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Department of Computer Science
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Özyeğin University

Assoc. Prof. Pınar Yolum
Department of Computer Engineering
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ABSTRACT

Policies play an important role in autonomous multi-agents systems where each agent

aims to achieve its own goals. Policies and related mechanisms allow authority or so-

ciety to regulate the actions of agents to prohibit malicious and undesirable activities.

Without policies, society could be harmed by irresponsible and malicious activities of

its members. On the other hand, reasoning with policies is not trivial; it requires ex-

tensive knowledge about the environment. If the knowledge is incomplete or missing,

reasoning with policies may not be possible. In this thesis, we propose a proactive

approach for gathering information to reason with policies. While our approach can

be used in various settings, we provide two case-studies; one in social networking

domain and the other in on-line advertisement domain. Through experiments we

demonstrated that our approach allows high rate of success during policy reasoning

when the knowledge bases is not complete.
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ÖZETÇE

Sistem politikaları her birimin kendi hedeflerine ulaşmaya çalıştığı çoklu etmen sistem-

lerinde önemli bir rol oynamaktadır. Politikalar ve ilgili mekanizmalar birimlerin kötü

niyetli ve istenmeyen faaliyetlerini engellemek için uygun yetki ya da ortamı sağlarlar.

Politikalar olmadan, üyelerinin sorumsuz ve kötü niyetli faaliyetlerinden sistemler

zarar görebilir. Politikaların uygulanabilmesi için ortam hakkında geniş bilgiye sahip

olunması gerekir. Eğer ortam hakkında bilgi yeterli değil ise, politikaların başarılı bir

şekilde uygulanması mümkün olmayabilir. Bu tezde politikalarin başarıyla uygulan-

abilmesi için bilgi toplamaya yönelik proaktif bir yaklaşım öneriyoruz. Bu yaklaşımın

uygulanabilirliğini göstermek için birisi sosyal ağ alanında, diğeri ise çevirimiçi reklam

alanında olmak üzere iki örnek ele alıyoruz. Yaptığımız testler ile yaklaşımımızın bilgi

tabanının eksik olduğu durumlarda politika uygulanabilirliğini arttırmada yüksek

oranda başarı sağladığını gösteriyoruz.
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CHAPTER I

INTRODUCTION

Policies are an important part of human societies. Legislations, traffic regulations,

health and safety rules are all examples of policies we have. Policies regulate our

actions through permissions, prohibitions, and obligations. For instance, the following

simple policies in health and safety domain may be life-saving: i) people are prohibited

to enter a coal mine if the oxygen level is low, ii) if methane level is normal or low,

miners are permitted to enter to a mine, iii) if methane level is high, everyone in a

mine are obliged to leave the mine. On the other hand, without information about

gas levels in a mine, these policies are useless.

Policy makers create policies to regulate systems. However, policies could not be

in effect without the necessary information. For instance, health and safety policies

above require measurements of oxygen and methane levels in coal mines. If the

knowledge base is missing necessary information, either policy reasoning would be

prematurely failed or simply policies would not be effective.

Most of the policy reasoning frameworks are based on Logic Programming and

adopt Closed World Assumption (CWA). In these frameworks, when something is

not known, it is assumed false. This is called negation by failure. For instance, if

the oxygen level is not known, every proposition related to oxygen levels are assumed

false. Therefore, people do not have to leave a coal mine if the oxygen level in the

mine is unknown; this is simple because of the fact that the preconditions of policies

related to oxygen level fail. It is not surprising that CWA misleads policy reasoning

by using negation by failure.

There are other policy reasoning approaches based on Open World Assumption
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(OWA). Unlike CWA, reasoning with OWA does not assume that unknown infor-

mation is false; instead it considers it as unknown. Therefore, the truth value of a

boolean expression can be true, false, or unknown. For instance, in our previous ex-

ample, if the oxygen level is not known, every proposition related to oxygen levels are

assumed unknown. Therefore, we cannot reason with the policies related to oxygen

level; these policies could not be in effect due to missing information.

In this paper, we propose a novel approach to intelligently gather missing infor-

mation for policy reasoning. Our approach uses Abductive Reasoning to determine

missing information to reason with a specific policy. Then, we determine which infor-

mation services should be contacted to gather missing information. For this purpose,

we use HyperCat [1], which is a state-of-the-art, open, lightweight JSON-based hy-

permedia catalogue format developed specifically for Internet of Things (IoT). There

may be more than one service providing the same information with different cost

and precision. Therefore, our approach selects the best information services within a

given budget to increase precision.
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CHAPTER II

RELATED WORK

In this section, we overview the existing work related to our research presented in

this paper.

2.1 Policy Representation

There are several policy frameworks proposed in the literature and implemented for

practical use. A significant portion of them are based on PCIM (Policy Core Infor-

mation Model) developed jointly by IETF and DMTF. It provides the policy-driven

management consists of the following components: PR (Policy Repository), PDP

(Policy Decision Point), and PEP (Policy Enforcement Point). In these frameworks,

administrators define and edit policies in the form of IF (Condition) THEN (Action)

rules, where conditions and actions are described using propositions and boolean ex-

pressions. Existing policy representations languages such as the Policy Description

Language (PDL) of Bell labs and the OASIS standard XACML (eXtensible Access

Control Markup Language) are based on rules in this form. Many commercial policy

frameworks such as IBM Tivoli and HP Openview PolicyXpert are using XACML to

represent policies. In this work, we also assume that policies are represented using IF

(Condition) THEN (Action) rules. This allows us to focus on our main contribution –

information gathering for policy reasoning. Although most of the commercial policy

frameworks are based on simple if-then rules, more expressive policy languages are

proposed in the literature.

Ponder [2] is a declarative and object-oriented policy language from Imperial Col-

lege. It uses a propositional logic programming to declare role-based access control

policies. There are five types of policies in Ponder: Authorization policies, Filter
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Policies, Refrain policies, Delegation policies, and Obligation policies. Ponder2 [3] is

an extension of Ponder with domain service that provides a hierarchical structure for

managing objects.

Rei [4] is a policy language based on a subset of Web Ontology Language (OWL-

Lite) and Prolog. It allows logic-like variables to be used while describing policies.

This gives it the flexibility to specify relations like role value maps that are not directly

possible in OWL. The use of these variables, however, makes Description Logics (DLs)

reasoning services (e.g., static conflict detection between policies) unavailable for Rei

policies.

KAoS [5] is, probably, the most developed language for describing policies that

are built upon Web Ontology Language (OWL). KAoS was originally designed to use

OWL-DL to define actions and policies. This, however, restricts the expressive power

to DL and prevents KAoS from defining policies in which one element of an action’s

context depends on the value of another part of the current context. KAoS distin-

guishes between (positive and negative) obligation policies and (positive and negative)

authorization policies. Authorization policies permit (positive) or forbid (negative)

actions, whereas obligation policies require (positive) or do not require (negative) ac-

tion. Actions are also the object of a KAoS policy, and conditions on the application

of policies can be described (context), although the subject (individual/role) of the

policy is not explicit (it is, however, in Rei).

OWA and CWA lead to two different approaches in evaluating implicit knowledge.

In the open-world assumption, we can not assume some information is false because

it does not exist in our knowledge base. In CWA, the main assumption is that the

unknown knowledge is false, which is called negation by failure. Unlike the CWA,

OWA assumes knowledge base is incomplete. The following example demonstrate the

fundamental difference between these two approaches:

• Premise - ”John is watching TV”
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• Premise - ”Mary is watching TV”

• Question - ”Is Bill watching TV?”

• CWA answer - No.

• OWA answer - Unknown.

In this work, we argue that considering unknown data as false may damage the

governance of system. Therefore, our approach gathers missing information for a

more complete policy reasoning. To clarify our approach, we represent our policies in

the form of Horn clauses, which are similar to Prolog clauses.

Logic programming languages, such as Prolog, are based on CWA and uses nega-

tion by failure. Most of the existing policy languages are based on logic programming,

therefore they use negation by failure during policy reasoning. Ponder and Rei are

examples of such policy languages. On the other hand, DLs is a decidable fragment

of First-Order Logic (FOL) and based on OWA. Policy languages such as KAoS and

OWL-Polar are using OWL, which is underpinned by DLs. If precondition for a pol-

icy contains some unknown predicates, a policy reasoner using OWA cannot conclude

that whether the policy is activated or not. In practice, the outcome would be the

same, the policy would not get activated due to lack of knowledge.

Policies are important to protect users’ privacy in online social networks. Peo-

pleFinder, a location sharing platform, is an example for allowing its users to define

access policies. Users can select when and who can see their shared location [6]. Sadeh

et al.. indicates in the research that more research should be conducted in order to

understand users’ need when they are specifying their access preferences.

In dynamic systems like social networks, information come in to play in different

forms. Policies depend on the static nature of the content but the information needs

to be protected is not necessarily represented in its own form; it can be inferred from

another information. Klemperer et al. have researched a new approach for access
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controls for photo sharing [7]. They used tags, that are usually used for organisation,

to define access control policies.

2.2 Abductive Reasoning

Abduction is the process of finding statements that should be added to a knowledge

base to entail a specific conclusion. It has applications especially in diagnosis domain.

For instance, a doctor can reason about a disease based on the symptoms of a patient

using abductive reasoning. D. Poole presents a framework [8] that uses Horn-clause

abduction and assigns probability value to hypotheses. It provides a combination

between logical and probabilistic reasoning and provides an evidence to be used for

abduction and assumption-based reasoning.

PRISM (PRogramming In Statistical Modeling) [9] is language based on Prolog

that subsumes several statistical tools to support probability theory and combines it

with learning. The system uses abduction to find distributions of explanations for

facts. It consists of three stages, namely sample execution, probability calculation

and learning. An approach [10] uses PRISM to implement an efficient system to-

ward a statistical modelling. They make use of PRISM’s naive learning algorithm

and improve it in the means of explanations and compilation to support real-world

applications.

The integration of abduction and induction is widely investigated concept in de-

cision making process. Peter Flach et al. [11] introduced a knowledge development

framework that uses abduction and induction integration. They use a cycle of inte-

gration that uses abducible predicates – set of predicates that are allowed to appear in

hypotheses– and abduction to transform observations to informations and use these

informations as input to induction. Induction tries to create observable predicates

from abducible predicates and with this learned information cycle repeats.

6



Another approach Abductive Concept Learning [12] integrates abduction and in-

duction to create a learning framework. It extends Inductive Logic Programming by

considering background and target theories as abductive theories. The framework

also provides learning with incomplete knowledge base by exploiting abduction’s hy-

pothetical reasoning.

O. Ray identifies incompleteness of ILP (Progol System [13]) proof procedure and

proposes a new approach called Hybrid Abductive Inductive Learning (HAIL) [14]

that integrates abduction and induction within a learning cycle. It overcomes the

incompleteness by computing multiple clauses in response to single seed example and

by finding explanations that can not derived by Bottom Generalisation [15].

DAREC [29] is a distributed multi-agent abductive policy reasoning framework

with arithmetic constraint support. It allows collaborative abductive reasoning be-

tween decentralised agents. The information (assumptions and constraints) is shared

between agents and checked for global consistency before policy reasoning.

2.3 Information Services

In order to gather missing information for policy reasoning, we may discover and

query information services using a Service-Oriented Architecture (SOA) perspective.

For this purpose, we use a dynamic registry service that stores meta-information

about services and serves as a registry at run time.

UDDI (Universal Description, Discovery and Integration) [16] is a standardised

directory that provides listing for applications to describe their services and methods

(APIs) required to work with. UDDI provides interoperable, foundational infras-

tructure using common industry standards, such as XML, XML based Web Services

Description Language (WSDL), and SOAP. UDDI utilises SOAP specification for col-

laboration between web services. SOAP1 uses application layer protocols (e.g HTTP,

1http://www.w3.org/TR/soap

7



SMTP) to provide exchanging structured data between applications. UDDI uses

WSDL interface for web services to describe their functionality and protocols in or-

der to interact with them.

Another service catalogue is WSO2 Governance Registry2 which provides SOA

integrated registry database that stores content repository and governance frame-

work. It’s a complete tool for a SOA platform as it provides a framework that you

can manage contents/services. WSO2 Governance Registry stores service informa-

tion using WSDL, XML and WS-Policy. WebSphere Application Server (WAS)3 and

WebSphere Message Broker (WMB) provide a similar services that can be used for

SOA environment [17]. WAS is actually a framework that hosts Java based web appli-

cations. WMB may be used for application connectivity and data exchange between

applications.

The service registries above are mostly XML based frameworks. XML is well

formed markup language extensively used to store and transport data. However,

web services are migrating to the JSON based APIs rather then using XML based

APIs. As an example, Twitter has stopped support on XML based streaming API

in 2010 and migrated to JSON. JSON is considerably easy to be read by human and

easy to generate and parse by computers4. There are many case studies regarding

performance differences of XML and JSON [18]. As we implement our framework in

JS and JSON provides significant performance boost, we will use a registry service

that is based in JSON.

HyperCat [1] is a JSON-based RESTful hypermedia catalogue server mainly de-

veloped to solve Internet of Things (IoT) interoperability. A catalogue in HyperCat

server is basically an array of URIs each annotated with metadata. Services can

register to catalogues and indicate what data they can provide. Most importantly,

2https://docs.wso2.com/display/Governance452
3http://www.ibm.com/software/websphere
4http://json.org/
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Table 1: Metadata from HyperCat Specification

rel meaning value

urn:X-tsbiot:rels:hasDescription:en Resource has a
human readable de-
scription in English.
Mandatory.

string

urn:X-tsbiot:rels:isContentType Data provided by re-
source is of given
type. Mandatory if
resource is a cata-
logue.

“application/
vnd.tsbiot.catalogue+json”
for catalogues, else
RFC2046 MIME type
as JSON string (e.g.,
“text/csv”)

urn:X-tsbiot:rels:hasHomepage A reference to a hu-
man readable web
page concerning the
resource.

URL as a JSON string

urn:X-
tsbiot:rels:containsContentType

The catalogue con-
tains resources of
given content type.
Only meaningful
for metadata ob-
jects contained
by or pointing to
catalogue objects.

RFC2046 MIME type as
JSON string (e.g., “tex-
t/csv”)

urn:X-tsbiot:rels:supportsSearch This catalogue sup-
ports a search mech-
anism. Only mean-
ingful for metadata
objects contained by
or pointing to cata-
logue objects.

“urn:X-
tsbiot:search:simple” if
supports simple search

9



there is no limitation in defining metadata properties and there is no fixed categories

and labels. Developers may choose and create any property that would suit their

needs. So that, services can indicate any information to let other services know.

However, to empower interoperability, few commonly used metadata properties are

defined in the HyperCat specification5. Table 1 represents the metadata defined in

this specification.

Pathfinder6 is a simple HyperCat catalogue server for IoT resources and clients. It

supports read, create, modify and delete operations in catalogues with basic authen-

tication. Pathfinder doesn’t provide or host any user applications, it only provides

a registry hub for user applications to share their APIs for other clients. We use

Pathfinder as our database for external services to register and share their APIs with

certain metadata specifications.

5http://wiki.1248.io/doku.php?id=hypercat
6http://wiki.1248.io/doku.php?id=pathfinder
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CHAPTER III

SYSTEM OVERVIEW

We show an overview of our framework in Figure 1. It is composed of five main

components. Policy store is used as a database for existing policies in the system.

Knowledge Base represents the information known at the moment. Policy Reasoner

uses knowledge base and policy store to reason with policies. At the heart of policy

reasoner, we have Abductive Reasoner that detects missing information necessary for

policy reasoning. Once missing information is determined, it is reported to Infor-

mation Gatherer (IG), which contacts a service registry – HyperCat Server – to get

meta-data about available services that provide missing information.

Meta-data related to a service contains which information the service provides,

its cost, and precision advertised by the service. Based on this, IG decides which

services to query to get information. For instance, in order to learn if the proposition

methanLevel(mine3,high) –methane level is high in mine3– is true, it may query a

gas sensor in the mine. The answer of this query may be a single probability value

for the proposition’s truthfulness or a beta distribution that indicates the likelihood

of each such probabilities [19]. If the precision of the sensor is low, IG may query

more than one sensor and fuse their answers. Lastly, IG updates the knowledge base

with the gathered information.

Selection of information services to query may based on their precision. However,

the advertised precisions may not be correct. Initially, IG uses the advertised preci-

sions, but it models the actual precision of these services over time using statistical

methods in order to improve service selection.

11
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Figure 1: System architecture.
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CHAPTER IV

POLICY REPRESENTATION

We represent policies as a set of simple horn clauses. Horn clauses are the basis of logic

programming, where clauses are defined in the form of implication: (p∧q∧· · ·∧t)→ u.

Therefore, in this work, we use Prolog to define policies. Prolog is a declarative logic

programming language which consists of relations (clauses) for program logic and

queries for execution. It is created based on procedural interpretation of Horn clauses

and extended by addition of negation as failure. A clause in Prolog is defined in the

form of:

1 Head :- Body

Head and Body in clauses are defined using terms. A term could be atoms, numbers,

variables or compound terms.

Atom is a name used to refer a static object. Atom must start with lower-case letter.

E.g., john, x, atom.

Number is an integer or float numeral.

E.g., 2015, 1, 5

Variable starts with an upper-case letter or an underscore.

E.g., Var, var2, X

Compound term is composed of an atom and a set of terms in parenthesis, separated

by commas.

E.g., birth day(john,1945), friends(marry,sally)

If a clause is defined with a Body, it represents a Rule and a Head is true only if

Body is true. If Body is not defined, it denotes a Fact. Facts can be represented

as follows:

13



1 human(john).

2 coalMine(mine3).

3 in(tunnel2 , mine3).

4 in(john , tunnel2).

5 methanLevel(mine3 , high).

We can also define some rules like the ones below:

1 in(A,C) :- in(A,B), in(B,C).

2 mustLeave(P,M) :- human(P),

3 coalMine(M),

4 in(P, M),

5 methanLevel(M,high).

We formalize policies using such rules. For instance, the rule above represents the

policy: “a human in a mine with high methane level must leave the mine”. If we

query Prolog engine with mustLeave(P,M), it returns mustLeave(john,,mine3) – john

must leave the mine.

In our implementation, we use tuProlog [20], which is a Java-based Prolog in-

terpreter designed around a minimal core and it can be dynamically configured by

loading/unloading libraries. The tuProlog engine is also designed to be exploited

straight from Java. We use tuProlog’s ability to support multi-paradigm program-

ming between Java and Prolog to assert facts and rules in order to populate and

update our knowledge base and do policy reasoning in runtime.
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CHAPTER V

ABDUCTIVE REASONER

Abduction is an important reasoning service which provides possible explanations (or

hypotheses) for observations that are not entailed by the current knowledge. In this

section, we briefly formalize the notion of abduction.

An abduction problem in our work is a tuple (K,H, A), where K is a knowledge

base, called the background knowledge; H is a set of predicates, which are called

abducibles; and A is a grounded predicate such that K does not entail A, i.e., K 6|= A.

A solution to an abduction problem P = (K,H, A) is a set S = {C(t1, . . . , tn) | C ∈

H} of assertions such that:

1. Each ti is a ground term, e.g., literal, object etc.

2. The knowledge base (K ∪ S) is consistent,

3. (K ∪ S) |= A

The most state-of-the-art abduction systems [21, 22] are built on Prolog engines

that work on plain datalog programs. Du et al. described a procedure to translate

a datalog program into a Prolog program. That is, using a chain of transformation,

we can convert datalog knowledge base into a Prolog program K. Then, we can solve

the abductive reasoning problem using K and existing abductive reasoning methods

for plain datalog programs [23].

Figure 2 shows a simplified Prolog program for abductive reasoning over K. This

simple program is composed of six rules. Using only six rules, this program defines

the predicate abduce(A,S), where A is an axiom such as mustLeave(P,M) and S

is a solution to the abduction problem (i.e., abductive explanation) computed by
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1. abduce(A,S):-
abduce(A,[],S).

2. abduce(A,S,S):-

holds(A),!.

3. abduce((A,B),S0,S):-!,
abduce(A,S0,S1),

abduce(B,S1,S).
4. abduce(A,S0,S):-!,

clause(A,B),

abduce(B,S0,S).
5. abduce(A,S,S) :-

member(A,S),!.
6. abduce(A,S,[A|S]):-

abducible(A),

checkConsistency([A|S]).

Figure 2: Simplified abductive reasoner for Prolog.

the program. For this purpose, it simply starts with an empty set of axioms as

shown in the rule 1 and populates it iteratively with the necessary assertions based

on other rules. The rule 2 guarantees that already entailed ABox axioms do not

appear in S. The rule 4 expands a complex ABox axiom into its components by

finding a clause in K so that the head of the clause unifies the axiom. The rule

5 prevents redundancies in the solution. The rule 6 expands an existing partial

solution by adding a new axiom if this axiom is an abducible and this addition does

not create an inconsistency. Abducibles correspond to H, i.e., the predicates that

we desire to appear in the solution. If a predicate does not appear in the head of

any clause in the Prolog knowledge base, then it should also be an abducible. We

may note that clauses in K may results in cycles. For instance, a Prolog clause

“human(X) : − hasParent(X, Y ), human(Y )” may lead to cycles. For the sake of

simplicity, we have not shown it in Figure 2, but we implemented rule 4 so that it

does not expand an axiom if this expansion results in a loop, instead this axiom is

added directly to the solution. In this way, we prevent infinite loops during abductive

reasoning.
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Let us show how abduction works through the previous simple example. In our

example, we have the following Prolog knowledge base.

1 human(john).

2 coalMine(mine3).

3 in(tunnel2 , mine3).

4 in(john , tunnel2).

5 in(A,C) :- in(A,B), in(B,C).

6 mustLeave(P,M) :- human(P),

7 coalMine(M),

8 in(P, M),

9 methanLevel(M,high).

10 methanLevel(M,high) :- hasMethanCon(M,X),

11 X > 0.05.

That is, we know that John is human in a tunnel, which is in a mine. We also

have a policy forcing people to leave a mine if its methane level is high. When

we run abduction with using the predicate abduce(mustLeave(john,mine3),S), the

algorithm returns S = {hasMethanCon(mine3, X)}. This means that we need to

know the methane concentration in air to determine whether the mine has high level

of methane or not. After having information, we can decide if John must leave the

mine.

As a result of abduction, we get a list of unknown assertions that are necessary to

reason with policies, e.g., methanLevel(mine3,high). The next step would be locating

information services that may provide the unknown information. In the next section,

we describe in detail how we use a service directory for this purpose.
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CHAPTER VI

SERVICE DIRECTORY

In this work, we used Pathfinder – HyperCat based catalogue server – as a service

directory. In HyperCat, metadata is used to describe services. Possible metadata

properties are listed in Table 1. Besides these mandatory properties, we also defined

custom metadata properties to represent service specific data that will be used in

service selection and information gathering. See Table 2.

Catalogue operations are handled with simple HTTP requests. To read a catalogue

in JSON format, GET request on the catalogue URL should be used. To create, insert

or update a catalogue item, JSON item object should be send to catalogue URL with

a POST request. To delete an item, a DELETE command should be requested with

a query parameter of “href” value of the corresponding item. Table 4 shows status

codes returned from server.

A catalogue is a JSON object that contains an array of metadata objects and list of

items which may also represent a catalogue. The “urn:X-tsbiot:rels:hasDescription:en”

and “urn:X-tsbiot:rels:isContentType” mandatory properties are used to define our

catalogue. After the creation of the catalogue, external services may register. We im-

plemented our own sample services to be able to demonstrate our framework as proof

of concept. These services are used to gather information to complete our knowledge

base. We register these services to the catalogues. A service description SD is an

8-tuple {L,D,R, T, I, V, C, P}, where L is the location of the information service, D

is the human readable service description, R is the format of the data provided by

information service, T is the type of information service it provides, I is the type of

the data that information service gets as input, V is the name of the variable that
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Table 2: Custom Metadata for Service Details

rel meaning value

urn:X-tsbiot:rels:informationType Data supported by
resource is of given
type

See Table 3

urn:X-tsbiot:rels:inputType Hypertext transfer
protocol supported
by service

RFC1945 type as string
(e.g., GET)

urn:X-tsbiot:rels:inputVariable Data provided to ser-
vice is of given type

We used URLs for inputs
in both our examples

urn:X-tsbiot:rels:precision Success rate of ser-
vice

Rate in form of number out
of 10

urn:X-tsbiot:rels:cost Value of service’s
cost

A number between 0 to 10.
10 being the most expen-
sive

Table 3: Possible Information Types for Services as used in each Example

Example type1 type2 type3

Example 1 location people

Example 2 keyword reference link

Table 4: Status Codes of HyperCat

Code Meaning

200 Success

201 Created

204 No response

204 Successfully Deleted (For DELETE
request)

400 Bad request (e.g., malformed input)

401 Unauthorised

404 Not found

409 Conflict (e.g., insert existing href)

501 Not implemented
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service uses to receive input, C is the cost of the service, and P is the advertised

precision of the service. Each information service type corresponds to an abducible

predicate, so we associate services with abducible predicates. Let us note that the

advertised precision and cost of the service may be misleading or vary over time.

Since, many services with different precision and cost may provide the same in-

formation, it is a challenge to select the best service(s) to contact to retrieve missing

information. In the following section, we describe how we effectively select services

in order to maximise success rate while minimising cost.
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CHAPTER VII

INFORMATION GATHERING

Once we determine the unknown information such as the methane concentration in

a specific mine, we may use one or more information services to gather the missing

information and resume policy reasoning afterwards.

We focus on efficiently selecting registered external services from our catalogue

server. As we described previously, the purpose of the catalogue server is to pro-

vide interoperability by using metadata properties. Information services use these

service description (SD) properties to register to the catalogue, regardless of their

implementation language or their platform. The selection of services determined by

the needs (information type), capabilities (input and output methods/formats) of

the user platform. If there are several suitable information services that can provide

the same necessary information, the best combination of services should be selected

among them in order to achieve efficient information gathering system. The cost and

precision values provided by services are helpful (but not necessarily accurate) indi-

cators of effectiveness of services. By using the cost and precision information, we

may effectively select services in order to maximise success rate of the system while

minimising the cost.

To achieve our goal, we use Knapsack problem [24] where a Hitch-hiker wants to

fill up his knapsack with objects in a way that will give him maximum comfort while

not exceeding his knapsack’s capacity. Each item has associated size (weight) and

value (profit). Sum of the item values that will be inside of the knapsack should be

maximised while sum of their weights must be less than or equal to knapsack capacity.
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Knapsack problem can be formulated as follows:

maximise
n∑

i=1

pixi

subject to
n∑

i=1

wixi ≤ c

(1)

(2)

where

xi ∈ {0, 1} (1 if ith item is selected, 0 otherwise)

pi = profit of ith item

wi = weight of ith item

c = capacity of the knapsack

n = number of items

(3)

The formulated problem is called 0-1 Knapsack Problem which consists of a

positive integer the capacity W and n items. The main characteristic of the problem

is that each item is restricted to be selected (xi) zero or one times. The Bounded

Knapsack Problem removes the selection restriction but limits the copies of each

item (xi) to a value ci : xi ∈ {0, 1, ..., ci}. The Unbounded Knapsack Problem

removes the limit on the copies of each item but restricts xi to be a non-negative

integer number : xi ≥ 0.

There are also many variations of the knapsack problems that occur by changing

parameters such as number of items (n), objectives (p and w) and knapsacks (W).

Our approach reflects the 0-1 Knapsack problem, we have services as items, cost

as weight, precision as profit, catalogue as item list, a cost limit as capacity and

each item is restricted to be selected zero or one times. Using dynamic-programming

approach, knapsack algorithm can be represented as follows;
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Algorithm 1 Knapsack Dynamic-Programming Solution

Require: The algorithm takes following inputs; W is the capacity (cost limit), n is
the number of items (services), and the two sequences p = {p1, p2, . . . , pn}
(precision) and w = {w1, w2, . . . , wn} (cost).

procedure Knapsack(p, w, n,W )
for w ← 0 to W do

c[0, w] = 0
end for
for i← 1 to n do

c[i, 0] = 0
for j ← 0 to W do

if w[i] ≤ j then
c[i, j] = max(c[i− 1, j], c[i− 1, j − w[i]] + p[i])

else
c[i, j] = c[i− 1, j]

end if
end for

end for
end procedure

Ensure: At the end of the function, c[n, W] contains the maximum weight that
knapsack can hold.
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By making use of Knapsack Algorithm 1, we find the list of the most efficient

services that would fit in the capacity and use them to retrieve missing information

necessary for policy reasoning as we mentioned in previous chapters. After we com-

pleted our knowledge base, we can reason whether our policy is violated or not. Next

sections will demonstrate case studies regarding service selection and evaluation.
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CHAPTER VIII

CASE STUDIES

In this section, we describe our implementation and approach through case studies.

8.1 Privacy Control in Social Networks

Let us assume that the user wants to hide his current location in a social networking

environment such as Facebook. Even though social networks provide access settings

for hiding location information, if user shares a photo that discloses his/her location,

his/her policy may be breached unintentionally. The user’s pictures should be exam-

ined before shared on-line to see if the user’s location can be inferred through these

pictures. If a picture reveals the sensitive location information, it may not be shared.

In our first case study, we allow user to select his/her location access policy (Figure

3).

Figure 3: Location Access Policy Settings

Based on the settings user selected, we define prolog facts with the information

that can be received from social network; in our case Facebook1. Facebook provides

who liked, commented or tagged-in informations of users’ photos. With these infor-

mation in hand, we have three options for location access policy:

Public: Everybody have access to user’s location. Therefore, no need to control

accessing location information through policy reasoning.

Friends: Only friends have access to user’s location. In this case, we may check what

1http://www.facebook.com
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are the possible ways for accessing users’ location. In Facebook, we need to check

whether any of the user’s friend interacted (liked, commented or tagged) with user’s

photo. Since, in Facebook, if anybody interacted with content, their friends also get

to see the content. Therefore, if location information can be inferred from photo,

third parties could see the location of user. Our knowledge base may encode these

rules of the Facebook system as follows:

Facebook domain Rule:

1 canAcess(X,C):-

2 hasFriend(X,Y),

3 canAccess(Y,C).

4

5 canAccess(Y,C):-

6 like(Y,C);

7 commentTo(Y,C);

8 taggedIn(Y,C).

User Policy Rule:

1 forbid_nonfriend_accessTo(User , Content):-

2 in(User , Content),

3 hasLocationInfo(Content),

4 nonFriend(User , X),

5 canAccess(X, Content).

As we mentioned, if user’s friend interacted with content and content contains location

information, access to the content should be restricted. However, by the nature of

social networks, even if there is no interaction, it doesn’t mean there will never be.

To prevent a violation in the future, the content should be closed to comments, likes,
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and tagging. Otherwise, as Facebook2 provides location information of photos, user’s

location can be accessed by others. On the other hand, even if Facebook doesn’t

provide the location information, we can not conclude that the content doesn’t contain

location information; it can be inferred from the content itself, it doesn’t need to be

represented explicitly.

A user may also want to restrict anybody to see his/her location information.

Therefore, we need a policy to forbid access to user’s content if content contains

location.

1 forbid_any_accessTo(User , Content):-

2 in(User , Content),

3 hasLocationInfo(Content).

As in the previous option, location information may not be provided by Facebook.

By using abductive reasoning and information gathering, we may reason about users’

privacy policies event though the knowledge base is incomplete.

8.2 Online Advertisement Control

Let us assume that a website owner has a policy on what kind of advertisements should

not be shown on his website, e.g., wants to block his competitors’ advertisements. A

policy reasoner working on the client side (i.e., web browser) should be used to reason

with the owner’s policies and block some advertisements. While doing so, the reasoner

may use several information services based on the content and the meta information

about the advertisements.

In this case study, web sites or content providers, by using our JavaScript library,

have options to select keywords, links and targeted audience age (Figure 4) to filter

ads displayed on their webpage. On the other hand, if web application provides age

of the current web user, we automatically filter the ads based on the age as well.

2https://developers.facebook.com/docs/graph-api
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Figure 4: Ads Display Policy Settings

Keywords: The user may select keywords to block any advertisement that con-

tains those keywords. For instance, considering the following Prolog rules (for-

bid ads displayIn) and facts defined by user’s settings (restrictedIn), an image con-

taining a smoking person (relatedTo(content, cigarette)) violates the first policy rule:

1 % A region on the web site can not contain ads related to

keywords restricted by user.

2 forbid_ads_displayIn(Content , Region):-

3 restrictedIn(X, Region),

4 relatedTo(Content , X).

5

6 % No region on the web site can contain ads related to

competitor of xyz.com

7 forbid_ads_displayIn(Content , _):-
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8 competitorOf(X,’xyz.com’),

9 relatedTo(Content , X).

10

11 % region0 on the web site cannot contain ads related to

food.

12 restrictedIn(food , region0).

13 % no region on the web site can contain ads related to

cigarette.

14 restrictedIn(cigarette , _).

15 % no region on the web site can contain ads related to

alcohol.

16 restrictedIn(alcohol , _).

The difference between what advertisement provider (e.g., Google Adsense [25]) does

to filter ads and what we do is that we are not only filtering ads based on the meta-data

provided by advertiser, but also the information that can be derived from the content

in various ways, e.g., through text or image analysis. We use open-world assumption

to avoid relying on the information provided by the advertiser as they may enter

incomplete information about ads and this would disrupt the filtering system.

Audience: The user may select the targeted age group to filter ads based on

the content. Ads are filtered according to the references in images. When defining

age groups and references for each age group, we took “RTUK Smart Signs” [26] as

reference. These are representation of the references for age groups :

1 class_references(under_18 ,Content) :-

2 reference(savagery ,Content);

3 reference(horror ,Content);

4 reference(violence ,Content);
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5 reference(vandalism ,Content);

6 reference(sexuality ,Content).

7

8 class_references(under_13 ,Content) :-

9 class_references(under_18 ,Content);

10 reference(figurative_explanations ,Content);

11 reference(bad_idols ,Content);

12 reference(authoritarian_behaviors ,Content).

13

14 class_references(under_7 ,Content) :-

15 class_references(under_13 ,Content);

16 class_references(under_18 ,Content);

17 reference(fictional_characters ,Content);

18 reference(character_transformations ,Content);

19 reference(physical_abuse ,Content);

20 reference(aggressive_content ,Content).

For ages above 18, there are no references defined. Thus, no content will be filtered

for this age group. The following is the rules for each age group:

1 % Do not display ad if it has specific reference that

2 % should be avoided for selected age group

3 %

4 forbid_ads_displayIn(Content , _) :-

5 classification(under_18 ,Content),

6 class_references(under_18 ,Content).

7

8 forbid_ads_displayIn(Content , _) :-
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9 classification(under_13 ,Content),

10 class_references(under_13 ,Content).

11

12 forbid_ads_displayIn(Content , _) :-

13 classification(under_7 ,Content),

14 class_references(under_7 ,Content).

As mentioned above, we also provide automatic filtering based on user’s age. If web

site provides user’s age, we find the user’s age group and apply filtering based on his

age group:

1 %

2 % Automatic age classification based on user’s age

3 %

4 forbid_ads_displayIn(Content , _) :-

5 user_age(Age),

6 Age <7,

7 class_references(under_7 ,Content).

8

9 forbid_ads_displayIn(Content , _) :-

10 user_age(Age),

11 Age <13,

12 class_references(under_13 ,Content).

13

14 forbid_ads_displayIn(Content , _) :-

15 user_age(Age),

16 Age <18,

17 class_references(under_18 ,Content).
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The references mentioned in rules don’t exist in our knowledge base as they are not

provided by advertisement providers. Therefore, we are not be able to run a query

and conclude a decision by default. To draw accurate conclusions for our policy rules,

we use various services and find unknown information. We complete our knowledge

base in order to make best decision.

On the other hand, the advertiser may provide some meta information about

the advertisements, i.e., the content may contain keywords or category information.

To reason with policy, the meta information and the multimedia (e.g., pictures and

videos) should be extracted from content, e.g., if there exists adult material on the

images on the advertisement.

Several simple information services are implemented to process multimedia rep-

resented in the content. For instance, an information service may check if an image

contains a cigarette brand. This service receives image url as input and finds all

the texts in image using optical character recognition (OCR). It contains a list of all

cigarette brands and check if any of these brands appear in the extracted text. Hence,

this simple service can be used to check if an advertisement contains a cigarette brand.

Meta information for this service contains its cost and precision in HyperCat

properties. Precision value is the indication of service’s performance in returning

accurate results where 10 being the most successful. On the other hand, cost consists

of collective efforts for using the service. These efforts may include run time, response

time, required resources, and so on.

To exhibit this case study, we implement a system that filters ads based on the

policies of the hosting web site. We created a sample web site that hosts sample

advertisement images. Figure 5 demonstrates the layout of the web page. We also

created a JavaScript library, namely adPluck, that handles advertisement filtering

functionalities. We mentioned the display settings (in Figure 4) and how we use the

selected options to create our Prolog rules and policies.
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Figure 5: AdPluck Example Layout
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We let web site administrator to define multiple settings for different advertise-

ment blocks, which are implemented as DIV tags. As seen in Figure 4, there are two

different settings defined. The administrator may apply these settings to advertise-

ment blocks by assigning “data-adpluck” custom data attribute as in the following

lines;

1 <div id="ads1" class="col -lg -12" data -adpluck="settings1">

2 <a href="http :// bit.ly/1RmnUT" data -metadata="Website

design">

3 <img class="img -responsive portfolio -item" src="

ads /639 x78 /14756452170571942819. png" alt="">

4 </a>

5 </div>

6

7 <div id="ads2" class="col -sm -3 col -xs -6" data -adpluck="

settings2">

8 <a href="http ://tr.alpha -wars.com/?r=gogaw1trb" data -

metadata="Yemeksepeti durum doner">

9 <img class="img -responsive portfolio -item" src="

ads /300 x250 /4053084747909437676. jpg" alt="">

10 </a>

11 </div>

The “data-adpluck” custom attribute can be assigned to any advertisement block.

E.g., Google Adsense uses a JavaScript code to fetch advertisement content and dis-

plays contents in iframes, “data-adpluck” attribute can be assigned to those iframes

or a wrapper element. Our adPluck library parses webpage for this specific attribute

and apply filters based on attribute value (i.e., settings name) and selected options.

Our library starts parsing the webpage after a few seconds as some advertisement
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providers (e.g., Google Adsense) loads their content dynamically. In order not to

miss any content and detect content change, we set a timer to control content of the

advertisement wrapper. If content has changed since last check, we start over the

filtering process.

Our process starts with information gathering from webpage. Links, images and

keywords are parsed from blocks to create our knowledge base. Keywords may be

represented in content in different forms such as descriptive texts or attributes (e.g.,

ids, classes, names) that defines advertisement block. Different keyword parsing tech-

niques should be implemented for different content providers. As proof-of-concept

(POC), we defined our own “data-metadata” custom attribute to represent keywords

related to the advertisement. As seen in above code block, different descriptive key-

words are defined for each advertisement block.

The gathered information is used as facts, which are asserted to our Prolog knowl-

edge base. As mentioned previously, by using tuProlog’s multi-programming ap-

proach, we implemented a Java class to run Prolog queries. Our Java implementation

will handle assertion of the facts (gathered information), rules and policies. It also

uses abductive reasoning to figure out which information is missing in the knowledge

base to reason with the policies.

The facts are asserted to the knowledge base using asserta built-in predicate [27]

of tuProlog. The ’asserta(Clause)’ predicate adds Clause to the beginning of the

database. Based on settings displayed in Figure 4 and the advertisement blocks

represented above, created assertion commands are as follows:

1 {

2 "assertions":[

3 "asserta(restrictedIn(food,block0))",

4 "asserta(restrictedIn(cigars,block0))",

5 "asserta(restrictedIn(alcohol,block0))",
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6 "asserta(relatedTo(content0,website))",

7 "asserta(relatedTo(content0,design))",

8 "asserta(restrictedIn(’rival.com ’,block0))",

9 "asserta(restrictedIn(’competitor.net ’,block0))",

10 "asserta(relatedTo(content0,’http://bit.ly/1RmnUT

’))",

11 "asserta(classification(under_13,content0))",

12 "asserta(user_age(17))",

13 "asserta(classification(free_audience,content1))",

14 ]

15 }

The block0 and block1 are references to the advertisement regions. The keywords

‘website’ and ‘design’, parsed from block0 ’s ‘data-metadata’ attribute, are asserted to

the knowledge base as well as the links that block0 contains. Even if block1 has also

link and keywords defined in its ‘data-metadata’ attribute, we don’t assert them as

user did not define keyword and link filtering for ‘settings2’.

As represented above, we create ‘forbid ads displayIn’ rules to filter keywords

and links based on the settings user selected in his policy settings (Figure 4). The

restrictedIn predicate (created based user’s filtering settings) will be matched with

our knowledge base (represented by relatedTo) and if any of our rules hold, this would

mean that we need to filter respective advertisement block.

On the other hand, as advertisement providers may not provide sufficient infor-

mation (e.g., references in images), we need to complete our knowledge base in order

to filter advertisements successfully. To inform our application that some information

needs to be known in order to make accurate decisions, we define abducible predi-

cates;
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1 abducible(reference(X,Y)).

2 abducible(relatedTo(X,Y)).

In our sample application, the predicates reference, relatedTo have been defined

as abducibles. Any lack of information in these types will be considered as unknown

instead of false. We will then use external information services to gather information

about these unknown information.

The execution of policies is also handled by making use of tuProlog’s Java integra-

tion. We call the Java class implementation with the query, it then uses tuProlog to

run Prolog and execute our policy. The policy execution query for content (content0 )

in region (block0 ) is;

1 abduce(forbid_ads_displayIn(content0 , block0),S).

As we mentioned in Chapter 5, abduce predicate represents our abduction algo-

rithm and forbid ads displayIn represents our policy rules as represented above. After

the execution of abduction algorithm, it returns the list of solutions necessary to rea-

son about policies. If returned list is empty, this means that abduction algorithm is

already able to reason with policies with the current information in knowledge base.

If solution list is not empty, first we convert the solution list to JSON format in our

Java class to easily interpret solutions in our JavaScript library. The result of the

abduction for our query is as follows:

1 {

2 "solutions":{

3 "0":["relatedTo(content0,’competitor.net ’)"],

4 "1":["relatedTo(content0,’rival.com ’)"],

5 "2":["relatedTo(content0,alcohol)"],
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6 "3":["relatedTo(content0,cigars)"],

7 "4":["relatedTo(content0,food)"],

8 "5":[

9 "reference(authoritarian_behaviors,content0)",

10 "reference(bad_idols,content0),reference(

figurative_explanations,content0)",

11 "reference(sexuality,content0),reference(

vandalism,content0),reference(violence,

content0)",

12 "reference(horror,content0),reference(savagery

,content0)"

13 ],

14 "6":[

15 "reference(sexuality,content0)",

16 "reference(vandalism,content0)",

17 "reference(violence,content0),reference(horror

,content0)",

18 "reference(savagery,content0)"

19 ]

20 }

21 }

After the creation of the possible policy violation explanations, information gath-

ering system takes the solutions as input and tries to prove them by gathering missing

information. We have variety of services that provide missing information required to

reason with policies. Each service is registered to the catalogue server with informa-

tion such as location, information type, input type and input variable information,
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which are used while utilizing the service. Also, precision and cost information is

used while selecting services, content type information is used while processing data

provided by service(See Tables 1 and 2).

Our library parses solution list and finds missing information that will be re-

quested from services. Considering our solution list, we need services that provides

information about link, keyword and reference. We use HyperCat Pathfinder to store

links and informations of services as described before. Our application selects best

services from the catalogue in the means of precision and cost using the knapsack

algorithm. Normally, any developer can implement their own services and register to

our catalogue server. In this study, we created sample services for each information

type:

1 [

2 {

3 "href": "http://54.187.189.6/services/

url_redirect_finder.php",

4 "i-object -metadata": [

5 {

6 "rel": "urn:X-tsbiot:rels:hasDescription:

en",

7 "val": "Finds redirections in URL"

8 },

9 {

10 "rel": "urn:X-tsbiot:rels:isContentType",

11 "val": "text/plane"

12 },

13 {
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14 "rel": "urn:X-tsbiot:rels:informationType"

,

15 "val": "link"

16 },

17 {

18 "rel": "urn:X-tsbiot:rels:inputType",

19 "val": "GET"

20 },

21 {

22 "rel": "urn:X-tsbiot:rels:inputVariable",

23 "val": "URL"

24 },

25 {

26 "rel": "urn:X-tsbiot:rels:precision",

27 "val": "8"

28 },

29 {

30 "rel": "urn:X-tsbiot:rels:cost",

31 "val": "6"

32 }

33 ]

34 },

35 {

36 "href": "http://54.187.189.6/services/tesseractOCR

/keyword_finder.php",

37 "i-object -metadata": [

38 {
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39 "rel": "urn:X-tsbiot:rels:hasDescription:

en",

40 "val": "Finds keywords in image"

41 },

42 {

43 "rel": "urn:X-tsbiot:rels:isContentType",

44 "val": "text/csv"

45 },

46 {

47 "rel": "urn:X-tsbiot:rels:informationType"

,

48 "val": "keyword"

49 },

50 {

51 "rel": "urn:X-tsbiot:rels:inputType",

52 "val": "GET"

53 },

54 {

55 "rel": "urn:X-tsbiot:rels:inputVariable",

56 "val": "URL"

57 },

58 {

59 "rel": "urn:X-tsbiot:rels:precision",

60 "val": "8"

61 },

62 {

63 "rel": "urn:X-tsbiot:rels:cost",
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64 "val": "3"

65 }

66 ]

67 },

68 {

69 "href": "http://54.187.189.6/services/

userReference/reference_finder.php",

70 "i-object -metadata": [

71 {

72 "rel": "urn:X-tsbiot:rels:hasDescription:

en",

73 "val": "Asks people for references in

images"

74 },

75 {

76 "rel": "urn:X-tsbiot:rels:isContentType",

77 "val": "text/csv"

78 },

79 {

80 "rel": "urn:X-tsbiot:rels:informationType",

81 "val": "reference"

82 },

83 {

84 "rel": "urn:X-tsbiot:rels:inputType",

85 "val": "GET"

86 },

87 {
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88 "rel": "urn:X-tsbiot:rels:inputVariable",

89 "val": "URL"

90 },

91 {

92 "rel": "urn:X-tsbiot:rels:precision",

93 "val": "8"

94 },

95 {

96 "rel": "urn:X-tsbiot:rels:cost",

97 "val": "10"

98 }

99 ]

100 }

101 ]

url redirect finder: Links used in advertisements are usually redirected because of

tracking purposes. This complicates the detection and filtering process for urls. We

created this service to find actual url in case of redirection. The url redirect finder

service gets url and uses PHP3 to fetch headers of HTTP request. It looks for any

redirected location and returns the actual url in “text/plane” format.

keyword finder: Not all keywords related to the advertisement are represented in

the text format in advertisement blocks. As we mentioned above, we parse ‘data-

metadata’ attribute to create our knowledge base. However, more information can be

extracted from images. This service gets image url and uses ‘tesseract-ocr’ to parse

keywords in images. Tesseract4 is considered to be one of the most accurate multi-

platform open source optical character recognition (OCR) engine. After downloading

3https://php.net/manual/kr/function.get-headers.php
4https://code.google.com/p/tesseract-ocr/
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Figure 6: AdPluck ‘reference finder’ Service

image and using tesseract-ocr, recognized keywords are returned in the “text/csv”

format.

reference finder: This service gets url of the image, saves image url to its database

and then uses crowdsourcing to ask people to categorise images based on RTUK

references. We implemented a basic webpage to show images and provide reference

selection form for users to make choices (Figure 6). This service is considered to

be a very costly process as it needs to wait for user input before responding to

the application and it relies on a manual process instead of an automatic reference

detection. The service waits for few seconds for user input and then returns references,

which users selected, to application in “text/csv” format.

As we have only one service for each information type in our hypercat server, our

knapsack algorithm always selects represented services for our information gathering

system when necessary. In our case, we use all three services as we need to get infor-

mation about link, keyword and reference. All services get urls as input. Therefore,

for each advertisement block, we send respective advertisement urls to services. We
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Figure 7: Adpluck Advertisement Sample

will now show results of services for advertisement image in Figure 7, whose wrapper

id is “ads1” in HTML block. This image is actually used as advertisement by Google

Adsense.

Firstly, we use url redirect finder service to find whether advertisement link redi-

rects to ‘competitor.net’ or ‘rival.com’. The advertisement url is already parsed and

asserted to the knowledge base. However, it does not directly match to the links

specified by user. We need to find if “http://bit.ly/1RmnUT” redirects. We send

a GET request to the service with the url. Service finds actual url and sends the

information to the application. Table 5 shows service’s responses to few sample urls.

Table 5: url redirect finder Sample Results

Input Output

http://bit.ly/1RmnUT http://google.com

http://facebook.com http://facebook.com

http://goo.gl/Dgr9aX http://www.google.com/

As seen in Table 5, the redirected url for ‘http://bit.ly/1RmnUT’ is ‘http://google.com’

and it still does not match the links user selected to filter. Therefore, no precaution

has to be taken for this particular case. If it would match either ‘competitor.net’ or

‘rival.com’, we had to hide/block advertisement to fulfil user policy.

Secondly, we use keyword finder to find keywords that are not explicitly repre-

sented (i.e., in text format) in the content, but may be extracted from image. We

send the url of the image to the service and service extracts the keywords from image

using OCR. Table 6 shows service’s keyword extractions from few sample images.
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Table 6: keyword finder Sample Results

Input Output

m, webshes, mu, uesmn, ihemselves,
join, the, evolution, pre-order, now

yeni, eklenen, parcalarla, -, sou,
indirim, ”um, tl, {e, uzeri, ucretsiz,

kargo, alisverise, basla

supehga’, gm, tlye, uzer’i, 2;), ti;
indirim, r, trendyol

Our service is able to extract texts ‘m, webshes, mu, uesmn, ihemselves, join,

the, evolution, pre-order, now’ from advertisement image and none of them matches

the keywords user selected to filter (alcohol, cigars, food). Therefore, advertisement

doesn’t need to be blocked for keyword filtering.

Thirdly, we use reference finder service to get references in advertisement and filter

them if image contains “authoritarian behaviors, bad idols, figurative explanations,

sexuality, vandalism, violence, horror, savagery” references. We send the image url as

input and service searches its database for references of stated image. If any reference

found for image, service responds with the reference list. Otherwise, service saves
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image to its database and waits 10 seconds for human evaluation before responding.

This is the sample response returned from reference finder service;

1 {

2 "savagery ":false ,

3 "horror ":false ,

4 "violence ":false ,

5 "vandalism ":false ,

6 "sexuality ":true ,

7 "figurative_explanations ":false ,

8 "bad_idols ":false ,

9 "authoritarian_behaviors ":false ,

10 "fictional_characters ":false ,

11 "character_transformations ":false ,

12 "physical_abuse ":false ,

13 "aggressive_content ":false

14 }

According to the references returned from service, advertisement image contains

sexuality references. Somebody informed service’s system that the image contains

sexuality references. Therefore, based on the site owner’s audience selection in policy

settings (Figure 4) and the age of the user (17), we need to hide advertisement blocks

that contains sexuality reference. Hiding advertisement can be established in a few

ways such as removing wrapper div, setting visibility of ads block to hidden, or adding

an overlapping image stating that the content is blocked.

The services we talked about are implemented as POC, they may not be accurate.

As we mentioned earlier, our purpose is to create a framework that mainly focuses on

open-world reasoning and gathering information using external services to complete

the knowledge base for best decision making. In this example, we created our initial
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knowledge base, defined our policies, run policies and found missing information us-

ing abductive reasoning, used external services to complete missing information and

finally filtered advertisement blocks which contradicts policies site-owner set.
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CHAPTER IX

EVALUATIONS

As we mentioned in previous chapters, the selection of information services plays a

vital role in the performance of the system. If the selection of services is executed

randomly, the high-cost, low-precision information services may be selected frequently

and this would lead to wrong results at high cost. We run simulations to indicate

the draw backs of random service selection. The simulation consists of 100 steps, in

each step a service is selected randomly; independent from it’s properties. Table 7

shows select counts of services during test. Service names represents their cost and

precision values, e.g., service90 1 indicates 90% success rate with cost 1. As we can

see from Table 7, there isn’t big difference between selection counts of services, we

equally selected high-cost, low-precision services as well as low-cost, high-precision

services.

Table 7: Random Selection - Service Select Count

Service Count Success Fail Cost

service90 1 10 10 0 10

service90 3 14 12 2 42

service80 2 10 8 2 20

service80 1 12 9 3 12

service90 10 12 7 5 120

service70 3 10 8 2 30

service40 1 7 4 3 7

service50 4 3 1 2 12

service30 2 11 4 7 22

service20 3 11 2 9 33

Total 100 65 35 308

49



0	  

10	  

20	  

30	  

40	  

50	  

60	  

70	  

80	  

90	  

100	  

0	   4	   8	   12	   16	   20	   24	   28	   32	   36	   40	   44	   48	   52	   56	   60	   64	   68	   72	   76	   80	   84	   88	   92	   96	  

Su
cc
es
s	  R

at
e	  
(%

)	  

Number	  of	  runs	  

	  Success	  Average	  

Figure 8: Random Service Selection Success Average

Figure 8 shows success rate of random selection. The uncontrolled selection of

services concluded on success rate close to the average success rate (64%) of the

services. As presented in Table 7, 3,08 average cost is also similar to the average cost

value (3) of services.

9.1 Service Selection

To increase the success rate of the policy reasoning by efficiently selecting services,

we use knapsack as we mentioned in Section 2.3. We now show the evaluation of the

service selection of the following policy:

1 A, B, C -> D

2 R -> C

3 H -> C

Where all predicates are defined as abducibles. Using abduction algorithm, the result

for the query abduce(D,[]) is

1 {A,B,R}

2 {A,B,H}
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Table 8: Service Selection - Service Properties

Service Precision(%) Cost

service99 1 99 1

service90 3 90 3

service90 10 90 10

service80 4 80 4

service70 4 70 4

service60 2 60 2

service50 4 50 4

service40 1 40 1

service30 2 30 2

service20 3 20 3

service1 1 1 1

For each predicate (A,B,R and H) we created services with identical properties

as in Table 8. Therefore, for each abducible predicate, we select external services

to gather information about them. Using knapsack formulation represented in Sec-

tion 2.3;

n = 11

(pi) = (99, 90, 90, 80, 70, 60, 50, 40, 30, 20, 1)

(wi) = (1, 3, 10, 4, 4, 2, 4, 1, 2, 3, 1)

c = 7

(4)

The optimal solution is

x = (1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1)

z = 290

s = 5

(5)

As seen above, for each predicate, 5 services are selected for information gathering;

service99 1, service90 3, service60 2, service40 1, service1 1. Now, we represent how

we combine results of the services in order to achieve most accurate results.
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9.2 Result Assessment

As we may select multiple information services for decision making process, we need

to accurately combine information from each selected service. In our setting, infor-

mation provided by services are binary truth values (either true or false) for grounded

predicates in policies. The grounded predicates are actually binary propositions such

as friend(john, jane). For a specific proposition, we may query more than one ser-

vice; each reports its estimate for the truth value of the proposition. There are few

approaches to combine result of the services;

Optimstic : Having one of the services return true is enough to conclude that the

proposition is true.

Pessimistic : Having one of the services return false is enough to conclude that the

proposition is false.

Both Optimistic and Pessimistic approaches consider neither the precision nor the

cost of the services. Therefore, they are not good for finding an optimum solution

for service selection. For example, consider we are using optimistic approach, if a

low precision service returns true, we assume the proposition is true even if all other,

possible higher precision, services return false.

Simple Voting : Each selected service has one vote and result is determined with

consensus. This approach is more reliable than previous approach as it considers

reports from all services during fusion. On the other hand, simple voting does not

take precision of services into account.

Weighted Voting : In order to consider precision, we propose weighted voting where

votes of services are weighted based on their precisions. Higher precision services will

have more affects in result.

To test the accuracy of these approaches, we created a test on policy represented

above. We assigned probability values to policy results such as; 0.3, 0.5 and 0.7.

These values indicate the probability of policy to hold. If policy D holds, either {A,
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Table 9: Policy Result Assessment - Predicate Assignments

D A B R H

P1 T T T T F
P2 T T T F T
P3 T T T T T
P4 F F T T T
P5 F T F T T
P6 F F F T T
P7 F F F F F

B, R } or {A, B, H } should hold. Otherwise, both {A, B, R } and {A, B, H }

should fail. To test external services in predicate level, we created predicate lists

(represented in Table 9) and assigned values to predicates for both policy’s hold and

fail cases. Each predicate list has probability to be selected as formulated below.

Pt = probabilty of predicate to be selected when Policy holds

Pf = probabilty of predicate to be selected when Policy fails

Pp = probabilty of Policy to hold

i = (1, 2, 3, 4, 5, 6, 7) number of predicate list

If Policy holds

Pi = Pp ∗ Pt

else

Pi = (1− Pp) ∗ Pf

(6)

If probability of policy to hold is 0.3 ;

Pt = 0.33

Pf = 0.25

Pp = 0.3

(7)

The probability of P1, P2 or P3 to be selected is 0.099 and the probability of

P4, P5, P6 or P7 is 0.175. Selected external services and the approach used to combine
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Figure 9: Average Success Rate For Combination Approaches

results should provide these expected results. In predicate level, the evaluation of

approaches is represented in Figure 9. Based on the selected predicate list Pi (Table 9)

and using the selected services, we calculated success rates of approaches in matching

the expected predicate values over 100 runs.

In policy level, Figure 10 shows the average success rates of the approaches for

different policy probabilities after 100 runs. On each run, we check whether or not

policy (holds or fails depending on the probability) matches the evaluation of the {A,

B, R } and {A, B, H }.

As seen in Figure 10, the voting approach’s success rate decreases as policy hold

rate increases. The main reason of this is the difference between maximum negligible

wrong predicate amount when policy fails or holds. When policy holds, {A, B, R }

or {A, B, H } should hold. Therefore, maximum 1 predicate can be found wrong; R

or H, otherwise policy can not hold. On the other hand, when policy fails, both {A,

B, R } and {A, B, H } must fail together. Therefore, the maximum number of wrong

predicates is 2. If A, B, R or A, B, H found wrong (true) together, policy holds.

There is more room to failure for the tests where policy fails. Therefore, voting is

more successful when policy expected to fail.
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Figure 10: Policy Result Assessment

The optimistic and pessimistic approaches decreases and increases oppositely.

When policy hold rate increases, optimistic approach increases as only one true in-

formation from services is enough to conclude predicate as true. On the contrary,

pessimistic approach decreases as only one false information is enough to conclude

predicate as false. Therefore, they are not reliable approaches as hold rate of the

policies are variable.

On the other hand, the weighted voting approach achieved to provide most accu-

rate combination for external information services independent from expected results

of policy. With combination of knapsack algorithm and weighted voting approach,

system achieved more than 90% success rate with 8 cost while the average values of

selected services are 55,45% precision and 15,9 cost.

This test highly depends on the precision and cost values provided when services

registered to database. These values may be inaccurate or may change over time.

Therefore, the cost and precision values should be evaluated as we select and use

services.
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9.3 Cost and Precision Modelling

Earlier we mentioned the technique we use to select services. However, this method

strongly relies on the cost and precision provided by service administrators to effi-

ciently select services. We can not completely rely on the data provided by services.

We need to figure out a way to validate both cost and precision values. We also need

to consider fall-backs this validation process may lead to.

Services’ cost or precision may change overtime (i.e., regression or improvement

of service). We may miss efficient services because of the static values, or we may

continue to select inefficient services just because they were efficient when they first

registered. There are few fall-backs that may occur during validation process. One

possibility is that, we may select too many services with low precision values and this

could lead to false interpretations in our decision making. At the same time, we may

select high cost services and this would decrease the performance of our system.

This is a dilemma called exploration-exploitation trade-off [28]. Exploration

includes things decided by searching, risk taking and experimenting. Exploitation

includes things selected by efficiency, experience and productivity. Exploration is

risky while making decisions but may provide benefits in long-term. On the other

hand, Exploitation provides benefits in short-term based on the experiences. As in our

case, the balance between exploration and exploitation should be adjusted carefully.

Using too much exploration may decrease the performance of the system while using

only exploitation may prevent system enhancement in long-term.

One possible approach is to run services for a certain number of times with known

data in order to calculate their average cost and precision. Figure 11 shows the

precision value average for services over 100 runs. Each line represents precision

values of services as indicated in legend. These services are sample services that

returns binary (true or false) information based on their precision values as indicated

in their name. For example, service90 10 indicates 90% success rate with cost 10.
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Figure 11: Iterative Service Precision Validation

Even though this is a trivial solution, it is costly. On the other hand, we need to run

this iterative validation process periodically to be able to detect value changes. This

is an overwhelming process that took so much computation time and it has no direct

connection with our decision making process.

We have to consider an approach that is not overwhelming and at the same time

useful. In this setting, we calculate average precision and cost of services as we use

them. In previous setting, services that are registered with high costs and low pre-

cisions are never selected. To prevent that, we decrease the known cost value (in a

constant rate) of services that are not selected on each run. This way, costly services

get the chance to be selected and if their cost or precision values are changed, we use

these values to calculate their average cost and precision. As we discussed earlier,

frequently selecting costly services may decrease performance of the system. Explo-

ration factor should be adjusted carefully to balance exploration and exploitation. In
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addition to Knapsack algorithm, we decrease cost of the services after each run;

r = number of runs

e = exploration factor

sn = success count of service

fn = fail count of service

cr = cost of service on each run

After each run:

If service succeeds : sn = sn + 1

If service fails : fn = fn + 1

pi = sn/(sn + fn)

wi = (
r∑

i=1

cr)/r

If xi = 0 (item is not selected)

Then wi = wi − e

(8)

Using the same sample services in previous setting and Knapsack formulation;

n = 11

(pi) = (99, 90, 90, 80, 70, 60, 50, 40, 30, 20, 1)

(wi) = (1, 3, 10, 4, 4, 2, 4, 1, 2, 3, 1)

c = 7

(9)
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Figure 12: Actual and Calculated Service Precisions with Knapsack Selection

The optimal solution after first run;

x = (1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1)

z = 290

s = 5

Calculated costs after service selection

wi = (1, 3, 9.9, 3.9, 3.9, 2, 3.9, 1, 1.9, 2.9, 1)

(10)

Eventually, as cost values of unselected services decreases, all services will be selected

by knapsack algorithm. If any service’s cost or precision changes over time, we will

be able to calculate their properties successfully by matching the selected services’

results to Table 9 and this will improve our service selection accuracy in the means

of cost and precision. To test success rate of the system, we initially set cost and

precision values of each service to 0 and 10, respectively. Figure 13 represents the

precision values for pi over each run and Figure 12 represents the comparison between

actual and calculated precision values for each service.

The horizontal line parts in Figure 13 represents the runs in which relative service

is not selected because of its high cost value. Earlier we mentioned that the cost

may be a collection of fallbacks. As POC, we only used service run time as cost in
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Figure 13: Service Precision Evaluation with Knapsack Selection

Figure 14: Service Cost Evaluation with Knapsack Selection

our work. As we decrease unselected services’ costs by 0.1 after each run, knapsack

algorithm eventually selects them and based on their success in returning expected

result we update their precision average. We also update their cost values based on

service’s run time. The changes in services’ costs are represented in Figure 14 and the

select counts of services are represented in Table 10. The results shows that we didn’t

completely ignore high cost services while low cost services are used more frequently.

On the other hand, Figure 15 represents success rate of the system in policy level,

using 0.5 probability as policy hold rate. When static cost and precision values are
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Figure 15: Policy Success Rates with Service Cost-Precision Evaluation

used, as mentioned above, we observed that some services are never used because of

their initial values. When cost and precision values are subject to change, this test

achieves to balance exploration and exploitation by selecting low-cost high-precision

services more frequently than high-cost low-precision services and concluding with

similar success rate to the success rate in Figure 10.

Table 10: Service Select Count

Service Count Success Fail

service99 1 100 99 1

service90 3 22 19 3

service90 10 2 2 0

service80 4 64 53 11

service70 4 15 12 3

service60 2 95 62 33

service50 4 8 5 3

service40 1 90 38 52

service30 2 17 6 11

service20 3 7 1 6

service1 1 12 0 12
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CHAPTER X

CONCLUSION

In this work, we discussed the necessity of information gathering while reasoning

system with incomplete knowledge. Incomplete information may lead to wrong infer-

ences and possible policy violations. By introducing information gathering system to

the reasoning process, we improve the efficiency of the policy compliance.

Our approach consists of using an intelligent information gathering system to

improve decision making process. To accomplish this, we focused on open-world rea-

soning and abduction to get useful explanations for possible policy violations. Instead

of relying on initial data and inferring a conclusion, we utilise external services to com-

plete our knowledge base based on the explanations provided by abduction algorithm.

We used a Prolog engine to seamlessly integrate abduction and information gather-

ing system. External information services are stored in HyperCat catalogue server

because of it’s simplicity and extendability with custom properties. We discussed

the service selection using Knapsack algorithm in order to select most efficient ser-

vices. With the information provided by services, our framework will decide whether

a policy is violated.

We introduced real world examples using our framework. We gathered information

to form our knowledge base and created policies based on the needs of the systems.

Using abductive reasoning, we found the missing information that needs to be known

in order to make best decision. We gathered the missing information from sample

external services that are registered to our catalogue server. After we completed our

knowledge base, we found the violated policies and took actions accordingly.

We compared the performance of different service combination approaches and we
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introduced a validation process for service cost and precision values. We showed that

the weighted voting system is more efficient at selecting the optimum results while

considering the variability of precision and cost values of services.
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