDN with significant industry backing [7] provides the

perfect opportunity to implement IP-Multicast without any of its problems. Indeed,

it is possible to construct, and maintain the multicast tree between a source and

all its subscribers using a control application running on the logically centralized

SDN-controller that has a global network view. The programmable nature of SDN

allows for immediate deployability, scalability, adaptability, and updatability - traits

all previously associated with ALM and not IP-Multicast. In this thesis, we present

an IP-Multicast application running on the SDN controller that also keeps track of

the subscription activities via a simple northbound interface.

IP-Multicast is an ideal approach to mitigate the traffic load generated by stream-

ing video services. A more efficient delivery of the video packets reduces the conges-

tion probability in the network, which in turn improves the performances of both the

corresponding streaming video system and all other concurrently running services on

the network. In this thesis, we first present an IP-Multicast framework for SDN,

where we give a detailed description of the streaming video application, and its inter-

action with the SDN controller. Then we investigate how an actual implementation

of IP-Multicast improve the streaming video performance relative to ALM in terms

of Quality of Experience (QoE) metrics.

4

We require the streaming video application to be designed to satisfy the following:

1. Support for different types of QoE-level based subscriptions should be present.

2. Resilience to network congestion and packet losses should be provided.

3. The video coding and decoding complexities should be as low as possible.

To satisfy these requirements, we consider an architecture that has the following

properties:

1. Multiple streaming video servers, distributed across the network are to be de-

ployed.

2. H.264-based MDC is to be employed for video coding [8, 9] so that the same

video content is described by multiple descriptions where reception of one such

description is sufficient for standard-quality playback, but delivery of multiple

descriptions and a simple combining procedure of these descriptions prior to

playback result in an increase in the video quality.

In the proposed system, we consider a streaming server with two descriptions,

available at two distinct locations of the network. We consider two subscription

types including Standard and Premium. While a standard user is to receive content

from one of the servers, premium users need to receive both descriptions for enhanced

service quality, all orchestrated by a streaming-video specific IP-Multicast application

running on the SDN controller.

In the subsequent chapters we first provide a literature survey on various video

delivery frameworks and IP-Multicast implementations in today’s Internet and SDN

structures. We then present the proposed MDC-based streaming video service, fol-

lowed by the SDN architecture on which it will operate and discuss the unnecessary

interaction between the video application and the SDN controller. Next, we present

5

experimental performance results for the video application using the QoE parameters

of PSNR, and the number of pauses. Conclusions are drawn in the last section.

6

CHAPTER II

LITERATURE REVIEW

This thesis touches upon three research domains:

1. Video streaming over the Internet,

2. IP-Multicast,

3. SDN.

In the following section we review previous works in aforementioned domains.

2.1 Streaming video

With the explosive growth of video applications over the Internet, many approaches

have been proposed from different perspectives to stream video effectively over best-

effort networks in a way that simultaneously maximizes the display quality at the re-

ceiver, meets bit-rate limitations, and satisfies latency constraints. All systems, there-

fore, require efficient compression, some form of rate scalability, and error-resiliency

techniques. Among all proposed solutions, effective source coding techniques can

dramatically enhance video streaming quality.

Scalable Video Coding (SVC) [10] and MDC are common approaches of video

coding for streaming video over the Internet but each of them are designed to cover

special objectives. SVC has been proposed for heterogeneous networks where links

bandwidth are different from each other while MDC is designed to alleviate effects

of unreliable video transmission conditions. Loss of compression efficiency and the

transmission overhead are the major drawbacks of MDC in comparison to SVC while

robustness of MDC against packet loss (even burst packet loss) and simplicity of

7

utilizing path diversification by distributing the descriptions are important advantage

of that over SVC. Hence, some studies [11–14] try to combine both Layer Coding

LC and MDC simultaneously to benefit from advantageous of each LC and MDC

approach and at the same time to avoid the individual shortcomings of these source

coding techniques.

As a side note, in the following sections the description of LC is not included

because it is out of scope of this thesis.

2.1.1 Multiple Description Coding

MDC has been proposed as an alternative to layered coding for streaming over un-

reliable channels. An Multiple-Description (MD) coder generates multiple streams

(referred to as descriptions) for the source video. A simple implementation of MD

coding can be achieved by splitting even and odd numbered frames. Advanced meth-

ods include interleaving of sub-sampled lattice, MD scalar quantization, and MD

transform [15]. The descriptions are then distributed over multiple paths, preferably

disjoint, to enhance robustness and to accommodate user heterogeneity. In order to

decode the media stream, any description can be used, however, the quality improves

with the number of descriptions received in parallel. Since an arbitrary subset of

descriptions can be used to decode the original stream, network congestion or packet

loss (which are common in best-effort networks such as the Internet) will not inter-

rupt the stream but only cause a temporary loss of quality. The quality of a stream

can be expected to be roughly proportional to data rate sustained by the receiver.

Besides increased fault tolerance, MDC allows for rate-adaptive streaming by send-

ing all descriptions of a stream without paying attention to the download limitations

of clients. Receivers that can not sustain the data rate only subscribe to a subset

of these streams, thus freeing the content provider from sending additional streams

at lower data rates. [16–22] study multiple description coded video over unreliable

8

channel and propose different ways to compensate errors occurred in these channels.

2.1.2 Path Diversity

Path diversity is a robust mechanism to overcome the effects of transmission errors

and data loss in the quality of multimedia streaming applications. If the network is

congested along single fixed route between the receiver and the sender, video stream-

ing suffers from high loss rate and jitter. Even if there is no congestion, as the

round-trip time between the sender and the receiver increases, the TCP throughput

may reduce to unacceptably low levels for streaming applications.

Path diversity can provide several types of benefits depending on how the paths

are used. A straightforward benefit of multiple paths is increased bandwidth available

by using all paths at once. A complementary benefit is load balancing, by decreasing

per-path bandwidth by splitting a stream across multiple paths. Another benefit of

path diversity is reduce variability of packet losses, e.g., reduced excursions between

periods of no loss and high loss that are common on the Internet. The end-to-end

application sees the average network behavior across the paths, which generally has

reduced variability [23].

Path diversity also reduces the length of burst losses (i.e. losses of consecutive

packets). Distributing packets across multiple paths increases the interpacket spacing

on each path, and therefore for a network congestion event of a given duration fewer

packets are lost. Reducing burst losses provides a number of benefits for media

streaming. For example, for video it is easier to recover from multiple isolated losses

than from an equal number of consecutive losses. For two paths with equal average

packet loss rates, sending even packets on one path and odd packets on the other has

no effect on the end-to-end loss rate but does reduce burst losses.

Path diversity idea historically introduced by [24] where author proposes to send

complementary descriptions of a MD coded video through two different Internet paths,

9

as opposed to the default scenario where the stream of packets proceeds along a single

path. In [25, 26] the authors employ path diversity in the context of video commu-

nication using unbalanced MD coding to accommodate the fact that different paths

might have different bandwidth constraints. In [27] the authors study image and

video transmission in mobile radio networks. It is shown that combining MDC and

multiple path transport in such a setting provides higher bandwidth and robustness to

end-to-end connections. In [28] a framework for video transmission over the Internet

is presented, based on path diversity and rate-distortion optimized reference picture

selection. Here, based on feedback, packet dependency is adapted to channel condi-

tions in order to minimize the distortion at the receiving end, while taking advantage

of path diversity. In [29], authors propose a routing-aware MDC approach with path

diversity to enhance the error robustness of video transmission over wireless ad-hoc

networks. By using the routing messages as a packet loss indicator, they dynami-

cally select the reference frames for MDC to reduce the error propagation. Proposed

method does not require any additional feedback channel or extra overhead, how-

ever, the packet loss information provided by the route messages is not completely

accurate.

A number of recent papers have addressed the problem of selecting optimal paths

for MDC video streaming hence, the received media quality is directly affected by

link quality metrics. [30] investigates how to assign bandwidth to each description

in order to maximize overall user satisfaction by formulating it as an optimization

problem. [31] models multi-path streaming and propose a multi-path selection method

that chooses a set of paths maximizing the overall quality. The simulation results show

that the average PSNR improves if source video packets are routed over intelligently

selected multiple paths. In [32], the authors propose a new QoS metric, link and

path correlation model for multi-path selection problem. [33] shows that mesh-based

Peer-to-Peer (P2P) when combined with MDC results in improvement in delivered

10

video quality making it acceptable for ad-hoc networks.

2.1.3 Distributed Video Streaming

Having multiple senders is in essence a diversification scheme in that it combats unpre-

dictability of congestion in the Internet. Multiple sources achieve when video content

is distributed among multiple streaming sources. Video streaming using distributed

server mainly studied in [34]. Here authors proposed a framework for streaming video

from multiple mirror sites simultaneously to a single receiver in order to achieve higher

throughput, and to increase tolerance to loss and delay due to network congestion.

Their work is later continued in [35–38].

Multiple sources can be provided through framework offered by overlay networks

such as P2P, mesh, and specially edge architecture like CDN architectures. When

aforementioned overlay frameworks properly combined with adaptive encoding solu-

tions such as MDC the definition of multiple end-to-end paths from the server to

the client can dramatically improve the quality of service. In [39] the performance

of path diversity and multiple description coding in CDN is studied. 20-40% reduc-

tion in distortion is reported over conventional CDNs for the network conditions and

topologies under consideration. [9] presents and tests three MD coding schemes over

CDN. Results shows that for CDN the better improvement on ratio distortion prop-

erties can be achieved using the schemes of decomposing the odd-and-even frame in

the multiple description coding. Video streaming using server diversity and MD video

coding are widely studied in [40–44].

In this thesis, we propose a framework for streaming video from multiple mirror

sites while video content is divided to odd and even descriptions distributed between

servers. Therefore, implemented system exploiting path diversity by utilizing dis-

tributed video streaming system and MDC helps us to fairly distribute the content

among the providers. Implemented system provides higher throughput, and increases

11

tolerance to loss and delay due to network congestion.

2.2 Multicasting

IP-Multicasting [45] is the ability of a communication network to accept a single

message from an application and to deliver copies of the message to multiple recipients

at different locations. Although this can be done by sending different unicast (point-

to-point) messages to each of the destination hosts, there are many reasons which

make having the multicasting capability desirable. A schematic representation of the

multicasting model can be seen in Figure 1.

Figure 1: Multicasting vs Unicasting

The first major advantage of using multicasting is the decrease of the network load.

Since multicasting requires the transmission of only a single packet by the source and

replicates this packet only if it is necessary (at forks of the multicast delivery tree),

12

multicast transmission can conserve the so much needed network bandwidth. An

efficient implementation of multicasting permits much better use of the available

bandwidth by transmitting at most one copy of the data (i.e. stream data) on each

link in the network. Another important feature of multicasting is its support for data

casting applications. In recent years, multimedia transmission has become more and

more popular. The audio and video signals are captured, compressed and transmitted

to a group of receiving stations. Instead of using a set of point-to-point connections

between the participating nodes, multicasting can be used for distribution of the

multimedia data to the receivers. In real world stations may join or leave an audio-

cast or a video-cast at any time. The flexibility in joining and leaving a group provided

by multicasting can make the variable membership much easier to handle. There has

been an explosion of research literature on multicast communication.

2.2.1 Multicasting in Today’s Networks

Current Internet supports both unicast and multicast capability however unicast is

the most prevalent mode of communication with multicast being almost non-existent.

While many researchers have advocated a wide deployment and use of multicasting in

the Internet, a large number of researchers along with the Internet Service Providers

(ISPs) have largely remained skeptical about its real benefits. While researchers have

been mostly concerned about the added complexity that multicasting will introduce

in the core Internet, ISPs are concerned more with the current payment model of

the Internet. Presently, ISPs charge users based upon the amount of link bandwidth

they use; in such a model, allowing multicasting may reduce the bandwidth usage

by individual users, thus the revenues of ISPs may decline. Clearly, in order for the

ISPs to have enough motivation to deploy multicasting capability, the payment and

service model of the Internet usage needs to be changed.

There are many other complicating factors, which generally dilutes the benefits of

13

multicasting in the current Internet. For instance, it is generally accepted that a large

fraction of the total Internet bandwidth is consumed in one-to-one communication.

Thus, if only 1% of all Internet communication operates in a one-to-many mode, then

there will be little incentive in deploying the multicasting capability. The situation

becomes even worse, because the one-to-many mode of communication is generally

limited within small local networks, e.g., sending emails to all users in a company.

There are very few instances where one-to-many communication occurs with desti-

nations distributed across the world. One can argue that the situation is similar to

the chicken and egg problem; since ISPs do not support multicasting, there are few

services which need them, and since there are few services which needs them, ISPs

do not have enough motivation to implement multicast.

With the introduction of the Overlay networks, the situation has changed con-

siderably. Now, there are many applications and services, which use ALM over an

Overlay network. These services, usually build a multicast tree with the source at the

root of the tree and the destinations at the leaves. The intermediate nodes which are

essentially the overlay nodes are arranged in such a way that the overall bandwidth

usage is minimized. With the introduction of these Overlay based applications, mul-

ticasting has received a new push, and now many argue that ISPs should also deploy

the multicasting capability in their network.

While these Overlay networks have demonstrated that multicasting can be useful

for a wide variety of services, there are yet many technical barriers. First and foremost,

the complication arises due to the presence of hundreds of independent ISPs in the

current Internet, and due to their conflicting interests. Each ISP wants to provide

the best possible service to its own customers, and generally they do not have enough

motivation to improve the service received by its non-customers. In such a scenario, an

efficient multicast routing which requires construction of multicast trees from source

to all destinations can become problematic. Moreover, if a small number of ISPs do

14

not allow multicasting, then it may become problematic to implement multicasting

capability by other ISPs. Another problem is that ISPs usually do not advertise the

topology of their network to other ISPs, and especially to all sources; without such

information, it may become difficult to construct efficient multicast trees.

With these technical barriers, there are other issues too, which generally arise

due to the dynamics of today’s Internet usage. CDN, Video on Demand (VoD),

Video Conferencing and many other innovations are used to be responder for such

a huge amount of requests which are sent through Internet. It clearly appears that

multicasting is required for these services but with so many barriers and problems at

hand such as:

• Resistance by the ISPs,

• Resistance by the content providers,

• Natural shift away from the one-to-many communication mode (due to the

introduction of CDNs),

• Relatively few services for which multicasting is essential,

• Amount of difficulties to implement it is unlikely that multicasting will become

a popular mode of communication in the Internet.

Because implementing of multicast faces some fundamental problems, thinking

about live migration and having distributed multicast servers are more like dreams.

2.3 Software-Defined Networking

SDN, leverages a centralized, logical view of the network that can be easily manip-

ulated via software to implement complex networking rules. The resulting benefits

include support for multi-vendor environments, more granular network control (at

session, user and device levels), improved automation and management, accelerated

15

service deployments and unprecedented scalability and flexibility at lower cost. In

the simplest possible terms, SDN entails the decoupling of the control plane from the

forwarding plane and offloads its functions to a centralized controller [46]. Rather

than each node in the network making its own forwarding decisions, a centralized

software-based controller (likely running on commodity server hardware) is respon-

sible for instructing subordinate hardware nodes on how to forward traffic. Because

the controller effectively maintains the forwarding tables on all nodes across the net-

work, SDN-enabled nodes do not need to run control protocols among themselves

and instead rely upon the controller to make all forwarding decisions for them. The

network, as such, is said to be defined by software running on the controller. SDN

structure is depicted in Figure 2.

Figure 2: Software-Defined Networking Structure

In this thesis we used OpenFlow Standard which is the first standard communica-

tions interface defined between the control and forwarding layers of a software-defined

network architecture. Capitilizing on the benefits that SDN bring, there have been a

number of studies on SDN video streaming in the literature.

16

Authors in [47] benefits from central view provided by SDN and propose mul-

timedia delivery with end-to-end QoS. According to this idea flows are divided to

multimedia and data categorize where multimedia flows are routing to special QoS

routing method while data flows are routing using shortest-path. Using the same

idea authors in [48, 49] benefit from SDN to differentiate routing policies for base

layer and enhancement layers. As investigated before in [16–19], base layer is guaran-

teed to be delivered correctly while complement layers are routed either as lossy-QoS

or best-effort flow. Civanlar et al. [50] have described an optimization model to im-

prove packet routing. Such model considers delay and packet loss. The optimization

model, through the linear programming, computes a QoS path for video traffics and a

shortest path to best-effort traffics. [51] presents an SDN-enabled content-based rout-

ing framework where Youtube flows are identified via Deep Packet Inspection (DPI)

and is always forwarded via least congested links.

There have also been a number of studies of multicasting over SDN. In [52] an in-

novative way of managing IP-Multicast in overlay networks is proposed. The authors

propose using OpenFlow instead of Internet Group Management Protocol (IGMP).

The main contribution is to eliminate periodic join/leave messages and use of multi-

path in the layer-2 network. In [53] authors propose a scalable network-layer single-

source inter-domain multicast framework by making use of an Locator/ID Separation

Protocol (LISP) router overlay. In [54] the authors propose an IP-Multicast-based

forwarding system optimized for fast recovery in case of path failures. For each multi-

cast group, the controller calculates two different multicast trees spanning all switches

of the network. If a switch fails, the controller disables the currently used tree and

enables the complementary tree, which is likely unaffected by the failure. [55] pro-

poses a clean-slate approach for multimedia multicasting, where routes between the

source and all of the subscribers are computed a priori, with the purpose of speeding

up the processing of multicast events over SDN framework.

17

CHAPTER III

MULTICASTING OVER SDN

The streaming video multicast framework presented herein is composed of two distinct

parts: i) Streaming Video Multicast Application, and ii) SDN Controller and the

Streaming Video Multicast Control Application running on it. Figure 3 illustrates a

preview of implemented streaming video multicast framework.

Figure 3: Streaming Video Multicast Framework

Here, the Streaming Video Multicast Service maintains the identities and loca-

tions of the active servers and the corresponding descriptions they are multicasting.

The application also maintains the up-to-date list of subscribers that are allowed to

receive the service. The Streaming Video Multicast Control Application running on

the SDN controller is responsible for selecting the description(s) for each subscriber,

18

establishing the corresponding route and maintaining the multicast tree for each de-

scription.

Now, let us describe the individual blocks in more detail. The Streaming Video

Multicast Service needs to ensure that the SDN controller has up-to-date information

regarding both the subscriber and the video server identities. The SDN controller

in return, needs to update the multicast service on whether a given subscriber has

joined or left the multicast. Implemented system is designed to handle IP-Multicast

when both provider and customer are in the same network where a single controller

spans across.

3.1 Streaming Video Multicast Control Application

Provided that the identities of the subscribers and the servers are known at the

controller, the control application needs to map clients with servers, compute routes

and multicast trees for all clients and servers, respectively.

When constructing the multicast trees, two distinct optimization strategies could

be considered when a subscriber wants to join the multicast group:

1. Minimize service impact on the network load

2. Maximize average streaming video quality

While the first strategy results in finding the server for which the addition of the

subscriber to its multicast tree would result in the least number of additional branches

in the tree, the second strategy finds the server that provides the highest QoE to the

subscriber. In this thesis we consider the second strategy.

3.1.1 Routing Algorithms

In our implementation routing algorithms identify the best DP for subscribers. When

a subscriber sends a Join message, multicast control application applies routing algo-

rithm from each DP to the given client and save the selected path in a list (if there

19

is no path from a DP to the given client, no path saves in the list). At the end,

all paths compare with each other and the DP that satisfies the requirements of the

algorithm is selected. For example if packets are routing by minimum hop strategy,

a DP will be selected among all DPs which has the lowest number of hops to the new

subscriber.

Three different routing algorithms are considered in this thesis. Figure 4 illus-

trates the difference between implemented routing algorithms over a scenario. In

this scenario all links bandwidth are equal to each other and values beside each link

demonstrate link congestion level (lower number means the link is less congested).

Figure 4: Routing algorithms used for routing multicast packets

1. Minimum Hop: This algorithm simply counts the number of hops from spe-

cific source to specific destination and selects the path with the smallest such

number. Although green line is fully congested but it selects by Minimum Hop

routing algorithm since it identifies lowest number of hops between source and

destination.

2. Shortest Path (Dijkstra): The algorithm finds the path with lowest cost (i.e.

the shortest path) between the given vertex and every other vertexes. In this

20

thesis we used Shortest Path algorithm for finding costs of shortest paths from

a single vertex to a single destination vertex by stopping the algorithm once the

shortest path to the destination vertex has been determined. Dijkstra selects

red path for routing packet from source to destination hence it has lowest total

cost among other paths (green line congestion level is 100, blue line congestion

level is 8 and red line congestion level is 6).

3. MiniMax: The algorithm finds an end-to-end path between two Internet nodes

that minimizes the maximum weight of any of its edges. MiniMax algorithm

chooses the blue path because each link in this path is less congested than all

other links in alternative paths.

Once a server is selected for a subscriber and associated route is computed, the

multicast control application adds this user to the corresponding multicast tree. All

pre-existing links in the computed route are utilized via IP-Multicast, and the new,

necessary links are added to the tree to ensure video delivery. This operation is

repeated for every new subscriber.

3.1.2 Link Status Discovery

MiniMax and Dijkstra routing algorithms select the path according to link weights.

Weights to the links are dynamic and are based on the traffic load they endure. In the

proposed system, these weights are updated periodically to ensure good performance.

For this purpose a separate thread is implement in multicast control application which

is responsible for creating a topology graph, finding the connection between nodes

and assigning weight to the links.

The controller discovers the topology by sending specially crafted Link Layer Dis-

covery Protocol (LLDP) frames between the (virtual) switches. By default LLDP

packets are processed by TopologyManager module in the controller and then are

discards. We asked the controller to pass LLDP packets to both TopologyManager

21

and MulticastManager and then discard the LLDP packets. Therefore, in multi-

cast controller we have enough information to create a topology graph according to

switches and their links. In addition to aforementioned thread which is creating net-

work topology graph, another thread is required to assign weight to links and update

them periodically during the time that simulation is running.

To compute the link weights dynamically, multicast controller launches a thread

which periodically (In our implementation every 10 seconds) queries switches on

their port statistics using STATISTICS REQUEST and parse switches response over

the request. The switches reply by the appropriate feedback in form of STATIS-

TICS REPLY. Figure 5 illustrates designed and implemented system for this purpose.

Figure 5: Implemented system to record statistics

The port statistics include the amount of received and/or transferred data. The

controller then takes the average of N previous statistics to determine a given link

weight (N=10 is used in our implementation). However having a good performance

requires decreasing the time period for querying the switches, which incurs a higher

network traffic and higher computational cost. When the network is not congested,

decreasing the time period for querying the switches is endurable and they can process

the request, however, when the network is fully congested, switches are incapable to

22

route network packets and processing statistics request is additional trouble. There-

fore, we set 10 second as a time interval between two consecutive query to not impose

unbearable pressure over the switches when the network is fully congested. Obvi-

ously this time period ought to be the same during all simulation to observe fairness

whether the network is congested or not.

3.2 Streaming Video Multicast Service

The streaming MDC-based video multicast servers are referred to description providers

(DPs). A newly launched DP sends a packet in multicast IP range containing infor-

mation about its description which is always forwarded on to the controller. The

multicast control application creates and stores a distinct multicast tree in the form

of a data structure per DP. As soon as the source message arrives at the controller

from a new DP, the control application establishes a new tree for that DP. Subse-

quently, the new DP is added to the list of available DPs so that for a new subscriber

(or for an update for a current subscriber), when joint DP selection and routing is

computed, this description is also considered.

At any given time, a DP may experience a failure due to: i) Crash/Shut down

and ii) Disconnection from connected switch. As soon as a DP is out of service due

to one of above mentioned reasons either a proactive or a reactive solution may be

developed for this scenario. For a proactive solution one of the following procedures

may be implemented:

1. A back-up server may be made available for potential failures,

2. An alternate DP and associated multicast tree may be constructed for every

subscriber a priori for fast tree switching.

For a reactive solution on the other hand, one of the following procedures may be

implemented:

23

1. A new DP may be selected randomly after the failure is observed,

2. The best DP is computed for each client at the time of failure.

Both proactive and reactive methods have benefits and ill effects. Although proac-

tive approach seems as an ideal solution to the problem of DP failure but its benefits

achieve at the cost of computation overhead to find back-up server for clients.

In this thesis, we consider a reactive approach where the new best DP is selected

upon the failure of the existing one.

3.3 Subscribers

Subscribers join or leave the multicast streaming video service at any time via Join/Leave

messages. When a new subscriber is to be added to the multicast tree, the control

application conducts the following sequential procedure:

1. It first checks whether the subscriber is already being served,

2. If not, it then checks whether the subscriber is to be served via communication

with the multicast service,

3. Based on the routing algorithm in use, it selects the best DP for it,

4. It adds the subscriber to that DP’s JTree data structure,

5. It computes the necessary additional ports and/or branches to the multicast

tree,

6. It pushes the corresponding forwarding rules to the switches using OpenFlow.

When a new subscriber joins a multicast tree, one of two scenarios may take place:

1. Joining the multicast tree may involve just the addition of a packet duplication

rule to one switch in the network,

24

2. Joining the multicast tree might involve adding new switches and links to the

multicast tree, in which case, rules for all affected switches are pushed.

Figure 6 describes the above scenarios. In the first scenario controller asks sub-

scriber immediate switch (switch 4) to replicate packet on specific port. In the sec-

ond scenario subscriber receives video stream when controller asks several switches

(switches number 2, 3, 5) to amend their flow tables.

Figure 6: Procedure of client joining

Subscribers may leave their multicast group politely or impolitely. When the leave

is polite, the subscriber informs the multicast group a priori, but when it is impolite,

the subscriber may leave without any a priori notification. In our framework, a user

leaves its multicast group as a result of i) Crash/Shut down ii) Disconnection from

connected switch iii) Service Leave message. Figure 7 illustrates leaving procedure

for two mentioned scenario.

25

Figure 7: Procedure of client leaving

Similarly, when a subscriber leaves the service, the control application conducts

the following sequential procedure:

1. It first checks whether the subscriber is being served,

2. If so, it then removes the subscriber from its serving DP’s JTree data structure,

3. It then removes the port and/or switch and link from multicast tree,

4. It pushes the corresponding forwarding (expiration) rules to the switches using

OpenFlow.

Similar to the subscriber join case, one of two scenarios may take place when a

subscriber leaves the service:

1. Leaving the multicast tree may involve just the removal of the port of a switch

from it (first scenario in Figure 7),

26

2. Leaving the multicast tree may involve removal of a switch and link from it

(second scenario in Figure 7).

In the proposed multicast service, it is possible for a subscriber to migrate from one

DP to another. The main purpose for this migration is to increase user satisfaction

from the service. Due to the dynamic nature of the network, it is possible that the

DP which was chosen as the best provider for a subscriber is no longer suitable. For

this purpose, a separate thread periodically checks each client’s best serving DP. If

the current DP for one of the clients is no longer the best, the subscriber first leaves

and then rejoins the service following the procedures outlined above.

27

CHAPTER IV

PROPOSED MULTICAST ARCHITECTURE

PERFORMANCE

In this chapter we will compare the performance of our proposed IP-Multicast system

with different possible implementation of common approaches of IP level multicasting

in today’s network.

4.1 Traditional Multicast Routing Protocols

Protocol-independent multicast (PIM) is a set of four specifications that define modes

of Internet multicasting to allow one-to-many and many-to-many transmission of

information. It is termed protocol-independent because PIM does not include its

own topology discovery mechanism, but instead uses routing information supplied by

other routing protocols. The family of PIM protocols includes dense-mode (DM) [56],

sparse-mode (SM) [57], source specific multicast (SSM) [58], and bidirectional (Bidir)

PIM [59]. The initial set of protocols only included dense-mode and sparse-mode,

but after a few years of deployment experience, the protocols have evolved and been

optimized to better support the emerging multicast applications. The traditional

PIM protocols (DM and SM) provided two models for forwarding multicast packets,

source trees, and shared trees. Source trees are rooted at the source of the traffic while

shared trees are rooted at the rendezvous point (RP). Each model has its own set of

characteristics and can be optimized for different types of applications. The source

tree model provides optimum routing in the network, while shared trees provide a

more scalable solution. Dense mode is ideal for groups where many of the nodes will

subscribe to receive the multicast packets, so that most of the routers must receive

28

and forward these packets.

Four variants of PIM are as follows:

1. PIM Dense Mode (PIM-DM): (PIM-DM) implicitly builds shortest-path

trees (SPT) by flooding multicast traffic domain wide, and then pruning back

branches of the tree where no receivers are present. Pruning mechanism is using

as an attempt to optimize the data flow for long lived conversations in order

to avoid sending the data into portions of the Internet with no receivers for G.

If a router receives a packet for G, and has nobody to forward it to, it sends

a ”prune” message for G to the neighbor from which it received the packet for

G. Each router is responsible for keeping track of all the groups their neighbors

are not interested in listening to. PIM-DM is straightforward to implement

but generally has poor scaling properties. It is infeasible to flood traffic for

all groups everywhere, in case some distant node would like to listen, and it is

infeasible (if multicast were successful) to keep state for all groups each neighbor

is not interested in receiving.

2. PIM Sparse Mode (PIM-SM): In SM operation, data packets are not broad-

casted and only routers on the multicast tree need to keep state information

for a group. The state of a multicast tree is set up when receivers designated

routers (DR) send join messages toward a RP. PIM-SM is built around a single,

unidirectional shared tree whose root is the RP. The RP knows all the receivers

and all the sources and make a connection between both therefore avoiding the

flood and prune behavior of PIM DM.

One of the receiver’s local routers is elected as the DR for that subnet. On

receiving the receiver’s expression of interest, the DR then sends a PIM Join

message towards the RP for that multicast group. This Join message is known

as a (*, G) Join because it joins group G for all sources to that group. The (*,

29

G) Join travels hop-by-hop towards the RP for the group, and in each router

it passes through, multicast tree state for group G is instantiated. Eventually,

the (*, G) Join either reaches the RP or reaches a router that already has (*,

G) Join state for that group. When many receivers join the group, their Join

messages converge on the RP and form a distribution tree for group G that is

rooted at the RP. This is known as the Rendezvous Point Tree (RPT), and is

also known as the shared tree because it is shared by all sources sending to that

group.

A multicast data sender just starts sending data destined for a multicast group.

The sender’s local router (DR) takes those data packets, unicast-encapsulates

them, and sends them directly to the RP. The RP receives these encapsulated

data packets, decapsulates them, and forwards them onto the shared tree. The

packets then follow the (*,G) multicast tree state in the routers on the RP Tree,

being replicated wherever the RP Tree branches, and eventually reaching all the

receivers for that multicast group.

3. Bidirectional PIM (BIDIR-PIM): Bidir PIM was developed to help deploy

emerging communication and financial applications that rely on a many-to-

many applications model. In bidirectional mode, traffic is routed only along a

bidirectional shared tree that is rooted at the RP for the group. Data from the

source can flow up the shared tree (*, G) towards the RP and then down the

shared tree to the receiver. There is no registration process and so source tree (S,

G) is created. Bidirectional trees are built using a fail-safe Designated Forwarder

(DF) election mechanism operating on each link of a multicast topology. With

the assistance of the DF, multicast data is natively forwarded from sources to

the RP and hence along the shared tree to receivers without requiring source-

specific state. The DF election takes place at RP discovery time and provides

the route to the RP, thus eliminating the requirement for data-driven protocol

30

events.

4. PIM Source-Specific Multicast (SSM): Mainly, SSM was developed to

easily support one-to-many applications by greatly simplifying the protocol me-

chanics for deployment ease. In SSM, delivery of datagrams is based on (S, G)

channels. Traffic for one (S, G) channel consists of datagrams with an IP uni-

cast source address S and the multicast group address G as the IP destination

address. Systems will receive this traffic by becoming members of the (S, G)

channel. In both SSM and Internet Standard Multicast (ISM), no signaling is

required to become a source. However, in SSM, receivers must subscribe or

unsubscribe to (S, G) channels to receive or not receive traffic from specific

sources. In other words, receivers can receive traffic only from (S, G) channels

to which they are subscribed, whereas in ISM, receivers need not know the IP

addresses of sources from which they receive their traffic.

4.2 Performance Comparison

In order to have a fair performance comparison and as first step we ought to do all

simulations over a system similar to SDN controller which has a comprehensive view

over the network topology. For this purpose we have developed a system which is

designed to parse a network topology and creates its corresponding graph. Then, we

distributed pairs of servers and 10 multicast clients over created graph and finally,

we evaluated the output and performance of different implementation of SM, DM,

Dijkstra and MiniMax algorithms for given number of multicast requests at the spe-

cific time. Location of multicast servers has significant impact on the performance of

multicast trees which will be created.

Overall performance comparison of all implemented systems is tabulated in Ta-

ble 1. These results have been obtained by running each implemented system over

133 different topologies with at least 25 switches. Servers, clients and rendezvous

31

points are distributed randomly through the topologies. In addition, links in each

topology are weighted randomly proportional to the number of switches that a given

topology contains.

The following metrics are investigated:

1. Average number of branches: This value shows the average number of branches

that each multicast tree contains. The lower average value might show that

better multicast trees are established although, this fact it is not certain. The

worst multicast tree is established when there is no common point between

clients and multicast packets traverse a distinct path per each client and the

established multicast tree operates exactly as unicast where a distinct flow is

sent per client.

2. Average tree load: This value shows the average weight of links which constitute

the multicast trees. Theoretically lower value shows that created multicast trees

consist of less congested links and consequently a lower probability of packet

loss is expected. If the multicast tree is established over high weighted edges,

the probability of packet drop/loss increases automatically.

3. Average client load: This value shows the average link weight from a given client

to its multicast content provider. Similar to the two aforementioned metrics,

the lower value is ideal theoretically because it shows that clients have more

chance to receive multicast packets correctly.

4. Time complexity: This value quantifies the amount of time taken by imple-

mented algorithms. Lower complexity leads to great reduction of computational

complexity and subsequently a faster reaction from controller to multicast group

events.

5. Space complexity: This value shows total space taken by the algorithm with

respect to the input size.

32

Lower value for the first three metrics would not lead to creation of optimized

multicast tree essentially. As we described earlier, MiniMax routing algorithm finds

the path which has more available bandwidth. On one hand obtained multicast tree

using this algorithms is guaranteed to have more available bandwidth and on the

other hand established tree might not have a low client load, tree load or number

of branches average. Regardless of values for tree and client metrics, established

tree using MiniMax is guaranteed to have a good performance because having more

available bandwidth (capacity) means higher chance to receive end-to-end packets.

Time and space complexity can be also interpreted as metric of scalability for an

algorithm. The algorithm which has the lower order of time and space complexity is

more scalable.

Table 1: Performance comparison of different multicast implementation models

Multicast Methods Branch Average Tree Load Average Client Load Average Time Complexity Space Complexity

Traditional Sparse 28.8 974.5 455.1 O(V 3)** O(V)
Traditional Sparse
+ BFS

13.7 398.8 104.0 O(V 3)** O(V)

Sparse + no RP 6.5 193.6 85.8 O(C × (E + V)) O(V)
Sparse + Load Bal-
ancing + no RP

7.5 220.6 83.3 O(C × (E + V)) O(V)

Dense + BFS 7.3 215.4 64.2 O(E+V) O(V)
Dense + Kruskal 10.0 150.5 66.3 O(Nlu × ElogV) O(V)
Dijkstra 8.2 148.4 47.2 O(Nlu × S × (ElogV)) O(S × (V + E))
MiniMax 10.1 145.8 68.3 O(Nlu × S × (ElogV)) O(S × V)

Where:

• S defines the number of multicast servers (1 < S < finite value). Finite value is

proportional to the number of nodes in a given topology,

• C defines the number of multicast clients (1 < C < ∞),

• Nlu defines the number of link weight update per minute (1 < Nlu < 60),

• V defines the number of graph vertices (switches in the topology) (1 < V <∞),

• E defines the number of graph edges (links between switches) (0 < E < V 2),

33

• ** defines that no fast solution is known for the original problem (NP Complete)

but the heuristic solution [60] solves this problem within the time complexity

as indicated in Table 1.

Due to the tradeoff between the parameters, optimizing each parameter would

result in other ones being non-optimal. In general, the algorithm which has an ac-

ceptable value for all of the parameters could be selected as an ideal approach for

multicast implementation over the network structures like SDN.

4.2.0.1 Implemented methods

Each of the implemented algorithms has their own set of characteristics. We will

describe each method in detail and will demonstrate their different behaviors over

a sample topology which is shown in Figure 8. Nodes colored red/purple shows

corresponding server’s switch, node which is colored in green shows the RP and nodes

colored in orange demonstrate corresponding client’s switches. Applying each of the

aforementioned algorithms leads to creation of different multicast trees.

Traditional sparse mode: This algorithm follows the traditional implementa-

tion of sparse mode where clients express their interest by sending a Join message to

its Designated Router (DR). On receiving the receiver’s expression of interest, the DR

then sends a PIM Join message towards the RP for that multicast group. Eventually,

the Join request either reaches the RP or reaches a router that already joined that

group. This scenario could be implementing by using Depth First Search (DFS) algo-

rithm and extracting the path from the given client to the switch in multicast group.

As shown in Table 1 neither the multicast tree parameters nor multicast parameters

are optimized.

In addition, the main problem concerning the construction of a shared multicast

tree is selection of a root of the shared tree or the core point. The selection of core

directly affects the performance of multicast. A poor selection may lead to many

34

0

1

9

2

1
17

8

11
9

3

1

25

2

196

125

15
9

6
2

76

4 51

7

8
9

208

98

3

8

13
10

4

14

8

22

5

216

108

6

16

4

9

18

7

1

23

4
10

243

Figure 8: Network topology under consideration

performance problems such as high cost, significant delay and increased congestion.

Therefore, it is very important to select a suitable core to have an effective multicast.

However, the core selection is an NP complete problem which needs to be solved

using heuristic algorithm. Researchers have already proposed several solutions to

this problem. However, the problem of finding a better or the best core node has

not yet been completely solved. Applying traditional sparse mode algorithm over

illustrated topology leads to creation of following multicast tree (Figure 9).

Modified sparse mode: The modified version of sparse mode significantly in-

creases the performance of multicasting by simply replacing the DFS with Breadth

First Search (BFS). In contrast to DFS which explores as far as possible along each

branch before backtracking, BFS begins at the client switch and inspects all the

neighboring nodes till it reaches RP or a node which has already joined multicast

35

group. First, client expresses its interest to join a multicast group by spreading the

request on all available attachment points. Then each switch propagates the packet

to all neighbor nodes till the request reaches the closest switch in the multicast tree.

Although multicast parameters improve, time complexity of finding an appropriate

RP affects the total efficiency of this algorithm. Applying a modified version of sparse

mode algorithm over illustrated topology leads to creation of following multicast tree

(Figure 10).

Sparse without RP: One method to overcome the drastic complexity of choosing

the RP is to move RP to multicast servers attachment point. Transferring the RP

across switches associated with multicast sources and increasing the number of RP

will close the gap between the traditional definition of dense mode and sparse mode

by omitting the concept of shared multicast tree, however, the procedure of joining

to multicast group is still fundamentally different. Likewise sparse mode, the join

request spreads across network topology using BFS until the request reaches the

closest available multicast trees. Omitting the complexity of finding a RP makes

this approach applicable and evaluated performance values for multicast tree and

multicast client confirm the efficiency of this algorithm. Figure 11 represents the

structure of multicast trees after applying this algorithm.

Sparse mode with load balancing: In aforementioned implementation of

sparse mode and when multiple sources are available and located close to each other,

it is highly possible to have one tree which almost supports all multicast clients while

the other sources are idle. By joining each new multicast client to a specific multicast

tree, that multicast tree grows and has more chance to collect further Join requests

due to higher number of switches it has in comparison to other multicast trees. Con-

sequently, over the time all new multicast request converges to one multicast tree and

that multicast tree spans through whole topology while other multicast trees remain

small. Therefore, a mechanism of load balancing will enhance the performance of

36

sparse mode dramatically. In more intelligent implementation of sparse mode, a con-

troller finds path from a given client to all available multicast providers but finally it

assigns a multicast tree to a new client which satisfies the specific requirements.

In smart sparse mode we consider a weight for each multicast tree which is equal

to total weight of all links in tree rooted at the server. When a client expresses its

interest to join the multicast group, the controller will find the path from that given

client to all sources using BFS algorithm. The tree which has the lower summation

of tree weight and path length to the given client will be responsible to support

that client. As a result, the traffic load prorates over all available multicast clients

in expense of adding a method for tree comparison. Figure 12 illustrates obtained

multicast tree structure after applying this algorithm.

Dense mode using BFS: In contrast to all aforementioned methods where find-

ing an appropriate multicast tree starts from the client side, another approach is to

start creating the multicast tree from multicast server side. Because the multicast

tree creation starts from the server side, we refer to this method as a subset of dense

mode. In this approach BFS algorithm starts from all available servers till all nodes

in the topology will be accessible via one of the servers. This method is very close to

our shortest path (minimum hop) approach which we utilized in this thesis. Figure 13

demonstrates created tree using this method.

Dense mode using MST: Instead of finding the shortest path from each server

to all multicast client without considering path weights, a more intelligent way could

be creating a minimum spanning tree (using well known algorithms such as Kruskal or

Prim) and then using BFS algorithm to investigate path from all servers to multicast

clients. Figure 14 illustrates created tree using this method.

Dijkstra & MiniMax: In this thesis we have used both Dijkstra and MiniMax

algorithms to determine and assign a most suitable multicast tree at the given time

to new multicast client comers. Our implemented system is a combination of sparse

37

and dense mode hence, like sparse mode the joining procedure starts by receiving

Join messages from the clients and similar to dense mode finding an appropriate

multicast tree starts from available sources and multicast trees create per source.

Finally, all available paths from servers to specific client are comparing with each

other and the server which satisfies the requirements of Dijkstra/MiniMax algorithms

will be selected. As it is shown in Table 1 both of these two algorithms has good

performance and deemed as practical. On one hand time and space complexity of

them are acceptable and on the other hand extracted values for multicast trees metrics

are satisfactory. In addition, both of these algorithms are automatically handling the

load balancing issues when servers link are normally congested. In contrast, when

all links related to one server are totally congested, the multicast controller selects

the other servers inevitably. Applying Dijkstra and MiniMax leads to creation of

following multicast trees (Figure 15 and 16).

Dense mode: Traditional implementation of dense mode is very close to Dijkstra

approach which we utilized in this thesis. In dense mode a server creates a minimum

spanning tree and then broadcast the multicast packets through established tree. A

node which is not interested in receiving multicast packets will send prune message

to the switch, which received broadcast message from it. At the end by pruning

branches from spanning tree, a multicast tree remains which consists of both server

and clients. Dense mode requires pruning operation which is totally unnecessary

when a comprehensive view over the network topology is already provided. Applying

dense mode algorithm over illustrated topology leads to creating of same multicast

tree of Figure 15.

4.2.0.2 Time Complexity Comparison

As it is shown in Table 1, 5 parameters interfere in time complexity of implemented

algorithms (C, S, Nlu, V, E). Among these five parameters V and E are common

38

between all methods and increasing each of these values has almost the same impact

on the total time complexity although its impact on the last two algorithms is higher.

C shows the number of multicast clients, thereby no upper bound limits is defined

for that. As a result, the time complexity of algorithms which are dependent on

C varies from linear complexity to non-linear complexity. Hence the complexity of

sparse mode with BFS and sparse mode using a method of load balancing algorithms

increase to O((n × V 2) + (n × E × V)) in the worst case when each node in

the topology has n multicast clients attached. The final complexity is determined

by number of edges in the topology. Number of link updates is a tradeoff between

increasing the accuracy and better performance of the algorithm and increasing the

time complexity of implemented algorithms which are dependent on this parameter.

Although, unlike C there is an upper bound limitation for this variable.

Dense mode using MST is sensitive to each link weight because each change in

links weight leads to creation of distinct MST. As a result, after each link update

procedure, the new MST will be created and new path from sources to clients will be

determined. Dense mode using BFS is only affected by number of vertices and edges

and it is independent from other variables.

Dijkstra and Minimax are dependent on number of multicast servers plus their

dependency on number of link updates per minute. As we described these algorithms

earlier, the controller investigates all available solutions from all multicast servers to

a given client and finally compares the outputs and picks out the best solution. Hence

in these two methods, the algorithm will be applied per each server but fortunately

number of servers has a finite value and will not increase the order of complexity

significantly.

Our proposed and implemented approach has both traditional sparse and dense

mode specification. Multicast trees establish per each source (like dense mode) while

joining procedure starts when a Join message sent from client. Simultaneously, our

39

approach overcomes the overheads of traditional sparse mode which is selecting the

RP and dense mode which is pruning the links which are not interested in receiving

multicast packets. Unlike methods which assign the closest multicast tree to new

multicast comer, our method selects the multicast tree according to some metrics

(less total tree weight or more available bandwidth) by comparing all available servers

and their corresponding path to the given client and finally picking out the best one

which satisfies the requirements. Additionally, time and space complexity of proposed

algorithm is acceptable.

40

0

1

9

2

1
17

8

11
9

3

1

25

2

196

125

15
9

6
2

76

4 51

7

8
9

208

98

3

8

13
10

4

14

8

22

5

216

108

6

16

4

9

18

7

1

23

4
10

243

(a) Multicast tree structure in network topology

0

1

9

2
1

17

8

119

25
2

19

6

12

5

159

4
5

1

7

89 98

6 76
3

20

8

148

225

16
4

18

7

23
4

(b) Extracted multicast tree structure

Figure 9: Multicast tree generated using traditional sparse mode

41

0

1

9

2

1
17

8

11
9

3

1

25

2

196

125

15
9

6
2

76

4 51

7

8
9

208

98

3

8

13
10

4

14

8

22

5

216

108

6

16

4

9

18

7

1

23

4
10

243

(a) Multicast tree structure in network topology

6 76

12
3

20
8

13

10

148

22

5

9 6

11

5

15

9

16
174

25

9

18
1

23

4

10

(b) Extracted multicast tree structure

Figure 10: Multicast tree generated using BFS in traditional sparse mode

42

0

1

9

2

1
17

8

11
9

3

1

25

2

196

125

15
9

6
2

76

4 51

7

8
9

208

98

3

8

13
10

4

14

8

22

5

216

108

6

16

4

9

18

7

1

23

4
10

243

(a) Multicast trees structure in network topology

6 76 123

13
10

14
8

9 611
5

15
9

16
174

25

9

18

221

23
4

10

(b) Extracted multicast trees structure

Figure 11: Multicast trees generated using sparse mode (no RP)

43

0

1

9

2

1
17

8

11
9

3

1

25

2

196

125

15
9

6
2

76

4 51

7

8
9

208

98

3

8

13
10

4

14

8

22

5

216

108

6

16

4

9

18

7

1

23

4
10

243

(a) Multicast trees structure in network topology

0

19

17

8

119

6 76 123

13
10

148

15

4

9 6

16
4

25

9

18

221

23
4

10

(b) Extracted multicast trees structure

Figure 12: Multicast trees generated using sparse mode and load balancing (no RP)

44

0

1

9

2

1
17

8

11
9

3

1

25

2

196

125

15
9

6
2

76

4 51

7

8
9

208

98

3

8

13
10

4

14

8

22

5

216

108

6

16

4

9

18

7

1

23

4
10

243

(a) Multicast trees structure in network topology

6 76

12
3

13
10

148

15

4

9 6

11

5

16

25

9

17
196

18

7
22

1

23
4

10

(b) Extracted multicast trees structure

Figure 13: Multicast trees generated using BFS in dense mode

45

0

1

9

2

1
17

8

11
9

3

1

25

2

196

125

15
9

6
2

76

4 51

7

8
9

208

98

3

8

13
10

4

14

8

22

5

216

108

6

16

4

9

18

7

1

23

4
10

243

(a) Multicast trees structure in network topology

2

31

25
2

62 76

4
51

19

7

89 98

12

3 148

15

4
11

5

16 174 6

18

7

221

23

4

(b) Extracted multicast trees structure

Figure 14: Multicast trees generated using kruskal algorithm in dense mode

46

0

1

9

2

1
17

8

11
9

3

1

25

2

196

125

15
9

6
2

76

4 51

7

8
9

208

98

3

8

13
10

4

14

8

22

5

216

108

6

16

4

9

18

7

1

23

4
10

243

(a) Multicast trees structure in network topology

0

21

17

8

31

25

2

62 76

12

3

13
10

148

15

4

9 6

11
5

16
9

18

221

23

4

(b) Extracted multicast trees structure

Figure 15: Multicast trees generated using dijkstra algorithm

47

0

1

9

2

1
17

8

11
9

3

1

25

2

196

125

15
9

6
2

76

4 51

7

8
9

208

98

3

8

13
10

4

14

8

22

5

216

108

6

16

4

9

18

7

1

23

4
10

243

(a) Multicast trees structure in network topology

2

31

25
2

62 76

4
51

19

7

89 98

12

3 148

15

4
11

5

16 174 6

18

7

221

23

4

(b) Extracted multicast trees structure

Figure 16: Multicast trees generated using minimax algorithm

48

CHAPTER V

PROPOSED ARCHITECTURE & IMPLEMENTATION

This chapter proposes a framework architecture for video streaming over OpenFlow

networks managed by a single control plane. We apply the proposed architecture to

streaming of MDC videos, where each video is divided to odd and even descriptions

and distributed over servers at different physical locations. The rest of this chapter

investigates the architecture components in more detail.

5.1 Architecture

The proposed streaming video multicast framework is built on three pillars:

• IP-Multicast

• Multiple-Description Coding (MDC)

• Software-Defined Networking (SDN)

MDC encodes the video into multiple, independently decodable streams where any

description can be used to decode the media stream to provide error resilience to the

system at the expense of a slight reduction in compression efficiency. Descriptions are

distributed across the network to benefit from multipath routing. A similar benefit

of error resiliency may be realized with Scalable-Video Coding with better coding

efficiency. However, this improvement comes at the expense of the need for continuous

careful orchestration of what different servers transmit and how packets from multiple

servers are processed at the subscriber hardware, both of which require more advanced

hardware realizations.

The use of IP-Multicast minimizes the unnecessary transmission of replicated

packets in the network. Implementing multicast in network layer not only decreases

49

the probability of network congestion, but also increases the end-to-end packet deliv-

ery likelihood for all media and other services for clients at the same time.

In our implementation, the streaming video content is MD-Coded with 2 distinct

descriptions. We have a number of servers in the network, each server streaming

one of the two descriptions. Two classes of subscriptions are possible for the service

including Standard and Premium. The premium users subscribe for a high quality

streaming experience. They achieve this via reception of both descriptions. For this

purpose, premium users are connected to two distinct multicast trees at a given time.

When delivery of one description fails, the premium user will still be able to continue

its playback, albeit, at a reduced quality level. The standard users, on the other hand,

subscribe for a standard quality streaming experience. At a given time, the standard

user receives only one description for playback which belongs to only one multicast

tree. When the delivery from this tree fails, the standard user experiences a pause

until the failure is corrected or the user is migrated to a new server. The premium user

experiences a pause only when both trees experience failures. Figure 17 illustrates

comprehensive view of multiple-description video using multicast over SDN.

5.2 Implementation

In addition to multicast control application which is described in previous chapter,

the proposed architecture constitutes of following items.

5.2.1 OpenFlow Controller

SDN aims to reduce network reaction time to traffic variations by moving path al-

location from individual devices to centralized controller software that lives on a

workstation or server.

In traditional networks, Spanning Tree or routing protocols often take on the

task of topology management, such as ensuring freedom from loops. Due to the

distributed algorithms of these protocols, a number of difficulties arise, such as a

50

Figure 17: General perspective

complex configuration, a limited number of hops or long convergence times for changes

in the underlying network infrastructure. Exploiting multiple paths between the

start and destination of a data flow involves considerable effort and the use of other

protocols. In contrast, SDN controllers have a central view of all network components

and can therefore greatly simplify topology management. The controller component

communicates with each device in the network, receiving updates on load and link

status and then managing traffic flows among the devices.

The first OpenFlow controller platform, NOX, was released in early 2008. NOX

originally used cooperative threading to process events in a single threaded manner.

In 2011 a version of NOX was released [61] with a multithreaded learning switch

application. Many other OpenFlow controllers have been released after NOX, which

are written using different programming languages. Obviously, the programming

51

language and development environment have a significant impact on the productivity

of developers, and could also be a limiting factor in application performance.

Among all existing programming languages, Java seems an appropriate choice for

developing an OpenFlow controller. Java is a cross platform high performance pro-

gramming language, and has this ability to automatically manage the memory. Other

programs written in Java such as Hadoop and Tomcat exhibited high performance.

Although many other user friendly programming languages exist, their performance

is unknown when used in an OpenFlow controller.

5.2.1.1 Beacon

Beacon is a Java-based open source OpenFlow controller created in 2010. It has been

widely used for teaching, research, and as the basis of Floodlight. Beacon enhanced

the OpenFlow controller design from various aspects, with a focus on being developer

friendly, high performance, and having the ability to start and stop existing and new

applications at runtime. Beacon showed surprisingly high performance, and was able

to scale linearly with processing cores, handling 12.8 million Packet-In messages per

second with 12 cores, while being built using Java [62].

We initially started our implementation over Beacon but this OpenFlow controller

could not handle topologies with loops. Loops in topologies occur when there is more

than one path between two endpoints which is widely common in every network topol-

ogy. The loop creates broadcast storms as broadcasts and multicasts are forwarded

by switches on every port. Then the switch or switches will repeatedly rebroadcast

the broadcasted messages flooding the network. The solutions such as Spanning Tree

Protocol (STP) are designed and implemented on the network switches. In this thesis,

we did not bind our network topologies to specific characteristics and this purpose was

not achievable by Beacon due to absence of ability to handle topologies with loops. In

addition, Beacon could not handle devices with multiple attachment points (a device

52

reachable from multiple switch ports) and was not provided with new features for

many years. Hence, we moved our implemented system from Beacon to Floodlight

controller.

5.2.1.2 FloodLight

Floodlight is a Java based OpenFlow controller that has forked from one of the

two pioneering OpenFlow controllers developed at Stanford called Beacon controller.

Floodlight attributes to the simplicity and yet high performance of the controller

and provides a modular programming environment. Beside supporting topologies

with loops, non-OpenFlow domains, and multiple device attachment points, it even

introduced lots of other features over Beacon.

Floodlight implements a sophisticated mechanism for automatically detecting the

topology of an OpenFlow network. Using a link-discovery module, the controller

generates both LLDP and broadcast packets (referred to as BDDPs) and sends them

to all neighboring switches on a regular basis. Assuming all switches consume LLDP

messages and forward broadcast packets, Floodlight can identify active connections

by receiving its own messages and computing the network topology.

Floodlight makes a distinction between direct links and broadcast links; a direct

connection is always assumed if it receives its own LLDP packets. In this case, two

OpenFlow switches are directly connected under the control of the same Floodlight

instance. Based on the information of the link discovery mechanism, the topology

service computes a topology map in the form of a directed graph. The map contains

all the relevant information about interconnectivity between switches, and they can

be used by other applications, such as computing a spanning tree.

Floodlight currently provides two modules for automatic packet forwarding be-

tween endpoints. A relatively simple Forwarding module mainly serves as an exem-

plary introduction to Floodlight and the complex Learning Switch module implements

53

behavior similar to standard switches; The Learning Switch detects and learns about

new devices based on their MAC addresses.

We implemented our framework over FloodLight hence, it is designed to be an

enterprise grade, it has high performance and simultaneously satisfies our expectations

from the SDN controller by handling loops in topologies and multiple attachment

points. Although we provide our plugin using FloodLight as the proof of concept, we

believe that it should be easy to extend our approach for other standard OpenFlow

controllers.

5.2.2 Topologies

Topologies are selected out of a collection which contains 243 different network topolo-

gies. Then topologies which has more than one island (there are two nodes in topology

graph such that no path in topology graph has those nodes as endpoints) have been

excluded from the collection. Then each file in collection are parsed and spatial re-

lationships between connected nodes and adjacent features are extracted and saved

in a separate file. The way that switches connected to each other are fixed however,

other parameters are effective in creating different scenarios in one topology. We con-

sider multiple variables for each of the effective parameters. In our implementation

parameters which are effective in creating scenarios and their corresponding values

are as follows:

1. Description Providers: Varies from 2 to 4,

2. Multicast Clients: Varies from 10 to 40 in 4 steps by 10 client increase at each

step,

3. Cross Traffic Servers Pairs: Varies from 10 to 320 in 6 steps. These 6 steps are

10, 40, 80, 160, 240 and 320 respectively.

54

In addition, for each topology we considered three scenarios for multicast clients

as follow:

1. 90% of the clients are assumed to be standard users, and remaining 10% are

premium users.

2. 70% of the clients are assumed to be standard users, and remaining 30% are

premium users.

3. 50% of the clients are assumed to be standard users, and remaining 50% are

premium users.

In total 51840 scenarios (240 topologies * 216 different scenarios per topology)

has been generated and prepared for further access.

5.2.3 Multicast Data Structure

A customized version of the Java JTree is used by IP-Multicast controller to maintain

multicast tree structure. JTree commonly used to display hierarchical data and we

find it appropriate for keeping multicast structure due to following reasons:

• No Restriction: This data structure is very flexible because of the purpose that

is design for. As mentioned earlier, this data structure is designed to display

hierarchical data which means that there is no restriction about depth of tree,

number of children and number of siblings. Multicast trees do not have a specific

data structure and they require a flexible structure to keep their content.

• Number of practical functions: Many practical functions have been implemented

in this data structure (i.e. a function which gives two given node in the tree

and returns their common ancestor immediately). Such functionality facilitates

seeking and editing procedures in multicast tree.

55

• Already Implemented: This data structure is already implemented and tested in

Java and widely used in different test cases, so good performance and minimum

number of bugs are guaranteed.

Source codes have been downloaded, customized and imported to Mulitcast applica-

tion to keep multicast tree structures. The control application establishes a new tree

for each DP using this data structure.

5.2.4 Description Providers

DPs stream packets with the exact size and rate of the actual streamed video which

is 15fps with an average 1000 kb/s bit rate, but instead of transmitting the video

data, we let the DPs populate the packets with parameters which help us analyze

and track them further a posteriori. These parameters are:

• Information regarding the source DP,

• Frame number,

• Frame sequence number,

• Packet sent time,

• Packet sequence number.

DPs have access to video frame list, fragment each frame to specific number of

subdivisions and insert them in a sending queue according to their frame and sub-

divisions number. Before sending a packet, DPs refer to a subdivision which has to

be transmitted at that round (the subdivision which exists in front of the queue)

and extract frame number and subdivision number from it. Extracted information

will join to other mentioned information (i.e. packet sequence number) and rest of

packet fills with dummy data. Packets are sending over UDP protocol hence DPs are

streaming multicast packets. Multicast traffic is handled at the transport layer with

56

UDP, as TCP provides point-to-point connections which is not feasible for multicast

traffic.

DPs are written in Java and streaming packets on specific multicast IP address

(225.0.0.38).

5.2.5 Multicast Clients

Two types of users are envisioned: Standard and Premium. While standard sub-

scribers are to receive one of the descriptions of the video, premium subscribers will

receive multiple descriptions, each from a different source, simultaneously and com-

bine these descriptions prior to playback in order to increase video quality.

Main duty of multicast client is to listen on specific port and multicast IP ad-

dress in order to capture the packets, parse its containing data, stamp packet with

its receiving time and saving them to a file for posterior analyze. Both premium

and regular users are identically following this procedure however, premium ones are

capturing packets with higher rate. Likewise DPs, multicast client implementation

done using Java.

Beside capturing multicast packets, multicast clients send specific messages to

controller to join or leave multicast group. Following messages are sent by multicast

clients:

• Regular Join: Sent by a given node identifies willingness of the regular client to

join the multicast group.

• Premium Join: Sent by a given node identifies willingness of the premium client

to join the multicast group.

• Leave: Sent by a given node identifies willingness of the client to leave the

multicast group.

We distinguish control packets from each other and from streaming packets by

57

assigning different multicast IP addresses to them (i.e. If a packet reaches to the

controller with destination IP address of 225.0.0.1, the controller follows the procedure

of regular joining for the client which sent this message). In addition, Join messages

can specify the IP-Multicast that the host is attempting to join, but since we consider

one active multicast group in our implementation, body of Join messages are empty.

Important issue about the client is the procedure of joining and leaving the mul-

ticast group which has to be fixed during all simulations, otherwise experiment result

will not be reliable. For this purpose and before running the main simulations, Video

consumers are determining a reference pattern in a separate simulation. In this sim-

ulation, clients first submit their Join message and stay in multicast group for 45

seconds. Afterwards, the clients randomly choose to either submit a new request

(Leave request if they are already being serviced and vice versa) or remain in their

current state for another 45 seconds. We assume that the probability of submitting

a leave request is 20% and the probability of submitting a join request is 80%. A

higher probability is considered for subscribing to the service since the clients may

capture more packets this way which in turn improves the evaluation accuracy. Also

Clients record the time they joined and leaved streaming service.

5.2.6 Cross Traffic Generators

To emulate the behavior of realistic networks, we designed a client server traffic

generator application, where multiple clients continuously pump data to the given

servers over UDP. The main purpose of the cross traffic generation is to congest the

network and since this is not achievable by TCP due to its inherent congestion control

mechanism, all cross-traffic packets are transmitted using UDP in the experiment.

Artificial traffic between cross clients and servers are copied from 4 real patterns.

These 4 patterns are: HTTP, FTP, audio and video conference (Skype) and video

streaming (YouTube). Traffics captured from interaction between real host and its

58

related service provider. Then captured traffic is analyzed and its related pattern is

extracted (size of packets and sending bit rate) and finally extracted pattern hard-

coded to cross traffic servers.

In order to have same traffic pattern during all simulations, cross traffic servers are

following a fix scenario obtained from a separate simulation where cross traffic servers

(320 servers in total) determining a reference pattern. In this simulation each server

chooses one of the 4 traffic patterns, then simulate first 1024 packets of that traffic

by sending fake packets with exact size and rate of reference traffic pattern. When

1024th packet is departing the server, cross server chooses one more traffic pattern

to simulate. Each cross traffic server transmits data to a predetermined receiver that

remains status throughout the experiment. We captured all decisions made by cross

traffic servers and set them to follow the same pattern in our real simulations.

Cross traffic servers are implemented using Java and cross traffic clients are imple-

mented in Python to reduce memory usage by the host computer where simulations

are run over that.

59

CHAPTER VI

EXPERIMENT SETUP & EVALUATION

We conduct experiments to assess the performance of the proposed architecture when

Minimum Hop, Shortest Path and MiniMax routing algorithms are deployed. To as-

sess the benefit of SDN-based IP-Multicast MDC video streaming, we also investigate

the performance of ALM for both SDN as well as non-SDN networks. In SDN net-

works, end-to-end routes are established for ALM by the controller which has global

network view. The non-SDN network, on the other hand, is today’s Internet, where

routes are computed in a distributed manner by the individual switches which have lo-

cal network views of their neighborhoods. Non-SDN network is simulated by disabling

Forwarding module and enabling Learning Switch module in floodlight controller. The

Learning Switch module implements behavior similar to standard switches.

6.1 Test Setup

We conduct the experiment on Mininet version 2.0 in four different topologies with

15-20 switches, implemented with Open switch 1.4, with each switch connected to an

average of 2.67 other switches. We assume that each link has a bandwidth of 100

Mbps. The topology sizes are selected so that investigation of a heavily congested

network is possible. Congesting bigger topologies with higher link bandwidths is

difficult with limited resources such as memory. Cross traffic generators have been

created real traffic patterns. System performance at different network loads is desired.

Thus, cross traffic from a range of 10-320 servers is considered.

For each network topology, the experiment is conducted for 20 minutes. An addi-

tional 5 minutes is set aside to initialize the emulation testbed and 2 minutes between

each emulation to calm down the CPU and memory usage. All experiments run over

60

an IBM Server with 12 cores of CPU and 28 Gigabytes of RAM.

During the initialization phase, the cross-traffic generators start congesting the

network for the first minute. The DPs start streaming the two emulated descriptions

of the video for another minute after which the subscribers start joining the service.

In all experiments, the sequence of joining and leaving for both standard and

premium users are fixed and they are following the predetermined pattern. In our

simulations we consider 10 multicast clients which are distributed through selected

topologies. Finally following QoE metrics are investigated out of 80 subscriptions:

1. Packet Loss

2. Denied Service

3. Pauses & Downgrades

4. Pre-Roll Delay

5. PSNR

In our simulation we investigate metrics in two domains: i) Network, ii) Multi-

media. First two metrics are related to network aspects and remaining metrics are

relevant to multimedia aspects.

6.2 Packet Loss

We first investigate the percentile loss of video packets due to congestion in the net-

work. Packet loss percentage is calculated by tracking packet sequence number and

having known that how many packets is sent by source DP during the time that client

was subscribed in service. The results are depicted in Figure 18. We observe that

as the cross-traffic in the network increases (loaded network), the ALM performance

becomes significantly worse than SDN-based IP-Multicast performance. While SDN

61

50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Number of Cross Traffic Pairs

P
ac

ke
t L

os
s

[%
]

Multicast−MiniMax
Multicast−Minimum Hop
Multicast−Dijkstra
Unicast−SDN
Unicast

(a) 10% Premium User

50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Number of Cross Traffic Pairs

P
ac

ke
t L

os
s

[%
]

Multicast−MiniMax
Multicast−Minimum Hop
Multicast−Dijkstra
Unicast−SDN
Unicast

(b) 30% Premium User

50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Number of Cross Traffic Pairs

P
ac

ke
t L

os
s

[%
]

Multicast−MiniMax
Multicast−Minimum Hop
Multicast−Dijkstra
Unicast−SDN
Unicast

(c) 50% Premium User

Figure 18: Packet Loss

with ALM generally performs better than a non-SDN with ALM, both have signif-

icantly worse performances than the SDN with IP-Multicast. This result confirms

that while SDN is essential in reaping the gains of the IP-Multicast architecture, it

is not sufficient on its own. It acts as an enabler to easily implement architectures

that would be difficult, or even impossible, in today’s Internet, which in turn provides

significant performance gains.

Of the three routing algorithms, MiniMax incurs the lowest packet loss. However,

the performance difference between them is not very large. This result is dependent on

the topologies on which the experiment is run. MiniMax may achieve more significant

gains over different topologies where there are more available paths between switches.

62

6.3 Denied Service

Denied service is defined as time intervals where consumers subscribe to video service

and leave it without receiving any packet. Denied service happens due to following

reasons:

• Loss of join request. This challenge intensifies when network is congested but it

is also probable to occur in a least congested network due to links unreliability.

• Join request is received by the mulitcast control service but due to congestion

all video content packets traveling fail to reach their consumer.

In both aforementioned cases, consumer is denied to receive the content which is

eager to watch. Figure 19 illustrates total number of denied service occurred when

10%, 30% and 50% of video consumers are premium ones respectively. Hence, number

of denied services are 0 when the network is less congested (with 10 and 40 cross

traffic servers) therefor, we exclude them from the chart. Following inferences can be

extracted from the available data:

• SDN with IP-Multicast outperforms SDN and non-SDN with ALM and has

remarkable less number of denied service.

• Increasing number of premium users leads to decrease in total value of denied

service hence premium users are supposed to receive two independent streams

from different paths and as a result probability of facing denied service is lower.

• MiniMax incurs the lowest number of denied service.

Denied service for regular users can be interpreted as a fatal pause and for premium

users can be interpreted as two-stage failure: i) Fatal downgrade from high quality

video to lower quality and ii) Fatal pause.

63

40

60

80

ie
d
S
e
r
v
ic
e
s

Multicast MiniMax Multicast MinHop Multicast Dijkstra

Unicast SDN Unicast

0

20

80 160 240 320

D
e
n

Number of Cross Traffics

(a) 10% Premium User

0

20

40

60

80

80 160 240 320

D
e
n
ie
d
S
e
r
v
ic
e

Number of Cross Traffic

Multicast MiniMax Multicast MinHop Multicast Dijkstra

Unicast SDN Unicast

(b) 30% Premium User

30

40

50

60

70

80

ie
d
S
e
r
v
ic
e
s

Multicast Minimax Multicast MinHop Multicast Dijkstra

Unicast SDN Unicast

0

10

20

80 160 240 320

D
e
n
i

Number of Cross Traffics

(c) 50% Premium User

Figure 19: Denied Service

6.4 Downgrade/Pause

Downgrade includes time intervals where premium user is watching the video like

regular user and complement description is not delivered in time or not delivered

at all. In such time intervals video quality is downgraded from premium quality to

regular one. Table 2 tabulates the observed number of downgrades for SDN-based

IP-Multicast with different routing algorithms, as well as SDN and non-SDN-based

ALM for different network congestion levels. The table lists the values for the top

performing 90% and 100% subscribers. The table entries with dashes correspond to

the case where there are less than 90% or 100% of the users that can receive the

service in that scenario as a number of the users are denied service completely due to

congestion.

Pause is defined as the time interval where there is no frame to display and video

demonstration buffer is empty. In such cases clients wait till their buffer is filled

64

Table 2: Number of Downgrades

Cross Traffic Multicast-MiniMax Multicast-Minimum Hop Multicast-Dijkstra Unicast-SDN Unicast

Name 90% 100% 90% 100% 90% 100% 90% 100% 90% 100%
10 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0
80 0 0 0 0 0 0 0 0 1 -
160 0 0 0 0 0 0 2 - - -
240 3 - 5 - 5 - - - - -
320 - - - - - - - - - -

(a) 10% Premium User

Cross Traffic Multicast-MiniMax Multicast-Minimum Hop Multicast-Dijkstra Unicast-SDN Unicast

Name 90% 100% 90% 100% 90% 100% 90% 100% 90% 100%
10 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0
80 0 0 0 0 0 0 0 0 1 -
160 0 2 0 0 0 0 1 - - -
240 9 - 13 - 13 - - - - -
320 13 - - - - - - - - -

(b) 30% Premium User

Cross Traffic Multicast-MiniMax Multicast-Minimum Hop Multicast-Dijkstra Unicast-SDN Unicast

Name 90% 100% 90% 100% 90% 100% 90% 100% 90% 100%
10 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0
80 0 0 0 0 0 0 0 0 2 -
160 0 5 0 0 0 0 3 - - -
240 16 - 24 - 16 - - - - -
320 19 - - - 23 - - - - -

(c) 50% Premium User

up to initial threshold. When initial buffer is filled up, video playback starts again.

Although neither of downgrade and pause are desired but occurrence of pause has

more destructive effect on video playback rather than downgrade. Table 3 shows

number of pauses in top 90 and 100 percentages of subscriptions. Following inferences

can be extracted from the available data:

• Number of downgrades increase as number of premium users increase.

• As a result some of the dashes in table 1 part b and c, the 30% and 50% premium

users, will be replace by relevant number of downgrades.

• By increasing number of premium users it is most probable that a given user can

receive the service. As a result some of the dashes in Table 3 part b and c, the

30% and 50% premium users, will be replace by relevant number of downgrades

65

Table 3: Number of Pauses

Cross Traffic Multicast-MiniMax Multicast-Minimum Hop Multicast-Dijkstra Unicast-SDN Unicast

Name 90% 100% 90% 100% 90% 100% 90% 100% 90% 100%
10 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0
80 0 0 0 0 0 0 0 0 0 -
160 0 0 0 0 0 0 1 - - -
240 26 - 39 - 46 - - - - -
320 - - - - - - - - - -

(a) 10% Premium User

Cross Traffic Multicast-MiniMax Multicast-Minimum Hop Multicast-Dijkstra Unicast-SDN Unicast

Name 90% 100% 90% 100% 90% 100% 90% 100% 90% 100%
10 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0
80 0 0 0 0 0 0 0 0 0 -
160 0 0 0 0 0 0 3 - - -
240 23 - 34 - 29 - - - - -
320 25 - - - - - - - - -

(b) 30% Premium User

Cross Traffic Multicast-MiniMax Multicast-Minimum Hop Multicast-Dijkstra Unicast-SDN Unicast

Name 90% 100% 90% 100% 90% 100% 90% 100% 90% 100%
10 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0
80 0 0 0 0 0 0 0 0 0 -
160 0 0 0 0 0 0 0 - - -
240 19 - 23 - 23 - - - - -
320 40 - - - 71 - - - - -

(c) 50% Premium User

(i.e. in Multicast-MiniMax top 90 when 30% of users are premium ones and

Multicast-Dijkstra top 90 when 50% of users are premium). This fact confirms

the claim that increasing the number of premium user will increase the chance

of receiving the service.

• By increasing number of premium users, number of pauses decrease hence,

clients have more chance to receive at least one description.

• MiniMax performs better than two other routing algorithms.

In order to investigate downgrades and pauses two queues have defined:

1. Regular Odd/Even queues which keep packets from odd/even DP.

2. Initial queue. Size of initial buffer is bigger than regular ones and it is used for

66

capturing packets for starting playback.

Utilizing the aforementioned buffers and by using the following sequential proce-

dure number of downgrades and pauses are calculated:

1. Select a client, then go through packets captured by this client and push them

in initial queue until it is filled up.

2. In a separate process, start fetching packets from initial queue and simulta-

neously push other packets to relative normal queues according to their DP

sequence numbers (we repeat this procedure till client leaves the group). Fetch-

ing packets from queues (odd/even for regular users and both odd and even for

premium ones) and speed of fetching depends on user type (regular user 15 fps

and premium users 30 fps).

3. When initial buffer is empty, the same procedure continues with normal queues.

4. For premium user two cases may happen before it leaves the service: i) One

of the queues (odd/even) is empty while the other one has packets to serve, ii)

Both queues are empty. Former case interprets as a downgrade while latter case

interprets as a pause.

5. The procedure for regular users is simpler. When there is no packet to fetch

and client has not left the service yet, it means that a pause occurred.

6.5 Pre-Roll Delay

Pre-Roll Delay is defined as the difference between the time when a user subscribes

for service and first packet for playback is received at the receiver. Table 4 tabulates

the observed pre-roll delays (time values in seconds) for SDN-based IP-Multicast with

different routing algorithms, as well as SDN and non-SDN-based ALM for different

network congestion levels. As previously indicated, the table entries with dashes

67

Table 4: Pre-Roll Delay

Cross Traffic Multicast-MiniMax Multicast-Minimum Hop Multicast-Dijkstra Unicast-SDN Unicast

Name 90% 100% 90% 100% 90% 100% 90% 100% 90% 100%
10 0.5 0.5 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5
40 0.4 0.6 0.4 0.5 0.5 0.6 0.5 0.5 0.5 0.5
80 0.5 0.6 0.4 0.4 0.4 0.5 0.4 0.5 0.6 -
160 0.6 1.7 0.5 0.5 0.5 1.3 0.5 - - -
240 9.8 - 19.2 - 19.0 - - - - -
320 - - - - - - - - - -

(a) 10% Premium User

Cross Traffic Multicast-MiniMax Multicast-Minimum Hop Multicast-Dijkstra Unicast-SDN Unicast

90% 100% 90% 100% 90% 100% 90% 100% 90% 100%
10 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
40 0.4 0.5 0.4 0.4 0.4 0.5 0.4 0.4 0.4 0.4
80 0.4 0.5 0.4 0.4 0.4 0.4 0.4 - 0.5 -
160 0.9 3.5 0.4 0.5 0.8 2.3 - - - -
240 15.2 - 21.3 - 18.7 - - - - -
320 25.3 - - - - - - - - -

(b) 30% Premium User

Cross Traffic Multicast-MiniMax Multicast-Minimum Hop Multicast-Dijkstra Unicast-SDN Unicast

90% 100% 90% 100% 90% 100% 90% 100% 90% 100%
10 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
40 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
80 0.3 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.5 -
160 0.5 0.7 0.4 0.6 0.4 3.4 0.5 - - -
240 20.1 - 30.1 - 23.8 - - - - -
320 28.7 - - - 35.7 - - - - -

(c) 50% Premium User

correspond to the case where there are less than 90% or 100% of the users that can

receive the service in that scenario as a number of users are denied service completely

due to congestion.

Increasing number of premium users leads to following consequences:

• While all service options perform similarly for lightly loaded networks, IP-

Multicast continues to serve over 90% of its clients even when the network

is very heavily congested, albeit, with increased average pre-roll delays.

• Increasing number of premium user leads to decrease in pre-roll delay when the

network is normally congested hence, more clients are benefiting from average

path behavior.

• In contrast negative aspects of having more premium user is to impose more

68

traffic load to network. When the network is already congested, adding more

traffic makes the condition worse. Hence, we see some increase in pre-roll delay

when the network is highly congested.

6.6 PSNR

Peak Signal-to-Noise Ratio (PSNR) is defined as the ratio between the maximum

possible power of a signal and the power of corrupting noise that affects the fidelity

of its representation. PSNR is commonly used to quantify the quality of a video. The

well-known test videos used for PSNR calculation. A representative video frame from

these videos are depicted in Figure 20. Videos are selected due to different motion

speeds and number of abrupt changes during the video.

(a) Foreman (b) Football

(c) Soccer

Figure 20: Sample Video Frame from the Test Videos

Due to its large size, a video frame is usually segmented into multiple packets for

transmission over the network by the DP. The PSNR value for the video is calculated

using the following sequential procedure:

69

1. Sort the packets which are received for each video frame,

2. Check if any packet/frame is missing,

3. If so, invoke error concealment,

4. Combine packets to populate the video frames,

5. When all frames are generated at the receiver, compare them with their original

counterparts.

Video compression may be divided into two basic schemes: i) Intra-only compres-

sion that completes the compression processing within an individual frame, and ii)

Inter (Long GOP) compression in which the processing is completed over multiple

frames.

Long GOP compression schemes utilize temporal correlation in order to generate

lower bit rates than Intra-only schemes by using the assumption that the picture

content of the adjacent frames is similar. However, if the sequence has a low frame

correlation between adjacent frames, the bit rate savings generated by using Long

GOP compression would be reduced, making it closer to the bit rate generated by

using Intra-only coding. Because multiple frames are utilized to exploit temporal cor-

relations when coding a sequence with Long GOP coding, there is a greater processing

delay associated with Long GOP coding.

In contrast, the processing delay is lower in Intra-only compression because each

frame is coded independently. Editing within post-production is more difficult for

Long GOP coding because access to individual frames is complicated since multiple

frames are used within the coding. Since Intra-only compression codes each individ-

ual frame, recording, editing and manipulation are easily accomplished because the

access to each individual image is easy and image quality is kept stable while being

totally immune to adjacent frame content influence, which also leads to a lower multi

70

generation deterioration. The quality of a coded sequence using Long GOP coding

will worsen much faster than using Intra-only coding over multiple coding generations

leading to a greater multi-generation deterioration for Long GOP coding due to the

dependency between coded frames. As stated previously, because Intra-only compres-

sion codes each frame independently, the quality of a coded sequence over multiple

coding generations can be kept higher using Intra-only coding. An error within a

frame using Long GOP coding has the possibility to affect several frames leading to

greater error propagation when comparing to Intra-only coding. In comparison, an

error within a frame using Intra-only coding is contained within a single frame leading

to lower error propagation. While parallel processing is used for both coding schemes,

parallel processing is more difficult for Long GOP coding due to using multiple frames

in the coding process.

In this thesis we assume that video is coded using intra-only compression method

therefore, each frame is independently decodable and probabilistic error will not prop-

agate. As a result, if a packet (or all packets corresponding to one frame) is not re-

ceived, the video player at the client end invokes a simple error concealment procedure

in which the missing part/frame is replaced by the preceding video frame.

PSNR values for test videos are demonstrated in Figures 21, 22, 23. We ob-

serve that for a network with medium load, IP-Multicast, with either of the routing

algorithms, provide near lossless video quality of 37 dB and 29 dB, for premium

and standard users, respectively. The corresponding non-SDN ALM values on the

other hand are very low, indicating a non-watchable video. The PSNR loss with

IP-Multicast due to increased congestion remains tolerable throughout, but the ALM

performance results in non-watchable videos throughout.

71

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Number of Cross Traffic Pairs

P
S

N
R

 [d
B

]

Multicast−MiniMax
Multicast−Minimum Hop
Multicast−Dijkstra
Unicast−SDN
Unicast

(a) All Users (10%)

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Number of Cross Traffic Pairs

P
S

N
R

 [d
B

]

Multicast−MiniMax
Multicast−Minimum Hop
Multicast−Dijkstra
Unicast−SDN
Unicast

(b) Premium User (10%)

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Number of Cross Traffic Pairs

P
S

N
R

 [d
B

]

Multicast−MiniMax
Multicast−Minimum Hop
Multicast−Dijkstra
Unicast−SDN
Unicast

(c) Regular Users (10%)

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Number of Cross Traffic Pairs

P
S

N
R

 [d
B

]

Multicast−MiniMax
Multicast−Minimum Hop
Multicast−Dijkstra
Unicast−SDN
Unicast

(d) All Users (30%)

0 50 100 150 200 250 300 350
5

10

15

20

25

30

35

40

Number of Cross Traffic Pairs

P
S

N
R

 [d
B

]

Multicast−MiniMax
Multicast−Minimum Hop
Multicast−Dijkstra
Unicast−SDN
Unicast

(e) Premium Users (30%)

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Number of Cross Traffic Pairs

P
S

N
R

 [d
B

]

Multicast−MiniMax
Multicast−Minimum Hop
Multicast−Dijkstra
Unicast−SDN
Unicast

(f) Regular Users (30%)

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Number of Cross Traffic Pairs

P
S

N
R

 [d
B

]

Multicast−MiniMax
Multicast−Minimum Hop
Multicast−Dijkstra
Unicast−SDN
Unicast

(g) All Users (50%)

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Number of Cross Traffic Pairs

P
S

N
R

 [d
B

]

Multicast−MiniMax
Multicast−Minimum Hop
Multicast−Dijkstra
Unicast−SDN
Unicast

(h) Premium Users (50%)

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Number of Cross Traffic Pairs

P
S

N
R

 [d
B

]

Multicast−MiniMax
Multicast−Minimum Hop
Multicast−Dijkstra
Unicast−SDN
Unicast

(i) Regular Users (50%)

Figure 21: Foreman - PSNR Values

72

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Number of Cross Traffic Pairs

P
S

N
R

 [d
B

]

Multicast−MiniMax
Multicast−Minimum Hop
Multicast−Dijkstra
Unicast−SDN
Unicast

(a) All Users (10%)

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Number of Cross Traffic Pairs

P
S

N
R

 [d
B

]

Multicast−MiniMax
Multicast−Minimum Hop
Multicast−Dijkstra
Unicast−SDN
Unicast

(b) Premium User (10%)

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Number of Cross Traffic Pairs

P
S

N
R

 [d
B

]

Multicast−MiniMax
Multicast−Minimum Hop
Multicast−Dijkstra
Unicast−SDN
Unicast

(c) Regular Users (10%)

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Number of Cross Traffic Pairs

P
S

N
R

 [d
B

]

Multicast−MiniMax
Multicast−Minimum Hop
Multicast−Dijkstra
Unicast−SDN
Unicast

(d) All Users (30%)

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Number of Cross Traffic Pairs

P
S

N
R

 [d
B

]

Multicast−MiniMax
Multicast−Minimum Hop
Multicast−Dijkstra
Unicast−SDN
Unicast

(e) Premium Users (30%)

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Number of Cross Traffic Pairs

P
S

N
R

 [d
B

]

Multicast−MiniMax
Multicast−Minimum Hop
Multicast−Dijkstra
Unicast−SDN
Unicast

(f) Regular Users (30%)

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Number of Cross Traffic Pairs

P
S

N
R

 [d
B

]

Multicast−MiniMax
Multicast−Minimum Hop
Multicast−Dijkstra
Unicast−SDN
Unicast

(g) All Users (50%)

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Number of Cross Traffic Pairs

P
S

N
R

 [d
B

]

Multicast−MiniMax
Multicast−Minimum Hop
Multicast−Dijkstra
Unicast−SDN
Unicast

(h) Premium Users (50%)

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Number of Cross Traffic Pairs

P
S

N
R

 [d
B

]

Multicast−MiniMax
Multicast−Minimum Hop
Multicast−Dijkstra
Unicast−SDN
Unicast

(i) Regular Users (50%)

Figure 22: Football - PSNR Values

73

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Number of Cross Traffic Pairs

P
S

N
R

 [d
B

]

Multicast−Maximum Capacity
Multicast−Minimum Hop
Multicast−Dijkstra
Unicast−SDN
Unicast

(a) All Users (10%)

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Number of Cross Traffic Pairs

P
S

N
R

 [d
B

]

Multicast−Maximum Capacity
Multicast−Minimum Hop
Multicast−Dijkstra
Unicast−SDN
Unicast

(b) Premium User (10%)

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Number of Cross Traffic Pairs

P
S

N
R

 [d
B

]

Multicast−Maximum Capacity
Multicast−Minimum Hop
Multicast−Dijkstra
Unicast−SDN
Unicast

(c) Regular Users (10%)

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Number of Cross Traffic Pairs

P
S

N
R

 [d
B

]

Multicast−MiniMax
Multicast−Minimum Hop
Multicast−Dijkstra
Unicast−SDN
Unicast

(d) All Users (30%)

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Number of Cross Traffic Pairs

P
S

N
R

 [d
B

]

Multicast−MiniMax
Multicast−Minimum Hop
Multicast−Dijkstra
Unicast−SDN
Unicast

(e) Premium Users (30%)

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Number of Cross Traffic Pairs

P
S

N
R

 [d
B

]

Multicast−MiniMax
Multicast−Minimum Hop
Multicast−Dijkstra
Unicast−SDN
Unicast

(f) Regular Users (30%)

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Number of Cross Traffic Pairs

P
S

N
R

 [d
B

]

Multicast−Maximum Capacity
Multicast−Minimum Hop
Multicast−Dijkstra
Unicast−SDN
Unicast

(g) All Users (50%)

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Number of Cross Traffic Pairs

P
S

N
R

 [d
B

]

Multicast−Maximum Capacity
Multicast−Minimum Hop
Multicast−Dijkstra
Unicast−SDN
Unicast

(h) Premium Users (50%)

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Number of Cross Traffic Pairs

P
S

N
R

 [d
B

]

Multicast−Maximum Capacity
Multicast−Minimum Hop
Multicast−Dijkstra
Unicast−SDN
Unicast

(i) Regular Users (50%)

Figure 23: Soccer - PSNR Values

74

CHAPTER VII

CONCLUSION & FUTURE WORKS

In this chapter the conclusion is derived by describing the progress made towards the

design and implementation of video streaming framework using SDN. This chapter

also suggests some future research directions that could provide the next steps along

the path to a practical and widely applicable video streaming system.

7.1 Conclusion

Video has become one of the most prominent applications of the Internet. Many

of the video streaming applications involve the distribution of content from a CDN

source to a large population of interested clients. However, widespread support of

IP-Multicast has been unavailable to a large extent due to technical and economical

reasons, all stemming from the non-programmable nature of today’s Internet. As a

solution, streaming multicast video is commonly operated using ALM. However, this

technique introduces excessive delays for the clients and increases traffic load for the

network.

This thesis introduces a Multiple-Description Coded streaming video multicast

framework that can be easily realized using Software-Defined Networking. We ob-

serve that for medium to heavily loaded networks, relative to today’s solution of

ALM in a non-SDN network, the SDN-based streaming multicast video framework

increases the PSNR of the received video significantly, from a level that is practically

unwatchable to one that has good quality. Unlike today’s solution of ALM, over 90%

of the subscribers receive the video service, albeit at a higher pre-roll delay. In addi-

tion, SDN-based streaming multicast video framework has significant lower number of

denied service, downgrade and pause in comparison to ALM solution both in today’s

75

Internet and SDN structures. We conclude that SDN is a powerful enabler of easily

deployable, programmable, powerful network controller, with which, it is possible to

observe significant performance gains.

7.2 Future Directions

A number of open problems must be solved to allow the development of a truly general

video streaming system. These problems suggest a variety of research directions that

need to be pursued to make such a system feasible.

7.2.1 Scalable Video Coding (SVC)

One such direction would be to investigate streaming SVC coded video over imple-

mented framework and compare the results in both MDC and SVC domains. Rate

scalability can be elegantly achieved by scalable video codecs [63,64] that provide lay-

ered embedded bit-streams that are decodable at different bitrates. A layered video

codec deals with heterogeneity and time-varying nature of the Internet by adapting

its bit rate to the available bandwidth and have been widely studied, e.g., in [65,66].

A scalable representation of video signals consists of a base layer and multiple en-

hancement layers. The base layer is necessary for the media stream to be decoded

whereas enhancement layers are applied to improve stream quality. However, the

first enhancement layer depends on the base layer and each enhancement layer n + 1

depends on its subordinate layer n, thus can only be applied if n was already applied.

Scalable video representations aid in TCP-friendly streaming, as they provide a

convenient way for performing the rate control required to mitigate network conges-

tion, see, e.g., [67–70]. In receiver-driven layered multicasting [71], video layers are

sent in different multicast groups, and rate control is performed individually by each

receiver via subscribing to the appropriate groups [72–74].

Hence, media streams using the layered approach are interrupted whenever the

base layer is missing and as a consequence, the data of the respective enhancement

76

layers is rendered useless. The same applies for missing enhancement layers. Due to

this fragility of layered coding, [75] introduces way to increase robustness of layered

coding towards channel errors and lossy conditions. Alternatively, [76–79] propose

ways to use differentiated quality of service (DiffServ) [80] to guarantee transmission

of base layer packets with improved, but more expensive QoS, while using best-effort

to deliver enhancement part. Comparison of MDC and SVC are also widely studied

in [81–88].

The designed and implemented system is completely flexible to stream any types

of coded videos. The only required effort for this purpose is to simulate different video

coding and distribute the contents between servers. Among all different video coding

approaches, salable coded video simulation, streaming layers over the implemented

framework and finally compare the results with MD coded video could be a valuable

milestone for performance comparison of MDC and SVC.

7.2.2 Enhance System Development

Although many aspects considered in framework implementation, there are issues

that can complement the system and convert it to comprehensive video streaming

system over SDN. Important issues can be enumerated as follow:

• More various types of routing policies can be developed and used for routing

regular and multicast packets. The idea can be further developed to have the

centralized routing control plane separated from forwarding elements for more

flexible, intelligent, and traffic-engineered route control and eliminating the in-

efficiencies and complexities of traditional routing protocols.

• Implemented system does not differentiate Multimedia packets from regular

traffics such as HTTP. A complementary patch for implemented system might

77

be leverage off OpenFlow’s enhanced network control capabilities to deliver mul-

timedia with QoS. QoS implementation helps the current framework to distin-

guish audio and video packets and route them in a manner to provide required

QoS.

• Developing a separate thread to check the multicast trees frequently and opti-

mizes them when it is required.

• Developing IP-Multicast implementation in order to handle client silent leave.

Silent leave refers to condition which client leaves the group without informing

the multicast group.

78

Bibliography

[1] D. Wu, Y. Hou, W. Zhu, Y.-Q. Zhang, and J. Peha, “Streaming video over the
internet: approaches and directions,” IEEE Trans. Circuits Syst. Video Technol,
vol. 11, pp. 282–300, Mar. 2001.

[2] R. Jain, “Internet 3.0: Ten problems with current internet architecture and
solutions for the next generation,” in Proc. Military Commun. Conf. (MILCOM),
(Washington, DC), pp. 1–9, Oct. 2006.

[3] V. Goyal, “Multiple description coding: compression meets the network,” Signal
Processing Mag., vol. 18, pp. 74–93, Sept. 2001.

[4] C. S. Inc., “The zettabyte era - trends and analysis,” White Paper, May 2013.

[5] C. Diot, B. Levine, B. Lyles, H. Kassem, and D. Balensiefen, “Deployment issues
for the IP multicast service and architecture,” IEEE Network, vol. 14, pp. 78–88,
Jan. 2000.

[6] M. Hosseini, D. Ahmed, S. Shirmohammadi, and N. Georganas, “A survey of
application-layer multicast protocols,” IEEE J. Commun. Surveys and Tutorials,
vol. 9, pp. 58–74, Mar. 2007.

[7] O. N. Foundation, “Software-Defined Networking: The new norm for networks,”
ONF White Paper, Apr. 2012.

[8] M. Pereira, M. Antonini, and M. Barlaud, “Multiple description coding for in-
ternet video streaming,” in Proc. IEEE Image Process. Conf. (ICIP), vol. 3,
(Barcelona), pp. 281–284, Sept. 2003.

[9] R. Yang, S. Zheng, and T. Cao, “H.264 based multiple description video coding
for internet streaming,” in Proc. Multimedia Technol. Conf. (ICMT), (Ningbo),
pp. 1–4, Oct. 2010.

[10] W. Li, “Overview of fine granularity scalability in MPEG-4 video standard,”
IEEE Trans. Circuits Syst. Video Technol., vol. 11, pp. 301–317, Mar. 2001.

[11] F. de Asis Lopez Fuentes, “Adaptive mechanism for P2P video streaming using
SVC and MDC,” in Proc. Complex, Intelligent and Software Intensive Systems
Conf. (CISIS), (Krakow), pp. 457–462, Feb. 2010.

[12] Y. Su, T. Tao, J. Lu, and J. Wang, “Channel-Optimized video transmission over
WCDMA system,” in Proc. Vehicular Technol. Conf. (VTC), vol. 1, (Birming-
ham, Al), pp. 265–269, IEEE, May 2002.

[13] H. Wang and A. Ortega, “Robust video communication by combining scalabil-
ity and multiple description coding techniques,” in Proc. SPIE Symp. Electronic
Imaging, (San Jose, CA), pp. 111–124, International Society for Optics and Pho-
tonics, May 2003.

79

[14] P. A. Chou, H. J. Wang, and V. N. Padmanabhan, “Layered multiple description
coding,” in Proc. Packet Video Workshop, vol. 7, (Nantes), Apr. 2003.

[15] Y. Wang, A. Reibman, and S. Lin, “Multiple description coding for video deliv-
ery,” IEEE J. Proceedings, vol. 93, pp. 57–70, Jan. 2005.

[16] A. Reibman, H. Jafarkhani, Y. Wang, M. Orchard, and R. Puri, “Multiple de-
scription coding for video using motion compensated prediction,” in Proc. IEEE
Image Process. Conf. (ICIP), vol. 3, (Kobe), pp. 837–841 vol.3, Oct. 1999.

[17] D. Comas, R. Singh, and A. Ortega, “Rate-distortion optimization in a robust
video transmission based on unbalanced multiple description coding,” in Proc.
IEEE 4th Workshop on Multimedia Signal Process. (MMSP), (Cannes), pp. 581–
586, Oct. 2001.

[18] Y. Wang and S. Lin, “Error-resilient video coding using multiple description mo-
tion compensation,” IEEE Trans. Circuits Syst. Video Technol., vol. 12, pp. 438–
452, Jun 2002.

[19] Y.-C. Lee and Y. Altunbasak, “A collaborative multiple description transform
coding and statistical error concealment method for error resilient video stream-
ing over noisy channels,” in Proc. IEEE Acoustics, Speech, and Signal Process.
Conf. (ICASSP), vol. 2, (Orlando, FL), pp. 2077–2080, May 2002.

[20] T. Chan and S.-W. Ho, “Robust multiple description coding; Joint coding for
source and storage,” in Proc. IEEE Symp. Inform. Theory Proc. (ISIT), (Istan-
bul), pp. 1809–1813, July 2013.

[21] I. Radulovic, P. Frossard, Y.-K. Wang, M. Hannuksela, and A. Hallapuro, “Multi-
ple description video coding with H.264/AVC redundant pictures,” IEEE Trans.
Circuits Syst. Video Technol., vol. 20, pp. 144–148, Jan. 2010.

[22] M. Kazemi, K. Sadeghi, and S. Shirmohammadi, “A high video quality multiple
description coding scheme for lossy channels,” in Proc. IEEE Multimedia and
Expo Conf. (ICME), (Barcelona), pp. 1–6, July 2011.

[23] J. Apostolopoulos and M. Trott, “Path diversity for enhanced media streaming,”
IEEE Commun. Mag., vol. 42, pp. 80–87, Aug. 2004.

[24] J. G. Apostolopoulos, “Reliable video communication over lossy packet networks
using multiple state encoding and path diversity,” in Proc. SPIE Electronic Imag-
ing, (Seattle, WA), pp. 392–409, International Society for Optics and Photonics,
Jan. 2000.

[25] J. Apostolopoulos and S. Wee, “Unbalanced multiple description video commu-
nication using path diversity,” in Proc. Image Process. Conf. (ICIP), vol. 1,
(Thessaloniki), pp. 966–969 vol.1, Oct. 2001.

80

[26] P. Correia, P. A. Amado Assuncao, and V. Silva, “Multiple description video
streaming over asymmetric channels,” in Proc. IEEE Packet Video Workshop,
(San Jose, CA), pp. 1–6, Dec. 2013.

[27] N. Gogate, D.-M. Chung, S. Panwar, and Y. Wang, “Supporting image and video
applications in a multihop radio environment using path diversity and multiple
description coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 12, pp. 777–
792, Sept. 2002.

[28] Y. Liang, E. Setton, and B. Girod, “Channel-adaptive video streaming using
packet path diversity and rate-distortion optimized reference picture selection,”
in IEEE Workshop on Multimedia Signal Process. (MMSP), (Virgin Islands),
pp. 420–423, Dec. 2002.

[29] Y. Liao and J. Gibson, “Routing-aware multiple description video coding over
wireless ad-hoc networks using multiple paths,” in Proc. IEEE Image Process.
Conf. (ICIP), (Hong Kong), pp. 1265–1268, Sept. 2010.

[30] P. Xia, S.-H. Chan, and X. Jin, “Optimal bandwidth assignment for Multiple-
Description-Coded video,” IEEE Trans. Multimedia, vol. 13, pp. 366–375, Apr.
2011.

[31] A. Begen, Y. Altunbasak, and O. Ergun, “Multi-Path selection for multiple
description encoded video streaming,” in Proc. IEEE Commun. Conf. (ICC),
vol. 3, (Anchorage, AK), pp. 1583–1589, May 2003.

[32] Z. Ma, H.-R. Shao, C. Shen, et al., “A new multi-path selection scheme for video
streaming on overlay networks,” in Proc. IEEE Commun. Conf. (ICC), (Paris),
pp. 1330–1334, Jun 2004.

[33] N. N. Qadri, A. Liotta, M. Altaf, M. Fleury, and M. Ghanbari, “Effective video
streaming using mesh p2p with mdc over manets.,” Citeseer J. Mobile Multime-
dia, vol. 5, no. 4, pp. 301–316, 2009.

[34] T. P. Nguyen and A. Zakhor, “Distributed video streaming over internet,” in
Proc. SPIE Multimedia Computing and Networking (MMCN), (San Jose, CA),
pp. 186–195, International Society for Optics and Photonics, Jan. 2002.

[35] J. Kim, R. Mersereau, and Y. Altunbasak, “Distributed video streaming using
unbalanced multiple description coding and forward error correction,” in Proc.
IEEE Global Telecommun. Conf. (GLOBECOM), vol. 6, (San Francisco, CA),
pp. 3553–3557 vol.6, Dec. 2003.

[36] T. Nguyen and A. Zakhor, “Multiple sender distributed video streaming,” IEEE
Trans. Multimedia, vol. 6, pp. 315–326, Apr. 2004.

[37] T. Nguyen, P. Mehra, and A. Zakhor, “Path diversity and bandwidth allocation
for multimedia streaming,” in Proc. IEEE Multimedia and Expo Conf. (ICME),
vol. 1, (Baltimore, MD), pp. 1–4, July 2003.

81

[38] T. Nguyen and A. Zakhor, “Path diversity with forward error correction (PDF)
system for packet switched networks,” in Proc. IEEE INFOCOM, vol. 1, (San
Francisco, CA), pp. 663–672, Mar. 2003.

[39] J. Apostolopoulos, W. tian Tan, and S. Wee, “Performance of a multiple descrip-
tion streaming media content delivery network,” in Proc. IEEE Image Process.
Conf. (ICIP), vol. 2, (Rochester, NY), pp. II–189–II–192, Sept. 2002.

[40] X. Xu, Y. Wang, S. Panwar, and K. Ross, “A peer-to-peer video-on-demand
system using multiple description coding and server diversity,” in Proc. IEEE
Image Process. Conf. (ICIP), vol. 3, (Singapore), pp. 1759–1762, Oct. 2004.

[41] E. Akyol, A. Tekalp, and M. Civanlar, “A flexible multiple description coding
framework for adaptive peer-to-peer video streaming,” IEEE J. Sel. Topics Signal
Process., vol. 1, pp. 231–245, Aug. 2007.

[42] V. Padmanabhan, H. Wang, and P. Chou, “Resilient peer-to-peer streaming,” in
Proc. IEEE Network Protocols Conf., (Atlanta, GA), pp. 16–27, Nov. 2003.

[43] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai, “Dis-
tributing streaming media content using cooperative networking,” in Proc. ACM
Workshop Network and Operating Systems Support for Digital Audio and Video.
(NOSSDAV), (Miami, FL), pp. 177–186, May 2002.

[44] P. Frossard, J. De Martin, and M. Civanlar, “Media streaming with network
diversity,” IEEE J. Proceedings, vol. 96, pp. 39–53, Jan. 2008.

[45] S. Deering, “Host extensions for IP multicasting.” RFC 1112 (INTERNET
STANDARD), Aug. 1989. Updated by RFC 2236.

[46] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-
ford, S. Shenker, and J. Turner, “OpenFlow: Enabling innovation in campus
networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, pp. 69–74, Mar.
2008.

[47] H. Egilmez, S. Dane, K. Bagci, and A. Tekalp, “OpenQoS: An openflow controller
design for multimedia delivery with end-to-end Quality of Service over Software-
Defined Networks,” in Proc. Asia-Pacific Signal Inform. Process. Assoc. Annu.
Summit and Conf. (APSIPA ASC), (Hollywood, CA), pp. 1–8, Dec. 2012.

[48] H. Egilmez, B. Gorkemli, A. Tekalp, and S. Civanlar, “Scalable video streaming
over openflow networks: An optimization framework for QoS routing,” in Proc.
IEEE Image Process. Conf. (ICIP), (Melbourne), pp. 2241–2244, Sept. 2011.

[49] H. Egilmez, S. Civanlar, and A. Tekalp, “An optimization framework for QoS-
Enabled adaptive video streaming over openflow networks,” IEEE Trans. Multi-
media, vol. 15, pp. 710–715, Apr. 2013.

82

[50] S. Civanlar, M. Parlakisik, A. Tekalp, B. Gorkemli, B. Kaytaz, and E. Onem, “A
QoS-enabled openflow environment for scalable video streaming,” in Proc. IEEE
Global Telecommun. Workshop (GLOBECOM), (Miami, FL), pp. 351–356, Dec.
2010.

[51] M. Jarschel, F. Wamser, T. Hohn, T. Zinner, and P. Tran-Gia, “SDN-based
application-aware networking on the example of youtube video streaming,” in
Proc. European Workshop on Software Defined Networks (EWSDN), (Berlin),
pp. 87–92, Oct. 2013.

[52] Y. Nakagawa, K. Hyoudou, and T. Shimizu, “A management method of IP
multicast in overlay networks using openflow,” in Proc. Hot Topics in Software
Defined Networks (HOtSDN), (Helsinki), pp. 91–96, ACM, 2012.

[53] F. Coras, J. Domingo-Pascual, F. Maino, D. Farinacci, and A. Cabellos-Aparicio,
“Lcast: Software-defined inter-domain multicast,” Elsevier J. Comput. Networks,
vol. 59, pp. 153–170, Feb 2013.

[54] D. Kotani, K. Suzuki, and H. Shimonishi, “A design and implementation of
OpenFlow controller handling IP multicast with fast tree switching,” in Proc.
IEEE Symp. Applicat. and the Internet (SAINT), (Izmir), pp. 60–67, July 2012.

[55] L. Bondan, L. F. Müller, and M. Kist, “Multiflow: Multicast clean-slate with
anticipated route calculation on OpenFlow programmable networks,” Elsevier J.
Applied Computing Research, vol. 2, no. 2, pp. 68–74, 2013.

[56] A. Adams, J. Nicholas, and W. Siadak, “Protocol Independent Multicast - Dense
Mode (PIM-DM): Protocol Specification (Revised).” RFC 3973 (Experimental),
Jan. 2005.

[57] B. Fenner, M. Handley, H. Holbrook, and I. Kouvelas, “Protocol Independent
Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised).” RFC 4601
(Proposed Standard), Aug. 2006. Updated by RFCs 5059, 5796, 6226.

[58] S. Bhattacharyya, “An Overview of Source-Specific Multicast (SSM).” RFC 3569
(Informational), July 2003.

[59] M. Handley, I. Kouvelas, T. Speakman, and L. Vicisano, “Bidirectional Protocol
Independent Multicast (BIDIR-PIM).” RFC 5015 (Proposed Standard), Oct.
2007.

[60] P.-R. Sheu and S.-T. Chen, “A fast and efficient heuristic algorithm for the delay-
and delay variation-bounded multicast tree problem,” J. Computer Communi-
cations, vol. 25, no. 8, pp. 825 – 833, 2002.

[61] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood, “On
controller performance in software-defined networks,” in Proc. USENIX Work-
shop Hot Topics in Management of Internet, Cloud, and Enterprise Networks
and Services (Hot-ICE), vol. 54, (San Jose, CA), Apr. 2012.

83

[62] D. Erickson, “The beacon openflow controller,” in Proc. ACM SIGCOMM 2nd
workshop on Hot topics in software defined networking, (Hong Kong), pp. 13–18,
ACM, Aug. 2013.

[63] M. Ghanbari, “Two-layer coding of video signals for VBR networks,” IEEE J.
Sel. Areas Commun., vol. 7, pp. 771–781, Jun 1989.

[64] B.-J. Kim, Z. Xiong, and W. Pearlman, “Low bit-rate scalable video coding with
3-D set partitioning in hierarchical trees (3-D spiht),” IEEE Trans. Circuits Syst.
Video Technol., vol. 10, pp. 1374–1387, Dec. 2000.

[65] M. Khansari, A. Zakauddin, W.-Y. Chan, E. Dubois, and P. Mermelstein, “Ap-
proaches to layered coding for dual-rate wireless video transmission,” in Proc.
IEEE Image Process. Conf. (ICIP), vol. 1, pp. 258–262 vol.1, Nov. 1994.

[66] H. Radha, Y. Chen, K. Parthasarathy, and R. Cohen, “Scalable internet video
using mpeg-4,” Elsevier J. Signal Processing: Image Communication, vol. 15,
no. 1, pp. 95–126, 1999.

[67] J. Mahdavi, “TCP-friendly unicast rate-based flow control,” Technical note sent
to the end2end-interest mailing list, Jan. 1997.

[68] W. tian Tan and A. Zakhor, “Internet video using error resilient scalable compres-
sion and cooperative transport protocol,” in Proc. IEEE Image Process. Conf.
(ICIP), (Chicago, IL), pp. 458–462 vol.3, Oct. 1998.

[69] W. tian Tan and A. Zakhor, “Real-time internet video using error resilient scal-
able compression and TCP-friendly transport protocol,” IEEE Trans. Multime-
dia, vol. 1, pp. 172–186, Jun 1999.

[70] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based congestion
control for unicast applications,” SIGCOMM Comput. Commun., vol. 30, pp. 43–
56, Aug. 2000.

[71] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-driven layered multicast,”
SIGCOMM Comput. Commun. Rev., vol. 26, pp. 117–130, Aug. 1996.

[72] S. McCanne, M. Vetterli, and V. Jacobson, “Low-complexity video coding
for receiver-driven layered multicast,” IEEE J. Sel. Areas Commun., vol. 15,
pp. 983–1001, Aug. 1997.

[73] W.-t. Tan and A. Zakhor, “Multicast transmission of scalable video using
receiver-driven hierarchical FEC,” in Proc. Packet Video Workshop, vol. 99, (New
York, NY), Apr. 1999.

[74] P. Chou, A. Mohr, A. Wang, and S. Mehrotra, “Error control for receiver-driven
layered multicast of audio and video,” IEEE Trans. Multimedia, vol. 3, pp. 108–
122, Mar. 2001.

84

[75] U. Horn, K. Stuhlmüller, M. Link, and B. Girod, “Robust internet video trans-
mission based on scalable coding and unequal error protection,” Elsevier J. Signal
Process. Image Commun., vol. 15, no. 1, pp. 77–94, 1999.

[76] E. Masala, D. Quaglia, and J. De Martin, “Adaptive picture slicing for distortion-
based classification of video packets,” in IEEE 4th Workshop Multimedia Signal
Process., pp. 111–116, Oct. 2001.

[77] J. Shin, J. Kim, and C.-C. Kuo, “Relative priority based QoS interaction between
video applications and differentiated service networks,” in Proc. IEEE Image
Process. Conf. (ICIP), vol. 3, pp. 536–539 vol.3, 2000.

[78] J. Shin, J. Kim, and C.-C. Kuo, “Quality-of-Service mapping mechanism for
packet video in differentiated services network,” IEEE Trans. Multimedia, vol. 3,
pp. 219–231, Jun 2001.

[79] D. Quaglia and J. De Martin, “Delivery of MPEG video streams with constant
perceptual quality of service,” in Proc. Multimedia and Expo Conf. (ICME),
vol. 2, (Lausanne), pp. 85–88, Aug. 2002.

[80] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An Architec-
ture for Differentiated Services.” RFC 2475 (Informational), Dec. 1998. Updated
by RFC 3260.

[81] Y. Wang, S. Panwar, S. Lin, and S. Mao, “Wireless video transport using path
diversity: multiple description vs layered coding,” in Proc. IEEE Image Process.
Conf. (ICIP), vol. 1, (Rochester, NY), pp. I–21–I–24 vol.1, Sept. 2002.

[82] J. Chakareski, S. Han, and B. Girod, “Layered coding vs. multiple descrip-
tions for video streaming over multiple paths,” Springer J. Multimedia Systems,
vol. 10, no. 4, pp. 275–285, 2005.

[83] A. Reibman, H. Jafarkhani, M. Orchard, and Y. Wang, “Performance of multiple
description coders on a real channel,” in Proc. Acoustics, Speech, and Signal
Processing Conf., vol. 5, (Phoenix, AZ), pp. 2415–2418, Mar. 1999.

[84] R. Singh, A. Ortega, L. Perret, and W. Jiang, “Comparison of multiple descrip-
tion coding and layered coding based on network simulations,” in Proc. SPIE
Image Video Proc., (San Jose, CA), pp. 929–939, Jan. 2000.

[85] A. R. Reibman, Y. Wang, X. Qiu, Z. Jiang, and K. Chawla, “Transmission of
multiple description and layered video over an EGPRS wireless network,” in
Proc. IEEE Image Process. Conf. (ICIP), vol. 2, (Vancouver, BC), pp. 136–139,
IEEE, Sept. 2000.

[86] Y.-C. Lee, J. Kim, Y. Altunbasak, and R. M. Mersereau, “Performance com-
parisons of layered and multiple description coded video streaming over error-
prone networks,” in Proc. IEEE Commun. Conf. (ICC), vol. 1, (Anchorage, AK),
pp. 35–39, IEEE, May 2003.

85

[87] F. Mogus, “Performance comparison of multiple description coding and scalable
video coding,” in Proc. IEEE Commun. Software and Networks Conf. (ICCSN),
(Xi’an), pp. 452–456, May 2011.

[88] Y.-H. Chiang, P. Huang, and H. Chen, “SVC or MDC? That’s the question,” in
Proc. IEEE Symp. Embedded Systems for Real-Time Multimedia (ESTIMedia),
(Taipei), pp. 76–82, Oct. 2011.

86

VITA

Kyoomars Alizadeh Noghani was born in Tehran, Iran, on September 20, 1988. After

completing his degree at Khatam High School, in 2006, he entered the University

of Tehran, Iran’s oldest modern university, where he received the degree of Bachelor

of Information Technology in September, 2011. He entered The Graduate School of

Engineering and Science of Özyeğin University, Istanbul, in February, 2012. During

his stay in OZU he was a member of WiserLab.

87

