
REPRODUCING FIELD FAILURES BASED ON
SEMI-FORMAL FAILURE SCENARIO DESCRIPTIONS

A Thesis

by

Gün Karagöz

Submitted to the
Graduate School of Sciences and Engineering
In Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in the
Department of Electrical and Electronics Engineering

Özyeğin University
June 2015

Copyright c© 2015 by Gün Karagöz



REPRODUCING FIELD FAILURES BASED ON
SEMI-FORMAL FAILURE SCENARIO DESCRIPTIONS

Approved by:

Assist. Prof. Dr. Hasan Sözer
Department of Computer Science
Özyeğin University

Assoc. Prof. Dr. Çağatay Çatal
Department of Computer Engineering
İstanbul Kültür University

Assist. Prof. Dr. Barış Aktemur
Department of Computer Science
Özyeğin University

Date Approved: 27 May 2015



To my dear parents Ziynet and Onur Karagöz for their material aid

and spiritual support, and to my dear wife Şerife for her endless

love, support and encouragement...

iii



ABSTRACT

Due to the increasing size and complexity of software systems, it becomes hard to

test these systems exhaustively. As a result, some faults can be left undetected.

Undetected faults can lead to failures in deployed systems. Such failures are usu-

ally reported from the field back to developers. It requires considerable time and

effort to analyze and reproduce the reported failures because their descriptions are

not always complete, structured and formal. In this study, a novel approach for

automatically reproducing field failures to aid their debugging is introduced. The

approach relies on semi-structured failure scenario descriptions that employ a set

of keywords. These descriptions are pre-processed and mapped to a set of prede-

fined test case templates with valid input sets. Then, test cases are generated and

executed to reproduce the reported failure scenarios. The approach is evaluated

with an industrial case study performed in a company from telecommunications

domain. Many field failures were successfully reproduced. The approach is also

adopted in the quality assurance process of the company. After one-time prepa-

ration of reusable test case templates and training of test engineers, 40% of the

reported failures were reproduced without any manual effort.

iv



ÖZETÇE

Yazılım sistemlerinin artan hacmi ve karmaşıklığı nedeniyle bu sistemleri her

ayrıntısına kadar test etmek zorlaşmaktadır. Sonuç olarak, bazı hatalar tespit

edilemeden kalabilir. Tespit edilmemiş hatalar canlı sistemlerde güvenilirliğe tehdit

oluşturabilir. Bu hatalar genellikle sahadan yazılım geliştiricilere raporlanır. Ra-

porlamalar her zaman tam, açık ve biçimsel olmadığı için hatalı kullanım senar-

yolarını analiz edip yeniden üretmek hatrı sayılır bir zaman ve emek gerektirir.

Bu çalışmada, hata ayıklamaya yardımcı olmak amacıyla sahadan bildirilen hatalı

senaryoları otomatik olarak yeniden meydana getirmek için özgün bir yaklaşım

sunulmaktadır. Yaklaşımımız, anahtar kelime kümesi içeren yarı-yapısal hata

senaryolarına dayanmaktadır. Bu açıklamalar otomatik olarak çözümlenerek, geçerli

girdi kümeleriyle önceden tanımlanmış test senaryosu şablonlarına eşlenir. Son-

rasında, raporlanan hata senaryolarını yeniden üretmek için test senaryoları üretilir

ve işletilir. Bu yaklaşım telekomünikasyon sektöründen bir şirkette yapılan bir

sanayi vaka çalışması ile değerlendirildi. Sahadan raporlanan birçok hatalı senaryo

başarıyla yeniden üretildi. Yaklaşım aynı zamanda şirketin kalite güvence sürecinde

benimsenmiştir. Tekrar kullanılabilir test senaryosu şablonlarının bir kerelik hazır-

lanmasının ve test mühendislerinin eğitimlerinin ardından, raporlanan hataların

%40’ı manüel çaba gerektirmeksizin yeniden üretilmiştir.

v



ACKNOWLEDGMENTS

This work is partially supported by P.I.Works. We would like to thank software

developers and software test engineers at P.I.Works for sharing their code base

with us and supporting our case study.

vi



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ÖZETÇE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

III RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

IV PROBLEM STATEMENT . . . . . . . . . . . . . . . . . . . . . . . 10

V APPROACH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.1 Preparing Scenario Templates . . . . . . . . . . . . . . . . . . . . 16

5.2 Parsing Ticketing System Issues . . . . . . . . . . . . . . . . . . . 19

5.3 Generating Test Cases from Parsed Issues . . . . . . . . . . . . . . 20

5.4 Executing Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . 21

VI INDUSTRIAL CASE STUDY: NETWORK PERFORMANCE
MONITORING SYSTEM . . . . . . . . . . . . . . . . . . . . . . . 23

VII DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

VIII CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . 28

APPENDIX A — ILLUSTRATION . . . . . . . . . . . . . . . . . . 29

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vii



LIST OF TABLES

1 Sample Selenium commands and descriptions. . . . . . . . . . . . . 5

2 A list of sample Gherkin format conversions for the given issue
descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 The number of issue reports that are analyzed by clarity of step
definition before and after the training session. . . . . . . . . . . . . 23

4 The number and ratio of issue reports with defined steps that can
be used for automated failure reproduction before and after the
training session. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 The number of unusable issues per cause of unusability. . . . . . . . 26

viii



LIST OF FIGURES

1 Report user interface of the P.I.Web system. . . . . . . . . . . . . . 11

2 UML use case model for the P.I.Web system. . . . . . . . . . . . . . 12

3 Current failure reporting/fixing cycle. . . . . . . . . . . . . . . . . . 13

4 The overall approach for failure reporting/fixing cycle. . . . . . . . 15

5 Executing test cases with PIATT. . . . . . . . . . . . . . . . . . . . 22

6 Sample output of PIATT. . . . . . . . . . . . . . . . . . . . . . . . 22

7 Issue compatibility trend for auto-reproducibility. . . . . . . . . . . 24

8 Issue creation on the ticketing system. . . . . . . . . . . . . . . . . 29

9 Issue conversion to the Gherkin format. . . . . . . . . . . . . . . . . 30

10 Addition of an issue as a test case to be executed by the test au-
tomation tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

11 Report results for the given report. . . . . . . . . . . . . . . . . . . 32

12 Export screen with fail message. . . . . . . . . . . . . . . . . . . . . 33

13 Test results report the failure regarding the reproduced issue. . . . . 34

14 Export screen without fail message. . . . . . . . . . . . . . . . . . . 35

15 Test results report after the issue is fixed. . . . . . . . . . . . . . . . 36

ix



CHAPTER I

INTRODUCTION

The increasing size and complexity of software systems make it hard to prevent or

remove all possible faults. It is not feasible to test these systems exhaustively due

to lack of resources. As a result, they may be delivered and deployed together with

a set of undetected faults. These faults lead to errors and eventually to failures

that are exposed to the users of the system [1]. After observing a failure, users

usually report an issue that describes the observed failure scenario. In practice,

many of such issues are collected from the field. They are analyzed by software

developers to reproduce the corresponding failures and find the root causes, i.e.,

faults. This debugging process often requires significant time and effort because

reports are usually not complete, structured and formal.

There exist capture-replay tools [2, 3, 4, 5, 6] that can be used for replaying

execution scenarios as observed by users. However, these tools are hardly utilized

in practice due to their performance overhead and their burden on the users for

controlling the tool. One can automatically generate test cases if the issue reports

are formal and complete. However, users of the system usually lack the necessary

skills and/or they are reluctant to use a formal notation as concluded in a recent

survey [7].

In this thesis, we propose an approach that relies on semi-formal scenario de-

scriptions of field failures to aid their debugging. These descriptions follow a

structure and employ a set of predefined keywords. We developed a tool set that

can analyze such descriptions and pre-process them to remove minor mistakes such

as typos. After the pre-processing step, they are transformed into formal descrip-

tions. These descriptions are mapped to test case templates. These templates

are predefined in the form of a library. They are defined and organized according

1



to the system use cases and they include valid test inputs necessary to execute a

scenario. If a description can be mapped to a template, concrete test cases are

generated and executed to reproduce the reported failure scenarios.

The approach is evaluated in the context of an industrial case study from

telecommunications domain. Users of a real system were instructed on the use

of semi-formal scenario descriptions to report issues. Then, we collected all the

reports for the system, including the previously created ones that do not follow any

structure at all. 60% of the reports could not be utilized due to lack of adherence

to the expected structure or because, they could not be mapped to a test case

template. However, a total of 160 reports were successfully processed and mapped.

As a result, 160 test cases were automatically generated and executed. As such,

the corresponding failures were successfully reproduced without any manual effort.

The main contributions of this study are twofold. First, we introduce an ap-

proach for automatically generating test cases based on semi-formal failure sce-

nario descriptions collected from the field to reproduce failure scenarios as observed

and reported by users. Second, we evaluate the approach and present promising

results based on an industrial case study. Our approach can significantly reduce

the time and effort required for analyzing reports and debugging reported failures.

In addition, a set of reusable test cases are automatically created without manual

effort. This is a complementary approach to manual test case creation based on

functional requirement specifications and model-based test case generation [8, 9].

The remainder of this paper is organized as follows. In the following chapter,

we introduce tools, techniques and languages that are employed in our approach.

In Chapter 3 we summarize the related studies. In Chapter 4, we present the prob-

lem context and an industrial case study from the telecommunications domain.

This case study is used as a running example, while we explain our approach in

Chapter 5. We present the results of the case study in Chapter 6. We discuss the

results and limitations of the approach in Chapter 7. Finally, in Chapter 8, we

conclude the paper and discuss possible extensions of our work.

2



CHAPTER II

BACKGROUND

In this chapter, we introduce the background knowledge regarding a set of tools,

techniques and languages, which are employed in our approach.

There is an inherent communication gap between developers and users as well

as Quality Assurance (QA) teams and business stakeholders. This gap can be

shortened by means of domain-specific languages (DSLs); however, some users can

be reluctant to describe the expected or error-prone system behavior with a DSL.

Therefore, we employ a simpler structure for issue descriptions. This structure is

based on the Gherkin format [10]. We introduce a pre-processing tool that can

parse issues and convert them into Gherkin format, while handling mistakes such

as typos.

Gherkin is a scripting language for specifying system usage behavior. Hereby,

each feature of the system is defined by means of examples, namely scenarios, and

every scenario comprises a list of steps, which must start with one of the keywords

Given, When, Then, But or And. As such, it employs a keyword-driven approach

[11]. A sample feature description is provided in Listing 2.1.

Gherkin format has been mainly employed to define test cases in Behavior-

driven development (BDD), which evolved from Test-driven development (TDD).

It is originally used for describing usage scenarios to specify features in a way that

stakeholder communication and test automation is increased [12]. In our approach,

Listing 2.1: A sample issue description in Gherkin format

1 Feature: Exporting Report

2 Scenario: Exporting in PDF format

3 Given I run report ’MyReport ’

4 When I export in PDF format

5 Then Report in PDF format should be downloaded

3



we utilize Gherkin format to describe failure scenarios in addition to feature de-

scriptions. This enables automated generation and execution of test cases that

reproduce failures. To derive executable test cases from scenario descriptions,

every step of the scenario should be mapped to an executable test step.

Listing 2.2: Sample step definitions based on the scenario steps involved in the
issue description presented in Listing 2.1

1 using System;
2 using TechTalk.SpecFlow;

4 namespace PIWeb_UAT
5 {
6 [Binding]
7 public class ExportingReportSteps
8 {
9 [Given(@"I run report ’(.*) ’")]

10 public void GivenIRunReport(string p0)
11 {
12 ScenarioContext.Current.Pending ();
13 }

15 [When(@"I export in PDF format ")]
16 public void WhenIExportInPDFFormat ()
17 {
18 ScenarioContext.Current.Pending ();
19 }

21 [Then(@"Report in PDF format should be downloaded ")]
22 public void ThenReportInPDFFormatShouldBeDownloaded ()
23 {
24 ScenarioContext.Current.Pending ();
25 }
26 }
27 }

We utilized the SpecFlow framework1 for parsing descriptions in Gherkin for-

mat and creating test steps associated with the scenario steps. Listing 2.2 shows a

set of sample step definitions that are generated by SpecFlow based on the descrip-

tion presented in Listing 2.1. For instance, the method named GivenIRunReport

at Line 10 in Listing 2.2 is associated with the scenario step defined at Line 3 in

Listing 2.1. Hereby, the name of the report is defined as an argument (parameter)

for the method.

1http://www.specflow.org/

4



Table 1: Sample Selenium commands and descriptions.

Definition Command Argument(s)
Selenium control command for
wait operation

setTimeout duration (miliseconds)

Browser operation for
opening a link

open url

Browser operation for
locating a UI element

findElement locator3

Keyboard operation for
typing a text

type locator, text

Mouse operation for
clicking on a UI element

click locator

Mouse operation for checking
a radio button or checkbox

check locator

Verification operation for
checking element availability

verifyElementPresent locator

SpecFlow is an open source framework. It enables binding of usage scenarios to

executable test code [13]. However, the generated test code is rather a template,

which have to be instantiated with concrete test steps. For instance, we can see

three methods defined in Listing 2.2. The contents of these methods (at lines 12,

18 and 24) are yet to be defined. In our work, we focus on Web-based applications

and we have utilized the Selenium tool2 to define the necessary concrete test steps.

Selenium is a software testing framework for web browser automation. It allows

to record and replay browser actions to simulate user behavior on the graphical

user interface (GUI). It also provides a library that includes methods associated

with possible user actions through the GUI. Sample Selenium commands and

descriptions are shown in Table 1.

2http://www.seleniumhq.org
3Selenium keyword to find and match the UI elements on page to interact with. UI elements

can be located using Id, Name, Link, DOM, XPath, or CSS.

5



We used a Mozilla Firefox Plugin of the Selenium tool to capture GUI elements

for collecting possible user actions such as clicking on a button and typing in a

field. Then, step definitions are populated with the corresponding method calls

provided by Selenium. Listing 2.3 shows the resulting step definitions in terms of

method calls, whereas Listing 2.4 shows the implementation of these methods by

using the Selenium API.

Listing 2.3: Step definitions implemented as method calls
1 using System;
2 using TechTalk.SpecFlow;

4 namespace PIWeb_UAT
5 {
6 [Binding]
7 public class ExportingReportSteps
8 {
9 [Given(@"I run report ’(.*) ’")]

10 public void GivenIRunReport(string p0)
11 {
12 selenium.runReport(p0);
13 }

15 [When(@"I export in PDF format ")]
16 public void WhenIExportInPDFFormat ()
17 {
18 selenium.exportReportInPdf ();
19 }

21 [Then(@"Report in PDF format should be downloaded ")]
22 public void ThenReportInPDFFormatShouldBeDownloaded ()
23 {
24 selenium.assertPdfFileDownloaded ();
25 }
26 }
27 }

Our approach relies on a chain of tools to reproduce field failures. These tools

include a parser to process issue reports, and two external tools, SpecFlow and

Selenium, to generate and execute test cases, respectively. The usage of these

tools will be explained in more detail as part of the approach description. First,

in the following chapter, we introduce a case study that will be used as a running

example.

6



Listing 2.4: Method implementations for scenario steps using the Selenium API
1 public class selenium
2 {

...

3 public IWebElement TextBox_searchReport ()
4 {
5 return driver.findElement(By.Id(" SearchReport "));
6 }

8 public IWebElement Button_runReport ()
9 {

10 return driver.findElement(By.Id(" RunButton "));
11 }

...

13 public void runReport(string reportName)
14 {
15 seleniumwd.open("http :// localhost/PIWeb ");
16 seleniumwd.waitForElement(TextBox_searchReport);
17 seleniumwd.type(TextBox_searchReport ,reportName);
18 seleniumwd.click(Link_SearchResult);
19 seleniumwd.waitForElement(Button_runReport);
20 seleniumwd.click(Button_runReport);
21 }

23 public void exportReportInPdf ()
24 {
25 seleniumwd.click(Button_exportInReport);
26 seleniumwd.check(Check_pdfRadio);
27 seleniumwd.click(Button_exportInExportWindow);
28 seleniumwd.click(Button_downloadExport);
29 }

31 public void assertPdfFileDownloaded ()
32 {
33 report(isFileDownloaded(downloadPath , fileName));
34 }

36 }

7



CHAPTER III

RELATED WORK

Previously, the use of NLP techniques were discussed [14] for deriving formal de-

scriptions from informal issue reports. In that study, it is assumed that the reports

are defined purely with a natural language, without following any structure. Ad-

vanced NLP techniques are applied to obtain formal descriptions based on such

specifications. We observed that this approach is not practical for our case. It was

not feasible to obtain formal specifications from completely unstructured, informal

specifications. Therefore, we relied on semi-formal descriptions instead.

Keyword-driven test automation systems are studied [15] to improve efficiency

and re-usability of test case management. There also exist open source tools

like Fitnesse1 and the Robot Framework2 that support keyword-driven testing

methodology. We also employed a keyword-driven technique by taking advantage

of the parametrized input capability of the Gherkin Language. Nevertheless, we

have populated our test inputs based on user inputs and model test cases based

on failure scenarios, contrary to the modeling approach adopted in other keyword-

driven approaches [16] [17].

Automated generation of test cases from UML models was proposed in [9].

UML diagrams that represent use cases together with an object constraint lan-

guage dictionary are employed to create test cases. In our case, such an approach

is not applicable since issue reports are provided in a textual format. System users

do not have knowledge on the required formalism and graphical notations.

A promising tool to reproduce fields failures for debugging was presented [18].

This tool performs analysis at the source code level to reproduce field failures

1http://www.fitnesse.org
2http://robotframework.org

8



by using complementary information such as memory dumps. Moreover, contin-

uing research [19] extends the work by genetic programming-based solution for

programs with structured inputs. In these works, we address the same problem;

however, we rely only on the available issue reports and we deal with addressing

problems on user level.

There exist test execution automation tools [20] that employ BDD and a set

of open source tools such as SpecFlow. However, test case generation is not in the

scope of these tools. In this work, we focus specifically on test case generation to

reproduce failures as described in issue reports.

To the best of our knowledge, the use of semi-formal issue reports to reproduce

field failures has not been investigated before. In this work, we integrated this

approach to the issue management process of a company and obtained promising

results based on real issue reports received from system users.

9



CHAPTER IV

PROBLEM STATEMENT

In this chapter, we present the problem context and an industrial case study that

will be used as a running example for both motivating the problem and illustrating

the approach later on.

Our case study is a Web-based system called P.I.Web that is developed and

being maintained by P.I.Works Inc.1. P.I.Works is a company in telecommunica-

tions industry which offers mobile network performance monitoring and optimiza-

tion solutions for telecommunications operators. We have selected P.I.Web as our

case study among three products of the company since there were reported issues

available for this system and the system was still under maintenance.

P.I.Web is a web-based product that allows users to create and execute reports

using a set of so-called Key Performance Indicators (KPI) in order to monitor

network performance. A sample report screen is shown in Figure 1. In this screen,

the header section contains menu items for creating, managing, searching reports

as well as user settings, help and log-out action buttons. The left sidebar is used

for network element selection to define the report scope. Report parameters such

as date range, KPI selection and report action buttons such as run, filter, edit

threshold, export, are displayed on top of the central frame.

1http://www.piworks.net

10



Figure 1: Report user interface of the P.I.Web system.

11



Fundamental use cases of PIWeb are depicted with a UML Use Case Model

in Figure 2. Users can generate performance reports with P.I.Web based on a lot

of options such as network element selection, date range, report resolution granu-

larity, grouping, KPI selection etc. In addition, users can extend the list of KPIs

with custom formulated KPIs. This leads to an open-ended, infinitely many vari-

ations in option selections that may be used in report generation. Besides, users

can engage with a set of use cases in sequence. All options and their permutations

can result in millions of possibilities since repeating actions in different orders may

also lead to different results.

Open Report

Create Report

User

Delete Report

<<extend>>

Export Report<<extend>>

Manage Reports

Open User 
Management

Open Cluster 
Management

Open Scheduled  
Reports

Open KPI Editor

Open Dashboard

Execute Report

<<extend>> <<extend>>

Edit Report

<<extend>>

Save Report

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<include>>

<<extend>>

Edit Dashboard Save Dashboard

<<extend>>

<<extend>>

Execute Dashboard Export Dashboard

<<include>>

<<extend>>

<<extend>><<extend>> <<extend>>

Figure 2: UML use case model for the P.I.Web system.

12



Therefore, it is not feasible to attain full coverage in functional testing by just

considering usage scenarios according to specifications. Moreover, other customer-

specific options can make it even more challenging to test the whole system. Hence,

it is inevitable to miss some of the faults, which are reported by system users later

on.

P.I.Works is using a ticketing system to track the reported failure reports.

These reports are verified and analyzed by the QA team to reproduce the reported

failures and add new test cases to the test suite that captures these failures.

Test Cases1

2

3

5

6
4

Issues QA
Dev

5

User

Figure 3: Current failure reporting/fixing cycle.

Figure 3 shows the current traditional cycle of a failure reporting and fixing

process. Both software test engineers and end users of the system2 provide failure

reports, i.e., issues, when they are exposed to failures. User reports the observed

failure, the followed steps together with additional information such as the soft-

ware version, build number, module name, database information, module specific

parameters. In some cases, user attaches screenshots or video captures to provide

more information (1). Issues are assigned to a developer to analyze and fix them.

After that, the developer needs to debug the problem to find the root cause of the

failure (2). To do so, the developer needs to open, read and analyze the assigned

issue in detail, check attachments, and reproduce the issue in the development

environment (3). After fixing the issue, the developer assigns the issue to the QA

team to verify the incorporated fix (4). QA team tries to reproduce the reported

issue with the latest build of the software system. If it is confirmed that the issue

is fixed, the issue is closed. Otherwise, the issue is reopened and assigned back

2We refer to both as users.

13



to the developer (5). If the fix is verified and the issue is closed, the QA team

enriches the test suite for the system by adding a new test case corresponding to

the fixed issue (6). The execution of this test suite is automated with an in-house

developed test automation tool.

Failure scenarios that are described in issues need to be carefully analyzed to be

able to reproduce failures, find the corresponding faults and fix them. Issue reports

need to be defined clearly, so that developers can understand and reproduce the

problem. Well-defined issue descriptions comprise all of the steps involved in the

error-prone usage scenario and the relevant configuration information. However,

issue descriptions provided by users in practice are mainly informal descriptions.

Thus, developers spend considerable time just to understand reported issues. This

manual and time-consuming debugging process requires significant effort and this

effort often exceeds the effort spent for fixing the problem. In the following section,

we introduce our approach to improve this process.

14



CHAPTER V

APPROACH

In this chapter, we bring in our approach in details. Figure 4 shows our proposed

approach. Users report issues using the ticketing system (1). Issues describe the

failure scenario and the system settings during the failure. Issues are grabbed by

Automated Test Case Generator and assigned to developers for analysis and bug

fix stage (2). BDD Parser extracts required information from the issue to create a

failure scenario description in Gherkin format while handling possible typos. Test

case generator creates a new test case using parameters and sequence of scenario

steps in the description by driving the corresponding methods in the library of

Scenario Templates. This library contains step definitions and executable test

steps for each user action (3). The generated test case is provided to the automated

test execution tool as part of the extended test suite.

Test Cases

1 2

3

7

4

5

Issues
QADev

7
Parsed 
Issue

Scenario 
Templates

BDD 
Parser

Test Case 
Generator

User

6

Figure 4: The overall approach for failure reporting/fixing cycle.

Responsible developer analyzes the issue and reproduces it via Automated Test

Tool in latest build of the software (4). The developer fixes the issue after finding

the root cause. The developer assigns the issue to the QA team for verification of

the fix (5). QA team reproduces the issue using Test Automation Tool on the build

15



released after the fix (6). QA process continues (7) according to the traditional

cycle as described in the previous chapter except manual update of test case list.

Since new test cases are added automatically by the tool, QA team is not required

to handle this process manually.

In the following sections, we explain each step of our approach in detail. We

also provide example artifacts from our case study. We can not provide these

artifacts completely due to confidentiality; however, we present representative

examples.

5.1 Preparing Scenario Templates

Scenario templates define possible user interactions via the GUI. Their creation

requires a one-time effort and they can be reused for generating multiple test

cases. Maintenance is not required as long as the functionality of the system and

the corresponding GUI components are not subject to major changes. Scenario

templates are organized according to the system use cases as presented in Figure 2.

To create a scenario template, we first define possible user actions for each use

case in Gherkin format. A sample use case description is shown in Listing 5.1.

Then, we use SpecFlow to generate test step definitions for each distinct action in

the form of separate methods. Finally, we populate these methods with relevant

method calls to Selenium Application Programming Interface (API) such that

each user action can be replayed with a concrete method. For instance, the created

scenario template corresponding to the use case definition in Listing 5.1 is shown in

Listing 5.2. Each method in this scenario template is a test step that corresponds

to a user action. The use of arguments/parameters and the arbitrary ordering of

these test steps make it possible to reuse the same template to instantiate many

different test cases.

When the template is completed, we can map different user actions to concrete

methods that replay the action via Selenium. For instance, Line 4, 16 and 28 in

16



Listing 5.1: A sample use case description for the Report Creation use case
1 Feature: Report Creation Template

3 Scenario: Report should be created successfully
4 Given Link ’http :// localhost/PIWEB/login.aspx ’
5 And Select KPI Category ’2G_CELL ’
6 And Add KPI ’CallDrop%’
7 And Click Apply
8 And Network Element ’BSC03 ’
9 And Dates ’19/01/14 00:00’, ’22/01/14 00:00 ’

10 And Grouping ’Datetime ’
11 When I click execute
12 Then Report should be executed succesfully
13 And ’CallDrop%’ should be displayed in grid header
14 And CloseBrowser

...

15 Scenario: Counter report should display counter alias
16 Given Link ’http :// localhost/PIWEB/login.aspx ’

...

19 And Add Counter ’CounterName ’

...

22 When I click ’Execute ’
23 Then Report grid should display ’CounterAlias ’
24 And CloseBrowser

...

27 Scenario: Report should be saved as copy
28 Given Link ’http :// localhost/PIWEB/login.aspx ’

...

31 And open report ’Report_Name ’

...

34 When I click ’Save As ’
35 Then Report title should be ’Report_Name Copy ’
36 And CloseBrowser

17



Listing 5.2: Sample template for Report Creation
1 using System;
2 using TechTalk.SpecFlow;

4 namespace PIWeb_AutoTest
5 {

7 [Binding]
8 public class ReportCreationTemplate
9 {

11 [Given(@"Link ’(.*) ’")]
12 public void GivenLink(string p0)
13 {
14 selenium.setUrl(p0);
15 }

...

18 [Given(@"Network Element ’(.*) ’")]
19 public void GivenNetworkElement(string p0 ,string p1)
20 {
21 selenium.setNetworkElement(p0,p1);
22 }

24 [Given(@"Dates ’(.*) ’, ’(.*) ’")]
25 public void GivenDates(string p0 ,string p1)
26 {
27 selenium.setDateTime(p0,p1);
28 }

...

31 [When(@"I click ’(.*) ’")]
32 public void WhenIClick(string p0)
33 {
34 selenium.clickButton(p0);
35 }

37 [Then(@"Report should be executed successfully ")]
38 public void ThenReportShouldBeExecutedSuccessfully ()
39 {
40 selenium.assertGridExists ();
41 }

...

44 [Then(@"CloseBrowser (.*)")]
45 public void ThenCloseBrowser(int p0)
46 {
47 selenium.closeBrowser ();
48 selenium.printReport ();
49 }

51 }

53 }

18



Listing 5.1 are mapped to the same test step (i.e., method at Line 12 in List-

ing 5.2), which takes an argument as input. Similarly, the Dates action at Line 7

in Listing 5.4 is mapped to Line 24 in Listing 5.2 to the GivenDates method,

which replays the corresponding GUI event.

In principle, there can be more than one scenario template defined per use

case. In our case study, we defined 21 templates for 3 different use cases. In the

following, we explain the utilization of these templates for generating test cases

from issue reports.

5.2 Parsing Ticketing System Issues

Issues in the ticketing system can be parsed and reproduced if and only if there

exist a mapping from each failure scenario step to a test step in the defined scenario

templates.

Each line of the issue descriptions is parsed by keywords. Different issue de-

scriptions may be mapped to the same Gherkin format definition as displayed in

Table 2 to ensure the utilization of same test steps for different strings that point

on the same action. For instance, we simply look for Network Element or Network

object keyword and the following argument in a given phrase in order to map this

phrase to Given Network Element definition.

Table 2: A list of sample Gherkin format conversions for the given issue descrip-
tions.

Description Conversion
Select Network Element BSC03 Given Network Element ’BSC03’
I select network element BSC03 Given Network Element ’BSC03’
I Selected Network element ’BSC03’ Given Network Element ’BSC03’
I choose Network object ’BSC03’ Given Network Element ’BSC03’
... ...
Start Date 19/01/14 00:00 and enddate 22/01/14 00:00 Given Dates ’19/01/14 00:00’, ’22/01/14 00:00’
Set Start date to 19/01/14 00:00 end date to 22/01/14 00:00 Given Dates ’19/01/14 00:00’, ’22/01/14 00:00’
I set date range as 19/01/14 00:00 - 22/01/14 00:00 Given Dates ’19/01/14 00:00’, ’22/01/14 00:00’

19



Listing 5.3: Sample Reported Issue
1 Open Link http :// localhost/PIWEB/login.aspx
2 Create a report with category 2G_CELL
3 Add KPI CallDrop%
4 Select Network Element BSC03
5 Select start date 19/01/14 00:00 end date 22/01/14 00:00
6 Select Grouping Datetime , Node
7 Click execute
8 Expected: Report should be executed successfully.
9 Actual: Exception error is displayed : WebServiceError

A sample reported issue is provided in Listing 5.3. This issue is related to the

same use case as the scenario template introduced in Listing 5.2. For instance, in

Line 25 in Listing 5.2 the test step (i.e., method) GivenDates which corresponds

to the user action for setting date range (Line 5) in Listing 5.3. This method

includes calls to relevant methods of the Selenium API. We can also see that it

takes two arguments. These arguments are taken from the issue description when

instantiating a test case.

BDD parser gets such issues created by system users as input. It parses this

input using basic regular expression (RegEx) search techniques [21] to create a

formal BDD scenario for handling typos and converting them to parametrized

methods such as mapping Line 2 in Listing 5.3 by Line 3 in Listing 5.4. Hereby,

RegEx techniques are applied for detecting keywords that are possibly subject to

typos, and to obtain scenario steps and relevant parameters in issue descriptions.

As such, BDD parser can process issue descriptions in natural language format

and convert them to a format in Gherkin style. A sample output of the module is

presented in Listing 5.4. This output corresponds to the description in Listing 5.3.

5.3 Generating Test Cases from Parsed Issues

All issues that can be parsed by BDD parser are added as test cases to the test

suite. A sample generated test case is shown in Listing 5.4. A test case is based on

the sample reported issue (Listing 5.3) driven by the scenario template in Listing

5.2. In the following, we describe the execution of the generated test cases.

20



Listing 5.4: Sample BDD Parser Output
1 Scenario: 2G_CELL Report should be created successfully
2 Given Link ’http :// localhost/PIWEB/login.aspx ’
3 And Select KPI Category ’2G_CELL ’
4 And Add KPI ’CallDrop%’
5 And Click Apply
6 And Network Element ’BSC03 ’
7 And Dates ’19/01/14 00:00’, ’22/01/14 00:00 ’
8 And Grouping ’Datetime ’
9 And Grouping ’Node ’

10 When I click ’Execute ’
11 Then Report should be executed successfully
12 And CloseBrowser

5.4 Executing Test Cases

P.I.Works uses an in-house developed Test Automation Tool (PIATT) for exe-

cuting test cases. This tool employs Selenium. The tool operates available test

scenarios on a selected browser and test environment, while recording the duration

for the completion of every action for collecting performance statistics. PIATT re-

plays GUI scenarios and automatically reports the results with the involved steps

together with a screenshot of the GUI for each failing test.

The set of generated test cases is automatically transferred to PIATT via a

module in the tool, as shown in Figure 5. Figure 6 shows an example output of

the tool for a single test case execution. There is also a recorded demonstration

of the overall approach and the tool set available online1. In the following section,

we discuss the overall results of our case study.

1http://srl.ozyegin.edu.tr/projects/piatt

21



Figure 5: Executing test cases with PIATT.

Figure 6: Sample output of PIATT.

22



CHAPTER VI

INDUSTRIAL CASE STUDY: NETWORK

PERFORMANCE MONITORING SYSTEM

We evaluated our approach for the reproduction of field failures reported for the

P.I.Web system. 160 failure scenarios were successfully reproduced by automated

processing of the reported issues, which account for 40% of the reported failures.

As a result, we observed significant reduction of the time and effort for analyzing

issue reports. We also proved the potential of issue reports as a source that can

be exploited to automatically generate and execute test cases.

Many issues (60%) still required manual analysis by the software developers due

to ill-formed, incomplete issue reports. We wanted to see to what extent training

of the QA team increases the proportion of issue reports that can be automatically

processed, if it does at all. Training sessions were performed to improve the quality

of issues created by the QA Team consisting of 8 test engineers, 3 of them being

at the senior level and the other 5 at the junior level. Training sessions were held

for 3 days and they took 10 hours in total.

Table 3: The number of issue reports that are analyzed by clarity of step definition
before and after the training session.

Issues by description Before T. After T.

Issues with defined steps 227 398
Issues without defined steps 430 244

Total: 657 642

Table 3 lists the overall results. In total 642 issues were compatible with the

version we worked on and 398 of them were clearly described with the necessary

steps to reproduce failures, which were 657 and 227 before training respectively 1.

1The number of compatible issues were decreased due to a major version upgrade.

23



Figure 7 represents the trend of issues that could be reproduced automatically.

For 30 weeks, we have recorded the number of issues that can be reproduced

(compatible issues) and the number of issues that can not be processed (not com-

patible). Figure 7 shows these numbers per week. It can be observed in general

that, the number of compatible issues are more than the incompatible ones. Be-

fore major version change on Week 44 on 2014, it was possible to reproduce most

of the issues. In several other days, there exists acceptable number of compatible

issues, although the number of incompatible issues increase due to several reasons

described in Section 7.

Figure 7: Issue compatibility trend for auto-reproducibility.

We also identified issues that can be automatically reproduced by PIATT com-

patibility. Results are listed in Table 4. We saw that 40% of the all issues could

be converted after the training session, while this number was only 19% before

training. These results show that significant improvements can be achieved with a

relatively short training session. It takes approximately 10 minutes on average to

reproduce a reported failure manually while debugging. Thus, our approach can

lead to significant time and effort reduction.

24



Table 4: The number and ratio of issue reports with defined steps that can be
used for automated failure reproduction before and after the training session.

Issues by PIATT compatibility Before T. After T.

Issues reproducible by PIATT 43 (19%) 160 (40%)
Issues not reproducible by PIATT 184 238

Total: 227 398

In total, 238 issue reports were not usable. That is, our approach failed to

reproduce the reported failures in these issues. In the following chapter, we discuss

the causes for this and the limitations of our approach.

25



CHAPTER VII

DISCUSSION

We were able to generate test cases and reproduce failures for many issue reports.

However, there were also many cases, where our approach failed to utilize issue

reports for automated failure reproduction. There are several causes for this. In

this section, we discuss these causes and the sources of limitation for our approach.

We have identified four main causes: 1) lack of mandatory information in the

issue description, 2) failure scenario complexity, 3) GUI design problem or a user

action that is not performed via the browser GUI, 4) unimplemented test step

methods.

Table 5 lists the causes and the corresponding number of issues that were

unusable because of the listed causes. We realized that 11 of the issues were

lacking information in terms of automation. That is, a person can reproduce the

issue manually by supplying complementary information intuitively. In addition,

47 of the issues were too complex to implement as automated test cases. 61 failure

scenarios could not be reproduced due to the involvement of out-of-browser actions

such as database or command line actions or ”GUI Structure and Aesthetics Fault”

[22] which cause the components not be used by Selenium.

We observed that the majority of the unusable issues (119) could be used for

failure reproduction if the library of scenario templates were extended with the

Table 5: The number of unusable issues per cause of unusability.

Cause Issue Count

Lack of mandatory information 11
Failure scenario complexity 47
GUI problem / cannot be replayed on browser 61
Lack of scenario template or test step 119

Total: 238

26



relevant test steps. Developers can be notified for such of missing templates and

test steps to improve the efficiency of the approach.

A potential limitation of our approach is GUI fragility. Major changes in GUI

may require use case templates to be fixed in each GUI revision. This can be

handled partially by creating design rules to preserve alignment of GUI and the

automation tool.

27



CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

We introduced an approach for automatically reproducing field failures to aid their

debugging. Our approach uses semi-formal failure scenario descriptions provided

by system users and test engineers. These descriptions are utilized for automat-

ically generating and executing test cases to reproduce failures. We evaluated

the approach in the context of an industrial case study from the telecommunica-

tions domain. We observed significant reduction of time and effort for analyzing

issue reports as a result of the application of our approach. Issue reports that

are ill-formed, incomplete or irrelevant, have to be manually analyzed by software

developers in any case. However, many reports can be automatically converted to

reusable test cases. In our case study, 40% of all failure scenarios were successfully

reproduced by automated processing of the reported issues. In addition, we proved

the potential of issue reports as a source that can be exploited to automatically

generate and execute test cases.

As future work, we foresee the following two opportunities and possible ex-

tensions regarding our approach. First, advanced natural language processing

techniques can be applied on parsed issue reports to calculate similarity among

them. By this way, similar issue reports can be grouped and related to each other

automatically. This automated categorization can further reduce the analysis time

for developers. Second, system users and test engineers can be guided by tools

to define well-structured issue reports. These tools can parse issue reports during

their creation and they can provide immediate feedback for missing information

and structural flaws. This guidance can improve the quality of issue reports and

increase the proportion of reports that can be automatically converted to test

cases.

28



APPENDIX A

ILLUSTRATION

In this section, we illustrate an application scenario of the approach in the context

of the P.I.Web case study.

Issues are initially reported through the ticketing system as shown in Figure 8

with problem definition as well as product related details like version, component

or priority information. Such a report is very common in existing ticketing systems.

Figure 8: Issue creation on the ticketing system.

Then, the issue is converted to Gherkin format. Figure 9 represents the BDD

Parser tool for parsing an issue description into Gherkin format.

29



Figure 9: Issue conversion to the Gherkin format.

The converted issue description is used as input in the Test Runner module of

the Test Automation Tool (Figure 10) for reproducing the corresponding failure

scenario automatically.

30



Figure 10: Addition of an issue as a test case to be executed by the test automa-

tion tool.

The Test Runner module replays user actions involved in the failure scenario

based on the issue description in the given order. In the replayed set of user actions,

a report is opened first (See Figure 11). Then, a group of report parameters are

set such as the date range for the report.

31



Figure 11: Report results for the given report.

32



The scenario proceeds with an Export action, which opens the report export

options. Hereby, file download link creation fails as displayed in Figure 12, thus

the Download button is not displayed on the user interface.

Figure 12: Export screen with fail message.

Test results are reported (Figure 13) together with the set of actions followed

and a screen-shot of the screen at the time of failure.

33



Figure 13: Test results report the failure regarding the reproduced issue.

34



After the bug is fixed by the developers, the same test case is executed on the

new build. This time, test execution succeeds and the Download button becomes

available as shown in Figure 14.

Figure 14: Export screen without fail message.

Bug fix is verified with a report (Figure 15) and the reported issue is closed.

35



Figure 15: Test results report after the issue is fixed.

36



REFERENCES

[1] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions on
Dependable and Secure Computing, vol. 1, pp. 11–33, 2004.

[2] K. Vikram, A. Prateek, and B. Livshits, “Ripley: automatically securing web
2.0 applications through replicated execution,” in Proceedings of the 16th
ACM Conference on Computer and Communications Security, pp. 173–186,
2009.

[3] J. Mickens, J. Elson, and J. Howell, “Mugshot: deterministic capture and
replay for javascript applications,” in Proceedings of the 7th USENIX Sympo-
sium on Networked Systems Design and Implementation, pp. 159–174, 2010.

[4] S. Andrica and G. Candea, “Warr: A tool for high-fidelity web application
record and replay,” in Proceedings of the 41st Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks, pp. 403–410, 2011.

[5] A. Bruns, A. Kornstadt, and D. Wichmann, “Web application tests with
selenium,” IEEE Software, vol. 26, no. 5, pp. 88–91, 2009.

[6] T. Roehm, S. Nosovic, and B. Bruegge, “Automated extraction of failure re-
production steps from user interaction traces,” in Software Analysis, Evolu-
tion and Reengineering (SANER), 2015 IEEE 22nd International Conference
on, pp. 121–130, March 2015.

[7] E. Laukkanen, M. V. Mäntylä, et al., “Survey reproduction of defect report-
ing in industrial software development,” in Empirical Software Engineering
and Measurement (ESEM), 2011 International Symposium on, pp. 197–206,
IEEE, 2011.

[8] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based
testing approaches,” Software Testing Verification and Reliability, vol. 22,
no. 5, pp. 297–312, 2012.

[9] M. Sarma and R. Mall, “Automatic test case generation from uml models,” in
Proceedings of the 10th International Conference on Information Technology,
pp. 196–201, 2007.

[10] M. Wynne and A. Hellesoy, The Cucumber Book: Behaviour-Driven Devel-
opment for Testers and Developers. Pragmatic Bookshelf, 2012.

[11] T. Pajunen, T. Takala, and M. Katara, “Model-based testing with a general
purpose keyword-driven test automation framework,” in Proceedings of the
IEEE Fourth International Conference on Software Testing, Verification and
Validation Workshops, pp. 242–251, 2011.

37



[12] D. North, “Behavior modification,” Better Software Magazine, pp. ”27–31”,
2006.

[13] J. Lerman, “Behavior-driven design with specflow,” MSDN Magazine, vol. 28,
no. 7, pp. 12–22, 2013.

[14] M. Soeken, R. Wille, and R. Drechsler, “Assisted behavior driven develop-
ment using natural language processing,” in Proceedings of the 50th Interna-
tional Conference on Objects, Models, Components, Patterns, pp. 269–287,
Springer-Verlag, 2012.

[15] N. Bajpai et al., “A keyword driven framework for testing web applications,”
International Journal of Advanced Computer Science and Applications, vol. 3,
no. 3, 2012.

[16] K. Arya and H. Verma, “Keyword driven automated testing framework for
web application,” in Proceedings of the 9th International Conference on In-
dustrial and Information Systems, pp. 1–6, 2014.

[17] J. Hui, L. Yuqing, L. Pei, G. Shuhang, and G. Jing, “Lkdt: A keyword-
driven based distributed test framework,” in Proceedings of the International
Conference on Computer Science and Software Engineering, vol. 2, pp. 719–
722, 2008.

[18] W. Jin and A. Orso, “Bugredux: Reproducing field failures for in-house de-
bugging,” in Proceedings of the 34th International Conference on Software
Engineering, pp. 474–484, 2012.

[19] F. M. Kifetew, W. Jin, R. Tiella, A. Orso, and P. Tonella, “Reproducing field
failures for programs with complex grammar-based input,” in Software Test-
ing, Verification and Validation (ICST), 2014 IEEE Seventh International
Conference on, pp. 163–172, IEEE, 2014.

[20] K. Naveen and P. Hunter, “Cost effective agile test practices and test au-
tomation using open source tools specflow and white,” in Proceedings of the
PNSQC, pp. 165–178, 2012.

[21] J. Friedl, Mastering Regular Expressions. O’Reilly Media, Inc., 2006.

[22] V. Lelli, A. Blouin, and B. Baudry, “Classifying and qualifying gui defects,”
in Software Testing, Verification and Validation (ICST), 2015 IEEE 8th In-
ternational Conference on, pp. 1–10, IEEE, 2015.

[23] D. R. Kuhn, I. D. Mendoza, R. N. Kacker, and Y. Lei, “Combinatorial cover-
age measurement concepts and applications,” in Proceedings of the 6th IEEE
International Conference on Software Testing, Verification and Validation
Workshops, pp. 352–361, 2013.

[24] A. Holmes and M. Kellogg, “Automating functional tests using selenium,” in
Proceedings of the AGILE Conference, pp. 270–275, 2006.

38



[25] M. Sarma and R. Mall, “Automatic test case generation from uml models,” in
Proceedings of the 10th International Conference on Information Technology,
pp. 196–201, 2007.

39



VITA

Gün Karagöz was born in 1987 in Ankara, Turkey. He received his B.Sc. degree

from İzmir Institute of Technology in Electronics and Telecommunications Engi-

neering in 2010. He joined Özyeğin University, Turkey in February 2011 where

he worked as a teaching and research assistant until leaving on August 2012 for

military duty. Until 2013, he served the Turkish armed forces. From 2013 until

2014, he worked as an Access Network Optimization and Planning Engineer at

Turkcell, in Turkey. He is currently working as Product & UAT Senior Engineer at

P.I.Works, in Turkey. During his master’s studies, he focused on natural language

processing, automatic speech recognition, software testing methodologies and test

automation techniques.

40


	Titlepage
	Signatures
	Dedication
	Abstract
	Özetçe
	Acknowledgments
	Table of Contents
	List of Tables 
	List of Figures 
	Chapter 1 — Introduction
	Chapter 2 — Background
	Chapter 3 — Related Work
	Chapter 4 — Problem Statement
	Chapter 5 — Approach
	5.1 Preparing Scenario Templates
	5.2 Parsing Ticketing System Issues
	5.3 Generating Test Cases from Parsed Issues
	5.4 Executing Test Cases

	Chapter 6 — Industrial Case Study: Network Performance Monitoring System
	Chapter 7 — Discussion
	Chapter 8 —  Conclusions and Future Work
	Appendix A — Illustration
	References
	Vita

