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Department of Electrical and Electronics
Engineering
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ABSTRACT

Statistical speech synthesis (SSS) systems have the ability to adapt to a target

speaker with a couple of minutes of adaptation data. Developing adaptation algo-

rithms to further reduce the number of adaptation utterances to a few seconds of

data can have substantial effect on the deployment of the technology in real life

applications such as consumer electronics devices. The traditional way to achieve

such rapid adaptation is the eigenvoice technique which works well in speech recog-

nition but known to generate perceptual artifacts in statistical speech synthesis.

Here, we propose three methods to both alleviate the quality problems of the

baseline eigenvoice adaptation algorithm while allowing speaker adaptation with

minimal data. Our first method is based on using a Bayesian eigenvoice approach

for constraining the adaptation algorithm to move in realistic directions in the

speaker space to reduce artifacts. Our second method is based on finding pre-

trained reference speakers that are close to the target speaker and utilizing only

those reference speaker models in a second eigenvoice adaptation iteration. Both

techniques performed significantly better than the baseline eigenvoice method in

the objective tests. Similarly, they both improved the speech quality in subjective

tests compared to the baseline eigenvoice method. In the third method, tandem

use of the proposed eigenvoice method with a state-of-the-art linear regression

based adaptation technique is found to improve adaptation of excitation features.
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ÖZETÇE

İstatistiksel ses sentezi (İSS) sistemleri birkaç dakikalık uyarlama verisi kullanarak

hedef konuşmacının sesine uyarlama yapabilme yeteneğine sahiptir. Uyarlama

için gereken konuşma sürelerini daha da aşağıya, birkaç saniyeye, düşürmek için

geliştirilen uyarlama algoritmaları, teknolojinin tüketici elektroniği gibi gerçek

hayattaki uygulamalarda yaygınlaşmasında önemli etkiye sahip olabilir. Bu tarz

hızlı uyarlamayı başarmanın geleneksel yöntemi özses tekniğidir ki konuşma tanımada

iyi çalışmaktadır fakat istatistiksel ses sentezinde algısal artifeksler ürettiği bilin-

mektedir. Burada, hem temel özses uyarlama algoritmasının kalite problemini

giderebilecek hem de asgari veri kullanarak konuşmacı uyarlamayı sağlayacak üç

yöntem önerdik. Birinci yöntemimiz uyarlama algoritmasını, artifeksleri azalt-

mak için konuşmacı uzayında realistik doğrultularda hareket ettirmek amacıyla

sınırlamak için önerdiğimiz Bayes özses yaklaşımının kullanımına dayanan yöntemdir.

İkinci metodumuz ise hedef konuşmacıya yakın, önceden eğitilmiş referans konuşmacıları

bulmaya ve o referans konuşmacı modellerini ikinci bir özses uyarlama iterasy-

onunda kullanmaya dayanır. Her iki teknik de nesnel testlerde temel özses meto-

dundan önemli ölçüde daha iyi sonuçlar verdi. Benzer şekilde, her ikisi de temel

özses metoduyla kıyaslandığında öznel testlerde ses kalitesini arttırdı. Üçüncü

metodda, önerilen özses metodu ile son teknoloji doğrusal regresyon tekniğinin

ardışık kullanımının uyarım özniteliklerinin uyarlanmasını geliştirdiği görüldü.
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CHAPTER I

INTRODUCTION

Text-to-speech (TTS) is the process of synthesizing artificial speech for a given

input text. It has been widely used in many application such as: e-book read-

ers, navigation systems, voice-to-voice communication systems [1]. Typical TTS

systems have two main components, text analysis and speech waveform genera-

tion, which are sometimes called frontend and backend, respectively. In the text

analysis component, given input text is converted into a linguistic specification

consisting of elements such as phonemes. In the speech waveform generation com-

ponent, speech waveforms are generated from the produced linguistic specification

[1]. There are two common approaches to TTS which are statistical speech syn-

thesis (SSS) and concatenative speech synthesis (CSS).

In CSS, speech is segmented into smaller units and these units are kept in a

database. During synthesis, the units that match the input text are selected and

an utterance is synthesized by concatenating the selected units[2, 3]. Usually, A

cost function and Viterbi search algorithm is used to select a unit such that there

are no speech quality problems. There are two common problems with CSS: one

is the defining a cost function so that the speech quality increases and the other

one is unit definition and database size. In CSS, a speech segment is synthesized

by playing back a waveform with matching text. An utterance is synthesized by

concatenating several speech fragments [2].

Statistical speech synthesis (SSS) has proven to be a promising approach in text

to speech (TTS) applications with some advantages compared to the concatenative

approach [3]. An important advantage of the SSS approach is the ability to adapt

to a target speaker with a couple of minutes of adaptation data [4]. Thousands of
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voices have been generated with SSS using speech databases prepared for speaker-

independent speech recognition systems in addition to freely available databases

with different microphone types [5].

Although linear-regression based speaker adaptation in the SSS systems have

been shown to be successful with only a couple of adaptation utterances [6], the

issue of adaptation with a few seconds of data has not been investigated as much.

High performance speaker adaptation with such minimal data can enable wider

deployment of the technology especially in embedded devices where there may not

be enough resources to store the utterances and/or users are not willing to train

the system even with a couple of utterances.

Constrained maximum likelihood linear regression (CMLLR) [7, 8] or and con-

strained structural maximum a posteriori linear regression (CSMAPLR) methods

can be used for rapid adaptation [6]. CSMAPLR method is more robust in small

adaptation data sizes since it uses a prior distribution. Since there is no conju-

gate prior in the case of CMLLR, count smoothing technique has been proposed

where an initial adaptation is first done using a rapid adaptation technique such

as vocal tract length normalization (VTLN) [9]. Sufficient statistics for computing

the transformation matrices are then smoothed by an interpolation of the statis-

tics computed with the adapted model and the output of the rapid adaptation

algorithm at each iteration.

Eigenvoice techniques have been traditionally used for rapid adaptation in

speech recognition systems [10] but have also been investigated for SSS [11]. Eigen-

voice adaptation can be implemented using different methods. One of the more

successful methods is the Cluster Adaptive Training (CAT) [12] which has been

used for SSS in [13, 14]. In [15], CAT has been used for creating the average voice

when multiple corpora are used in training. Moreover, CAT was also used for

rapid adaptation and shown to be more successful than CMLLR in [15]. Speaker

adaptive training (SAT), which is a related technique, has also been used for SSS

in [16, 17, 18].
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Eigenvoices generated by those algorithms capture the most important and

most common variations in speech. However, characteristics of the target speaker’s

voice that are not captured by the eigenvoices can also be important for speaker

similarity. Moreover, perceptual artifacts are observed in synthesized speech after

adaptation using eigenvoice approach with minimal data [11].

Interpolation between different speakers and styles have been used to generate

voices with the desired voice quality, style, and emotion [19, 20]. In that approach,

weights of pre-trained voices/styles are adjusted to make the interpolated voice

sound close to target. This is similar to the eigenvoice approach except adaptation

is done by interpolating the speaker-adapted voices, as opposed to eigenvoices, and

weights are set manually.

We propose three methods to both alleviate the speech quality problems of

the eigenvoice technique and improve the speaker similarity after adaptation with

minimal data. The first method is based on using a Bayesian approach to estimate

the weights of the eigenvoices with the goal of forcing the adaptation algorithm to

move in realistic directions in the speaker space. Pre-training many speakers and

using their models to empirically estimate the parameters of the prior distribution,

which are then used in weight estimation, allows the system to create models

with significantly less artifacts compared to the maximum likelihood (ML) based

eigenvoice method.

Working in a target-independent eigenspace, novel speaker-specific directions

that can be important for capturing the speaker characteristics may not be repre-

sented in the final model. The second proposed method is based on finding a set

of k nearest-neighbors (NN) [21] from a set of pre-trained models after the first

adaptation iteration. In a second iteration, only the closest k-NN’s are used for

finding the eigenspace. This approach allows using a speaker pool that is specific

to the target speaker during eigenvoice training. To reduce the high computa-

tional complexity in training, a constrained training algorithm is proposed that

uses sufficient statistics collected in the previous training iterations.
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In eigenvoice adaptation techniques, new models are coarsely estimated with a

few parameters. However, when the size of adaptation data increases, performance

of eigenvoice adaptation saturates quickly. In the third proposed method, tandem

eigenvoice/linear-regression approach is used to keep improving the adapted model

with increased data sizes. To that end, we propose an additional step of linear

regression adaptation after the eigenvoice adaptation step. Results showed signifi-

cant improvements in the adaptation of log-fundamental frequency (LF0) features

because those have low dimensionality which enables reliable training of linear

regression matrices with only a few seconds of adaptation data.

Subjective experiment results show that the Bayesian eigenvoice method does

not have the perceptual artifacts that are sometimes produced by the ML-based

eigenvoice adaptation. For the mel-generalized cepstral (MGC) features, Bayesian

eigenvoice with k-NN outperformed all other algorithms in the objective tests.

Similarly, the tandem approach has the best objective adaptation performance

among all methods for the LF0 parameter. Both Bayesian eigenvoice with k-NN

and tandem methods outperformed the baseline linear regression [6] algorithm in

the subjective speaker similarity and speech quality tests.

This paper is organized as follows. Baseline rapid speaker adaptations methods

are described in Chapter 2. Proposed algorithms are described in Chapter 3.

Experiment results are presented and discussed in Chapter 4. Finally, conclusion

is done in Chapter 5.
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CHAPTER II

PREVIOUS WORK

2.1 Rapid Statistical Speaker Adaptation Methods

Speaker adaptation with small amounts of data is typically done with linear re-

gression based methods such as constrained maximum likelihood linear regres-

sion (CMLLR) and constrained structural maximum a posteriori linear regression

(CSMAPLR). When the amount of adaptation data is minimal, eigenvoice-based

methods can also be used since they have substantially lower number of parameters

to learn.

CSMAPLR algorithm, which is state-of-the-art in the HMM-based TTS field

[6], eigenvoice-based methods, and other methods are described below.

2.1.1 CMLLR and CSMAPLR

Most SSS systems model the speech unit using a N-state hidden semi-Markov

model (HSMM). The emission pdf of the spectral parameters for each state c is

modeled with a single Gaussian

pc(x) = N (x;µc,Σc) (1)

where x ∈ RL is the observation vector. Moreover, the duration of observation, d,

is modeled with a Gaussian distribution.

bc(d) = N (d;mc, σ
2
c ) (2)

where mc and σ2
c are the mean and the variance, respectively.

After adaptation with linear regression, the new emission pdf is another Gaus-

sian with

µ̂c,lr = Aµc + b (3)

and

Σ̂c,lr = HΣcH
T (4)
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where A ∈ RL×L is the transformation matrix for the mean vector, b ∈ RL is the

bias term, and H ∈ RL×L is the transformation matrix for the covariance matrix.

The duration models can also be adapted in the same manner.

To reduce the number of parameters, hence the amount of data required for

reliable estimation of the parameters, the transformation matrices of the mean

vector and the covariance matrix are tied together in the constrained linear trans-

formation approach. The distribution is then

pc(x) = N (x;Aµc + b,AΣcA
T ). (5)

In the CMLLR method, ML-based estimation is used for obtaining the transfor-

mation matrices [7, 8, 22]. While in the CSMAPLR method, a Bayesian approach

is used to estimate the constrained linear regression parameters which is especially

useful when there is limited amount of training data [6]. In this approach

Λ̂ = argmax
Λ

p(x|λ,Λ)p(Λ) (6)

where p(Λ) is the prior distribution of the transformation parameters Λ, and λ

is the parameter set of the Gaussians in the SSS model. Matrix variate normal

distribution are used as the prior distribution P (Λ):

P (Λ) ∝ |Ω|−
L+1
2 |Ψ|−

L
2 × exp

[
−1

2
tr(W −B)TΩ−1(W −B)Ψ−1

]
(7)

where Ω ∈ RL×L, Ψ ∈ R(L+1)×(L+1), and B ∈ RL×(L+1) are the hyper-parameters

of the prior distribution. Because prior is taken into account in estimation, param-

eter over-fitting because of data sparsity can be eliminated with the CSMAPLR

algorithm. However, success of the algorithm depends on the proper selection of

the prior distribution and its hyper-parameters.

In the CSMAPLR approach, priors are estimated using a hierarchical approach

embedded into a tree structure [23]. First a global transformation matrix is esti-

mated at the root node where its prior is an identity matrix. Then, the estimated

transformation matrix is used as a prior for its child nodes, new transformation

matrices are estimated and this process is further propagated down to their child
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nodes. Imposing such a structure on prior estimation allows reliable estimation

of the prior distribution which is especially important in limited adaptation data

case since the posterior relies more on the prior pdf than the likelihood function

in that case. In the CSMAPLR estimation, the hyper-parameter Ψ is fixed to the

identity matrix and Ω to a scaled identity matrix, Ω = τIL. τ is a positive scalar

that controls the scale factor for the prior propagation and IL is L× L.

2.1.2 Eigenvoice Adaptation

Eigenvoice approach has been used for rapid adaptation in speech recognition and

SSS [10, 11]. The idea is to find a set of R vectors in the high-dimensional space

Rn (n >> R) that can be used to approximate a set of vectors in Rn by optimizing

a distance measure. One way to accomplish this is using principal components

analysis (PCA) that finds the directions in Rn where the data has the highest

variance and the L2 norm of the approximation error is minimum after projection.

Solution with PCA are the eigenvectors of the sample covariance matrix with the

highest eigenvalues.

In the context of SSS, each eigenvector is called an eigenvoice. The supervector

for speaker s can be created by µ(s) = [µ
(s)
1 µ

(s)
2 ... µ

(s)
Nst

] where Nst is the total

number of states in all decision trees in the acoustic model.

In the eigenvoice approach, given a set of R eigenvectors er ∈ Rn, the original

supervector for speaker s is represented as

µ(s) = µsi +Ews + εs (8)

where E = [e1 e2 ... eR], ws is weight vector of the speaker s, and εs is the

approximation error. Although E can be found by using the PCA method, it

can also be estimated from the training data using a maximum-likelihood (ML)

approach. One popular algorithm to do that is the Cluster Adaptive Training

(CAT) technique which is really an adaptive training algorithm but can also be

used for eigenvoice adaptation. In the case of CAT, columns of E can be seen to

represent the clusters in the training data, and the weights for a given speaker are

7



the interpolation factors between those clusters.

An iterative algorithm is proposed in [12] for learning E from a training

dataset. In the first step, E is initialized randomly. Then, weights are estimated

using a maximum-likelihood approach for each speaker. Using those estimated

weights, E is re-estimated and the whole procedure is repeated until convergence.

Although the algorithm in [12] is similar to the Expectation-Maximization

(EM) algorithm, it is not EM because posterior distribution of the weights, hence

the uncertainty in the weights, are not taken into account in the iterations. This

can cause problems especially when there is insufficient data for some of the speak-

ers. The algorithm proposed in [24] solves the problem by offering an exact EM

solution. Here, the algorithm proposed in [12] is used for training E since there

is sufficient data for each speaker during training.

In the ML-based CAT approach, given some adaptation data χa = {x(1),x(2), ...,x(No,s)},

No,s is the total number of observations from speaker s, the likelihood function

p(χa|ws,E) ∝

exp(−1

2

Nst∑
c=1

N
(s)
c∑
i=1

(x
′(i)
c −Ecws)

TΣ−1c (x
′(i)
c −Ecws)) (9)

whereEc is the cth block of theE matrix corresponding to state c, x
′(i)
c = x

(i)
c −µc,

x
(i)
c is ith observation that is aligned with state c, µc and Σc are the speaker

independent mean vector and covariance matrix of the Gaussian emission pdf of

state c, and N
(s)
c is the number of observations aligned with state c for speaker s.

After removing terms that are independent of w and E, the objective function

O = (−1
2

∑Nst

c=1 Sxx,c) +wT
sG

(s)
w ws −ws

T 1
2
k(s)
w

(10)

where

Sxx,c =

N
(s)
c∑
i=1

x
′(i)T

c Σ−1c x
′(i)
c . (11)

G(s)
w =

Nst∑
c=1

N (s)
c E

T
c Σ−1c Ec (12)
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k(s)
w =

Nst∑
c=1

ET
c Σ−1c S

(s)
x,c (13)

S(s)
x,c =

N
(s)
c∑
i=1

x
′(i)
c (14)

Instead of jointly maximizingE andws or using the EM algorithm, an iterative

algorithm is used to maximize the likelihood function [12]. In this approach, weight

vector of speaker s, ws ∈ RR, is calculated as follows . Firstly, E is fixed to a

constant matrix. Then, the objective function is maximized with respect to ws

and

ŵcat = G(s)−1

w k(s)w (15)

Once the ws vectors are computed for each speaker, they can be fixed, and the

E matrix can be estimated. In this case, the objective function

S∑
s=1

(−1

2

Nst∑
c=1

Sxx,c) +wT
sG

(s)
w ws −ws

T 1

2
k(s)
w (16)

is maximized with respect to Ec, and

Êc,cat = G−1c Kc (17)

where

Gc =
S∑
s=1

N (s)
c wsw

T
s (18)

Kc =
S∑
s=1

N
(s)
c∑
i=1

wsx
′(i)T

c (19)

and S is the total number of speakers. The new estimate of E can then be used

to estimate ws for all training speakers. Estimates of E and ws can be improved

with more iterations until convergence.

2.1.3 Vocal tract length normalization (VTLN)

Vocal tract shapes are different between speakers and they cause a mismatch

between the speaker’s utterance and the model in HMM-based automatic speech

9



recognizer [25]. A frequency warping factor, α, has been intorduced in order

to warp the frequency axis of speech signal to normalize the speaker’s utterance.

The warping factor is obtained by searching over a grid of 13 factors spaced evenly

between 0.88 ≤ α ≤ 1.12. This roughly reflects the 25 % variation in vocal tract

shapes between speakers. In [25], two procedures are introduced to estimate the

α. One procedure is the following three-step process:

1. A preliminary transcription of the utterance, W , is obtianed using the nor-

malized model λN and the unwarped utterance X.

2. α̂ is found as follows:

α̂ = argmax
α

Pr(Xα|λN ,W ) (20)

where Xα is the transformed utterance by α.

3. Final recognition trancsription is obtianed using the utterance Xα decoded

with the model λN .

2.1.4 Count Smoothing

Several rapid speaker adpatation methods use prior information to find robust

transforms when minimal adpatation data is available. In [9], an initial adaptation

is first done using a rapid adaptation technique such as VTLN [25, 26, 27] or

PCMLLR [28, 29]. Then, output of the rapid adaptation algorithm is used to

smooth the statistics for computing the transformation matrices in CMLLR.

2.1.5 CSMAPLR (VTLN)

In [30], VTLN is combined with the CSMAPLR algorithm. This approach im-

proves the performance of the CSMAPLR algorithm in cases of small adaptation

data in order of 1 utterance. As described in section 2.1.1, CSMAPLR uses a

hierarchical approach embedded into a tree structure. Usually, the top global

transformation matrix is calculated either using a maximum likelihood (ML) es-

timation or using a MAP approach with an identity matrix as a prior. In [30]
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however, VTLN transformation is used as a prior for the top transformation esti-

mation.

The VTLN transform can be viewed as

xα = Aαx (21)

where xα = (x̃1, ..., x̃M)T and x = (x1, ..., xL)T are the warped and original ob-

servation vectors if we truncate them at M -th and L-th dimensions, respectively.

Aα is defined as [30]

Aml(α) =
1

(l − 1)!

l∑
n=max(0,l−m)

(
l

n

)
× (m+ n− 1)!

(m+ n− l)!
(−1)nα2n+m−l (22)

where Aml(α) is the m-th row and the l-th column element of warping matrix

Aα and α is the warping factor. Aα may also be directly applied to the dynamic

features, where the transformation matrix is block diagonal with repeating Aα

matrix:

Bα =


Aα 0 0 0

0 Aα 0 0

0 0 Aα 0

 . (23)

In the SMAP criterion in the CSMAPLR estimation, the top transformation

matrix, Λ1, is calculated either using an ML estimation or a MAP estimation with

identity matrix as the prior. Then, Λ1 is used as the B hyper-parameter in MAP

estimation of Λ2 (refer to Eq (7)). In [30], Bα is used as the B hyper-parameter

in MAP estimation of the top transformation matrix, Λ1.

This approach has been tested in matched and unmatched conditions of speaker

adaptation and also in both TTS and ASR setups. This method has also been

compared to a cascade algorithm where first a VTLN adaptation is done and then

its output is used as an SI model for the CSMAPLR algorithm. The cascade

algorithm showed no significant difference compared to the original CSMAPLR

algorithm. Results showed significant improvements compared to the CSMAPLR

with no prior especially in the cases of less than 10 utterances. In the case of

HMM-based TTS, the proposed method improved naturalness and intelligibility
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of HMM-based synthetic speech compared to that using the CSMAPLR without

the VTLN prior. In the case of HMM-based ASR, the proposed methods improved

the performance. Results showed significant improvements especially in cases of

mismatched conditions in terms of age, gender, and recording environments.

12



CHAPTER III

PROPOSED ALGORITHMS

Three algorithms are proposed to improve the CAT-based eigenvoice adaptation.

An overview of the algorithms are shown in Fig. 1 and their desciptions are given

below.

3.0.6 Bayesian CAT

In the proposed Bayesian CAT (BCAT) approach, E matrix is trained using the

CAT procedure described above. However, in the BCAT approach, the weight

vector for a target speaker s is estimated with the objective function

ŵbcat = argmax
w

p(χa|w)p(w) (24)

where p(w) is the prior distribution and set to N (0,Σw) here. Thus,

p(w) =
1√

(2π)R|Σw|
exp(−1

2
wTΣ−1w w). (25)

Note that a point estimate of w is found and therefore the proposed estimator

is not fully Bayesian. The term Bayesian is used here to indicate that the prior

distribution is taken into account during estimation.

Adaptation
Data 

BCAT
Adaptation

k-NN
Selection

CSMAPLR
Pool of

Reference
Speakers

BCAT
Adaptation

BCAT-kNN
Algorithm

CAT
Training 
and Prior

Estimation

BCAT+
CSMAPLR
Algorithm

CAT
Training 
and Prior

Estimation

Figure 1: Overview of the proposed algorithms. Proposed algorightms are shown
with dashed lines.
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After removing the terms that are independent of w from the objective func-

tion, using Eq (9) to replace the likelihood term p(χa|ws) and with some matrix

manipulation, the BCAT objective function becomes

ŵbcat = argmax
w

exp(wTETΣ−1Sx−

1

2
wTETNΣ−1Ew)exp(−1

2
wTΣ−1w w). (26)

where the block diagonal Σ−1 = diag(Σ−11 ,Σ−12 , ...,Σ−1Nst
), Sx = [Sx,1,Sx,2, ...,Sx,Nst ],

and N = diag(N1IFxF , N2IFxF , ..., NNstIFxF ) where F is the size of the feature

vectors.

The objective function can be maximized by noting that the posterior distribu-

tion p(w|χa) is a Gaussian since the Gaussian distribution is the conjugate prior

of the Gaussian likelihood function with unknown mean in Eq (9). Therefore,

Eq (24) can be written as

ŵbcat = argmax
w

exp(−1

2
(w − µw|χ)TΣw|χ(w − µw|χ)) (27)

By completing the squares and using Eq (26),

Σw|χ = (ETNΣ−1E + Σ−1w ), (28)

and

µw|χ = Σ−1w|χE
TΣ−1Sx. (29)

BCAT estimate of w, ŵbcat, is the mean µw|χ of the posterior distribution. Hence,

ŵbcat = (ETNΣ−1E + Σ−1w )−1ETΣ−1Sx. (30)

Σ−1w is the hyperparameter of the prior distribution. It is used to enforce

the adaptation algorithm to move more in specific directions compared to other

directions. The idea is to learn the typical directions in the speaker space that

the speaker-dependent models move during adaptation and use that as a prior

information in adaptation when minimal observations are available.

Σ−1w is estimated from the data as follows. w is estimated for a set of speakers

with large number of utterances per speaker using the ML approach. Because a
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large number of utterances are used, there is no significant difference between ML

or Bayesian estimation of weights with CAT. Then, Σ−1w is calculated by using the

sample covariance matrix of the weights and setting the off-diagonal elements to

0.

In the SSS approach, different decision trees are used for the LF0 and MGC fea-

tures [31]. Thus, the eigenspace of those two features are modelled independently

in this work. In CAT, different decision trees can be used for different clusters [32].

Here, we followed the implementation in [12] where same decision-tree structures

are used for all clusters.

Problem of overfitting with the ML-based CAT approach when the data is

scarce has also been observed in the context of expressive speech synthesis [32]. To

address the problem, a count smoothing approach is proposed where the statistics

Gw and kw in Equations (12) and (13) are smoothed using

Ĝw = Gw + τ
G(pri)
w∑Nst

c=1N
(pri)
c

(31)

k̂w = kw + τ
k(pri)
w∑Nst

c=1N
(pri)
c

(32)

where G(pri)
w and k(pri)

w are prior statistics, N
(pri)
c is the number of frames aligned

with component c in the training data that is used for computing the prior statis-

tics, and τ is used for tuning the weight of the priors. A set of discrete labels

for expressiveness were derived in [32] and G(pri)
w is computed using training data

that has the same label as the adaptation data.

Count smoothing technique has also been used for speaker adaptation in [9]

where the CMLLR method is used and the statistics that are required to compute

the linear transformations in CMLLR are smoothed. Smoothing is done using an

interpolation of the prior statistics computed with a rapid adaptation algorithm

such as vocal tract length normalization (VTLN) and adaptive statistics computed

with the CMLLR method. In the BCAT approach, a prior distribution for the

weight vector w is used instead of smoothing the statistics.

Using a prior distribution for the weight vector in eigenvoice adaptation has
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been proposed in [33] in the context of voice conversion using Gaussian mixture

models (GMM). In that case

ŵ = {τΣw +Gw}−1
{
τΣ−1w µw + kw

}
(33)

where τ is used for tuning and the prior pdf has a mean of µw and covariance of Σw.

The form of the solution is similar to count smoothing where the hyperparameters

Σw and µw are used for smoothing the statistics. In BCAT, µw is set to 0 so that

the adapted model does not significantly deviate from the average voice model

if there is not enough adaptation data. In that case, kw is not smoothed and,

assuming τ is equal to 1, Equation 33 becomes equivalent to Equation 30. However,

in the GMM case, probabilistic alignment of Gaussians with speech frames is done

which leads to a solution with the iterative EM algorithm [33]. In SSS, each state

is represented with a single Gaussian and, here, state-level forced alignment of

the adaptation audio with the corresponding text is used to map the Gaussians

to speech frames. Moreover, observing the fact that the Gaussian distribution is

the conjugate prior of the likelihood function, a closed-form maximum a posteriori

(MAP) solution is derived. Furthermore, we also propose estimating target-specific

Σw parameter in the next section.

In [24], another algorithm is proposed for eigenvoice MAP adaptation of GMM

to a target speaker using a Gaussian prior. In that approach, a zero-mean Gaus-

sian distribution with identity covariance matrix is used both during training and

adaptation. In that case

ŵ = {I +Gw}−1 {kw} . (34)

The approach in [24] is developed assuming that there is limited amount of train-

ing data for each speaker during training. In those cases, to avoid overfitting,

it is important to use a prior distribution which regularizes the estimation of E.

However, there is enough training data for each speaker in our case and ML esti-

mation of E is sufficient. Therefore, instead of imposing a fixed prior distribution
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during training, ML training is used here and the hyperparameters of the prior

distribution are emprically estimated after training is completed.

3.0.7 BCAT k-Nearest-Neighbor (BCAT k-NN) Approach

Iterative BCAT adaptation can be performed that uses the information learned in

the previous iterations to further exploit the available information in the reference

speakers. To that end, a k-NN approach is proposed here where Σ−1w and E

matrices are trained in a target-specific way for better speaker adaptation.

Target specific parameters are trained as follows. After the first BCAT adapta-

tion step, resulting model is used to find k nearest-neighbors (k-NN) from a large

pool of reference speakers. Those neighbors are then used to create the E matrix

and the covariance of the prior distribution Σ−1w as described in Section 3.0.6.

Distance measures for finding the k-NN’s are described in the next section.

Training the E matrix for each target speaker can be time-consuming. To

solve the issue, we propose a constrained training algorithm where the covariance

matrices of Gaussians Σc are not updated. Alignment of Gaussians are also kept

constant throughout the iterations. To find E for a subset of speakers, Gc in Eq

(18) and Kc in Eq (19) are needed. If the sufficient statistics

Gc,s = N (s)
c wsw

T
s (35)

Kc,s =

N
(s)
c∑
i=1

wsx
′(i)T

c (36)

for each speaker s are precomputed, then, Gc,nn =
∑Snn

s=1Gc,s and Kc,nn =∑Snn

s=1Kc,s and the new E = G−1c,nnKc,nn.

Using the new E matrix, ws can be computed for the nearest neighbors. The

statistics S(s)
x,c in Eq (13) does not depend on E and can be precomputed for each

speaker. Rest of the calculations to find ws does not depend on the data and can

be computed fast.
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The algorithm above allows only single update to E and w and is not iterative.

However, in our experiments, one iteration is enough for computing E and weight

vectors in the BCAT-kNN case.

3.0.8 Nearest-Neighbor (NN) Selection

Success of BCAT k-NN technique depends on using a distance measure that

should both correlate well with perception and be reliable when minimal speech

is available. We explored several different distance measures that operates either

by directly using the waveform or by first adapting with the CSMAPLR or the

eigenspace method and then measuring the distance between the speaker-adapted

model and the reference models.

Nr reference speakers are trained offline. The reference speakers that are closest

to the target speaker are used in the BCAT-kNN approach. Two different set of

reference speakers are selected for MGC and LF0 features. The distance measures

that are investigated here are

3.0.8.1 L1 and L2 Norms

Lp norm of two vectors v1 and v2 is defined to be

Lp = (
n∑
i=1

|v1,i − v2,i|p)1/p (37)

where |.| is the absolute value operator. The problem with the Lp norm in our case

is representing each speaker with a single vector. Here, we ignore the covariances

of Gaussian distributions on each HMM state and instead concatenate the mean

vectors to create a supervector for each speaker.

Different decision tree is used for each HMM state. A separate supervec-

tor is created for each tree. For tree t and speaker s, the supervector s(t) =

[µ
(t)
1,s;µ

(t)
2,s; ...;µ

(t)
Nt,s

] where Nt is the number of leaf nodes in tree t. For Lp norm,

the distance between tth decision trees of speaker s and reference speaker sr is

then defined as

d(t)sr,s = (
Dt∑
j=1

|s(t)j − sr
(t)
j |p)1/p (38)
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where Dt is the length of the supervector for tree t. Finally, the distance of a

reference speaker to a target speaker s is found by

1

Ntr

Ntr∑
t=1

d(t)sr,s (39)

where Ntr is the total number of trees.

In CAT and BCAT methods, speakers can also be represented with low-

dimensional w vectors. Those w vectors, instead of the supervectors, can also

be used for computing the Lp distances. In fact, higher performance has been

achieved when w vectors were used in distance computations.

3.0.8.2 Cosine Distance

Cosine distance of two vectors v1 and v2 are defined to be

cos(θ) =
< v1,v2 >

‖v1‖‖v2‖
(40)

where < v1,v2 > is the inner product of v1 and v2. Cosine distance is really the

normalized correlation of two vectors. w vectors were used to compute the cosine

distances.

3.0.8.3 RMSE distance

Instead of focusing on the emission pdf parameters for defining the distance, one

can also resynthesize the adaptation utterances using the reference models similar

to [34]. In that case, a distance measure is needed to compare the synthesized

audio with the original audio. Here, the commonly used root mean square error

(RMSE) is used for calculating the distances for MGC and LF0 features.

In the case of RMSE distance, the length of synthesized speech should be equal

to the length of adaptation utterance. Moreover, state durations should also match

to make a meaningful comparison. To resolve the issue, the adaptation utterance

is first state-aligned with the average-voice model and the duration of each state

is found. Then, during synthesis, MGC and LF0 parameters are generated with

the reference models using the durations from the state alignment phase.
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3.0.9 Tandem BCAT/CSMAPLR Approach

Adaptation flexibility of CSMAPLR algorithm is low when data is scarce because

of the large number of free parameters in transformation matrices. When only

seconds of data is available, many states are clustered together and only a few

transformation matrices can be trained as shown in Table 1. This problem is

further exacerbated with the prior distribution used in CSMAPLR which limits

the distance that the adapted model with the CSMAPLR algorithm can move

away from the Speaker Independent (SI) model. BCAT algorithm, however, has

substantially lower number of parameters and can adapt more effectively in lim-

ited data case. Still, BCAT can only make coarse adaptation in predetermined

directions and cannot refine the models when more data is available.

In the tandem approach, the BCAT algorithm is used first to rapidly approach

to the target speaker. In the second step, output of the BCAT algorithm is used

as the new SI model for the CSMAPLR algorithm as shown in Fig. 1. Because the

new SI model is already close to the target, constraints imposed by the CSMAPLR

prior becomes less important. Moreover, the CSMAPLR algorithm can move the

model in directions that may not be possible with the BCAT model and refine the

models of some of the states and get them closer to the target models when more

data is available.
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CHAPTER IV

EXPERIMENTS

We evaluated the speaker similarity performance of the proposed systems both

with objective and subjective measures and compared with the baseline CAT

and CSMAPLR algorithms. Moreover, speech quality of the proposed systems

are also compared with the baseline systems using listening tests. The BCAT-

kNN algorithm relies on selecting good NN’s. Thus, we have investigated the

performance of different distance measures described in Section 3.0.8 for selecting

k-NN.

4.0.10 Experiment Setup

All systems in the experiments were trained with 78 dimensional vectors consisting

of 24 Mel-Generalized Cepstrum Coeffients (MGCs), 1 log-energy, 1 log-F0 (LF0)

coefficient, and their delta and delta-delta parameters. 20 msec analysis window

with 5 msec frame rate is used for feature extraction. Phonemes are modelled

with 5 state Hidden Semi-Markov Models (HSMM).

Wall Street Journal (WSJ1) database is used to train the average voice and

the speaker-adapted voices. Four male speakers with 1250 utterances for each of

them are used for training the average voice. For the proposed system, 136 male

reference speakers from the WSJ database are trained using 150 utterances per

speaker with CSMAPLR adaptation and an additional MAP adaptation. HTS

2.2 training and synthesis tools are used to generate the samples for the baseline

systems [35]. Speaker adaptive training (SAT) is used during training the SI model

and the reference models.

Root-mean-square-error (RMSE) is used for objectively measuring the distance

between the MGC and LF0 features of synthesized and original speech samples.

To make meaningful comparison between them, original speech is first aligned at
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Figure 2: Performance of the CAT and BCAT algorithms for different ranks of
the E matrix. Results are shown for the LF0 and MGC features using 1 second
and 5 seconds of adaptation data.

the state level with the average voice model. Durations obtained during align-

ment is used for synthesizing the samples. For each target speaker, adaptation is

performed for 1, 2, 3, 4, and 5 seconds of adaptation data, excluding any silence

segments. 40 utterances are synthesized for each target speaker to measure the

RMSE distance. 21 target speakers are used. For each target, a speaker-dependent

(SD) model is generated using CSMAPLR adaptation with an additional MAP

step using 150 adaptation utterances per speaker [6]. Those SD1 models are used

as the upper bound in adaptation performance.

Performance of CAT and BCAT with different rank values and adaptation

sizes are measured to find the best possible ranks for CAT and BCAT at each

data size. RMSE performances are shown for MGC and LF0 at 1 sec and 5 sec in

1In this work by SD we mean the speaker-adapted model obtained with large amount of
adaptation data.
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Figure 3: Performance of the BCAT-kNN algorithm for different k values. RMSE
results are shown both for LF0 and MGC features with 95% confidence intervals.

Fig. 2. CAT has severe overfitting problem for the 1 sec case. However, for 5 sec,

the difference between CAT and BCAT is less significant especially for the MGC

feature. Based on the experiment results, rank of the E matrix was set to 8, 30,

30, 40, 40 for 1 through 5 seconds in MGC and 3, 3, 5, 5, 5 in LF0 adaptations.

Same values are used for CAT and BCAT.

Another parameter to set is the k value in the BCAT-kNN algorithm. Similar

to the rank of E, the best value for k was found experimentally. Performance

of BCAT k-NN for different k values are shown for MGC and LF0 features in

Fig. 3. Based on those results k is set to 131 for MGC and 40 for LF0. For the

MGC features, removing only 5 speakers from the full set of reference speakers

was enough in all cases except the 1 second case. We believe that the five speakers

are target-specific outliers and they cause misestimations in the ML-based CAT

algorithm. Thus, removing them improves the performance. However, any further

removal of reference speakers from the training set degrades the performance for

MGC.

For the 1 second case, the effect of prior distribution becomes very important.

Using 40 NN’s for MGC instead of 131 reduces the variance of the prior which

provides higher performance for that case. Moreover, difficulties in selecting the

nearest-neighbors with only one second of adaptation data also contributes to the
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problem for the MGC case as shown in Table 2. For LF0, a relatively small number

of speakers were enough to train the eigenspace. Including more speakers into the

training process unnecessarily increases the variability of the weight vectors which

degrade the performance.

ABX test is used to subjectively measure the similarity of synthesized samples

compared with the speaker’s original samples. In the ABX test, listeners prefer

sample A or sample B depending on perceived similarity to the reference sample

X. A and B samples are synthesized from different adaptation methods randomly

and X samples are ”synthetic-copy” of the original recordings. Thus, the goal in

the ABX test is to compare two systems and assess which one produces speech

that is more similar to the target speaker. AB test is done to measure the quality

differences. As opposed to the ABX test, a reference X sample is not needed in

the AB test. Listeners prefer A or B sample depending on the perceived speech

quality. Because a reference X sample is needed to test similarity to target speaker,

different tests are used for quality and similarity assessment.

In listening tests, similar to the RMSE tests, for each target speaker, adapta-

tion is performed with 1, 2, 3, 4, and 5 seconds of data. For each adaptation data

size, one utterance is synthesized per target speaker. 10 target speakers are used.

Eight listeners took the tests.

In CSMAPLR, the decision trees used in the average voice model training is

also used for estimating multiple transformation matrices. Block diagonal trans-

formation matrices are used. States occupancy thresholds are tuned to determine

the optimal number transformation matrices. Results are shown in Table 1. Very

few number of transformation matrices were found especially for MGC. For the 1

second case, sometimes there was no adaptation at all. For the rest of the cases,

number of matrices increased only slightly. Note that, the adaptation algorithm

becomes a MAP estimation of the global CMLLR transform when only one global

transformation matrix is generated. Higher number of transformation matrices

were available for the LF0 feature since the dimensionality of LF0 features are
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substantially lower than MGC.

Table 1: RMSE and number of estimated transforms in CSMAPLR Adaptation
with different threshold values. Minimum values in RMSE and selected thresholds
are in bold.

RMSE
Thresholds 1 sec 2 sec 3 sec 4 sec 5 sec

MGC

1000 1.01 0.99 0.98 0.97 0.91
500 1.02 0.98 0.94 0.92 0.91
250 1.03 0.99 0.97 0.93 0.92
125 1.05 1.01 0.99 0.95 0.94
65 1.07 1.03 1.02 0.97 0.96

LF0

200 0.20 0.17 0.17 0.16 0.16
100 0.20 0.17 0.16 0.16 0.16
50 0.20 0.17 0.16 0.16 0.16
25 0.20 0.17 0.16 0.16 0.16
13 0.21 0.17 0.16 0.16 0.16

Average number of transforms
Thresholds 1 sec 2 sec 3 sec 4 sec 5 sec

MGC

1000 0.0 0.1 0.2 0.5 1.0
500 0.3 0.9 1.0 1.4 2.9
250 3.3 3.4 4.7 5.4 7.8
125 9.2 12.5 16.1 22.0 25.3
65 17.2 24.1 30.3 38.3 45.6

LF0

200 0.0 1.8 2.7 2.7 3.6
100 2.2 3.6 5.7 11.5 17.5
50 3.1 14.0 31.6 50.5 65.9
25 23.4 56.2 97.5 136.0 170.5
13 100.4 170.3 249.0 337.8 418.0

4.0.11 Distance Measures for NN Selection

L1 norm, L2 norm, cosine, and RMSE distances are compared for selecting a

nearest-neighbor given a target speaker model. For L1 norm, L2 norm, and cosine

distances, delta, delta-delta, and energy features were not used in the distance

computations because those feature were found to degrade the performance. For

CAT and BCAT methods, L1, L2, and cosine distance computations are done

using both the supervectors and the w vectors.

Different combinations of distance measures and adaptation algorithms are

compared and RMSE of selected nearest-neighbors to original samples of target
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speakers for MGC and LF0 features are shown in Table 2. To pick the best possible

nearest-neighbor, best NN, 20 utterances for each target speaker are synthesized

with all the reference speakers and the reference speaker with the smallest RMSE

is found. This procedure is done to find the upper limit in performance and the

results are shown in Table 2 for comparison purposes.

w vectors computed with CAT and BCAT algorithms in conjunction with L1

and L2 distances are found to be the best measures to pick the nearest neighbors

for MGC. In LF0, however, most L1 and L2 distances worked equally well. RMSE

distance also performed as well as other methods to find the NN speakers for LF0

features. Cosine distance was not a good measure to find the NN speakers and

it performed worse than others in all cases as shown in Table 2. Based on these

results, BCAT-w L2, which is the L2 distance between BCAT-based w vectors

of target and reference models, were used in the rest of the experiments since its

performance is always better than the others both for MGC and LF0 features.

A 2-dimensional visualization of a target speaker and reference speakers is

shown in Fig. 4. Low dimensional w vectors were used to represent each speaker

which are projected to two dimensions using multidimensional scaling based on

L2 distance. For a given target speaker, 50 nearest-neighbors are selected using 5

seconds of adaptation data and BCAT-w L2 method. Most of the closest reference

speakers to target are successfully selected with only 5 seconds of adaptation data

as shown in Fig. 4.

4.0.12 Objective Measure Tests

All adaptation algorithms are compared objectively and results are shown in Fig. 5

and Fig. 6. For comparison purposes, RMSE of the Speaker Independent (SI)

model and Speaker Dependent (SD) models are also presented. SD models were

created using CSMAPLR adaptation and an additional step of MAP adaptation

with 150 utterances. Also, even though we are focused on cases where at most five

seconds of adaptation data is available, performance with 10sec and 20sec of data

are also shown. For the one minute case, only the performance of the CSMAPLR,
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Table 2: RMSE comparison for MGC and LF0 when NN speakers are chosen
by different distance measures. ”-w” means that instead of mean supervectors,
weight vectors of CAT-based adaptations were used. Best possible RMSE that
could be achieved is shown in Best NN rows. Minimum values are in bold.

MGC 1 sec 2 sec 3 sec 4 sec 5 sec
Best NN 0.92 0.92 0.92 0.92 0.92
BCAT-w L2 0.97 0.95 0.95 0.95 0.95
BCAT-w L1 0.97 0.95 0.95 0.96 0.95
CAT-w L2 0.97 0.95 0.95 0.96 0.96
CAT-w L1 0.99 0.96 0.95 0.96 0.96
BCAT L1 1.01 0.97 0.97 0.98 0.97
RMSE distance 0.99 0.98 0.99 0.99 0.97
BCAT L2 1.01 0.98 0.98 0.99 0.99
CAT-w cosine 1.02 0.99 1.00 1.00 1.02
BCAT-w cosine 0.98 1.00 1.00 1.00 1.01
CAT L2 1.01 1.00 1.01 0.98 0.99
CAT L1 1.01 1.00 1.00 0.99 0.98
CSMAPLR L1 1.11 1.04 0.98 0.99 0.97
CSMAPLR L2 1.11 1.05 1.01 0.97 0.98
BCAT cosine 1.06 1.05 1.05 1.03 1.02
CSMAPLR cosine 1.09 1.05 1.04 1.04 1.04
CAT cosine 1.05 1.06 1.02 1.02 1.02

LF0 1 sec 2 sec 3 sec 4 sec 5 sec
Best NN 0.17 0.17 0.17 0.17 0.17
BCAT-w L2 0.20 0.19 0.18 0.18 0.18
CSMAPLR L1 0.20 0.19 0.18 0.18 0.18
RMSE distance 0.21 0.19 0.18 0.18 0.18
BCAT-w L1 0.20 0.19 0.19 0.18 0.19
BCAT L1 0.20 0.19 0.19 0.19 0.18
CAT L1 0.21 0.19 0.19 0.18 0.18
CAT L2 0.21 0.19 0.19 0.18 0.19
CSMAPLR L2 0.20 0.19 0.19 0.19 0.19
BCAT L2 0.20 0.20 0.19 0.19 0.18
CAT-w L1 0.22 0.20 0.19 0.19 0.19
CAT-w L2 0.21 0.20 0.19 0.19 0.19
CAT-w cosine 0.23 0.21 0.20 0.21 0.20
CAT cosine 0.23 0.23 0.21 0.21 0.20
BCAT-w cosine 0.29 0.26 0.23 0.21 0.23
CSMAPLR cosine 0.29 0.28 0.27 0.28 0.29
BCAT cosine 0.34 0.29 0.26 0.25 0.23
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Figure 4: 2-D visualization of speakers based on their L2 distance of w vectors
for the MGC features. 40 utterances were used to extract the w vectors with the
BCAT approach. Also, 50 nearest-neighbors selected using 5 seconds of adaptation
data from a target speaker are shown. L2 distance of w vectors were used to select
the k-NN.

28



1 sec 2 sec 3 sec 4 sec 5 sec 10 sec 20 sec 1 min
0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

R
M

S
E
 (

ro
o
t 

m
e
a
n
 s

q
u
a
re

 e
rr

o
r)

SI
SD
CSMAPLR

BCAT + CSMAPLR
CAT
BCAT

BCAT-kNN
NN-BCAT-w-L2
BCAT I

Figure 5: Objective evaluation (RMSE) of adaptation techniques for MGC fea-
tures with 95% confidence intervals.

BCAT, and BCAT+CSMAPLR algorithms are shown to analyze the performance

of the BCAT+CSMAPLR algorithm when more data becomes available. Perfor-

mance of the other algorithms saturate after 5 seconds.

For MGC features, BCAT is better than CAT for all adaptation data sizes

but as the amount of data increases their difference decreases as shown in Fig. 5.

This is expected because with more data being available, the importance of using

a prior distribution decreases. The difference between CAT and BCAT becomes

insignificant when more than four seconds of adaptation data is used.

BCAT has also been compared with BCAT-I where the covariance of the prior is

set to identity matrix. Using an identity matrix for prior degraded the performance

of BCAT significantly except for 10 sec and 20 sec cases.

State-of-the-art CSMAPLR method did not perform as well as the eigenspace

techniques since the data size is very limited. The number of transformation ma-

trices generated with CSMAPLR is very low as shown in Table 1. Attempting to

generate more transformation matrices creates rank deficiency problem because
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of data scarcity and degrades the performance. Hence, the CSMAPLR cannot

take advantage of tree-structured prior estimation for generating multiple trans-

forms and has a lower performance compared to eigenspace methods. However,

CSMAPLR performance continues to improve with more data as shown in Fig. 5.

One can also synthesize with the nearest-neighbor model without any further

adaptation. The result with that approach is denoted with NN-BCAT-w-L2 which

indicates that NN is selected using the w vector estimated with the BCAT algo-

rithm using the L2 distance. Even though this approach is inferior to BCAT

algorithm, it is better than the CSMAPLR algorithm when there is 1, 2, and 3

seconds of adaptation data.

For MGC features, performance of tandem BCAT/CSMAPLR (BCAT+CSMAPLR)

was always better than CSMAPLR but worse than BCAT except for the 1 minute

case. After evaluating the number of transformation matrices in both CSMAPLR

and tandem BCAT/CSMAPLR, it was observed that both algorithms had the

same number of transformation matrices. However, when the seed model to the

CSMAPLR algorithm was the SI model, CSMAPLR lowered the RMSE. But when

the seed model was the output of BCAT algorithm, the CSMAPLR algorithm

increased the RMSE compared to its seed model. This shows that transforms

estimated in CSMAPLR change our model to a poor estimate of the target model

while still being a better model than the SI model. This is thought to be because

of the rank deficiency problem in the CSMAPLR approach when only few seconds

of data is available. When 1 minute of adaptation data was available, and the

rank deficiency problem is less severe, BCAT+CSMAPLR performed better than

BCAT.

For LF0 features, BCAT+CSMAPLR performed the best as shown in Fig. 6.

Although BCAT+CSMAPLR degraded the performance of BCAT in MGC fea-

tures, for LF0, it performed comparable to SD models after 3 seconds of adaptation

data. The number of transformation matrices in LF0 features were much higher

compared to MGC as shown in Table 1. This indicates that only a small amount
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Figure 6: Objective evaluation (RMSE) of adaptation techniques for LF0 features
with 95% confidence intervals.

of adaptation data is enough to estimate reliable CSMAPLR transforms for LF0

features. Additionally, this shows that the seed model to CSMAPLR is important

and if chosen correctly, output of CSMAPLR can perform comparable with SD

with as little as 3 seconds of data. However, for the 1 minute case, performance of

CSMAPLR was found to be similar to BCAT+CSMAPLR which indicates that

for lf0, performance of the CSMAPLR algorithm does not depend on the seed

model when there is sufficient amount of data. Reduced effect of the prior and

ability to generate many transformation matrices for lf0 using 1 minute of data

increases adaptation flexibility which makes the seed model less important.

BCAT performed significantly better than CAT only in the 1 second case for

LF0 features. Because the dimensionality of LF0 supervectors are much lower

compared to MGC, BCAT, which relies on the prior cannot significantly outper-

form CAT for LF0. Similarly, BCAT performs better than BCAT-I only for the 1

sec case.

Even though CSMAPLR does not perform well in one second case for LF0,
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Figure 7: Quality and similarity MOS test results for CSMAPLR and CAT for
the 2 and 5 seconds cases.

when more data becomes available, the difference between CSMAPLR and eigenspace

algorithms rapidly goes down and at 5 sec case the difference is not significant.

BCAT-kNN is significantly better than BCAT for LF0 for the 1 sec and 2 sec cases.

The nearest-neighbor selected with BCAT and L2 measure performs as good as

BCAT for LF0 in all data sizes.

4.0.13 Subjective Measure Tests

Subjective listening tests are done to evaluate the performance of the proposed

systems. ABX tests are used to measure speaker similarity. AB tests are used to

measure speech quality. Details of the tests are discussed in Section 4.0.10.

CAT and CSMAPLR algorithms are the baseline systems used in this work.

Thus, before comparing their performances with the proposed systems, MOS tests

are done to assess the absolute performance of those two systems. Quality and

similarity assessment with MOS tests are done for the 2 second and 5 second cases.

Performance is not measured for the 1 second case because some of the speakers

are not adapted with CSMAPLR for that case due to insufficient amounts of

data. 10 listeners took the test. For each case, listeners scored 24 utterances from

6 speakers. Results are shown in Fig. 7. Even though quality of CSMAPLR

and CAT algorithms increase slightly from 2 sec to 5 sec, the improvement is not

significant. Moreover, difference between the systems are also not significant. In

the case of similarity, average performance increases significantly from 2 second to
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5 second cases. However, differences between the algorithms are still not signifi-

cant. Even though there is a large difference between the two systems in objective

assessments, differences between them are subtle and cannot be identified in an

absolute test such as MOS. However, they were more noticeable in the comparison

tests as discussed below.

Subjective tests are done for comparing the perceptual similarity and quality

of the proposed algorithms. Results are shown in Table 3 and Table 4. No signif-

icant quality or similarity differences between BCAT and BCAT-kNN were found

even though their RMSE values are different. Statistical significance is measured

using Pearson’s chi-squared test. Analyzing the audio, we have found that differ-

ences can be heard only in some segments of speech with careful listening. Even

though some listeners could hear it sometimes, that was not enough to generate

statistically significant differences between the systems. The difference between

CAT and proposed algorithms in terms of similarity were also not significant.

BCAT+CSMAPLR algorithm performed worse than BCAT and BCAT-kNN

algorithms in terms of similarity for the MGC feature in 2, 3, and 4 seconds cases.

Similarly, it was worse than BCAT and BCAT-kNN algorithms in terms of quality

for the MGC feature in 3, 4, and 5 sec cases. CSMAPLR was found to distort the

models because of rank deficieny when used in tandem with BCAT. This is also

reflected in the objective test results as discussed in the previous Section. There

was no significant difference between the algorithms for the LF0 case.

Alleviating the perceptual artifacts observed with ML-based CAT was another

goal of this work. To measure the improvement in quality with BCAT, AB pref-

erence test is used. Results are shown in Fig. 8. Speech quality of BCAT is

significantly better than CAT in 1, 2, and, 3 second cases.

Rest of the subjective tests are done to compare CSMAPLR with the proposed

algorithms. In each test, the algorithm with the best RMSE performance is com-

pared with CSMAPLR. For the MGC feature, BCAT-kNN has the best RMSE

performance over all three systems. For the LF0 feature, BCAT+CSMAPLR

33



1 sec 2 sec 3 sec 4 sec 5 sec
0

10
20
30
40
50
60
70
80
90

100
P
re

fe
re

n
ce

 P
e
rc

e
n
ta

g
e

Quality Preference

BCAT
CAT

Figure 8: Results of subjective AB preference tests in terms of quality for both
MGC and LF0 features with 95% confidence intervals.
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Figure 9: Results of subjective preference tests in terms of similarity (ABX) and
quality (AB) for MGC features with 95% confidence intervals. LF0 was fixed to
BCAT+CSMAPLR.
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Table 3: ABX similarity test results. Statistically significant differences are in
bold. MGC and LF0 features are compared seperately. BCAT is used for LF0
when comparing the MGC features. Similarly, BCAT is used for MGC when
comparing the LF0 features.

MGC LF0
BCAT+CSMAPLR BCAT-kNN BCAT+CSMAPLR BCAT-kNN

1 sec 45 55 50 50
2 sec 32 68 50 50
3 sec 32 68 45 55
4 sec 34 66 50 50
5 sec 42.5 57.5 55 45

BCAT+CSMAPLR BCAT BCAT+CSMAPLR BCAT
1 sec 46 54 54 46
2 sec 42 58 46 54
3 sec 40 60 54 46
4 sec 37.5 62.5 58 42
5 sec 44 56 54 46

BCAT-kNN BCAT BCAT-kNN BCAT
1 sec 55 45 56 44
2 sec 52.5 47.5 48 52
3 sec 57.5 42.5 52 48
4 sec 52.5 47.5 50 50
5 sec 47.5 52.5 44 56

BCAT CAT BCAT CAT
1 sec 50 50 57.5 42.5
2 sec 48 52 44 56
3 sec 48 52 57.5 42.5
4 sec 52 48 57.5 42.5
5 sec 56 44 50 50

has the best RMSE performance. In the first listening test, BCAT-kNN is com-

pared with CSMAPLR in terms of MGC features while LF0 features were fixed

to BCAT+CSMAPLR in both A and B samples. Results are shown in Fig. 9.

BCAT-kNN had a large improvement both in speaker similarity and speech qual-

ity over CSMAPLR in MGC adaptations. BCAT-kNN was also compared with

BCAT when LF0 is fixed to BCAT+CSMAPLR.

In the second listening test, BCAT+CSMAPLR is compared with CSMAPLR

in terms of LF0 while MGC was fixed to BCAT-kNN. Results are shown in

Fig. 10. Speaker similarity-wise, BCAT+CSMAPLR had significant improvement
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Figure 10: Results of subjective preference tests in terms of similarity (ABX) and
quality (AB) for LF0 features with 95% confidence intervals. MGC was fixed to
BCAT-kNN.
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Table 4: AB quality test results. Statistically significant differences are in bold.
MGC and LF0 features are compared seperately. BCAT is used for LF0 when
comparing the MGC features. Similarly, BCAT is used for MGC when comparing
the LF0 features.

MGC LF0
BCAT+CSMAPLR BCAT-kNN BCAT+CSMAPLR BCAT-kNN

1 sec 50 50 44 56
2 sec 45 55 48 52
3 sec 40 60 44 56
4 sec 40 60 50 50
5 sec 42 58 50 50

BCAT+CSMAPLR BCAT BCAT+CSMAPLR BCAT
1 sec 44 56 46 54
2 sec 44 56 46 54
3 sec 42 58 56 44
4 sec 40 60 44 56
5 sec 42 58 56 44

BCAT-kNN BCAT BCAT-kNN BCAT
1 sec 50 50 48 52
2 sec 52.5 47.5 50 50
3 sec 47.5 52.5 50 50
4 sec 45 55 46 54
5 sec 45 55 50 50

over CSMAPLR. Also, quality-wise, BCAT+CSMAPLR also significant improve-

ment over CSMAPLR except for the 1 second case. These improvements were not

as substantial as they were in MGC case.

4.1 Discussion

Even though MOS results of CAT and CSMAPLR algorithms seem similar in

Fig. 7, the objective measure tests indicate significant differences between the two

algorithms. Moreover, CAT was found to outperform CSMAPLR in the literature

when tiny amounts of adaptation data is available [15]. To compare them in more

detail, ABX similarity test and AB quality test are performed. Results are shown

in Fig. 11. We have found that the listeners can hear the differences between

the two algorithms better in comparison tests as opposed to MOS tests. Quality-

wise CAT produced less annoying artifacts than CSMAPLR. Moreover, listeners

commented that overall quality was sometimes better with CAT even when there
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Figure 11: Results of subjective preference tests in terms of similarity (ABX) and
quality (AB) for both MGC and LF0 features with 95% confidence intervals.
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are no artifacts.

The goal of the BCAT algorithm was to reduce the perceptual artifacts of CAT

that occur due to overfitting. We have found that regularization through using a

prior distribution is helpful for removing those artifacts. The improvements were

observed both in objective and subjective quality tests. However, similarity-wise,

significant differences were not observed. Thus, even though some of the states

were distorted with CAT, overall similarity to the target speaker was judged to

be similar to BCAT.

BCAT-kNN algorithm was designed to exploit the nearest-neighbors to the tar-

get speaker for learning the eigenspace and computing the covariance matrix of the

prior distribution. Even though it performed well especially for the MGC features

in the objective tests, it was not better than BCAT in the listening tests. We have

found that the improvements in MGC with the BCAT-kNN algorithm is mostly

related to removal of outliers from the training data. Thus, our results indicate

that those outliers do not cause significant perceptual distortions in synthesis.

We hypothesized that using the CSMAPLR algorithm in tandem with the

BCAT algorithm can help improve the performance of BCAT. However, the CSMAPLR

algorithm sometimes created artifacts in the MGC features because of the rank

deficiency problem which lowered the quality and similarity of speech. Only when

one minute of adaptation data was available, improvements in the MGC features

were observed with the tandem approach. Even though significant performance

improvements were possible for lf0 features in the objective tests, those improve-

ments were mostly not noticed by the listeners in the listening tests. Variations of

lf0 parameter is significantly reduced by the parameter generation algorithm due

to smoothing which made it harder for the listeners to hear differences.
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CHAPTER V

CONCLUSION

In this work, we proposed three algorithms for rapid speaker adaptation of SSS

models with few seconds of adaptation data. First method is a Bayesian eigenvoice,

BCAT, approach to rapid speaker adaptation when feature dimensionality is high

and data is scarce as in the case of MGC features. We have shown how eigenvoice

based adaptations can be improved by adding prior information regarding the

weight vectors to constrain the estimation.

In the second method, BCAT-kNN, the eigenspace and the weight vector pri-

ors are estimated using only k target-specific nearest neighbors to constrain the

estimation further.

The third algorithm is a tandem BCAT/CSMAPLR approach for LF0 features

where dimensionality is low. BCAT adaptation can only have a coarse estimation

of the target model since it works in a limited space. Also, its performance satu-

rates quickly when more data becomes available. Because of those, we proposed

another iteration of adaptation step after BCAT using CSMAPLR so that adap-

tation can continue to improve with more data. In this approach, output of the

BCAT algorithm is used as the seed model for CSMAPLR adaptation instead of

the original SI model.

Both for LF0 and MGC, significant improvements in objective tests are achieved

compared to baseline CSMAPLR and CAT algorithms. Similarly, in subjective

listening tests, proposed algorithms outperformed CSMAPLR algorithm in both

quality and similarity. Moreover, quality is improved using the proposed methods

compared to CAT algorithm. However, similarity-wise, differences between CAT

and the three proposed methods are subtle and could not be consistently identified

by the listeners.
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Success of the BCAT-kNN algorithm depends on selecting good NN’s. There-

fore, several distance measures are compared to select the best nearest-neighbor.

L2 distance of w vectors of BCAT adaptations were found to have the best perfor-

mance both for MGC and LF0 features. In our future work, we will explore new

distance measures to select better nearest neighbors in order to further improve

the performance of the proposed algorithms.
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