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Department of Computer Science
Engineering
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ABSTRACT

There has been substantial progress in the speaker verification field in recent years.

I-vector based approach in particular received significant attention due to its high

performance. Improvements in the verification technology also led to concerns about

spoofing attacks to which the i-vector based methods are vulnerable. Here, we first

investigated the vulnerability of an i-vector based verification system to attacks us-

ing statistical speech synthesis (SSS) with a particular focus on the case where the

attacker has only a very limited amount of data from the target speaker. However,

it is well-known that speech that is generated with SSS is easy to detect using fea-

tures that are extracted from the magnitude or the phase spectrum [1]. Therefore,

for more effective attacks, we propose a hybrid statistical/concatenative synthesis ap-

proach and show that hybrid synthesis significantly increases the false alarm rate in

the verification system compared to the baseline statistical synthesis method. More-

over, proposed hybrid synthesis makes detecting synthetic speech more difficult even

when very limited amount of original speech recordings are available to the attacker.

To further increase the effectiveness of the attacks, we propose a linear regression

method that transforms synthetic features into more natural features. An interpola-

tion approach is proposed to combine the regression and hybrid synthesis methods

which is shown to provide the best spoofing performance. Furthermore, we investi-

gated the effectiveness of spoofing attacks with statistical speech synthesis systems

when there is additive noise. Experiment results show that the attacks get substan-

tially more effective when noise is added to synthetic speech. We also propose a

synthetic speech detector that uses session differences in i-vectors to detect between

synthetic and natural speech. We experimentally show that the detector has less
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than 0.5% total error rate in most cases for the matched noise conditions. As a

third contribution, we present our participation in generation of the first version of

speaker verification spoofing and anti-spoofing database, named SAS corpus. The

corpus includes nine spoofing techniques, two of which are speech synthesis, and

seven are voice conversion. Two protocols were designed, one for standard speaker

verification evaluation, and the other for producing spoofing materials. Hence, they

allow the speech synthesis community to produce spoofing materials incrementally

without knowledge of speaker verification spoofing and anti-spoofing. To provide a

set of preliminary results, we conducted speaker verification experiments using two

state-of-the-art systems. Without any anti-spoofing techniques, these two systems

are extremely vulnerable to the spoofing attacks implemented in our SAS corpus.

This work later gave birth to the first automatic speaker verification spoofing and

countermeasures challenge. In our participation in this challenge, we investigated

three algorithms that weigh likelihood-ratio scores of individual frames in Gaussian

mixture model based detectors, phonemes, and sound-classes depending on how much

information they carry. The proposed methods learn to detect both short-time and

long-time artifacts which make them more reliable compared to a baseline system

that treats all frames and phonemes with equal weight. Significant improvement over

the baseline system has been obtained for known attack methods that were used in

training the detectors. However, improvement with unknown attack types was not

substantial.
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ÖZETÇE

Son yıllarda konuşmacı doğrulama alanında önemli ilerleme olmuştur. I-vectöre dayalı

yaklaşım yüksek performansı nedeniyle dikkat çekmiştir. Doğrulama teknolojisin-

deki gelişmeler ayrıca savunmasız i-vektöre dayalı metotlara karşı spoofing (yanıltıcı)

saldırılara dair kaygılara yol açtı. Burada, biz ilk olarak saldırganın hedef konuşmacıdan

elde ettiği limitli veri ile istatiksel ses sentezi (İSS) yöntemine karşı i-vektörüne

dayalı doğrulama sisteminin savunmasızlığını inceledik. Ancak, bilindiği gibi İSS

yönteminden elde edilen konuşmanın anlaşılması genlik ve faz spektrumdan elde

edilen karakteristikler ile mümkündür [1]. Bu yüzden, biz daha etkili saldırılar

için, hibrid istatiksel/birleştirmeli sentezleme tasarladık ve hibrid sentezlemenin is-

tatiksel yönteme göre doğrulama sistemlerinde yanlış alarm oranını önemli ölçüde

arttırdığını gösterdik. Ek olarak, tasarlanan hibrid sentezleme, orijinal sesten alınan

verilerin az olması durumunda bile sentetik sesin anlaşılmasını daha zor hale getiriyor.

Saldırının etkinliğini ilerletmek için sentetik karakteristikleri daha doğal karakteristik-

lere dönüştüren doğrusal regresyon yöntemi tanımladık. En iyi performansı sağladığı

gösterilen ara değer kestirimi yaklaşımı regresyon ve hibrid sentezleme yönteminin

birleştirilmesiyle tasarlandı. Ayrıca, fazladan gürültü eklendiğinde istatiksel ses sen-

tezi ile yapılan yanıltıcı(spoofing) atakların etkinliğini inceledik. Deney sonuçları sen-

tetik sese gürültü eklendiğinde atakların önemli ölçüde daha etkili olduğunu göstermiştir.

Ayrıca i-vektörler içinde session farkı kullanarak sentetik ve doğal sesi ayırt eden bir

sentetik ses detektörü tasarladık. Bir çok durumda gürültülü koşullarda detektörün

0.5%’den daha düşük hata oranı aldığını deneysel yöntemle gösterdik. Üçüncü katkı

olarak, SAS kütüphane adı verilen konuşmacı doğrulama ve yanıltmaya karşı ko-

ruma veritabanının oluşumunda yer aldık. Kütüphanede ikisi ses sentezi ve yedisi
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ses dönüşümü teknikleri olmak üzere dokuz adet yanıltma tekniği içeriyor. stan-

dart konuşmacı doğrulama değerlendirme ve yanıltma gereçleri için iki farklı protokol

dizayn edildi. Bu yüzden, konuşmacı doğrulama yanıltma ve yanıltmaya karşı koruma

bilgisi olmadan ses sentezi topluluğunun aşamalı olarak spoofing (yanıltıcı) gereçlerin

üretmelerine izin verildi. Ön sonuçları sağlamak için en gelişmiş sistemleri kullanarak

iki farklı konuşmacı doğrulama deneyi yürüttük. Herhangi bir yanıltmaya karşı ko-

ruma tekniği uygulanmadığında, bu iki sistem SAS veritabanı kullanılarak yapılan

yanıltıcı ataklara karşı son derece savunmasızdır. Bu çalışma daha sonra ilk otomatik

konuşmacı doğrulama yanıltma ve karşı önlem challenge doğmasını sağlamıştır. Biz

bu challenge katıldığımızda Gaus karışım modeline dayalı detektörlerin içindeki her bir

çerçevenin, bölümün olabilirlik oranı skorlarının ağırlığı, birim sesler ve ses dosyalarının

ne kadar bilgi taşıdığıyla ilgili 3 algoritma araştırdık. Bu metotlar kısa ve uzun ya-

pay kısımları belirliyor ve bu olay bu metotları bütün bölümlerin ve birim seslerin

eşit etkide olduğu bazal sistemden daha güvenilir yapıyor. Detektörlerin öğrenme

aşamasında kullanılan atak yöntemleri bilindiğinde bazal sistemde önemli gelişme

elde edildi. Fakat, yabancı ataklara çeşitlerine karşı bir gelişme mevcut değil.

vii



ACKNOWLEDGEMENTS

I would like to express my deepest gratitude towards my supervisor, Professor Cenk
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CHAPTER I

INTRODUCTION

Text-independent voice verification (VV) systems have made tremendous progress in

recent years [2]. Most of the currently popular systems are based on the total vari-

ability space (TVS) approach that is based on representing a speech signal with a

low-dimensional i-vector which is then used for verification of claimed speaker iden-

tity [3]. Performance of those systems are now acceptable for use in many real-life

applications such as call centers.

Even though the speaker verification technologies have improved, they are known

to be vulnerable to spoofing attacks which is an important concern in their deployment

[1, 4, 5, 6]. Moreover, improvements in the concatenative and statistical speech

synthesis systems (SSS) as well as the voice conversion systems have further spurred

the concerns [1]. As a result, more effective ways to attack the verification systems

and protecting the system from attacks have become increasingly important areas of

research [7].

Despite many efforts on development of effective anti-spoofing methods, the ab-

sence of a standard database has resulted in a diverse set of individual spoofing

databases, none of which is helpful for developing generalized countermeasures. This

makes comparisons across different spoofing approaches difficult, and generalized

countermeasures cannot readily be developed or evaluated using these databases.

1.1 Spoofing

Effectiveness of SSS approach has been shown in large-scale experiments in [1]. To

further improve its effectiveness and make it harder to detect, we propose three strate-

gies. We first propose a hybrid concatenative/statistical speech synthesis method for
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spoofing attacks on verification systems when limited adaptation data is available.

The proposed hybrid system takes advantage of the rapid adaptation capability of

the statistical systems while using the available natural speech segments from the

speaker as much as possible. We show that effectiveness of the attacks can be signif-

icantly improved with the proposed hybrid approach.

In the second approach, linear regression (LR) is done to transform synthetic

speech parameters closer to natural ones. Transformation matrices are learned from

a speaker-independent speech database. Even though the resulting features are more

natural and more effective than the hybrid approach at spoofing the SSD, they are

not as effective in spoofing the verification system. To further boost its effectiveness,

in a third approach, we propose an algorithm to combine the hybrid features and

transformed features which is found to be the most effective system for spoofing

attacks.

In addition, we investigated the possibility of attacking the system by intention-

ally adding noise to synthetic speech with the hypothesis that noise can reduce the

smoothness of synthetic speech and make it more difficult to detect. Noises at and

above 10dB are added to synthetic speech because utterances at those signal to noise

ratio (SNR) values are expected to be common in real-life. We have found that the

attacks get substantially more effective when noise is added to synthetic speech even

when the verification system is trained with matched noise conditions.

1.2 Anti-spoofing

One of the biggest obstacles in deployment of speaker verification technology in real-

life scenarios, especially in high-security applications such as telephone banking, is the

difficulty in countering spoofing attacks. Even though verification of speaker identity

through human voice has been shown to be successful [2], state-of-the art verification

systems have been shown to be vulnerable to spoofing attacks using speech synthesis
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and voice conversion [1].

Besides showing the effectiveness of the method for attack, we propose a novel and

simple synthetic speech detector that uses session differences in i-vectors to detect

between synthetic speech. We then experimentally show that the proposed detector

has error rates less than 0.5% in all test conditions. To make the problem more

challenging, we used more advanced techniques such as global variance (GV) [8] and

STRAIGHT vocoding [9] on the attacker side but not on the detection side. Even

when there is such mismatch between training and test data, the detector is found to

perform well in most cases.

Furthermore, we report our contribution in developing a standard database in-

volving multiple varieties of spoofing attacks. We present the current spoofing and

anti-spoofing (SAS) database and a preliminary set of benchmark results, for text-

independent ASV. The database includes both speech synthesis and voice conver-

sion spoofing attacks, which are two of the most accessible and effective spoofing

approaches currently available [1, 7]. To improve the diversity of the data, speech

synthesis techniques in two training scenarios were employed and seven voice con-

version techniques in one training scenario. State-of-the-art statistical parametric

speech synthesis methods were used to implement speech synthesis, while the voice

conversion spoofing sets were created using one publicly-available open-source toolkit

and six state-of-the-art conversion techniques.

In addition, we investigate several detectors without attack-specific prior assump-

tions. Our approach is only based on the assumption that long- and/or short-duration

artifacts will be observed in the synthetic speech without any constraints on the type

of artifacts. Artifacts that occur in stop sounds during synthesis because of their

rapidly changing dynamics and sudden glitches that occur frequently with the unit

selection systems are examples of short-duration artifacts. The overly-smooth param-

eters generated with HMM-based synthesis is an example to long-duration artifacts.
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The counterspoofing algorithm should be sensitive to both types of artifacts to be

effective.

We have investigated detectors that can capture both short and long-duration

artifacts. The first detector was developed using an unsupervised approach where a

Gaussian mixture model (GMM) is trained for natural speech and a GMM is trained

for synthetic speech. After aligning each speech frame with a Gaussian, each Gaussian

component is treated as an independent detector and detector scores are fused with

logistic regression.

Our second method is based on designing detectors that are focused on detecting

artifacts in specific phonemes. This approach can be successful at detecting phoneme-

specific artifacts in synthetic speech. However, some of the phonemes are not observed

frequently enough in most utterances. To reduce the data sparsity issue, broad-level

sound class detectors are used in a third approach. Similar to the Gaussian approach,

score fusion is done for the phoneme- and class-based methods.

All three methods performed substantially better than the baseline detector that

treats all Gaussians and phonemes equally for the known attack types. However, the

proposed systems did not substantially improve the baseline system for unknown at-

tack types. Fusing the three proposed detectors further improved the counterspoofing

performance both in known and unknown conditions.

1.3 Outline of This Thesis

The rest of this thesis is organized as follows. An overview of previous works on this

topic is presented in chapter 2, along with a brief background on the technologies

used. Chapter 3 explains proposed algorithms and presents experiments and results

obtained from each. Finally chapter 4 concludes this thesis and discusses future

works.
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CHAPTER II

PREVIOUS WORK

2.1 Literature Review

Some of the prior methods for spoofing the SV systems and detection of spoofing

attacks are described below.

2.1.1 Spoofing

One approach that is effective at spoofing attacks is voice conversion [10]. In [11],

Gaussian Mixture Model (GMM) based voice transformation using parallel data is

found to be effective at spoofing the voice verification systems. To increase the ef-

fectiveness of the attacks, segments of speech that get high scores from the voice

verification system are repeated which can be considered as attacking with artificial

data.

Voice conversion methods typically require significant amount of parallel data to

be successful. However, in many practical cases, the attacker is required to attack the

verification system with very limited amount of adaptation data to be able to spoof a

large number of accounts. Statistical speech synthesis (SSS) systems are particularly

suitable for such attacks since adaptation with a couple of utterances are feasible in

those systems [12, 13, 14].

There are two major approaches to speech synthesis: unit selection and statistical

parametric synthesis [12]. Even though unit selection synthesis is relatively harder

to detect, it is also challenging to deploy in the context of spoofing since unlike

the HMM-based approach that can adapt to the target with seconds of data, unit

selection requires hours of training data. Thus, although effective spoofing attacks

can be performed with unit selection synthesis [4], SSS is a more effective way to
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attack when very limited amount of data is available, since SSS can achieve rapid

speaker adaptation with only a couple of utterances [12, 13, 14].

2.1.2 Anti-spoofing

Most of the literature on the spoofing problem has focused on algorithms that were

designed to counter specific types of attacks. For example, one method of synthesizing

speech is the HMM-based approach where smooth speech parameters are generated

and speech is synthesized with a vocoder. Even though HMM-based synthesis can

successfully spoof the modern verification systems, it is also easy to detect by exploit-

ing the unnaturally smooth trajectories of the parameters [8, 15, 16, 17].

Moreover, most parametric speech codecs use minimum-phase filters since the

human auditory system is assumed to be insensitive to phase [18]. If such a speech

codec is used during an attack, unnatural phase spectrum can be used to detect

the synthetic speech as proposed in [4, 19]. However, in many distributed speech

applications, only the spectral magnitude features are transmitted to avoid increasing

the network traffic and minimize the delay. Moreover, phase from real speech can be

used during synthesis which makes the phase-based approach ineffective [1, 20].

Some voice conversion systems exhibit low parameter variability across an ut-

terance compared to natural speech and that was also exploited for detecting voice

conversion [21]. Two countermeasures are also proposed in [11]. In one approach,

distributions of Gaussian components are used to detect repetitions of Gaussians in

speech. In a second approach, automatic voice quality assessment tools are used to

detect synthetic speech.

Modified speech detection performance when the synthetic speech detector (SSD)

is trained with different kinds of voice conversion techniques is reported in [19]. Be-

sides the magnitude and phase features that rely on a single speech frame, modulation

of those features over longer duration is investigated in [22]. The modulation features
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are found to be complimentary to magnitude and phase features in [22].

In the context of unit selection synthesis, existing counterspoofing methods typi-

cally use jumps in fundamental frequency at the concatenation points [23, 24].

Development of detectors that work well independent of the type of attack is a

relatively new research area. One promising approach is to use a local binary pattern

(LBP) analysis for feature extraction [25]. In that approach, a one-class classifier

is trained with features derived only from natural speech. The classifier learns the

spectro-temporal model of speech and can detect synthetic signals that do not fit well

to that model.

There are a few attempts to design spoofing databases involving multiple varieties

of spoofing attacks. In [26, 27], a spoofing database was designed based on RSR2015

[28] including both replay and voice conversion attacks. However, only a simple voice

conversion technique was used. In [25], voice conversion, speech synthesis and artificial

signal spoofing approaches were implemented on the NIST 2006 subset. However, only

one voice conversion and one speech synthesis approach was employed, and only male

speakers were included. No standard spoofing database exists that includes a diverse

variety of spoofing techniques.

2.2 Speaker Verification Systems

GMM are typically used to represent the acoustic feature space in speaker verification

systems. In most of the current systems, a universal background model (UBM) is first

trained and then speaker-specific models are obtained by adapting the UBM using a

maximum a posteriori adaptation (MAP) approach.

Typically, supervector of mean vectors in UBM is very high dimensional which

increases the number of parameters to adapt. In the factor analysis approach, speaker-

dependent mean vectors, ms, are represented in a lower dimensional eigenspace with

ms = m0 + Vys (1)
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where m0 is UBM mean supervector, V represents the eigenvoice space, and ys is a

lower dimensional latent vector representing the speaker factors [29].

Eq. 1 models the variability between speakers but it does not model the inters-

ession variability of a given speaker. If we take the session variabilities into account,

we can represent

ms,h = m0 + Vys + Uxs,h (2)

where U represents the eigenchannel space and xh,s is the channel factor. Given an

utterance from a speaker, ys and xh,s can be estimated jointly using the joint factor

analysis (JFA) approach [30].

More recently, a total variability space (TVS) approach is proposed which com-

bines the speaker and session variabilities in a single total variability matrix T. In

the TVS approach,

ms = m0 + Tws (3)

where ws is called an identity vector (i-vector). T matrix is typically trained using a

database where multiple sessions are available for each speaker.

In enrollment, an i-vector is extracted from each of the enrollment utterances of

a speaker. If there are more than one enrollment utterances, i-vectors extracted from

each of them are typically averaged to generate a single i-vector for the speaker. In

testing, an i-vector is extracted from the test utterance and compared with the i-vector

computed during enrollment. Similarity comparison can be done using cosine distance

scoring (CDS), support vector machines (SVM), and probabilistic linear discriminant

analysis (PLDA) techniques [3].

2.3 Hybrid Speech Synthesis

Although SSS creates smooth feature trajectories which eliminate the annoying glitches

that are observed in the unit selection systems, the quality of speech is higher in the
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unit selection systems when these glitches do not occur [12]. Hybrid systems at-

tempt to generate high quality speech without the glitches using a combination of

unit selection and SSS approaches.

One way to create a hybrid system is using unit selection to get natural speech

units while using SSS to concatenate them smoothly. It is also possible to scatter

natural speech units throughout utterances while using synthetic speech for the rest

of the segments. In that approach, kth segment of synthetic features, c(km,kn), from

frame km to frame kn can be constrained to be equal to natural speech segment cnat,k

during the parameter generation process. If there are a total of K such segments

scattered across an utterance, hybrid parameter generation can be formulated as the

constrained optimization problem

ĉh = arg max
c
p(Wc|Q̂,λ). (4)

such that

Aĉh = cnat. (5)

Q̂ is the estimated hidden Markov model state sequence for the utterance and λ is the

canonical models of feature distributions for the states. W is used to derive the delta

and delta-delta features from the static features, cnat = [c(1m,1n); c(2m,2n); ... ; c(Km,Kn)],

and A is a design matrix. To perfectly generate the K natural segments, each row k

of A, ak = [01×(km−1) 11×(kn−km+1) 01×(Nf−kn)] where Nf is the total number of frames

in the utterance. Using the Lagrange multiplier γ, the parameter generation problem

becomes

ĉh = arg max
c
p(Wc|Q̂,λ)− γ(Ac− cnat). (6)

Solution to Eq. 6 is [31]

ĉh = ĉ + (WTU−1W)−1ATγ (7)

where ĉ is the output of the speech parameter generation without any constraints,
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and

γ = (A(WTU−1W)−1AT )−1cnat

−(A(WTU−1W)−1AT )−1A(WTU−1W)−1WTU−1M.

M = [µT
q1
,µT

q2
, ....,µT

qS
], qi is the ith observed state in the utterance, µT

qi
is the trans-

pose of the mean vector of state qi repeated dqi times where dqi is the duration of state

qi. S is the total number of states in the synthesized utterance. The block diagonal

matrix U−1 = diag[U−1q1
,U−1q2

, ....,U−1qS
] where U−1qi

is the inverse covariance matrix of

state qi repeated diagonally dqi times.

2.4 Synthetic Speech Detectors

A type of detectors typically used in anti-spoofing research is based on the GMM

of the natural and synthetic speech features together with log-likelihood ratio (LLR)

based detection. If the GMM for natural speech is denoted with Γnat and the GMM

for synthetic speech is denoted with Γsyn, then LLR given N observation vectors O

is

LLR(O) =
1

N
(log(O|Γnat)− log(O|Γsyn)). (8)

If LLR(O) is above a threshold ζ, O is classified as natural. Otherwise, O is classified

as synthetic.

The second detector used here is based on using the i-vectors for SSD. Given a

test utterance, an i-vector is extracted using the voice verification system and the

SVM-based SSD is used for verifying that the utterance is natural. This detector is

explained in details in section 3.2.

2.5 The First Automatic Speaker Verification Spoofing and
Countermeasures Challenge (ASVspoof 2015)

The objective of ASVspoof 2015 was to stimulate the development of novel, gener-

alized spoofing countermeasures which are able to detect variable spoofing attacks
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Table 1: Number of non-overlapping target speakers and utterances in the training,
development and evaluation datasets of ASVspoof challenge.

Subset
#Speakers #Utterances
Male Female Genuine Spoofed

Training 10 15 3750 12625
Development 15 20 3497 49875
Evaluation 20 26 9404 184000

implemented with multiple, different algorithms. It aimed to facilitate the develop-

ment of spoofing countermeasures without the inappropriate use of prior knowledge

as regards specific spoofing attacks, stimulate the development of generalized coun-

termeasures, and provide a level playing field to facilitate the comparison of different

spoofing countermeasures on a standard dataset, with standard protocols and metrics.

The evaluation was based upon Spoofing and Anti-spoofing corpus (SAS) con-

taining both genuine and spoofed speech. Genuine speech was collected from 106

speakers (45 male, 61 female) and with no significant channel or background noise

effects. Spoofed speech was generated from the genuine data using a number of dif-

ferent spoofing algorithms. The full dataset was partitioned into three subsets, the

first for training, the second for development and the third for evaluation. The num-

ber of speakers in each subset is illustrated in Table 1. There is no speaker overlap

across the three subsets regarding target speakers used in voice conversion or TTS

adaptation.

2.5.1 Datasets

For training and development sets, Each spoofed utterance is generated according to

one of three voice conversion and two speech synthesis algorithms. The voice con-

version systems include those based on (i) frame-selection, (ii) spectral slope shift-

ing and (iii) a publicly available voice conversion toolkit within the Festvox system.

Both speech synthesis systems are implemented with the hidden Markov model-based

speech synthesis system (HTS). All data in the training set may be used to train
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spoofing detectors or countermeasures.

The evaluation data includes a similar mix of genuine and spoofed speech. Spoofed

data are generated according to diverse spoofing algorithms. They include the same 5

algorithms used to generate the development dataset in addition to others, designated

as “unknown” spoofing algorithms. Being intentionally different, they try to give some

insight into countermeasure performance ‘in the wild, i.e. performance in the face of

previously unseen attacks.

2.5.2 Performance measures

ASVspoof 2015 focuses on standalone spoofing detection. Participants should assign

to each trial a real-valued, finite score which reflects the relative strength of two com-

peting hypotheses, namely that the trial is genuine or spoofed speech. The primary

metric for ASVspoof 2015 is the threshold-free equal error rate (EER), defined as

follows. Let Pfa(θ) and Pmiss(θ) denote the false alarm and miss rates at threshold θ:

Pfa(θ) =
#{spoof trials with score > θ}

#{total spoof trials}
,

Pmiss(θ) =
#{genuine trials with score ≤ θ}

#{total genuine trials}
,

(9)

Pfa(θ) and Pmiss(θ) are, respectively, monotonically decreasing and increasing func-

tions of θ. The EER corresponds to the threshold θEER at which the two detection

error rates are equal, i.e. EER = Pfa(θEER) = Pmiss(θEER).
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CHAPTER III

PROPOSED METHODS

3.1 Hybrid Speech Synthesis and Linear Regression

Overview of the speech synthesis system used on the attacker’s side is shown in

Fig. 1. Linear regression between natural and synthetic speech features are trained

using a speech database that contains parallel natural and synthetic speech from

many speakers. Then, the proposed hybrid unit selection/statistical speech synthesis

algorithm is used to generate synthetic speech features that are transformed using the

trained linear regression model. Final transformed features are then used to vocode

synthetic speech.

Speech 
Database

Feature 
ExtractionAdaptation Synthesis

Feature
Extraction

Natural Speech
   and Labels

Synthetic
Speech

Natural
Speech

Training Linear 
Regression Model

Linear 
Regression 

Model

Adaptation 
Data

Speaker 
Independent 

Model

Adaptation

Database
of Units

Viterbi Unit 
Selection

Hybrid Synthesis 
Algorithm

Synthetic
Features

Linear Regression

Vocoder Synthesized
Speech

Training

Synthesis

Statistical Speech 
Synthesis

Figure 1: Illustration of the proposed hybrid speech synthesis and linear regression
algorithms. Both model training and synthesis phases are shown.
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3.1.1 Proposed Hybrid Approach

The hybrid approach described earlier enforces the system to use the available state-

level natural segments. In the limited adaptation case, the number of natural state-

level segments in the database are very limited and there is typically at most one or

two possible segments available for each state.

If the natural segments do not fit well in the context, which is highly probable

in the limited data case, that can cause distortion in the neighboring frames. Not

only the static features are distorted but also the velocity and acceleration features

are distorted which can further reduce the effectiveness of the attacks. To ameliorate

the distortions in synthetically-generated segments that are neighboring the natural

segments, we propose another hybrid approach where natural features replace the

statistical mean vectors in the supervector M when a natural segment exists in the

database. Thus, if natural segments are available for state qi in the unit selection

database, µqi
is modified such that

µ
′

qi
(f) = cnat,i(f) (10)

where cnat,i is the selected natural unit and f is the frame index.

Duration of state qi, dqi is set to the duration of the natural segment cnat,i. Inverse

covariance matrix of frame f , U−1qi
, is formulated as follows. If the segment is longer

than or equal to Nmin frames, then

U−1
′

qi
(f) =

dist(f, dqi/2)

dqi/2
U−1qi

(f) (11)

where dist(f, dqi/2) indicates the L1 distance of frame f from the middle of the state.

This approach allows large covariances at the boundaries which allows the parameter

generation algorithm to modify the natural segments as well as the synthetic segments

more flexibly and create smooth trajectories at the boundaries. Moreover, covariances

get smaller as the frames get further away from the boundary and approach to the

14



middle of the state. Hence, the parameter generation algorithm is enforced to generate

features that get closer to natural segments as the frames approach to the middle of

the state and exactly pass through the natural features in the middle of the state.

If the segment is too short, then enforcing the parameters to pass through the

natural frames in the middle of the state can create abrupt changes at the boundaries.

To avoid the problem, if the segment is shorter than Nmin frames, then

U−1
′

qi
(f) = U−1qi

. (12)

which allows flexibility in parameter generation throughout all frames.

After the parameters are modified, baseline unconstrained parameter generation

algorithm is used to create the parameter trajectories.

3.1.1.1 Segment Selection

Even when a limited amount of adaptation data is available, more than one candidate

is sometimes available for a state. For those cases, the search space is organized as

a graph where each node in the graph represents either synthetic features or natural

features as shown in Fig. 2. The best path with the lowest cost through the graph is

selected with the Viterbi algorithm. When concatenating two segments, concatena-

tion cost is the Euclidean distance

d(sk, sk+1) = (ck(fk)− ck+1(fk + 1))T (ck(fk)− ck+1(fk + 1)) (13)

where ck(fk) represents the final frame fk corresponding to segment sk. Similarly,

ck+1(fk + 1) represents the initial frame of the next segment sk+1. Using the dis-

tance metric above and the Viterbi decision rule, the selected segments S for a given

utterance is

S = arg min
S

Nst−1∑
j=1

d(sj, sj+1) (14)

where Nst is the total number of states in the utterance.
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To use the Euclidean distance above in the selection algorithm, synthetic speech

features are required before the Viterbi search. Baseline SSS parameter generation

algorithm is first used to generate synthetic frames that are then used for searching

for natural segments that fit best in the context.

Figure 2: Illustration of the trellis for finding the best fitting natural segments for
hybrid synthesis. (i − 1)th, (h + 1)th, and (k + 1)th states are generated with SSS.
Rest of the states are generated using unit selection synthesis.

3.1.2 Linear Regression Approach

Hybrid synthesis can increase the effectiveness of the attacks by increasing the simi-

larity of synthetic and natural parameters. However, there is only few natural frames

used during synthesis and rest of the frames are generated with the parameter gener-

ation algorithm. Thus, it still has problems spoofing the synthetic speech detectors

since most of the feature trajectories are generated synthetically. Hence, more ef-

fective methods are needed to spoof the synthetic speech detectors, and we propose

using linear regression to transform synthetic features so that they are closer to nat-

ural feature vectors.

Let ĉs(f) be the output of the parameter generation algorithm at frame f and

state s. The transformed features

ĉs,t(f) = A(s)ĉs(f) (15)

where A(s) is state-dependent regression matrix.

A(s) is estimated from a speaker-independent speech database as follows. A

speaker-independent (SI) speech synthesis model is first trained. Then, models for
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the rest of speakers in the training set are generated using the constrained structural

maximum a posteriori linear regression (CSMAPLR) speaker adaptation algorithm.

To learn the relationship between synthetic and original features, all of the natu-

ral recordings from all training speakers are synthesized with SSS. Durations of the

states are obtained from the natural recordings with time-alignment. Thus, durations

of each synthetic and natural states match exactly.

Once parallel synthetic and natural speech utterances are generated, matching

frames (ĉs(fk), cs(fk)) from original and synthetic utterances are pooled together

in set Ss = {x : x = (ĉs(fk), cs(fk)), k = 1, 2, ..., Ns} for each state s, and the

transformation matrix A(s) is estimated using the maximum-likelihood criterion

Â(s) = argmax p(Ss|A(s)) (16)

3.1.3 Hybrid+Linear Regression Approach

In experiments, hybrid approach was found to be more effective at spoofing the voice

verification system and linear regression system was more effective at spoofing the

detectors. Therefore, both methods can be used together for more effective attacks.

In this combined approach, natural frames used in the hybrid system are not trans-

formed. However, rest of the synthetic frames that are generated by the parameter

generation algorithm are transformed using linear regression as follows

ĉhyb,lr(f) = αf ĉhyb(f) + (1− αf )ĉlr(f) (17)

where ĉhyb(f) is the output of the hybrid approach at frame f , ĉlr(f) is its linearly

transformed version, and ĉhyb,lr(f) is the combined feature vector which is found by

linear interpolation. αf is the frame-dependent interpolation factor and defined by

αf =

 0 , fd ≥ I

I−fd
I

, fd < I.
(18)
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where fd is the distance of frame f to the nearest natural segment inserted by the

hybrid algorithm. I is experimentally set to 5. Performance was not found to be

sensitive to I as long as it is not too small (I < 3) or too large (I > 10).

Effectively, the HYB+LR algorithm uses higher weight for the hybrid algorithm

as frame f gets closer to a natural segment and relies on the LR algorithm as the

frame gets away from natural segments.

Note that, the hybrid parameter generation algorithm attempts to preserve the

natural segments while generating smooth trajectories. Hence, synthetically-generated

segments are significantly different compared to the output of the baseline SSS algo-

rithm. The effect is higher for frames that are closer to the natural segments. Thus,

the interpolation algorithm proposed here takes advantage of that by using higher

weight for the hybrid algorithm for frames that are closer to the natural segments.

3.1.4 Experiments

An overview of the proposed speaker verification system together with the SSD is

shown in Fig. 3. Speech features that are derived from the short-time magnitude

spectra are first fed to an SSD. If the SSD phase is passed successfully, speaker

verification is performed to verify the claimed speaker identity.

Figure 3: Overview of the text-independent speaker verification system with the
synthetic speech detector.

The attacker needs significant amounts of data for training the SSS and linear

regression models. Similarly, the defender needs to train the voice verification and
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synthetic speech detection models. Wall Street Journal (WSJ1), Resource Manage-

ment (RM1), and TIMIT databases were used for training, development, and testing

of all components.

Table 2 shows the databases, number of speakers, and amount of data from each

speaker that were used in the experiments. Tests were done with male speakers only.

Details of experiment setup are described below.

Table 2: Databases, number of speakers, and number of utterances per speaker
that were used in training the text-to-speech speaker independent (TTS SI), linear
regression (LR), voice verification (VV), and synthetic speech detector (SSD) systems
in the attacker and defender sides.

Attacker Defender
WSJ1 TIMIT WSJ1 RM1

TTS SI
Speakers 4 - 84 7
Utt/spkr 1200 - 60 600

LR
Speakers - 326 - -
Utt/spkr - 10 - -

VV
Speakers - - 84 101
Utt/spkr - - 60 40

SSDs
Speakers - - 84 101
Utt/spkr - - 60 40

3.1.4.1 Attacker SSS System

On the attacker side, an SI model is required for adapting to target speakers. SI

model was trained using 4 speakers from the WSJ1 database with 1200 utterances

from each of them. Speaker adaptive training (SAT) was used during training.

SI model was trained with 123 dimensional vectors consisting of 39 STRAIGHT

features, 1 energy, 1 log Fundamental Frequency (F0) coefficient and their delta and

delta-delta features. 25 msec analysis window with 5 msec frame rate was used for

feature extraction. Phonemes were modeled with 5 state Hidden Semi-Markov Models

(HSMMs).

For each enrolled speaker, different statistical models were created using adap-

tation with one, two, three, and four utterances. Synthesis was done for all of the
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69 speakers enrolled into the verification system. Enrollment data was not used for

adaptation. Experiments when 150 utterances were used for adaptation are also done

for comparison purposes. CSMAPLR algorithm was used for adaptation [13]. Global

variance (GV) algorithm was used for synthesis [8].

3.1.4.2 Attacker Hybrid System

The data available for speaker adaptation in each of the experiments was state-aligned

using the HSMM synthesis models. Feature vectors corresponding to each observed

state was stored in a unit selection database. Those units were then used in the

hybrid synthesis algorithm.

3.1.4.3 Attacker LR System

Linear regression models were trained using 326 speakers from the TIMIT database

with 10 utterances per speaker. Speaker-adapted models were generated using 10

utterances and those models were then used to create parallel synthetic and natural

utterances. Only the static features were transformed. Delta and delta-delta features

were computed after transformation.

There was not enough data to learn linear regression matrices for each state. A

minimum of 400 frames was used for learning the LR matrices. Out of 7907 states,

5057 states had more than 400 frames. For states with less data, LR approach was not

used. We have also found that the performance of LR does not improve when more

1000 frames are used in training the LR matrices. Thus, to reduce the computational

load, a maximum of 1000 frames were used in the LR training stage.

3.1.4.4 Defender Voice Verification System

The voice verification system was trained with 101 speakers from the RM1 database

with 40 utterances per speaker and 84 speakers from the WSJ1 database with 60

utterances per speaker as shown in Table 2.
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Verification system used 19 Mel-Frequency Cepstral Coefficients (MFCC) features

together with their delta and delta-delta features. Static energy feature was not used

but its delta and delta-delta features were used. 512 mixture UBM was trained using

84 male speakers, and 60 utterances from each speaker. T matrix in Eq. 3 was

trained using those same speakers and utterances. Rank of the T matrix was set to

400. Dimensionality of i-vectors were first reduced to 200 using LDA and then further

reduced to 100 using PLDA.

3.1.4.5 Defender SSS System

Similar to the attacker, an SI model is needed for generating synthetic speech to train

the synthetic speech detectors (SSDs). Two SI models were trained using 7 speakers

from the RM1 database with 600 utterances per speaker and 84 speakers from the

WSJ1 database with 60 utterances per speaker. Speaker adaptive training (SAT) was

used during training.

Two different speech synthesis systems were developed for the defender side. The

first system was matched to the system of the attacker and used the same set of speech

features described above. To test the performance of the SSD under mismatched

conditions, the second system used 25 Mel-generalized cepstrum (MGC) coefficients

as opposed to the STRAIGHT-based features used by attacker. GV was used in both

cases during synthesis.

3.1.4.6 Defender SSD Systems

GMM and SVM detectors were used as discussed in Section 2.4. Linear kernel is used

for SVM. 512 Gaussians were used to model the natural speech and synthetic speech.

Synthesized versions of the test data used for testing the verification system were

used to assess the performance of the SSDs. The same MFCC features that were used

at the voice verification system were used for SSDs.
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3.1.4.7 Development and Test Setup

Decision thresholds of the speaker verification system and the SSD system were tuned

using the development data. For the speaker verification system, 100 utterances were

used for client tests and 68 × 100 utterances were used for impostor tests for each

enrolled speaker. For tuning the SSD, 100 natural utterances per speaker were used

for client tests and their synthesized versions were used for impostor tests. Synthesis

was done using the SSS developed on the defender side. Details of the development

data are shown in Table 3.

Table 3: Number of speakers and utterances in the development and test sets that
were used for the evaluation of SSD and voice verification systems.

Development Test
Target speakers 69 69

Genuine trials 6900 4071

Impostor trials 46920 28152

Spoofed trials 6900 4071

In tests, 69 speakers from the WSJ1 database were enrolled into the system using 1

utterance from each speaker. Each enrollment utterance was around 4-6 seconds long.

For each enrolled speaker, 59 client tests and 408 impostor tests were done to test the

performance of the base system. Impostor tests were created by using 6 utterances

from each of the 68 impostor speakers among the enrolled speakers. Details of the

test data are shown in Table 3.

The attacker has only 1, 2, 3, or 4 utterances available for adapting to the target

speaker. For comparison, we have also considered the case where the attacker has

150 utterances for adaptation.

In spoofing attack tests, for each enrolled speaker, 59 client tests were done where

natural speech from the true speaker was presented to the speaker verification system.

Each enrolled speaker was tested with 59 synthetic utterances for each adaptation

data size.
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3.1.5 Results and Discussion

3.1.5.1 Performance of the Synthetic Speech Detectors (SSDs)

In the first set of experiments, performance of the SSDs were measured using the

proposed synthesis systems with small amounts of adaptation data. For comparison,

performance was also measured when 150 utterances were available. Results are

reported for both matched and mismatched conditions in Table 4. In the matched

case, both SSDs and the attacker use STRAIGHT features [9]. In the mismatched

case, synthetic speech that was used to train the SSDs was generated with MGC

features [32] while the attacker used STRAIGHT features for synthesis.

Table 4: Equal-error-rates (EERs) of the GMM and SVM based SSDs for the pro-
posed systems with five different adaptation data sizes. In the matched case, both
the synthetic speech that was used for training the SSDs and the synthetic speech
that was used for attacks were synthesized using the STRAIGHT features. In the
mismatched case, MGC features were used for synthesizing training data for SSDs
while the attacker used STRAIGHT features for synthesis. In both cases, best SSD
performance for each adaptation data size is shown in bold for each system.

SSS HYB LR HYB+LR

M
atch

ed

GMM

1utt 0.10 0.47 3.49 4.62
2utt 0.10 0.56 2.33 6.31
3utt 0.02 1.25 2.31 7.66
4utt 0.03 2.14 1.94 9.90
150utt 0.39 22.11 7.59 22.25

SVM

1utt 0.05 0.47 3.93 7.44
2utt 0.05 1.23 2.97 8.97
3utt 0.07 2.31 3.05 10.78
4utt 0.05 3.19 2.63 12.77
150utt 0.61 21.67 9.26 21.62

M
ism

atch
ed

GMM

1utt 0.29 2.09 12.04 19.90
2utt 0.42 3.19 10.39 25.40
3utt 1.20 6.78 11.05 32.15
4utt 1.08 10.12 11.86 36.23
150utt 1.11 29.62 24.32 29.87

SVM

1utt 3.37 6.68 21.54 31.17
2utt 4.62 12.11 19.58 35.22
3utt 4.86 16.34 20.09 38.47
4utt 5.06 20.85 21.32 41.07
150utt 7.91 49.18 35.37 49.03
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Table 5: Equal-error-rates (EERs) of the GMM and SVM SSDs for the proposed
systems with five different adaptation data sizes. Only static features are used and
delta features are ignored. In the matched case, both the synthetic speech that was
used for training the SSDs and the synthetic speech that was used for attacks were
synthesized using the STRAIGHT features. In the mismatched case, MGC features
were used for synthesizing training data for SSDs while the attacker used STRAIGHT
features for synthesis. In both cases, for each adaptation data size, performance is
shown in bold if the EER is lower compared to the corresponding EER in Table 4.

SSS HYB LR HYB+LR

M
atch

ed

GMM

1utt 0.32 1.45 2.63 4.27
2utt 0.15 1.87 1.55 6.21
3utt 0.12 2.04 1.47 6.58
4utt 0.25 3.02 1.50 8.23
150utt 1.67 35.69 7.44 35.72

SVM

1utt 0.05 1.30 3.68 10.17
2utt 0.05 2.19 2.48 10.66
3utt 0.02 3.17 2.16 12.13
4utt 0.02 4.27 2.43 13.78
150utt 1.45 33.97 11.45 33.82

M
ism

atch
ed

GMM

1utt 2.24 6.48 6.14 11.20
2utt 2.24 5.53 4.15 12.75
3utt 2.48 9.01 4.86 15.62
4utt 3.19 10.86 4.32 17.22
150utt 6.24 37.19 15.50 37.68

SVM

1utt 3.59 7.20 10.19 15.87
2utt 4.32 9.73 9.16 18.03
3utt 4.69 11.99 9.41 20.71
4utt 4.74 14.76 9.95 23.46
150utt 7.44 42.59 19.68 42.45

For the matched conditions in Table 4, even though the SSS system can some-

times spoof the SSDs, its performance is substantially lower than the other systems.

Moreover, spoofing performance tends to decrease with increasing data size and then

increases again for the 150utt case. Similar trend is observed in the LR case. This

behavior occurs because the synthetic speech that is used for training the SSDs were

synthesized with speaker-adapted models and the models were trained with 40 utter-

ances per speaker. Thus, the SSDs worked better when the amount of adaptation data

used for generating the SSS models at the attacker and defender sides approached
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each other.

The three proposed algorithms all performed better than the SSS system for the

matched conditions. When less than 4 utterances are available, LR system per-

formed better than the hybrid system. When enough data is available, hybrid system

outperformed the LR system. HYB+LR algorithm uses both techniques, and its

performance is significantly better than both algorithms.

For the matched conditions, GMM detector performed better than the SVM de-

tector in most cases. For the SSS case where the performance of the SVM-based SSD

is remarkably stable through 1utt to 4utt cases. Hence, for the limited data with

SSS, SVM-based detector is found to be more robust to the adaptation data size.
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Figure 4: Normalized histograms of log-likelihood ratio (LLR) scores for synthetic
and natural utterances. Distributions for both matched and mismatched conditions
are shown.
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Figure 5: Scatter diagrams of different dimensions of i-vectors, after reducing their
dimensionality with LDA, for matched and mismatched conditions.

For the mismatched conditions, GMM-based SSD significantly performed better

than the SVM-based SSD for all conditions. To gain insight into the reasons, his-

tograms of the LLR scores computed by the GMM-based SSDs are shown in Fig. 4

and scatter diagrams of some of the dimensions of i-vectors after reducing their di-

mensionality with LDA are shown in Fig. 5. Even though distributions of natu-

ral and synthetic LLR scores approach each other for mismatched conditions in the

GMM-based SSD, the overlap between them is not substantial. However, natural and

synthetic speech i-vectors significantly overlap for mismatched conditions as shown

in Fig. 5. Effect of channel mismatch is known to significantly degrade the i-vector

performance [3]. The same effect seems to significantly degrade the SSD performance

in mismatched conditions.

3.1.5.2 Effect of Delta Features on SSD Performance

SSS systems tend to generate overly smooth trajectories even when GV algorithm is

used. Therefore, it is interesting to investigate the impact of delta features on the

performance of the SSDs. To that end, experiments with the GMM and SVM SSDs

were performed using static features only.
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Results are shown in Table 5. In the matched SSS and hybrid cases, performance

of the GMM-based SSD degraded which indicates the importance of the delta features.

Interestingly, LR system was easier to detect with the GMM-based SSD when the

delta features were missing. Because linear transformations are done independently

on each frame, frame-to-frame variation increases with the LR approach. Hence, the

smooth trajectories are distorted and the resulting delta features get closer to natural

features which helps significantly in spoofing the SSDs.

Even though, a pattern similar to GMM-based SSD was observed with the SVM-

based SSD, delta features had a lower effect in the performance of SVM-based SSD

for matched conditions. Thus, SVM-based SSD was found to rely more on the static

features than delta features compared to GMM-based SSD.

Behavior of the GMM-based SSD does not significantly change under mismatched

conditions. However, behavior of the SVM-based SSD changes under mismatched

conditions. For the SSS and hybrid cases, using delta features degrade the SSD

performance when more than 1utt is available. Thus, distortion in the delta features

degrade the performance under mismatched conditions with SVM-based SSD. The

effect is more severe with the hybrid system compared to the SSS system.

3.1.5.3 Performance of the voice verification system

Performance of the voice verification system with natural speech is shown in Table 6.

Threshold of the system during testing was set to the Equal-error-rate (EER) point

computed with the development data. Delta features significantly reduce the error

rates as shown in Table 6.

False alarm rates of the verification system when spoofed with synthesized speech

are shown in Table 7. Since genuine trials are the same in all cases, and threshold

is set with the development data, missed detections have the same values shown in

Table 6 in spoofing attacks. Therefore, only the false alarm rates are presented in
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Table 6: Performance of the voice verification system. Operating threshold is set
to Equal-error-rate (EER) point with the development data. Missed detection (MD)
and false alarm (FA) rates are reported on the test data. Results are presented for
two systems. One system uses only static features while the second system uses static
and delta features.

Statics
EER (Development) 0.38
MD (Test) 0.59
FA (Test) 0.39

Statics+Delta
EER (Development) 0.31
MD (Test) 0.29
FA (Test) 0.29

Table 7: False alarm rates of the voice verification system under attack. Missed
detection rates are shown in Table 6. Results are presented for two systems. One
system uses only static features while the second system uses static and delta features.
Best performing algorithm for each adaptation data size is shown in bold.

SSS HYB LR HYB+LR

Static

1utt 21.13 72.49 28.89 71.53
2utt 26.31 88.11 32.74 88.87
3utt 32.06 93.83 37.83 93.88
4utt 37.53 96.81 43.55 96.56
150utt 93.00 97.64 92.41 97.69

Static+Delta

1utt 21.98 64.48 28.91 64.60
2utt 30.04 84.65 36.28 83.54
3utt 35.52 92.43 42.08 90.62
4utt 41.17 96.29 48.88 94.69
150utt 91.50 97.15 93.00 97.13

Table 7.

Baseline SSS system was found to have significant spoofing capability even when

only one utterance is available to the attacker. Performance rapidly increases when

more data becomes available. When the verification system uses only the static

features, spoofing rates of the SSS system decreases. Thus, delta features improve

the similarity of feature vectors to the target speaker which is expected since the

static features are generated to maximize the joint likelihood of both static and delta

features. Thus, using the delta features together with the static features creates

features closer to the target speaker.
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Hybrid approach drastically increased the spoofing performance compared to SSS

at all adaptation data sizes. Hybrid approach performed better when only static

features were used. Thus, the effect of natural segments on the neighboring synthetic

speech frames during the parameter generation process seem to distort the delta

features around the natural segments which reduced the spoofing performance when

delta features were used. However, the difference between static and static+delta

cases decreased with increasing data sizes. This is expected since with more data

available, hybrid approach can utilize more natural segments.

LR approach also increased the spoofing performance compared to SSS. In the case

of LR, static+delta features performed better than the static features. This result

is aligned with the SSD results discussed in Section 3.1.5.2 where LR approach was

found to be significantly more effective at spoofing the SSD when the delta features

were used.

It is interesting to note that LR system can improve the spoofing performance

even though the LR transformations are not target-specific. Experimental results

showed that getting feature vectors closer to natural features improves the spoofing

performance even when the transformations are not target-specific.

Performance of the HYB+LR algorithm is close to the performance of the hybrid

algorithm. Thus, LR did not substantially degrade the performance of the hybrid

approach while it helped significantly boost the spoofing performance at the SSD as

discussed in the previous section.

3.1.5.4 Performance of the combined system

In the combined system, the utterance was first processed by the SSD. Utterances

that could pass the SSD were then fed to the voice verification system as shown in

Fig. 3. For testing the combined system, the protocol proposed in [7] was used. SSD

threshold was set to fix the false alarm rates at %0.5, %1, and %5 using development
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data in three different experiments 1. The voice verification system is set to operate

at the EER point in all three cases. The SSDs and the voice verification system were

both tuned using the development data.

Combined tests were performed using the GMM-based SSD because it outper-

formed the SVM-based SSD in most of the matched and all of the mismatched con-

ditions as shown in Table 4. Both static and delta features were used in SSD because

the SSD was trained for detecting SSS and using delta features improved the perfor-

mance of GMM-based SSD as shown in Table 4 and Table 5. Speaker verification

system also used both static and delta features.

The missed detection and false alarm rates of the combined system are shown in

Table 8. For the matched test setup where the SSD was trained with STRAIGHT

and the attacker use the STRAIGHT for synthesis, SSS system has %0 false alarm

rate even when the SSD false alarm rate is %0.5. Even though the SSS system could

spoof the combined system for the mismatched case, the false alarm rates were still

substantially lower compared to the proposed systems. SSS was not found to be

effective at spoofing the combined system because it cannot spoof the SSD as shown

in Table 4.

Hybrid system has higher false alarm rates compared to SSS for the three op-

erating points under the matched and mismatched conditions. Its performance is

substantially higher than SSS especially in the mismatched conditions when more

than 1utt is available to the attacker. Moreover, performance difference with SSS

increases rapidly with increasing adaptation data size.

The LR system performed significantly better than the hybrid system when the

adaptation data size is small. Even though the hybrid system is more effective in

spoofing the voice verification system compared to LR system in those cases as shown

1Note that synthetic utterances that are verified as natural speech at the SSD cause missed
detection at the SSD. However, they cause false alarm at the voice verification system if they are
verified as genuine clients.
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Table 8: Performance of the combined voice verification and SSD systems for matched
and mismatched conditions. Performance is assessed when the voice verification is set
to operate at the EER=%0.38 point on the development data and SSD false alarm
rates (SSD-FA) are set to %0.5, %1, and %5. False alarm rates of the synthesis
systems are reported for different adaptation data sizes. Missed detection rates of the
combined system (Combined-MD) are also reported. Best performing algorithm for
each adaptation data size and SSD threshold is shown in bold.

Matched Mismatched

SSD-FA 0.5 1 5 0.5 1 5
Combined MD 0.86 1.50 5.70 0.79 1.38 5.45

SSS

1utt 0.00 0.00 0.00 0.02 0.00 0.00
2utt 0.00 0.00 0.00 0.29 0.05 0.00
3utt 0.00 0.00 0.00 1.52 1.15 0.07
4utt 0.00 0.00 0.00 1.30 0.52 0.00
150utt 0.15 0.00 0.00 3.05 0.96 0.07

HYB

1utt 0.02 0.02 0.00 1.45 0.69 0.61
2utt 0.74 0.15 0.00 16.14 8.77 1.20
3utt 3.51 1.35 0.05 36.60 22.77 7.81
4utt 13.19 4.62 0.54 61.24 42.10 16.34
150utt 94.94 90.69 72.59 96.14 93.34 79.07

LR

1utt 3.34 2.33 1.28 19.38 14.71 7.05
2utt 3.05 2.09 1.30 21.42 15.72 8.74
3utt 4.72 2.85 0.52 20.46 15.40 10.00
4utt 5.94 2.90 0.12 25.25 18.84 11.35
150utt 38.91 23.73 9.38 81.60 72.91 49.47

HYB+LR

1utt 30.09 15.60 2.63 57.33 51.27 35.99
2utt 49.57 27.73 7.07 80.74 75.58 55.51
3utt 66.10 45.62 12.85 89.76 86.54 70.74
4utt 80.84 62.61 22.97 94.45 93.00 82.54
150utt 94.67 90.52 73.18 96.27 93.24 79.05

in Table 7, the success of the LR system substantially outweighs the performance of

hybrid system in passing the SSD as shown Table 4. That causes the performance

of the LR system in the combined results to be higher when there is minimal adap-

tation data. However, when more data became available, hybrid system significantly

outperformed the LR system.

HYB+LR system substantially outperformed both hybrid and LR systems at all

limited data sizes. The reasons for this can be inferred from the spoofing performance

of the proposed methods at the SSD and the voice verification systems. To gain
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(b) Hybrid synthesis system
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(c) Linear Regression (LR) system
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(d) HYB+LR system

Figure 6: Detection error trade-off (DET) curves of the SSS, hybrid, LR, HYB+LR
systems are shown for the 1utt matched condition case. False alarm rate of the
SSD is %0.5. Following the protocol in [7], DET curves for voice verification (VV)
using natural speech, VV+SSD using natural speech, VV under attack using speech
synthesis, VV+SSD under attack using speech synthesis are shown. On the DET
curves, ’o’ indicates the EER points and ’*’ indicates the operating points after tuning
the SSD with the development data.

more insight, detection error trade-off (DET) curves for hybrid, LR, and HYB+LR

systems for the 1utt case are shown in Fig. 6. HYB+LR is as good as the hybrid
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system in spoofing the voice verification system. Thus, having an additional target-

independent LR step did not significantly degrade the spoofing performance at the

voice verification block. The substantial performance gain obtained with HYB+LR

is found to be related to its spoofing performance at SSD. Not only HYB+LR has

significantly higher spoofing performance at the SSD compared to other systems, but

also calibration of the operating point based on an SSS system further boosts its

performance. Similar calibration problems were also observed with hybrid and LR

systems. However, the effect of those were not as severe as the HYB+LR case.

3.2 I-vector Based Synthetic Speech Detection

Even though removing the session effects from the i-vectors is important for successful

verification, session differences contain valuable information for detecting synthetic

speech. For session-i, channel vector can be defined as

mc,i = ms,i −ms (19)

where ms,i is the i-vector extracted in session-i and ms is the mean i-vector for speaker

s.

Channel vectors contain information about the distortions that are session-specific.

In the case of synthetic speech, there is additional variability. For example, it is well-

known that synthetic features are smoother than natural features which reduce the

variance of all features [17]. Moreover, because feature vectors in close proximity

are similar to each other, they are assigned to the same Gaussian. Therefore, as

opposed to the variety of Gaussians in natural speech, fewer Gaussians are observed

with higher frequency in synthetic speech.

We investigated the differences between i-vectors of synthetic and natural speech

through visualization. To that end, Fisher linear discriminant analysis (LDA) is used

to reduce dimensionality of the channel vectors to 2. Channel vectors of synthetic and

natural speech is compared in Fig. 7. In the clean case, there is a clear separation
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between synthetic and natural vectors. In the noisy case, the two clusters are still

clearly separable. However, the margin is not as large as the clean case. Thus, noise

distorts the smooth structure of the synthetic features and make clean and noisy

channel less separable.
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Figure 7: Illustration of channel vectors after they are mapped to 2 dimensions using
LDA. In the top figure, clean synthetic and natural data is used where both test and
train synthetic data are generated with STRAIGHT and GV. In the middle figure,
noisy natural and synthetic data are used where both test and train synthetic data
are generated with STRAIGHT and GV. Mixed type of noises are used in training
LDA and channel vectors of noisy natural and synthetic speech (mixed noise) are
shown. In the bottom figure, LDA is trained on noisy synthetic speech without GV
and STRAIGHT but the test data are generated with STRAIGHT and GV. Effect
of mismatch in synthesis technologies are shown. Mixed type of noises are used in
training LDA and channel vectors of noisy natural and synthetic speech (babble noise)
is shown.
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Even though the clusters are separable in noisy conditions, an important question

arises: what if the attacker and the defender use different SSS technologies? In

particular, we are interested in the worst case where the attacker has more advanced

technology compared to the defender. To test that condition, STRAIGHT vocoding

and GV adjustment is used at the attacker side but not at the defender side. Clusters

for synthetic and natural channel vectors at 10dB babble noise are shown in Fig 7.

Using different synthesis technologies by the attacker and defender caused significant

overlap between the clusters which makes the detection problem harder.

Exploiting the structure in the distribution of channel vectors, a detector is de-

signed to detect synthetic speech. Dimensionality of session vectors are first reduced

using LDA. Then, a support vector machine (SVM) with soft-decision output is

trained with the noisy synthetic and noisy natural session vectors. Linear kernel

is used with the SVM.

3.2.1 Experiments

WSJ1 database [33] is used for the verification experiments similar to [4]. 69 male

test speakers are enrolled into the system. Each enrollment utterance is around 4-

6 seconds long. For each enrolled speaker, 59 client tests and 340 impostor tests

are done. Impostor tests are created by using 5 utterances from each of the 68

impostor speakers among the enrolled speakers. Each test is done using one utterance.

Verification system uses 19 dimension MFCC plus 1 energy static features and their

delta and delta-delta features. However, static energy is not used which makes the

total dimension of features 59. 256 mixture UBM is trained using 84 male speakers,

and 60 utterances from each speaker. T matrix is trained using those same speakers

and utterances. Rank of the T matrix is set to 400.

Experiments are done for clean training and test data as well as noisy training and

test data. Noise is added to clean speech samples at 10, 15, and 20dB SNRs because
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when the SNR is below 10 dB, performance of the verification system is found to

be unacceptably poor. The detector and the verification systems are trained using

a mixture of white, babble, car, and station noisy samples under 10, 15, and 20dB

SNRs in noisy conditions. Bus, cafe, metro, and office noises are used only during

testing.

For each enrolled speaker, different statistical models are created for attacks using

adaptation with one, two, three, and four utterances. Synthesis is done for all of the 69

speakers enrolled into the verification system. Enrollment and test data are not used

for adaptation. Experiments when 150 utterances are used for adaptation are also

done for comparison purposes. Speaker-independent (SI) model is generated using

four male speakers and 1250 utterances from each speaker. Constrained structural

maximum a posteriori linear regression (CSMAPLR) algorithm is used for adaptation

[13].

SSS systems were trained with 198 dimensional vectors consisting of 40 Mel-

Generalized Cepstral (MGC), 1 Log-Fundamental frequency (LF0), and 25 Band

APeriodicity (BAP) coefficients and their delta and delta-delta parameters. 25 msec

analysis window with 5 msec frame rate is used for feature extraction. Phonemes are

modeled with 5 state hidden semi-Markov models (HSMM) [34]. STRAIGHT vocod-

ing and global variance adjustments are done to improve the synthesis quality.[9]

Training data for UBM and T are used for training the detectors. The same

features used in the verification system are used for the detector. Similar to the

attacker, a speaker-independent (SI) model is needed for creating the synthetic speech

database for training the detector. Here, SI model is trained using the training data

of the verification system. Synthesized versions of the test data used for testing the

verification system are used to assess the performance of the detectors under different

conditions. Detector performance is reported in terms of equal-error-rate (EER) for

each test condition. Dimension of the channel vectors are reduced to 50 with LDA
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before using SVM for synthetic speech detection.

3.2.2 Results and Discussion

Baseline performance of the voice verification system in clean training and test con-

ditions in terms of equal-error-rate (EER) is 0.23%. Performance of the system for

individual noise types and SNRs are shown in Table 9. EER calculated under all

SNRs and noise types combined is 1.81% which is almost 8-folds increase compared

to clean conditions. White noise had particularly higher error rate compared to others

since it distorts all of the speech spectrum.

Table 9: EER of the voice verification system for different noise types and SNRs.
Verification system is trained with mixed noise conditions and SNRs. White, babble,
car, and station noises were used in training of the verification system.

Seen noises 10db 15db 20db
white 4.53 1.98 1.16
babble 1.27 1.23 1.11
car 1.21 1.19 1.26
station 0.96 0.97 1.03

Unseen noises 10db 15db 20db
bus 1.27 1.24 1.22
metro 1.26 1.10 1.13
office 1.25 1.28 1.25
cafe 1.13 1.13 1.15

For spoofing attacks, threshold of the voice verification system is set to 1.81%

average EER point. Results with clean train/test and noisy train/test are shown in

Fig. 8. Noise substantially increases the effectiveness of the attacks. Effectiveness

of car and bus noises are below others since those noise types have lower bandwidth.

Interestingly, effectiveness of the attacks are close to each other at different SNRs.

This is thought to be a result of the fact the system is trained with a mix of all SNRs

and all noises. Moreover, the calibration is also done with a mix of all conditions.

Thus, the system does not seem to substantially favor any particular SNR.
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Figure 8: Verification false alarm rates under attack with synthetic speech. Results
are reported for both clean and noisy conditions. In the ”Clean” case, both test
and train samples are clean and it is shown in the figures for comparison purposes.
Babble, cafe, and station noise results have almost overlapped here. Metro, bus, and
office noise results have almost overlapped here.

Spoofing attacks become more effective when more adaptation data becomes avail-

able. However, performance seems to saturate more rapidly in the clean conditions

compared to noisy conditions.

White noise has especially lower false alarm rates compared to other noise types.

The reason for that can be understood from Fig. 9. In that figure, at 10db, white

noise detection error trade-off (DET) curve is significantly separated from the other

noise types which holds for other SNR types and adaptation data sizes also. The

1.81% EER, however, is computed by using all noise conditions at all SNRs which

causes an outlier effect where the white noise has a big effect on the operating point.
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Thus, at the 1.81% operating point, all noises other than white noise have significantly

higher false alarm rates compared to missed detection rates as shown in Fig. 9. White

noise, however, does not significantly deviate from the EER point. As a result, its

false alarm rate is lower than others in spoofing attacks.
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Figure 9: DET curves of the verification system under attack at different noise
conditions at 10dB. Natural speech is used for clients and synthetic speech is used
for impostors. Performance of the verification system for different noise types are
indicated with circles when the verification system is tuned to 1.81% EER point with
mixed noise conditions.

The proposed detector has 0% detection error for clean case. For noisy case, EER

is less than 0.5% for all noise and SNR conditions as shown in Fig. 10. Thus, synthetic

speech can be effectively detected in the i-vector space with very high accuracy as

observed visually in Section 3. To check if these results still hold for mismatched SSS

technologies in attacker and defense sides, the detector is trained with SSS without
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Figure 10: Detector performance (EER) when detector is trained with STRAIGHT
vocoder and GV. And, the attacker uses STRAIGHT vocoder and GV as well
(Matched condition in SSS). Except for white noise at 10dB, EER of all cases is
under 0.1%

GV or STRAIGHT. The attacker, however, used STRAIGHT and GV which are

known to increase the quality of speech. Effectiveness of the spoofing attacks in such

mismatch conditions are reported in Fig. 11. Under the mismatched SSS synthesis

conditions, detection performance decreases substantially especially for babble and

white noises. This result calls for training detectors with different synthesis conditions

and not fit the detector on one particular type of SSS.
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Figure 11: Detector performance when detector is trained without STRAIGHT
vocoder or GV but attacker uses those two techniques for generating more natu-
ral speech. Metro, cafe, and station noise results have almost overlapped here. Car,
bus, and office noise results have almost overlapped here.

3.3 Spoofing and Anti-Spoofing Corpus

3.3.1 Protocol

The SAS spoofing database starts with the Voice Cloning Toolkit (VCTK) database

from the Center for Speech Technology Research (CSTR), which is English and freely

available. The VCTK database was recorded in a hemi-anechoic chamber using an

omni-directional head-mounted microphone (DPA 4035) at a sampling rate of 96

kHz. The motivation for starting with clean studio-recorded speech is that it allows

for spoofing attacks that rely on such data. Channel and noise factors can always be

simulated at a later date, but in this work we focused only on spoofing under clean
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Table 10: Number of trials in the development and evaluation sets of SAS corpus.
Development Evaluation
Male Female Total Male Female Total

Target speakers 45 61 106 45 61 106
Genuine trials 4500 6100 10600 9446 13385 22831
Impostor trials 45000 61000 106000 85592 118000 203592
Spoofed trials 45000 61000 106000 85592 118000 203592

conditions. To design the spoofing database, speech data was taken from VCTK

which comprises 45 male and 61 female speakers, and downsampled the signals to 16

kHz at 16 bits-per-sample. The data from each speaker was divided into five parts:

• Part-A: 24 parallel utterances (i.e., same text across all speakers) per speaker:

training data for spoofing.

• Part-B: 20 non-parallel utterances per speaker: additional training for spoof-

ing.

• Part-C: 50 non-parallel utterances per speaker: enrollment data for client

model training in speaker verification.

• Part-D: 100 non-parallel utterances per speaker: development set for speaker

verification.

• Part-E: Around 200 non-parallel utterances per speaker: evaluation set for

speaker verification.

We note that in Part-C, Part-D, and Part-E, all the sentences are randomly selected

from newspapers without any repeating sentence across all speakers.

3.3.1.1 Speaker Verification Enrollment and Evaluation

We first introduce the protocol for standard speaker verification evaluation. The en-

rollment data of each client was selected from Part-C under two scenarios: 5-utterance

or 50-utterance enrollments. For 5 utterances this means around 5 to 6 seconds, and
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for 50 utterances around 1 minute of speech material. The development set was cre-

ated from Part-D. It involves genuine trials and impostor trials. All utterances from

a client speaker in Part-D were used as genuine trials, and this results in 4500 male

and 6100 female genuine trials.

For the impostor trials, 10 randomly selected non-target speakers were used as

impostors. All Part-D utterances from a specific impostor were used as impostor

trials against the clients model, leading to 45000 male and 61000 female impostor

trials. This set is aimed at tuning the system and deciding thresholds. The evaluation

is drawn from Part-E. In a similarly fashion to the development set, 9446 male and

13385 female genuine trials, and 85592 male and 118000 female impostor trials were

generated. This set is for assessing the performance of speaker verification systems.

A summary of the development and evaluation sets is shown in Table 10.

3.3.1.2 Spoofing preparation and execution

We now introduce the protocol for producing the spoofing materials. Two training sets

were designed: small and large. The small set consists of data only from Part-A, while

the large set includes data from both Part-A and Part-B. Would-be attackers should

select one of these to train their spoofing system. The small set comprises parallel

training data, and so enables attackers to use voice conversion methods reliant on

parallel training data, such as the method implemented in Festvox.

During the execution of speech synthesis spoofing, the transcript of an impostor

trial was used as the textual input to the speech synthesis systems, while for voice

conversion (VC) spoofing, the speech signal of the impostor trial was the input to the

VC system. As a result, the zero-effort impostor trial, the speech synthesis spoofed

trial and the voice conversion spoofed trial all have the same language content (i.e.,

word sequence). The spoofing systems were used to generate spoofing materials for

both development and evaluation, and so the number of spoofed trials is exactly the

43



same as the number of impostor trials (Table 10). This allows fair comparisons to be

made between non-spoofed and spoofed speaker verification results.

3.3.1.3 Evaluation metric

As discussed above, the protocol for speaker verification follows the NIST SRE style,

so the evaluation metric designed for NIST evaluation can be easily adopted. For

example, the performance measures Equal Error Rate (EER), False Acceptance Rate

(FAR), False Rejection Rate (FRR) and Detection Cost Function (DCF) can be ap-

plied. In the benchmarking results we present here, EERs and FARs will be reported.

3.3.2 Spoofing Approaches

In the current version of SAS, spoofing materials comprise the output from two speech

synthesis systems and seven voice conversion systems. These systems are built us-

ing both open-source software and collaborators internal systems. Next, we briefly

describe the systems that were used to generate the spoofing materials in SAS.

NONE: This is a baseline zero-effort impostor trial in which the impostors own

speech is used directly with no attempt to match the target speaker.

SS-SMALL: This HMM-based TTS system is based on the statistical parametric

speech synthesis framework described in [12]. The speaker adaptation techniques in

this framework allow the generation of a synthetic voice using as little as a few minutes

of recorded speech from the target speaker, making it an effective and easily-accessible

tool for SV spoofing. The latest version (2.2) of the open-source code HTS [34] was

used. In the speech analysis and the average voice training phase, the STRAIGHT

vocoder with mixed excitation is used, which results in 60-dimension Bark-Cepstral

coefficients, log F0 and 25-dimension band-limited aperiodicity measures [9, 35]. Hid-

den semi-Markov models (HSMMs) [36] are trained on a large multi-speaker database

called voice bank corpus [37] that include hundreds of English speakers to simulta-

neously model acoustic features and duration. In the speaker adaptation phase, the
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speaker-independent HSMMs are transformed using structural variational Bayesian

linear regression [38] followed by MAP, using the target speakers data from Part-

A. Both the output probability density functions for the acoustic features and the

duration model parameters are transformed. To synthesize speech, acoustic feature

parameters are generated from the adapted HSMMs using a parameter generation

algorithm that considers global variance [8]. An excitation signal is generated us-

ing mixed excitation and pitch-synchronous overlap and add [39] and used to excite

a Mel-logarithmic spectrum approximation (MLSA) filter [40] corresponding to the

STRAIGHT Bark cepstrum, to create the final synthetic speech waveform.

SS-LARGE: This system is the same as SS-SMALL, except that a larger set

of adaptation data comprising both Part-A and Part-B was used when adapting the

speaker-independent HSMMs to each target speaker.

VC-FESTVOX: This is the voice conversion toolkit within the publicly-available

open-source Festvox system. It is based on the algorithm proposed in [41], which is a

joint density Gaussian mixture model with maximum likelihood parameter generation

considering global variance. The Part-A (i.e., small) set of parallel training data was

used, and the default settings of the toolkit were kept, except that the number of

Gaussian components in the mixture distributions was set to 32.

VC-GMM: This is another standard GMM-based voice conversion method also

using the parallel training data from Part-A. It is very similar to VC-FESTVOX

but with some enhancements. STRAIGHT was used as the speech analysis-synthesis

method to extract high-quality speech parameters, such as F0, spectral envelope, and

aperiodicity measures. The search range for F0 extraction was automatically opti-

mized speaker by speaker to reduce errors. A power threshold for extracting active

frames used to estimate the joint density GMM was also optimized automatically per

speaker. Two GMMs were trained for separately converting the 1st through 24th

Mel-Cepstral coefficients (MCCs) and 5 band aperiodicity measures. The number of
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mixture components was set to 32 for the spectral features and 8 for the aperiodic-

ity measures, respectively. For some speaker pairs, the number of components was

reduced when defunct mixture components were automatically removed. To enhance

the variance of the converted spectral parameter trajectories, GV-based post-filtering

[42] was used instead of GV-based parameter conversion.

VC-KPLS: This voice conversion system uses kernel partial least square (KPLS)

regression [43], trained on the Part-A (small) parallel data. 300 reference vectors and

a Gaussian kernel were used to derive kernel features, and 50 latent components were

used in the PLS model. Dynamic kernel features were not included, for simplicity.

STRAIGHT was used to extract 24-dimensional Mel-Cepstral coefficients, 25 band

aperiodicities (BAPs), and F0.

VC-EVC: This is a many-to-many eigenvoice conversion (EVC) system [44]. The

eigenvoice GMM (EV-GMM) was constructed from the training data from one pivot

speaker in the ATR Japanese speech database [45], and 273 speakers (137 male,

136 female) from the JNAS database. Settings were the same as in [46]. The 272-

dimensional weight vectors were estimated by using the Part-A (small) training data.

Covariance matrices in EV-GMM were not updated, i.e. the mean vectors of source

and target speakers were independently updated. STRAIGHT was used to extract

24-dimensional Mel-Cepstral coefficients, 5 BAPs, and F0. The number of mixture

components was fixed at 128. The conversion method was applied only to the Mel-

Cepstral coefficients.

VC-TVC: This is a tensor-based arbitrary voice conversion (TVC) system [46].

To construct the speaker space, the same Japanese dataset as in VC-EVC was used.

The size of weight matrices which represent each speaker was set to 48 80. The same

part of the SAS database and the same features as in VC-EVC were used, and again

only the Mel-Cepstral coefficients were converted, without altering other features.

VC-FS: This is a frame selection voice conversion system, which is a simplified
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version of exemplar-based unit selection [47], using a single frame as an exemplar and

without a concatenation (join) cost. The Part-A (small) data was used for training.

The same features as in VC-KPLS were used, and once again only the Mel-Cepstral

coefficients were converted.

VC-C1: As in VC-KPLS and VC-FS, STRAIGHT was used to extract Mel-

Cepstral coefficients, BAPs and F0. The first coefficient of the source speakers Mel-

Cepstral coefficients was converted by a linear transformation. This is the simplest

voice conversion method, since it only changes the overall slope of the spectral en-

velope, and not any other speaker-specific features. In all the voice conversion ap-

proaches, F0 was converted by a global linear transformation: simple mean-variance

normalization.

In VC-KPLS, VC-EVC, VC-TVC, VC-FS and VC-C1, source speaker BAPs were

simply copied, without undergoing any conversion.

3.3.3 Initial Benchmarking Experiments

To accompany the SAS database, we provide some benchmark speaker verification

experimental results.

3.3.3.1 Speaker Verification systems

We used two speaker verification systems representing the current state-of-the-art:

Joint Factor Analysis (JFA) [30] and Probabilistic Linear Discriminant Analysis

(PLDA) [48], under two enrollment scenarios, 5-utterance and 50-utterance. Both

systems used the same front-end to extract acoustic features, comprising 19 dimen-

sion MFCC and energy features with delta and delta-delta coefficients. By excluding

the static energy feature, 59-dimensional features were used in both systems. The

AudioSeg toolkit was used to perform voice activity detection (VAD) [49]. In both

systems, we used three Wall Street Journal (WSJ) databases (WSJ0, WSJ1, and
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WSJCAM) and the Resource Management database (RM1) for training the Univer-

sal Background Model (UBM) and the eigenspaces. From WSJ0 and WSJ1, only

the SI training speakers were used. All speakers from the WSJCAM training, de-

velopment and test sets were used. During scoring, T-norm was applied for both

systems.

JFA: A Joint Factor Analysis system with a UBM of 512 components, and eigen-

voice and eigenchannel spaces with 300 and 100 dimensions respectively. Cosine

scoring was performed on the speaker variability vectors.

PLDA: Using the same UBM as in JFA, the PLDA approach operates in i-vector

space, the dimension of which was set to 400. Because i-vectors have a heavy-tailed

distribution, radial Gaussianization [50] was performed, then the i-vector dimension

was reduced to 200 using linear discriminant analysis (LDA) and the within-class co-

variance matrices of the resulting vectors were whitened using within-class covariance

normalization (WCCN) [3]. The dimensionality of the resulting vectors was further

reduced down to 100 by PLDA. Scoring was done with a likelihood ratio test. In

the two enrollment scenarios, the short enrollment utterances were merged into ses-

sions of 5 before enrollment. Therefore, after merging, either 1 or 10 sessions were

used in enrollment. For PLDA, in the 10 sessions case, i-vectors that were extracted

from all 10 sessions were averaged, while for JFA, all features from all sessions were

merged. We use JFA-5 and PLDA-5 to denote systems with 5 enrollment utterances

(1 session), and JFA-50 and PLDA-50 for the 50-utterance (10 session) case.

3.3.3.2 Initial Benchmarking Results

We only report EERs and FARs for our initial speaker verification results, as the two

measures are more related to spoofing. The results are presented in Table 11 and

Table 12. Without surprise, the EERs and FARs for the baselines are very low, that

is close or below 1% by JFA-50 and PLDA-50 systems, as the SAS database is clean
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Table 11: Initial spoofing results on the development set of SAS corpus using the
metrics of Equal Error Rate (EER) and False Alarm Rate (FAR) for the two variants
(5 and 50) of two speaker verification systems based on Joint Factor Analysis (JFA)
or Probabilistic Linear Discriminant Analysis (PLDA).

EER FAR
JFA PLDA JFA PLDA

Spoofing 5 50 5 50 5 50 5 50

M
al

e

(NONE) Baseline 3.29 1.29 1.44 0.66 3.29 1.29 1.44 0.66
SS-SMALL 25.27 23.83 21.97 19.69 90.80 94.44 90.85 90.98
SS-LARGE 27.47 25.95 23.96 22.15 93.59 97.23 94.11 94.46
VC-FESTVOX 30.09 30.36 28.94 27.97 95.55 98.32 98.60 99.20
VC-GMM 27.30 27.38 26.76 26.25 92.93 96.51 95.69 96.41
VC-KPLS 19.60 18.24 20.96 20.11 76.76 84.56 89.45 89.51
VC-TVC 19.32 17.69 20.03 18.94 73.40 80.32 84.73 84.45
VC-EVC 15.64 13.12 16.20 14.73 62.34 67.67 80.12 78.83
VC-FS 23.48 22.49 25.29 23.62 85.84 91.99 94.47 95.41
VC-C1 3.60 1.44 1.69 0.86 4.48 2.23 2.28 1.25

F
em

al
e

(NONE) Baseline 6.54 2.08 2.48 1.08 6.54 2.08 2.48 1.08
SS-SMALL 23.76 17.90 19.49 17.78 79.03 77.01 83.53 89.48
SS-LARGE 25.71 19.88 22.17 20.73 83.39 83.39 89.54 94.23
VC-FESTVOX 26.36 25.04 25.42 24.74 82.06 89.59 90.83 93.20
VC-GMM 26.32 24.84 23.95 23.65 81.32 88.38 88.70 91.88
VC-KPLS 19.68 14.40 19.31 17.61 66.85 64.01 79.08 80.56
VC-TVC 19.63 14.30 17.10 15.09 64.60 63.29 72.99 75.35
VC-EVC 17.98 11.95 14.99 12.78 61.96 56.64 69.07 70.43
VC-FS 20.89 15.94 21.08 19.70 68.87 71.19 81.82 87.51
VC-C1 7.74 2.70 3.07 1.53 11.95 5.06 5.26 3.20

without any channel or noise effects. However, the short duration of the trials prevents

the EERs or FARs to go even lower. Even through the ASV systems achieve very good

speaker verification performance, they are extremely vulnerable to spoofing attacks.

Even the most simple VC-C1 spoofing attack, which only changes the spectral slope

of the source speaker, considerably increases the False Alarm Rate (FAR). The more

sophisticated attacks using speech synthesis or voice conversion lead to FARs as high

as 99.11%. In general, speech synthesis leads to FARs of over 90% for male and

over 80% for female, even for the SS-SMALL system which has access to only 24

utterances (Part-A) from the target speaker. Voice conversion spoofing is sometimes

an even more effective attack that speech synthesis. It is worth highlighting that
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Table 12: Initial spoofing results on the evaluation set of SAS corpus using the
metrics of Equal Error Rate (EER) and False Alarm Rate (FAR) for the two variants
(5 and 50) of two speaker verification systems based on Joint Factor Analysis (JFA)
or Probabilistic Linear Discriminant Analysis (PLDA).

JFA PLDA
Spoofing 5 50 5 50

M
al

e
(NONE) Baseline 3.43 1.40 1.44 0.66
SS-SMALL 90.80 94.38 90.71 90.60
SS-LARGE 93.64 97.32 93.68 94.05
VC-FESTVOX 95.46 98.44 98.41 99.11
VC-GMM 92.80 96.45 95.59 96.21
VC-KPLS 77.10 84.70 89.19 89.46
VC-TVC 73.68 80.67 84.46 84.37
VC-EVC 62.68 67.94 80.09 78.92
VC-FS 85.51 91.82 94.17 95.13
VC-C1 4.66 2.16 2.24 1.15

F
em

al
e

(NONE) Baseline 6.40 2.02 2.38 1.00
SS-SMALL 79.43 77.53 83.96 89.88
SS-LARGE 83.58 83.71 89.90 94.55
VC-FESTVOX 82.45 90.07 88.69 91.27
VC-GMM 81.88 89.02 89.37 92.41
VC-KPLS 67.22 64.55 79.64 81.10
VC-TVC 64.73 63.68 73.30 75.55
VC-EVC 62.12 57.14 69.95 71.35
VC-FS 69.12 71.52 82.27 87.78
VC-C1 11.78 4.92 5.14 3.19

the publicly-available voice conversion toolkit VC-FESTVOX is generally at least as

effective as the other voice conversion and speech synthesis techniques. The second

interesting observation is that although VC-EVC uses Japanese database to train

eigenvoice for adaptation, it still increase FARs as high as other methods. An other

observation is that even though more enrollment data is helpful to have lower EERs

and FARs on non-spoofed data, it does not achieve lower error rates in the face of

spoofing. These spoofing results are consistent with our previous findings on both

telephone quality [5, 51] and clean speech [52, 53].
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3.4 Importance Weighting in GMM Based Synthetic De-
tectors

An overview of the proposed system is shown in Fig. 12. Mel-frequency cepstral

coefficients (MFCC) are first extracted from the speech utterance. Then, the feature

vectors are grouped together into J groups. In one approach, vectors that are aligned

with the same Gaussian component of a GMM are grouped together. In another

approach, feature vectors that belong to the same phoneme or sound class constitute

a group. Details of grouping are described in the next section.

Utterance (u)

MFCC
extraction

Feature
Grouping

LLRGroup-1

LLRGroup-2

LLRGroup-J

Score
Fusion

ln(N1+1)
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Figure 12: Overview of the proposed synthetic speech detectors.

After grouping, log-likelihood ratio (LLR) detection is done for each group of

feature vectors. To compute LLR, a GMM is trained for natural speech and a GMM

is trained for synthetic speech. Same GMMs are used for all J groups. Once the score

of each group is computed, score fusion is done using a logistic regression function to

compute the final score S(u). A hard threshold is used to compute the final decision.

In the baseline detector, which does not use any grouping, given an utterance u,

assuming independent speech frames

LLR(u) =
1

N

N∑
i=1

log(xi|Λnat)− log(xi|Λsyn), (20)

where N is the total number of frames, xi is the feature vector for the ith frame, Λnat
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is the canonical model of GMM for the natural speech, and Λsyn is the canonical

model of GMM for the synthetic speech. The final decision is done using a hard

threshold for LLR(u).

In the proposed approach, the decision is based on the utterance score

S(u) = Φ(S1, S2, ..., SJ) (21)

where Φ is a nonlinear function and score Sj for each group j is

1

Nj

Nj∑
i=1

log(x
(j)
i |Λnat)− log(x

(j)
i |Λsyn). (22)

The rationale of this approach is to develop detectors that are focused on different

segments of speech and weigh each segment depending on its information content. For

example, nasals are typically not modeled well by vocoders because of the spectral

dip in nasals that are not modeled with an all-pole model. A detector that is focused

only on nasals can detect those artifacts. Similarly, synthetic speech may contain

some short-duration glitches that are not observed in natural speech. Even though

those artifacts may be detectable by some of the Gaussian components in synthetic

GMMs. when the frame likelihoods are averaged as in Eq. 20, those short-duration

events may not be detected because of the low weight they get and noise introduced

in other frames. Focusing on those highly informative Gaussians regardless of their

durations and assigning them high weight can improve the detection performance in

those cases.

3.4.1 Duration-based Weighting

Distribution of the frame-level LLR values approximately follow a Gaussian distribu-

tion in most utterances. By averaging the LLR scores, as done in Eq. 22, assuming

Gaussianity, a maximum-likelihood (ML) estimate of the mean is found. Considering

the fact that the ML estimate of the mean of a Gaussian has an estimation vari-

ance that is inversely proportional with the number of observations, reliability of the
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detector j increases when Nj increases. To take the estimation variance, hence the

uncertainty of the detector scores, into account, we propose the duration-weighted

score

S
′

j = ln(Nj + 1)Sj (23)

where ln(.) is the natural logarithm.

3.4.2 Feature Grouping Methods

Three feature grouping strategies are investigated. In the phoneme-based approach,

each phoneme constitutes a group. Thus, feature vectors that occur within a partic-

ular phoneme type in the utterance are grouped together.

One of the problems with the phoneme-based approach is that some of the ut-

terances provided in the challenge were short ( 2-3seconds) which means that many

of the phonemes were not observed in those cases. Because broad acoustic-phonetic

sound classes share similar acoustic properties, we hypothesized that if a system per-

forms poorly in synthesizing a phoneme, it will most likely perform poorly for the

other phonemes that are acoustically similar. Thus, to make more data available for

each group, a class-based approach is used for grouping in the second approach. In

the class-based approach, five sound classes are used: vowels, nasals, glides, stops,

and rest. The rest class contains all phonemes that do not belong to the other four

classes.

The phoneme- and class-based methods are good at detecting artifacts that occur

in relatively long segments. However, they are not designed for detecting sudden

glitches that can easily occur with unit selection systems or some of the voice conver-

sion systems. Location of those glitches are random for the most part and they may

not be detected with detectors that are focused on long-duration segments.

To address the issue of short-duration artifact detection, we propose Gaussian-

based grouping where each frame in the utterance is first aligned with the GMM of
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natural speech. Then, frames that are aligned with the same Gaussian are grouped

together. This approach allows detection of frame-level artifacts and assign them

high weight even though they may occur infrequently in the utterance.

3.4.3 Experiments

The synthetic speech detectors were trained with 19 Mel-frequency cepstral coeffi-

cients (MFCCs) together with the delta and delta-delta features. In short-time anal-

ysis, frame length was 25msec and frame rate was 10msec. Bigaussian voice activity

detection (VAD) was used where energy of the speech and noise frames are modeled

with single Gaussians and likelihood ratio detector is used to detect speech frames.

The baseline synthetic speech detector had a 512-component GMM to model nat-

ural speech. Similarly, synthetic speech was modeled with 512-component GMM.

For natural speech, GMM training was initialized using k-means clustering. The

GMM for synthetic speech was adapted from the GMM of the natural speech using

a maximum a posteriori (MAP) approach. Experiments with synthetic speech GMM

that was trained independent of the natural speech GMM were also performed for

comparison.

The phoneme-based approach requires a phoneme recognizer since the transcrip-

tions of the challenge data were not available. The Hungarian phoneme recognizer

[54] was trained with WSJ-CAM database and used here for phoneme recognition. A

total of 37 phonemes were used. Outputs of the phoneme recognizer were mapped to

sound classes and used in sound-class based detector also.

The spoofing challenge database was used for training, development and eval-

uation of all systems2. The BOSARIS toolkit [55] was used to train the logistic

regression algorithm that was used for fusing the scores of detectors.

2We did not participate officially in the challenge because we took part in generating some of the
spoofing material.
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3.4.4 Results and Discussion

Table 13: Performance of the baseline and proposed detectors in terms of equal-
error-rates (EERs) for the development and evaluation data. Results are presented
without duration-weighting. S1, S2, and S5 systems use voice conversion (VC). S3 and
S4 systems use HMM-based synthesis. Other systems are unknown. Best performing
algorithm for each attack type is shown in bold.

Normal
LLR Logistic Regression

Direct Adapt Class Phone Gauss Fusion

D
ev

el
op

m
en

t S1 (VC) 0.47 0.76 0.68 0.69 0.47 0.41
S2 (VC) 10.24 5.12 3.37 3.41 1.89 1.83
S3 (HMM) 0.07 0.07 0.03 0.09 0.20 0.17
S4 (HMM) 0.04 0.09 0.05 0.03 0.25 0.20
S5 (VC) 4.63 3.04 2.78 2.86 1.72 1.57
Total 4.21 2.42 1.92 1.77 1.17 1.11

E
va

lu
at

io
n

S1 (VC) 0.54 0.57 0.55 0.56 0.48 0.41
S2 (VC) 9.24 4.47 2.78 2.71 1.89 1.75
S3 (HMM) 0.07 0.02 0.04 0.04 0.18 0.12
S4 (HMM) 0.07 0.03 0.05 0.05 0.17 0.11
S5 (VC) 3.95 1.72 1.99 2.14 1.48 1.36
S6 3.49 1.35 1.39 1.40 1.09 0.98
S7 1.91 1.65 0.84 0.87 0.75 0.63
S8 0.46 1.03 0.76 0.85 0.83 0.70
S9 0.43 1.26 0.93 1.02 0.76 0.65
S10 27.24 29.62 32.14 33.59 30.05 29.81
Known 2.77 1.36 1.08 1.10 0.84 0.75
Unknown 6.70 6.98 7.21 7.54 6.70 6.55
All 4.74 4.17 4.15 4.32 3.77 3.65

Experimental results for the development and evaluation data are shown in Ta-

ble 13 and Table 14. The baseline LLR detector is trained with two different methods.

In one approach (LLR-noAdapt), two independent GMMs are trained for the natural

and synthetic speech. In the second approach (LLR-Adapt), a GMM is trained for

natural speech and then adapted to the synthetic speech using MAP adaptation.

The LLR-Adapt system performed better for known conditions while LLR-noAdapt

performed better for unknown conditions. Thus, even though LLR-Adapt performed
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Table 14: Performance of the duration-based weighted detectors in terms of equal-
error-rates (EERs) for the development and evaluation data. Results are presented
with duration-weighting. S1, S2, and S5 systems use voice conversion (VC). S3 and
S4 systems use HMM-based synthesis. Other systems are unknown. Best performing
algorithm for each attack type is shown in bold.

Duration-based weighted
Logistic Regression

Class Phone Gauss Fusion

D
ev

el
op

m
en

t S1 (VC) 0.54 0.54 0.51 0.46
S2 (VC) 2.99 3.13 2.26 2.20
S3 (HMM) 0.03 0.09 0.18 0.11
S4 (HMM) 0.03 0.07 0.20 0.13
S5 (VC) 2.65 2.72 1.59 1.47
Total 1.67 1.66 1.19 1.14

E
va

lu
at

io
n

S1 (VC) 0.51 0.50 0.46 0.42
S2 (VC) 2.63 2.44 2.15 2.03
S3 (HMM) 0.02 0.03 0.15 0.09
S4 (HMM) 0.03 0.04 0.13 0.08
S5 (VC) 1.89 1.97 1.50 1.40
S6 1.31 1.24 1.13 1.01
S7 0.85 0.94 0.70 0.65
S8 0.71 0.87 0.79 0.70
S9 0.94 1.02 0.68 0.64
S10 31.39 32.25 29.88 29.78
Known 1.02 0.99 0.88 0.81
Unknown 7.04 7.27 6.64 6.55
All 4.03 4.13 3.76 3.68

better than LLR-noAdapt on average, it could not generalize as good as the LLR-

noAdapt. This result indicates that, during GMM training, some of the novel clusters

in the synthetic data that were useful for ambiguity detection, could not be modeled

well with adaptation of GMM for natural speech.

Gaussian-based system performed better than class- and phoneme-based methods

both for known and unknown conditions. In particular, Gaussian-based approach

performed better for the S1, S2, and S5 methods, all of which are voice conversion al-

gorithms. Unlike the phoneme- and class-based systems, Gaussian-based detector can

learn to detect short-duration artifacts. Thus, the presence of short-duration acoustic

distortions seems to be more informative for detecting voice conversion attacks.
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Class-based system performed better for S3 and phoneme-based system performed

better for S4 attack methods. Both S3 and S4 are generated with HMM-based TTS.

Unlike the voice conversion systems, HMM-based TTS systems generate smooth tra-

jectories. Thus, sudden acoustic distortions are rarely generated with those systems.

In this case, overly-smooth longer segments seem to be more informative for detection.

Small distortions in a long segment can be detected well with class- and phoneme-

specific detectors that are focused on particular segments. However, Gaussian-based

approach is not expected to be as successful with this type of attack because speech

frames are generated with a maximum-likelihood approach in HMM-based synthesis.

Thus, the parameter generation algorithm is designed to generate high likelihoods

for each frame and individual Gaussians are not expected to detect the artifacts in

features.

Duration-based weighting consistently improved class- and phoneme-based per-

formance. However, for the Gaussian-based approach, performance improved slightly

for the unknown systems and degraded slightly for the known systems. We believe

there are at least two major factors behind this result. Firstly, because an impor-

tant strength of the Gaussian-approach is its ability to detect short-time artifacts,

weighting with duration can hurt its performance. Secondly, duration of observed

Gaussians can change significantly depending on the spoofing system used which can

increase the variability of features and make the detection task harder. Because ASR

systems take phoneme durations into account during recognition, that effect is not as

important in the phoneme- and class-based methods.

The core hypothesis in the proposed system was that different Gaussians, phonemes,

sound-classes contribute different amounts of information for synthetic speech de-

tection. To test that hypothesis, experiments were performed with each Gaussian,

phoneme, and sound-class separately. For the Gaussian case, results are shown in

Fig 13, for the phoneme case, results are shown in Fig 14. In both cases, large
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Figure 13: Detection performance of each Gaussian component versus its logarithm
of number of occurrence in the development utterances is shown.

variation in detection performance can be observed which verifies our hypothesis.

Detector results for the class-based system is shown in Table 15. Performance

of each class is significantly different from each other and they change substantially

depending on the attack method. Also note that, even though vowel class is observed

more than other classes, their performance is better than other systems only for HMM-

based TTS attacks. For the voice-conversion attacks, short-duration stop sounds

become more informative even though they occur far less frequently than the vowels.

Fig. 13 shows the correlation of number of occurrences vs EER computed with each

of the 512 Gaussians. Even though EER and durations have a negative correlation,

the pattern is weak and does not impact the overall detector performance significantly.
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Figure 14: Detection performance of each phoneme versus its logarithm of number of
occurrence in the development utterances is shown. Phonemes that are in the same
sound-class are shown with the same color and shape.

This result is inline with the finding that duration-based weighting does not improve

the performance of the Gaussian-based system.

The effect of duration is more significant with phoneme-based detector compared

to the Gaussian-based detector. Duration versus EER is shown in Fig. 14 where a

stronger negative correlation is observed compared to the Gaussian case especially

for the vocalic sounds. The correlation disappears for some of the highly informative

stop and fricative sounds.

The proposed detectors performed substantially better than the baseline detectors

for known attack types. However, the difference is not substantial for the unknown
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Table 15: Performance of each of the sound-class detectors measured in terms of
equal-error-rates (EERs) for the development data. Frequency of observation in de-
velopment utterances is also shown for each class type.

Class S1 S2 S3 S4 S5 All Freq.
Vowel 3.52 13.30 0.65 0.74 7.26 6.35 0.542
Nasal 8.90 20.82 5.09 5.86 13.79 11.62 0.156
Glide 9.33 21.69 4.10 4.44 15.92 12.15 0.118
Stop 2.24 4.78 0.70 0.78 6.77 3.68 0.112
Rest 8.97 10.58 3.32 3.78 16.08 9.43 0.072

attack types. To further boost the performance, the detectors were fused with a

second stage of logistic regression algorithm. The fusion improved performance both

for known and unknown attack types which indicate that the detectors generate

complementary information.
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CHAPTER IV

CONCLUSION

In this work, effective techniques for spoofing a state-of-the-art speaker verification

system are proposed. Even though the baseline SSS system was successful at spoofing

the verification system, its performance dramatically dropped when an SSD was used

as a countermeasure. We proposed linear regression (LR), hybrid synthesis (HYB),

and their interpolation (HYB+LR) to spoof the SSD while further improving the

effectiveness of spoofing at the verification system.

The proposed systems substantially outperformed the baseline SSS system in

spoofing the SSDs both in matched and mismatched conditions. LR approach out-

performed the hybrid approach when 1 or 2 utterances were available. However,

with increasing data sizes, HYB approach outperformed the LR approach. HYB+LR

approach worked better than both HYB and LR systems.

SSS systems are known to generate smooth trajectory and it was interesting to

investigate how much that helps SSDs detect synthetic speech. Indeed, delta features

were found to be useful for detection under matched conditions for the SSS and

hybrid systems. However, the LR system was found to be easier to detect when the

delta features were missing which is related to rapid frame-to-frame variations that

is generated with the LR approach which confused the SSDs. Under mismatched

conditions, SVM-based SSD was found to be more reliable without the delta features,

but it is still worse than GMM-based SSD.

SSS system was found to be effective at spoofing the voice verification system.

However, hybrid and LR algorithms were substantially more effective than the SSS

approach. Hybrid algorithm substantially outperformed both SSS and LR algorithms.
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HYB+LR algorithm had comparable performance to the hybrid algorithm. Even

though LR algorithm creates more natural but less target-specific features, it still

performed better than the SSS algorithm and did not substantially degrade the per-

formance of the hybrid algorithm while spoofing the verification system.

In the combined system, HYB+LR algorithm performed significantly better than

all other systems. This is partly related to its high performance at spoofing the

SSD and the voice verification system. Moreover, calibration of the SSD with SSS-

generated data, which significantly hurt its performance when tested with HYB+LR,

also caused significant increase in the false alarm rate with the HYB+LR algorithm.

In the future work, nonlinear regression techniques, such as kernel regression, will

be investigated to further boost the spoofing performance. Fused with the hybrid

approach, we expect more sophisticated regression techniques to be even harder to

detect and more successful at spoofing the SSD and the verification system.

Moreover, substantial performance gains are obtained when the verification system

is trained with mixed noise conditions at and above 10 dB and noise is intentionally

added to synthetic speech. We also proposed a synthetic speech detector that is found

to have excellent performance in noisy conditions.

The proposed detector did not perform as well when different SSS vocoders are

used for training and testing the detector. In the future work, we will focus increasing

the robustness of the detector to mismatch in SSS techniques.

In this work, we also have presented the first version of spoofing and anti-spoofing

corpus, which is becoming a standard dataset for spoofing and anti-spoofing research.

To set an initial benchmark, we have provided spoofing results when attacking two

speaker verification systems. Without any countermeasures in place, these verification

systems are extremely vulnerable to spoofing attacks from many of the nine spoofing

methods included in SAS.

Furthermore, We have investigated a multi-detector approach for counterspoofing
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where each detector is focused on a particular acoustic segment. The Gaussian-

based detector performed better in voice conversion attacks. Phoneme- and class-

based detectors performed better for HMM-based synthesis attacks. Duration-based

feature normalization improved the phoneme- and class-based systems but not the

Gaussian-based system. The proposed systems performed substantially better than

the baseline system in known attack types. In unknown attacks, the improvement

was not substantial. Fusing the scores of proposed detectors further improved the

performance in both known and unknown conditions.

Our goal was to take a commonly used likelihood ratio detector and use it in a

segment-specific manner. The hypothesis here was that different segments contribute

different amounts of information and their scores should be weighted accordingly.

Results confirmed our hypothesis. Because we did not assume any prior information,

we have used the commonly used MFCC features. In the future work, we will inves-

tigate a richer set of features and other classifiers such as SVM to further improve

the detection performance.
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