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ABSTRACT

A real life operating room scheduling problem is studied using a data set from a

leading hospital, Hospital X, in Turkey. After analyzing the real data, we solve daily

operating room scheduling problems by mixed integer linear programming models.

Various objective functions and performance metrics are analyzed including minimiz-

ing the waiting time of patients while maximizing fairness between operating rooms.

We examine operation delays and incorporate an important delay type, operation du-

rations, by a heuristic method embedded in the mathematical models. In addition, a

simple heuristic that does not utilize optimization is introduced. We conclude that our

methods perform better than the Hospital X’s current schedules, especially with re-

spect to fairness of operating rooms’ usage. However, we measure the performance of

schedules (computed via mixed integer linear programming models) under randomly

generated scenarios and such schedules perform worse than the schedules computed

via the simple heuristic. Extensive computational results demonstrate that Hospital

X can adapt any of the proposed schedules and realize progress in their schedules.
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ÖZETÇE

Türkiye’deki özel bir hastanenin, Hastane X, verileri kullanılarak gerçek hayat op-

erasyon odası çizelgelemesi yapılmaktadır. Gerçek datayı inceledikten sonra, karma

tamsayılı doğrusal programlama modelleri ile operasyon odası çizelgelemesi günlük

çözülmektedir. Hastaların bekleme sürelerini minimize etmek için ve operasyon odaları

arasındaki eşit dağılımı sağlamak için çeşitli amaç fonksiyonları ve performans ölçütleri

analiz edilmektedir. Operasyonlardaki gecikmeler, gecikmelerin türleri ve operasyon

süreleri incelenmektedir ve bu bilgiler matematiksel modellerin içine sezgisel metotla

entegre edilmektedir. Ayrıca, optimizasyon yapılmadan kullanılan basit sezgisel yöntem

tanıtılmaktadır. Özellikle operasyon odaları arasındaki eşit dağılımı sağlamada kul-

lanılan metotlarımız, hastanenin mevcut çizelgelemesine göre daha iyi sonuç ver-

mektedir . Karma tamsayılı doğrusal programlama modelleri kullanarak yaptığımız

raslantısal senaryolar basit sezgisel yönteme göre daha kötü sonuç vermektedir. Kap-

samlı hesaplama sonuçları göstermektedir ki, önerilen metotlarımız daha iyi çizelgelemeye

sahip olabilmek için Hastane X’in sistemine entegre edilmelidir.
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CHAPTER I

INTRODUCTION

Healthcare is very vital in today’s world for not only its effect on the quality of

patient life but also for its increasing impact on economy. One of the major goals is to

maximize service quality. According to Turkish Investment Support and Promotion

Agency’s report, the Economist Intelligence Unit forecasts show that the healthcare

sector in Turkey is set to grow as healthcare spending per capita will increase at a

Compound Annual Growth Rate of 5.6 % between 2013 and 2017 and it will reach

5.6% of Turkey’s gross domestic product (GDP) in Turkey (2014). TUİK mentions

that total healthcare expenditure is 84.390 million TL and proportion of total health

expenditure to GDP (2013) is 5.4% (2013).

While increasing service quality, maximizing resource utilization becomes very

critical even though the main aim is not to minimize any cost related objective be-

cause a limited budget and limited available resources exist. Hence, a well managed

healthcare system should operate aiming to maximize its service level while keeping

its cost related spending as low as possible. According to Gupta et al., operating

room (OR) is one of the important issues of a hospital administration and they show

that OR is the most expensive resources with more than 10 % of the planned oper-

ating income of the hospital (2006). Motivated by this expensive resource, we study

a real life operating room assignment and scheduling problem for elective patients.

In this thesis, we first analyze the data of a leading, private Turkish hospital,

Hospital X. Then, we propose mathematical models: deterministic and stochastic

methods to solve operation assignment and scheduling problem with various objective

functions. We even propose a simple heuristics for Hospital X to utilize.
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Hospital X has 7 ORs with same equipments, 141 beds and 54 intensive care units.

Data are from June, 2013 to December, 2014. There are 7754 operations belonging

to 9 different departments. Some operations are tried to be scheduled at certain

times, such as, 90 % of pediatric operations are scheduled before 13:00. Moreover,

some departments prefer operating at certain ORs, 80 % of orthopedic operations are

scheduled at OR 1, but OR 4 is rarely used. Utilization of ORs seems low in actual

data since surgeons are also busy with regular consultation.

After analyzing 594 days (7754 operations), Hospital X’s problems are as follows:

• Scheduling of operations faces fairness problem. Although some ORs’ utilization

is high, some of them are very low. For example, OR 4 is nearly idle for most

of its time (0.002 % as its utilization).

• Operations also face delays in operation durations. 2327 operations out of 7754

operations (30 %) are delayed. 53 % of pediatric operations are delayed and

most of pediatric operations are scheduled consequently.

• Predicted operation duration (POD) is overestimated in comparison with actual

operation duration (AOD).

Scheduling problem is a very challenging problem. In our thesis, we propose several

Mixed Integer Linear Models (MILPs) to compute operations schedule. The objective

functions studied in this work are: minimizing overtime, makespan, tardiness, delay

probabilities and unfairness between OR usage. We first use predicted operation

durations then, actual durations are used. Both of these solutions are compared to

the hospital’s actual objective function value. After solving the deterministic models,

we generate random operation durations with the same actual operation types for

each day. In other words, how our schedule performs under uncertain data is one of

the main goals of this comparison. Lastly, a simple heuristic is proposed that does

not utilize any optimization tool.

2



Our models have contributions to both real life implementation and literature as

follows: We propose operation scheduling methods for each operation, OR and time

periods. Results show that our mathematical models perform better than Hospital

X’s objective function values according to calculated actual schedule. Hence, we suc-

cessfully implement fairness into Hospital X’s problem. Although our mathematical

models’ solutions do not perform well under randomly generated scenarios, still Hos-

pital X can improve its schedule. Even now, Hospital X can improve its schedule

if the surgeons can better approximate the actual duration of an operation. Also,

Hospital X may be interested in not utilizing an optimization tool. Hence, our thesis

has potential contributions to the academic literature.

This thesis is divided into 5 chapters. In Chapter 2, literature review is summa-

rized. In Chapter 3, empirical analysis of Hospital X’s data is explained. In Chapter

4, our scheduling models are represented and we show our computation results of de-

terministic and simple heuristic approaches. Finally, conclusion and possible further

works are introduced in Chapter 5.
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CHAPTER II

LITERATURE REVIEW

Healthcare is vital in today’s world and healthcare providers aim to maximize ser-

vice quality while utilizing their resources, including operating rooms (ORs). Chaa-

bane et al. explain that approximately 15 % of gross domestic product of the United

States is consumed by healthcare sector (2006).

A major goal is to minimize cost; however this aim contradicts with increasing

service quality. In addition a healthcare manager wants to manage available resources

efficiently and one of the important resources is ORs. Gupta et al. show that ORs are

the most expensive resources with more than 10 % of the planned operating income

of the hospital (2006).

Magerlein et al. explain that scheduling and planning ensure that each patient is

assigned an operation date by checking availability of ORs (1978). The scheduling

problem may become hard to solve since there are various constraints, such as, pre-

venting overlapping operations in addition to uncertainty prevalent in real life OR

scheduling problem. In the literature, OR scheduling has been widely studied and

there are many different solutions or evaluation methods, such as, mathematical pro-

gramming, simulation or heuristics. These methods can be classified as deterministic

and stochastic.

In scheduling problems, one of the important features is patient types. Cardoen et

al. categorize patient types into two main groups: elective and non-elective patients

(2010). In elective patient type, the operation can be well planned in advanced. There

are two main subgroups of elective patients: inpatient and outpatient. Patients are

hospitalized and stay overnight if they are inpatient patients, where as, for outpatient
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patients, they enter and leave the hospital without hospitalization. Cardoen et al.

describe that in many cases, elective patients are focused and non-elective patients are

ignored (2010). Furthermore, many works in the literature ignore types of patients.

Deterministic methods are very common in the literature where either uncertainty

is ignored. One of the deterministic methods is to model the problem by utilizing a

mathematical programming approach. For example, Mixed Integer Linear Program-

ming (MILP) is one of the popular approaches to solve OR planning and scheduling

problems. Adan et al. use MILP to model scheduling problem of orthopedics op-

erations (2002). They use tactical planning to derive a weekly OR plan. They also

consider beds, ORs, staff and intensive care beds’ capacities. In their model, they

identify the cyclic number and the mix of patients. In their case, outpatients are

treated as inpatients that stay one day at hospital, hence, and there is no need for

specialized resources such as intensive care beds. Furthermore, Blake et al. formulate

a MILP in order to evaluate each OR types that have to be scheduled during the

weekdays with limited funding, patient demand, and limited number of staff (2002a,

2002b). Blake et al. analyze the model by considering a heuristic in order to minimize

the underallocation of OR (2002b). Where their problem is a timetabling problem

with number of ORs, available hours of ORs, and patient priority. Cardoen et al. de-

velop a multiple objective function in order to minimize waiting time of high priority

patients, the stay in recovery and peak number of bed space (2009a). They consider

a MILP model and find results with small average solution gaps for post anesthesia

care unit (PACU).

Chaabane et al. studied a single performance criterion: waiting time for patients

while developing a two-step solution approach (2006). The first step is to minimize

the gap between the total supply and the weekly requests of the operation specialty

by applying block scheduling method. The second is to schedule within each block

according to step 1’s solution aiming to minimize the sum of patient operating costs
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which equals the sum of overtime costs and patient waiting costs. Another two step

approach is proposed by Jebali et al.(2006). The first step is the assignment of

operations to ORs, whereas, the second step solves sequences for the assigned opera-

tions by considering available resources. Pure sequencing and sequencing with some

re-assignment are predetermined. They conclude that good performance of the opera-

tions sequencing without predetermined the assignment problem performs as good as

the assignment step in terms of patients’ selection while minimizing total cost. Khar-

raja et al. consider two different methods by using block scheduling (2006). The first

one is about individually scheduling of all operations and the second one is schedul-

ing operations with respect to departments using MILP with elective patients. Next,

Roland et al. solve an OR planning optimization to minimize the sum of OR and

overtime cost by considering resources: OR, human resources and financial working

budget (2006) for a short time horizon. They aim to minimize total cost for elective

patients ignoring emergency cases, by genetic algorithm. In their data, they are 7

ORs, 19 operations, 12 surgeons, and 3 types of resources: (i) anesthetists, (ii) nurses,

and (iii) OR nurses. They assume that if an OR is used for an operation, a fixed

cost, 2040 e is charged while overtime costs 2000 e per hour. They conclude that the

optimal solution is to utilize 5 ORs instead of 7 ORs. Santibanez et al. also determine

a MILP model in order to optimize operation block schedule for each OR consider-

ing post-operation resources, such as, bed capacity, wait list, and surgeon’s booking

privileges (2007). Reallocating operation in the block schedule results in decreases

in post-operation resource requirements needed for elective patients. They conclude

that resource requirements can be reduced by reallocating the operating specialties in

the block schedule. Moreover, Zhang et al. focus on a finite-horizon MILP model in

order to minimize inpatients and outpatients’ cost computed based on as their length

of stay (2006). There are two main constraints: (i) patient priority grouped under

emergency and non-emergency cases and (ii) clinical constraints to maximize number
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of hours allocated to each department. Then, they use the computed optimal solution

as an input of their simulation model. They assume that only one OR is used for

emergency operations every day. They also incorporate optimization and simulation

to the hospital’s existing information system.

Dexter et al. (2002, 2002b), Mulholland et al. (2005) utilize Linear Programming

(LP) models to find the optimal solution of OR scheduling problem. Dexter et al.

determine elective case scheduling to determine patients’ and surgeons’ preferred op-

erations times (2002). Their aim is to maximize the productivity, use of OR available

time, by determining two different factors: (i) latest starting time, and (ii) earliest

starting time. Earliest starting time forces schedule should be planned at ORs as

early as possible. Latest start time forces operations to be scheduled as late as pos-

sible but still avoiding tardiness. Thus, they maximize the productivity of an OR

by minimizing the sum of underutilized OR hours multiplied with underutilization

cost and overutilized OR hours multiplied with overutilization cost. They conclude

that earliest starting time provides better than latest starting time to minimize wait-

ing time of patients and doctors. Moreover, Dexter et al. introduce a LP model to

maximize the variable costs because they want to determine the worst case scenario

(2002b). In their paper, outpatients, patients entering and leaving the hospital on the

same day, are considered. They examine how adequate planning and scheduling can

contribute to revenue when variable costs are subtracted. Mulholland et al. study

a LP to optimize mix of inpatients, outpatients, and emergent patients’ financial

outcome: profit of PACU, intensive care unit (ICU), holding cost, and ward (2005).

In addition to IP and LP models, goal programming is another common method

planning to solve OR and scheduling problem (Arenas et al.,2002; Ogulata et al.,

2003; Rohleder et al.and 2005). Common goals aimed are as follows: maximizing

OR utilization (Arenas et al.,2002;Ogulata et al., 2003) , minimizing elective patient

waiting time (Ogulata et al., 2003), minimizing ORs’ underutilization (Ogulata et al.,
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2003; Rohleder et al., 2005) and minimizing overtime (Ogulata et al., 2003).

OR scheduling problems are very similar to machine scheduling problems where

jobs (operations) are scheduled at several machines (ORs). Lio et al., 2003; Kellerer

et al., 2003; Breit et al., 2001; Biskup et al., 2008; Lin et al., 2013; Gokhale et al.,

2012; Kaczmarczyk et al., 2011; Ozturk et al., 2012; and Ağpak et al., 2015 mention

mathematical model with parallel machines that is equal to ORs scheduling. For

example, Lio et al. analyze two uniform parallel machine problems and their aim is

to minimize makespan (2003). They show that their new scheduling model can find

the optimal solution for large-sized problems. Biskup et al. try to minimize total

tardiness given the number of jobs and identical parallel machines in their scheduling

problem (2008).

Column generation is also a common tool to solve OR scheduling problems. Fei

et al. analyze an operating case assignment problem to minimize total unexploited

or overtime operating cost (2008). In their problem, they assume that all ORs are

used for any operating types. Human, material and recovery room’s beds are relaxed

and finally emergency cases are not evaluated (i.e., they just focus elective patients).

They use branch and price algorithm based on decomposition technique and deter-

mine 160 different operating cases. Furthermore, Fei et al. evaluate a schedule of

endoscopy center by using a column generation without considering emergency cases

(2006). Their aim is to prevent overtime and to assume unlimited capacity of the

recovery room and operation materials. The performance criteria are OR overutiliza-

tion, underutilization and makespan. Fei et al. also minimize the cost of overtime

and maximize the utilization the OR by two different cases: the planning case and

the scheduling case (2006b). They first use column-generation based heuristic to

solve their tactical planning model in planning case and then they determine a daily

scheduling by using Ganzalez-Sahni algorithm in scheduling case. As they schedule

the operating cases assigned at the planning stage. They concluded that the extended
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earliest starting time approach has the best performance and they again focus elective

patients. Belien et al. consider both nurse and OR scheduling by using a standard

dynamic programming approach, a state of the art mixed integer programming and

the column generation technique with inpatient patient (2008). They also generate

two different scenarios: a hard and a flexible constraints scenario. In the flexible

constraint scenario, the system lets nurses to change between different types of shifts,

although the hard scenario is preventing such changes and their performance criterion

is leveling capacity of ward. Finally, Perdomo et al. consider the operation schedul-

ing with resources of OR and recovery beds (2006). Moreover, they consider cleaning

time of OR and their aim is to minimize completion times of both operation and set

up times for elective patients by using a Lagrangian relaxation method that divides

their original problem into two different sets as good and bad constraints. Although

good constraints can be solved easily, bad constraints cannot be solved quickly. Thus,

bad constraints are the ones whose violations are penalized at the objective function.

Even if some of the OR scheduling problems can be solved to optimality, some of

them can only be solved by heuristics as the problem becomes very hard, for example;

due to large instances. Belien et al. (2007), Belien et al. (2009) utilize simulated-

annealing. Fei et al. use tabu search algorithm (2006b). Genetic algorithm is used

by Fei et al. (2006b) and Roland et al. (2006).

Constraint-programming is a novel method that are recently been utilized to solve

multi-objective OR scheduling problems (Meskens et al. ,2013). They minimize

makespan and overtime hours and maximize relation as material resource, staff and

their affinities into a block scheduling. They use priority of operations. For example,

children are preferred to be operated at the beginning of the day since they have the

highest priority. They use three levels: high, medium and low. If operation has a low

priority, it should start at the end of the day. They also introduce the earliness and

the latest starting times for each operation for the comfort and safety of the patient.
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In their model, they also do not consider emergency case.

In addition to the deterministic methods summarized so far, stochastic methods

incorporate uncertainty to the problem. Patient / surgeon arrival and operation

duration uncertainty are two well-known uncertainties addressed in the literature.

Simulation is a common, for instance, Testi et al. consider a three-phase approach

in order to schedule OR weekly when operation durations and arrival of patients

are uncertain (2007). They aim to minimize overtime and waiting time for elective

patients. In the fist-phase, they choose the number of sessions for each ward using a

bin packing model. After that, they find optimal timetables by using blocked booking

method. In block booking, they assign operations (corresponding patients) wards and

ORs. Then, they use simulation in order to show different sequencing of operations. In

their schedule, they have some priorities, such as, the longest waiting time, processing

time and the shortest processing time. Moreover, they describe that the simulation

permits to determine what extent beds might be reduced to exploit the productivity

gain in OR utilization. Their performance criteria are throughput, overutilization of

OR, minimizing number of patient deferrals or refusals and preferences. They apply

their method to a case study improve OR productivity as they increase the number of

operations and reduce overrun hours and shifted operations. Furthermore, Belien et

al. (2007), Zhang et al.(2006), Belien et al.(2009), Lamiri et al.,(2008) and Lamiri et

al.(2007) analyze stochastic operation durations and patients’ arrivals. A three step

approach is introduced by Lamiri et al. (2007). The first step is target planning to

determine the number of hours to be assigned to each operation. In the second step,

master operation scheduling decides the assignment of OR blocks to operation teams

and the last step is to schedule, in other words, patient selection to be scheduled at

each OR block. Belien et al. consider a number of models to determine operation

scheduling with using bed capacity (2007). Patients’ arrival and operation durations

are uncertain. There are two types of constraints: (i) demand constraint and (ii)
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capacity constraint. Demand constraint deals with scheduling of OR blocks and

capacity constraint restricts the available blocks on each day. They assume that all

durations have multinomial distribution. They solve the problem by utilizing a MILP

model combined with a metaheuristic. Their aim is to minimize expected total bed

shortage for elective patients. They find that metaheuristic approach gives the best

result. Their performance criterion is leveling capacity of ward.

Belien et al. describe a multi-objective linear and quadratic problem by min-

imizing three different objective functions with elective patients (2009). The first

objective is to level the resulting ward occupancy; the second is to assign surgeon(s)

to ORs. The last objective is to find schedule. After that, they expand a decision

support system to progress master operation schedules. They conclude that by using

decision support system, the built-in algorithms generally succeed well in generat-

ing schedules with leveled resulting bed occupancy and when the room objective is

added, computation becomes difficult. Moreover, Lamiri et al. consider another OR

planning model with uncertain operating times (2007). They consider both elective

patient and emergency cases. Their performance matrix is to show utilization of OR.

Stochastic operation durations are also studied by Denton et al.(2003), van Oost-

rum et al.(2008) and Denton et al.(2007). Denton et al. develop a two-stage stochas-

tic linear programming method for elective patients (2003). Sequences of operations

and operation durations are uncertain. They also use the single server appointment

schedule and consider the optimal starting times for operations. Their performance

criteria are patient and operation waiting time, OR idle time and overtime of ORs.

van Oostrum et al. study a master operation scheduling problem for each OR-day

combination of the planning cycle for recurring operation types (2008). Hence, a

cyclic master schedule is developed in order to divide the available amount of OR

capacity to operations or patient types. They decide individual elective patients or
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patient types. They also assume operation procedure types are given. Their perfor-

mance criteria are leveling bed capacity and the use of additional capacity of specific

resources such as the number of OR openings. Denton et al. show that if average

operation duration is underestimated, it may cause late starts in all schedules (2007).

Then, there is some extra cost as overtime staffing and direct cost and they analyze

sequencing affection of waiting time, OR idle time, operation waiting time and OR

overtime. Thus, they use three different performance measures as patient waiting

time, OR idle time and OR overtime. They use a stochastic model with heuristics

that is a two-stage mixed integer programming with elective patients.

Furthermore, Sorino analyzes two at a time appointment system with intervals set

equal to twice the mean consultation time (1966). They also compare the steady-state

waiting time distribution functions of individual and multiple block and fixed inter-

val and assume that patients’ arrivals are deterministic and operation durations are

distributed with gamma distribution. Furthermore, Persson et al. consider stochastic

arrival times and mention a rule about Sweden Hospitals (2006). According to a

Swedish law, a patient should not wait more than 90 days before they execute the

operation. It means that, the hospital should organize their operations such that each

patient should be operated within 90 days or should be assigned to another hospital.

Simulation including optimization, helps them to decrease average waiting time for

elective patients. Their objective function is to minimize the cost of using extra beds

for post-operative care at the OR and the cost overtime that is divided into single and

double overtime. Single overtime refers to the first less expensive hours of working

overtime (i.e, two hours), double overtime refers to working additional overtime with

a higher cost. They have different performance criteria such as the demand for extra

capacity of bed in wards, patient’s waiting time, OR overtime and patient deferral or

refusal.

As mentioned before, there are many different objective functions to compare the
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results. The first one is to decrease waiting time, such as, waiting time of patients

or surgeons. For example, Jebali et al. (2006), Chaabane et al. (2006), Persson et

al. (2006), Santibanez et al. (2007), Blake et al.(2002), Ogulata et al.(2003), Zhang

et al. (2006) and Arenas et al.(2002) analyze waiting time as one of their objectives.

The second objective is utilization. In generally, the utilization rate of an OR is the

most popular criterion in the recent researches. For example, Adan et al. (2002)

and Vissers et al. (2005) consider their objective as to prevent underutilization and

overutilization of ORs, ward and ICU. When utilization is maximized to prevent

losing money, the OR is close to fully planned. Hence, there is not any buffer. If

there is disruption in the plan, such as, longer operation duration, it may be necessary

to reschedule all operations. Moreover, leveling of resources is another objective to

provide smooth resources occupancies without peaks. Santibanez et al. study leveling

bed capacity and throughput that is related to patient waiting time and they focus

under throughput on increasing the number of treated patients that leads indirectly

to shorter waiting time (2007). A common objective is to decrease makespan that

is the completion time of the last patient’s recovery. Perdomo et al.(2006) and Fei

et al. (2006b) use makespan as their objective function. In addition, Persson et al.

minimize patient deferral or refusal that is decreasing number of canceled elective

operations (2006). Furthermore, objective function of Dexter et al. is relying on

costs (2002).

For a more complete review of recent literature on OR scheduling we refer to the

works of Cardoen et al. (2010), Gupta et al. (2008), Erdogan et al. (2011), Guerriero

et al. (2011), Smith-Daniels et al. (1988), Blake et al. (1997), Przasnyski et al.

(1986) and Magerlein et al. (1978).

We contribute to this literature by proposing several MILP models for a real life

OR assignment and scheduling problem. Our case is an original case, and we use

many objective function combinations. While scheduling daily operations, we also
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incorporate delay probabilities which are computed from Hospital X’s data. We also

evaluate our schedules with respect to uncertain scenarios randomly generated again

using Hospital X’s data. In addition a simple heuristic is proposed based on sorting

without using any optimization tools.
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CHAPTER III

EMPIRICAL ANALYSIS

Turkey has many private hospitals that may operate different than public hospitals

in terms of service utilization, types of operating rooms. In this study, a real life

hospital’s data are analyzed. This hospital’s name is referred as Hospital X in the

rest of the thesis due to confidentiality concerns. This empirical analysis has following

goals:

• Compute utilization

• Identify possible problems, especially delays

• Analyze whether there is any pattern in the data

• Compute statistics about the processes, especially operation durations

After analyzing the data, we utilize some of the findings in Section 4 while solving

the assignment and scheduling problems.

3.1 Attributes of Hospital X

There are nine different departments in the hospital: (i) neurosurgery (Neuro),

(ii) pediatric operation (Pedia), (iii) general operation (Gen), (iv) gynecology (Gyn),

(v) cardiology (Card), (vi) ear-nose-throat (ENT), (vii) orthopedic operation (Orth),

(viii) plastics operation (Plas), and (ix) urology (Uro). This hospital is a medium

sized hospital according to Sjetne et al., 2007. There are 141 beds, 54 intensive

care units, 7 operating rooms (ORs). According to the hospital administration, bed

capacities and intensive care units are enough. However, they face several problems

15



in ORs, such as, computing an optimal or close to optimal OR schedule and delays

in OR schedules.

ORs are available from 8:30 to 17:30. After each operation, OR is sterilized and

this sterilization period is generally estimated as 10 minutes (Santibanaz et al., 2007).

A week before the operation, predicted operation durations (POD) and start-

ing time of the operations are entered to Hospital X’s system by surgeons. Then,

according to availabilities, these appointments are approved, hence operations are

scheduled) and patients are required to arrive earlier (mostly an hour ago) than their

appointments for tests. Each operation has the following data: (i) predicted starting

time, rj and (ii) POD, pj. Predicted ending time can be found using (i) and (ii):

rj + pj.

Waiting time of an operation is defined as the nonnegative difference between

the computed starting time of the operation and the predicted starting time of the

operation (i.e., rj) as represented as in Figure 1, whereas, tardiness is defined as the

nonnegative difference between the computed finishing time of the operation and the

deadline of the operation as in Figure 2. Waiting time and/or tardiness may also

be realized due to uncertainty. For instance, operation j is computed to start at rj,

however, as the previous operation is delayed, operation j’s starting time should be

shifted by the delay amount of the previous operation (in case rescheduling is not

allowed). Therefore, the patient of operation j realizes waiting time.

Considering the PODs and available OR days, the hospital administration com-

putes the schedule manually. Due to manual computation, their schedules do not per-

form well. Hence, as mentioned before, one of the goals of this project is to optimize

schedules with respect to first a completely deterministic environment considering

PODs, second partially stochastic environment considering delay probabilities com-

puted with respect to operation types. To solve the scheduling problem, Hospital X’s

processes are summarized in Section 3.2. Next, detailed data analysis is performed
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Figure 1: Time windows of a operation.

Figure 2: Tardiness.

in Section 3.3. Then, delays and corresponding reasons are represented in Section

3.4. Lastly, past operation schedules of Hospital X are analyzed and conclusion is in

Section 3.6.

3.2 General Flow On The Day of Operation

On the day of the scheduled appointment, patient is expected to arrive usually

an hour earlier than her/his appointment time. As in the Figure 3, the patient

is first hospitalized. After hospitalization step, the patient starts to wait in ward
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for consultation and required tests before her/his operation. As mentioned before,

emergency cases are not considered in this project. Next, the patient is transferred to

an operating room and operation is performed. After the operation, the patient waits

in recovery room then she/he is transferred to a room. Depending on the condition

of the patient after the operation, the surgeon(s) finalizes the number of days that

the patient should stay in the hospital and type of the room that the patient stays

(such as, intensive care unit or ward). Patient’s condition is regularly checked by the

surgeon(s) and doctors. Finally, when the patient recovers, she/he is discharged from

the hospital.

Figure 3: Flow chart of patients on the day of the operation.

3.3 Analysis of Data

The section describes detailed data analysis using the operating room data of 594

days. First, time-based flow on the day of operation is analyzed in Section 3.3.1.

Next, general features of operations are shown in Section 3.3.2, such as the number of

operations and their corresponding departments. Then, data about ORs are analyzed

in Section 3.3.3. Finally, operation durations are analyzed in detail in Section 3.3.4.

3.3.1 Steps on The Day of Operations

Data about the detailed flow of patients, starting from their hospitalization to

their discharge, represented in Figure 3 are provided from Hospital X except waiting

times in ward. In Tables 1 - 4 show the statistical analysis of each step.

Maximum, minimum, average (Ave), median, standard deviation (SD), and num-

ber of operations for the waiting time in the recovery room are shown in Table 1.
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Maximum waiting time in the recovery room is 86 minutes belonging to a plastic

operation as depicted in Table 1. Waiting time in the recovery room analysis should

be utilized by the nurse(s) who is not involved during the operation but is responsible

to transfer the patient to her/his room.

Table 2 shows the transfer times between patient’s room and OR before the op-

Max Ave Median SD
Neuro 92 8.84 7 9.6
Pedia 29 4.83 3 4.89
Gen 60 6.94 5 7.02
Gyn 73 8.67 7 7.37

Card 20 2.44 1.5 3.31
ENT 56 5.81 4 6.31
Orth 52 7.76 5 7.69
Plas 86 11.09 7 13.49
Uro 51 6.43 5 6.27

Table 1: Statistical information about waiting time in terms of minutes in the re-
covery and minimum waiting times for each department are zero.

eration. Even if the maximum transfer time lengths vary with respect to each de-

partment, averages are very close to each other in addition to averages, medians and

standard deviations being close to each other. Transfer times with small variations

are good since varying transfer times may become one of the major reasons causing

waiting times as the next step after transferring the patient is performing the oper-

ation. Lastly, difference between each operation’s starting time and corresponding

Max Ave Median SD
Neuro 38 11.88 11 5.90
Pedia 82 10.74 9 6.71
Gen 45 10.99 10 5.50
Gyn 55 10.25 9 5.11
Card 26 11.06 10 5.75
ENT 42 10.62 10 4.62
Orth 46 11.58 11 5.71
Plas 72 11.93 11 6.29
Uro 45 11.04 10 5.59

Table 2: Statistical information about transfer time in terms of minutes.
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Max Ave Median SD
Neuro 15704 192.65 154 1392.21
Pedia 24216 709.56 95 2524.17
Gen 33214 294.28 105 1943.38
Gyn 25565 189.05 111 803.93
Card 9320 1670.81 1115 2237.76
ENT 10138 119.68 86 494.39
Orth 16653 356.94 140 1937.83
Plas 11309 304.92 116 1016.17
Uro 11575 365.23 143 1401.47

Table 3: Statistical information about difference between operation starting times
and hospitalization times in terms of minutes.

patient’s hospitalization time, and difference between hospitalization and discharge

are analyzed in Tables 3 and 4, respectively. Cardiology operations require longer

preparations, such as, required tests performed before the operations last longer than

the rest of the operations as in Table 3. In addition to longer preparations, cardiol-

ogy operations have also the longest average and median difference between discharge

and hospitalization (i.e., the total length of stay in Hospital X) as depicted in Table

4. However, there are operations belonging to other departments with longer total

length of stay in Hospital X. Hence, if Hospital X’s resources become limited in future,

such as limited bed capacities, the hospital administration may first target analyzing

such operations and their corresponding types (such as, cardiology) since similar pa-

tients may require similar length of stay and forecasting such operations’ frequency

may help the hospital administration to schedule their remaining operations to the

remaining available times during which more beds may be available.

3.3.2 Operations

Operations are analyzed based on departments and time intervals.

Department-based Analysis: 7754 operations that are performed between Jan-

uary 1, 2013 and December 17, 2014 are utilized in our project. Figure 4 represents

the percentage distribution of operations with respect to departments and the total
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Max Min Ave Median SD
Neuro 1172 0 53.60 27 79.57
Pedia 1168 1 43.19 5 141.12
Gen 736 0 43.89 26 59.73
Gyn 201 0 42.38 47 15.36
Card 291 4 96.11 71 91.45
ENT 1680 0 20.73 22 52.82
Orth 917 0 46.61 26 60.66
Plas 1320 0 33.90 10 93.04
Uro 1006 1 42.43 25 62.24

Table 4: Statistical information about difference between hospitalization time and
discharge time in terms of hours.

number of operations of every department. Gynecology has the highest percentage

distribution and it is 33 percent of total number of operations. Cardiology has also

the lowest one and it is 50 operations out of 7754 operations. Moreover, the average

number of daily operations is 13.06 (Figure 5).

Figure 4: Pie chart representing each department’s percentage divisions and total #
of operations is represented inside parenthesis.

Time-based Analysis: The data also include scheduled and actual starting and
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Figure 5: Histogram of operations.

ending time of operations. According this information, operations are aim to be

scheduled from 8:30 to 17:30. We define a day by two intervals: (1) 8:30 - 13:00

and (2) 13:00 - 17:30 as seen in Table 36. We calculate the percentage of scheduled

operations for each department with respect to the time intervals. 59 percent of all

operations are scheduled during time interval (1). 90 percent of pediatric operations

(445 operations out of 495 pediatric operations) are scheduled during time interval

(1) because children have high priority for operation. Another important observation

the common interval for the urology department (351 operations out of 551 urology

operations): time interval (2). To the best of our knowledge, since there is not any

underlying medical reason, we believe that it may be operation’s preference. Table 5

shows also number of scheduled operations with respect to time for each department.

In this table, we define a day by four intervals: (1a) 8:30-11:00, (2a) 11:00-13:00, (3a)

13:00-15:00 and (4a) 15:00-17:30. We find that 2703 operations out of 7754 operations

are scheduled during time interval (1a) and 1929 operations are scheduled during time

interval (3a).

Furthermore, performing an operation on Saturday is preferred pediatric operation

as seen in Table 6. 26 percent of pediatric operations are scheduled on Saturday. For

the other departments, we couldn’t observe any patterns.
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08:30-11:00 11:00-13:00 13:00-15:00 15:00-17:30 Total
Neuro 122 61 203 82 468
Pedia 345 100 42 8 495
Gen 359 274 219 162 1014
Gyn 746 753 668 388 2555
Card 37 10 3 0 50
ENT 625 215 158 93 1091
Orth 342 204 283 194 1023
Plas 106 129 177 95 507
Uro 58 142 179 172 551

Total 2703 1878 1929 1194 7754

Table 5: # of scheduled operations with respect to time for each department.

Monday Tuesday Wednesday Thursday Friday Saturday Total
Neuro 0.19 0.18 0.19 0.18 0.18 0.08 468
Pedia 0.11 0.12 0.17 0.16 0.19 0.26 495
Gen 0.22 0.19 0.17 0.16 0.16 0.10 1014
Gyn 0.22 0.17 0.19 0.18 0.21 0.03 2555
Card 0.22 0.26 0.18 0.12 0.20 0.02 50
ENT 0.19 0.19 0.17 0.21 0.18 0.06 1091
Orth 0.07 0.29 0.24 0.25 0.09 0.05 1023
Plas 0.16 0.26 0.09 0.22 0.16 0.12 507
Uro 0.13 0.20 0.21 0.17 0.21 0.08 551
Total 0.18 0.20 0.18 0.19 0.18 0.07 7754

Table 6: Percentage of each operation’s assignment during weekdays.

3.3.3 ORs

The data include seven different ORs and each department has different OR pref-

erences (Table 8). For example, 80 percent of orthopedic operations are scheduled at

OR # 1 and 54 percent of general operations are scheduled also at OR # 6. Fur-

thermore, table 7 describes that generally two empty ORs are left to have buffer for

state of emergency and the average number of OR used is 4.96 (Figure 6). Figure 7

describes the number of ORs used each day. Except 28 days out of 594 days, at least

one OR is not used.

Furthermore, we also analyze doctors’ OR preferential for each departments as

seen in Table 37.

Moreover, we calculate the OR’s utilization by using hospital target with AOD

and POD (Table 9). We set that total daily incision to seture time is equal 8 hours
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OR Id
1 2 3 4 5 6 7

Neuro 0.29 0.04 0.12 0.00 0.13 0.33 0.09
Pedia 0.08 0.15 0.24 0.01 0.11 0.16 0.26
Gen 0.06 0.09 0.10 0.01 0.08 0.54 0.12
Gyn 0.06 0.15 0.22 0.00 0.12 0.13 0.31
Card 0.00 0.00 0.00 0.96 0.04 0.00 0.00
ENT 0.04 0.20 0.30 0.00 0.13 0.12 0.21
Orth 0.80 0.04 0.04 0.00 0.03 0.05 0.04
Plas 0.07 0.09 0.15 0.00 0.09 0.19 0.40
Uro 0.11 0.11 0.22 0.00 0.15 0.16 0.25

Total 0.18 0.12 0.18 0.00 0.10 0.19 0.22
Total # of Operations 1363 928 1403 29 803 1474 1704

Table 7: Percentage of each department’s assignment in ORs.

Preferential OR
Neuro 6-1-5-7-3-2-4
Pedia 7-3-6-2-5-1-4
Gen 6-7-2-3-5-1-4
Gyn 7-3-2-5-6-1-4
Card 4-5
ENT 3-7-2-5-6-1-4
Orth 1-6-7-2-3-5-4
Plas 7-6-3-5-2-1-4
Uro 7-3-6-5-1-2-4

Table 8: Preferential OR of each department.
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per OR. Table 9 shows that OR 4’s utilization is very low with respect to AOD and

POD. OR 6’s utilization is 55 percent with respect to AOD and 70 percent with

respect to POD. It is one of the highest used capacity in all ORs. Utilization is not so

high because of some reasons such as doctors’ OR preferential as seen in Table 37 and

doctors’ time interval preferential as seen in Table 5. Doctors are not always available

for operations, and we ignore examination of doctors. Because of these reasons, we

can not change the schedule. Moreover, it is real data and there are some emergency

cases that are integrated of data and release time of operation comes into prominence.

AOD POD
# of ORs Used Unused Used Unused

Capacity Capacity Capacity Capacity
1 0.55 0.45 0.65 0.35
2 0.27 0.73 0.35 0.65
3 0.43 0.57 0.57 0.43
4 0.04 0.96 0.04 0.96
5 0.27 0.73 0.34 0.66
6 0.55 0.45 0.70 0.30
7 0.56 0.44 0.68 0.32

Table 9: OR utilization calculated by using AOD and POD.

Figure 6: Histogram of ORs used #.
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Figure 7: # of ORs used.

3.3.4 Operation Durations

There are two different operation durations. The first is about AOD and sec-

ond is also POD. In this subsection, we analyze operation duration with respect to

departments, days and ORs. Then, we try to show comparison of AOD and POD.

3.3.4.1 Departments

We firstly analyze statistical information about AOD and POD. Neurosurgery

has the maximum of average AOD (149.96 minutes) and POD (194.22 minutes) and

pediatric operation has the lowest average AOD (43.20 minutes) because of lower

operation duration of circumcision feast as seen in Table 10.

We also find minimum AOD and POD with respect to different percentage the

procedures have a time duration in terms of minutes. For example, if we analyze the

minimum AOD with respect to 75 percent the procedures, pediatric operation has 48

minutes and it is the lowest duration. In this case, cardiology has the highest duration

and it is 218 minutes. In POD cases, the minimum POD with respect to 75 percent

the procedures, neurology has the highest duration (270 minutes) and pediatric and

gynecology operation has the lowest duration (90 minutes).

In Figure 8, we plot both operation duration of pediatric operation and generally

POD is higher than AODs. Since the hospital solves OR scheduling problem by using
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AOD POD
Max Min Ave Median Max Min Ave Median

Neuro 1125 0 149.96 126 510 25 194.22 180
Pedia 374 0 43.20 28 510 10 82.94 60
Gen 2749 0 86.06 67 510 10 99.37 90
Gyn 1007 0 64.89 54 300 15 80.91 60
Card 299 21 145.46 133 270 30 163.00 150
ENT 1109 7 83.19 67 390 23 124.76 120

Orth 1138 4 103.31 87 450 10 116.25 120
Plas 1118 9 112.81 91 510 15 144.46 120
Uro 1026 5 76.46 58 490 15 101.65 90

Table 10: Statistical information about AOD and PODs in terms of minutes.

PODs, we may end up underutilization of ORs due to overestimation of operation

duration.

Figure 8: Pediatric operations’s AOD and POD in terms of minutes.

Furthermore, we calculate goodness fit of each department’s AOD and POD using

EasyFit software as seen in Appendix C. We used 10 different distributions as Beta,

Chi-Squared, Erlang, Exponential, Gamma, Lognormal, Normal, Triangular, Uniform

and Weibull. We use two different tests, the first one is Kolmogorov Smirnov Test and

the second one is Anderson Darling Test. We show the rank of each distribution for
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just one example, in Appendix Part. For AOD, Erland distribution gives the highest

p-values in Kolmogorov Smirnov Test. It means that Erland distribution is the best fit

for neurosurgery’s AOD. Strum et al. (2000) show the distribution type of operation

duration that is normal distribution. We find that distribution of operation duration

is changeable according to department of operation and just normal or log-normal

distribution may not be the best fit.

We show the each operation’s AOD and POD with the operation’s characteristics.

An operation type is created by surgeon to show information about operation duration

and equipment. We categorize firstly 5 main operation characteristic that are most

popular operations for each operation types and remains are named by ”Others”

as seen in Appendix D. If we check the process of creating operating types, firstly,

surgeon assigns the operation duration and heshe creates operation types to determine

the operation’s characteristics. That’s why we also categorize operation types to show

meaningful operation duration for operations.

We also find some statistical information about each department by using EasyFit

software. The sample size, range, the mean and standard deviation, and the minimum

and maximum values are determined and the mean duration of departments gives a

better solution of operation duration. Then, we study more detail analysis as variance,

standard error, coefficient of variance and skewness by calculating the three smallest

and largest values as 5th, 10th, 25th (Q1), 50th (Median), 75th (Q3), 90th, and 95th

percentiles. Range is difference of the maximum and minimum number and variance is

a kind of measurement how far a group of number is spread out. Standard deviation

is a measurement of the square root of the variance and coefficient of variation is

normalized measure of dispersion of probability distribution. Standard error is also

the standard deviation of the sampling distribution of a statistic. As known that

skewness is a measure of the asymmetry of the probability distribution of a actual-

valued random variable about its mean. If the distribution is symmetric, we can say
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Figure 9: Box plot of POD.

the coefficient of skewness is about 0. In negative cases, we observe that the median

is always bigger than the mean then the distribution is skewed left. Otherwise, the

median is always smaller than mean and the distribution is skewed right. Excess

Kurtosis is a kind of measure of the peakedness of the probability distribution of a

actual-valued random variable. If the coefficient of kurtosis is small, the distribution

is seen more normal. The normal distribution has a coefficient of kurtosis of 3 and it

provides a convenient benchmark.

Figure 9 shows box plot of POD for each operations. To get sense of the general

difference between operations, median values of POD can be determined. In general,

neurosurgery has supreme median values: 180 minutes. Cardiology has approximate

value that is 150 minutes. Ear-nose-throat, plastic operation and orthopedic operation

contain same median values: 120 minutes. Median value of urology and general

operation is 90 minutes. The minimum median is 60 minutes for pediatric operation

and gynecology. Moreover, the boxes and whiskers demonstrate the same overall trend

as the medians and they have more clues. Except urology and general operation,

boxes of PODs are not symmetrical. Neurosurgery, cardiology and plastic operation

generally have more closely upper regions and it means that distribution is skewed

right. Pediatric operation and gynecology has equal Q1 and median values, orthopedic
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Figure 10: Box plot of AOD.

operation also has same median and Q3 values. Ear-nose-throat has same Q1, median

and Q2 values. As is known that, the whiskers shows the minimum and maximum

values for operations without outliers and neurology has wide whiskers.

Moreover, Figure 10 shows box plot of AOD for each operations and cardiology has

supreme median values: 13 minutes. Then, neurology has the second biggest median

time: 126 minutes. The minimum median is 21 minutes for pediatric operation. Any

boxes are not symmetrical and distribution is skewed right. Neurology and cardiology

have wide whiskers and pediatric operation and gynecology contain narrow whiskers.

In both Figure 9 and Figure 10, we ignore outliers.

3.3.5 Days

In this part, we calculate average AOD and POD with respect to operation days

in terms of minutes as seen Table 11. For AOD, both average operation duration

is about 80 minutes, and average POD is over than 100 minutes. We also show

total actual and predicted operation durations and Tuesday has the maximum total

operation duration, Saturday is also lower the maximum total operation duration in

both actual and predicted cases.
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Total AOD Average AOD Total POD Average POD
Monday 112926 82.01 144912 105.24
Tuesday 135418 88.86 169994 111.54

Wednesday 118380 83.31 151738 106.78
Thursday 127727 85.27 164370 109.73

Friday 108278 79.44 143074 104.97
Saturday 45375 78.91 58362 101.50

Total 648104 83.54 832450 107.30

Table 11: Total and average operation duration with respect to operation days in
terms of minutes.

3.3.6 ORs

Table 12 shows the average AOD and POD with respect to different ORs in terms

of minutes. We find that there is not any balance between the schedule with respect

to ORs.

OR id Ave AOD Ave POD
1 101.01 120.17
2 68.37 93.34
3 73.40 100.29
4 100.31 84.76
5 79.25 104.70
6 91.89 119.97
7 78.81 99.32

Total 83.12 106.92

Table 12: Average operation duration with respect to ORs in terms of minutes.

3.3.7 Compare Actual and Predicted Operation Duration

To study the effect of the difference between AOD and POD, we define a ratio

’RP’. RP is the ratio of AOD to POD as defined in ( 1). If RP ≥ 1, AOD lasts longer

than the predicted one. Thus, the operation duration is underestimated. If RP < 1,

the POD is longer than POD and it shows overestimation. We also find the average

RP which is represented as RP as defined in ( 2). Table 13 represents RP when RP

is ’less than 1’ or ’greater than equal to 1’. When RP < 1, there are 5897 operations

out of total operations and RP is 0.62. When RP ≥ 1, there are 1807 operations out
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of total operations and RP is 1.58.

RPj =
AODj

PODj

(1)

RP =
∑
j∈J

RPj

‖J‖
(2)

RP≥ 1 Total # of RP≥1 RP <1 Total # of RP< 1 RP
Neuro 1.84 113 0.62 355 0.92
Pedia 1.44 54 0.46 441 0.57
Gen 1.68 288 0.65 726 0.94
Gyn 1.51 608 0.68 1947 0.88
Card 1.44 16 0.70 34 0.94
ENT 1.40 150 0.57 941 0.69
Orth 1.64 347 0.63 676 0.98
Plas 1.58 140 0.60 367 0.87
Uro 1.66 107 0.59 444 0.80

Total 1.58 1807 0.62 5897 0.84

Table 13: RP with respect to departments where RP is the average of RPs. RP is
defined as the ratio of AOD to POD.

3.4 Delay and Delay’s Reasons

The data show delay time of operations. If an operation finishes after its predicted

ending time, it shows delay. For example if predicted ending time is 11:00 and the

operation finishes 11:02, then, this operation is late by 2 minutes. Table 14 explains

that the maximum number of delay occurs in pediatric operation. Another interesting

point is that half of pediatric operations starts late (Table 14) and in general, 53

percent of operations are delayed. We also find statistical information about delay

time in terms of minutes. Table 15 shows cardiology has the maximum average delay

time although the percentage of delay of cardiology has the lowest value.
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There are several reasons because of delay as inability of the pre-operation prepa-

ration’s completion, equipment required is used for another operation, previous op-

eration’s duration is longer than POD, the patients arrival late, the longer transfer

time, late hospitalization, doctors or nurses arrives late and specialty materials arrive

late (Table 16 and Table 17). Table 16 shows that the most popular reason is previous

operation’s duration is longer than POD.

# of Delayed Total # of Percentage of Delayed
Neuro 188 468 0.40
Pedia 261 495 0.53
Gen 198 1014 0.20
Gyn 776 2555 0.30
Card 2 50 0.04
ENT 272 1091 0.25
Orth 255 1023 0.25
Plas 182 507 0.36
Uro 193 551 0.35

Total 2327 7754 0.30

Table 14: Statistical information about delayed operation.

Max Ave Median
Neuro 330 55.33 13
Pedia 162 48.98 19
Gen 127 38.05 4
Gyn 201 37.93 9
Card 121 90.50 1
ENT 230 34.49 7
Orth 319 63.27 5
Plas 249 56.90 9
Uro 133 35.27 11

Table 15: Statistical information about delay time.

3.5 Scheduling Analysis

In this section, we show the different analysis that is used predicted and actual

data. We firstly calculate tardiness of each operation. Average total tardiness is

14.52 in terms of minutes.
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Id Reasons Total
1 Pre-operation preparation’s completion 673
2 Equipment required is used for another operation 24
3 Previous operation’s duration is longer than predicted 880
4 The patients arrive late 95
5 The longer transfer time 47
6 Late hospitalization 13
7 Doctors arrive late 573
8 Nurses arrive late 12
9 Specialty materials arrive late 8
10 Others 2

Total 2327

Table 16: Reasons of delays.

Id Neuro Pedia Gen Gyn Card ENT Orth Plas Uro Total
1 70 94 49 176 0 99 71 48 66 673
2 0 1 2 5 0 3 6 3 4 24
3 60 71 83 323 1 69 142 61 70 880
4 6 11 8 28 0 23 11 8 0 95
5 7 1 4 16 0 9 4 2 4 47
6 0 1 1 5 0 2 2 1 1 13
7 42 81 48 222 1 62 15 59 43 573
8 2 1 2 0 0 4 1 0 2 12
9 1 0 1 1 0 0 3 0 2 8
10 0 0 0 0 0 1 0 0 1 2

Total 188 261 198 776 2 272 255 182 193 2327

Table 17: Delays information for each department.

Moreover, in Table 18, there are maximum and average of tardiness information

with respect to number of corresponding department operation and total number of

early corresponding operation.

We also compare between two different schedules of a day by using MS Project

software. The first part of figure is about predicted scheduling and second is also

about actual scheduling of the day as seen in Figure 11. Also, another example

is considered in Figure 12. In these two examples, we can see both earliness and

tardiness by comparing actual and predicted operation starting and ending time.

We also find average waiting time in terms of minutes as seen in Table 19.
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Figure 11: Example 1.

Figure 12: Example 2.
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Max Ave Tardiness
With Respect to With Respect to

# of Corresponding Total # of Tardy
Department Operation Corresponding Operation

Neuro 893 24.39 67.15
Pedia 225 9.46 26.32
Gen 1281 13.88 41.88
Gyn 1042 12.07 29.62
Card 156 11.98 49.92
ENT 998 6.45 40.89
Orth 957 24.97 66.00
Plas 1017 22.61 60.34
Uro 974 12.40 38.16

Table 18: Statistical information about total tardiness with respect to departments
in terms of minutes.

Pediatric operation is waited 27.97 minutes with respect to number of corresponding

department operation. It is the highest waiting time in all departments. Cardiology

operation’s waiting time is 7.90 minutes and it is the lowest one.

Ave Waiting Time
With Respect to With Respect to

# of Corresponding # of Hold Patient
Department Operation Corresponding Operation

Neuro 25.14 33.62
Pedia 27.97 37.01
Gen 10.49 18.03
Gyn 14.64 21.56
Card 7.90 15.80
ENT 11.88 18.82
Orth 18.42 32.66
Plas 22.93 35.33
Uro 15.91 21.07

Total 20.35 29.29

Table 19: Average waiting time in terms of minutes.

Table 20 shows the relationship between operation actual starting time (AST)

and operation predicted starting time (PST) with earliness (E) and tardiness (T),

the other word it is a kind of under and overutilization reasons’ table. Following

tables give more detail information about AST, PST and T with RP. We firstly
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determine two main groups, such as RP is greater or equal to 1 and RP is smaller

than 1. Then we analyze relationship with AST and PST with earliness and tardiness

case.

AST < PST AST= PST AST > PST
E T E T E T Total

RP≥ 1 314 400 x 32 x 1063 1809
RP<1 1793 x 116 x 2795 1173 5877
Total 2107 400 116 32 2795 2236 7686

Table 20: Reasons of under or over estimation. If there is not any datum, x is used.

• Table 21 shows the statistical information about RP when RP is greater or

equal to 1 and AST is smaller than PST with earliness case. In this cases, the

operation starts early that’s why there is not any delay.

# of Operations Max{RP} Min{RP} RP
Neuro 11 7.2 1 1.73
Pedia 11 1.53 1.02 1.14
Gen 46 2.51 1 1.24
Gyn 85 2.93 1 1.17
Card 7 1.45 1.06 1.17
ENT 33 2.93 1 1.24
Orth 87 3.50 1 1.36
Plas 19 1.95 1 1.20
Uro 15 2.1 1 1.29

Total 314 7.2 1 1.26

Table 21: Statistical information about RP for cases when RP≥1 and AST<PST
with Earliness.

• Table 22 shows statistical information about RP for cases when RP is greater

or equal to 1 and AST is smaller than PST with tardiness case.

• Table 23 is another case where RP is smaller than 1 and AST is smaller than

PST with earliness. There is not any kind of abnormality.

37



# of Operations Max{RP} Min{RP} RP
Neuro 28 9.52 1.02 1.75
Pedia 6 4.53 1.04 1.93
Gen 67 4.63 1.04 1.55
Gyn 121 4.85 1.04 1.52
Card 2 1.35 1.11 1.23
ENT 43 2.93 1.06 1.36
Orth 73 17.18 1.06 1.95
Plas 38 6.33 1.02 1.68
Uro 21 3.43 1.06 1.54

Total 400 17.18 1.02 1.62

Table 22: Statistical information about RP for cases when RP≥ 1 and AST<PST
with Tardiness.

# of Operations Max{RP} Min{RP} RP
Neuro 71 0.99 0.18 0.64
Pedia 89 0.95 0.00 0.48
Gen 279 0.99 0.10 0.65
Gyn 565 0.99 0.06 0.68
Card 15 0.98 0.18 0.66
ENT 300 0.99 0.17 0.58
Orth 269 0.99 0.13 0.63
Plas 111 0.99 0.12 0.60
Uro 93 1.00 0.13 0.62

Total 1793 1.00 0.00 0.63

Table 23: Statistical information about RP for cases when RP< 1 and AST < PST
with Earliness.

• Table 24 mentions about RP for cases when RP is smaller than 1 and AST

and PST are equal each other with earliness cases. There is underutilization

situation because of the shortest actual duration of operation.

• Table 25 shows statistical information about RP when RP is greater than or

equal to 1 and AST and PST are equal each other with tardiness case. In this

situation, delay occurs because of tardiness.

• Table 26 mentions the statistical information about RP when RP again is
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# of Operations Max{RP} Min{RP} RP
Neuro 5 0.95 0.40 0.81
Pedia 13 0.92 0.07 0.53
Gen 25 0.98 0.22 0.62
Gyn 31 0.93 0.36 0.68
Card 1 0.98 0.98 0.98
ENT 23 0.95 0.26 0.59
Orth 7 0.91 0.23 0.66
Plas 6 0.91 0.60 0.73
Uro 5 0.71 0.25 0.52

Total 116 0.98 0.07 0.63

Table 24: Statistical information about RP for cases when RP<1 and AST=PST
with Earliness.

# of Operations Max{RP} Min{RP} RP
Neuro 2 2.43 1.53 1.98
Gen 5 2.00 1.02 1.27
Gyn 13 1.92 1.08 1.36
ENT 3 1.30 1.09 1.21
Orth 7 3.28 1.12 1.64
Plas 2 2.98 1.05 2.01
Total 32 3.28 1.02 1.47

Table 25: Statistical information about RP for cases when RP≥1 and AST=PST
with Tardiness.

greater than or equal to 1 and AST is greater than or equal to PST with tar-

diness case. There are two reasons because of delay, late start time and wrong

estimation of operation duration.

• Final analysis is for RP, when RP is smaller than 1 and AST is greater than or

equal to PST with tardiness case. Table 27 shows that lateness of release time

causes delay because the duration of actual operation is smaller than predicted

duration.

Furthermore we analyze the consecutive operations. It may be another reason
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# of Operations Max{RP} Min{RP} RP
Neuro 71 29.20 1.00 1.90
Pedia 35 2.90 1.00 1.47
Gen 168 42.33 1.00 1.86
Gyn 384 38.72 1.00 1.59
Card 7 4.20 1.18 1.77
ENT 71 10.63 1.00 1.51
Orth 177 15.50 1.00 1.66
Plas 79 9.44 1.00 1.63
Uro 70 17.10 1.00 1.78

Total 1063 42.33 1.00 1.67

Table 26: Statistical information about RP for cases when RP≥1 and AST≥PST
with Tardiness.

# of Operations Max{RP} Min{RP} RP
Pedia 137 0.98 0.09 0.54
Gen 96 0.99 0.00 0.75
Gyn 523 0.99 0.08 0.78
Card 3 1.00 0.76 0.91
ENT 55 1.00 0.27 0.75
Orth 130 0.99 0.03 0.73
Plas 71 0.99 0.17 0.74
Uro 88 1.00 0.13 0.75

Total 1173 1.00 0.00 0.73

Table 27: Statistical information about RP for cases when RP<1 and AST≥PST
with Tardiness.

for delay. Table 28 shows that 1293 different consecutive operations occurs. Gynecol-

ogy has the highest consecutive operations, and it is 281 in different OR. If we check

consecutive operations with in same OR, the solution is less than the different OR

case. Table 29 shows that orthopedic operation has the highest consecutive operation

and 138 operations are scheduled consecutively in same OR.

3.6 Conclusion

In this chapter, we analyze the healthcare data with different approaches. We

have 9 different operational specialties and 7 ORs and ORs are available from 08:30
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Double Triple Quadruple Total Consecutive
Operations

Neuro 25 0 0 50
Pedia 64 6 1 150
Gen 77 2 1 164
Gyn 131 5 1 281
Card 4 0 0 8
ENT 96 6 1 214
Orth 91 5 0 197
Plas 47 2 0 100
Uro 53 5 2 129

Total 588 31 6 1293

Table 28: Consecutive operations.

Double Triple Total Consecutive Operations
Operations

Neuro 13 0 26
Pedia 50 2 106
Gen 56 0 112
Gyn 67 1 137
Card 3 0 6
ENT 58 1 119
Orth 66 2 138
Plas 32 1 67
Uro 31 1 65

Total 376 8 776

Table 29: Consecutive operations in same OR.

to 17:30. We do not consider emergency case. There are 7754 different operations

and 2555 operations out of 7754 operations is gynecology operations. Furthermore,

the average number of daily operation is 13.06. In general, 59 percent of all oper-

ations are scheduling during 08:30-13:00. We also analyze the ORs utilization and

preferences. The data show that two ORs are left to have buffer for emergency and

the daily average number of OR used is 4.96 ORs and the highest OR’s utilization

is 56 percent for AOD and 70 percent for POD. Moreover, we determine statistical

information about waiting time in terms of minutes in the recovery, transfer time,

difference between operation start time and hospitalization time and the difference
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between hospitalization time and discharge time. Then, we determine statistical in-

formation of AOD and POD for each department and neurosurgery has the highest

duration and generally, POD is greater than AOD for each operation. We may end

up underutilization of ORs due to overestimation of operation durations. We also

consider goodness fit of each department using operations’ AOD and POD. Then,

we divide each operation in terms of the operation types. After that, we find av-

erage AOD and POD with respect to operation days and ORs in terms of minutes.

Moreover, we try to make comparison between AOD and POD. We firstly find RP

to take ratio of AOD and POD. We find that 5897 operations out of 7754 operations

are overestimated. 2327 operations out of 7754 operations start late and the most

popular reasons are previous operation’s longer predicted duration and pre-operation

preparation’s completion. Then, we make scheduling analysis by using tardiness and

waiting time information. Average total tardiness is 14.52 minutes, and average wait-

ing time is 20.95 minutes. Then, we determine the relationship of AST, PST, T and

RP. For example, we find 116 operations when RP is smaller than 1 and AST and

PST are equal to each other with earliness cases. It is a kind of underutilization prob-

lem because of the POD is whacker than AOD. Another example can be considered

when RP greater than or equal to 1 and AST is greater than PST with tardiness

case. There are 2795 operations and they start late but they finish early because

of short AOD. There are also late 1173 different operations because there are late

start time and wrong estimation of operation durations. Then, we find consecutive

operations with different ORs and same ORs. It may be end up another delay reasons.
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CHAPTER IV

ASSIGNING AND SCHEDULING OPERATIONS

Hospital X aims to schedule their operations avoiding waiting time and satisfying

fairness of OR usage. To achieve Hospital X’s goals, we use mathematical models

introduced in Table 32. In addition to Hospital X’s goals, we study other objec-

tive functions. First, a deterministic setting is assumed where all data are known in

advance. Next, Hospital X has delay probabilities of its operations which are incor-

porated to the proposed mathematical models by heuristics. Then, we compare these

models’ performance with what has actually happened (i.e., one scenario) and with

what may happen (i.e., several scenarios). Lastly, we propose a simple heuristic to

use optimization and analyze its performance. Table 30 represents our computational

experiment goals and corresponding Hospital X Administration goals.

In this chapter, we introduce assumption of our models in Section 4.1, mathe-

matical models in Section 4.2, and simple heuristic in Section 4.3 respectively. Then,

computational results are summarized in Section 4.4.

4.1 Assumptions

Emergency cases are ignored in this study as the hospital administration first

targets assigning and scheduling planned operations. A very common assumption is

the nonpreemptive nature operations: if an operation starts in an OR, the operation

cannot be interrupted. Next, material resources, such as sterilized medical trays, and

human resources, such as nurses, are available during operations. Furthermore, all

ORs are available starting from 08:30. In addition, all patients are assumed to be

ready on their appointment time. Hence, we ignore uncertainties caused by patients’

late arrivals. Lastly, clean-up time of an OR after each operation and induction time
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Our Computational Experiment Goals Hospital X Administration Goals

1) Solve deterministic mathematical models 1) Compute when the operations will start
for assignment and scheduling of operations and which OR will be used

2) Solve mathematical models considering 2) Improve our schedule given
delay probabilities embedded in by heuristics operations’ delay data

3) Compute schedules via using 3) Whether adapting the schedules
mathematical models under helps us improve current
possible scenarios schedule problems

4) Propose a simple heuristic 4) Without complex models,
and measure its performance whether we can use a simple rule

to assign and schedule operations

Table 30: Comparison between our computational experiment goals and Hospital X
Administration goals.

of each operation are included in operation durations.

4.2 Mixed Integer Linear Programming Formulation

In this section, we develop mathematical models to solve a real life operation

scheduling problem. There are m operating rooms (ORs) where n operations will be

scheduled. Each operation j has a time window defined by its release time (rj) and

deadline (dj). Processing time of an operation is represented by pj. The nomenclature

of the problem is given in Table 31.

We formulate operation assignment and scheduling problem by a Mixed Integer

Linear Programming (MILP) formulation . xijt is a binary decision variable repre-

senting whether operation j is scheduled to start at time t in OR i. If it is, xijt equals

1, otherwise, xijt equals to 0. The length of the time horizon is defined by set T where
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Indices
j Operation
i OR
t Time

Sets
Tijt Set of discrete times which operation j can start in OR i

Parameters
pj Processing time of operation j
rj Release time of operation j
dj Deadline or due date of operation j
b Percentage of upper bound tardiness for operations
ed End of a day, such as, 540 represents 17:30
P Sum of operations’ processing time divided by the number of OR
PP Sum of probability of operations divided by the number of OR
WOR Penalty of overtime
WPR Penalty of delayed operation
WO Weight of overutilization in the objective function
WW Weight of waiting time in the objective function
µ Large number

Variables
xijt =1 if operation j starts in OR i at time t
M Makespan
Tj Tardiness of operation j
Wj Waiting time of operation j
zi Overutilization of OR i
Ki Overtime of OR i
prpi Probability of OR i’s delay
yyi =1 if OR i is utilized

Table 31: Notation.
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T={1,2,3,. . . ‖T‖ }.

Min [objective function] (3)

subject to
∑
it

xijt = 1 for all j (4)

∑
j

∑
t′∈Tijt

xijt′ ≤ 1 for all i,t (5)

xijt = 0 for all j,t with t ≤ rj (6)

xijt ∈ {0, 1} for all i,j,t (7)

where

Tijt={ t′ : t− pj < t′ ≤ t }
is the set of discrete times repressing possible starting times for operation j in OR i.

Alternative objective functions can be introduced as (3) and such objective func-

tions are introduced in Sections (4.2.1), (4.2.2), (4.2.3), (4.2.4), (4.2.5), (4.2.6) and

(4.2.7) with details. Constraint (4) defines that every operation should be assigned

exactly to an OR. Two or more operations are prevented to overlap for each OR

by Constraint (5). Constraint (6) satisfies that each operation should start after its

release time.

A list of mathematical models with different objective functions is introduced in

Table 32: makespan, overtime, tardiness, waiting time, fairness, delay probability,

and range. Model X-Y represents the model combination where X presents model

number, 1, 3, and 5, and Y represents objective functions: overtime (O), makespan

(M), tardiness (T) or makespan with deadline constraint (MD) as objective function.

Models 2 and 4 are for Hospital X’s current solution, hence, they are the same model

except objective function calculations. Deterministic schedule is evaluated in Model

2, whereas, schedule with delay probabilities are studied by Model 4. However, even

Models 2 and 4 seem to optimize the solution, we only compute the objective function

values of Hospital X given their realized schedule. Models 1, 3, and 5 are for deter-

ministic schedule, schedule with delay probability, schedule with delay probability
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when fairness is computed by a range model, respectively.

Z refers to the type of the operation durations in Model X-Y-Z notation: either

predicted (P) or actual (A). However, we compute assignment and schedule with

respect to P operation durations and the objective function of any model with nota-

tion Model X-Y-Z is using the sequence computed by using the predicted operation

durations and inserting A operation durations given this computed sequence. For

example, Model-1-O-P means that first model with overtime objective and predicted

operation duration, whereas, Model-1-O-A means that first model with overtime ob-

jective is solved by predicted operation durations and this computed sequence is used

to compute the objective function value given actual operation durations.

The aim of Model 1 is to minimize the total penalty that is computed by the

waiting time of patients and unfairness between ORs (i.e., overutilized ORs) and

either overtime, or makespan, or tardiness or makespan with each operation finished

before its deadline. For example, Model 1-O aims to minimize the penalty waiting

time and unfairness and either overtime (O), or makespan (M), or tardiness (T) or

makespan where each operation finishes before its deadline (MD).

Model 1 ignores uncertainty prevalent in operations. To consider such uncertainty,

two heuristics have been developed: (i) considering delay probabilities through lin-

ear summations, (ii) considering starting time weighed probabilities through linear

summations. Heuristic (i) is formulated by Models 3 and 5, whereas, heuristic (ii) is

formulated by Model-3’ and 5’. Model-3 minimizes waiting time of patient, unfairness

and delay probability and either overtime, or makespan, or tardiness, or makespan

with each operation finished before its deadline. For example, Model-3-T aims to min-

imize tardiness, waiting time, unfairness and delay probability. In Model-3’, weighing

corresponding operation’s delay probabilities is considered in the objective function.

For example, Model-3’-MD minimizes makespan with deadline, waiting time, fairness

and starting time weighed delay probability. Moreover, Model-5 aims to minimize
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Model Objective Function

1-O Overtime + Waiting Time + Fairness
1-M Makespan + Waiting Time + Fairness
1-T Tardiness + Waiting Time + Fairness
1-MD Makespan with Deadline + Waiting Time + Fairness

3-O Overtime + Waiting Time + Fairness + Delay Probability
3-M Makespan + Waiting Time + Fairness + Delay Probability
3-T Tardiness + Waiting Time + Fairness + Delay Probability
3-MD Makespan with Deadline + Waiting Time + Fairness + Delay Probability

3’-O Overtime + Waiting Time + Fairness + Starting Time Weighed Delay Probability
3’-M Makespan + Waiting Time + Fairness + Starting Time Weighed Delay Probability
3’-T Tardiness + Waiting Time + Fairness + Starting Time Weighed Delay Probability
3’-MD Makespan with Deadline + Waiting Time + Fairness + Starting Time Weighed Delay Probability

5-O Overtime + Waiting Time + Range + Delay Probability
5-M Makespan + Waiting Time + Range + Delay Probability
5-T Tardiness + Waiting Time + Range + Delay Probability
5-MD Makespan with Deadline + Waiting Time + Range + Delay Probability

5’-O Overtime + Waiting Time + Range + Starting Time Weighed Delay Probability
5’-M Makespan + Waiting Time + Range + Starting Time Weighed Delay Probability
5’-T Tardiness + Waiting Time + Range + Starting Time Weighed Delay Probability
5’-MD Makespan with Deadline + Waiting Time + Range + Starting Time Weighed Delay Probability

Table 32: Model Combinations.

waiting time, range and delay probability with either overtime, or makespan, or tardi-

ness, or makespan with deadline. Difference between Model-3 and Model-5 is fairness

calculation. In Model-5, a range model is adapted whereas, in Model-3 unfairness of

each OR is summed. Similar to the relation between Models 3 and 3’, Model-5 and

5’ resemble each other except delay probabilities of operations are weighed by their

starting times in Model-5”s objective function. Models are explained with details

in the following sections. Note that the weights used in the objective functions are

provided by Hospital X.

4.2.1 Makespan

Makespan is the total length of the operation schedule, in other words, it equals to

the maximum of each operation’s finishing time. Since MILP is utilized, Constraint

(8) is added to Constraints (4) - (7) to linearize the maximum. In addition, we update

our objective function as min M where M represents makespan. Constraint (8) is to

define M as being greater than or equal to finishing time of each operation j.

M ≥
∑
it

(t+ pj)xijt for all j (8)
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In makespan with deadlines models, Constraint (9) is added to Constraint (4) - (8)

to prevent an operation to finish later its deadline.

xijt = 0 for all j,t with t > dj − pj (9)

In addition, each OR’s makespan can be computed by Constraint (10).

Mi ≥
∑
t

(t+ pj)xijt for all i, j (10)

4.2.2 Overtime

To compute overtime,
∑

iWORKi is minimized in addition to satisfying Constraint

with (4) - (7), (10) - (12). All constraints mentioned in Section 2.1 are also required

for this model.

Ki ≥Mi − ed for all i (11)

Ki ≥ 0 (12)

4.2.3 Tardiness

Tardiness is the nonnegative difference between finishing time of an operation and

its deadline. Constraints (13) and (14) formulate tardiness and they are added to

Constraints (4) - (7) in addition to the objective function that also aims to minimize

sum of Tjs.

Tj ≥
∑
it

(t+ pj)xijt − dj for all j (13)

Tj ≥ 0 for all j (14)

The hospital administration may consider an upper bound (UB) on each operation’s

tardiness such that based on each operation’s duration they may tolerate duration

length times the UB as tardiness.

Tj≤ pj b for all i,j (15)
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Such tolerance to tardiness is formulated by Constraint (15) where b represents UB

on the percentage.

4.2.4 Waiting Time

The operation waiting time problem minimizes
∑

j WWWj subject to Constraints

(4) - (7), where WW is the weight of waiting time of operation j, Wj. To define the

waiting time of operation j, Constraint (16) is introduced as the difference between

the starting time and the release time of operation j.

Wj ≥
∑

it(t- rj)xijt for all j

Wj≥ 0 for all j
(16)

Wj ≥ 0 can be omitted as Constraint (6) prevents operations to start before their

release times, hence, waiting time is always nonnegative due to Constraint (6).

4.2.5 Fairness (Overutilization of ORs)

Hospital X defines fairness as balanced utilization of ORs and they aim to achieve

this by assigning equal operation durations (if possible) to each OR. Fairness is very

vital for Hospital X. Since they have already allocated resources to these ORs (such

as, budget spent for constructing ORs or for the equipments), they focus on equivalent

utilization.

To compute fairness, average operation durations are computed daily and devia-

tions from this average are calculated for each OR. Constraints (17) and (18) define

the unfairness and nonnegativity of unfairness. If an OR is overutilized, the total

operation duration assigned to this OR is more than the corresponding daily average

duration, hence, another OR should be underutilized. To avoid double penalizing

unfairness, only overutilization is considered in the objective function and this is
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satisfied by Constraints (17) and (18).

zi ≥ (
∑
jt

(pjxijt)− P ) for all i (17)

zi ≥ 0 for all i (18)

where

P =
∑

j pj

number of OR

4.2.6 Range Model

Fairness can be modeled by minimizing the maximum range of operation dura-

tions’ sum assigned to each OR. Then, the objective function becomes minimizing

WO(qmax − qmin) and subject to Constraints (4) - (7) and (19) - (21). Constraint

(19) defines the maximum total operation duration assigned to an OR, Constraint

(20) provides the minimum total operation duration assigned to an OR except unuti-

lized OR. Constraint (21) defines which OR is used with the help of yyi variable which

is a binary variable equal to 1 if OR i is utilized.

qmax ≥
∑
jt

(pixijt) for all i, (19)

qmin ≤
∑
jt

(pixijt) + µ(1− yyi) for all i, (20)

xijt ≤ µyyi for all i,j and t (21)

4.2.7 Delay Probability

Operations’ delay probabilities play an important role in scheduling as Hospital

X Administration prefers assigning two or more operations with high probability of

delay to distinct ORs. Hence, a major possible problem they try to avoid is to prevent

delays caused with these two or more operations with high probability of delay. Hence,
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we aim to incorporate delay probabilities into the mathematical models by heuristics

since scheduling integrated with delay probabilities is a very hard problem. For in-

stance, assume that there are two consecutive operations and their delay probabilities

are 0.6 and 0.5. If there is a gap between these two operations (i.e., positive difference

between starting time of a successor operation and finishing time of its predecessor

operation), delay probability of the predecessor operation may not result in delaying

the successor operation since the gap between these two operations may be longer

than the delay of the predecessor operation (i.e., preventing the successor operation’s

delay). However, each operation’s delay probability should still be considered in the

model as there may be no gaps between consecutive operations. Gaps are computed

during the scheduling problem’s optimization; one can either solve the deterministic

scheduling problem ignoring the delay probabilities and integrate probabilities as a

second step (or vice versa) or solve a deterministic problem where the delay proba-

bilities have already been integrated. The second alternative, deterministic problem

with integrated delay probabilities, is formulated via two proposed heuristics: (i) con-

sidering delay probabilities through linear summations and (ii) starting time weighed

delay probabilities through linear summations.

prpi ≥ (
∑
jt

(prjxijt)− PP ) for all i (22)

prpi ≥ 0 (23)

where

PP =
∑

j prj

number of OR

In heuristic (i), average delay probabilities are computed daily and deviations from

this average is determined for each OR. Constraints (22) and (23) define deviation

from the average delay probability and nonnegativity of the deviation, , respectively,

whereas, in heuristic (ii) Constraints (24) and (25) provide that delay operations are
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scheduled as early as possible and nonnegativity, respectively.

prpi ≥ (
∑
jt

(prjxijtt)) for all i (24)

prpi ≥ 0 (25)

4.3 Sorting Heuristic

A simple heuristic is developed for Hospital X Administration to compute schedule

without optimization. This simple heuristic is referred as sorting heuristic since it

depends on sorting. Steps of sorting heuristic are as follows.

• Sort predicted starting times in ascending order.

• Sort predicted operation durations in descending order.

• Sort probability of delay in descending order.

• Start assigning operations from OR 1 to OR 7 and then from OR 7 to OR 1.

First step provides the earliest released operations to be scheduled first. Second

step satisfies from the earliest released operations, operations with the shortest oper-

ation duration are given higher priority. The next step considers delay probabilities

of operations and aims to schedule the ones with high delay probability before the

ones with lower delay probability.

4.4 Computational Results

We aim to solve Hospital X’s daily assignment and scheduling problem. Comput-

ing weekly schedules is not studied since time windows of operations are not wide

enough to solve a weekly schedule and the computation time of weekly schedule is

at least an order of magnitude slower than the daily schedule. Hence, Hospital X

Administration is also interested in improving daily schedules first. Solving weekly

or monthly schedules may be a future work.
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Hospital X has 7 ORs with the same equipments, 141 beds and 54 intensive care

units. Data represent the operations performed between June, 2013 and December,

2014. There are 7754 operations belonging to 9 different departments. 341 days out

of 594 are chosen where the number of operations varies between 10 and 17. There

are few data of the days with the number of operations less than 10 or more than 17

and we analyze them separately. Moreover, 180 days out of 341 days Hospital X’s

objective function values can be calculated. There are data errors at the remaining

days, such as, double booking on the same time period. Hence, we clean such data

entries and solve our models and compute Hospital X’s current objective function

values. We compare to our models and Hospital X’s current objective function values

by calculation average deviation.

Hospital X administration share the information that the weight of patient waiting

time is 5 times the weight of tardiness, overtime, unfairness, and unfairness computed

via range model. Moreover, assumptions made while solving the instances are sum-

marized in Section 4.1 and models are introduced in Section 4.2, respectively. We

also show the sorting heuristic in Section 4.3.

IBM ILOG CPLEX Optimization Studio 12.6 is used to run the mathematical

models on a laptop with Inter core i5 processor 2.5 Ghz, 4 GB RAM and Windows

7 Professional operating system. Our computational experiment goals and their cor-

responding goals at Hospital X are summarized in Table 30. In Section 4.4.1, we

summarize the results of Model-1-O, M, T, and MD and Model-2-O, M, T, and MD

(Hospital X’s objective functions). Then, Model-3 and 3’-O, M, T, and MD are math-

ematical models considering stochasticity by heuristics. Model-4 and 4’-O, M, T, and

MD are Hospital X’s objective functions that are compared between Model-3 and 3’.

Model-5, 5’,7 and 7’ schedule computed via using mathematical models under some

different calculation such as different fairness calculation and both of them are com-

pared between Hospital X’s objective functions. Then we create different scenarios to
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analyze performance of our mathematical models in real life. Next, in Section 4.4.2

, the results of the sorting heuristics are mentioned. Finally, Section 4.5 mentions

about conclusion of results briefly.

4.4.1 MILP

We examine whether Hospital X’s current schedule performs well given predicted

operation durations. In Model-1, we optimize four different models ignoring uncer-

tainty. First model is Model-1-O-P that aims to minimize the total penalty caused by

overtime, waiting time and unfairness. Next model is Model-1-M-P that minimizes

the total penalty of makespan, waiting time and unfairness, whereas, the third model

is Model-1-T-P minimizing the total penalty caused by tardiness, waiting time and

unfairness. The last model is Model-1-MD-P that is the same model as Model-1-M-P

except an additional constraint: each operation has to be performed between its time

windows (i.e., each operation has to finish before its deadline). Given these models

we summarize main findings for 180 days as follows.

• As the number of operations increases each day,

– objective function values do not change immensely for Model-1-M-P and

Model-1-MD-P,

– unfairness decreases since there are operations to be scheduled at each OR,

– makespan increases.

Since unfairness has the highest penalty value, objective function values stay

nearly unchanged due to decreasing unfairness and increasing makespan.

• Objective function values of Model-1-O-P and Model-1-T-P decrease with in-

creasing number of operations each day since unfairness decreases. Overtime

and tardiness values are almost zero for most of the days, hence, unfairness

directs our objective function values.
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• Waiting times and tardy jobs are not the main problems of Hospital X’s schedule

considering the predicted operation durations since both are zero in most of the

instances.

As mentioned before, we calculate Hospital X’s objective function value when ac-

tual operation durations are used with the computed sequences using our optimized

mathematical models. Since actual durations are not the same as the predicted dura-

tion, the objective function values deviate. We refer Hospital X’s objective function

values as Actual solution, whereas, Predicted solution is used to refer the optimized

objective function value. Then, deviation is formulated as follows.

(
Actual Solution-Predicted Solution

Predicted Solution
) ∗ 100 (26)

If deviation percentage is positive and large, Actual solution’s objective function value

is larger than the predicted solution’s. Hence, mathematical models underestimate

the actual conditions.

• Model-1-O-P may perform bad under actual operation durations. For example,

Model-1-O-A’s objective function values are 9.21 % more than Model-1-O-P’s

and Model-1-T-A’s objective function values are 315.77 % more than Model-1-

T-P’s. For these two models, reason of such bad performance of actual model is

caused due to fairness and/or waiting. In most cases, operation durations are

overestimated and satisfying fairness between ORs becomes a major problem.

If an operation duration is underestimated, Actual solution may realize waiting

times. As mentioned before, weight of waiting time is 5 and the rest of the

weights is 1. Moreover, Model-1-M-P and Model-1-MD-P’s objective function

values are 1.95 % more than Model-1-M-A and Model-1-MD-A’s. Although

unfairness has lower values in predicted models, makespan is higher because of

overestimated predicted operation durations.
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We calculate Hospital X’s objective function values. Model-2 models the same prob-

lem as Model-1, however, we use Hospital X’s current operation sequence in Model-2.

To compare these two models, we again define deviation similarly to the one for-

mulated in (26); instead of using Actual solution (26), we use Hospital X’s current

operation sequences and calculate its objective function value given predicted opera-

tion durations.

• Figure 13 represents the box plot of deviation percentages of Model-2-O-P and

Model-1-O-P. In the y-axis, deviation percentages are represented and in the x-

axis number of operations are represented. Model-1-O-P performs better than

Model-2-O-P since Hospital X’s current sequence has fairness problems. For

example, an outlier day is the 232th day: there are 11 operations scheduled

at 3 ORs. Moreover, operations are scheduled consecutively. Hospital X can

improve its objective function value if more ORs are utilized instead of just

utilizing 3 ORs. Note that also the smallest maximum deviation percentage is

more than 500 % as represented in Figure 13.

Figure 13: Deviation of Model-2-O-P and Model-1-O-P.

• Figure 14 shows deviation of Model-2-M-P and Model-1-M-P and Model-1-

M-P performs better than Model-2-M-P. In addition, deviation percentages of
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Model-1-M-P and Model-2-M-P are smaller than the deviation percentages of

Model-1-O-P and Model-2-O-P depicted in Figure 13 due to very long overtime.

Figure 14: Deviation of Model-2-M-P and Model-1-M-P.

• Figure 15 shows deviation of Model-2-T-P and Model-1-T-P. Model-1-T-P per-

forms worse than than Model-2-T-P. When the number of operations increases,

median of deviation percentage shows an increasing pattern which shows that

we can improve Hospital X’s current schedule more by optimization when the

number of operations is large.

• When deviation of Model-2-MD-P and Model-1-MD-P is computed, the boxplot

is the same as depicted in Figure 14 since very job finished before its deadline,

Model-MD and Model-M result in the same objective function values.

We also calculate the objective function values of Model-2-O-A, Model-2-M-A, Model-

2-T-A and Model-2-MD-A (actual operation durations are used with Hospital X’s

current schedule).
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Figure 15: Deviation of Model-2-T-P and Model-1-T-P.

• Except Model-2-T, Model-2-Y-P’s objective function values (using predicted

operation durations for objective function Y) are larger than Model-2-Y-A.

For instance, deviation percentage of Model-2-T-P and Model-2-T-A is 86.98

% for 232nd day. In other words, objective function value of Model-2-T-A is

86.98 % larger than Model-2-T-P’s objective function value. Even if 32 % of

the operation durations are overestimated for this day, remaining operation

durations are underestimated. Hence, using the actual operation durations for

Hospital X’s current schedule increases the objective function value because of

waiting time.

Computation time of Model-1 increases as the number of operations increases. Fig-

ure 16 illustrates Model-1-O-P’s computation time. Remaining Model-1’s also have

similar patterns as shown in Appendix E.

In deterministic models, uncertainty is ignored as mentioned before. However, un-

certainty is prevalent in Hospital X’s data. To incorporate uncertainty, the proposed

mathematical models are updated by delay probabilities. In Model 3, as mentioned in

Table 32, delay probabilities are incorporated into mathematical model by penalizing

deviation from the average delay probabilities computed by linear summation. Delay
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Figure 16: Computation time of Model-1-O-P.

probabilities can be very small numbers (such as, with two decimal digits), where

as the other objectives in the objective function may have two or even three digits.

Hence, we use 100 to weight the penalty of delay probability in the objective function.

We analyze Model-3-O-P that optimizes overtime, waiting time, fairness and delay

probability. Then, the next model is Model-3-M-P that optimizes makespan, waiting

time, fairness and delay probability. The third model is Model-3-T-P that optimizes

tardiness, waiting time, fairness and delay. The last model is Model-3-MD-P deter-

mines makespan with deadline constraint, waiting time, fairness and delay probability.

The objective function values of Model-3 mimics Model-1’s objective function values

because waiting time and unfairness penalization are the dominant values.

• When the number of operations increases, objective function values do not

change for Model-3-M-P and Model-3-MD-P, similar to Model-1-M-P and Model-

1-MD-P.

• Objective function values of Model-3-O-P and Model-3-T-P decrease by in-

creasing number of operations because of increasing fairness and decreasing

delay probability deviations. Overtime and tardiness values are generally zero

while predicted operation durations are used; fairness and delay probabilities

dominate the objective function values.
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• Model 3-M-P’s makespan increases as the number of operations increases, whereas,

delay probability deviations and unfairness decrease.

• We again calculate deviations as in (26) similar to the once used for Model-

1. For example, on average, Model-3-O-A’s objective function values are 1.26

% more than Model-3-O-P’s and Model-3-T-A’s objective function values are

250.32 % more than Model-3-T-P’s. Objective function values of Model-3-M-

P is 8.32 % more than Model-3-M-A’s on average. Finally, Model-3-MD-P’s

objective function values is 1.85 % more than Model-3-M-A on average. Such

deviations show that except tardiness model, Model-3-Y-A and Model-3-Y-P

objective function values are very close to each other. This result shows that

our models can also provide good schedules under actual durations.

• Overtime and tardiness models’ objective function values when predicted oper-

ation durations are used perform better than the case when actual operation

durations are used. Note that delay probabilities are same for the cases of pre-

dicted operation durations and actual operation durations since the sequence is

the same.

We also calculate Hospital X’s objective function values. Model-4 has the same con-

straints as Model-3 with only one exception: we use Hospital X’s current OR as-

signments in Model-4. In order to analyze these two models, we again calculate

deviation as formulated in (26) with a minor change where Hospital X’s objective

function values are used instead of Actual solution (similar to the deviations defined

for Model-1).

• Figure 17 represents deviation of Model-4-O-P and Model-3-O-P. Model-3-O-

P performs better than Model-4-O-P as Hospital X has unfairness and delay

probability problems. For example, one of the outlier days is 141st day with

16 operations and 4 ORs. There are two operations that have long predicted
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operation durations (240 and 270 minutes). These operations are scheduled in

the same OR and 2 ORs are empty. Hence, unfairness is realized. Moreover,

pediatric and gynecology operations are scheduled at the same OR. Since these

operations have the highest delay probabilities; deviation of delay probabilities

is also high. Other outliers have similar patterns.

Figure 17: Deviation of Model-4-O-P and Model-3-O-P.

• Figure 18 shows deviation of Model-4-M-P and Model-3-M-P where Model-3-

M-P performs better than Model-4-M-P due to decreasing unfairness and delay

probability deviations.

• Figure 19 depicts deviation of Model-4-T-P and Model-3-T-P. Model-3-T-P per-

forms better than Model-4-T-P. As the number of operations increases up to 15

operations, median of deviations keeps increasing as depicted in Figure 19. For

days with more operations, the deviations do not vary much since fairness and

delay probability deviations stay stable.

• Figure 19 shows deviation of Model-4-MD-P and Model-3-MD-P. Model-3-MD-

P performs better than Model-4-MD-P because Model-4-MD-P’s unfairness and

delay probability deviations are high.
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Figure 18: Deviation of Model-4-M-P and Model-3-M-P.

Figure 19: Deviation of Model-4-T-P and Model-3-T-P.

We also calculate Model-4-O-A, Model-4-M-A, Model-4-T-A and Model-4-MD-A when

Hospital X’s actual schedule and actual operation durations are used.

• Except the case minimizing tardiness , predicted models perform better than

actual models. Objective function values of Model-4-T-A are 86.98 % larger

than Model-4-T-P’s. Model-4-O-P’s objective functin values are 15.37 % less

than Model-4-O-A’s. Model-4-M-P and Model-4-MD-P’s objective function val-

ues are 12.83 % less than Model-4-M-A’s and Model-4-MD-A’s as fairness and

waiting time change. Note that delay probability deviations are the same since

the same sequences are used.

63



Figure 20: Deviation of Model-4-MD-P and Model-3-MD-P.

• When the number of operations increases, computation time increases as de-

picted in Figure 21. Other models’ computation times have same patterns as

shown in Appendix E.

Figure 21: Computation time of Model-3-O-P.

All models are analyzed assuming that all ORs are utilized. However, Hospital X

seems to leave an OR idle, most likely for emergency cases. We decrease the number

of ORs to 6 and show the resulting statistics in Table 33. If 6 ORs are utilized instead

of 7 ORs, scheduling objective function values may drop due to decreasing unfairness.

In Model-3’, delay probabilities are incorporated to the deterministic models by

using starting times as weights. In other words, since objective function is minimized,
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Total # of operations
10 11 12 13 14 15 16 17

Median -30.85 -43.90 -29.30 -21.50 -22.08 -17.04 -28.65 -35.66

Table 33: Median deviation of Model-3-O-P when # of ORs decreases to 6 from 7.

operations with high delay probabilities will be scheduled as early as possible. Model-

3’-O-P aims to minimize overtime, waiting time, unfairness and starting time weighed

delay probabilities, whereas, Model-3’-M-P minimizes makespan, waiting time, fair-

ness and starting time weighed delay probabilities. The third model is Model-3’-T-P

minimizing tardiness, waiting time, fairness and starting time weighed delay probabil-

ities. Finally, the last model is Model-3’-MD-P minimizing makespan with deadline

constraint, waiting time, fairness and starting time weighed delay probabilities. The

objective function values’ pattern of Model-3’ is different from Model-3 and general

findings are as follows.

• In all Model-3’ models, starting time weighed delay probabilities dominate the

objective function values. In addition, as the number of operations increases,

objective function values also increase due to increasing makespan (if it is Model-

3’-M) and starting time weighed delay probabilities.

• To compare objective function values of the cases with predicted operation du-

rations and actual operation durations, deviation formulated in (26) is used for

each day. Then, average deviations are computed. Results show that deviations

are very small on the average. For example, Model-3’-O-A’s objective func-

tion values are 0.18 % more than Model-3’-O-P’s and Model-3’-T-A’s objective

function values are 11.73 % more than Model-3’-T-P’s. In addition, Model-3’-

MD-A’s objective function values are 0.03 % more than Model-3’-M-P. Finally,

objective function values of Model-3’-M-P is 0.09 % more than Model-3’-M-A’s.

• Starting time weighed delay probabilities do not vary the objective function
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values a lot because sequences of operation are the same for the models with

actual operation durations and with predicted operation durations. We also

calculate Hospital X’s objective function values and Model-4’ has the same

constraints as in Model-3’ and we use actual assignment ORs in Model-4’. In

order to analyze two models, we again calculate deviation (Formula 26).

• Appendix F shows deviation of Model-4’ and Model-3’. In both models, Model-

3’ performs better than Model-4’ and their deviation values are nearly the same

due to minimized unfairness and starting time weighed delay probabilities.

We also compute Model-4’-O-A, Model-4’-M-A, Model-4’-T-A and Model-4’-MD-A

with Hospital X’s current schedule and by utilizing actual operation durations.

• Except the case of tardiness, models with predicted operation durations perform

better models with actual operation durations. Objective function values of

Model-4’-T-A are 7.28 % larger than Model-4’-T-P’s. Model-4’-O-P’s objective

function values are 1.86 % smaller than Model-4’-O-A’s. Objective function

values of Model-4’-M-P and Model-4’-MD-P are 2.06 % smaller than the cases

with actual operation durations.

• When the number of operations increases, computation times generally increase.

Figure 22 illustrates Model-3’-O-P’s computation time. Remaining models’

computation times are depicted in Appendix E.

In Model-5, calculation of fairness is done by a range model by which the difference

between the minimum and the maximum fairness values is minimized. Furthermore,

in Model-5’, starting time weighted delay probabilities are used in combination with

range model to minimize unfairness. However, range model makes the problem harder

and its computation times take hours to reach near optimal solution. Hence, we

generate heuristic models: Model-7 and Model-7’.
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Figure 22: Computation times of Model-3’-O-P.

Sequences of Model-3’s solution are used as given at Model-7, and then the range

model approach is used. Similar to Model-7, we compute optimal sequences of Model-

3’ and use them at Model-7’. Then, we again use range model approach for fairness.

However, this heuristic does not perform well generally. In other words, solutions

of Model-3 and Model-3’ are not good approximations as deviations are very large

between the Model-5 and Model-7 (similarly, Model-5’ and Model-7’) for the cases

which we can optimize the range model approach. Lastly, computation times of

Model-7 are much shorter than Model-5.

Our next aim is to find how the deterministic models perform under uncertainty.

To determine the performance of deterministic models (including the ones with delay

probabilities) we generate random instances based on the real data of Hospital X. Each

random instance is a scenario that consists of randomly generated operation durations

based on two different distributions: lognormal and exponential distributions. Based

on the mean and standard deviations of predicted operation durations computed

from the real data, we generate 50, 250, 500, 2000, and 5000 scenarios. k refers to

the number of scenarios generated by Matlab in Table 34. Sequences of operations

computed via Model-3-O-P are used and given these sequences for each day, generated
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Total # of operations
k 10 11 12 13 14 15 16 17
50 142 271 309 440 612 926 889 1290
250 149 263 310 427 610 930 872 1348
500 143 271 313 437 607 922 873 1356
2000 93 199 262 372 441 751 768 1026
5000 92 107 261 369 437 722 767 1019

Table 34: Lognormal distribution’s median deviation for varying k, # of scenarios.

scenarios objective functions are computed. Then, deviation is calculated as follows.

(
Random Solution-Deterministic Solution

Deterministic Solution
) ∗ 100 (27)

where Deterministic Solution refers to the objective function value optimized by using

Model-3-O-P.

• Figures 23- 27 represent deviations when operation durations have lognormal

distribution for k=50 - 5000, respectively. As k increases, deviation is expected

to decrease, however, even if the deviations converge, there is not any obvious

decreasing pattern represented in Figures 23- 27. Median deviation values over

all scenarios are summarized in Table 34.

• We also calculate exponential cases as seen in Figure 28, Figure 29 and Fig-

ure 30. Deviation shows that lognormal distribution gives better solution than

exponential distribution and we stop calculation of exponential cases not to find

converge values (Table 35).

We repeat the same random scenario analysis when operation durations are dis-

tributed exponentially and Table 35 represents the median deviations with respect to

varying number of scenarios.

• For both lognormal and exponential distributions, when the number of opera-

tions increases each day, deviation median also increases.
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Figure 23: Deviation under k =50 random scenarios with lognormally distributed
operation durations.

Figure 24: Deviation under k =250 random scenarios with lognormally distributed
operation durations.

• Random operation durations perform worse than deterministic operation dura-

tions because of waiting time and unfairness. Scenarios include overestimated

durations dominating these huge deviations since patients start to wait at sev-

eral scenarios. Delay probabilities do not change as same sequences are used.

Unfortunately, we can conclude that Hospital Administration should promote

its surgeons to estimate their operation durations well, hence, randomly gener-

ated operation durations may not cause such huge deviations.
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Figure 25: Deviation under k =500 random scenarios with lognormally distributed
operation durations.

Figure 26: Deviation under k =2000 random scenarios with lognormally distributed
operation durations.

4.4.2 Sorting Heuristic

Hospital Administration may not prefer buying an optimization tool. Therefore,

all solutions proposed by optimizing mathematical models may not be realistic. To

prevent manual scheduling, we aim to improve current schedule by a simple heuris-

tic based on sorting. We find that our simple heuristic, sorting heuristic, performs

better than Hospital X’s and our random cases’ objective function values. For exam-

ple, we analyze 10 different examples for sorting heuristic as seen in Table 31. First
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Figure 27: Deviation under k =5000 random scenarios with lognormally distributed
operation durations.

Total # of operations
k 10 11 12 13 14 15 16 17
50 280 499 559 853 1142 1609 1618 2166
250 272 455 578 857 1116 1590 1608 2235
500 280 453 575 848 1126 1579 1676 2234

Table 35: Exponential distribution’s median deviation for varying k, # of scenarios.

Figure 28: Deviation under k =50 random scenarios with exponentially distributed
operation durations.

example shows that Hospital X’s objective function value (Model-4-O-P) is 372.14,

mathematical model’s optimal objective function value (Model-3-O-P) is 225.98 and

sorting heuristic’s solution is 261.25. Example 1 shows that simple heuristic approach
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Figure 29: Deviation under k =250 random scenarios with exponentially distributed
operation durations.

Figure 30: Deviation under k =500 random scenarios with exponentially distributed
operation durations.

performs better than Model-4-O-P and worse than Model-3-O-P. Percentage of de-

viation between simple heuristic and deterministic model is 15.61 which may be a

tolerable percentage by Hospital X.

Examples 2 and 4: deviation between sorting heuristic and Model-3-O-P is zero. In

other words, sorting heuristic also finds the optimal solutions for these two examples.

Moreover, deviation of example 5 is 8.89 %. Hospital’s objective function value is

965.0 and this is approximately five times of sorting heuristic’s objective function
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value. Although example 6 gives a very large deviation, 248.39 %, hospital’s objective

function value is 873, whereas, sorting heuristic’s objective function value is 299.6. In

general, Hospital X faces unfairness and delay in operation durations, hence, sorting

heuristics seem to perform well compared to Hospital’s actual schedule.

Figure 31: Examples of sorting heuristic method for Model-3-O-P.

Figure 32: Examples of sorting heuristic method for Model-3-M-P.
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Figure 33: Examples of sorting heuristic method for Model-3-T-P.

Figure 34: Examples of sorting heuristic method for Model-3-MD-P.

4.5 Conclusion

We study a real life operating room scheduling problem. First, we propose de-

terministic mathematical models formulating the assignment and scheduling prob-

lem. Then, inevitable uncertainty is incorporated to the deterministic models by

two heuristics using delay probabilities. Next, Hospital X may not prefer buying an

optimization tool, hence, a simple heuristic based on sorting is developed. All meth-

ods’ performances are measured given predicted and actual operation durations. In
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addition, optimized schedules are evaluated under random operation durations.

As a future work, different objective functions can be studied and various heuristics

can be proposed. In addition, uncertainty of the data should be carefully analyzed

as the operation durations are mostly overestimated.
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CHAPTER V

CONCLUSION

In this thesis, we study a real life operating room scheduling problem of Hospital

X that is a leading, private Turkish hospital. We first determine empirical analysis

of data. Then, we propose first deterministic models and then stochastic models to

solve the scheduling problem.

There are 7 unique ORs, 141 beds and 54 intensive care units. 7754 operations

belonging to 9 departments are analyzed. While considering data of hospital, we

find that Hospital X faces two main problems: delay probabilities and unfairness

between ORs usage. If an operation finishes after its predicted finishing time, a delay

occurs. The main reason of delays is that pre-operation preparation is not finished as

estimated. Other reasons are as follows: (i) previous operation’s duration is longer

than the estimated duration, (ii) surgeon or patient arrives late. We aim to include

delays caused by processing durations in the mathematical models by two heuristics.

Average delay time is 25.14 minutes and 53 % of pediatric operations are delayed

and generally pediatric operations are scheduled consecutively. The hospital admin-

istration should be careful while scheduling operations with high delay probabilities

consecutively. Although some OR’s utilization is high, some of them are so low. For

example, OR 4 generally is not used and operations are scheduled consecutively ig-

noring the possible delays. Moreover, Hospital X overestimates the solutions by using

predicted operation durations. According to this information, we have studied Hos-

pital X’s assignment and scheduling problems to achieve Hospital X’s aim such as:

avoiding waiting time and satisfying fairness of OR utilization. We use mathematical

models and according to Hospital X’s goals, we generate other objective functions.
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We first assume that all data are known in advance for the deterministic setting. The

second aim is to solve Hospital X’s delay probabilities, then; we build models via

incorporating delay probabilities by heuristics. Then we compare these models’ per-

formance with what has actually happened and with what may happen. We finally

propose a simple heuristic to use optimization and analyze its performance without

using modeling approach.

As mentioned before, we build mathematical models ignoring uncertainty. Model-

1 optimizes waiting time, fairness and either overtime, or makespan, or tardiness,

or makespan with deadline constraint. For Model-1, we find the optimum solution

and sequences of operations, then, we use these sequences to find performance of our

models with actual operation durations. Except tardiness cases, deviation of actual

and predicted operation durations’ solutions are very close to each other. To find

Hospital X’s objective values, we propose Model-2. In both cases, Model-1 performs

better than Model-2 because of smaller unfairness values.

Model-1 does not consider uncertainty prevalent in operations. To analyze such

uncertainty, two different heuristics are proposed. The first is Model-3 to consider

delay probabilities through linear summations and the second is Model-5 considering

delay probabilities by starting time weighted probabilities through linear summations.

Model-3 minimizes waiting time of patient, unfairness, and delay probabilities and

either overtime, or makespan, or tardiness, or makespan with deadline with each

operation finished before its deadline. We find performance of Model-3 with actual

operation duration and except tardiness model, deviation is very low. It means that

our model performs well with actual operation durations. Model-4 computes Hospital

X’s objective function values and Model-3 performs better than Model-4 for both

models because Model-3 faces less unfairness and incorporates delay probabilities.

Moreover, Model-3’ minimizes waiting time, unfairness and starting time weighed

delay probabilities with either overtime, or makespan, or tardiness, or makespan with
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deadline. We also analyze actual operation duration in the deterministic models

and we find that objective function values computed by using actual and predicted

operations’ durations are very close to each other except tardiness models. Model-4’

also computes Hospital X’s objective function values and Model-3’ performs better

than Model-4’ because of less unfairness and incorporating delay probabilities.

When we decrease the number of ORs to 6 from 7, objective function values

decrease due to decreasing unfairness. In addition, Model-5, 5’,7 and 7’ schedule op-

erations computed via using mathematical models which compute fairness differently:

In Model-5 and 5’, a range model is adapted, whereas, in Model-3 and 3’, overuti-

lization of each OR is summed. Unfortunately, Model-5 and 5’ cannot find optimum

solution and it takes hours to reach near optimal solution. That’s why, we generate

other methods: Model-7 and 7’ find schedule by getting sequences of Model-3 and 3’,

and we calculate range model for overutilization values. This method is not success-

ful because deviation of Model-7 and Model-5 is quite high but completion time of

Model-7 is smaller than Model-5.

We analyze the performance of deterministic models with respect to random sce-

narios. Firstly, we analyze predicted operation duration distributions and we generate

random operation durations with lognormal and exponential distributions. According

to actual operation types for each day, we first generate operations and corresponding

random operation durations. For each day, 50, 250 and 500 scenarios are generated.

We use Model-3-O-P’s sequences and utilize randomly generated operation durations

to find the objective function values of scenarios. Finally, we compare deterministic

model’s objective function with the random scenarios’ objective function value. We

find that, lognormal distribution gives lower deviations but convergence with respect

to increasing number of scenarios cannot be observed. However, the deviations be-

tween the deterministic schedule and deterministic schedule with random operation

durations keep decreasing with increasing number of scenarios. We also increase the
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number of scenarios to 2000 and then to 5000. When the number of operations in-

creases, median of deviation also increases. Random model performs worse than the

deterministic models because of higher unfairness and waiting time values.

Deterministic models perform poorly under random scenarios. Hence, necessity of

a simple heuristic becomes more important in addition to the case in which Hospital X

may not plan to buy an optimization tool. This simple heuristic relies on sorting and

we do not utilize any optimization tool. We find that our sorting heuristic performs

better than Hospital X’s objective function values under random scenarios but it

performs worse than our deterministic models.

As mentioned before, we also solve weekly schedule but computing the optimal

solution requires longer computation times than solving daily schedule. As a future

direction of our thesis, weekly schedule or a shorter time period schedule (such as, 2

or 3 days) may be studied. Furthermore, we can improve performance by including

uncertainty with another method: robust scheduling or chance constraints. While

creating uncertainty data set polyhedrally, we can cover a large percent of data points.

It has some advantages; the main ones are as follows. It is distribution free and

tractable. Disadvantage is that we are unable to evaluate expectations including

delay probabilities. We may also utilize chance constraints that are competitive tools

for solving optimization problems under uncertainty for delay probabilities.
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APPENDIX A

TIME INTERVALS

08:30-13:00 13:00-17:30 Total
Neuro 183 285 468
Pedia 445 50 495
Gen 633 381 1014
Gyn 1499 1056 2555
Card 47 3 50
ENT 840 251 1091
Orth 546 477 1023
Plas 235 272 507
Uro 200 351 551

Total 4581 3123 7754

Table 36: Percentage of scheduled operations for each department with respect to
time intervals.
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APPENDIX B

OR PREFERENCE

OR Id
Id 1 2 3 4 5 6 7 Total

Neuro 134 19 55 1 63 154 42 468
1 95 13 36 1 44 110 30 329
2 39 6 19 19 44 12 139

Pedia 41 72 119 3 54 78 128 495
3 41 72 119 3 54 78 128 495

Gen 65 93 103 6 79 544 124 1014
4 12 7 11 16 19 21 86
5 46 76 83 3 42 138 92 480
6 7 10 9 3 21 387 11 448

Gyn 163 380 558 9 315 327 803 2555
7 32 43 56 1 32 57 52 273
8 38 86 137 1 85 88 198 633
9 29 73 117 4 72 81 184 560
10 23 105 149 1 74 60 263 675
11 13 33 35 12 12 28 133
12 1 1
13 22 37 52 1 30 20 62 224
14 1 1 6 1 1 2 4 16
15 5 2 6 8 7 12 40

Card 48 2 50
16 21 21
17 26 26
18 1 2 3

ENT 40 219 331 5 138 129 229 1091
19 15 36 57 29 32 39 208
20 2 2
21 14 66 98 1 34 41 90 344
22 11 117 176 4 73 56 100 537

Orth 821 39 42 2 27 55 37 1023
23 147 11 11 8 10 9 196
24 426 17 20 1 14 34 19 531
25 248 11 11 1 5 11 9 296

Plas 37 48 75 2 46 97 202 507
26 3 16 25 11 24 27 106
27 34 32 50 2 35 73 175 401

Uro 62 58 120 1 81 90 139 551
28 36 36 73 1 68 58 87 359
29 1 2 1 2 6
30 25 22 45 13 31 50 186

Total 1363 928 1403 77 805 1474 1704 7754

Table 37: Operations distribution with respect to surgeons’ preferences*.

*Each number shows surgeons’ ids.
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APPENDIX C

DISTRIBUTION

AOD POD
# Distribution Kolmogorov Anderson Kolmogorov Anderson

Smirnov Darling Smirnov Darling
Rank Statistic Rank Statistic Rank Statistic Rank Statistic

1 Beta 0.14 3 23934.00 3 0.11 5 16734 6
2 Chi-Squared 0.43 8 928.53 8 0.41 10 958.13 10
3 Erlang 0.45 9 177.85 9 0.09 3 47187 3
4 Exponential 0.26 7 52181.00 6 0.32 9 68331 8
5 Gamma 0.16 5 21.93 4 0.09 1 45857 2
6 Lognormal 0.07 1 66167.00 1 0.11 4 6893 5
7 Normal 0.14 4 34254.00 5 0.11 6 55358 4
8 Triangular Nofit 0.09 2 41003 1
9 Uniform 0.20 6 86051.00 7 0.19 8 23128 7
10 Weibull 0.08 2 12301.00 2 0.15 7 80474 9

Table 38: Goodness of fit test results of AOD and POD of neurosurgery.
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APPENDIX D

OPERATION TYPES

Neurosurgery Operation Total # of AOD POD
Types Operations Max Min Average Max Min Average

1 248 876 0 123.48 510 30 181.45
2 72 310 53 149.94 510 50 201.67
3 64 1125 34 249.11 510 60 249.92
4 22 233 3 81.23 330 30 140.68
5 13 106 18 63.46 210 25 110.38

Others 49 1076 28 185.65 510 25 229.10
Total 468 1125 0 149.96 510 25 194.22

Table 39: Neurosurgery types.

Pediatric Operation Total # of AOD POD
Types Operations Max Min Average Max Min Average

1 311 101 4 26.32 300 10 62.50
2 34 108 7 46.88 270 50 98.97
3 22 341 10 78.50 270 30 107.05
4 19 125 47 87.63 270 25 130.00
5 18 145 28 53.00 150 60 102.22

Others 91 374 0 93.44 510 15 135.83
Total 495 374 0 43.20 510 10 82.94

Table 40: Pediatric operation types.

General Operation Total # of AOD POD
Types Operations Max Min Average Max Min Average

1 226 2749 33 96.97 330 35 102.61
2 111 123 3 38.31 270 25 70.09
3 84 193 57 122.00 510 30 132.20
4 79 108 26 66.96 360 25 80.25
5 63 151 15 51.37 140 25 72.06

Others 451 2540 0 105.14 510 10 120.04
Total 1014 2749 0 86.06 510 10 99.37

Table 41: General operation types.

Gynecology Operation Total # of AOD POD
Types Operations Max Min Average Max Min Average

1 1887 968 0 55.97 250 15 69.27
2 258 921 5 68.34 300 20 96.98
3 116 1007 4 125.29 270 45 137.49
4 60 217 24 121.45 240 85 143.92
5 58 173 45 94.66 270 60 125.07

Others 176 437 9 96.51 270 20 116.18
Total 2555 1007 0 64.89 300 15 80.91

Table 42: Gynecology operation types.
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Cardiology Operation Total # of AOD POD
Types Operations Max Min Average Max Min Average

1 21 299 69 215.95 270 135 230.71
2 9 91 35 60.67 150 60 100.00
3 5 114 21 66.00 120 60 102.00
4 3 228 55 136.33 240 30 116.67
5 2 175 159 167.00 135 120 127.50

Others 10 223 48 112.86 210 60 128.57
Total 50 299 21 145.46 270 30 163.00

Table 43: Cardiology operation types.

Ear-nose-throat Operation Total # of AOD POD
Types Operations Max Min Average Max Min Average

1 431 329 26 93.21 390 30 135.30
2 227 144 23 65.07 240 40 112.69
3 128 87 26 54.67 240 30 107.15
4 55 288 15 96.09 270 60 139.18
5 41 257 49 98.98 240 60 141.46

Others 209 1109 7 89.02 1109 7 89.02
Total 1091 1109 7 83.19 390 23 124.76

Table 44: Ear-nose-throat operation types.

Orthopedic Operation Total # of AOD POD
Types Operation Max Min Average Max Min Average

1 203 239 6 65.82 330 20 103.00
2 133 1138 9 127.75 270 25 109.40
3 131 233 24 121.50 315 30 129.81
4 84 440 18 100.75 240 40 116.67
5 68 355 18 135.62 300 80 155.15

Others 404 1045 4 108.20 450 10 122.81
Total 1023 1138 4 103.31 450 10 116.25

Table 45: Orthopedic operation types.

Plastic Operation Total # of AOD POD
Types Operation Max Min Average Max Min Average

1 55 398 23 86.95 390 15 118.82
2 47 188 27 75.21 240 45 113.72
3 27 1118 30 144.67 390 30 137.41
4 25 134 18 58.20 330 30 121.20
5 22 345 40 113.77 390 60 144.77

Others 331 1068 9 144.93 510 25 167.08
Total 507 1118 9 112.81 510 15 144.46

Table 46: Plastic operation types.

Urology Operation Total # of AOD POD
Types Operation Max Min Average Max Min Average

1 130 1026 8 63.33 390 20 83.65
2 89 214 7 88.93 270 30 119.78
3 71 139 11 70.24 180 30 91.04
4 55 113 11 57.09 210 30 97.00
5 36 126 5 41.67 180 30 87.92

Others 170 976 7 124.05 490 15 125.28
Total 551 1026 5 76.46 490 15 101.65

Table 47: Urology operation types.
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APPENDIX E

COMPUTATION TIMES

Figure 35: Computation times of Model 1-O-P.

Figure 36: Computation times of Model 1-M-P.
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Figure 37: Computation times of Model 1-T-P.

Figure 38: Computation times of Model 1-MD-P.

Figure 39: Computation times of Model-3-O-P.
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Figure 40: Computation times of Model-3-M-P.

Figure 41: Computation times of Model-3-T-P.

Figure 42: Computation times of Model-3-MD-P.
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Figure 43: Computation times of Model-3’-O-P.

Figure 44: Computation times of Model-3’-M-P.

Figure 45: Computation times of Model-3’-T-P.
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Figure 46: Computation times of Model-3’-MD-P.

Figure 47: Computation times of Model-7-O-P.

Figure 48: Computation times of Model-7-M-P.
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Figure 49: Computation times of Model-7-T-P.

Figure 50: Computation times of Model-7-MD-P.

Figure 51: Computation times of Model-7’-O-P.
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Figure 52: Computation times of Model-7’-M-P.

Figure 53: Computation times of Model-7’-T-P.

Figure 54: Computation times of Model-7’-MD-P.
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APPENDIX F

COMPARISON OF MODEL-4’ AND MODEL-3’

To compare objective function values of predicted and actual model, deviation is

found :

(
Actual Solution-Predicted Solution

Predicted Solution
) ∗ 100 (28)

Where Actual solution comes from Model-4’ and predicted solution comes from

Model-3’.

Figure 55: Deviation of Model-4’-O-P and Model-3’-O-P.
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Figure 56: Deviation of Model-4’-M-P and Model-3’-M-P.

Figure 57: Deviation of Model-4’-T-P and Model-3’-T-P.
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Figure 58: Deviation of Model-4’-MD-P and Model-3’-MD-P.
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