
HYBRID JOB SCHEDULING FOR IMPROVED SHARED
CLUSTER UTILIZATION

A Thesis

by

Uğur Koçak

Submitted to the
Graduate School of Sciences and Engineering
In Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in the
Department of Computer Science

Özyeğin University
January 2014

Copyright c© 2014 by Uğur Koçak

HYBRID JOB SCHEDULING FOR IMPROVED SHARED
CLUSTER UTILIZATION

Approved by:

Assistant Professor Ismail Ari, Advisor
Department of Computer Science
Özyeğin University

Assistant Professor Barış Aktemur
Department of Computer Science
Özyeğin University

Associate Professor Güray Erkol
Department of Natural and Mathematical
Sciences
Özyeğin University

Date Approved: 10 January 2014

To My Father

iii

ABSTRACT

In this thesis, We investigate the models and issues as well as performance benefits

of hybrid job scheduling over shared physical clusters. Clustering technologies that

are compared include MPI, Hadoop-MapReduce and NoSQL systems. Our proposed

scheduling model is above the operating system and cluster-middleware level job

schedulers and operating system level schedulers and it is complementary to them.

First, we demonstrate that we can schedule MPI, Hadoop and NoSQL cluster-level

jobs together in a controlled-fashion over the same physical cluster. Second, we find

that it is better to schedule cluster jobs with different job characteristics together

(CPU vs. I/O intensive) rather than two or more CPU intensive jobs. Third, we

describe the design of a greedy sort-merge scheduler that uses the learning outcome

of this principle. Up to 37% savings in total job completion times are demonstrated

for I/O and CPU-intensive pairs of jobs, but up to 50% savings (or 2x speedup)

is theoretically possible. These savings would also be proportional to the cluster

utilization improvements, if there are jobs waiting in the queue. At the end of the

thesis, we also discuss potential power-energy savings from hybrid job scheduling.

iv

ÖZETÇE

Bu tezde, bilgisayar küme yapıları üzerinde hibrid iş yüklerinin birlikte işlenmesiyle

ilgili modeller, sorunlar ve performans kazanımları incelenmektedir. Desteklenen

kümeleme teknolojileri arasında MPI, Hadoop-MapReduce ve NoSQL sistemleri bu-

lunmaktadır. Önerilen programlayıcı modeli işletim sistemi seviyesindeki arakat-

man yazılımların üzerinde ve onları destekleyici niteliktedir. Tezde ilk olarak, MPI,

Hadoop ve NoSQL işlerini bir arada programlayabildiğimizi göstermekteyiz. İkinci

olarak, farklı özelliklere sahip (CPU vs. Girdi/Çıktı yoğunluklu) işlerin, aynı özelliklere

sahip işlere göre (2 adet veya daha fazla CPU yoğunluklu) beraber daha iyi program-

lanabildiği bulgusu paylaşılmaktadır. Son olarak, bu bulgunun ışığında yeni bir greedy

sort-merge programlayıcısı tasarımı anlatılmaktadır. İş tamamlama sürelerinde %37

zamansal kazanım gösterilmektedir, ancak %50 kazanımlar da (2x hızlanma) teorik

olarak mümkündür. Bu zamansal kazanımlar kuyrukta yeterince yük olduğu takdirde

kümenin kullanım kapasitesini de arttırıcı nitelikte olacaktır. Tezin sonunda, hibrid iş

programlama ile sağlanabilecek potansiyel güç-enerji kazanımları da tartışılmaktadır.

v

ACKNOWLEDGEMENTS

First, I would like to express my gratitude to my advisor Dr. Ismail Ari for working

with me in Cloud Computing Research Group in at Ozyegin University.

Besides my advisor, I would like to thank the rest of my thesis committee: Dr.

Tankut Barış Aktemur and Dr. Güray Erkol for their encouragement, insightful

comments and questions. Next, I would like to thank to all of my instructors in

Ozyegin University for their lectures and special attentions during masters.

I would also like to thank my friends in Cloud Computing Research Group, and all

of graduate students in Ozyegin University. Especially, I would like to share special

thanks with Erdi Ölmezoğulları, Nitel Muhtaroğlu and Melih Koca. I also would

like to thank great people that I have good memories with Volkan Yazıcı, Yaprak

Ayazoğlu, Buse Yılmaz and Athar Khodabakhsh.

Last of all to you my precious family, who always support and encourage me to

reach the best I can. I dedicated this thesis to my father, who passed away before,

with all loving memories.

I would also like to send special thanks to our sponsors. My masters research has

been partially sponsored by European Union FP7 Marie Curie Program BI4MASSES

Grant, Avea Labs, TUBITAK 3501 Project 109E194 and IBM Shared University

Research program.

vi

TABLE OF CONTENTS

DEDICATION . iii

ABSTRACT . iv

ÖZETÇE . v

ACKNOWLEDGEMENTS . vi

LIST OF TABLES . ix

LIST OF FIGURES . x

I INTRODUCTION . 1

1.1 Motivation . 1

1.2 Definition and Benefits of Hybrid Scheduling 2

II BACKGROUND AND RELATED WORK 4

2.1 Background . 4

2.1.1 Hadoop . 5

2.1.2 Message Passing Interface (MPI) 7

2.1.3 NoSQL . 7

2.2 Related Work . 8

III A DISCUSSION ON VIRTUALIZED CLUSTERS 11

IV PERFORMANCE ANALYSIS AND RESULTS 14

4.1 Cluster Environment and Profiling Utilities 14

4.2 Workloads . 14

4.3 CPU-intensive Jobs and Cluster-Level Job Prioritization 16

4.4 Hybrid Scheduling of CPU and IO-intensive Jobs 18

4.5 Generalized Hybrid Scheduler . 18

V HYBRID JOB SCHEDULING FOR ENERGY EFFICIENCY . 22

5.1 Measuring Energy Consumption . 22

5.2 Workloads . 23

vii

VI CONCLUSION . 27

REFERENCES . 28

VITA . 30

viii

LIST OF TABLES

1 Resource usage profiles of benchmark cluster workloads. 15

2 Results of co-scheduling MPI and Cassandra jobs. 17

3 Results of co-scheduling of MPI and Hadoop jobs. 18

4 Power consumption and thermal output by running jobs on 2 nodes. . 25

ix

LIST OF FIGURES

1 A hybrid job scheduler for shared physical clusters collects and uses
job profiles or statistics from prior runs. 3

2 (Left) Hadoop architecture overview and (right) diagram showing colo-
cation of Hadoop, MPI and NoSQL systems in one machine. 6

3 With YARN, applications run natively in Hadoop framework. [7] . . 6

4 Our proposed hybrid cluster job scheduling model vs. alternative mod-
els # 1 adapters and # 2 & # 3 virtualization 12

5 Cassandra and MPI jobs running together on 8 cores. 16

6 Greedy sort-merge scheduler. 20

7 A screenshot from IBM power graph screen. 23

8 Power consumption by node count. 24

9 Thermal output by node count. 24

x

CHAPTER I

INTRODUCTION

In many universities and research centers scientists depend on shared computing

clusters for their computational needs. These scientists are usually from various dis-

ciplines such as Physics, Mechanical Engineering, Computer Science and Bioinformat-

ics. Some of their computational jobs are CPU-intensive and some are data-intensive.

They also use different distributed processing engines and associated middleware such

as Message Passing Interface [1] [2], Hadoop-MapReduce [3], and any type of NoSQL

engines to execute their jobs. As a worst case scenario (which is in-fact common

in smaller scientific communities), people email each other to decide who runs a job

first, which causes poor cluster utilization, or they all submit their jobs simulta-

neously leading to clashes and poor performance. Today, there is no easy-to-use,

common scheduler to reorder and reprioritize these hybrid jobs to make better exe-

cution plans among different clustering technologies. In this thesis, we describe the

design of a new MPI, Hadoop-MapReduce, and NoSQL hybrid job scheduler that

uses jobs’ execution profiles from prior runs and makes global scheduling decisions to

improve overall system utilization and job throughput performance.

1.1 Motivation

Inspired by advances of technology and to answer particular application needs, sci-

entists have constructed various kinds of computing platforms to perform High Per-

formance Computing (HPC). Clusters, multi-clusters, grids, desktop or lightweight

grids, peer-to-peer systems and lately HPC-clouds that propose different ways for ex-

ecuting workloads and applications. Hence integrating into or interfacing to different

HPC and High Throughput Computing (HTC) environments had to be taken into

1

account.

1.2 Definition and Benefits of Hybrid Scheduling

In this context, the word hybrid can have multiple meanings:

• First, the interfaces or APIs of distributed processing technologies can be differ-

ent (e.g. MPI vs. MapReduce) and these different middleware will be executed

together on one physical platform.

• Second, the clusters physical resources can be heterogeneous consisting of rel-

atively powerful and weaker machines in terms of CPU, memory and storage

resources.

• Third, the new overlay hybrid scheduler should know that there are also other

underlying cluster-specific job schedulers and operating system (OS)- level pro-

cess schedulers, which creates a multi-level scheduling scenario.

The ideal hybrid scheduler should have the ability to make a combined scheduling

decision considering all of the conditions above. Therefore, it would be fair to state

that hybrid job scheduling is hard. Yet, we also observe the fact that in scientific

communities similar jobs are run repeatedly over the same shared physical clusters as

shown in Figure 1. Therefore, there is an opportunity to profile these different jobs

in terms of their CPU, memory, disk bandwidth, and network usage and feed this

information to a global hybrid scheduler for optimization.

The benefits of hybrid scheduling would include: (1) convenience on the users side,

(2) increased cluster utilization and (3) improved job isolation. This thesis aims to

investigate and highlight some of these potential advantages. User convenience refers

to users not knowing (or needing to know) what OS, server capacity, virtualization,

etc. technologies or issues exist. Cluster utilization refers to simultaneous use and

effective utilization of all computing resources including CPU, memory, disk, and

2

Figure 1: A hybrid job scheduler for shared physical clusters collects and uses job
profiles or statistics from prior runs.

network (and not just CPU sharing). Finally, for job isolation we only seek an

improvement over todays practice cross-platform and mixed (Hadoop, MPI, etc.)

scheduling of many jobs, where there is practically “no isolation”. Otherwise, we do

co-locate these jobs and there will be performance interactions among them.

In one aspect, the hybrid job scheduler virtualizes the underlying clustering tech-

nologies, creating a unified scientific cloud. The underlying cluster can be physical or

virtual or implemented as a private cloud (OpenStack [8], etc.) or public cloud service

(Amazon AWS, etc.). The end users do not have to know these details. In addition,

they also would not have to manage the cluster middleware, i.e. know whether MPI,

Hadoop, NoSQL (HBase [6], Cassandra [9], MongoDB [10]) are installed properly and

which versions are installed. These decisions are all left to the service providers. This

setting allows overlapping the research cycles of different departments and disciplines.

One scientist running HPC jobs only, would not fully utilize all the cluster resources

(e.g. 100% CPU, but not both CPU and disk), but when all tasks are put together

better cluster utilization is achievable.

3

CHAPTER II

BACKGROUND AND RELATED WORK

2.1 Background

The need for clusters have been driven primarily by HPC applications in the past.

Today, there is an emergence of High Throughput Computing (HTC) applications

that contend for the same cluster resources. The latter is thought to be more I/O

intensive. Many organizations including universities, telecommunication operators,

media & social networks, financial institutions and governments generate terabytes

of data each day and attempt to insert this high “volume” data into databases that

already contain petabytes. Data come from different sources such as sensors, various

web or system logs, and mobile phone call detail records (CDR). The mixing of these

different data types results in a wide “variety” of data to be processed and stored (e.g.

unstructured text, semi-structured XML-JSON, structured CSV, or binary audio or

video data). The term “Big Data” is used to refer to challenging data management

problems that arise due to the high Volume, Velocity, Variety, and Veracity (4Vs)

of the data [11]. Veracity refers to the brokenness of the data. Relational database

management systems cannot cope with 4Vs of data very well, therefore Hadoop and

NoSQL systems have quickly penetrated into the scientific and enterprise data infras-

tructures. Consequently, a variety of the cluster technologies including Hadoop, MPI

and NoSQL started to get used over the same, shared physical clusters.

4

2.1.1 Hadoop

Apache Hadoop is an open-source framework mostly written in Java designed for

supporting data-intensive distributed applications. Hadoop framework mainly con-

sists of two components called MapReduce (MR) and Hadoop Distributed File Sys-

tem (HDFS). The framework also has other supporting projects that are shown in

Figure 2. These projects provide and include database (HBase), data warehousing

(Hive/Pig) and other management (Oozie, Chukwa, Zookeeper) functionality and

applications. The data to be processed is stored in large fixed-sized chunks (64MB

default) by HDFS for both performance and reliability purposes. Figure 2 also shows

the Hadoop architecture. HDFS consists of a NameNode (master) and several num-

ber of DataNodes (slaves). MapReduce (MR) is a distributed job execution system

consisting of a JobTracker (master) and TaskTrackers (slaves). Jobs will be split into

many Map and Reduce tasks and sent as JAR files to many machines containing the

data in HDFS. JobTracker distributes these client- submitted jobs and TaskTrackers

track the progress of local Mappers and Reducers. The Map phase handles data

transformations in each worker node and is followed by the sort-merge phase. The

Reduce phase aggregates sorted data and outputs the results. Some jobs will only

transform the input log files by extracting desired fields and writing them out in the

new format, therefore requiring no Reduce phase. Chen, et al. [12] give a detailed

analysis of MR workloads from two large-scale production Hadoop systems (from Ya-

hoo and Facebook) and find great differences between MR use cases. They conclude

that “no single benchmark can capture such diverse behavior” [12].

We used the Hadoop version 1.2.0 in our experiments. The previous Hadoop

versions 0.22.x and the new beta version 2.x are also being used extensively by the

industry. In Hadoop 2.x, HDFS has a namespace federation feature, which provides

scalability beyond 10,000s of nodes, since the NameNode is also distributed.

In its 2nd version, MapReduce (or MRv2) came with a major change at the

5

Figure 2: (Left) Hadoop architecture overview and (right) diagram showing coloca-
tion of Hadoop, MPI and NoSQL systems in one machine.

Figure 3: With YARN, applications run natively in Hadoop framework. [7]

JobTracker side. The new idea is one ApplicationMaster to schedule and monitor jobs

and one ResourceManager to manage resources as shown in Figure 3. This resource

manager in MRv2 is also known as YARN, which stands for “Yet Another Resource

Negotiator”, and it provides flexible programming, improved cluster utilization and

fast introduction of new services over Hadoop.

YARN scheduler allocates resources for a job and it does not perform any mon-

itoring or tracking process. On the other hand, it is extensible with plugins. So, it

can be extended with more intelligent scheduling algorithms.

6

2.1.2 Message Passing Interface (MPI)

MPI is an HPC middleware used for distributed inter-process communication and high

performance on both Symmetric Multi-Processor (SMP) machines and on workstation

clusters. It is well-standardized and portable. We use the MPICH2 [1] implementation

of the standard, but other implementations such as the Open MPI [2] also exist. In

our previous HPC-focused work [15], we implemented a cloud computing platform

service for Finite Element Analysis (FEA). FEA is a generally applicable numerical

method to approximately solve partial differential equations and requires HPC setups.

Application areas of FEA include mechanical structural analysis, heat transfer, fluid

dynamics, acoustics, and electromagnetic modeling. We found that if the FEA job

can be processed effectively on a single multi-core server (i.e. with enough CPU cores

and RAM), we should use the SMP-style multi-processing. If not, the job will be

distributed over multiple servers/processes and MPI will be used for inter-process

communication. The scheduler has to make these decisions optimally for hundreds of

jobs, simultaneously, which was the core contribution of our previous work [15].

2.1.3 NoSQL

NoSQL stands for Not Only SQL and NoSQL systems were created for needs in differ-

ent aspects. Some of these include need for flexible data structures, horizontal scaling,

high performance and distributed computing. The most commonly used NoSQL sys-

tems include HBase [6], Cassandra [9], CouchDB, Redis, Neo4j and MongoDB [10].

We worked with HBase, Cassandra and MongoDB, but there were several reasons

for choosing Cassandra for testing. We did not select HBase since it also works on

Hadoop (and we needed a variety of technologies to mix). MongoDB has a great data

structure which is based on Javascript Object Notation (JSON). But, we omitted

MongoDB from this work, since its cluster setup cost (especially sharding phase)

was higher for us than Cassandra’s setup at this time. We selected Cassandra and

7

continued with it as our NoSQL system.

Apache Cassandra [9] is a Java-based NoSQL database initially developed by

Facebook. One of its differentiators is that, it has no central servers and uses a pure

peer-to-peer approach for scalability. Cassandra does not enforce a schema, thus it

is also a < key, value > store like Amazons Dynamo [16] NoSQL system. But it is

optional to make Cassandra behave as it has a defined schema. It stores the data

in a HexByteArray format. The “table” concept in DBMS is represented by a “col-

umn family” in Cassandra. Cassandra tries to hold all the data to be processed in a

memory-resident “memtable” and holds the extra data in a disk-resident “sstable”.

It has two types of initial partitioners ; the random partitioner evenly distributes

data and the workloads, whereas the order-preserving partitioner performs better

with range queries. We used the random partitioner and no replication in our exper-

iments. Cassandra uses one thread for each worker. However, it also uses additional

CPU resources for other background jobs, like indexing and flushing, which shows as

random spikes in its CPU profile, an example of which is shown in Figure 5.

2.2 Related Work

While most state-of-the-art cluster job scheduling tools declare heterogeneous system

support, they primarily refer to different hardware capabilities and not middleware

interfaces. For HPC jobs, the famous MPI scheduler called LSF (Load Sharing Fa-

cility) [13] is primarily used for submitting MPI jobs to MPI clusters. The scheduler

adjusts execution order of submitted MPI tasks based on their node-core (“-np”) re-

quirements and their priorities. In our previous work [15], we showed that additional

savings are possible above the MPI-level with task-aware cluster job scheduling es-

pecially for FEA. In this thesis, we demonstrate potential savings for hybrid set of

jobs, and not just HPC. Previous research on Grid scheduling and scientific workflows

focuses on data or task dependencies [20], [21]. Since our jobs belong to completely

8

different cluster middleware we assume there will be no such dependencies and issues

among our hybrid jobs and we do not need to build task-graphs. There are numerous

past publications on Grid scheduling, but since none of these prior works support

Hadoop, MPI and NoSQL we skip a detailed comparison here for brevity. For HTC

jobs, there exists two Hadoop schedulers called FIFO and Fair Scheduler [17]. Using

these schedulers and careful job pool settings, prioritized co-scheduling of MapReduce

jobs is possible. However, these Hadoop schedulers do not accept MPI jobs today.

We are not aware of any system that integrates MPI, Hadoop, and NoSQL systems

as we do in this paper. The closest systems to ours include the SLURM Scheduler

plugins and HTCondor’s ClassAds. “SLURM is an open-source resource manager de-

signed for Linux clusters”. It provides a framework for allocating, starting, executing,

and monitoring work (typically a parallel job) on a set of allocated nodes for a spec-

ified duration. SLURMs modular design accepts plugins inluding scheduler plugins

that implement the SLURM scheduler API. To name a few, builtin scheduler plugin

implements first-in-first-out, backfill raises the priority of jobs to start them earlier

without any delay, wiki plugin uses the Maui Scheduler, and wiki2 uses the Moab

Cluster Suite. “HTCondor’s ClassAds are a flexible mechanism for representing the

characteristics and constraints of machines and jobs in the HTCondor system”. HT-

Condor currently has no direct MapReduce support. Developers of the vgreen system

investigated energy-efficient scheduling [26] of Virtual Machines (VM). They profiled

the power and performance characteristics of several VMs and designed a power-

oriented scheduler. Yet, they reached to a conlusion similar to ours. They found

that co-scheduling jobs with similar characteristics (e.g. two CPU-intensive tasks) is

not energy-efficient, whereas placing heterogeneous jobs together can save up to 20%

energy. The reason is that under-utilized resources still consume energy and better

utilization of all resources concurrently leads to lower energy use/jobs completed. In

our case, we achieved up to 37% improvement in throughput performance and the

9

impacts on energy efficiency constitute interesting future work.

Nowadays, there are two Apache projects related with this topic. Apache Helix [5]

provides resource management and Apache Mesos [4] provides cluster management

and resource sharing frameworks. Apache Mesos can run MPI and Hadoop, but it

has seperated schedulers for both of them.

Our previous work [14] includes a part of this research. We investigated to run

jobs together with different parameters and showed preliminary results.

10

CHAPTER III

A DISCUSSION ON VIRTUALIZED CLUSTERS

One could simply use native or hosted machine virtualization to co-locate differ-

ent clustering middleware (or platforms) on shared physical cluster infrastructure as

shown in Figure 4. In comparison, our proposed hybrid job scheduling model has

one of the simplest forms. In our proposed model, different clusters are placed under

the common scheduler, which profiles all the submitted jobs and decides to co-locate

(i.e. dispatch together) those who use different, heterogeneous types of resources. In

this regard, the hybrid job scheduler virtualizes the underlying clustering middleware,

creating a unified scientific cloud. Alternative # 1 denotes two cases called Hadoop

over MPI or MPI over Hadoop, where the former refers to converting MapReduce

source or binary code using an adapter to MPI code to run over an MPI cluster [24]

and the latter refers to the new YARN approach mentioned in previous sections. Al-

ternatives # 2 and # 3 denote a native and a hosted virtualized model, respectively,

for mixed Hadoop-MPI virtual clusters. These two virtualization alternatives are

quite similar with respect to the higher-layer job scheduling software. However, the

natively virtualized clusters (# 2) provide additional advantages over hosted Virtual

Machines (VM) including dynamic resizing and migration of VMs, and scale easily

beyond a single physical machine. As tradeoffs, virtualized clusters have both per-

formance overheads and additional VM management issues. Another concept that

improves co-location of VMs is called VM ensembles. Since the switches and routers

are expensive resources in large-scale data centers, systems such as Net-Cohort [18]

discover VM ensembles and co-locate them to reduce inter-VM traffic. Testing is idea

with Hadoop-MPI-NoSQL virtual clusters and comparing their performances with

11

Figure 4: Our proposed hybrid cluster job scheduling model vs. alternative models
1 adapters and # 2 & # 3 virtualization

our findings constitutes interesting future work.

Recent findings [23] also suggests that virtualization may not always be the answer

in the HPC world for multiple reasons. First, HPC systems want to squeeze the last

bit of performance from the systems whereas virtualization can mean up to 10% of

performance hit, since the hypervisor adds yet another layer between the physical re-

sources and the applications. The second reason is HPC systems are already designed

for being shared among a community of people in unified scientific communities (i.e.

with similar HPC jobs) the utilizations can be relatively high [23]. Therefore, the

motivations that drive the use of virtualization (i.e. increase utilization, save power

and same money) are not always there for HPC. Similarly for Hadoop clusters, ex-

perts neither recommend virtualization nor RAID, but to save the money and buy

more nodes and disk spindles. While the fastest 15K rpm disks are common in HPC,

they are not recommended in Hadoop and other HTC clusters, as one can get more

parallel I/O bandwidth by buying more 7200 rpm disks. A third reason for why HPC

systems may not prefer virtualization is that the hypervisors can simply put limits

on the number of cores (e.g. 8) that can be taken by a virtual machine. In that

case, a Symmetric Multi-Processor (SMP) system with many (e.g. 512) cores will

have to be divided into hundreds of VMs requiring excessive use of messaging among

these machines. This limit would practically turn a supercomputer into a group of

12

mini-clusters. In addition, Graphical Processing Unit (GPU) usage is quite common

in HPC workloads today, whereas it is not possible to connect more that one VM

to GPUs. Some of these limitations are being solved over time, but the world of

virtualization seems to be always a step behind in trying to virtualize the next I/O

layer (e.g. high-availability SAN storage or Infiniband) or the emerging system tech-

nology. In summary, virtualization is a good choice in dynamic test and development

environments where reconfiguration speeds and elasticity are critical. However, HPC

and HTC environments run similar and predictable types of workloads and require

deterministic performance.

13

CHAPTER IV

PERFORMANCE ANALYSIS AND RESULTS

4.1 Cluster Environment and Profiling Utilities

The experiments for this work were conducted on a small, but powerful, private cluster

of two IBM HS22 Blade Servers in a high-performance blade chassis with 1Gbps

connectivity. Each server has two 2.40GHz Intel Xeon Quad-Core E5620 CPUs,

24GB Memory, and two 72 GB 15000rpm disks configured as RAID1. In Hadoop

and Cassandra experiments, we also used a partition from the Storage Area Network

(SAN) to store and process the benchmark data. We installed RedHat Linux 5 on

these servers. For profiling we used the sysstat package [19] and its pidstat command

to track CPU, memory and disk read-write bandwidth usage of the processes. “The

sysstat utilities are a collection of performance monitoring tools for Linux. These

include sar, sadf, mpstat, iostat, nfsiostat, cifsiostat, pidstat and sa tools” [19]. All

experiments were run 3 times and the results were averaged.

4.2 Workloads

As Hadoop workload we used the classical terasort benchmark, which is more IO-

intensive than our MPI task for our cluster. For this experiment, we first created a

large (15 GB) file filled with random, unsorted characters using the teragen program.

Next, we used terasort to read & sort the unsorted data and write back the sorted

data. As MPI workload we used the dbworld benchmark, which solves a system

of linear equations. The MPI command was executed as follows: < mpirun −

np 8 dbworld mpi −n 1536 −m 1536 > , where np denotes node-core counts and n×m

are the matrix row-column sizes. We used the MPICH2 implementation [1] of MPI.

14

During Hadoop comparison, the matrix size was asjusted to 1348× 1348, so that one

task does not finish much sooner than the other. This allowed us to simulate a scenario

where the job pipeline is always full. For Cassandra benchmarking, we wrote a Java

program that reads the XML-formatted CDR logs of a real mobile telecom company,

indexes and inserts these transformed logs into Cassandra using the Astyanax client

adapter by Netflix. For data distribution we used the random sharding technique and

no data replication. Table 1 shows the average CPU-memory usage percentage, and

read-write bandwidth usage in MB/second for these 3 workloads obtained using the

pidstat tool. Basically, the MPI and Cassandra benchmark jobs were CPU-intensive

(with 99% CPU utilization on average) and the Hadoop terasort job was more IO-

intensive than others (10MB/sec reads, 40 MB/sec writes) and had 25% average CPU

usage.

Table 1: Resource usage profiles of benchmark cluster workloads.

CPU Memory R-W Bandwidth

MPI 99% 0.5% 0-0 MB/sec
Cassandra 99% 15% 0-4.3 MB/sec

Hadoop 25% 2.2% 9.8-40.2 MB/sec

Our focus in this thesis was to mix and run different types of jobs together for

different middlewares, therefore we only analyzed interactions among jobs for multiple

core count settings and did not vary the system-specific parameters internally. If we

vary the size of either one of the benchmarks (MPI problem size, terasort data size, or

Cassandra data size), their executions times will be longer, but the learning outcomes

will be the same. Figure 5 shows a sample CPU usage profile of two concurrent

jobs, MPI and Cassandra when running on the 8 core server with 4 worker threads

dedicated to each. MPI is relatively stable and completes around 16 minutes, whereas

Cassandra has a more jittery picture (due to its background jobs) and completes

15

Figure 5: Cassandra and MPI jobs running together on 8 cores.

around 10 minutes.

4.3 CPU-intensive Jobs and Cluster-Level Job Prioritiza-
tion

In this section, we investigate whether we can preempt, reorder, reprioritize (i.e. take

control of) different types of cluster jobs when they are executing simultaneously over

the same cluster. We increase job priorities to let them use more share of the CPU

resources and vice versa. Table 2 shows the results of co-scheduling of two CPU-

intensive tasks MPI and Cassandra on a single 8-core (physical) server for different

worker (4,8,16) settings. For MPI, the term “worker” refers to the number of cores

used (i.e. -np) and for Cassandra it refers to the number of loader client threads.

“Standalone” refers to non-overlapping, i.e. serial and mutually exclusive, execution

of these two tasks. With 4 workers the total time to finish both tasks is 20.8 minutes

(11.8+9.0). With 8 workers the total time goes down to 15.4 minutes (i.e. 26%

16

improvement), but does not improve anymore for 16 workers since this server has

only 8 physical cores and the hyperthreading does not contribute much for ˜100%

CPU-intensive tasks. The Cassandra task benefits more from increased core count.

When the two tasks are started simultaneously with the same priorities and they

execute in parallel, the OS-level process scheduler shows positive effect. Although

both tasks execute longer than their serial execution counterparts (e.g. 16.2 mins

for MPI and 10.1 mins for Cassandra 4) the system throughput increases from ˜6
jobs/hour to ˜8 jobs/hour: both tasks have completed at 16.2 minutes for 4 workers,

15.0 minutes for 8, and 13.8 minutes for 16 workers. This shows that 10-20% savings

are possible even for CPU-intensive tasks

Table 2: Results of co-scheduling MPI and Cassandra jobs.

Worker
per-job

Execution MPI (min) Cassandra
(min)

Total (min)

4

standalone 11.8 9 20.8
normal - combined 16.2 10.1 16.2
nice -n -20 for M 14.9 18.4 18.4
nice -n +19 for M 18.4 10.5 18.4
nice -n -20 for C 19.9 10.5 19.9
nice -n +19 for C 13.4 17.7 17.7

8

standalone 9.4 6 15.4
normal - combined 15 8.6 15
nice -n -20 for M 11.8 16.3 16.3
nice -n +19 for M 17.6 7.5 17.6
nice -n -20 for C 16.8 7.8 16.8
nice -n +19 for C 10 16.1 16.1

16

standalone 9.5 5.8 15.3
normal - combined 13.8 10.7 13.8
nice -n -20 for M 11.3 16 16
nice -n +19 for M 16.5 6.6 16.5
nice -n -20 for C 15.6 6.8 15.6
nice -n +19 for C 10.6 15.4 15.4

Next, we change the priorities of the tasks using the Linux nice command to see

if we can control the CPU-shares at the cluster level at run-time. In Cassandra, we

17

change the priority of the server, whereas in MPI the priority of the job is directly

changed. The priority levels can range between [-20,+19], where -20 is the highest and

+19 is the lowest priority. The results are affirmative in terms of job control. The job

with higher priority can perform comparable to its standalone performance, whereas

the niced job has to wait (or run slow) until the high-priority job completes. This

demonstrates that we can order, prioritize or re-prioritize jobs belonging to different

cluster technologies with respect to each other.

4.4 Hybrid Scheduling of CPU and IO-intensive Jobs

Table 3 shows the serial and hybrid execution of MPI and Hadoop jobs. We used the

15 GB data for the Hadoop terasort benchmark job. The serial execution completed

in 1272 seconds total, whereas the hybrid execution completed around 800 seconds.

This results in savings of e 37%. The savings are significantly higher compared to

co-scheduling of two CPU-intensive jobs, which resulted in 10-20% savings. Note that

the execution time of the CPU-intensive MPI job is ˜20% higher (800 sec.) in hybrid

form (i.e. MPI-Hadoop co-scheduled) compared to its serial execution time (671 sec).

The Hadoop job also took e 25% longer, but they both finished at 800.3 seconds.

These job latency increases can be attributed to the 20-25% on average CPU usage

of the Hadoop job.

Table 3: Results of co-scheduling of MPI and Hadoop jobs.

MPI(sec) Hadoop(sec) Total Time(sec)

Serial Execution 671.7 601.0 1272.7
Hybrid Scheduler 800.3 769.0 800.3

4.5 Generalized Hybrid Scheduler

We briefly describe a greedy sort-merge hybrid job scheduler. The jobs are profiled

based on their usage of CPU, memory and disk bandwidth resources. Job i(ji) is

18

represented by a triplet ji =< ci,mi, di > where ci, mi, and di represents the aver-

age CPU, memory and read+write disk I/O usage of that job, respectively. In our

current simplified model the reads and the writes are not differentiated in terms of

performance as their sequential and sustanied throughput over different storage tech-

nologies is usually comparable. The simplest model assumes that each resource is

orthogonal the other resources and can accept jobs as much as its capacity. Three

seperate lists are kept for each resource (CPU, disk, memory) in the descreasing or-

der of usage. Jobs are picked from the three lists in a round-robin fashion and the

corresponding capacities are subtracted from the resources, respectively. This way, a

CPU-intensive job will first be matched with a disk-intensive job and so on until all

jobs are complete. Our current scheduling system works in a master-slave fashion. In

the future, we plan to implement a fully-decentralized version using group communi-

cation (e.g. jGroups library). The cluster job commands for MPI, Hadoop, NoSQL

are submitted to a master node, which holds the master job queue. Clients use our

“hsub” command, which stands for hybrid job submit and is similar to the qsub-bsub

(LSF) commands. Sample hsub commands are given below:

hsub -t mpi -c "mpirun -np 16 ./dbworld params";

hsub -t cassandra -c "java -jar import.jar params";

hsub -t hadoop -c "hadoop jar examples.jar terasort /in /out";

where -t denotes the job type (mpi,hadoop,cassandra) and -c parameter gives the

command string (parameters are omitted).

Now, we briefly describe a preliminary greedy sort-merge hybrid job scheduler.

The jobs are profiled based on their usage of CPU, memory and disk bandwidth re-

sources. Job i(ji) is represented by a triplet ji =< ci,mi, di > where ci, mi, and

di represents the average CPU, memory and read+write disk I/O usage of that job,

respectively. In our current simplified model the reads and the writes are not differ-

entiated in terms of performance as their sequential and sustanied throughput over

19

Figure 6: Greedy sort-merge scheduler.

different storage technologies is usually comparable. The IOPS-Latency curve for the

storage system is assumed to be “L” (mirrored-L) shaped: Latency stays constant

until 100% utilization and then goes to infinity. The simplest model basically assumes

that each resource is orthogonal to (non-dependent on) the other resources and can

accept jobs as much as their capacities. The jobs are assumed to be embarrassingly

parallel, thus the messaging (network) overheads are also ignored by this scheduler.

We also assume jobs have equal priorities and their execution times are also the same

(1 epoch 10 minutes in the previous benchmarks). If a job has portions that display

different profiling characteristics, those portions will be treated as different jobs by

the scheduler after profiling.

Figure 6 illustrates the operation of this scheduler with a simple example. Jobs

belonging to different clusters are submitted to the scheduler by various clients. In this

example, a CPU-intensive job will be followed with an IO-intensive job. The scheduler

keeps separate lists for each resource (CPU, disk, memory) in the decreasing order

of their usage of that particular resource. Jobs are enqueued to all of the lists and

then dequeued from the lists in a round-robin fashion. The corresponding capacities

are subtracted from the resources, respectively. This way, a CPU-intensive job will

first be matched with a disk-intensive job and so on until all jobs are complete.

We generated two workloads two simulate these scenarios: first, an HPC-HTC mix

(i.e. CPU-intensive and IO-intensive mix) and second completely random mix on all

dimensions (cpu, memory, disk). We compared different job sorting strategies using

20

1000 simulated jobs. We have written about 500 lines of Java code for the hybrid

scheduler simulation. We briefly report the results here. Since the HPC-HTC mix

was generated for an ideal case of 100% CPU-intensive (< 100 : 0 : 0 >) and 100%

IO-intensive (< 0 : 0 : 100 >) mix, the greedy scheduler was able to finish 1000

such jobs in 500 epochs. That is 2x performance improvement (50% savings in total

time) over a single CPU-based or a single IO-based sorted scheduler using the same

logic, but for a single queue. For the random mix, the two schedulers show similar

performance around ˜900 epochs each.

21

CHAPTER V

HYBRID JOB SCHEDULING FOR ENERGY

EFFICIENCY

We showed that with a hybrid job scheduler we can reduce system resource usage for

a batch of jobs. In this section, we investigate the impact of hybrid job scheduling

on cluster power consumption. Dheeman et al. state that “Power consumption is a

critical design parameter in modern data center and enterprise environments, since it

directly impacts both the deployment (peak power, delivery capacity) and operational

costs (power supply, cooling).” [26]. Greedy or brute-force FIFO job scheduling for

clusters are inefficient. Physical infrastructures loaded by high performance jobs

produce more heat. That means we need even more power for cooling the system to

run it properly.

5.1 Measuring Energy Consumption

IBM Blade chassis we used for testing has a dashboard for monitoring power consump-

tion. It serves information hierarchically organized to provide an overall summary of

different power domains. It has 3 power domains; maximum power limit, remaining

power and allocated power. The dashboard gives information about status, power

modules, power management policy, maximum power limit and power in use. An-

other important point is total thermal output of chassis. It is calculated based on the

total power in use (1 Watt = 3.412 BTU/hour). The data for power consumption

is taken from “chassis power consumption” panel. We can set the data sampling

interval.

22

Figure 7: A screenshot from IBM power graph screen.

We repeated every experiment 3 times and averaged the result. After an experi-

ment finishes we stopped all jobs and waited for nodes to return to normal state.

5.2 Workloads

An optimal hybrid scheduler can give us the ability to use the computing resources

more effectively. First we measured power consumption and thermal output by chang-

ing node count. Before the experiments we set the data sampling interval to 10

minutes and we took the values in total AC power in use.

To obtain Figure 8 and 9, we started with 12 blade servers running in the chassis

and a total power consumption of 2040 Watts and a total thermal output of 6950

BTU/hour. Next, we powered down servers one by one until 4 servers were only left

operational. The power usage also decreased linearly.

According to a quadratic regression the formulas we obtained are:

power(x) = 7.2x2 + 4.2x + 965 (1)

thermalOutput(x) = 25.5x2 + 4.7x + 3315 (2)

According to a linear regression the formulas we obtained are:

23

Figure 8: Power consumption by node count.

Figure 9: Thermal output by node count.

24

power(x) = 116x + 572 (3)

thermalOutput(x) = 396x + 1953 (4)

Subjected to x, node count; equations 1 - 3 are for power consumption with the

coefficient of determination value (R2) 0.99 and 2 - 4 are for thermal output with

the coefficient of determination value 0.97. The change of thermal output and power

consumption shows that every node effects whole chassis’ at appreciable level.

Next, we ran our cluster jobs again, but this time monitored the power usage

instead of performance. For this experiment we used MPI and Cassandra jobs.

Table 4: Power consumption and thermal output by running jobs on 2 nodes.

Power (W) Thermal Out.(BTU/hour)
1 # 2 # 3 avg. std. d. # 1 # 2 # 3 avg. std. d.

Idle 2038 2012 2059 2036 23.5 6942 6902 7006 6950 52.5
MPI 2122 2110 2086 2106 18.3 7204 7176 7125 7168 40.1

Cassandra 2076 2099 2090 2088 11.6 7113 7132 7127 7124 9.9
MPI & Cas. 2122 2114 2116 2117 17.3 7249 7216 7226 7230 16.9

Based on our experiment results listed on Table 4 for MPI job, 2 nodes use 70 W

more power and gives 218 BTU/hour more thermal output. Cassandra job uses 52

W more power and gives 174 BTU/hour more thermal output. When we combine

jobs together they give 81 W more power and 280 BTU/hour more thermal output.

When we add node energy consumption according to equation 3, one single node

needs 116 W. For the power domain, power usages changes to 302 W for standalone

MPI, 284 W for standalone Cassandra and 313 W for concurrent MPI-Cassandra

jobs. Considering time spent on these jobs:

serial execution = 9.4min× 302W + 6.0min× 284W = 4542Wmin

25

parallel execution = 15mins× 313W = 4694Wmin

According to calculations without considering chassis power we get worse energy

consumption of 3.3% . When we consider energy consumption of chassis and cooling

devices we have to add 572 W more power usage.

serial execution = 9.4min × 302W + 6.0min × 284W + 15.4min × 572W =

13350Wmin

parallel execution = 15mins× 313W + 15mins× 572W = 13275Wmin

These calculations show that we get 0.5% better together.

If we consider the power usage of all 12 servers on the chassis which were oper-

ational, but idle, during the experiment then we obtain the power results in Table

4. According to the values in this table, the power savings or loss with respect to

total power usage (including servers running the workloads + other servers and the

chassis) can be calculated as:

serial execution = 9.4min× 2106W + 6.0min× 2088W = 32324Wmin

parallel execution = 15mins× 2117W = 31755Wmin

So, we can save 1.8% energy when we run both simultaneously.

These results shows that blade chassis’s power consumption is at remarkable level.

Considering time saving of multiple CPU intensive jobs’ execution, saving ratios are

close. We can run jobs on all nodes for increasing total throughput and reducing

overhead of chassis. As an inference, we can get more saving linearly with running

CPU and I/O intensive jobs together. Another approach can be setting power saving

options of chassis if it is available, ventilation and network bandwidth according to

working node count.

26

CHAPTER VI

CONCLUSION

In this thesis we discussed feasibility and efficiency of running different type of jobs

together. We analyzed different models for hybrid job scheduling over shared physical

clusters. As a result of experiments we showed that it is possible to improve cluster

utilization and overall throughput even jobs are both CPU intensive. On the other

hand it is better to schedule I/O and CPU-intensive jobs together first. We get

37 % improvement for this case besides 2-20 % for CPU intensive jobs. Scheduling

jobs that belong to different clustering technologies (Hadoop, NoSQL, MPI) together

effectively is possible. At that point it is good to get characteristic of a middleware.

We offer a dynamic characterization based on statistic data collection cycle.

We can control the execution speeds of hybrid jobs by adjusting their priorities at

runtime. This gives to ability of switching job finishing time earlier without killing

other concurrently running job.

We can save some energy and thermal output. This can be remarkable for large

clusters for reducing energy costs.

27

Bibliography

[1] MPICH project, http://www.mpich.org

[2] Open MPI project, http://www.open-mpi.org

[3] Apache Hadoop Project, http://hadoop.apache.org/

[4] Apache Mesos, http://mesos.apache.org/

[5] Apache Helix, http://helix.incubator.apache.org/

[6] Apache Hbase project, http://hbase.apache.org

[7] Hortonworks, Modern data and hadoop, http://hortonworks.com/hadoop-
modern-data-architecture

[8] Openstack http://www.openstack.org/

[9] Apache Cassandra, http://cassandra.apache.org/

[10] MongoDB by 10gen, http://www.mongodb.org/

[11] What is Big Data? http://www-01.ibm.com/software/data/bigdata/

[12] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz. The case for evaluating MapRe-
duce performance using workload suites. 2011 IEEE 19th International Sympo-
sium on Modeling, Analysis & Simulation of Computer and Telecommunication
Systems (MASCOTS), pp. 390-399, 2011.

[13] IBM Platform Computing, LSF, http://www-
03.ibm.com/systems/technicalcomputing/platformcomputing/products/lsf/

[14] I. Ari, U. Kocak, Hybrid Job Scheduling for Improved Cluster Utilization, Mid-
dleware for HPC and Big Data Systems, Aug, 2013

[15] I. Ari, N. Muhtaroglu, Design and implementation of a finite element service in
the cloud, Advances in Engineering Software, Nov, 2013

[16] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A.
Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: amazon’s
highly available key-value store. In SOSP, vol. 7, pp. 205-220. 2007.

[17] Hadoop Fair Scheduler, http://hadoop.apache.org/docs/stable/fair sched-
uler.html

[18] L. Hu, K. Schwan, A. Gulati, J. Zhang, and C. Wang. Net-cohort: Detecting
and managing vm ensembles in virtualized data centers.In Proceedings of the 9th
International Conference on Autonomic Computing, pp. 3-12. ACM, 2012.

28

[19] Sysstat Utils, sebastien.godard.pagesperso-orange.fr/

[20] Ewa Deelman, Grids and Clouds: Making workflow applications work in het-
erogeneous distributed environments, International Journal of High Performance
Computing Applications, Vol (24), No. 3, pp. 284-298, Fall 2010

[21] Gideon Juve, Ewa Deelman, Resource provisioning options for large-scale scien-
tific workflows, In Proc. of SWBES Workshop with IEEE E-Science 2008

[22] J. Zhan, L. Zhang, N. Sun, L. Wang, Z. Jia, and C. Luo, High Volume Through-
put Computing: Identifying and Characterizing Throughput Oriented Workloads
in Data Centers, 2012 IEEE 26th International Parallel and Distributed Process-
ing Symposium.

[23] K. Hwang, G. C. Fox, J. J. Dongarra, Distributed and Cloud Computing, From
parallel processing to Internet of things, Morgan Kauffman, 2012 Elsevier

[24] S. J. Plimpton, Karen D. Devine, MapReduce in MPI for large-scale graph algo-
rithms, Parallel Computing Journal, Volume 37, pp. 610-632, 2011.

[25] HPC Virtualization, Virtualization in HPC may not always be the answer as
Gillian Law discovers, Scientific Computing World, Oct/Nov 2011, pp. 21-24.

[26] Dhiman, G., Marchetti, G., and Rosing, T., vGreen: a system for energy efficient
computing in virtualized environments. In Proceedings of the 14th ACM/IEEE in-
ternational symposium on Low power electronics and design (pp. 243-248). ACM.

[27] Novotn M., Job scheduling with the SLURM resource manager, Bachelor Thesis,
Masarykova Univerzita.

29

VITA

Uğur Koçak received his B.Sc. degree in Mechanical Engineering from Istanbul Uni-

versity in 2009. He started to M. Sc. in Computational Science and Engineering

department at Istanbul Technical University. He continued his Master of Science in

Computer Engineering program at Ozyegin University under under supervision of Dr.

Ismail Ari as a research assistant. His research interests include distributed systems,

cloud computing, High Performance Computing (HPC) and High Throughput Com-

puting (HTC). Ugur is a proficient Javascript programmer. He is currently working

at Hexagon Ortho as a senior software development engineer.

30

