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ABSTRACT

Needle Biopsies are common medical procedures to remove tissue samples from the

body to be examined for diseases. During these procedures, the needle and its tip

are tracked using medical imaging devices to avoid damage to the tissues and to get

samples from the targeted site.

Ultrasound (US) is a common imaging method to localize the needles because

it does not have any known side effects and provides a larger workspace. However,

excessive artifacts and low resolution of the US images make it difficult to localize

the needles in the biopsies. A possible solution to this problem is to detect the needle

and its tip using an image processing algorithm.

In this thesis, a novel needle localization method is proposed for 2D US images

based on the Gabor filter. This method enhances the needle outline to localize the

needle, while suppressing other structures in the US images. The needle tip is localized

in real-time and the estimation noise is reduced using the Kalman filter. Using the

bin packing method, the processing time is reduced by 56%, without a GPU. Also, a

simulation study to understand the accuracy of the system within different mediums

is conducted.

The proposed needle localization scheme was tested using various phantoms. An

external sensor was used to evaluate the accuracy of the needle insertion angle esti-

mation and the needle tip localization methods. The Root mean square (RMS) error

of the needle insertion angle was 2.29◦; and the RMS error of the needle tip position

was 1.17 mm. The results showed that this localization scheme can be used in the

US image guided percutaneous needle procedures.
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ÖZETÇE

İğne biyopsileri, hastalıkları incelemek için vücuttan doku örnekleri alınarak yapılan

yaygın tıbbi işlemlerdir. Bu işlemler sırasında, iğne ve ucu doku hasarından kaçınmak

ve hedeflenen yerden örnek almak için tıbbi görüntüleme cihazı ile takip edilir.

Ultrason (US); iğneleri lokalize etmek için kullanılan yaygın bir görüntüleme meto-

dudur çünkü ultrasonun bilinen bir yan etkisi yoktur ve daha büyük bir çalışma alanı

sağlar. Ancak, US görüntülerinin düşük çözünürlüğü ve görüntülerdeki yapay olgular,

biyopside iğne lokalizasyonu zorlaştırmaktadır. Bu problemin olası bir çözümü iğneyi

ve ucunu bir görüntü işleme algoritması ile bulmaktır.

Bu tezde, 2B US görüntülerinde Gabor filtresi tabanlı yeni bir iğne lokalizasyon

metodu önerilmektedir. Bu metot görüntüde iğne ana hatlarını artırırken, diğer

yapıları sönümlemektedir. İğne ucu gerçek zamanda lokalize edilmiştir ve tahmin

gürültüsü Kalman filtresi kullanılarak azaltılmıştır. Önerilen metodu gerçek za-

manda çalıştırmak için kutu paketleme yöntemi kullanılmıştır ve işlem süresi GPU

kullanılmadan %56 azaltılmıştır. Ayrıca sistemin farklı ortamlardaki hassasiyetini

anlamak için bir simülasyon çalışması yapılmıştır.

Önerilen iğne lokalizasyon planı çeşitli fantomlar kullanılarak test edilmiştir. İğne

giriş açısı tahmin ve iğne ucu lokalizasyon metotları harici bir sensör kullanılarak

değerlendirilmiştir. İğne giriş açısı tahminindeki kök ortalama kare hatası 2.29◦ ve

iğne ucunun pozisyondaki kök ortalama kare hatası 1.17 mm olarak ölçülmüştür.

Deney sonuçları önerilen lokalizasyon planının US görüntü rehberliğinde yapılan deri

altı biyopsi uygulamalarında kullanılabileceğini göstermiştir.
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CHAPTER I

INTRODUCTION

Percutaneous needle procedures, such as biopsy or drug delivery, are frequently per-

formed medical operations. The needle placement plays a significant role in the suc-

cess of the operations [1]. If the needle is placed inaccurately, the tissue sample from

an incorrect location might be collected, and repeated insertions might damage the

tissue leading to hemorrhage. In order to improve the placement accuracy and reduce

such failures, the needle path has to be predetermined and the needle tip should be

tracked.

Percutaneous needle procedures are performed with the help of medical imag-

ing, including magnetic resonance imaging (MRI), computed tomography (CT), fluo-

roscopy and ultrasound (US). MRI provides high quality images for biopsy operations,

however custom needles are required for needle localization since they are ferromag-

netic. Also, MRI does not provide enough workspace for all operations. CT and

fluoroscopy imaging can be used but they are harmful due to radiation. In addition,

similar to MRI, the workspace of CT is limited. US imaging, on the other hand,

does not have any known side effects. The needle can be tracked with a very small

probe. However, visualization of the needle can be challenging due to poor image

quality. US images contain undesirable artifacts and reverberation effects. Therefore,

the visibility of the needle, especially its tip, is poor in the images. At this point,

image processing algorithms can be used to reduce these artifacts and increase the

visibility of the needle to localize the needle axis and track its tip.

This thesis presents a novel image processing method for automated needle lo-

calization in 2D US images. The proposed method uses a Gabor filter to segment
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the needles in US images. The Gabor filtered images are then binarized with an

automatic parameter tuning method and the needle trajectory is obtained using line

fitting. Finally, location of the needle tip is estimated using the probabilistic mapping

method. In order to perform the method in real time, the bin packing method is used.

Also, in order to test the system with imaging faults and tissue deformations, needle

tip tracking simulations are performed. The effectiveness of the method is shown

using different types of tissue phantoms and water medium.

1.1 Thesis Contribution

This work has led several contributions in the needle localization in 2D US images.

Following summarizes the contributions with the corresponding publications:

Gabor filter is proposed to segment needle pixels in ICRA2014 article [2]. Ga-

bor filter enhances the needle pixels while suppressing other structures like artifacts.

Hence, Gabor filter produces much better results compared to other filtering methods

in the literature while significantly filtering the artifacts. Also, in this study, needle

insertion angle estimation method without known priori is proposed.

An entropy based parameter tuning for Otsu’s threshold and probability mapping

method to find location of the needle tip have been proposed in IST2014 article [3]. It

was observed that when the needle segmentation threshold value generated by Otsus

method was multiplied with a pre-tuned constant parameter (α), the Gabor-based

line filtering method became more robust, and the processing time was reduced. In

this study, an entropy based automated parameter tuning method to dynamically

adjust the α parameter is proposed. Also, a probability mapping for the needle tip

estimation is created using the Gabor filter output, which shows possible needle tip

locations.

Real time needle tip tracking is also proposed, where the needle axis is localized

using a Gabor filter in ICAR2015 article [4]. In this study, the needle tip is tracked
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using 2D US imaging, and additionally, the needle tip estimation noise is smoothened

using a Kalman filter. The processing time of the proposed localization method is re-

duced by approximately 56% using the bin packing method, so that the algorithm can

be executed in real time. Also, the needle tip tracking simulation is presented to test

the Kalman filter performance under image misalignment and tissue deformations.

1.2 Thesis Outline

This thesis consists of seven chapters. It is organized as follows. In the current chap-

ter, the problem is introduced and our contribution to needle localization in 2D US

images are discussed. Related works in literature done on needle and its tip local-

ization in US images are given in Chapter II. Chapter III explains tissue mimicking

materials and phantoms preparation methods. It further outlines acoustical proper-

ties of human tissue and phantoms. Chapter IV presents Gabor filter based needle

localization algorithm in 2D Images. The real time needle tip localization is described

in Chapter V. In Chapter VI, experimental and simulation results are given. Finally,

Chapter VII concludes the thesis by summarizing the contributions and experimental

results.
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CHAPTER II

RELATED WORKS IN THE LITERATURE

In literature, there are many studies done on needle and needle tip localization.

The following summarizes the work conducted on developing needle localization al-

gorithms.

Draper et al. [5] used variance mapping to discriminate the needle from the back-

ground. They used a user defined thresholding technique and then principal compo-

nent analysis (PCA) to localize the needle axis and its tip. Ding and Fenster [6] used

fast implementation of Hough Transform based on course-fine search to segment the

needle in 2D US images. Their approach decreased the computational time and can

segment the biopsy needle in real time. Cheung and Rohling [7] enhanced the needle

visibility in 2D US images by steering the US beam. The needle was localized using

Hough transform and specific beam patterns were used to maximize the reflections

from the needle. Barva et al. [8], [9] localized curvilinear objects in 3D US images.

3D US images were converted to binary images with empirically determined threshold

values and then curve fitting was applied to localize the objects.

Okazawa et al. [10] used Hough transform and coordinate transform to localize

curved needles under 2D US images. Rough insertion angle was supplied by the user

for needle segmentation. Novotny et al. [11] and Stoll et al. [12] used passive markers

for tracking surgical instruments in 3D US images. Markers’ position were computed

from a 3D US image then the position and the orientation of the surgical instrument

was determined, and GPU was used to track the instrument in real time. Neshat and

Patel [13] modeled curved needles with Bezier polynomials. The coefficients of the

polynomial were estimated using Radon Transform. In order to run the algorithm
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in real time, they implemented their curved needle segmentation code on a GPU.

Fronheiser et al. [14] and Adebar et al. [15] tracked needle with 3D color doppler US

device. They vibrated the needle at high frequency with a piezoelectric buzzer. RF

and color doppler filters were used to detect the tip of the surgical devices from US

images.

Dong et al. [16] proposed a framework for real time needle localization in highly

noisy 2D US images. They used level set and partial differential equation to localize

and track the biopsy needle. Uhercik et al. [17] and Zhao et al. [18] used Frangi’s

vessel segmentation algorithm [19] to filter lines in 3D US images. The axis of the

needle was determined by a robust model fitting random sample consensus (RANSAC)

algorithm. Aboofezali et al. [20] segmented curved needles in 3D US images using

an anti isotropic filter. This process reduced speckles in the image and the remaining

speckles were reduced with a spatial contrast enhancement filter. 3D images were

projected to 2D using ray casting and then Hough transform was applied to detect

the curvilinear needle.

Wen et al. [21] detected the brachytherapy seeds in 3D US images. They used

reflected power images instead of conventional B-mode US images. After the seed

insertion was detected with Hough transform, the seeds were segmented and localized

in priorly determined local search space. Ayvaci et al. [22] tracked the biopsy needle

in 2D transrectal US images. Needle pixels in the image were mapped using prior

knowledge of the needle’s position, the image background model, and the US probe

stability. Cao et al. [23] proposed automated catheter detection in 3D images. A

likelihood map was generated according to the physical model of the catheter. The

map was projected onto a single image plane with respect to the maximum intensity

approach to detect catheter faster.

Vrooijink et al. [24] developed a robotic system to track the needle tip in three

dimensions within 2D US images. The needle was inserted by a motorized device, US
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probe was servoed by a positioning device and the robotic system provided feedback

for the image guidance. The specific pattern of the needle in US imaging, known as

the comet tail artifact (CTA) was used to detect the needle tip. After thresholding

and morphological operations, the CTA pattern was detected and the needle tip was

localized. Chatelain et al. [25] proposed a method to detect and track a manually

inserted needle in real-time using a 3D US probe mounted on a 6-DOF robotic arm.

The needle insertion was detected using the geometric median and the volume inten-

sity differences. Prospective needle pixels were obtained using the volume intensity

differences and the needle axis was localized using RANSAC. A Kalman filter was

applied to track the needle more accurately.

Renfrew et al. [26] proposed a framework for active localization of the needles and

targets in image guided robotic interventions. Their approach was based on the active

localization of the needles and the targets by maximizing information. A particle filter

was used to estimate the needle and the target states. They validated their proposed

localization approach with simulation. Mathiassen et al. [27] used the second order

derivative of a 2D Gaussian function and the frame difference information of the

sequential frames to estimate the needle tip in 2D US images. The accuracy of the

system was measured using an optical tracker. Beigi and Rohling [28] located a needle

in a 2D US image sequence using motion information. After the motion was detected,

the needle axis was obtained using polynomial fitting and Hough transform on the

pixel extracted from the difference image. The last detected point along the needle

axis in the difference image was considered as the needle tip.

This thesis introduces a new needle localization method in 2D US images. Specif-

ically, the Gabor filter is applied to detect the needle, which has not been used in

needle localization studies with US imaging before. The Gabor filter produces much

better results compared to other filtering methods because it enhances the needle’s

pixel better. This thesis also presents automatic parameter tuning method optimizes
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the threshold value that is used by the Otsu’s thresholding technique to automatically

binarize the ultrasound image. A probability map is created to estimate the needle

tip location using the Gabor filtered image and the binarized image. The needle tip is

also tracked using 2D US imaging, and additionally, the needle tip estimation noise is

smoothened using a Kalman filter. The processing time of the proposed localization

method is reduced by approximately 56% using the bin packing method, so that the

algorithm can be executed in real time. Also, the needle tip tracking simulation is

presented to test the Kalman filter performance under image misalignment and tissue

deformations.
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CHAPTER III

TISSUE MIMICKING MATERIALS FOR US PHANTOMS

Ultrasound phantoms simulate acoustical properties of the human tissue. They pro-

vide realistic medium for US imaging and they are used for several purposes. First,

phantoms are used to train sonographers [29]. US imaging is widely used in medical

diagnosis. However, US images are inherently noisy and their resolution are low.

Hence, it is not easy to recognize patterns in the US images. The sonographers need

to practice to learn scanning techniques, anatomical details, feature of artifacts and

probe manipulation. But, it is not always feasible to train sonographers with pa-

tients or cadavers. US image of actual clinical conditions can be closely simulated

with phantoms. Hence, it provides realistic training medium for sonographers. Sec-

ond, phantoms are used to calibrate US machines and evaluate the quality of US

image quality [30]. Phantoms are used for these purposes are called calibration phan-

toms. There are not any anatomical structures in calibration phantoms. Certain

sized objects are embedded in these phantoms at known positions. Also, acoustical

properties of the objects are known. The important parameters of the US machines

are obtained from calibration phantom image to evaluate US machines performance.

Third, phantoms are used as test medium for percutaneous needle procedures, such

biopsy and drug delivery. In these procedures, US imaging provides visual feedback.

Operators need to practice and train to improve their hand-eye coordination skills to

reach target before performing it on a patient. Hence, needle can be placed correctly

and unwanted side effects can be prevented. Phantoms provide test mediums to de-

termine needle trajectory and track needle tip in US images [31]. With phantoms,

organs, tissues, and cysts can be mimicked and also it is cost effective.
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There are commercially available phantoms. Commercial phantoms provide very

realistic images for US imaging. They are capable of mimicking whole human body in

US imaging. They are made from rubber so they are very durable. However, they are

very expensive so they are generally used in calibrating US machine and observing

anatomical details in US images. Phantoms can be also prepared in laboratory with

tissue mimicking materials (TMM). Their acoustical properties can be controlled and

they are capable of mimicking desired human tissue. They are generally used in

needle insertion experiments.

In this thesis, homogenous and heterogenous phantoms were used during the nee-

dle insertion experiments. Homogenous phantoms were used to assess the detectabil-

ity of the needles in US images while heterogenous phantoms were used to observe

the needles under the realistic conditions. Thus, images from different backgrounds

are collected using the phantoms. A database was created using the collected im-

ages to test the proposed localization method in various backgrounds and under the

realistic conditions. All of the phantoms used in this study were produced in the

laboratory using tissue mimicking materials. In this work, agar, gelatin, evaporated

milk, polyvinyl alcohol, paraffin, silicon, and magnesium silicate were used as tissue

mimicking materials to produce US phantom. In the rest of the chapter, acoustic

properties of phantoms and preparation of phantoms using these substitutes are ex-

plained.

3.1 Acoustic Properties of Phantoms

Ultrasound image is created by firstly sending high frequency sound waves into tis-

sue using ultrasound transducer. Then, ultrasound transducer acts as a receiver and

collects the reflected sound waves (echoes) from the tissue. These echoes are ana-

lyzed and the acoustical properties of the tissue along sound path is extracted. The

most important acoustical properties for US image reconstruction are speed of sound,
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Table 1: Acoustic properties of tissues (Table reproduced from [33])

Material Speed of Sound Density Attenuation Coefficient Acoustic Impedance
(m/s) (kg/m3) (dB.(cm.MHz)−1) MRayl

Soft Tissue 1561 1043 0.54 1.63
Liver 1595 1060 0.5 1.69
Breast 1510 1020 0.75 1.54
Fat 1478 950 0.48 1.40
Blood 1584 1060 0.2 1.68
Brain 1560 1040 0.6 1.62
Water 1480 1000 0.0022 1.48
Bone, Cortical 3476 1975 6.9 7.38
Bone, Trabecular 1886 1055 9.94 1.45
Muscle 1547 1050 1.09 1.62
Tendon 1670 1100 4.7 1.84
Marrow 1435 - 0.5 -
Air 330 1.2 - 0.0004

attenuation coefficient, acoustic impedance, and back scattering power [32]. These

properties change according to tissue type (see table 1). Hence, contrast is obtained

and intensity of echoes are interpreted using these acoustical properties.

Phantoms mimic the desired human tissue in US imaging. For realistic mimick-

ing, acoustical properties of phantom must match with acoustical properties of desired

tissue. In general, acoustic impedance, speed of sound and attenuation coefficient of

phantom are evaluated. These acoustical properties are measured with water tank

experiment. Water tank experiment consists of ultrasound transducer, hydrophone

(microphone used in underwater to listen or record underwater sound) and distilled

water. Transducer is triggered by signal generator and US beam is sent into phantom.

The passing signal through phantom is collected by hydrophone and collected signal

is amplified. Then, amplified signal is acquired with data acquisition and acoustical

properties of phantoms is calculated. There are two types of water tank setup. The

main difference between them position of hydrophone. In Configuration #1, ultra-

sound transducer and hydrophone are sperate units and they are placed opposite to
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each other (Fig. 1). Phantom is placed between them. In Configuration #2, ultra-

sound sensor can act as both transducer and hydrophone. The phantom placed at

the bottom of tank (Fig. 2). In this configuration, plane reflector is placed between

phantom and bottom of tank to maximize the reflection. Hence, reflection time is

determined more certainly. Flat glass is generally used as plane reflector because it

can reflect sound waves with -9 dB.

Figure 1: Configuration #1: Experimental setup used in measuring speed of sound
and attenuation coefficient. Figure reproduced from [34].

In the water tank experiments, water is the reference medium; the acoustical

properties of phantom are calculated using acoustical properties of water. Speed of

sound (c) in phantom is calculated for configuration #1, #2 as follows:

c = cw

(
1 +

cw4t
d

)−1

and c = cw

(
1 +

cw4t
2d

)−1

(1)

where cw is the speed of sound in water, d is phantom thickness of phantom, and

4t is time shift in wave propagation. It is note that speed of sound in distilled water

changes according to its temperature. Hence, temperature of the distilled water is

measured with digital thermometer and speed of sound in distilled water is obtained.
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Figure 2: Configuration #2: Experimental setup used in measuring speed of sound
and attenuation coefficient. Figure reproduced from [35].

Attenuation coefficient is quantifying phantom or tissue according to how trans-

mitted sound wave amplitude decreases as a frequency (f). It is measured firstly

sending sound wave to hydrophone before placed phantom and power of receiving

signal (Ao(f)) is calculated using fast Fourier transform (FFT) analysis. Then, phan-

tom is placed between transducer and hydrophone and the power of receiving signal

(A(f)) is calculated. These steps are applied with sending sound wave with different

frequencies into phantom or tissue. Attenuation coefficient is calculated as follows:

a(f) = −10

d
log10

(
A(f)

Ao(f)

)
(2)

The attenuation coefficient is measured in units of decibel per cm (dB.(cm)−1).
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The unit is independent from frequency. Hence, for each frequency, different attenua-

tion coefficient is obtained. However, attenuation coefficient is linearly dependent to

frequency of ultrasound beam. If the attenuation coefficient in unit of (dB.(cm)−1) is

divided by frequency, attenuation coefficient become invariant to frequency. Hence,

the attenuation coefficient is measured in units of (dB.(cm.MHz)−1). in ultrasound

imaging.

Acoustic impedance is the opposition of medium (phantom, tissue) to acoustical

flow. The unit of acoustic impedance is rayl. Acoustical impedance (z) is calculated

by multiplication of density of phantom (ps) and speed of sound in phantom (c):

z = ps.c (3)

Back scatter power is the power of reflected sound waves from medium (tissue,

phantom). It depends on frequency of sound wave (f) and its unit is decibel (dB).

Back scattering power is measured with a different setup used for measuring speed

of sound and attenuation. In order to measure back scattering power, the reflected

signal from front face of phantom and reflector is captured. Hence, transducer focus

is narrowed and driver voltage is increased. These adjustments minimize reflections

from the front face of the sample phantom and increase the signal to noise ratio of

the backscattered signal. It is measured firstly sending sound wave before placed the

phantom and power of reflected wave is calculated (Io(f)). Then, phantom is placed

between transducer and plane reflector and the power of reflected signal (I(f)) from

phantom is calculated. In order to calculate the signal power, the reflected signal

is firstly filtered with Hamming window because there is spectral leakage. Then,

power of filtered signal is calculated using Welch method. Back scatter power (µ) is

calculated as follows:

µ(f) = −10 log10

(
I(f)

Io(f)

)
(4)
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In the water tank experiment setup, there should be minimum distance between

ultrasound transducer and phantom. If the phantom placed near than minimum

distance, ultrasound wave do not scatter. The minimum distance (dn) depends on

aperture size of ultrasound transducer (a) and wavelength of ultrasound wave. For

example, if the temperature of distilled water in tank is 25◦C (the speed of sound in

water at this temperature is 1484 m/s) and frequency of ultrasound transducer is 8

MHz, the wavelength of sound wave:

λ =
cw
f

=
1484m/s

8× 10−6 1/s
= 1.855× 10−4 m. (5)

The minimum distance between phantom and ultrasound transducer:

dn =
(a/2)2

λ
=

(70mm)2

0.1855mm
= 26, 4mm. (6)

3.2 Water Medium as Phantom

Water is used as test medium in ultrasound imaging. The speed of sound and atten-

uation coefficient are 1480 m/s and 0.022 dB.(cm.MHz)−1, respectively. According

to these values, speed of sound is in the desired level but the attenuation coefficient is

very low to mimic soft tissue in ultrasound images. Lack of attenuation in water pro-

vides black and homogenous background for US images. Hence, the best appearance

of the objects like surgical tools in ultrasound images are obtained. 2D US images of

the biopsy needle in the distilled water are shown in Fig. 3.

Speed of sound in water changes according to distill water temperature. There is

a direct proportion between them. In our experiments, the temperature of water was

close to room temperature and it was rested about 8-10 hours before the experiment

to eliminate air bubbles. The speed of sound can be also controlled with alcohols. The

most frequently used one is ethanol. The speed of sound in water-ethanol mixture

can be calculated as follows [36]:
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Figure 3: 2D US image of the needle in the distilled water.

Cwe = 1606.9− 121.7E + 121.7W − 4.7T + 245.5EW − 1.1ET

+ 1.1WT − 245.5E2 − 245.5W 2 − 0.01T 2 + 521.8EW 2

− 521.8WE2 + 0.003ET 2 + 2.9ET − 0.003WT 2 + 5.6W 2T.

(7)

where Cwe is the speed of sound in water-ethanol mixture, T is the temperature of

mixture, E and W are the percentages of ethanol and water in the mixture.

In our experiments, speed of sound in water-ethanol mixture was calculated 1560

m/s. According to equation 7, the percentage of ethanol in the mixture was calculated

7.2%. (E = 0.072, W = 0.9993, and T = 25◦C). In order to produce 1 lt water-

ethanol mixture 7.2 ml ethanol and 928 ml distilled water are mixed in a beaker. The
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mixture is stirred with magnetic stripper about 30 min. 2D US images of the biopsy

needle in the distilled water-ethanol mixture are shown in figure 4.

Figure 4: 2D US image of the needle in the distilled water-ethanol mixture.

3.3 Gelatine Based Phantoms

Gelatine is one of most commonly used materials to prepare phantom. Gelatine based

phantoms can realistically mimic human tissue in ultrasound imaging. Also, it is easy

to prepare and their cost is low. The speed of sound and attenuation coefficient in

gelatine and water mixture are 1520 m/s and 0.12 dB.(cm.MHz)−1, respectively [33].

In order to prepare 1 lt gelatin phantom, following steps are applied. Gelatin

dissolves at 60◦C so 920 ml distilled is heated to 60◦C. Then, 80 g gelatin is added

and stirred until its color become transparent. The mixture is cooled under stirring to
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25◦C. It is note that gelatin based phantoms do not have resistance to microbiological

attacks. Therefore, 5 ml benzalkonium chloride is added and mixed it at 25◦C to

preserve the phantom. Finally, the mixture is poured into polyurethane cap and rested

15 minutes to eliminate bubbles. It is cooled in refrigerator at least 8 hours. The main

disadvantage of gelatin based phantoms is that they are thermally unstable [37], [38].

After it is extracted form container, dehydration occurs and acoustical properties

change. Thermal stability can be increased with calcium chloride (CaCl2) treatment.

After the solid gel is extracted form mold, it is suspended in 0.5M CaCl2 24 hours.

Thermal stability can be also increased with adding formalin (37 % formaldehyde)

[39]. In phantom preparation, 3 ml formalin is added to gelatin mixture at 37◦C.

Adding formalin increases the melting point of phantom to 78◦C [39].

2D US images of the biopsy needle in the gelatin phantom prepared with this recipe

are shown in figure 5. As seen from picture, gelatin-water mixture provide black ho-

mogeneous background for ultrasound imaging because attenuation coefficient is low.

For realistic tissue mimicking, attenuation coefficient must be increased. The atten-

uation coefficient can be controlled with metamucil or graphite. It was reported that

attenuation coefficient can be increased with metamucil until 0.54 dB.(cm.MHz)−1

[40] and it can be increased with graphite until 1.45 dB.(cm.MHz)−1 [41]. In our

experiments, soft tissue has been mimicked. Hence, the attenuation coefficient must

be close to 0.54 dB.(cm.MHz)−1. In order to increase attenuation of gelatin, either

4% metamucil or 0.073 g/cm3 graphite can be added to gelatin-water mixture.

The speed of sound in gelatine can be also controlled with n-propanol. It can

be increased until 1650 m/s. The speed of sound changes linearly with respect to

percentages of n-propanol in the mixture. Adding each 1% n-propanol increases the

speed of sound by approximately 5 m/s [41].
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Figure 5: 2D US image of the needle in the gelatine phantom.

3.4 Agar Based Phantom

Agar is one of the most commonly used materials to prepare phantom. Agar based

phantoms can realistically mimic tissue in ultrasound imaging. Also, it is easy to

prepare it. The speed of sound varies between 1498 and 1600 m/s and attenuation

coefficient varies between 0.3 and 2.0 dB.(cm.MHz)−1 in the agar based phantoms.

Its acoustical properties are in the desired level to mimic human tissue and they can

be controlled with additive chemicals. The speed of sound can be controlled with

n-propanol concentration and attenuation coefficient can be controlled with graphite

concentration. The major property of using n-propanol concentration and graphite

is that speed of sound and attenuation change linearly with respect to percentage of
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n-propanol and graphite in the mixture, respectively. Hence, the percentages of these

chemicals are calculated with linear equations or graphics to obtain desired acoustical

properties [42].

The major disadvantages of agar based phantom is that agar based phantoms do

not have resistance to microbiological attacks. Agar is a very suitable medium for

bacterial growth. Biologists use agar to grow bacteria. Microbiological attack in the

phantoms changes the acoustical properties and shorten it durability. In order to

preserve phantom and its acoustical properties, preservatives must be used. Hence,

its life span can be extended up to 6 months. In our experiments, cholor hexadine

has been used as the preservative. It is note that benzalkonium chloride or thimerosal

can be used as preservatives.

Soft tissue has been mimicked with agar phantoms in our experiments. Speed of

sound and attenuation coefficients are close to 1540 m/s and 0.54 dB.(cm.MHz)−1,

respectively. In order to prepare 1 lt phantom, following steps are applied. Firstly,

the temperature of 860 ml distilled water is raised to 85◦C. 30 g agar and 107 ml

n-propanol are added. The mixture is heated to 90◦C under stirring. It is stirred until

its color become transparent. Then, the temperature is cooled under stirring to 46◦C

and 10 ml cholor hexadine is added. Finally, the mixture poured into polyurethane

cap and it is cooled in the refrigerator at least 8 hours. If there are excessive bubbles

in the mixture, it can be rested about 15-30 minutes to eliminate them before putting

it in the refrigerator. 2D US images of a biopsy needle in the agar phantom prepared

with the recipe are shown in figure 6.

3.5 Agar-Gelatine Based Phantom

Agar and gelatin are one of the most frequently used materials to prepare phantom

as explained in the previous sections. Attenuation coefficient in agar and speed of

sound in gelatin are in the desired level to mimic soft tissue. To realistically mimic
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Figure 6: 2D US image of the needle in the agar phantom.

tissue, speed of sound in agar and attenuation coefficient in gelatin are modified with

additive chemicals. However, desired acoustical properties can be obtained by mixing

agar and gelatin. Also, acoustical properties in the mixture can be controlled with

percentages of agar and gelatin [43].

The most important property of this type of phantom is that it can mimic both

acoustical and mechanical properties of tissues, especially cancerous and glandular

tissues. Mechanical properties can be also controlled with percentages of agar and

gelatin (Table 2). It is a very important property because it is not easy to obtain the

desired acoustical and mechanical properties at the same time. Hence, agar-gelatin

based phantoms are frequently used in applications that acoustical properties are

as important as mechanical properties. The most conspicuous examples are needle
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insertion with ultrasound guidance and elastography. When the needle is inserted

into the tissue, it applies reaction force. Also, needle bends because of lateral forces.

Agar-gelatin based phantoms apply tactile feedback and the needle is bent. Hence,

the experiments become more realistic. Also, agar-gelatin phantom is important for

elastography experiments. Elastography is an imaging technique that maps tissues

elastic properties. US images are used to create stiffness map. The main purpose is to

determine whether the tissue is hard or soft because cancerous tissue is much harder

than healthy tissue. Using elastography cancerous tissue can be determined. Agar-

gelatin phantoms provide suitable medium for elastography experiments. Desired

mechanical properties can be obtained. Also, it is low cost and easy to prepare.

In our experiments, soft tissue has mimicked. Agar and gelatin percentages in

the phantom are 11% and 2%, respectively. Agar and gelatin do not have resistance

to microbiological invasions as described in previous sections. In order to preserve

the phantom and extend its durability, preservatives must be used. Cholor hexadine,

benzalkonium chloride, boric acid or thimerosal can be used to preserve the phantom.

In our experiments, benzalkonium chloride has been used to the preserve phantom.

In order to prepare 2 lt of phantom, following steps are applied [44]. Firstly, the

temperature of 890 ml distilled water is raised to 55◦C and temperature of the 980

ml distilled water is raised to 80◦C in separate beakers. Then, 110 g gelatine is added

to 890 ml at 55◦C and 20 g agar is added to 980 ml water at 80◦C. The mixtures

are stirred until their colors become transparent. Then, two mixtures are combined

and stirred rigorously until its color become transparent. It is cooled until 37◦C

while stirred. It is note that 5 g cellulose powder can be added at 45◦C to increase

attenuation coefficient. Then, 10 ml benzalkonium chloride is added. Finally, the

mixture is poured into polyurethane cap and it is cooled in the refrigerator at least

for 10 hours. If there are excessive bubbles in the mixture, it can be rested about

15-30 minutes to eliminate them before putting it in the refrigerator. 2D US images
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of the biopsy needle in the agar-gelatin phantom prepared with this recipe are shown

in figure 7.

Figure 7: 2D US image of the needle in the agar-gelatine phantom.

Cancerous phantom models also have been prepared in our experiments. The

percentages of agar and gelatin in the mixture are 15% and 5%, respectively. The

steps above are applied to prepare it. The mixture is poured into spherical molds

made from delrin and it is cooled in refrigerator at least 5 hours. Then, the phantom

is covered with stretch film. It is embedded into viscous soft tissue phantom about at

30◦C before putting it in the refrigerator. It is note that stretch film can be replaced

with materials made from latex like balloon because it does not affect transmission

of sound waves and does not reflect US waves.
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Gelatine Agar Modulus of Elasticity Human Tissue Mechanic Acoustic
(%) (%) (KPa) (KPa) Tissue Type Tissue Type
1 0.5 22 ± 2 19 ± 7 Fat Fat
2 1 36 ± 2 - Fat/Glandular Fat
5 2 33 ± 1 33 ± 1 Glandular Fat/Glandular
12 4 73 ± 9 - Cancer Glandular
15 5 117 ± 8 99 ± 33 Cancer/Fibrous Cancer

Table 2: Acoustic and mechanical properties of agar-gelatine phantom [45].

3.6 Evaporated Milk Based Phantom

Evaporated milk is another material to produce phantom [46]. The speed of sound

and attenuation coefficient in evaporated milk are 1547 m/s and 0.8 dB.(cm.MHz)−1,

respectively. These acoustical properties are in the desired level to mimic tissues in

ultrasound imaging but they should be altered according acoustic properties of desired

tissue type. The speed of sound can be controlled with n-propanol concentration and

attenuation coefficient can be controlled with distilled water concentration. In our

experiments, evaporated milk based phantom has been prepared to mimic human soft

tissue. For soft tissue mimicking, the speed of sound and attenuation coefficient in

the phantom should be close to 1540 m/s, 0.54 dB.(cm.MHz)−1, respectively. In

order to

Evaporated milk based phantom can be produced both in liquid and solid forms.

Evaporated milk is produced by mixing vigorously 55 g margarine, 400 g sugar, 480

ml skimmed milk and 245 ml boiled water about 5 minutes. Same recipe is used to

produce both liquid and solid forms. In order to prepare 1 lt liquid form evaporated

based phantom, following steps are applied. Firstly, the evaporated milk is heated

until 68◦C and it is filtered with vacuum flask. Notice that the temperature of

the evaporated milk must not exceed the 72◦C because irreversible changes in the

evaporated milk occur. Then, 30 ml n-propanol and 370 ml distilled water are mixed

in a separate beaker. The mixture and 600 ml evaporated milk are mixed and stirred
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gently until its temperature drops to 30◦C. Finally, the mixture is poured into a

plastic container.

Solid form evaporated milk based phantom is produced with adding agar. Agar

is also used in producing phantom and it alters the acoustical properties of the evap-

orated milk. Therefore, portions of substitutes are different than portions in liquid

form. 1 lt solid form evaporated milk based phantom is produced with applying fol-

lowing steps. Firstly, 644 ml distilled water and 56 ml n-propanol are mixed in a

beaker. The mixture is heated until 80◦C and 28 g agar is added to the mixture.

It is stirred until its color become transparent. In the following step, 500 ml evapo-

rated milk is filtered and heated until 55◦C. It is mixed with 500 ml agar solution

at this temperature. Finally, the mixture is stirred until its temperature drops to

38◦C. Then, the mixture is poured into a plastic container and it is cooled in the

refrigerator at 4◦C at least 8 hours. The melting point of the solid evaporated milk

based phantom is about 80◦C. Therefore, it is thermally stable.

Evaporated milk based phantoms do not have resistance to microbiological attacks.

In order to preserve the acoustical properties and extend durability, preservatives must

be added to the phantoms. The most powerful preservative is thimerosal for this type

of phantom. Thimerosal is an antifungal and antiseptic agent. It is commonly used

to extend the self-life of vaccines. It was reported that adding thimerosal (1.33 ml

for 800 ml evaporated milk) extents the life of this type of phantom to 2.5 years [46].

Also, the changes in acoustical properties are negligible.

3.7 Polyvinyl Alcohol Based Phantom

Polyvinyl alcohol (PVA) has been proposed as tissue mimicking material to mimic

soft tissue [47]. PVA based phantoms are stable and structurally rigid. However,

the preparation time of PVA is long and it requires precise temperature control.

PVA is synthesized with freezing-thawing method. After the appropriate amount
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of PVA is mixed with distilled water, the mixture is freezing 12 hours at −20◦C.

Then, the mixture is thawing 12 hours at 25◦C. The attenuation coefficient of PVA

phantom is 0.075 dB.(cm.MHz)−1 at the end first freezing-thawing process. The

attenuation coefficient can be increased with repeating the process by multiple times.

The attenuation coefficient increases to 0.12, 0.21, and 0.22 dB.(cm.MHz)−1 in the

following cycles. However, the attenuation coefficient is still low to mimic the soft

tissue after four freezing-thawing cycles. Therefore, enamel paint is proposed to

increase the attenuation coefficient of PVA. For example, if 0.8% enamel paint is added

to the PVA-water mixture, attenuation coefficient increases to 0.11 dB.(cm.MHz)−1

at the end of the first cycle. If the process is applied multiple times, attenuation

coefficient of PVA increases to 0.18, 0.25, and 0.28 dB.(cm.MHz)−1 in the following

cycles. The speed of sound in PVA varies between 1520 and 1610 m/s. This range is

in the desired level to mimic soft tissue. However, the attenuation coefficient in PVA

based phantom is low to mimic the human tissue. If the attenuation coefficient can

be increased until 0.5 dB.(cm.MHz)−1, PVA based phantom can successfully mimic

the soft tissue for ultrasound imaging.

3.8 Paraffin Based Phantom

Paraffin has been proposed as a potential substitute to prepare phantom [48]. Paraf-

fin is a very suitable material for mold applications. They are not toxic and have

resistance to microbiological attacks. Paraffin based phantoms have the advantage of

temperature stability. Their melting point is about 80◦C. Hence, they are durable.

Also, it easy to prepare paraffin based phantoms. Attenuation coefficient can be con-

trolled with carnauba wax and micro glass beads. The attenuation coefficient varies

between 0.32 and 2.04 dB.(cm.MHz)−1. However, it is not easy to control speed of

sound in paraffine. The speed of sound is varies between 1425 and 1480 m/s. Com-

pared with human acoustical properties, paraffin can mimic cancerous, abdominal,
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and breast tissues in ultrasound imaging. If the speed of sound can be increased with

additional substitutes, more realistic mimicking can be obtained.

3.9 Silicon Based Phantom

Silicone products have been proposed as potential substitute to prepare phantom

[49]. Silicone is a very suitable material for mold applications. Also, dehydration

does not occur and silicone has resistance to microbiological attacks. Thus, silicon

based phantoms are stable and durable. However, acoustic properties are not in the

desired range to mimic tissue for ultrasound imaging. Speed of sound in the silicone

compounds varies between 1059 and 1142 m/s and attenuation coefficient of sound in

silicone compounds varies between 0.84 and 1.72 dB.(cm.MHz)−1. Compared with

acoustic properties of the tissues, the speed of sound in silicone rubber is very low

and attenuation coefficient of sound in silicone rubber is very high to mimic the tis-

sues for ultrasound imaging. Hence, silicon oil, glycerol, and vaseline are proposed to

adjust the acoustic properties of silicone rubber. However, desired acoustical prop-

erties are not obtained with these additional substitutes. For example, attenuation

coefficient is adjusted to 0.84 dB.(cm.MHz)−1 with adding 40% silicon oil to silicone

compound. Another example, speed of sound is increased to 1180 m/s with adding

33% glycerol to the silicone compound but the attenuation coefficient is increased

to 1.72 dB.(cm.MHz)−1. As seen from these examples, the acoustical properties

of silicone are still far from the desired range to mimic the tissues even with addi-

tional substitutes. Therefore, silicone rubber compound is not preferable material to

mimic the tissues for ultrasound imaging due to the problems in altering acoustical

properties.

3.10 Magnesium Silicate Based Phantom

Magnesium silicate is a potential substitute for phantom preparation [50]. Magne-

sium silicate can mimic the soft tissue with modifying its acoustical properties. The
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speed of sound in magnesium silicate is 1458 m/s and attenuation coefficient is 0.04

dB.(cm.MHz)−1. Compared with acoustic properties of human tissue, the speed of

sound and attenuation coefficient are low. Hence, additional substitutes were pro-

posed to increase speed of sound and attenuation coefficient. In order to increase

speed of sound in magnesium silicate, it can be mixed with n-propanol, magnesium,

or tetrasodium pyrophosphate. The speed of sound can be increased to 1520 m/s

with adding 15% n-propanol, 10% magnesium or 0.4% tetrasodium pyrophosphate.

These substitutes increase the speed of sound to the desired level but they do not

affect the attenuation coefficient. It can be increased until 0.94 dB.(cm.MHz)−1 with

graphite or talc. For example, the attenuation coefficient can be increased to 0.52

dB.(cm.MHz)−1 with adding 5 gram graphite to 100 gram magnesium silicate. After

adding these substitutes, the desired acoustical properties are obtained to mimic soft

tissue. Magnesium silicate based phantoms are thermally stable and have resistance

to microbiological attacks. However, this type of phantoms are thixotropic (stable

form at rest but becoming fluid when agitated) so they are not suitable for mold

applications.
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CHAPTER IV

NEEDLE LOCALIZATION IN 2D ULTRASOUND

IMAGES

This chapter presents a novel image processing method for automated needle local-

ization in 2D US images. The proposed method uses a Gabor filter to segment the

needles in US images. The Gabor filtered images are then binarized with an au-

tomatic parameter tuning method and the needle trajectory is obtained using line

fitting. Finally, location of the needle tip is estimated using the probabilistic map-

ping method. In this chapter, the completed localization scheme is given in detail,

and the effectiveness of the method is shown using different types of tissue phantoms.

There are three commonly used methods for needle detection in US images. The

first method is based on the Frangi vesselness filter [19]. The second method is

variance mapping [5]. These methods enhance all of the tubular structures in 2D and

3D US images including undesired structures and artifacts. Due to this shortcoming,

it is difficult to distinguish needles from other structures (See Fig. 8(c)-(d)). The third

method is based on empirical and adaptive thresholding. However, the threshold value

can vary from image to image creating discontinuities in the appearance of the needle

in the US image (See Fig. 8(e)-(f)) .

Due to these shortcomings of the commonly used methods, we propose a new

filtering method based on the Gabor filter to detect biopsy needles in 2D US images

[51]. The proposed method consists of four parts: (i) Gabor-based line filtering,

(ii) binarization, (iii) axis localization, and (iv) needle tip localization. Steps of the

filtering method is shown in Fig. 9. The main difference between the proposed filtering

method and others is that this filter enhances the tubular structures in the direction
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(a) Raw Image (b) Gabor filter output

(c) Frangi filter output (d) Variance mapping output

(e) Thresholding with T = 128 (f) Thresholding with T = 180

Figure 8: (a) The raw image of the needle in gelatin based phantom. (b) The output
of the Gabor filter when the orientation of the filter, θ, equals to 232◦. (c) The output
of Frangi’s vesselness filter when thresholds, α and β, which control the sensitivity of
the filter equal to 0.5 and 15, respectively. (d) The output of variance mapping. (e)-
(f) The output of simple thresholding for 8-bit US image when the threshold values
(T ) equal 128 and 180, respectively.
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of the needle insertion path, filtering out the orthogonal structures. As a result, the

needle pixels become brighter compared to the image background, making the needle

stand out. The result of the proposed filtering method is shown in Fig. 8(b). The

raw 2D US image in the figure contains artifacts. For instance, the reverberation

artifact (at the bottom of the image) can be clearly distinguished. The brightness of

this artifact’s pixels are higher than the brightness of the needle’s pixels. Also, the

artifact’s shape is very similar to that of a needle. It can be challenging to detect the

needles using the previously mentioned methods, because they cannot filter artifacts

effectively. But, after the image is filtered using Gabor filtering, the needle pixels

become brighter than the most of the artifacts, making the needle distinguishable.

Figure 9: Flowchart of the proposed needle localization algorithm.
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4.1 Gabor Filter

Gabor filtering is widely used to identify fingerprint features in the literature [52], and

it is also used to detect anatomical structures, such as the liver and retina [53, 54].

The Gabor filter used in this research is adapted from [53].

The 2D Gabor filter function in the spatial domain is the multiplication of a

complex carrier sinusoid and a 2D Gaussian envelope:

g(x, y) = exp

(
− (x')2 + (y')2

2σ2

)
exp

(
j
(

2π
x'

λ

))
(8)

x' = x cos θ + y sin θ

y' = −x sin θ + y cos θ (9)

λ = 0.56σ

where σ is the standard deviation value, λ is the wavelength of the modulating sinu-

soid, and θ is the orientation of the Gabor filter.

ejx = cos(x) + jsin(x) (10)

Using Euler’s formula (10), the 2D Gabor filter can be rewritten as:

Re{g(x, y)} = exp(−(x')2 + (y')2

2σ2
) cos(2π

x'

λ
) (11)

Im{g(x, y)} = exp(−(x')2 + (y')2

2σ2
) sin(2π

x'

λ
)

The line filtered image, Ig(x , y), is the convolution of the input image, I (x , y),

and the imaginary part of the Gabor filter kernel, Im{g(x , y)}, as in (12).

Ig(x, y) = I(x, y) ∗ Im{g(x, y)} (12)

4.2 Estimation of Needle Insertion Angle

The Gabor filter is applied in accordance with an orientation angle, θ. In order to

localize the biopsy needle in US images, the orientation of the filter has to be equal to
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the insertion angle of the needle because the best appearance of the needle and its tip

can be obtained at this angle value. Therefore, this filtering angle is consistent with

the needle insertion angle. In Fig. 10, the Gabor filter is applied to the same image

by changing the orientation angle in increments of 30◦. This image bank shows that

the needle visibility is maximized when the filter orientation angle is almost equal to

the needle insertion angle, and the artifacts in the image created by other structures

are minimized.

The angle estimation is divided into two scenarios based on prior knowledge.

When frame sequences are used, prior knowledge is available for the frames; when

a single frame is used such data are not available. Two different techniques are

proposed below to estimate the needle insertion angles for both scenarios. Needle

insertion angle is estimated from a single US image and in frame sequences. In US

frame sequences, the information from previous frames can be used to estimate the

insertion angle; this information is not available, in single US images. The needle

insertion angle is estimated with two different techniques for each case.

4.2.1 Estimation of the Needle Insertion Angle from a single US image

Estimating insertion angle value in an image is quite complicated unless the angle is

known a priori. A method based on the quadrants of cartesian coordinate system was

developed to estimate the needle insertion angle in 2D US images. With this method,

a rough estimate of the insertion angle, α, is chosen first as shown in Fig. 11(b). If

the needle trajectory is similar to the trajectories as shown in quadrants I and III, we

choose the initial insertion angle, α, to be 135◦, and for the quadrants II and IV, we

choose α to be 225◦. After the initial assignment, the Gabor filter is applied using the

estimated insertion angle. The needle trajectory becomes clearer and the RANSAC

line estimator is applied, where the slope of the line, m, is found. The exact insertion

angle in terms of the Gabor filter coordinate system, θ, can be found more precisely
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at this point and then it can be used in the Gabor filter again to localize the biopsy

needle.

Due to the way the US images are collected, the coordinate frames of the needle

axis and the Gabor filter are not similarly aligned, as shown in Fig. 11(a). Using (13),

the exact insertion angle value is expressed in terms of the Gabor filter coordinate

system.

θ = α+ | tan−1(m) | −45◦ (13)

Figure 11: The US and needle coordinate systems. (a) Angle θ. (b) Possible α angles
for the quadrants.

Steps of the needle insertion angle estimation is depicted in Fig. 12 for two different

types of gel phantoms. First, raw images are collected ((a) and (f)). Second, a rough

estimate of the insertion angle is chosen and the Gabor filter is applied ((b) and (g)).

Next, the RANSAC line estimator is applied to get the exact insertion angle, θ ((c)

and (h)). Finally, the Gabor and the RANSAC are repeated to localize the needle

and its tip ((d-e) and (i-j)).
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4.2.2 Estimation of the Needle Insertion Angle in Frame Sequences

In US image sequences (i.e., videos), the needle insertion angle can be determined

at the beginning of the needle penetration and can be assumed constant afterwards.

Therefore, the needle insertion angle, θ, is determined before the filtering is applied.

The differences in close frames can be used to estimate the insertion angle. In general,

the image acquisition speed of the US devices are 30 frames per second (fps). Two

images that are one second apart can be used for angle estimation assuming that the

displacement of the US probe is zero at the beginning of the needle insertion and the

tissue (i.e., phantom) does not move, as shown in (14).

In = I[kn]− I[k(n− 1)] (14)

where I is the input image, In is the difference image, k is the frame step, and n

= 1,2,3,... is the frame number. This process generates a bank of binary images.

The needle insertion angle is updated as data are collected. Initially, we used the

least square method is used to detect the insertion angle by fitting a line to the

needle pixels. However, due to the artifacts in the image differences, the error in the

angle estimation increased dramatically. We observed that the needle pixels obtained

from the frame difference images lie in the maximum variance region. Therefore,

the principal component analysis was used to get the best insertion angle. Then,

covariance matrix of PCA was calculated as:

Σ =

 σ2
xx σ2

xy

σ2
yx σ2

yy

 (15)

where

σ2
xy =

N∑
i=1

(xi − x̄)(yi − ȳ)

N
(16)

and xi and yi are the coordinates of the white pixels in the binary image, x̄ and ȳ are

the means of xi and yi, respectively, and N is the number of the white pixels in the
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sum of the difference images. Then, the corresponding eigenvector υ in this direction

is:

υ =

υ(1,1) υ(1,2)

υ(2,1) υ(2,2)

 (17)

The angle of major principal axis, θm, in this direction is:

θm =

(
− tan−1

(
−
υ(2,1)
υ(1,1)

))
(18)

The needle insertion angle equals to the sum of the major principal axis in this

direction and π. Since the result of tan−1 ∈ [−π, π], π is added to θm for the Gabor

filter to work:

θ = θm + π. (19)

Steps of the needle insertion angle estimation for frame sequences is shown in Fig. 13.

Two images that are 30 frames apart in a sequence are chosen. These images are

binarized and their difference is obtained (Fig. 13(c)). Then, to detect the needle

insertion angle, the Gabor filter followed by RANSAC line fitting is applied (Fig.

13(d-e)).
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4.3 NEEDLE AXIS LOCALIZATION

4.3.1 Image Binarization

After the Gabor-based line filtering, image binarization is required for line fitting.

Binarization is achieved in three steps: smoothing, thresholding, and removing small

particles. The steps are explained in detail below.

4.3.1.1 Median Filtering

After the Gabor-based line filtering is applied, the output image contains considerable

noise (Fig. 8(b)), and the image should be smoothened for thresholding operations.

Therefore, a median filter is used to smoothen the image and reduce noise. A 7×7

sized kernel was used for images and frame sequences. This median filter enhances

the needle edges. The output of the median filter is shown in Fig. 14(c).

4.3.1.2 Automatic Thresholding

Thresholding is required to get an outline of the needle but we observed that the

threshold value is not constant after the median filter is applied. Therefore, an au-

tomatic thresholding method was needed. To determine the threshold value, Otsu’s

thresholding method [55] was used. For the difference image of close frames, the auto-

mated thresholding value was used directly. However, the threshold value obtained by

Otsu’s method can binarize an excessive number of pixels as the foreground of single

images because of low intensity levels of the needle pixels and the artifacts. At this

point, the RANSAC algorithm can fail. To prevent this and increase the success rate

of the method, Otsu’s threshold value was multiplied with a tuned constant which

was selected between 2 and 4. However, this tuned constant changes according to

the image medium. In order to calculate this parameter automatically, an entropy

based parameter tuning method for Otsu’s thresholding is proposed. It is described

in Section 4.3.3.
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4.3.1.3 Morphologic Operations

After automatic thresholding operations, a 3×3 square shaped structuring element

morphologic erosion and dilation is applied. After thresholding, the noise is reduced

using morphologic erosion. Even though morphologic erosion reduces the noise, it

deteriorates the continuity of the needle. Therefore, morphologic dilation is applied

in order to enhance the needle structure, and improve the needle continuity. The

result of the morphologic operations is shown in the most right column of Fig. 14(e).
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4.3.2 Line Detection & Region of Interest

In the binarization step, the needle pixels can be classified as background. In this

case, the needle cannot be a complete line structure in the images and there can

be gaps between the needle pixels. Hence, the needle is detected using a RANSAC

algorithm which is a robust line estimator. Briefly, RANSAC algorithm starts by

randomly selecting points from a point cloud and a line is fitted onto the selected

points. Then, model parameters are calculated and the consistency of the parameters

are evaluated. The same process is applied to the remaining points in the point cloud

for a best fit. Although the line is discontinuous in the binarized image, the RANSAC

can effectively distinguish the line outline.

After the needle trajectory was found, a region of interest (ROI) was selected

around the needle pixels to increase the effectiveness of the needle tip detection. This

also decreased the computation time. The coordinates of the ROI was calculated as:

width = x2 − x1

height = y2 − y1

length =
√
width2 + height2

(xs, ys) =
(N × height

2× length
,
N × width
2× length

)
(20)

(xf , yf ) = (x1 − xs, y1 + ys)

(xsec, ysec) = (x1 + xs, y1 − ys)

(xth, yth) = (x2 + xs, y2 − ys)

(xft, yft) = (x2 − xs, y2 + ys)

where (x1, y1), (x2, y2) are coordinates of the needle trajectory obtained by the
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RANSAC; (xs, ys) are translation distances according to the original coordinate po-

sition; (xf , yf ), (xsec, ysec), (xth, yth), and (xft, yft) are the coordinates of the rectan-

gular ROI; N is the thickness of the ROI in terms of pixels. These coordinates are

depicted in Fig. 15.

Figure 15: Needle region of interest coordinates.

4.3.3 Parameter Tuning for Otsu’s Thresholding

Generally, US images contain noise and artifacts. Therefore, the intensity level of the

needle pixels can be very close to the image background’s. If the image is not binarized

with a proper threshold value, the needle pixels can be classified as background or

an excessive number of artifacts can be classified as foreground. In this case, the

RANSAC algorithm can fail.

A constant value was selected as Otsu’s threshold parameter according to the

image background intensity in [2]. However, this parameter varies by image. Although

this parameter can be selected according to the specific image medium that is used, an

optimal value is hard to obtain. A tuned threshold value was acquired by multiplying

Otsu’s threshold with a pre-tuned constant, α, in [2] and [21] to improve the success

rate of the method. Below, an entropy based automatic α parameter tuning method

is explained to find an optimal threshold value for Otsu’s method.

Entropy based automatic parameter tuning is based on four image features: (i)
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foreground entropy, (ii) background entropy, (iii) ratio of the number of white pixels

(obtained from the original Otsu threshold value, (Totsu), to the total number of pixels

in the image, and (iv) entropy of the Gabor filtered image. The entropy values are

calculated according to the method given in [56] and [57].

Entropy (H), foreground entropy (Hf ), and background entropy (Hb) are calcu-

lated as:

H = −
L−1∑
i=0

p(i) log2 p(i) (21)

Hb(Totsu) = −
Totsu∑
i=0

p(i)

Pb(Totsu)
ln
( p(i)

Pb(Totsu)

)
(22)

Hf (Totsu) = −
L−1∑

i=Totsu+1

p(i)

Pf (Totsu)
ln
( p(i)

Pf (Totsu)

)
(23)

where

p(i) =
h(i)

N
, i = 0,1,2,. . . , L-1,

Pb(Totsu) =
T∑
i=0

p(i), Pf (Totsu) =
L−1∑

i=T+1

p(i),

where p(i) is the probability mass function of the image, N is the total number of

the pixels in the image, i is the intensity level, h(i) is the total number of the pixels

where the intensity level equals to i, and L is the possible maximum number of the

pixel levels. The acquired images have 8 bit grayscale resolution, therefore L = 28

was used.

The entropy based parameter tuning method was developed to perform both in

homogenous and heterogenous image backgrounds. According to our experiments, the

tuning parameter, α, is very close to the entropy value, H, of images with heteroge-

nous backgrounds. On the other hand, for images with homogenous backgrounds,

the parameter value is close to the summation of the image entropy, H, and the ratio

44



of the background entropy to the foreground entropy, Hb/Hf . In heterogenous back-

grounds, the background entropy to the foreground entropy ratio is high. A third

parameter should be added to the entropy summation to tune the parameter for both

types of image backgrounds. This parameter should not affect the entropy summation

for homogenous images but should reduce the entropy summation for heterogenous

images. This parameter should also distinguish the background composition. This

could be achieved by using the ratio of the total number of foreground pixels (ob-

tained from Otsu’s threshold method) to the number of total pixels, Wratio, given in

(24).

Wratio =

h∑
i=0

w∑
j=0

(I(i, j) ≥ Totsu)

N
(24)

If the Wratio is subtracted from the entropy summation, optimal α parameter

would be achieved. Then, the parameter to be multiplied with Otsu’s threshold is

defined as:

α = H +
Hb

Hf

−Wratio. (25)

The optimum threshold (Ttuned) is calculated as:

Ttuned = α · Totsu. (26)

After parameter tuning operations, line-shaped structuring elements were applied

for morphological erosion, and 3× 3 square shaped structuring elements were applied

for morphological dilation.

The proposed automated parameter tuning method can work with different types

of image backgrounds as shown in Fig. 16. Although the excessive number of pixels

were determined as the foreground, the optimal threshold values were obtained thanks

to the proposed parameter tuning method. The expected outcome of this tuning

method is to reduce the processing time during the RANSAC line fitting and to
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eliminate the failures which result from the excessive number of foreground pixels

that are due to pre-tuned Otsu method.

Figure 16: Results of the proposed entropy-based parameter tuning method. Each
row represents results from a different phantom. Columns are output images of the
proposed method’s consecutive steps.

4.4 Location Estimation of the Needle Tip

Finding the exact location of the needle tip is a difficult task, because the visibility

of the needle tip changes with the needle’s position. In cases where the needle is

orthogonally imaged, the needle’s position and the orientation determines how the

needle and its tip are seen. The needle can be imaged as a complete structure if the

bevel of the tip is facing away from the US probe. However, the needle tip might be
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seen as a small circular-shaped independent structure at the end of the needle, if the

bevel tip is facing towards the probe [58].

If the US image is noisy or the needle is close to other structures, the needle

tip cannot be differentiated as a bounded or an unbounded structure. Therefore,

the position of the needle tip cannot be recognized in US images, unless an external

sensor is used. However, the needle tip can also be estimated from the images.

Here, a probability map based needle tip estimation algorithm is proposed in

order to estimate the needle tip position in 2D US images (Fig. 9). In the first part of

this needle tip detection algorithm, the input image is convolved using a Gabor filter

kernel created using the exact insertion angle (θi) of the needle. Then, the visibility of

the needle structure, especially its tip, reaches to a maximum in the convolved image;

while, the background’s and the artifacts’ intensity levels decrease to a minimum.

Next, a 7× 7 sized kernel Median Filter is applied to reduce the noise in the Gabor

filtered image.

In the binarization step, the image is binarized using the mean of the Otsu’s

threshold value and the tuned threshold value. Then, the Otsu’s threshold classifies

an excessive number of pixels as the foreground (as seen in Fig. 19-(d)). The entropy

based parameter tuning segments the minimum number of foreground pixels to be

used for RANSAC line fitting. In this algorithm, the continuity of the needle is lost

when only the tuned threshold value is used. Therefore, the optimum threshold value

is obtained by averaging the two threshold values.

In order to estimate the needle tip, a probability map is created. This map shows

the probability of each pixel belonging to the needle tip in the region of interest

(ROI). The probability map changes based on the geometrical model of the needle,

the binarized US image, and the output of the Gabor filter.

According to the basic mechanics of the materials, the needle curvature can be

estimated by a third order polynomial in the US images. In our tests with phantoms,
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the needle’s geometrical shape was very close to a straight line (the coefficient of

the cubic term was 10−4 in our hardest phantom gel). Therefore, the needle ROI is

selected as a rotated rectangle. Then the ROI is scanned line by line, and for each

point on the line the number of white and black pixels both before and after the

point, are counted. The white pixels up until the threshold point are assumed to

be the detected needle pixels, and black pixels are assumed to be the undetermined

needle pixels. The white pixels beyond the threshold point are assumed to be non-

needle pixels that are determined incorrectly, and the black pixels are assumed to be

non-needle pixels. The probability of each point on the needle is calculated using con-

ditional probability using these measurements. In short, the probability of belonging

to the needle is calculated for only selected points on the line. The probability of a

point being a true needle pixel, (P (N | +, nxy)), is calculated as:

P1 =
whites until needle

(whites until needle+ blacks until needle)

P2 =
blacks until needle

(whites until needle+ blacks until needle)
(27)

P3 =
whites after needle

(whites after needle+ blacks after needle)

P4 =
blacks after needle

(whites after needle+ blacks after needle)

P (N, nx,y) = (P1 + P3)P1 + (P2 + P4)P4 (28)

P (+ | N, nx,y) = P1 (29)

P (+, nx,y) = (P1 + P3)P1 + (P2 + P4)P2 (30)

P (N | +, nxy) =
P (N, nx,y)P (+ | N, nx,y)

P (+, nx,y)
(31)

It is important that, this probability is combined with the Gabor filter output,

because Otsu’s threshold method can binarize an excessive number of non-needle

pixels. These non-needle pixels can also yield high probabilities, which would mark
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these pixels as needle tip pixels. However, if the input image is filtered using a

Gabor filter kernel, the visibility of the needle structure, especially its tip reaches to

a maximum. By multiplying the probability value with the absolute intensity level

of the Gabor filter output, as in (32), false needle tip estimations can be eliminated.

P (T | +, nxy) = P (N | +, nxy)· | Ig(nx,y) | (32)

Sample needle probability maps that are obtained from a needle inserted into

different phantoms are shown in Fig. 17 and Fig 18. As a final step, the probability

of each pixel is calculated and the location which has the maximum probability is

estimated as the needle tip location (Tip(x,y)):

Tip(x,y) = arg max
nx,y

P (T | +) (33)

The steps of the proposed needle tip estimation method are shown in Fig. 19. A

needle probability map that is obtained from a needle inserted into an agar phantom

(see Fig. 19-a) is shown in Fig. 20. Notice that probability reaches its highest value

at the needle tip.
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(a) Raw Image of agar (b) Needle ROI (c) Gabor Filtered image using
θi

(d) Image Binarization using
Totsu = 14

(e) Binarized Needle ROI using
Totsu = 14

(f) Image Binarization using
Ttuned = 24

(g) Binarized Needle ROI using
Ttuned = 24

(h) Possible needle tip locations (i) Estimated needle tip
location

Figure 19: (a) 8-bit raw image of the agar based phantom. (b-c) The needle ROI
and its insertion angle θi = 152.71◦ were determined with the Gabor-based needle
localization algorithm with the reference angle θ = 135◦. (d) Thresholding with
Otsu’s method. (e) Binarized needle ROI of (d). (f) Thresholding with the mean
of Otsu’s threshold and the tuned threshold. (g) Binarized needle ROI of (f). (h)
Possible needle tip locations. (i) Estimated needle tip location.
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CHAPTER V

REAL-TIME NEEDLE TIP LOCALIZATION

This chapter presents needle tip tracking in 2D US images using Gabor filter. The

needle is inserted manually, and the needle tip is tracked using 2D US imaging. The

needle tip estimation noise is reduced with Kalman filter. Also, in order to test the sys-

tem with imaging faults and tissue deformations, needle tip tracking simulations are

performed. Tissue deformation model is used to make the simulation more realistic.

Using the simulation, Kalman filter accuracy is tested and optimum noise covariance

and measurement noise covariance matrices for Kalman filter are determined. This

chapter also presents bin packing method to accelerate the proposed needle local-

ization method. Using bin packing method, the processing time is reduced by 56%

without a GPU so the proposed localization method executes in real-time.

5.1 Kalman Filter for Smoothing Estimation Noise

The geometrical shape of the needle is very close to a straight line in 2D US images.

In real time, there can be fluctuations in the estimated needle tip trajectory because

of the estimation noise coming from the algorithm explained above. The estimation

noise originates from varying needle tip visibility and the alignment errors formed

between the US probe’s imaging plane and the needle.

In 2D US images, the visibility of the tip of the needle can be low, or the tip

might be seen as an independent structure from the needle. In these situations, the

needle tip is detected with an estimation error. However, if there is a misalignment,

the estimation noise can be high. The point where the needle intersects the US image

plane is estimated as the needle tip during misalignment occurrences. Also, the needle

can disappear completely, or the needle cannot be detected by the RANSAC in the
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image. As a result, the needle tip cannot be estimated. A Kalman filter is used to

smoothen the estimation noise and estimate the position of the needle tip when the

needle axis is not detected. Fig. 21 shows implementation of the Kalman Filter. The

2D position (x, y) and linear velocities (ẋ, ẏ) of the target are chosen as states for the

Kalman Filter and it is described by

Figure 21: Kalman Filter Implementation [59]

xt =

[
x y ẋ ẏ

]T
Using the states, dynamic model of the system xk and the measurement model zk can

be formed as:

xk = Axk−1 + wk,

zk = Hxk + vk,

where
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A =



1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1


and H =



1

1

0

0


(34)

The process noise (wk) and the measurement noise (vk) are assumed to be zero

mean Gaussian distributions with∼ N(0, Q) and∼ N(0, R) respectively. Q and R are

the noise covariance and the measurement noise covariance matrices. These matrices

are set manually and they are related to the Kalman filter performance. The results

of needle tip tracking in agar-gelatin based phantom using Kalman filter are shown

in 22. In order to evaluate the Kalman filter performance in realistic conditions and

to obtain optimum values for the Q and R matrices, a simulation for the needle tip

tracking is developed. The simulation is explained in detail in the following section.

(a) Frame #1 (b) Frame #41 (c) Frame #60

(d) Frame #86 (e) Frame #100 (f) Frame #115

Figure 22: Results of the proposed needle tip localization algorithm when time step
(dt) equals 0.2 seconds. The estimated needle tip location is represented using ’o’.
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5.2 Needle Tip Tracking Simulation

The US images inherently are noisy. Developing new algorithms to improve needle tip

localization can be slow or complicated. Hence, a simulation platform is implemented

to develop localization algorithms rapidly. Also, a simulation platform would be more

effective to test different conditions of the system. For instance, the misalignment

between the needle and the US image plane cannot be easily tested. The main

purpose of the simulation is to improve the Kalman filter performance under different

types of needle tip measurement noises. In order to simulate the needle tip tracking

more realistically, tissue deformations and time-to-time image plane misalignments

are incorporated. In Fig. 23, needle insertion and needle retraction are simulated.

Misalignment cases of the needle and the tissue deformations are also illustrated. The

needle tip estimation error versus time including the simulation steps shown in Fig.

23 are plotted in Fig. 24.

Input parameters for the simulation are: (i) The location of the target, (ii) The

needle insertion angle, (iii) Width of the needle region of interest, (iv) The needle

motion model, (v) The noise model of the needle tip measurement, (vi) The modulus

of elasticity and the Poisson’s ratio of the tissue, (vii) Applied force, and (viii) Simu-

lation time step (dt). Output parameters for the simulation are: (i) Deformed mesh

with respect to dt, and (ii) The error of the Kalman filter.

A virtual spring model was used to model the tissue deformation by [60]. In

our simulations, the tissue assumed to be homogenous, and made of linearly elastic

material [61]. While the needle is inserted with applied force (Fapplied), the tissue

resists the motion in the opposite direction. The reaction force causes the tissue’s

internal damping (Fdamping) and stiffness (Fstiffness) forces. The total force applied

to the needle tip to cut the tissue (Fcutting) is described by [62] [63]
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Figure 23: Simulation snapshots of the needle tip tracking are shown. The needle
insertion ROI is drawn with dashed lines. For this configuration 11x24 2D-nodes are
created, the width of the meshes equals two times the needle insertion ROI. The tissue
is not rigid. The circular region indicates suspicious region, and the ’+’ in the region
indicates the target. The linear line in the needle insertion ROI indicates the needle,
and the actual tip of the needle is shown using ’+’. The estimated needle tip and
the Kalman filter output are represented using ’*’ and ’o’, respectively. Misalignment
states are indicated by labels, and the needle is not visible. As it is shown with
snapshots, the Kalman filter can estimate the position of the needle tip when it is
not visible.
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Figure 24: Needle tip estimation error versus time. The error of each frame illustrated
in Fig. 23 is marked with ’+’ and the corresponding frame number is indicated.

Fcutting = Fapplied − Fstiffness − Fdamping (35)

Mat = Fapplied −Kut − Cvt (36)

where M, C and K are the mass, damping and stiffness matrices, respectively. at, vt

and ut are the acceleration, velocity and position of the nodes at time t. The next

position of the nodes (ut+1) can be calculated as follows:

u(t+1) = ut + vtdt+
atdt

2

2
(37)

In our simulations, a rotated rectangular ROI is created according to the needle

insertion angle and the target location (Fig. 23). The nodes are created using equal

spaces and the nodes are triangulated using the Delaunay triangulations. In Figure

25, 2D 7x7 nodes are created and the figure shows the structural deformation while

the needle is inserted into the tissue.
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The Kalman filter performance is tested in realistic conditions using the simu-

lation platform. Also, its performance with respect to different R and Q matrices

is evaluated to obtain the optimum values. In real-time needle localization estima-

tion, the noise is smoothened by obtaining the Kalman’s R and Q matrices from the

simulation.

Figure 25: Snapshots of the tissue deformation while the needle is inserted. 2D 7x7
nodes are created and shown with circles. The needle axis is shown using a linear
line, and the ’+’ indicates its actual tip position.

5.3 Bin Packing

In order to execute the proposed needle tip localization method in real time, its

processing time should be decreased significantly. The proposed needle localization

algorithm is fairly complex, and consists of twelve main processing steps. During

the localization, the frames are processed sequentially, since each processing step

depends on the previous one’s output. Also, partitioning the images into sub-images

and processing these in parallel is not a good way to speed up the process, because
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the needle structure may not be detected, and combining these sub-images increases

computational time. Hence, speeding up the processing time for a remarkable amount

for single images is difficult. However, the frame sequences can be processed in parallel

by applying the bin packing method to speed up the process.

The bin packing method divides the operations into equal time intervals and the

processes are packed into bins. The processes in the bins are applied to different

frames sequentially in separate threads. Each thread starts to process with a new

incoming frame as the processes in the first bin are completed. The schematic rep-

resentation of the sequential and bin packing methods are illustrated in Fig. 26. In

this study, the processing time of the method’s steps are measured (Table 3), and

accordingly the method is divided into four bins (P1, P2, P3, and P4) with respect to

their processing times. It is assumed that the processing time of each bin is approxi-

mately equal to each other, T/4 at best. If a single image is processed at a time, in T

time, the needle tip is localized in Frame #1 in thread #1. However, if bin packing

is used, the needle tip is localized in a thread, and that thread starts to work on the

next frame. With bin packing, the needle tip is localized in four consecutive frames in

1.75T time at best, while four frames can be analyzed using a sequential processing

method in 4T time.

A pipeline is a structure under which the execution of the instructions by a CPU

is divided into several stages, with the operation to progress along the various units

responsible for processing each stage. As a result, it is possible to start executing

the next instruction without waiting for the execution of the preceding one to be

completed, so the program execution can be accelerated. The bin packing method

reduces the processing time by 56% at best using CPU efficiently. This is true if

the images are supplied faster than the single image processing time. This value was

calculated by finding the difference between 4T and 1.75T, then dividing the result

of this substraction by 4T. If the proposed needle localization processes with the bin
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packing method, the needle tip can be localized in real-time without needing a GPU.

Process Process Time (ms) Bin
Image Read 2.51 ± 0.41

Gabor Filter 0.92 ± 0.18 P1

#1st Median Filter 7.43 ± 1.22
Stage Otsu Thresholding 0.42 ± 0.09

Parameter Tuning 1.98 ± 0.39 P2

Morphological Opr. 0.10 ± 0.02
RANSAC Line Fitting 3.99 ± 0.55

Gabor Filter 0.31 ± 0.05 P3

Median Filter 7.25 ± 1.13
#2nd Otsu Thresholding 0.31 ± 0.06

Stage Parameter Tuning 1.70 ± 0.21 P4

Needle Tip Estimation 3.31 ± 0.34
Overall Processing Time 35.01 ± 3.04

Table 3: Processing time of each process in Fig. 26. #1nd and #2nd stages are as in
Fig. 9
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(a) Sequential processing method

(b) Bin packing method

Figure 26: Schematic representations of sequential and bin packing methods. Pro-
cessing time of each bin (T/4) is assumed to be equal to each other. At the best case,
the processing time of the localizing needle tip in four frames with (a) sequential and
(b) bin packing methods are 4T and 1.75T , respectively. Notice that processing time
of the needle localization in the first frame is equal in two methods.
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CHAPTER VI

EXPERIMENTAL RESULTS

In this chapter, the accuracy of the needle insertion angle and the needle tip estima-

tion methods are evaluated using an optical tracking system. Firstly, experimental

setup are described for locating the needle tip in 2D US images and measuring the

angle between US probe and the needle. Then, the execution time of the proposed

localization method is given. Finally, RMS errors of the needle insertion angle and

the needle tip estimation methods are presented.

6.1 Experimental Setup

6.1.1 Biopsy Robot - OBR

The robotic system that was used to insert needles is called OzU Biopsy Robot (OBR),

and it has 5-DOF (see Fig. 27). It is designed to conduct biopsies on humans. The

OBR consists of 3 main stages: front stage, back stage and the syringe mechanism.

The front stage has 2-DOF and consists of one stationary base and four moving links

attached to it. Motors are attached to the base in order to keep the moving parts

light. A gimbal with 2-DOF is connected with 45◦ to the end-effector of the 5 bar

linkage. The gimbal is used as guidance for the needle. The design of the back stage

is similar to the front stage with an addition of rotational axis. A 2-DOF gimbal

which carries the syringe mechanism is connected with 45◦ to the end-effector of the

links, hence the position of the syringe mechanism according to the base of the robot

can be easily calculated using kinematic equations [64]. The syringe mechanism is

designed to get tissue samples from human body after the insertion of the needle.
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Figure 27: View of 2D US guided 5-DOF robotic system for percutaneous needle
procedures.

6.1.2 US Machine

The images were acquired using a LOGIQ P5 2D US machine (General Electric, USA),

with a linear 2D US probe (11L, General Electric, USA). The acquired images were

640 × 480 pixels. The images were captured from the US machine with EURESYS

PICOLA HD 3G frame grabber.

6.1.3 Phantom

Four different types of phantoms and distilled water were used during needle insertion

experiments. These are distilled water (@25◦C), distilled water and ethanol mixture

(@25◦C), gelatin-based, agar-based, and gelatin and agar mixture phantoms. These

phantoms were prepared according to the recipes given in Chapter III. In the ex-

periments, STERIKING R41 22G x 15cm biopsy needles (WIPAK MEDICAL) were

used.
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6.1.4 Execution Time

The needle localization algorithm presented in Chapter IV was implemented in C++

using the OpenCV library, and run on a 64-bit Window 7 workstation, which has an

Intel Xeon E5-2620 CPU running at 2 GHz and 32 GB of RAM. The execution time

of the proposed needle axis localization and needle tip estimation in Section 4.4 for

a single image is 17.00± 2.03 ms and 12.95± 1.54 ms (mean ± standard deviation),

respectively.

112 frames were used to measure the processing time of the sequential and the bin

packing methods mentioned in Chapter 5, Section 3. Fig. 28 shows the processing

time of the sequential and the bin packing methods as histogram plot. The execution

time of localizing the needle tip in a frame with sequential and the bin packing

methods is 35.01±3.04 ms, 13.28±3.30 ms (mean ± standard deviation), respectively.

Therefore, the bin packing method reduces the processing time by 56%.

Also, execution time of the algorithm without entropy based parameter tuning for

a single image is in C++ 46.05 ± 3.30 ms (mean ± standard deviation). Therefore,

the entropy based parameter tuning method reduces the execution time by 24%.

6.2 Needle Localization Results

6.2.1 Simulation Results

The needle tip tracking accuracy was initially evaluated with a simulation study.

OBR inserts the needle with a PD controller, so in the simulation the needle tip

reaches the target using PD controller. In the simulation dt was set to 50 ms and

the duration of the needle insertion and the retraction are assumed to be equal. This

simulation was repeated 50 times and 11100 frames were evaluated. In each frame,

white Gaussian noise was added to actual needle tip location to simulate needle tip

estimation noise. The noise in the needle tip estimation was smoothen using Kalman

filter (see Fig. reffig:Insertion). The parameters of Kalman filter (noise covariance
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Figure 28: Processing time of the sequential and the bin packing methods

and the measurement noise covariance matrices) were tuned to get minimum and

maximum error of the proposed tracking error. The minimum and maximum RMS

error in the simulations of the proposed tracking method in Section 5.2 are 0.25 mm

and 0.84 mm, respectively.

6.2.2 Experimental Results

The accuracy of the needle insertion angle estimation and the needle tip localization

methods were evaluated using the OptiTrack optical motion capture system. 11.4

mm diameter optical markers were attached to the ultrasound probe and the needle.

In order to find the needle tip position in 2D US image using motion capture, the

system was calibrated with the proposed system in [65]. The needle was inserted to

the agar-gelatin based phantom manually. After the needle was inserted, the angle
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value and the tip position were measured both by the optical tracking system and

the proposed estimation method simultaneously.

54 2D single US images were used to evaluate the accuracy of the proposed in-

sertion angle estimation in Section 4.2.1. The RMS error of the method is 2.29◦. 38

images were used to evaluate the accuracy of the needle tip localization. In order to

find the error of the proposed method in Section 5.2, the Euclidean distance between

the actual needle tip location and the estimated needle tip location were calculated

for each frame. The RMS error of the proposed localization method is 1.17 mm.

Figure 29: Experimental setup. Optical markers were attached to the needle and the
US probe for position validation.

In this thesis, four different types of phantoms and a water medium were used to

evaluate the algorithm capability to localize the needle axis and its tip in different

contrast levels. Realistic phantoms were used specifically to prove that the proposed

method works in a variety of US images with distinct backgrounds. 20 phantoms
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in total were used in the experiments. The needle was inserted into each phantom

at least 30 times and approximately 3 US images were captured in each insertion.

In total, 1417 single 2D US images from different types of phantoms were used to

evaluate the algorithm. In all of the images, the needle trajectory and its tip were

localized successfully. The algorithm was able to localize the biopsy needle axis and

its tip in all of phantoms confirming the robustness of the method.
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CHAPTER VII

CONCLUSION

In this thesis, a needle localization method in 2D US images is proposed. The needle

trajectory and the needle insertion angle are estimated without using an external

sensor. The major difference of the proposed method compared to others in the

literature is segmenting the needle pixels with a Gabor filter, which can distinguish

the needle from the background image. This filter enhances the tubular structures in

the direction of the needle insertion path filtering out the orthogonal structures. As

a result, the needle pixels become brighter compared to the image background and

the needle stands out.

The proposed localization method consists of the two consecutive stages. In the

first stage, the Gabor filter is applied to image, then the needle insertion angle is

estimated, and the needle trajectory is found with a RANSAC line estimator. In the

second stage, Gabor filter is repeated, and then the needle tip location is estimated

with probability mapping method. The probability of each pixel being a needle tip

is calculated and the pixel with maximum probability is located as needle tip.

The proposed localization method also binarizes the US image using an entropy

based parameter tuning method. Images from different types of backgrounds are

binarized automatically with an optimum threshold value. The robustness of the

algorithm is increased, and also the processing time is reduced by 24%.

In real-time, Kalman filter is used to smooth the needle tip estimation noise and

to estimate the needle tip when the needle axis is not detected. In order to, calculate

the Kalman filter accuracy under the tissue deformation and misalignment between

US probe and the needle, needle tip tracking simulation is presented. Thanks to the
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simulation, optimum noise covariance and the measurement noise covariance matrices

are determined. In order to execute proposed method in real-time, the bin packing

method is used and the processing time is reduced by 56%, without a GPU.

The proposed localization method was tested in different phantoms. In the ex-

periments, phantoms were produced to specifically mimic the human soft tissue. In

Chapter III, tissue mimicking materials and phantom preparation methods are detaily

explained. Also, their acoustical properties are presented. The references mentioned

in this chapter are complete and provide a survey on US phantoms.

When the experimental results are evaluated, the accuracy and speed of the pro-

posed method is sufficient enough to be used in actual percutaneous procedures in

real time. It is also necessary to note that the RMS error of the optical tracking

system in position and angle measurements were 1 mm and 1◦, respectively. Accu-

racy results of the proposed method are in the same amount of the external sensor’s

accuracy, which shows that the proposed needle localization method works properly.

The proposed localization method was developed for needle localization in 2D

US images. However, the method capable of localizing the biopsy needles in the

CT and fluoroscopy images. In these images, the needle especially its tip is very

distinguishable. Also, the needle is seen as a complete structure and the intensity

of the needle pixels are very high compared to anatomical structures and the image

background. On the other hand, the needle visibility is very low in the US images

and the needle tip can be seen as unbounded structure from needle axis in US images.

The proposed method localizes the needle axis and its tip when the images contain

excessive number artifacts and the intensity of needle pixels are close to the image

background. Also, the algorithm was tested using close to 1500 single 2D US images

from different types of phantoms. In all of the images, the needle and its tip is

localized successfully. CT and fluoroscopy images do not have undesirable artifacts

and reverberation effects. Hence, the needle in these images can be localized using

71



the proposed localization method. All in all, the proposed method can considered as

framework for needle localization in the medical images.
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