
HUMAN MOVEMENT RECOGNITION WITH
DYNAMIC MOVEMENT PRIMITIVES

A Thesis

by

Alp Burak Pehlivan

Submitted to the
Graduate School of Sciences and Engineering
In Partial Fulfillment of the Requirements for

the Degree of

Masters of Science

in the
Computer Science Department

Özyeğin University
September 2015

Copyright c© 2015 by Alp Burak Pehlivan



HUMAN MOVEMENT RECOGNITION WITH
DYNAMIC MOVEMENT PRIMITIVES

Approved by:

Assoc. Prof. Erhan Öztop, Advisor
Computer Science Department
Özyeğin University

Assistant Professor Hasan Sözer
Computer Science Department
Özyeğin University

Assoc. Prof. Nafiz Arıca
Department of Computer Engineering
Bahçeşehir University

Date Approved: 22 August 2015



To my wife who always supported me and encouraged me

to finish my thesis.

iii



ABSTRACT

Dynamic Movement Primitives (DMPs)-originally a method for movement trajectory

generation has been also used for recognition tasks. However there has not been

a systematic comparison between other recognition methods and DMPs using hu-

man movement data. We have implemented a movement recognition method based

on DMPs with Gaussians centered equally spaced in phase variable and scaled one-

nearest-neighbor weight comparison. Furthermore, in thesis, we presented a compar-

ison of commonly used Hidden Markov Model (HMM) based recognition with our

implementation of DMP based recognition using human generated letter trajectories.

As the working principles of these two methods are very different, in addition to the

performance, the numbers of adaptable parameters that are used in each method

and, process time were compared. The results indicate that DMP gives better results

than HMM in the tests with noiseless data, noisy data and derogated data with given

human movement dataset.

iv



ÖZETÇE

Dinamik Hareket Birimleri (DHB), ilk olarak hareket güzergahlarının üretilmesinde

kullanılan bir yöntem olduğu halde hareket tanıma görevlerinde de kullanılmıştır.

Fakat DHB’lerle yapılan tanıma ile diğer tanıma yöntemleri arasında sistematik bir

karşılaştırma yapılmamıştır. Biz de faz değişkeninde eşit merkezlenmis Gaussian

fonksiyonları kullandığımız DHB’lerde, boyutları değiştirilmiş ağırlık karşılaştırması

ile hareket tanıma yöntemi gercekleştirdik. Ayrıca, bu tezde yaygın olarak kullanılan

Saklı Markov Modeli (SMM) yöntemi ve DHB ile yapılan insan tarafından üretilmiş

hareket güzergahları üzerinde tanıma işlemleri karşılaştırılmıştır. Bu iki yöntemin

çalışma prensipleri çok farklı olduğu için, performansa ek olarak adapte edilebilir

parametrelerin miktarı ve tanıma işleminin aldığı zaman karsılaştırılmıştır. Sonuçlar,

DHB’nin insan hareketleri verisi üzerine gürültüsüz, gürültü eklenerek ve veriler

azaltılarak yapılan testlerde SMM’den daha iyi sonuçlar verdiğini göstermektedir.

v



ACKNOWLEDGEMENTS

I would like to thank my advisor Erhan Öztop for the useful comments, directives

and remarks through the learning process of this master thesis. Furthermore, his

motivating talks and mentoring helped me a lot. I would like to thank Advanced

Telecommunication Research (ATR) for giving me work opportunity to study some

parts of this thesis. I would like to thank all Özyeğin University Robotics Laboratory

members, friends whom I shared similar academic goals and studies.

vi



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ÖZETÇE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

II MOVEMENT DETECTION : A PRACTICAL APPROACH . . 8

2.1 Autotag - A Software for Movement Detection . . . . . . . . . . . . 9

III DYNAMIC MOVEMENT PRIMITIVES (DMP) . . . . . . . . . . 16

3.1 Representing Movements with Dynamical Systems . . . . . . . . . . 16

3.1.1 Parameters of the Dynamical System . . . . . . . . . . . . . 17

3.1.2 Forcing Function on the Dynamical System . . . . . . . . . . 19

3.2 Learning and Reproduction in Dynamic Movement
Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Regression on Forcing Function . . . . . . . . . . . . . . . . . 21

3.2.2 Reproduction of Learned Movement . . . . . . . . . . . . . . 22

3.3 Movement Recognition with DMP . . . . . . . . . . . . . . . . . . . 38

IV DMP BASED MOVEMENT RECOGNITION AND COMPAR-
ISONS WITH HMM . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Setup and Implementation . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 Dataset and Modifications . . . . . . . . . . . . . . . . . . . 40

4.2 Recognition Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Hidden Markov Model (HMM) for Recognition . . . . . . . . 43

vii



4.2.2 Parameter Selection of Models . . . . . . . . . . . . . . . . . 45

4.2.3 Learned Parameter Complexity . . . . . . . . . . . . . . . . . 50

4.3 Comparison of DMP and HMM in Recognition Tests . . . . . . . . . 50

4.3.1 Training and Tests . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.2 Results and Comparison . . . . . . . . . . . . . . . . . . . . 57

V CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

APPENDIX A — LOCALLY WEIGHTED LEARNING . . . . . . 63

APPENDIX B — HIDDEN MARKOV MODEL . . . . . . . . . . . 65

viii



LIST OF TABLES

1 Approximate learned parameter complexity . . . . . . . . . . . . . . . 50

2 Original data test results over 100 test instances . . . . . . . . . . . . 58

3 Broken Pen modification test results over 100 test instances . . . . . 58

4 Noisy data test results over 100 test instances . . . . . . . . . . . . . 58

ix



LIST OF FIGURES

1 Autotag Software Gui . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 GUI in Ubuntu and Auto Motion Detection . . . . . . . . . . . . . . 11

3 Motion Detection Detail . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 A motion tag can be selected by clicking on it . . . . . . . . . . . . . 13

5 Dragging mouse in the lower bar creates green area . . . . . . . . . . 13

6 Tags that are left inside green area are selected . . . . . . . . . . . . 13

7 Delete Tags button deletes selected tags . . . . . . . . . . . . . . . . 13

8 Several Tags are selected . . . . . . . . . . . . . . . . . . . . . . . . . 14

9 Tags are combined . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

10 Clicking first position for new Tag . . . . . . . . . . . . . . . . . . . . 15

11 Changing start position of tag . . . . . . . . . . . . . . . . . . . . . . 15

12 Changing end position of tag . . . . . . . . . . . . . . . . . . . . . . . 15

13 Finishing New Tag creation . . . . . . . . . . . . . . . . . . . . . . . 15

14 Replay of X from DMP for K=24 D=3 . . . . . . . . . . . . . . . . . 17

15 Replay of Y from DMP for K=24 D=3 . . . . . . . . . . . . . . . . . 17

16 Replay of X from DMP for K=1 D=1 . . . . . . . . . . . . . . . . . . 18

17 Replay of Y from DMP for K=1 D=1 . . . . . . . . . . . . . . . . . . 18

18 Phase variable s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

19 Example trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

20 f(s) = ftargetx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

21 f(s) = ftargety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

22 x-y trajectory replay with 40 Gaussians . . . . . . . . . . . . . . . . . 23

23 ftarget for x trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

24 ftarget for y trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

25 x trajectory replay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

26 y trajectory replay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

27 x-y trajectory replay with 20 Gaussians . . . . . . . . . . . . . . . . . 26

x



28 ftarget for x trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

29 ftarget for y trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

30 x trajectory replay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

31 y trajectory replay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

32 Mean Error versus number of Gaussians . . . . . . . . . . . . . . . . 28

33 x-y trajectory replay with 40 Gaussians K=1 D=1 . . . . . . . . . . . 29

34 ftarget for x trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

35 ftarget for y trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

36 x trajectory replay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

37 y trajectory replay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

38 K-D vs Reproduction Error 3D View Plot . . . . . . . . . . . . . . . 31

39 K=24 D=3 80 Number of Gaussians DMP Reproduction . . . . . . . 32

40 Width of Gaussians vs Average Position Error . . . . . . . . . . . . . 33

41 Width of Gaussians vs Average Position Error in ‘equally distanced in
time’ approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

42 Absolute difference in consecutive values of s vs time . . . . . . . . . 35

43 10 Gaussians vs Time in ‘equally distanced in s’ approach . . . . . . 36

44 10 Gaussians vs Time in ‘equally distanced in time’ approach . . . . . 36

45 τ = 1.2× duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

46 τ = 0.8× duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

47 g = 0.75× original . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

48 g = 1.5× original . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

49 x0 is set to x0 − 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

50 y0 is set to y0 − 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

51 Training for letter A . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

52 Testing letter A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

53 Testing letter U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

54 Movie frames of recording . . . . . . . . . . . . . . . . . . . . . . . . 41

55 Replay of recorded data from Kinect. . . . . . . . . . . . . . . . . . . 41

xi



56 Scaled training set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

57 Scaled test set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

58 Broken pen data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

59 Data with white noise . . . . . . . . . . . . . . . . . . . . . . . . . . 44

60 The recognition performance of HMM with different states . . . . . . 46

61 K-D vs Reproduction Error for Training Data h=5 . . . . . . . . . . 48

62 Mean Trajectory Error for Training Data h=0.1 to 20 . . . . . . . . . 48

63 K-D vs Reproduction Error for Training Data h=3.5 . . . . . . . . . 49

64 Mean Reproduction Error for Training Data . . . . . . . . . . . . . . 52

65 Reproduction Training DMPs with different number of Gaussians . . 52

66 The recognition performance of DMP with different number of Gaussians 53

67 Weights of Gaussians of Test and Training set for letter M . . . . . . 54

68 Zoomed in version of Figure 67 . . . . . . . . . . . . . . . . . . . . . 54

69 Training DMP trajectory reproduction over test data . . . . . . . . . 55

70 Scaled weights of Gaussians of Test and Training set for letter M . . . 56

71 Noisy Data Test With DMP from 19 to 1 SNR . . . . . . . . . . . . . 60

xii



CHAPTER I

INTRODUCTION

In this thesis, we aimed to recognize human movement in order to achieve successful

applications in Robotics and Human-Machine Interaction area. Firstly, we have im-

plemented a practical approach -Autotag Software- for human movement detection in

order to be used incorporation with human movement recognition and analysis algo-

rithms later. Later, we have studied the properties of Dynamic Movement Primitives

(DMP) framework which can be useful in human movement recognition. Finally, we

have analyzed the performance of DMP in human movement recognition by several

recognition tests including the ones with noisy data, lessened data and comparing

the results with HMM recognition performance in a comparable learned parameter

complexity.

1.1 Motivation

Human Motion Recognition and Analysis is important for many robotics applications.

In order to implement a successful human-robot interaction understanding human

movements is essential. If a robot was to react to a human action interactively,

naturally a robot is expected to understand the action of human. Therefore the

robot can take counter action or cooperative action.

DMP, a general way to learn and encode movements was studied in this thesis for the

purpose of using as a method of human movement understanding in robotic studies.

We wanted to see if DMP could be used for movement recognition and analysis.

Human movements are dependent on newton dynamics and these movement have

an acceleration limit. Since DMP takes the dynamic system into account, it may

capture biological movements well too. We applied tests with a human movement

1



dataset in order to recognize specific movements out of several. Furthermore, for the

purpose of investigating the success of this method we compared the results with

Hidden Markov Model (HMM) recognition on the same set of movement data. Since

HMM is widely used in motion recognition, this study gave us information about how

the DMP recognition results compare to widely used successful motion recognition

method, namely HMM.

1.2 Related Literature

One of the works done about Action Recognition is “Action Recognition and Un-

derstanding Through Motor Primitives” by Vicente et al.[21]. This work is mainly

about action recognition using HMM and understanding the motor primitives. In

my thesis, I have used HMM classifier with movement coordinates as data sequence

for recognition. However in Vicente et al.’s work, time series data used in HMM

classifier is not the movement trajectory itself but a sequence of the motor primitives

[21]. Each manipulation task of a complex movement was designated as one motor

primitive which correspond to individual states of the HMM such as grasping and

rotating objects. This implementation was based on the idea that actions can be

represented as sequences of motion primitives [22]. The data of complex action move-

ment was collected by a sensor glove that gives relative positions of hand, index, and

thumb from 10 different demonstrator for 5 manipulation actions. A support vec-

tor machine (SVM) is used to model and recognize individual primitives, while the

sequences of primitives are modeled using a Hidden Markov model (HMM). Vicente

et al. obtained recognition rates ranging from 59.1% to 95.8% by different methods

that applied using HMM [21]. In this work, the data were not diverse and the results

were not as successful as one expect. However the study of several implementations

of ‘actions as primitives’ and recognition using action primitives were useful for my

2



thesis work. As future work, the authors mentioned that they will model large vari-

ety of actions in visual data context [21]. Another work that uses motor primitives

for human activity recognition is by Zhang et al. In their study, Zhang et al. used

inertial sensor was used to collect data during human activity and ‘Bag Of Features’

was used to recognize statistically obtained motion primitives [38].

Dynamic Movement Primitives (DMPs) are seen as units of action that are formal-

ized as stable nonlinear attractor systems [28]. In his paper, Schaal has shown that

DMP has applications in Humanoid Robotics and parallels in biological research. He

has applied rhythmic DMP for making a humanoid robot play drums successfully. In

another application, Schaal has used imitation learning to teach a robot how to swing

tennis racket by demonstration. An interesting approach to the biological connections

of DMPs were investigated in Schaal’s paper too. An action like stable ball bouncing

with a racket needs some balancing effort even though humans do it without realizing.

How do humans successfully do this? When Schaal has tried stable ball bouncing,

DMPs used for this movement introduced a different way of accomplishing this task

then other alternatives such as accelerating at the time of impact. This way is char-

acterized by a negative acceleration at the time of impact which is quite non-intuitive

as told in the author. Such examining by Schaal revealed that DMPs capture human

behavior very well [28]. Therefore, in this thesis, using DMPs for human movement

recognition makes more sense in this context.

Dynamic Movement Primitives (DMPs) encode a desired movement trajectory in

terms of the attractor dynamics of nonlinear differential equations with the help of

adjustable weight parameters [9]. The main principle that allows DMPs to be used

for recognition is the fact that two movements can be compared by using their DMP

representations, i.e. weights. For example, the movements that need to be recog-

nized can be stored in the form of weight vector templates for later recognition. A

demonstrated movement then can be fit with a DMP, giving a weight vector which

3



can be compared against the stored templates for finding the best matching move-

ment. Using such a mechanism Ijspeert et al. has obtained 87% recognition rate out

of recognition of 130 handwritten letters [2, 10, 3]. The exact recognition method

used by Ijspeert was one-nearest-neighbor classifier in weight space. Furthermore, a

baseline comparison like we did in this thesis has been done by Ijspeert too. Ijspeert

compared Dynamic Time Warping (DTW) recognition on letter trajectories. They

have got 79% recognition rate which lower results than 87% of DMP’s recognition rate

[10]. In addition to recognition tasks, placing cup by a robot arm in different places

from one demonstration by goal change in DMP was applied on robot experiments

[10].

In one of the works of Ijspeert et al., the use of Nonlinear Dynamical Systems for im-

itation with humanoid robots were studied. The control policies(CPs) were designed

as DMPs. In this work, they have tested the CPs for a learning by imitation task in

a humanoid robot with 30 DOFs [25].

DMPs were used in several applications including movement segmentation [4]. Meier

et al. used DMP to solve the problem of segmenting complex movements into a

sequence of primitives. Meier et al. has obtained a modified DMP formulation by

reformulating it as a linear dynamical system with control inputs. Using this new

formulation they were able to perform movement recognition and prediction of the

goal position of a partially observed motion, and perform movement segmentation

[4]. Another segmentation work was done by Schaal [39]. He focused on two such

invariants in one part of the study, the 2/3 power law and piecewise planar movement

segmentation, and how a parsimonious explanation of those effects can be obtained

[31]. The systematic relationship between angular velocity and curvature of the end

effector traces of human movement identified by Viviani and Terzuolo [31] has been

applied to handwriting and 2D drawing movements in Schaal’s work [39].

In his master thesis, Glatz presented a learning from demonstration method which

4



is able to learn complex object manipulation tasks using Dynamic Movement Primi-

tives. Additionally, a sensor data based segmentation method was applied to divide

the complex tasks into simpler goal-directed subtasks. He also applied the experi-

ments of learning from demonstration in robot simulation [26].

In the work of Forte et al., a humanoid robot was taught to do a reaching movement

[23]. Then this movement were generalized in order to reach every possible point in

the robot’s operating range using Gaussian process regression. The trajectories for

robot to learn were created by moving the robot arm by hand. Then each trajectory

was encoded as DMPs. The generalization enabled robot to move its arm to a point

which it haven’t learned previously by DMP reproduction of the movement. Thus,

DMP parametrization of the movement can be useful in such generalization tasks too

[23]. Furthermore, DMPs can be used for dimensionality reduction as done by Colome

et al. While using reinforcement learning to train DMPs, they proposed a strategy

to reduce the number of Gaussians so that representing the learned trajectory will

require low cost and low dimensionality [19].

In a work of Stulp et al. DMPs were trained using human motion data for reaching

tasks in order to derive stereotypical reaching trajectories for variations of the task

with obstacles present [32]. As claimed by the authors, DMP allowed compact repre-

sentations, predictable motion, and legible motion as in human-like behavior in this

case [32].

In a work of Akgun et al. titled as ‘Action recognition through an action generation

mechanism’, the authors were capable of online action recognition within approx-

imately the first one-third of the observed action with a success rate of over 90%

using DMP. They have generated the trained trajectories in order to calculate error

of Cartesian coordinates of observed trajectories for online recognition [33].

Miguel et al. has studied DMPs for Human Robot interaction. In their work, they

5



have trained DMPs with Human movement data about object transfer between hu-

man and robot. They have modified DMP formula by decoupling weighting function

and adding adaptation for goal change in order to obtain a better control of the tran-

sition in between the shape-attractor and the goal-attractor [24].

Reinforcement learning has been used in the obtaining the parameters in DMP train-

ing process by Kober et al. [34, 35]. In one of Kober et al.’s work they have studied

the problem of meta-parameter learning for motor primitives [34]. It is as stated,

an essential step towards applying motor primitives for learning complex motor skills

in robotics more flexibly. They have showed an appropriate reinforcement learning

algorithm for mapping situations to meta-parameters and applications in both simu-

lations and several physical robots [34]. In another similar work of Kober et al., they

have shown evaluations of adjustment of robot movements generated by DMP using

reinforcement learning in dart throwing and table tennis strike tasks with robots [35].

One of the works by Nemec et al. presents some novel applications using DMP. In

their paper Nemec et al. have addressed to the problem of joining movement prim-

itives. In order to achieve affective sequencing with continuous desired acceleration

signals, they have implemented a third-order DMP formulation [1].

Joining two or more DMPs is also possible as done in paper by Kulvicius et al. [37].

In order to achieve this, two simple DMP were joined by setting centers of later DMP

to the continuing points after the end of first DMP. In this paper DMPs were trained

by handwriting trajectories and the result was implemented on a robot [37].

One of the studies related to DMP parameter change is the paper titled as Task-

Specific Generalization of Discrete and Periodic Dynamic Movement Primitives by

Ude et al. The task of generalization is to synthesize action toward any given target

within the training space. The parameters specifying the goal of the task in this study

are the target positions. Ude et al. have shown several applications of goal change in

DMP reproduction of trajectories [30]. We have also shown the effect of goal change

6



in DMP reproduction in this thesis.

HMM is one of most famous tools as a recognition method for time-series data. There

are used in many applications including speech recognition, pattern recognition, ges-

ture spotting, and molecular biology[18, 6, 36]. A detailed tutorial on HMM is done

by Rabiner in 1989 explaining how HMM works and how to solve problems that will

make HMM useful in real world problems [11]. There are many successful application

studies that use HMMs for different types of recognition. One such an example is

Yang et al.s [12], where 99.78% accuracy could be achieved for an isolated recogni-

tion task involving nine gestures [12]. Another example of HMMs use for movement

recognition is the work of Starner and Pentland [7]. Starner and Pentland used HMM

to model sign language gestures and they achieved 99.2% word accuracy . A work on

sign language recognition using Kinect (Microsoft Corp.) was done by Godoy et al.

[5]. Authors were able to get correct recognition rates ranging from 76.2% to 91.2%

using 181 video collected from 23 different subjects [5]. There are also examples of

HMM being used in handwritten text recognition, such as the work undertaken by

Hu et al. [8]. Hu et al. were able to achieve writer independent recognition rate of

94.5% on 3,823 unconstrained handwritten word samples from 18 writers covering a

32 word vocabulary [8].

7



CHAPTER II

MOVEMENT DETECTION : A PRACTICAL APPROACH

Recognizing human movements and understanding the actions in software environ-

ment consists of many subparts. One of the sub applications of this subject area is

to spot a motion in videos and tagging of this motion for classification. This appli-

cation has many use cases. One of them is to monitor a house for possible human

movements and recognize the action that human does. Autotag application was im-

plemented in order to help realization of such task in Advanced Telecommunications

Research Company (ATR) in Japan in Summer 2013 as a part of Smart House Project

of DBI laboratories and part of this Master thesis research.

The Smart House Project of DBI Laboratories ATR was about helping elderly or

disabled people with smart electronic assistance. For this purpose several hardware

and software solutions were proposed. One of the solutions included monitoring house

with 13 Kinect cameras and recording the skeleton and RGB data streams. In addi-

tion to the Kinect camera data, during the experiments, subject person would wear a

functional near-infrared spectroscopy (fNIRS) device. Synchronously with the Kinect

data, fNIRS data would be recorded. These videos and skeleton data were to be

analyzed further after experiments done in Smart House. Most parts in video and

skeleton data were motionless video if there were no humans in that area of the house.

Furthermore the skeleton data didn’t start immediately after a person comes into the

view of a Kinect camera since Kinect usually detects the skeleton after the person

faces the camera. The sections of the video where a valuable action happens needed

to be tagged by a human manually for the activities they represent so they can be

used for several learning tasks and analysis of fNIRS data. Having so much video and

8



skeleton data that are recorded during experiments posed a problem. How to find

the action parts of video and tag these parts easily without spending too much time

and effort? Autotag software was implemented in order to answer this question.

2.1 Autotag - A Software for Movement Detection

Autotag software is able to process a video or a batch of videos from a location and

sub folders of that location. After the video processing and filtering, Autotag is able

produce automatically detected parts of the videos where an action happens together

with their corresponding skeleton data. These parts are registered to a file with the

time stamps of start and stop of actions in video. Autotag also lets the user of

program to tag each action manually through a user interface. In this user interface

user can edit the action size, start and stop times or delete/add tags while viewing

the video for confirmation. The tags in a video can be exported in a special form

of XML. This XML file consists of the action tags given by the user and the action

start and end times. The XML files were used for getting the corresponding fNIRS

data that was continuously recorded during the experiments. Since the videos are

collected from Kinect cameras together with skeleton data, if corresponding skeleton

data exists, it also can be exported. The user can click on an action tag and play

the corresponding skeleton data in another video window. After making sure that

this data is needed in machine learning algorithms used in the project, the user can

export this data in a format which is suitable for Matlab (MathWorks Inc.).

• The software can detect the time when an action happens and finishes in the

video by motion analysis.

• These auto detected actions are shown in GUI for further editing, such as

combining-deleting-modifying the duration, and tag description by human in-

put.

9



Figure 1: Explanation of the Graphical User Interface of Autotag

10



Figure 2: GUI in Ubuntu and Auto Motion Detection

• A tag file, and also an Xml file in a nice format can be exported for later use

with external programs, such as MATLAB.

• Changing the parameters for motion detection or auto threshold motion detec-

tion is available in program.

• Program can find the corresponding skeleton data for a video-action tag and

display the data simultaneously.

• Program can export the skeleton data for each tagged action.

The motion detection in video is done by taking differences of the pixels in each

consecutive frame and applying a sliding average filter on the pixel value difference.

You can see the result after Auto Detect is done in Figure 2. There are purple block

in video slider for representing detected movements in the video.

The auto detected movement are shown in purple block. You can see some con-

secutive frames and the video bar showing tagged area in Figure 2.1. Since the auto

detected movement might not be the ones needed for further processing, we may

11



Figure 3: Motion Detection Detail

delete them. Using the lower bar in video slider, we can select the tag by dragging

mouse. After selection we can delete the selected tags as shown in Figures 4, 5, 6, 7.

Moreover it is possible to merge tag by selecting them from lower bar and clicking

Combine Tags button as shown in Figures 8 and 9. Setting a Tag Name for a mo-

tion is done by writing tag in middle textbox and clickin Set Tag. The tag for the

combined Tag in Figure 8 was set to Reaching Right as shown in Figure 9.

Furthermore, the user may want to edit or create a new motion tag other than

auto detected motions in this GUI. New tag creation is done by clicking on New

Tag button and clicking the first position of tag as in Figure 10. After clicking first

position (blue area), we can change the start position by clicking Tag Start. Then

we click to the slider position we want to be the start of the tag as shown in Figure

11. Same process in done for end position of the tag by Tag End button as shown

in Figure 12. Lastly, we click New Tag Created button to finish new tag creation

process(Figure 13). The new tag is shown as blue area in Figure 13. The processes

for setting tag start and tag end is applicable to already created tags too.

12



Figure 4: A motion tag can be selected
by clicking on it

Figure 5: Dragging mouse in the lower
bar creates green area

Figure 6: Tags that are left inside green
area are selected

Figure 7: Delete Tags button deletes se-
lected tags

13



Figure 8: Several Tags are selected Figure 9: Tags are combined

14



Figure 10: Clicking first position for new
Tag

Figure 11: Changing start position of tag

Figure 12: Changing end position of tag Figure 13: Finishing New Tag creation

15



CHAPTER III

DYNAMIC MOVEMENT PRIMITIVES (DMP)

Dynamic Movement Primitives have been seen as building blocks of complex move-

ments which can be used and modulated in real time [17, 10]. Initially introduced by

Ijspeert et al. [25], DMPs are proposed as a possible mathematical formalization of

such primitives. The DMP approach consists of a non-linear dynamical system which

is forced to follow a desired trajectory by applying a parametric forcing term. A DMP

model can be trained from one trajectory, or more by taking the mean of the weights

as the representative for the trajectories belonging to a specific class. It is possible

to reproduce a trajectory (or the mean trajectory) by numerical integration, and by

using the learned weights [10]. There are two types of DMP described by Ijspeert et

al., one is Rhythmic, and the orher one is Discrete DMPs [10]. Rhytmic DMPs are

for cyclic movements. If we choose the forcing term f to be periodic, this will result

in an oscillator. In this case we use Rhytmic DMP [29]. If we choose f to be phasic

i.e. active in a finite time window, then we use Discrete DMP [10]. In my thesis, we

have worked on only Discrete DMPs which are for discrete accelleration movements.

3.1 Representing Movements with Dynamical Systems

Dynamic Movement Primitives (DMPs) encode a desired movement trajectory in

terms of the attractor dynamics of nonlinear differential equations with the help of

adjustable weight parameters. DMP uses a second order linear dynamical system

which is stimulated with a non-linear forcing term.

16



Figure 14: Replay of X from DMP for
K=24 D=3

Figure 15: Replay of Y from DMP for
K=24 D=3

Blue: Original Trajectory
Red: Replay by dynamical system without external force

3.1.1 Parameters of the Dynamical System

DMP uses a second order linear dynamical system which is stimulated with a non-

linear forcing term. Let x(t) denote a one-dimensional trajectory starting at x(t0) =

x0 towards x(tf ) = g. ‘Damped Spring’-like model which is used in many Robotics

(PD control) applications is chosen as Dynamical System in DMP framework as de-

scribed in the work of Ijspeert et al. as well as Miguel et al. [24, 10]. The equation

is shown in Equation 1.

τ v̇ = K(g − x)−Dv + (g − x0)f(s) (1)

τ ẋ = v (2)

τ v̇ = a (3)

The dynamical system in Equation 1 , named transformation system, has a global

damping term −Dv, and K(g − x) creates an attractor system towards the goal

position [24]. The Transformation System’s response with f = 0 is shown in Figures

14 and 15 for K = 24 D = 3.

The Transformation System’s response with f = 0 is shown in Figures 16 and 17 for

K = 1 D = 1. f is dependent on a phase variable s such that: [10]

17



Figure 16: Replay of X from DMP for
K=1 D=1

Figure 17: Replay of Y from DMP for
K=1 D=1

Blue: Original Trajectory
Red: Replay by dynamical system without external force

τ ṡ = −αs (4)

The canonical system is a first order dynamical system with the same temporal scaling

factor τ , as in Equation 1 is a predefined constant. If no temporal scaling is wanted,

τ is set to the duration of the movement [24].

K and D parameters can be selected to make the system critically damped as done

by Glatz.[26]. However, other selections could result in more desired trajectories too.

The phase variable s is initialized with one s(0)=1. The constant is chosen such that

the phase variable s goes from one to zero as time passes s → 0 . The canonical

system Equation 4 can be solved symbolically, its solution is given in Equation 5 [24].

s(t) = e−
α
τ
t (5)

As shown in Figure 18 with initial value of s being 1 and decreasing in time with

α = 1 and τ = 0.225 seconds. The phase variable s on which the forcing term

depends evolves exponentially from 1 to 0 as the time passes. The phase variable is

used to remove the direct time dependency of the forcing term f(s), and provides

the complete system with a time scalability by adjusting the parameter τ . The phase

variable is also used to weigh the forcing term, enabling this way to continuously shift

towards a purely goal-attracted system.

18



Figure 18: Phase variable s versus time

3.1.2 Forcing Function on the Dynamical System

The forcing term f representing is formulated as an arbitrary non-linear function as

a sum of weighted exponential basis functions as seen in Equation 7 by Ijspeert et al.

[10].

f(t) =

∑N
i=1 Ψi (t)wi∑N
i=1 Ψi (t)

(6)

f(t) can be rewritten as f(s) by removing time dependency in Equation 8 [10].

f(s) =

∑N
i=1 Ψi (s)wi∑N
i=1 Ψi (s)

s(g − x0) (7)

The Basis functions formula which we used is shown below. The variables are width

hi, center ci and adjustable weights wi:

Ψi (s) = e−hi(s−ci)
2

(8)

ftarget =
−K (g − x) +D

.
x +τ x

g − x0
(9)

ftarget can be calculated with the Equation 9 for each trajectory [26]. In Figures 20

and 21, ftarget for x and y coordinates of the example trajectory in Figure 19 is shown.

19



Figure 19: 2D trajectory of the example movement

Figure 20: f(s) = ftargetx Figure 21: f(s) = ftargety

20



3.2 Learning and Reproduction in Dynamic Movement
Primitives

3.2.1 Regression on Forcing Function

The non-linear forcing term ftarget = f(s) in the Equation 1 is where the learning

takes place. We need to fit a sum of exponential basis functions to the calculated

ftarget. Parameters and Given Values:

1. We know the positions, velocities and accelerations from demonstration (train-

ing data). ftarget is calculated from the Equation 9.

2. g=goal, the last position of the trajectory. x0 is starting position.

3. K is spring constant and D is the damping term. We choose appropriate val-

ues for K and D such that the system converges to the goal before movement

duration ends.

4. τ is temporal scaling factor. Without scaling, its value is the time duration of

the movement. [24]

5. N is the number of Gaussians in the weighted sum of Gaussians that we fit to

ftarget.

6. h is the widths of Gaussians.

7. c is the centers of Gaussians.

Learning:

1. ffitted is fitted on ftarget by regression (locally weighted or linear regression).

2. We train one DMP for each dimension of data separately.

21



3. (for locally weighted regression) We minimize the locally weighted quadratic

error criterion Equation 10 for locally weighted regression: [10]

Ji =
P∑
t=1

ψi (t) (ftarget (t)− wiξ (t))2 (10)

The calculation of weights by local regression is done by Equations 11, 12, 13, 14, 15

as decribed by Ijspeert et al. [10]

ξ (t) = s (t) (g − y0) (11)

ζ =



ξ (1)

ξ (2)

:

ξ (P )


(12)

Γi =



ψi (1) .. 0 0

0 ψi (2) .. 0

0 .. .. 0

0 .. 0 ψi (p)


(13)

ftarget =



ftarget (1)

ftarget (2)

:

ftarget (P )


(14)

wi =
ζTΓiftarget
ζTΓiζ

(15)

3.2.2 Reproduction of Learned Movement

We can calculate the weights for ‘Weighted Gaussian Sum’ as shown in Equation

15. After learning wi, freproduced can be reproduced by Equation 16 [10] Then the

22



Figure 22: x-y trajectory replay with 40 Gaussians
Blue: Original Data

Red: Replay by DMP from learned parameters

trajectory or the ‘mean’ trajectory can be generated by ‘Transformation System’

shown in Equation 1 by numerical integration as shown in Equation 17 [26].

freproduced(s) =

∑N
i=1 Ψi (s)wi∑N
i=1 Ψi (s)

s(g − x0) (16)

v̇ = (K(g − x)−Dv + (g − x0)freproduced(s))/τ

ẋ = v/τ
(17)

The data of Figure 22 includes 256 points in x and y coordinates. The parameter

values that are used in the Figures 23, 24, 25, and 26 are as follows:

Time duration of movement = τ = 0.2550 α = 1 K = 24 D = 3 Number Of Gaussians

= 40 h = 1 for all Gaussians.

The Figures 23 and 24 shows the calculated ftarget in Blue and the fitted ftarget in

Red for x and y coordinates respectively.

23



Figure 23: ftarget for x trajectory Figure 24: ftarget for y trajectory
Blue: Original Data
Red: Replay by DMP from learned parameters

Figure 25: x trajectory replay Figure 26: y trajectory replay
Blue: Original Data
Red: Replay by DMP from learned parameters
40 Number of Gaussians K=23 D=4

24



The Figures 25 and 26 shows the position coordinates for x and y respectively. Origi-

nal position is shown in Blue and the reproduction of position calculated using Equa-

tion 17 is shown in Red.

Here are the errors we have in reproduction of the ‘mean’ trajectory from Figure 22

(40 number of Gaussians).

• Average position error in x : errorx = 0.0100

• Average position error in y : errory = 0.0336

• Average velocity error in x : errorvx = 0.4644

• Average velocity error in y : errorvy = 1.7774

• Average acceleration error in x : errorax = 70.5403

• Average acceleration error in y : erroray = 217.8957

• Total average position error : errorxy= 0.0435

Average errors are calculated with ‘mean of absolute difference of original value and

reproduced value divided by the original value in each data point (of 256)’ in trajec-

tory duration.

Here is another example with less number of Gaussians in Figure 27 with the same

data of Figure 22. The data of Figure 27 includes 256 points in x and y coordinates.

The parameter values that are used in the Figures 28, 29, 30, and 31 are as follows:

Time duration of movement = τ = 0.2550 α = 1 K = 23 D = 4 Number Of Gaussians

= 20 h = 1 for all Gaussians.

The Figures 28 and 29 shows the calculated ftarget in Blue and the fitted ftarget in

Red for x and y coordinates respectively.

The Figures 30 and 31 shows the position coordinates for x and y respectively. Origi-

nal position is shown in Blue and the reproduction of position calculated using Equa-

tion 17 is shown in Red.

25



Figure 27: x-y trajectory replay with 20 Gaussians
Blue: Original Data

Red: Replay by DMP from learned parameters

Here are the errors we have in reproduction of the ‘mean’ trajectory from Figure 27

(20 number of Gaussians).

• Average position error in x : errorx = 0.0394

• Average position error in y : errory = 0.0982

• Average velocity error in x : errorvx = 0.8740

• Average velocity error in y : errorvy = 2.7714

• Average accelleration error in x : errorax = 73.9018

• Average accelleration error in y : erroray = 228.8778

• Total average position error : errorxy= 0.1377

As one can see from this result the total position error has increased (from 0.0435 to

0.1377) with the decreased number of Gaussians.

26



Figure 28: ftarget for x trajectory Figure 29: ftarget for y trajectory
Blue: Original Data
Red: Replay by DMP from learned parameters

Figure 30: x trajectory replay Figure 31: y trajectory replay
Blue: Original Data
Red: Replay by DMP from learned parameters
20 Number of Gaussians K=23 D=4

27



Figure 32: Mean Error versus number of Gaussians

Number of Gaussians clearly changes how well we can fit the DMP reproduced tra-

jectory to the original data. Here is a graph of change of mean absolute error with

number of Gaussians in Figure 32. The parameters in this DMP are K=24 D=3.

The data in Figure 22 is used. The minimum error was obtained at 80 number of

Gaussians. Here is another example with differen K and D values (K=1 D=1) for

the dynamical system with the same data of Figure 22. In Chapter 3.1.1 ‘Parame-

ters of Dynamical System’, the difference that two sets of K and D values makes in

Dynamical System response were shown in Figures 16, 17, 14, and 15. Figures 16,

17 show that with K=1 D=1 values dynamical system doesn’t even reach the goal

in movement duration. As a result of this difference the reproduction results vary as

explained below.

The data of Figure 33 includes 256 points in x and y coordinates. The parameter

values that are used in the Figures 34, 35, 36, and 37 are as follows:

Time duration of movement = τ = 0.2550 α = 1 K = 1 D = 1 Number Of Gaussians

= 40 h = 1 for all Gaussians.

The Figures 34 and 35 shows the calculated ftarget in Blue and the fitted ftarget in

28



Figure 33: x-y trajectory replay with 40 Gaussians K=1 D=1
Blue: Original Data

Red: Replay by DMP from learned parameters

Red for x and y coordinates respectively.

The Figures 36 and 37 shows the position coordinates for x and y respectively. Origi-

nal position is shown in Blue and the reproduction of position calculated using Equa-

tion 17 is shown in Red.

Here are the errors we have in reproduction of the ‘mean’ trajectory from Figure 33

(40 number of Gaussians K=1 D=1).

• Average position error in x : errorx = 0.0160

• Average position error in y : errory = 0.0422

• Average velocity error in x : errorvx = 0.4866

• Average velocity error in y : errorvy = 1.8194

• Average accelleration error in x : errorax = 70.5643

• Average accelleration error in y : erroray = 217.5266

29



Figure 34: ftarget for x trajectory Figure 35: ftarget for y trajectory
Blue: Original Data
Red: Replay by DMP from learned parameters

Figure 36: x trajectory replay Figure 37: y trajectory replay
Blue: Original Data
Red: Replay by DMP from learned parameters
40 Number of Gaussians K=1 D=1

30



Figure 38: K-D vs Reproduction Error 3D View Plot
Blue: Lower Values
Red: Higher Values

• Total average position error : errorxy= 0.0582

As one can see from this result the total average position error has increased little

(from 0.0435 to 0.0582) with the same number of Gaussians with Figure 22 but poor

choise of K and D values.

For the trajectory data shown in Figure 22, 2500 DMPs were trained and the absolute

error between original trajectory and the reproduction of the movement by DMPs

were calculated. DMP models were trained with different values ranging from 1 to 50

for K and D variables with 40 Gaussian basis functions. The resulting error matrix

for different K and D values was shown in Figure 38. The lowest error value was

gained at the K=24 D=3 values in the given range of 1-to-50. The replay error is

calculated by the sum of absolute position errors in x and y coordinate DMPs.

Here is the lowest error DMP reproduced trajectory in Figure 39. Here are the

errors we have in reproduction of the ‘mean’ trajectory from Figure 39 (80 number

31



Figure 39: K=24 D=3 80 Number of Gaussians DMP Reproduction
Blue: Original Data

Red: Replay by DMP from learned parameters

of Gaussians). As we can see the total position error has decreased (from 0.0435 to

0.0298) with the increased number of Gaussians compared to Figure 22.

• Average position error in x : errorx = 0.0077

• Average position error in y : errory = 0.0221

• Average velocity error in x : errorvx = 0.2788

• Average velocity error in y : errorvy = 0.9041

• Average accelleration error in x : errorax = 66.7336

• Average accelleration error in y : erroray = 198.5779

• Total average position error : errorxy= 0.0298

We get the minimum average error of 0.0056 using DMP with 80 number of Gaussians

and K=12 D=3 h = 1 values. The absolute difference of max and min x values is

32



Figure 40: Width of Gaussians vs Average Position Error
K=24 D=3 40 Number of Gaussians

0.9833. If we divide the error in x axis trajectory with this value, we get:

0.0056/0.9833 = 0.0057 = 0.5695% average error in x trajectory. We get the minimum

average error of 0.0207 using DMP with 80 number of Gaussians and K=17 D=2

values. The absolute difference of max and min y values is 1.9876. If we divide the

error in y axis trajectory with this value, we get:

0.0207/1.9876 = 0.0104 = 1.0400% average error in y trajectory. We can decrease

the errors with the cost of increased number of Gaussians and different K and D for

x and y axis DMPs.

Widths (h) of Gaussians that are used in basis function Equation 8 is also one of

the parameters that affect how well the DMP reproduction of the trajectory fits the

original trajectory. Until this part we have taken widths of Gaussians as ‘1’. Now

we investigate how the width of Gaussians’ change position errors. The graph shows

width of Gaussians vs average position error is given in Figure 40. As seen in Figure

40, 2.4 is a better choice for a DMP with 40 Number of Gaussians and K=24 D=3

values. That is because the average position error is decreased compared to DMP

33



with h=1 (from 0.0435 to 0.0274).

Gaussians that we used as basis functions have one more parameter, centers of the

Gaussians (c). As described in Equation 7, the external force on the sytem depends

on phase variable s which is decreasing with time. So we have chosen to set the centers

of Gaussians equally seperated in range of s during duration time of the movement.

This results in unequal distribution of centers in time axis. Therefore, Time-vs-s plot

doesn’t result in equal changes in time. The absolute difference in consecutive values

of s is changing with time as shown in Figure 42. Since the basis functions depend on s

values which change exponentially as the time moves, the resultant Gaussian centers

will be shaped differently when plotted on time axis. In addition to the ‘equally

distanced in s’ approach I have also tried ‘equally distanced in time’ approach as

done by Ijspeert et al. [10]. Resultant 10 Gaussians and their centers are shown

in Figure Ṡince the average position error of reproduction of the data in Figure 22

with 2.4 width (h) have resulted in as low as 0.0274 before using ‘equally distanced

in s’ approach which is shown in Figure 43. However the result with the approach

‘equally distanced in time’ as shown in Figure 44 is not better than the former, as

the minimum average position error with same parameters other than centers (c) and

widths (h) is 0.0402 (compared to 0.0274) in width 3.1 as shown in Figure 41.

τ is the temporal scaling factor. If no time scaling is needed, τ should be the

movement duration. If we want time scaling in reproduction of the trajectory, it is

possible to change the movement duration by adjusting τ . The changes of duration

will result will result differences in reproduced trajectory as seen in Figures 45 and

46.

It is possible to change the goals during reproduction of the trajectories. Here is an

example with 2 sets of changed goals in DMP trajectory reproduction in Figures 47

and 48. As the goals are the last position in x and y axis’ originally, here we set

first 0.75×original goal for both x and y axis. Second, we set 1.5×original goal for

34



Figure 41: Width of Gaussians vs Average Position Error in ‘equally distanced in
time’ approach

K=24 D=3 40 Number of Gaussians ‘equally distanced in time’

Figure 42: Absolute difference in consecutive values of s vs time

35



Figure 43: 10 Gaussians vs Time in ‘equally distanced in s’ approach
Green Triangles : Centers of Gaussians

Figure 44: 10 Gaussians vs Time in ‘equally distanced in time’ approach
Green Triangles : Centers of Gaussians

36



Figure 45: τ = 1.2× duration Figure 46: τ = 0.8× duration
Blue: Original Data
Red: Replay by DMP from learned parameters
40 Number of Gaussians K=23 D=4

Figure 47: g = 0.75× original Figure 48: g = 1.5× original
Blue: Original Data
Red: Replay by DMP from learned parameters
40 Number of Gaussians K=23 D=4

both x and y axis. This change also causes position scaling. In Ijspeert et al.’s work,

a hand written letter was given as training data to a discrete DMP. Then the goal

was changed by an amount. Due to the proper formulation of dynamical system with

invariance properties and scaling term (g−x0) in Equation 1, the result of goal change

in DMP was a properly uniformly zoomed version of the original letter [10].

Furthermore, changing the initial positions (x0 y0) during reproduction of the trajec-

tories. Here is an example with changed initial positions in DMP trajectory repro-

duction in Figures 49 and 50. First only x0 is changed by -0.2 in position, then only

37



Figure 49: x0 is set to x0 − 0.2 Figure 50: y0 is set to y0 − 0.2
Blue: Original Data
Red: Replay by DMP from learned parameters
40 Number of Gaussians K=23 D=4

y0 is changed by -0.2 in position in Figures 49 and 50.

3.3 Movement Recognition with DMP

The main principle that allows DMPs to be used for recognition is the fact that two

movements can be compared by using their DMP representations, i.e. weights. By

nearest neighbor approach, we test the test data with mean of previously trained

letters’ weights. An example with 40 Gaussian DMPs shown in Figures 51, 52, and

53.

‘Training A’s data is 2x256 points.

‘Test A’s data is 2x251 points.

‘Test U’s data is 2x240 points.

Distances in wx + Distances in wy:

• ‘Training A’ vs ‘Test A’= 7456

• ‘Training A’ vs ‘Test U’= 9040

As expected ‘Training A vs Test A’ is smaller. Therefore ‘Test A’s weights are closer

to ‘Training A’s weights. This property allows us to recognize different letters or

movements.

38



Figure 51: Training for letter A Figure 52: Testing letter A

Figure 53: Testing letter U
Blue: Original Data
Red: Replay by DMP from learned parameters

39



CHAPTER IV

DMP BASED MOVEMENT RECOGNITION AND

COMPARISONS WITH HMM

4.1 Setup and Implementation

For the tests we have collected coordinate data of hand written individual letters in

the air by body movements. The data were recorded via Kinect for Windows v1.0

(Microsoft Corp.). Some frames from the recording scene can be seen in Figure 54.

The right hand data were extracted from Kinect skeleton data. Trajectories, veloc-

ities, and acceleration data of the right hands movements during letter air writings

are stored with corresponding time stamps. In Figure 55, a playback from recorded

data is show.

4.1.1 Dataset and Modifications

Data is divided into training and test data. When the training and test sets are

collected, the data were scaled and normalized. The starting point of trajectories were

set to [0.0 0.0] coordinates and the total movement was scaled to a range between 0.0

to 1.0 in each dimension. The time between consecutive data were not equal. The

time differences were made equal by linear interpolation. Then the time duration

were scaled to a constant value of 10. Moreover, the number of data points were fixed

at 150. Training set consists of scaled 15 set of 5 handwritten letters as seen in Figure

56. Test set consists of scaled 20 set of 5 handwritten letters as seen in Figure 57.

The mean trajectories of the datasets are shown in the Figures 56 and 57 with red

color. Only the training data is used when training both models. Only test data is

used when testing the models.

40



Figure 54: Some of the frames from a movie recorded via Kinect while data recording

Figure 55: A snapshot from replay of a letter writing data recorded via Kinect.

41



Figure 56: Scaled training set consisting of 15x5 handwritten letters by arm move-
ments in the air
Blue: Training set
Red: Overlayed Mean Trajectory of 15 Training Data

Figure 57: Scaled test set contains 20x5 hand written letters by arm movements in
the air
Blue: Test set
Red: Overlayed Mean Trajectory of 20 Test Data

42



Figure 58: Original data and the data with broken pen modification

Test data was given to both recognizer with and without modifications. The mod-

ifications were made on the test data to test the noise robustness of the recognizers.

First modification was Broken Pen modification, where two randomly selected por-

tions (5% each) of the data was deleted. The deleted part is not interpolated, the data

sequence jumps to the further data points in the next time step. The purpose of this

modification was to simulate data loss during data records. Figure 58 demonstrates

the Broken Pen modification in the data.

After the application of Broken Pen modification, the data were further modified with

white noise at several signal to noise ratio (SNR) values. Figure 59 demonstrates the

noise contaminated trajectory data used in the tests.

4.2 Recognition Task

Recognition task was done with two different methods. One is DMP other one is

HMM. Models for both methods were trained with the same trainig data and tested

with the same testing data. The correct recognition rate were compared between

both methods.

4.2.1 Hidden Markov Model (HMM) for Recognition

HMM is a mathematical model of a stochastic process and includes three parameters

λ = (Π, A,B) where Π represents initial vector, A is the transition matrix and B

43



Figure 59: Test data with white noise. SNRs are as follows: 20, 25, 30, 35

refers to emission matrix. There 3 main problems in HMM: [11]

1. Evaluation Problem: Given a model and a sequence of observations, how do we

compute the probability that observed sequence was produced by the model.

In other words, scoring how well the model fits observed data.

2. Finding the optimal hidden state sequence for an observation.

3. Training the model: how do we optimize the parameters A,B, Π such that the

probability calculated in problem 1 is maximum.

Problem 1 can be optimally solved by forward-backward procedure.

Problem 2 can be solved by Viterbi algorithm.

And problem 3 can be applied by Baum-Welch (or equivalently Expectation Maxi-

mization).

The solution for problem 1 can also be used for recognition. If we train a model for

44



each class of movements, then test an observed movement with each model. We can

find the best fit model, therefore the most probable class which observed movement

belongs to.

We have used Kevin Murphys pmtk3 toolkit in Matlab (Mathworks, Inc.) for HMM

tests. We are using Gaussian function as the HMMs emission type. By default, pmtk3

toolkit lightly regularizes all parameters, so we are doing Maximum a Posteriori esti-

mation, not Maximum Likelihood Estimation [16].

4.2.2 Parameter Selection of Models

4.2.2.1 Hidden Markov Model (HMM)

The parameters of the HMM that we used in our tests are explained as following:

Nstates the number of hidden states is an open parameter that we chose. We have

chosen this parameter according to the experiments. We have tested the range of 3

to 15 states with the test data. We get a local maxima at the 5 states which gave the

maximum performance of 83 correct recognition over 100. The results can be seen at

Figure 60.

The type of the emission was chosen as Gaussian. It represents the desired emission

i.e. observation (local) distributions type. π0 is initial value for the starting distribu-

tion. It is randomly initialized. It is a 1-by-Nstates vector that sums to one. trans0

is initial value for the state transition matrix. It is also randomly initialized. It is an

Nstates-by-Nstates matrix whose rows sum to one.

emission0 is initial value for the emission (local) distribution. It is also randomly

initialized at the training of HMM. d is the dimension of the data, it is 2 in our case.

The learned parameters in HMM are µemission mean of Gaussian emission. It is

d2 × Nstates matrix. σemission standard deviation of Gaussian emission. 2 × Nstates

matrix A the transition matrix which is a Nstates × Nstates matrix is also one of the

learned parameters. The parameters other then Nstates are either randomly initialized,

learned, or fixed parameters. Therefore we can approximate the number of learned

45



Figure 60: The recognition performance of HMM with different number of hidden
states ranging from 3 to 15

46



parameters in order to fit the HMM model to training data as shown in Equation 18.

nHMM
∼= N2

states + d2 ×Nstates + d×Nstates (18)

4.2.2.2 Dynamic Movement Primitives (DMP)

g is the goal state of point attractive system as seen in Equation 1 as described in

Schaals paper [20]. g was taken as a constant the last position of trajectory in each

trajectory. For the training data shown in Figure 56, 960 DMPs were trained and

the absolute error between original trajectory and the reproduction of the movement

by DMPs were calculated. DMP models were trained with different values ranging

from 5000 to 100000 for K and 1 to 500 for D variable with 30 Gaussian basis func-

tions. µ is mean (center) of the Gaussian basis functions. The centers of Gaussians

were taken as equally seperated in values of phase variable s as described in Section

3.2.2 and Figure 43. The width of the Gaussians (h) were decided to be 5 at first by

some experimentation. Such experimentation was necessary in order to find a general

range of suitable variables at first. The resulting error matrix for different K and D

values was shown in Figure 61. The lowest error value was gained at the K=51000

D=401 values in the given range with error of 0.01513. The replay error is calculated

by the sum of absolute position errors in x and y coordinate DMPs. The number

of Gaussians given intuitively at first. Since there are 150 data points, 30 Gaussians

should be able to represent letter trajectories well enough. However this adjustable

parameter is discussed further in next section 4.2.3.

After getting suitable K and D values from a local minimum as shown in Figure 61

for Gaussian width of 5, I tried different widths with the values K=51000 and D=401.

The result for error vs width plot is shown in Figure 62.

We get h=3.5 as the newer lowest mean trajectory error point with the values

47



Figure 61: K-D vs Reproduction Error for Training Data h=5
30 Gaussians, Width of Gaussians=5

Figure 62: Mean Trajectory Error for Training Data h=0.1 to 20
30 Gaussians, K=51000 D=401

48



Figure 63: K-D vs Reproduction Error for Training Data h=3.5
30 Gaussians, Width of Gaussians=3.5

K=51000 and D=401. With the new width value, I tried different K and D val-

ues one more time to see if there is a better parameters to be selected then the

current ones. The result of the K-D vs mean error plot is shown in Figure 63. Same

value range was used as done in Figure 61.

The newer K-D vs mean error plot resulted in slightly different K and D values. The

minimum error of 0.0137 which is slightly better than previous 0.01513 was obtained

at the point K=53000 D=401. So I used K=53000 D=401 as the parameter for DMPs

we used in the training and the tests for better represented training set trajectories.

The adjustable learned parameter NGaussians can be used to calculate the learned

parameter complexity approximately. The parameters other then NGaussians are op-

timized once then fixed to a value. Therefore we can approximate the number of

learned parameters in order to fit the DMP model to training data as shown in Equa-

tion 19. d (dimension) is 2 in our case.

nDMP
∼= NGaussians × d (19)

49



DMP HMM
Ngaussian Complexity∼= Nstates Complexity∼=

Equation 19 Equation 18
3 6 3 27
6 12 4 40
9 18 5 55
12 24 6 72
15 30 7 91
18 36 8 112
21 42 9 135
24 48 10 160
27 54 11 187
30 60 12 216
33 66 13 247
36 72 14 280
39 78 15 315

Table 1: Approximate learned parameter complexity

4.2.3 Learned Parameter Complexity

Using the approximation of learned parameter complexity of both models, we can

derive learned parameter numbers as show in Table 1. As seen in Table 1, HMM

have more learned parameter than DMP in general. DMP represents a recognition

model in a smaller learned parameter memory namely only the weights of Gaussians

in DMP.

4.3 Comparison of DMP and HMM in Recognition Tests

4.3.1 Training and Tests

4.3.1.1 DMP

Given the temporal and spatial invariance of our policy representation, trajectories

that are topologically similar tend to be fit by similar weights, i.e., similar trajecto-

ries at different speeds and/or different amplitudes will result in similar weights. In

our study we used a modified one nearest neighbor classifier on the weights space for

movement recognition.

50



Two DMP models were trained for each trajectory. One for x coordinate, one for y co-

ordinate of the writing trajectory. Each represents one dimensional equal-time-spaced

data. By locally weighted regression we find the weights wi of Ngaussian Gaussians

basis functions for each training data. In the current implementation, a modified

one nearest-neighbor classifier was used. In a test instance we calculated the weight

vector wtest for the test data. Then we find the nearest mean weight vector waverage

which were created during the training. waverage is the weight vector that was calcu-

lated from training DMPs for the mean trajectories of training set. The closest match

within scaled weights which is in nearest distance is selected as the recognized class

and recorded. This scaling process in described in Section 4.3.1.2.

We can choose higher number of Gaussians in order to fit the DMPs to the train-

ing set. Thus, the DMPs for test reference will represent the training data better.

The error in reproduction decreases as the number of Gaussians increase as expected.

This is shown in Figure 64. The lowest error value was gained at 42 Gaussians in the

given range of 10 to 50. Some training set reproduction examples to show how the

reproduction fits better as the number of Gaussians increase is shown in Figure 65.

We have tested how well the DMP fits training set until now. Since our aim in this

chapter is to recognize test set using a training set with known classes, we should be

looking at the test set recognition performances. In HMM parameter selection, we

have done this using different number of states. Therefore a best performing num-

ber of states were chosen for the following test in next section with HMM. We can

apply the same procedure for DMP. Here is a graph that shows the correct recogni-

tion performance of the DMP with the chosen parameters and different number of

Gaussians in Figure 66. Other chosen parameters in the DMPs used in test are as

follows: K=53000 D=401 h=3.5. As one can see from the Figure 66, DMP shows

perfect recognition performance in recognition of the test set of 100 letters after 27

Gaussians. Even though more Gaussians result in better fit in training data, we have

51



Figure 64: Mean Reproduction Error for Training Data
K=53000 D=401, Width of Gaussians=3.5

9 Gaussians 12 Gaussians 18 Gaussians

21 Gaussians 27 Gaussians 39 Gaussians

Figure 65: Reproduction Training DMPs with different number of Gaussians
Blue: Mean Training Trajectory
Red: Reproduction by DMP

52



Figure 66: The recognition performance of DMP with different number of Gaussians
ranging from 3 to 39

53



Figure 67: Weights of Gaussians of Test
and Training set for letter M

Figure 68: Zoomed in version of Figure
67

Blue Dotted: Weights from 20 Test Data DMPs
Other Colors: Replay by training DMPs
27 Gaussians K=53000 D=401 h=3.5

chosen 27 Gaussians for the tests in next section because it already gives 100% correct

recognition with the original test data. Moreover the approximate learned parameter

complexity of DMP (27 Gaussians) is closer the HMM chosen parameter (5 number

of hidden states) as shown in Table 1. DMP has 54 approximate complexity with 27

Gaussians while HMM has 55 Complexity with 5 hidden states. Therefore, the tests

will be done with a comparable learned parameter complexity.

4.3.1.2 Modified Distance Measure for Recognition

In DMP test, the recognition is done by comparing the weights. We have calculated

distances between the Gaussian weights in the same order. The sum of total absolute

distance between each Gaussian for 2 DMPs is used for as a distance measure. The

closest distance is selected as recognized class. From 2 DMPs one is for x and one is

for y axis of the trajectory. However, the comparison didn’t result in good recognition

performance. The weight that are compared with distances are shown in Figures 67

and 68. In Figure 67 we see that there are outliers in the test data weights. One

example market in the figure has values as high as 6×1011 as weights. Howewer if we

get zoom in to the colored lines as shown in Figure 68, we can see that most of the

54



Figure 69: Training DMP trajectory reproduction over test data
K=53000 D=401, Width of Gaussians=3.5

Blue: Test Data
Red: Replay by training DMP for corresponding letter

55



Figure 70: Scaled weights of Gaussians of Test and Training set for letter M
Blue Dotted: Weights from 20 Test Data DMPs

Other Colors: Replay by training DMPs
Data 1 to Data 20 in Legend is Test Weigths

Data 21 to Data 25 in Legend is Training Weigths
Data 22 Green Corresponds to the M letter

27 Gaussians K=53000 D=401 h=3.5

test weights and training weights have much lower values. Even though the training

DMP’s reproduction fits the test data well as seen in Figure 69, the differences in

weights of test values are huge. So the distance comparison here only gives 2 correct

recognition over 20 M letters.

In Figure 68, it can be observed that the plots of the consecutive Gaussian weights

of test letters have similar shapes. This will allow us to recognize the letters better

if we scale the weight and the huge number difference is gone. In order to achieve

this we have scaled all the weights of test DMPs and the training DMPs to fit in

the range of 0-to-1. The result can be seen in Figure 70. The test set’s weights have

similar shape to the correct training set weights (green). By this modified one nearest

nearest-neighbor comparison we get 20/20 correct recognition performance.

4.3.1.3 HMM

The hidden Markov Model is a probabilistic model of the way in which the xi and yi

sequences are generatedthat is, it is a representation of the joint distribution P(x,y).

56



It is defined by two probability distributions: the transition distribution P(yt | yt−1),

which tells how adjacent y values are related, and the observation distribution P(x|y),

which tells how the observed x values are related to the hidden y values. These

distributions are assumed to be stationary (i.e., the same for all times t). We can

get this distributions by using Expectation Maximization (EM) in several training

data belonging to a single class. We can get the overall probability of a test data

to be generated by this model using forward-backward algorithm. Then we can

compare several models probabilities of generating the test data for classification.

In our recognition task of HMM, we give 2 dimensional sequential training data as

data to the pmtk3 tools model fit function which uses Expectation Maximization to

find the model parameters. We are not using 2 models for 2 dimensions of data in

HMM. We only use one model to represent a letter because HMM can map hidden

states to multidimensional outputs. In recognition task, we use the models with

these calculated parameters to guess most probable letter by testing each models log

probability of the given observation sequence. The observation sequences probability

is calculated by forward-backward procedure [11].

4.3.2 Results and Comparison

We have done tests in several data categories, original data, broken pen data, and

noisy data. We applied our tests with the best performance models that are trained

with the parameters chosen as described previous section 4.2.2. HMM models have

5 states, DMP models have variance of 0.125 and number of Gaussian of 9. Each

test result consists of percentage of successful recognition of total of 100 handwritten

letter movements. In addition to the recognition performance in original data tests,

the process time of both algorithms in computer were measured. Time measurements

were taken by Matlabs Run and Time function. The result are presented in the

following Tables 2, 3, and 4.

57



Successful recognition % Nlearned Process Time (seconds)
DMP 27 Gaussians 100 54 8.096

HMM 5 States 83 55 4.996

Table 2: Original data test results over 100 test instances

DMP HMM
Successful recognition % Successful recognition %

99 82

Table 3: Broken Pen modification test results over 100 test instances

As seen in Table 2, the success rates in DMP higher than HMM on the noise-free

the original data. DMP has 100% correct recognition rate whereas HMM has 83%.

The number of learned parameters were approximately calculated as 54 in DMP and,

55 in HMM. Both methods use comparable learned parameter complexity, so that

their comparison will be more fair. In a computer with 2.4 ghz i7 4700hq (Intel

Corp.) processor with Windows 8.1 (Microsoft Corp.), the time it takes for DMP to

finish recognition test of 100 trajectory data is 8.096 second, where as HMM takes

only 4.996 seconds for the same task. This result can easily be understood since

the DMP needs to do linear regression each time it processes a trajectory in order

to recognize. Recognition by DMP is utilized by comparing the weights that are

calculated by locally weighted regression procedure as described in Ijspeerts paper

[10] as well as in Section 3.2.

However HMM is utilizing a more efficient way to recognize new data. The forward-

backward algorithm is an inference algorithm for HMM which computes the posterior

marginals of all hidden state variables given a sequence of observations/emissions.

DMP HMM
SNR Successful recognition % SNR Successful recognition %
20 99 20 75
25 100 25 80
30 100 30 81
35 99 35 83

Table 4: Noisy data test results over 100 test instances

58



The brute-force procedure for generating all possible NT hidden state sequences and

calculating the joint probability of each state sequence with the observed data. This

approach has time complexity O(T.NT ), where T is the length of sequences and N

is the number of symbols in the state alphabet. This time complexity becomes very

high in most cases [11]. However, the forwardbackward algorithm has time complexity

O(N2.T ). In our HMM recognition task, we use forward-backward algorithm in order

to calculate the observation sequences probability in every model then we compare

these probabilities in order to categorize. Since the time complexity of forward-

backward procedure is low we are able to get fast results compared to DMP which

applies a linear regression for every test data during recognition task.

In Table 3, the success rates with the missing data tests are given. In this modification

randomly selected 2 parts each 5% of the sequential data are deleted including the

indexes they correspond to. Therefore, the sequential data continues in this cut

regions with jumps meaning that the data continues from further data points in one

time step later. Later the modified data is scaled to the original data length. Broken

pen modifications intention was to see how the recognition is affected in case of some

sequential data go missing. We see that HMM nearly same with 83% original data

recognition success (82% in broken pen). DMP has dropped only 1% from the results

of recognition of original data (100%). As in the original data results, DMP is giving

much higher results than HMM. Comparing the two methods results, both methods

are giving better results with missing data compared to their original data results.

Figure 59 shows an example noisy data used in these tests. Noisy data modification

consists of applying white noise with 4 levels of SNR (signal to noise ratio) to the both

coordinate axis of the 2D movement data. If SNR is lower the noise level is higher.

From the data in Table 4, we can see that DMP didnt change much from original

data recognition success. DMP has dropped 1% from the original data success in

recognition of noisy data with 20 SNR and 35 SNR. In the same case (20 SNR) HMM

59



Figure 71: Noisy Data Test With DMP from 19 to 1 SNR
K=53000 D=401, Width of Gaussians=3.5 Number of Gaussians=27

has dropped 21% from original data recognition success. It can be said that DMP

was not affected by noise in the data and had successful recognition results in this

case. HMM catched up on the original data results in 35 SNR value which has less

noise on the data.

Since DMP had very good results in noisy data, we did further test with lower SNR,

meaning more noise. The results are plotted in Figure 71. As seen in Figure 71 the

as low as 83 at 1 SNR.

60



CHAPTER V

CONCLUSION

5.1 Summary

We have implemented a movement recognition method based on DMPs with Gaus-

sians centered equally spaced in phase variable and scaled one-nearest-neighbor weight

comparison. With the series of tests we made, we have observed that DMP gives 100%

success compared to 83% success of recognition with HMM in the test on the non-

modified, noiseless human movement data. In general, HMM was much faster than

DMP in same recognition task. Furthermore, in tests with human movement data

which we modified to emulate data loss during recording, DMP and HMM gave sim-

ilar results compared to their original data recognition performances. HMM changes

little from noiseless original data recognition rate, DMP doesn’t even drop more than

1% from previous performance. In noise contaminated data experiments with 4 levels

of noise, we have seen that DMP based recognition is more robust and have a slight

advantage over HMM in terms of catching up with noiseless data recognition success

rate. Our work not only gives an initial comparison of these methods on the same

task, but it also underlines the need for more critical tests to assess the performances

of two recognition systems. In particular, it would be very valuable to know which

tasks and what kind of noise distributions render one method superior to the other.

The results indicate that, DMP gives superior correct recognition performance on

the given human movement data even compared to generally accepted time series

data recognition method HMM in the tests with noisy data and derogated data.

Thus, using DMPs with Gaussians equally distanced in phase variable and scaled

one-nearest-neighbor weight comparison is a successful method in tasks of human

61



movement recognition.

62



APPENDIX A

LOCALLY WEIGHTED LEARNING

In most regression problems, a global model is fitted to the training data such that the

model can predict the data. After training process, usually the training data is not

stored. However, in memory based methods in other words lazy learning methods,

we use the training data at the time of query in order to predict the values. So the

training data needs to be stored and used whenever a prediction about a point is to

be made [27].

Locally weighted regression (LWR) is a memory-based method that performs a re-

gression around a point of interest using only training data that are local to that

point. Global regression can be expressed as:

xTi β = yi (20)

with the vectors xi ∈ Rk+1, xi = (1, xi1 · · · , xik)T and the parameters β ∈ Rk+1,

β = (βi1 · · · βik)T or in matrix form as:

Xβ = y (21)

with the vectors xi as rows of X ∈ Rn×(k+1),

X =



−xT1−

:

:

−xTn−


(22)

63



Estimation of the parameters β can be done with the least squares method which

minimize the unweighted error criterion:

E =
∑
i

(
xTi β − yi

)2
(23)

solving the normal equations for β leads to:

β̂ =
(
XTX

)−1
XTy (24)

The resulting β tries to fit all points in the data set by a linear function. In order

to turn the global model into a local model, the distance between query point q and

each point xi is taken into account:

E(q) =
∑
i

(
xTi β − yi

)2
ψi(q) (25)

where ψ denotes a kernel function, for example a squared exponential function ψi(q) =

exp(−d(xi, q)
2). This function weights each data point by the distance between the

query point q and xi. If the distance is small the value of ψ is close to 1 which results

in a higher impact on the output values. A greater distance of the points leads to a

weight close to 0 which minimizes the effect of far distant points. The parameters β

which minimizes the error criterion E(q) are given by [26]:

β̂ =
(
XTWX

)−1
XTWy (26)

where W ∈ Rn×n is a diagonal matrix with elements Wii = ψi(q). A prediction of

ŷ(q) is calculated by:

ŷ(q) = qT (XTWX)
−1
XTWy (27)

Note, many different distance functions d as well as kernel functions ψ can be used

with this method. For prediction each parameter β̂l of the linear model from Equation

26 is weighted with the kernel functions ψi. Therefore prediction of a query point q

is given by:

ŷ(q) =

∑r
i ψi(q)q

T β̂i∑r
i ψi(q)

(28)

A survey of Locally Weighted Learning can be found in [13].

64



APPENDIX B

HIDDEN MARKOV MODEL

HMM is a mathematical model of a stochastic process and includes three parameters

λ = (Π, A,B) where Π represents initial state vector, A is the transition matrix and

B refers to emission matrix.

HMMs can be used for representing probability distributions over sequences of obser-

vations. Let us denote the observation at time t by the variable Yi. In HMMs, it is

assumed that the observation at time t was generated by some process whose state St

is hidden from the observer. HMM also assumes that the state of the hidden process

satisfies the Markov Property, that is given the value of St−1, the current state St is

independent of all states prior to t-1, In other words, the state at some time includes

the history of process inside. So, in principle we can predict the next state given the

current state. The output also satisfies the Markov Property.

Taken together these Markov Properties mean that the joint distribution of sequence

of states and observations can be found in the following way:

P (S1:T , Y1:T ) = P (S1)P (Y1|S1)
T∏
t=2

P (St|St−1)P (Yt|St) (29)

To define a probability distribution over sequences of observations, we need a prob-

ability distribution over initial states P (St), in the K × K state transition matrix

defining P (St|St−1) and the output model defining P (Yt|St). The initial probability

distributions can be randomly initialized. The state transition and output matrix or

in other words emission matrix are found from the training data with Expectation

Maximization algorithm [14]. In its discrete form, a hidden Markov process can be

visualized as a generalization of the Urn problem with replacement (where each item

from the urn is returned to the original urn before the next step) [11]. Consider this

65



example: in a room that is not visible to an observer there is a genie. The room

contains urns X1, X2, X3, ... each of which contains a known mix of balls, each ball

labeled y1, y2, y3, ... . The genie chooses an urn in that room and randomly draws

a ball from that urn. It then puts the ball onto a conveyor belt, where the observer

can observe the sequence of the balls but not the sequence of urns from which they

were drawn. The genie has some procedure to choose urns; the choice of the urn for

the n-th ball depends only upon a random number and the choice of the urn for the

(n1)-th ball. The choice of urn does not directly depend on the urns chosen before

this single previous urn; therefore, this is called a Markov process.

The Markov process itself cannot be observed, and only the sequence of labelled balls

can be observed, thus this arrangement is called a “hidden Markov process”. Lets

say only balls y1, y2, y3, y4 can be drawn at each state. Even if the observer knows

the composition of the urns and has just observed a sequence of three balls, e.g. y1,

y2 and y3 on the conveyor belt, the observer still cannot be sure which urn (i.e., at

which state) the genie has drawn the third ball from. However, the observer can work

out other information, such as the likelihood that the third ball came from each of

the urns.

In HMM there are 3 main problems to be solved in order the model to be useful in

real world applications. These problems are the following [11]:

1. Given the observation sequence O = O1O2..OT and a model λ = (Π, A,B), how

do we efficiently compute P (O|λ), the probability of the observation sequence,

given the model?

2. Given the observation sequence O = O1O2..OT and a model λ, how do we

choose a corresponding state sequence Q = q1q2..qT which is optimal in some

meaningful sense (i.e. best explains the observations)?

3. How do we adjust the model parameters λ = (Π, A,B) to maximize P (O|λ)?

66



First problem is to calculate the probability of an observed sequence. The most

straight forward way of doing this is through enumerating every possible state se-

quence of same length with data. However this approach is not efficient as described

in Rabiners paper. This problem can be solved more efficiently by forward-backward

procedure [11]. We use this probability to compare how well a model fits the given

observation. Thus we decide class of that test data belongs [15].

Second problem is to find the correct state sequence. It should be clear that for all

but the case of degenerate models, there is no correct state sequence to be found.

However, for practical reasons we use an optimality criterion to solve this problem

as best as possible. Viterbi algorithm is used in order to find the best possible state

sequence in this case [11].

Third problem is about training the model. As described above, the parameters of

the model are locally maximized using Expectation Maximization or Baum-Welch

algorithms iteratively [11].

67



Bibliography

[1] Nemec, Bojan, and Ale Ude. “Action sequencing using dynamic movement prim-

itives.” Robotica 30.05 (2012): 837-846.

[2] Ijspeert, Auke Jan, Jun Nakanishi, and Stefan Schaal. “Movement imitation with

nonlinear dynamical systems in humanoid robots.” Robotics and Automation,

2002. Proceedings. ICRA’02. IEEE International Conference on. Vol. 2. IEEE,

2002.

[3] Ijspeert, Auke Jan, Jun Nakanishi, and Stefan Schaal. Learning attractor land-

scapes for learning motor primitives. No. BIOROB-CONF-2002-004. 2002.

[4] Meier, Franziska, et al. “Movement segmentation using a primitive li-

brary.”Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International

Conference on. IEEE, 2011.

[5] Godoy, Vinicius, et al. “An HMM-based Gesture Recognition Method Trained

on Few Samples.” Tools with Artificial Intelligence (ICTAI), 2014 IEEE 26th

International Conference on. IEEE, 2014.

[6] Gales, Mark, and Steve Young. “The application of hidden Markov models in

speech recognition.” Foundations and Trends in Signal Processing 1.3 (2008):

195-304.

[7] Starner, Thad, and Alex Pentland. “Real-time american sign language recog-

nition from video using hidden markov models.” Motion-Based Recognition.

Springer Netherlands, 1997. 227-243.

68



[8] Hu, Jianying, Michael K. Brown, and William Turin. “HMM based online hand-

writing recognition.” Pattern Analysis and Machine Intelligence, IEEE Transac-

tions on 18.10 (1996): 1039-1045.

[9] A. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor landscapes for learn-

ing motor primitives, Advances in neural information processing systems, pp.

15471554, 2003.

[10] Ijspeert, Auke Jan, et al. “Dynamical movement primitives: learning attractor

models for motor behaviors.” Neural computation 25.2 (2013): 328-373.

[11] Rabiner, Lawrence. “A tutorial on hidden Markov models and selected applica-

tions in speech recognition.” Proceedings of the IEEE 77.2 (1989): 257-286.

[12] Yang, Jie, and Yangsheng Xu. Hidden markov model for gesture recogni-

tion. No. CMU-RI-TR-94-10. CARNEGIE-MELLON UNIV PITTSBURGH PA

ROBOTICS INST, 1994.

[13] Atkeson, Christopher G., Andrew W. Moore, and Stefan Schaal. “Locally

weighted learning for control.” Lazy learning. Springer Netherlands, 1997. 75-

113.

[14] Maya R. Gupta and Yihua Chen (2011), “Theory and Use of the EM Algo-

rithm”, Foundations and Trends in Signal Processing: Vol. 4: No. 3, pp 223-296.

http://dx.doi.org/10.1561/2000000034

[15] Ghahramani, Zoubin. “An introduction to hidden Markov models and Bayesian

networks.” International Journal of Pattern Recognition and Artificial Intelli-

gence 15.01 (2001): 9-42.

[16] Dunham, M., and K. Murphy. “PMTK3: Probabilistic modeling toolkit for Mat-

lab/Octave, version 3.” 2012 (2012).

69



[17] Hogan, Neville, and Dagmar Sternad. “Dynamic primitives of motor behav-

ior.”Biological cybernetics 106.11-12 (2012): 727-739.

[18] Rouchka, Eric C. “Pattern Matching Techniques and Their Applications to Com-

putational Molecular Biology-A Review.” (1999).

[19] Colom, Adria, and Carme Torras. “Dimensionality Reduction and Motion Coor-

dination in Learning Trajectories with Dynamic Movement Primitives.” Intelli-

gent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference

on. IEEE, 2014.

[20] Schaal, S., et al. “Control, Planning, Learning, and Imitation with Dynamic

Movement Primitives.” Workshop on Bilateral Paradigms on Humans and Hu-

manoids, IEEE International Conference on Intelligent Robots and Systems.

2003.

[21] Vicente, Isabel Serrano, et al. “Action recognition and understanding through

motor primitives.” Advanced Robotics 21.15 (2007): 1687-1707.

[22] Newtson, Darren, Gretchen A. Engquist, and Joyce Bois. “The objective basis of

behavior units.” Journal of Personality and social psychology 35.12 (1977): 847.

[23] Forte, Denis, Ale Ude, and Andrej Kos. “Robot learning by Gaussian process

regression.” Robotics in Alpe-Adria-Danube Region (RAAD), 2010 IEEE 19th

International Workshop on. IEEE, 2010.

[24] Prada, Miguel, and Anthony Remazeilles. “Dynamic Movement Primitives for

Human Robot Interaction.” IEEE/RSJ Int. Conf. on Intelligent Robots and Sys-

tems, workshop on Robot Motion Planning: online, reactive and in Real-time,

Algarve, Portugal. 2012.

70



[25] Ijspeert, Auke Jan, et al. ‘Nonlinear dynamical systems for imitation with hu-

manoid robots.” Proceedings of the IEEE/RAS International Conference on Hu-

manoids Robots (Humanoids2001). No. BIOROB-CONF-2001-001. 2001.

[26] Glatz, Karl. “Adaptive Learning from Demonstration using Dynamic Movement

Primitives.” (2012).

[27] Schaal, Stefan, and Christopher G. Atkeson. “Robot juggling: implementation

of memory-based learning.” Control Systems, IEEE 14.1 (1994): 57-71.

[28] Schaal, Stefan. “Dynamic movement primitives-a framework for motor control

in humans and humanoid robotics.” Adaptive Motion of Animals and Machines.

Springer Tokyo, 2006. 261-280.

[29] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “Learning Movement Primi-

tives,” in International Symposium on Robotics Research (ISRR2003), Springer

Tracts in Advanced Robotics. Ciena, Italy: Springer, 2004.

[30] Ude, Ale, et al. “Task-specific generalization of discrete and periodic dynamic

movement primitives.” Robotics, IEEE Transactions on 26.5 (2010): 800-815.

[31] Viviani, Paolo, and Tamar Flash. “Minimum-jerk, two-thirds power law, and

isochrony: converging approaches to movement planning.” Journal of Experi-

mental Psychology: Human Perception and Performance 21.1 (1995): 32.

[32] Stulp, Freek, et al. “Compact models of motor primitive variations for predictable

reaching and obstacle avoidance.” Humanoid Robots, 2009. Humanoids 2009. 9th

IEEE-RAS International Conference on. IEEE, 2009.

[33] Akgn, Baris, Doruk Tunaoglu, and Erol Sahin. “Action recognition through an

action generation mechanism.” International Conference on Epigenetic Robotics

(EPIROB). 2010.

71



[34] Kober, Jens, et al. “Reinforcement learning to adjust parametrized motor prim-

itives to new situations.” Autonomous Robots 33.4 (2012): 361-379.

[35] Kober, Jens, Erhan Oztop, and Jan Peters. “Reinforcement learning to adjust

robot movements to new situations.” IJCAI Proceedings-International Joint Con-

ference on Artificial Intelligence. Vol. 22. No. 3. 2011.

[36] Lee, Hyeon-Kyu, and Jin-Hyung Kim. “Gesture spotting from continuous hand

motion.” Pattern recognition letters 19.5 (1998): 513-520.

[37] Kulvicius, Tomas, et al. “Joining movement sequences: Modified dynamic move-

ment primitives for robotics applications exemplified on handwriting.” Robotics,

IEEE Transactions on 28.1 (2012): 145-157.

[38] Zhang, Mi, and Alexander A. Sawchuk. “Motion primitive-based human activ-

ity recognition using a bag-of-features approach.” Proceedings of the 2nd ACM

SIGHIT International Health Informatics Symposium. ACM, 2012.

[39] Schaal, Stefan. “Movement planning and imitation by shaping nonlinear attrac-

tors.” Proceedings of the 12th Yale workshop on adaptive and learning systems.

2003.

72


