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Özyeğin University
August 2015

Copyright c© 2015 by Murat Kırtay



COMPUTATIONAL APPROACHES TO BRAIN
MECHANISMS OF ACTION RECOGNITION AND

EMOTION

Approved by:

Professor Erhan Öztop, Advisor
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Özyeğin University

Professor Tankut Barış Aktemur
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ABSTRACT

Through evolution living beings have gained unique features to deal with apparently

easy but computationally expensive problems such as mate selection, learning sen-

sorimotor skills and decision making. Thus, understanding how a biological system

can process sensory information, interpret the probable results and find a solution

in relatively short time to faced problems have become an attractive research area

for computational neuroscience, artificial intelligence (AI) and robotics. In this the-

sis we focused on mirror neurons in the ventral premotor cortex (area F5) and the

functional aspects of emotions from a computational but biologically plausible way.

In the former part, the raw neural firing data from area F5 of macaque monkeys

are analyzed to undercover neural representation using a decoding framework. For

this, we propose two methods to detect mirror neurons by using machine learning

and statistical analysis techniques. In the later part, we present that higher level

emotions (those that have putatively evolved after the basic emotions of fear, anger

etc.) are the behavioral manifestation of self-regulation mechanisms of computational

(neuronal) energy expenditure for cognitive processing. To realize this proposal, we

chose a tractable computational mechanism that may be considered as a model of

neural computation mechanisms of the brain and deploy it on a robotic platform

(Darwin-OP).
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ÖZETÇE

Evrim süreci boyunca canlılar çözümü kolay görünen fakat hesaplama gücü ve yükü

bakımından yüksek problemleri çözebilmek için çok çeşitli özellikler kazanmışlardır.

Bu problemlere örnek olarak eş seçimi, yeni beceriler edinme ve beklenmeyen du-

rumlarda karar verme gösterilebilinir. Karmaşık biyolojik sistemlerin bilgi edinme,

edinilen bilgiyi sonuçlandırma ve göreceli kısa zaman aralığında problem çözme be-

cerileri hesaplamalı sinirbilim, yapay zeka ve robotik alanında çalışan araştırmacılar

için ilgili literatürlerde var olan problemlerin çözümü için ilgi çekiçi araştırma alanı

olarak öngörülmektedir. Bu tez çalışmasında makak maymunlarının beyinde yer

alan F5 bölgesindeki ayna nöronlarının sinirsel çözümlemesini ve duygu tabanlı karar

vermenin hesaplama yetisi bakımından işlevseliği ve biyolojik açıdan ikna ediciliği

hakkında elde edilen sonuçlara yer verilmiştir. İlk bölümde, makak maymunundan

farklı deney şartlarından elde edilen sinirsel veri kümelerine, makine öğrenmesi ve

istatistiksel analiz yöntemleri uygulanmasıyla elde edilen sonuçların detaylarına yer

verilmiştir. Bu yöntemler sonucunda F5 bölgesindeki ayna nöron adayları seçilmiş ve

bu nöronların sinirsel gösterimleri hakkında literaturde önceden elde edilmemiş bul-

gulara yer verilmiştir. İkinci bölümde ise temel duygulardan hemen sonra gelişen üst

seviye dugyuların vücut mekanizmasında var olan enerji seviyesinin değişiminin ve

denetiminin işlevsellik ve biyolojik açıdan incelenmesine ve insansı robot platformu

üzerinde gerçeklenmesine yer verilmiştir.
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Statement of Contribution

In Chapter 2, recorded data provided by the project collaborators from University

of Crete and utilized methods are discussed in the meetings with Erhan Öztop. In

Chapter 3, the applied vision algorithm was tuned in collaboration with Alp Pehlivan.

The rest of this thesis is my own original work.

vii



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
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CHAPTER I

INTRODUCTION

This thesis concerns the development of computational approaches for modeling brain

mechanisms, namely mirror neurons and emotions. Moreover, emotion related mod-

eling is realized both in simulation and hardware (e.g. robot platform). In the first

part, we automatize the detection of the mirror neurons among a set of neurons which

was generally done in a heuristic and often manual way. In the second part, we pro-

pose a function for emotion, and implement it in an existing cognitive process of a

humanoid robot to demonstrate its plausibility. With this we show that computa-

tional energy conservation might lead to emergent emotion. Furthermore, we test

our implementation both in simulation and on hardware to exemplify that proposed

emotion mechanism not only perform well in simulation, but it also can be realized

on a real robot platform.

1.1 Motivation and Background

Brain and its sensorimotor mechanisms have been considered as a potential source

of solution to various existing problems in robotics and artificial intelligence. This is

the reason why, brain inspired approaches substantially increased in many fields of

engineering such as cognitive robotics, machine learning, computational neuroscience

and artificial general intelligence. In this thesis we specifically focused on two brain

mechanisms which are action recognition (e.g. mirror neurons) and emotions due to

their unique roles in the brain and promising impacts on related fields.

In order to get insights from the brain mechanisms, we follow a model based

approach to investigate mirror neurons and emotions. By doing so, we developed a

decoding framework for mirror neurons and emotion based neural energy conservation
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mechanism to get preliminary findings and results for building computational models

of mirror neuron and emotions. According to Marr’s three levels of analysis, a complex

biological system (e.g. human brain, vision system) can be understood by analyzing

them into three levels of abstraction [1]. In the first level the computational model of

the system should be derived to understand the goals of the system. In the second level

the algorithmic level should be constructed to obtain representations and algorithms

of the system that used to achieve the goals of the system. In the last level the

physical realization of the system on a hardware platform should be implemented to

finalize the abstraction levels. In this thesis we partially performed these three levels

for mirror neurons and a simplified version was fully realized for emotion studies.

Figure 1: Marr’s three levels of analysis

On the one hand, we analyze the neural data to propose a biologically realistic

computational model for mirror neurons for the later studies. On the other hand, we

realize a version of these three levels of analysis framework to investigate functional

aspects of the emotions.
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1.1.1 Existing Works on Mirror Neurons

Mirror neurons were discovered in the ventral premotor cortex (area F5) of a macaque

monkey which become activated while the monkey executes an action or observes

similar action executed by the others [2]. Up until now, the functions of mirror neu-

rons have been associated with empathy, language, imitation learning, autism spec-

trum disorder, cultural evolution, action understanding and observation, to mention

a few [3], [4], [6], [5]. In this thesis we specifically emphasize action understanding and

action observation characteristics of the macaque monkeys’ mirror neurons in F5. To

find a convincing answer to what is decoded by mirror neurons attracts considerable

number of researchers and decoding a single neuron or neuron population studies have

been vividly increased in the recent years.

In the majority of decoding related studies can be listed as observed action re-

lated parameters, the schema level motor plan and the intention understanding [7].

In the study [8], a support vector machines (SVM) based classifier used to decode

four or six grip types and propose implantable cortical neuroprosthesis with a high

accuracy rate which was above 96%. Similarly in [9] presents real-time prosthetic

hand control trough decoding dorsal premotor cortex’ neural data with four different

shaped objects. To do this, the authors performed fuzzy k-nearest neighbor algo-

rithm and obtained accuracy of 97.1%. Carpaneto et al. applied various machine

learning algorithms on the area F5 neural data such as linear classifier, soft-max net-

work, k-nearest neighbor and support vector machines to classify set of objects which

have different grasping types. The authors concluded that applying support vector

machine algorithm provided high accuracy rate, 95%, over other techniques. As can

be seen these aforementioned studies have high accuracy rate to decode area specific

neurons via performing different machine learning techniques. The emphasized accu-

racy rates obtained by applying manually tuned window width, adding more neurons

for constructing input matrices and combining neurons which were obtained from

3



different areas of the brain.

It should be noted that these studies have no specific ways to detect mirror neurons

and their action/observation characteristics. Thus, we took different approach both

for labeling mirror neurons and object level decoding which will be explained in detail

in the Chapter 2’s subsections.

1.1.2 Existing Works on Emotions

There have been studies from theoretical and experimental -both behavioral and

neuroscientific- perspectives that investigated the role of emotions (e.g., fear and

joy) in social behavior [13]. In particular, there have been recent efforts to deter-

mine the brain regions which contribute or affect emotional processes [13]. In the

AI and robotics literature, there exists a number of studies that utilize the concept

of emotions -at least functionality of the emotions- as cognitive processes that can

be emulated on robots to short-cut cognitive processing, shift behavioral hierarchies,

facilitate storage and recall of memories [14], [15]. Despite the accumulated knowl-

edge on the source and function of emotion in biological systems, the transfer of this

knowledge to robotics and AI has not been realized in full, to the extent to trigger a

significant improvement or a paradigm shift. This is in part due to the unsettled issues

about emotion in psychology and biological sciences. It would not be wrong to say

that there is no universally accepted definition of emotion. Yet, the emotion related

studies in robotics have been on the rise. To mention a few, some target demonstra-

tion of emotions through facial expressions [16], some address emotion based activity

selection [18] and control of robot behavior through emotional states [19]; and yet

some others focus human-robot interaction experiments [20].

The existing emotion related studies in robotics are mostly based on specific

emotions such as fear, happiness, anger and sadness with specific learning algo-

rithms [21], [22]. The results of these studies are mostly obtained from simulation

4



environments and lack quantitative comparisons, that ideally should be obtain from

real robot experiments. For instance in [21] Salichs et al. proposed a decision making

system through implementing specific emotions such as happiness, sadness and fear

via Q learning algorithm while in study [22], the authors implement artificial emotions

of happiness, anger, sadness and fear to control Khepera robot in a simulation envi-

ronment via reinforcement learning and artificial neural networks (ANN). Moreover,

in [19], the authors performed emotional circuit which located in simulated Khep-

era robot’s neural network architecture that create a link between either input and

internal layers or input and output layers. Integrating the emotional circuit to the

robot provides to control robot behaviors in order to reach higher fitness in simula-

tion experiments. The work in [19] also used predefined emotion units, hunger, thirst

and pain, which enable robots to reach higher fitness value by taking appropriate

decisions.

The current literature in robotics indicates that most studies are targeted at im-

plementing predefined emotions and emotional functionalities. As will be explained

in the Chapter 3, we do not manually define emotions but ask the question what

kind of processes in the cognitive system of (a biological or artificial) agent may yield

emotion. In the current realization of our approach, we propose a biologically realistic

neural network to explain how some type of emotions may emerge in a cognitive agent,

and how emotions can create short-cut in decision making to reach “good enough”

outcomes quickly [23].

5



1.2 Contributions

The main contributions of this thesis can be categorized into two independent parts

which belong to Chapter 2 and 3, respectively. In the chapter two we developed a

decoding framework that can be used to detect mirror neurons given a set of neural

firing. It should be noted that these neural decoding methods resulted in plausible an-

swers to detecting mirror neurons, single neuron and population level object decoding

performance and determining object specific neuron types. Moreover, we proposed

a new term which was coined as temporal mirror neuron to describe how a mirror

neuron candidate can change its own behavior throughout conducted experiments.

In the chapter 3 we propose that the regulation of neuronal energy for cognitive

processes may lead to emergent behaviors which may be associated with and explained

by the emotional state of the agent. Unlike existing studies in the literature we realized

emotion based self-regulatory mechanism for computational energy conserving on a

humanoid robot with simple cognitive architecture.

1.3 Thesis Organization

In the second chapter we briefly introduce the motivation of the mirror neuron and

our object decoding studies. Then, the obtained neural data set features explained

and derivation of the evaluation metrics were introduced in detail. This chapter also

presents the performed methods, obtained results and discussion of the study.

In the third chapter we summarize our motivation on emotions and biological

background of the proposed method. Then, the data flow, experimental and hardware

setups explained in detail. In subsections, the results of emotion based network

dynamics and analysis of neural energy conservation were provided with emphasizing

biological plausibility of the performed method and obtained results. In last chapter

we provide conclusions of the conducted research and future work of the studies.
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CHAPTER II

ACTION RECOGNITION (MIRROR NEURONS)

This chapter outlines our study on action recognition mechanism which exists in a

monkey’s brain. More specifically, mirror neurons and their neural representation

in the monkey’s area F5. In this study we firstly focus on detecting mirror neurons

trough performing object level decoding and event-wise cross decoding in the available

data set. In that we perform object level decoding via cross validated regression

algorithm to achieve generalization performance by eliminating over-fitting problem.

To apply event-wise cross decoding for detecting mirror neurons, we transfer obtained

weight matrix in action execution event to action observation, and vice versa. As a

result we find best decoder neurons from the neuron population and combining these

best decoder neurons give rise to a multi-unit classifier which can decode set of four

objects with high accuracy rate. The obtained results lead to detection mirror neurons

and elimination of canonical neurons, which are located in F5 but they have no mirror

characteristic, in available data set. By doing so we implement same cross validated

regression algorithm on each period’s neural firing data and object specific decoding

performance extracted for each neuron. As an important finding of the study, we

propose a “temporal mirror neuron” concept that imply a labeled mirror neuron

can change its own behavior to engage with different objects throughout experiment

duration. Note that, all these procedures, including visualization, are automatically

generated by a software framework which was developed by us for neural decoding

studies.
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2.1 Experiments and Neural Data Set Features

In this section and following subsections, we will introduce experiment conditions

and neural data set features. The experiments carried out by project collabora-

tors with four objects which have different grasping types in four experiment condi-

tions which are listed as observation with cue (CUEOBS), observation without cue

(NOCUEOBS), object fixation with cue (CUE-OBJFIX) and execution (EXECU-

TION). All grasping movements of the monkey are illustrated in the Figure 2 and

the experimenter also grasps the object in same manner with the monkey.

Figure 2: Purposeful movements and object grasping types

The conducted experiment procedures begin with when the monkey reaches a

selected 3D object, fixate it and press a key in till LED diminish. Throughout an

experiment, the monkey located on experimenter’s right side and all experiment com-

ponents are visible to the monkey. The monkey’s unit spiking data and experimenter’s

kinematic information are recorded for preprocessing data analysis to answer what

kind of information whether kinematic data or an object’s features are possibly re-

sponsible for firing a unit while observing or executing an action. To do this various

experiments with different conditions have been conducted with different objects and

they are explained following subsections in detail.

8



Figure 3: Observation with cue Figure 4: Observation without cue

2.1.1 Experiment conditions

2.1.1.1 Observation with cue (CUEOBS)

In this experiment condition cueing LED is on and the monkey observes both exper-

imenter’s movements while reaching and grasping an object. The event time line was

depicted in the Figure 3 and during event time span experimenter’s kinematic data

are recorded.

2.1.1.2 Observation without cue (NOCUEOBS)

In this condition, the cueing LED was off for monkey and the experimenter was

performing instructions from a screen which was not visible to the monkey. It should

be noted that observation with and without cueing LED conditions were randomly

performed with no specific order. The event time line for NOCUEOBS can be seen

in the Figure 4 and kinematic data are available for postprocessing purpose.

2.1.1.3 Object fixation with cue (CUE-OBJFIX)

Both the monkey and the experimenter take no reaching and grasping actions, and

cueing LED was visible to the monkey. There are no movements that can be seen

in the Figure 5. Therefore, comparing this event’s neural data with other event will

enable us to make reasonable conclusions about a unit set behaviors towards a specific

9



Figure 5: Object fixation with cue Figure 6: Execution

object and and experiment condition.

2.1.1.4 Execution (EXEC)

The monkey executes reaching and grasping task with visible cueing LED in this

event (see Figure 6). The interpretation of this event neural data are important to

label whether a unit has mirror neuron characteristics or not.

2.1.2 Neural data set specifications

In this part we will describe available neural data which are extracted in the area F5.

The neural data consist of 192 enumerated neurons and the structure of firing vectors

vary from each experiment condition. For instance, some neurons have no spike firing

vector for sphere object in all experiment conditions and some neurons have fully

populated firing vectors for each object and experiment condition. Therefore, the

neural data set needs to be preprocessed to construct necessary input reading and

output matrix. Hence, the unit information table was constructed for each neurons,

as depicted Table 1 and Table 2, which contains number of spike reading vectors for

each object and condition. A spike reading vector’s size 1 × 7000 and contains 1 in

each cell to mark firing in specific time, otherwise it contains 0 for non-activation.

Note that the Table 1 and Table 2 data were constructed via customized function of

the software framework and it represents firing information about unit 10 and unit
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13. Constructing unit information table leads us to see that there are 68 units that

have an event×objects matrix which is fully populated with spiking readings and we

will analyze these units’ data for decoding objects. Any missing cell information of

event×objects matrix may lead to insufficient conclusions about specific unit behavior

in an experiment conditions. For instance, we need both CUEOBS or NOCUEBS

and EXECUTION data together to decide whether a unit can decode an objects and

represents mirror neuron characteristics.

unit 10 Cylinder Sphere Ring Cube Purposeless
CUEOBS 31 × 7000 10 × 7000 10 × 7000 20 × 7000 10 × 7000

NOCUEOBS 32 × 7000 10 × 7000 10 × 7000 21 × 7000 10 × 7000
CUE-OBJFIX 10 × 7000 10 × 7000 10 × 7000 10 × 7000 13 × 7000

EXEC 11 × 7000 10 × 7000 10 × 7000 10 × 7000 [ ]

Table 1: Condition and object matrix for unit 10

As can be seen Table 1 and Table 2 condition × object matrices, some data are

missing and this may vary from one unit to the other. That is why, we constructed

an unit index vector for each experiment event to mark “best” units for each objects.

For instance, unit 10 can be good candidate for applying decoding procedures since

there are unit readings for all condition × object matrix cell, yet unit 13 seems not

to be a good candidate.

unit 13 Cylinder Sphere Ring Cube Purposeless
CUEOBS 10 × 7000 [ ] 10 × 7000 9 × 7000 9 × 7000

NOCUEOBS 10 × 7000 [ ] 10 × 7000 10 × 7000 10 × 7000
CUE-OBJFIX 10 × 7000 [ ] 10 × 7000 [ ] 10 × 7000

EXEC [ ] [ ] [ ] [ ] [ ]

Table 2: Condition and object matrix for unit 13

2.2 Evaluation Metrics

In order to evaluate decoding performance of a unit we propose two evaluation metrics

related to absolute specificity and relative specificity of a neuron for a given object
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set. By absolute specificity we underline that the prediction performance of a single

neuron in only one class of an object which is denoted by in class percent (ICP). By

relative specificity we highlighted that the prediction performance of a neuron while

performing in all available classes which is shown with class percent (CP) in below

table. The object× prediction matrices aer constructed for all units (see Table 3). In

below table class count(CC) refers to how many times predicted error of an object is

less than or equal to the threshold, class percent (CP), relative specificity, is prediction

rate over total number of successful prediction among all objects while in class percent

(ICP), absolute specificity, is prediction rate over total number of successful prediction

in same class.

unit 10 Class Count Class Percent In Class Percent
Cylinder 1 7.6923 10
Sphere 5 38.4615 50
Ring 2 15.3846 20
Cube 5 38.4615 50

Table 3: Unit10 execution condition prediction rates

Note that total number of prediction for sphere object is 10 and among those

predictions only 5 of them are above the threshold value. The CC, CP and ICP

values for sphere object calculated based on following equations:

CCsphere = 5,

CCtotal = 13,

spherePredictiontotal = 10,

CPsphere = CCsphere × 100.0/CCtotal,

ICPshpere = CCsphere × 100.0/spherePredictiontotal
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2.3 Methods

2.3.1 Linear regression based decoding

Linear regression is a data analysis method that enables us to extract linear relation-

ships among given variables. In that we apply linear regression on preprocessed neural

data to predict a decoded object for a specific neuron in an experiment condition.

The applied linear model is formulated in equation (1)

X ∗W = Y (1)

where Y is response variable and X is independent variable which are referring to

an object id vector and preprocessed neural data matrix, respectively. W is a weight

matrix that enable us to predict decoding parameters between neuron readings and

objects. In equation (2), Y vector elements consist of object ids, yet these values can

be any kinematic parameters need to be predicted such as aperture, finger angles,

arm velocity, etc.

2.3.1.1 Single unit linear regression

Equation (2) constructed with unit 10’s execution condition data as X with size of

40× 14 since common number of spiking vector is 10 and we are predicting 4 objects

which are enumerated from 1 to 4 as cylinder, sphere, ring and cube, respectively. The

X matrix can be constructed with random or consecutive order based on selection

parameter for spiking vector. Note that window size and step size are performed

as preprocessing step on raw neural data to reduce dimension from 1 × 7000 to 1 ×

14. Furthermore, X matrix readings constructed in sequential order based on their

reading ids. The Unit10 − Obj1 − r1 stands for unit 10’s first window sized spiking

vector for object one.
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

(2)

The predicted output values’ error vector can be obtained after deriving W vector

from equation (2) by using equations in (3) and (4).

X ∗W = Ypred (3)

Y − Ypred = Yerror (4)

squared Yerror vector elements with a threshold value (e.g. 0.5) paves the way for a

rate that which is successfully predicted by this vector.

2.3.1.2 Multi unit linear regression

The regression procedures are same for single unit and multi units. In multi unit,

equation (2)’s X matrix was expanded the number of neuron population, accordingly.

It should be noted that adding more units will blindly decrease Yerror vector elements.

14





Unit10-Obj1-r1 Unit19-Obj1-r1

Unit10-Obj2-r1 Unit19-Obj2-r1

Unit10-Obj3-r1 Unit19-Obj3-r1

Unit10-Obj4-r1 Unit19-Obj4-r1

...
...

...
...

...
...

...
...

Unit10-Obj1-r10 Unit19-Obj1-r10

Unit10-Obj2-r10 Unit19-Obj2-r10

Unit10-Obj3-r10 Unit19-Obj3-r10

Unit10-Obj4-r10 Unit19-Obj4-r10


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

(5)

In equation (5)’s X matrix populated with neuron 10 and 19’s spiking vectors in

consecutive order.

2.3.2 Cross validation

To eliminate over-fitting in regression results, leave one out cross validation (LOO)

was performed to X input matrices of in equation (2) and (5). The LOO execution

steps are introduced in Algorithm 1 and applied on single and multi unit X matrices.

In that the X matrix which consists of neural activation data divided into two subsets

which are training and test sets. One sample from X matrix which is a row that

contains spiking vector picked as test set, then remaining X matrix’s elements used

as training set to derive W vector. At the end, this W vector performed with test

set and prediction error noted. By this way, the neural data is not only employed on

training set but also on the test set for mitigating over-fitting.
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Data: Preprocessed X matrix

Result: Mean error for leaving specific spiking reading vector

R = number rows in X matrix;

for k= 1 to R do

Let (Xk, Yk) be the kth record;

Temporarily remove (Xk, Yk) from the data set;

Train on the remaining R− 1 data point/samples;

Note your error for (Xk, Yk);

end

When you’ve done all point/samples report mean error;

Algorithm 1: Leave One Out Cross-Validation Pseudo code

2.4 Results and Discussions

In this section two methods for detecting mirror neurons and object level decoding

will be explained in detail. The goal of decoding was to find which neurons are

effective in decoding the object type (which uniquely identified the motor action) in

execution condition, to find which neurons are effective in decoding the object type (or

the action directed towards it) in the observation condition, most critically, to assess

whether transfer between execution and observation decoders (i.e. cross-decoding)

can be observed. Note that leave one out cross validation applied on all regression

tables and each neuron number ranked in decreasing order according to absolute

(ICP) and relative (CP) specificity. It is observed that using absolute specificity give

rise to more reliable decoding performance for a given neuron. Although we have

four different experiment conditions, due to the considerable amount of the neural

data we only provide the action observation without cue and action execution rank

tables.
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2.4.1 Mirror neuron detection methods

2.4.1.1 Execution and observation decoding

As stated in the introduction, it is known that mirror neurons in the area F5 of

macaque monkeys have neural activation responses for specific type of grasp execution

and observation. Based on this fact, all neurons were ranked according to absolute

specificity metric for each individual object in order to observe whether the same

neurons could be found both in action observation and action execution.

Rank Cylinder Sphere Ring Cube

CP ICP CP ICP CP ICP CP ICP
1 55 78 9 51 134 51 84 93
2 78 40 80 61 145 93 148 54
3 40 55 180 93 56 38 105 129
4 110 51 125 38 38 94 77 148
5 168 54 22 53 94 21 166 21
6 179 93 127 18 121 91 109 51
7 181 110 146 147 127 121 129 77
8 82 181 106 34 24 134 78 78
9 92 21 53 45 17 24 23 83
10 128 45 147 54 91 54 41 84
11 105 59 61 76 108 59 83 131
12 19 168 104 91 76 76 131 166
13 106 18 76 94 82 110 10 10
14 107 92 42 104 92 145 42 45

Table 4: Single unit linear LOO regression prediction ranks for NOCUEOBS event

In Table 4 and Table 5, observation and execution conditions’ first 14th rankings

are illustrated the cells with same neuron ids are automatically colored with the

same RGB values. It can be stated that the neurons which are appeared in both

observation and execution tables can be marked as a strong mirror neuron candidates

among neuron population [10]. More interestingly, it is observed that some mirror

neuron candidates behave like general decoder for all objects (e.g. neuron 54), some

of them show selective behavior towards specific objects (e.g. 93), and some of them

are single object decoder (e.g. 131).
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Rank Cylinder Sphere Ring Cube

CP ICP CP ICP CP ICP CP ICP
1 78 59 133 15 110 56 10 93
2 19 80 38 56 92 34 134 18
3 59 84 23 42 55 92 109 40
4 168 168 142 53 76 131 127 56
5 17 15 43 95 9 54 129 131
6 121 34 95 18 95 93 41 109
7 105 77 125 20 167 94 148 41
8 80 93 24 23 23 95 43 53
9 84 105 20 51 34 166 93 54
10 142 131 148 54 94 167 91 59
11 77 17 42 77 141 150 18 82
12 34 54 146 84 166 9 24 91
13 128 56 76 94 41 15 38 107
14 22 78 79 132 83 21 40 148

Table 5: Single unit linear regression LOO prediction ranks for EXECUTION event

With the available data we highlight that for observation condition 12 distinct

neurons that were marked as high performers (≥ 40% successful prediction vs. chance

level of 25%) were also found to be high performers in action execution condition.

2.4.2 Cross decoding

In order to apply cross decoding on observation and execution conditions we firstly

extract W matrix for a specific condition. Then, transfer this obtained W to the other

experiment condition in order to predict a set of object. As illustrated in Figure 7,

by “transfer” we imply that the decoder parameters found with the neural discharge

in the observation conditions are directly applied to neural firing recorded in the

execution conditions, and vice versa.

The success of a decoder trained with data from one condition, on the data ob-

tained from another condition is very important as it indicates that the representa-

tions in both conditions are the same. This Wconditon transfer enable us to determine
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Figure 7: Weight transfer among conditions

both best decoder neurons for objects and best mirror neuron candidates among avail-

able neuron set. To observe decoding performance in class percent (ICP), or absolute

specificity, used as a metric and sorted in decreasing order and first 7th rank are

shown in Table 6 and Table 7.

Rank Cylinder Sphere Ring Cube

CP ICP CP ICP CP ICP CP ICP
1 91 133 109 18 147 41 21 38
2 95 91 104 53 82 61 38 93
3 133 92 18 10 41 53 55 106
4 180 105 83 83 45 51 121 131
5 181 131 43 105 61 79 132 51
6 76 167 56 168 110 82 141 146
7 134 17 105 9 57 106 146 150

Table 6: Single unit linear regression prediction ranks for EXECUTION (Wnocueobs

used)

In Table 6’s cells are filled with neuron ids in which Wnocueobs transferred to ex-

ecution condition. Meanwhile, Table 7 was constructed with regression in execution
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Rank Cylinder Sphere Ring Cube

CP ICP CP ICP CP ICP CP ICP
1 78 84 23 56 92 56 180 59
2 84 109 38 15 132 18 107 107
3 127 21 125 53 9 109 20 148
4 77 59 43 80 10 15 133 150
5 22 80 142 94 146 21 61 93
6 21 127 147 168 18 34 148 166
7 80 129 141 18 17 93 10 109

Table 7: Single unit linear regression prediction ranks for EXECUTION (Wexec used)
event

condition where Wexec used for object decoding. It is observed that with cross de-

coding between observation to execution 5 distinct neurons perform well to decode in

both conditions while decoding sphere and cube objects. Table 8 shows the decod-

ing performance of listed neurons in pure execution and prediction with transferred

Wnocueobs. Cross decoding performance rates are shown in Table 8. The high per-

former neurons for cross decoding are 53 and 18 with 70% and the minimum cross

decoding rate is 33%.

Rank Cylinder Sphere Ring Cube

CP ICP CP ICP CP ICP CP ICP
Cross decoding (Wobs) 53 12.50 20.00 43.75 70.00 43.75 70.00 0.00 0.00

Execution (Wexe) 53 25.00 70.00 32.14 90.00 14.29 40.00 28.57 80.00
Cross decoding (Wobs) 168 36.36 40.00 45.45 50.00 18.18 20.00 0.00 0.00

Execution (Wexe) 168 23.08 60.00 34.62 90.00 11.54 30.00 30.77 80.00
Cross decoding (Wobs) 18 22.22 20.00 77.78 70.00 0.00 0.00 0.00 0.00

Execution (Wexe) 18 13.79 40.00 27.59 80.00 31.03 90.00 27.59 80.00
Cross decoding (Wobs) 150 20.00 22.22 30.00 33.33 20.00 22.22 30.00 33.33

Execution (Wexe) 150 18.52 55.56 22.22 66.67 25.93 77.78 33.33 100.00
Cross decoding (Wobs) 93 0.00 0.00 27.27 30.00 18.18 20.00 54.55 60.00

Execution (Wexe) 93 22.22 60.00 14.81 40.00 29.63 80.00 33.33 90.00

Table 8: Single unit linear regression prediction rates for nocueobs2execution and
EXECUTION events

It should be noted that same tables are available for CUEOBS, NOCUEOBS and
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EXECUTION conditions, yet due to excessive number of data, only W nocueobs

transferred results are shared in this subsection. The more information about con-

ducted decoding results can be found in [11].

2.4.3 Population level cross decoding

After obtaining cross decoder neurons trough weight transfer from observation to

execution condition, we analyzed population level cross decoding among available

data set. To do this, we manually select four best “solo decoder” neurons and six

R Cylinder Sphere Ring Cube

CP ICP CP ICP CP ICP CP ICP

1 18− 150 18− 17 18− 45 18− 45 168− 108 18− 21 53− 168 93− 45

2 168− 21 18− 53 18− 104 18− 17 18− 21 53− 150 150− 21 93− 17

3 18− 53 150− 17 53− 93 53− 93 53− 150 108− 17 168− 104 53− 45

4 18− 168 168− 21 18− 93 17− 104 93− 21 93− 150 108− 21 93− 108

5 18− 17 17− 104 150− 45 150− 45 150− 108 150− 108 45− 21 17− 104

6 150− 17 18− 150 45− 17 18− 53 108− 45 150− 45 93− 45 93− 150

7 45− 17 150− 104 45− 104 18− 93 18− 93 18− 93 53− 17 150− 168

Table 9: Multi unit linear regression prediction ranks for EXECUTION (Wnocueobs

used)

randomly selected neurons to construct a neuron pool, then we get all possible

two paired permutations to construct input matrices for applying cross decoding.

The prediction ranks for these pairs can be seen in Table 9 and prediction rates

for these pairs are illustrated in Table 10. The pairs with solo decoder in Table 9

are colored to understand how transferring a weight effects on neuron population

decoding performance.

According to obtained tables, it can be seen that some solo decoder neurons can

perform well with different pairs while decoding different object. Recall that neuron

number with 18, 53 and 168 are solo decoder for sphere object and the pairs with these

neurons are emerged not only in sphere role but also in other object with significant

performance rate. It should be noted that above tables are constructed via expanding
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Rank Cylinder Sphere Ring Cube

CP ICP CP ICP CP ICP CP ICP
1 100.00 70.00 87.50 70.00 100.00 60.00 100.00 50.00
2 57.14 60.00 66.67 60.00 75.00 55.56 100.00 50.00
3 50.00 44.44 62.50 50.00 71.43 50.00 100.00 40.00
4 50.00 40.00 57.14 50.00 66.67 33.33 100.00 40.00
5 50.00 40.00 57.14 44.44 60.00 33.33 75.00 40.00
6 50.00 33.33 57.14 40.00 60.00 33.33 71.43 33.33
7 42.86 33.33 57.14 40.00 42.86 30.00 66.67 33.33

Table 10: Multi unit linear regression prediction rates for Execution (Wnocueobs used)

rows of the input matrix in equation (5) because of adding two window sized firing

vector in same row. By this way we change the complexity of the decoding system

which was originally used in single neuron decoding. To control the complexity of

the system we fixed the row length with the original complexity and shrink paired

neurons data to match original window size. Fixing the complexity lead us to observe

significant enhancement of the prediction rates. In that, for sphere object the first

ranked unit’s absolute specificity is 70%, yet fixing complexity gives rise to 100% and

similar improvement observed in prediction rates observed for all objects.
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CHAPTER III

EMOTIONS

This chapter presents our work on how emotion based behaviors may emerge through

computational mechanisms. We hold that in addition to basic emotions such as

anger and fear that serves bodily well being of the organism, high level emotions

such as boredom and affection have evolved to facilitate low cost brain computations.

Higher level of emotions can be considered as affective state of the organism or mood,

rather than the reflex-like physiologically triggered emotional responses such as fear

and anger. In large and complex brains (e.g. primate brains), the neuronal energy

consumption for cognition is non-negligible. We propose that for such organisms

computational regulatory mechanisms for decision making give rise to behaviors that

can be explained by various emotional states. As a proof of concept for this idea,

we envision a robotic cognitive system and a select function that we assign a neural

cost for its operation. To be concrete, we use a small humanoid robot platform

(Darwin-OP) and implement a neural network (Hopfield Network) that allows the

robot to recall learned patterns that it sees through its camera. As a model of neural

computational energy consumption, we postulate that a change in the state of a

neural unit of the network consumes one unit of (neural) energy. Therefore, the total

computational energy consumed is determined by the incoming stimuli. The robot is

programmed to avoid high energy consumption by showing aversive behavior when the

energy consumption is high. Otherwise, the robot demonstrates engaging behavior.

For an external observer these responses may be perceived as robots having certain

emotional (affectional) preference for input stimuli. In this study in addition to robot

experiments, we also emphasize the biological support for our proposal and provide
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detailed exposition of biological background and its relevance for the hypothesis that

(certain) emotions may emerge through computational mechanisms [17].

3.1 Biological Background

It is known that biological systems have limited energy resources to survive and

maximize their number of off-springs. Therefore, these systems, through evolution

gained physical mechanisms -fur, sharp teeth, tails, etc.- and mental mechanisms-

emotions, feelings, social bonding, etc.- to keep themselves alive and take decisions

against stochastic and sometimes unpredictable events.

Emotions are one of the vital features which animals use to regulate their behav-

iors. Animals have emotions in terms of functionality [14], to control attention in

order to solve faced immediate problems and make a decision under uncertain con-

ditions [24]. Considering reproduction case in nature [23] mentioned, searching for

“perfect mate” may took longer than one can afford. Meanwhile, the living beings

have to satisfy other needs such as finding food, shelter and avoiding predators. In-

stead of searching and so consuming more energy to find “the perfect mate”, shorter

search and reasonable partner might be preferred as probability of reproducing might

be higher in the latter. This choice cannot be evaluated as optimal or conscious be-

havioral choice [23]. Mate selection can be considered as a cognitive process which

needs to be controlled according to cost-benefit trade-offs. Thus, emotions appear

to provide organisms computational short-cut mechanisms on cognitive processes to

facilitate energy economy via the adoption of “good enough” choices rather than

searching for the best. This thesis proposes to reverse the statement “Emotions

provide organisms short-cut mechanisms on cognitive processes to facilitate energy

economy” as “The computational short-cut mechanisms on cognitive processes to

facilitate energy economy give rise to what we call Emotions”.
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It is important to underline that by “energy” we imply both physical and “compu-

tational” energy. The idea behind energy consumption by neurons and emotions can

be inferred from literature in neuroscience and neurobiology [25], [26]. These studies

pointed out that the brain consumes high level of resting metabolic energy of body in

different species. For instance, human brain alone consumes 20% of the total energy

consumed by the body. These studies indicate that neuronal activities require consid-

erable amount of energy in order to successfully execute cognitive activities such as

reasoning, decision making and vision processing. In [25], Laughlin and his colleagues

emphasize that in case of limitation in metabolic energy, the neurons, neuronal codes

and neuronal circuits must have evolved to reduce the metabolic demands in order to

keep brain’s batteries charged. In this vein, we capture these energy related metabolic

features and establish a self-assessment mechanism enabling the robot to regulate its

behavior according to the consumed (neural) energy.

3.2 Methods

As outlined in the chapter three’ introduction, we propose that higher level emotions

(those that have putatively evolved after the basic emotions of fear, anger etc.) are the

behavioral manifestation of self-regulation mechanisms of computational (neuronal)

energy expenditure for cognitive processing. To be concrete we implement a Hopfield

Network on a small humanoid robot, namely Darwin OP to undertake a pattern

recall task. We model the energy expenditure of a Hopfield unit which represents an

artificial neuron or neuron population, as the number of times it changes its state

during the processing of an incoming stimuli. Based on the total number of state

changes, the robot decides the action to take and show either aversive (negative) or

engaging (positive) behavior. We aim to show that the behavioral outcome of this

energy regulation mechanism can be perceived (by human observer) as an affectional

stance of the robot for the input stimuli it is seeing.
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The methods which are performed in this chapter have been carried on a PC

and humanoid robot platform. In the PC experiments we analyzed how the Hopfield

Network dynamics behave while receiving different input patterns that have different

levels of noise contamination. This analysis is used to determine a threshold value

for neuro-computational energy consumption to be used in robot experiments. In

the robot experiments, this threshold was used to guide the behavior modulation

according to input stimuli. To be concrete, the energy self-monitoring logic used the

obtained threshold value to generate aversive or engaging behavior.

3.2.1 Behaviour trough self regulation of the Hopfield Neural Network

Hopfield Neural Network consists of fully connected artificial neurons (or units) and

behave as an auto-associative memory [28]. The Hopfield Neural Network is very

suitable for parallel computation, yet its serial implementation can be inefficient for

large number units (such as when having each unit represent the pixel of a high

resolution retina). Nevertheless, it can be used for storing and recalling a small set

of characters with a small retina, and serve as a simple model for neural computation

taking place as part of the cognitive processing of a biological brain. In particular,

the dynamic nature of the network and the dense connection create a complex system

which can be used to define a neural energy measure on which agent behavior may

be regulated.

The network dynamics is adopted as given in [28]. The network initialization and

network read off required binary (0,1) to bipolar (-1,1) conversion, as the retinal input

was represented as thresholded binary images. The output representation of a unit i

is shown by Si,

Si = sgn

(∑
jk

WijkSjSk

)
(6)
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The sgn() is defined as

sgn(x) =


−1, x < 0

1, x ≥ 0

(7)

The weights are calculated as follows

Wijk =
∑
p

ξpi ξ
p
j ξ

p
k (8)

and p indicates the patterns to be stored. In equation 8, ξpi , ξpj and ξpk refer to

the jth, jth and kth bit of the pattern p, respectively. Asynchronous update rule is

adopted which updates a randomly chosen unit until iteration conditions terminated

or convergence is reached.

Implementation procedure of the Hopfield Neural Network begins with obtaining

images from the camera of Darwin-OP are segmented based on color and scaled down

to 20× 20 pixels. This small image then converted into a binary image and the same

binary image is used during learning, i.e. when computing the weight matrix, and also

when querying the network for recall. Each pixel in the binary image is associated

with a unit of the network.

After determining the weight matrix, to test recall performance, randomly con-

taminated patterns are generated. The network is initialized with an input image

and updated asynchronously until convergence (or until an earlier stop criterion is

reached). Hopfield Network creates spurious attractor states; the linear combinations

of the stored patterns and their inverses become attractors. Therefore, the network

may settle in states which do not directly correspond to a single stored pattern,

or in the extreme it may converge to the complete inverse of a stored pattern (see

Figure 14(d)).

3.2.2 Behaviour trough energy regulation

In the scenario we consider, the life cycle of the robot is very simple. It sees its

environment (applies visual processing leading to a segmented, thresholded retinal
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(a) Retina image (b) Trained pattern 1 (c) Trained pattern 2

(d) Trained pattern 3 (e) Trained pattern 4 (f) Trained pattern 5

Figure 8: Retina image and trained patterns

(a) Contaminated bi-
nary image

(b) Robot retina 1 (c) Robot retina 2

(d) Output pattern 1 (e) Output pattern 2 (f) Output pattern 3

Figure 9: Retina images and converged patterns
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image) and tries to recall what it has learned before. It does this by loading the input

image to the Hopfield Network and running the dynamics until convergence state or

the stop criterion is reached. If stop is reached with small energy consumption, the

robot displays an engaging behavior; otherwise it displays a negative behavior. In

the current implementation we used a simple squatting behavior to indicate that the

robot would have evaded the current stimulus. This behavior is a substitute for the

case where the robot would move away from the current input stimuli with the hope

to find stimulus that may cost less brain energy.

With the stochastic update rule it is guaranteed that the Hopfield Network will

converge a stable pattern. However, the time it takes to converge and the number

of state changes that it would take is a complex function of the input stimulus. We

postulated that each state change costs 1 unit of energy and defined a threshold

energy level; after which the robot will disengage with the current stimuli. For those

stimuli that convergence can be obtained with small amount of energy the robot

shows an engaging behavior. Note that this may happen for a completely novel input

as well as for those inputs that are similar to one of the learned patterns. For an

outside observer it may be viable to say that robot likes this character rather than

that character.

3.3 Experimental Setup

Our framework includes the humanoid robot platform, a display panel that hosts

the input stimuli that can be presented to the robot and supporting PC hardware.

Hardware experiments were carried out using Darwin-OP as a continuous interactive

loop. The evaluation experiments for the input patterns were run only by using a PC.

These experiments were used to collect extensive data to assess the dynamics of energy

consumption based on noise contaminated input patterns. The robot experiments

were conducted to show how the proposed system can be embedded in a cognitive
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system of the robot. At the beginning of the experiment, the robot was placed so

that it can see the panel that holds the input stimuli patterns. Input stimuli can

be hidden or revealed using post-its. We assume that normally one pattern will be

visible to the robot. This eliminates the need for an explicit attention system for the

robot, and a simple color based segmentation can be used for vision processing.

Figure 10: Experimental setup

3.3.1 Hardware setup and data flow

The hardware setup consists of a base-station (control PC) and the Darwin-OP robot

which sets up a continuous behavior loop. The evaluation of PC experiments are run

off-line. For these, stimuli are collected from the camera of the robot in order to train

Hopfield network and same training stimuli are used in both PC and robot experi-

ments. These obtained stimuli are contaminated with uniform noise systematically to

probe the neural energy consumption and the convergence dynamics of the Hopfield

network. The contaminated binary image is shown in Figure 14(a).

In the robot experiments, client/server programs both on Darwin-OP and the

PC are executed, then experiment circle runs as itself without having external ac-

tor interaction. The conducted experiments’ processes highlight that the robot can
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regulate its own states to minimize energy consumption while successfully executing

recognition process and presenting a behavior.

Figure 11: Data Flow between Darwin-OP and PC

The data flow between base-station and Darwin-OP is illustrated in Figure 11

In that, the base-station receives image RGB values via TCP packages over network

from USB Camera which is located in the front face of the robot. In the base-station,

these obtained values are scaled and converted into binary format via OpenCV li-

braries. Then, trained Hopfield Neural Network is initialized with these binary values

to perform the network dynamics in asynchronous update mode until convergence

occurs or iteration conditions terminated. In parallel the number of flipped bits due

to network dynamics is recorded. That number is used as the output of consumed en-

ergy function which will be compared to a predetermined threshold value. If the total

number of flipped bits is above the threshold, the robot is commanded to display a

negative behavior, otherwise the robot is commanded to display a positive response.
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3.3.2 Darwin-OP and behavior execution process

In this study all software architectures are implemented on both on a PC and Darwin-

OP (Dynamic Anthropomorphic Robot with Intelligence- Open Platform). Darwin-

OP is designed in modular and extensible structures in order to facilitate humanoid

robot research. Darwin-OP has been built with various sensors and hardware struc-

tures with standard PC architecture which are 3-axis Gyroscope, 3-axis Accelerom-

eter, Atom Z530 CPU, USB Camera. The detailed information about software and

hardware of Darwin-OP can be found at [27]. Darwin-OP’s software framework has

been designed in a hierarchical way to be modular and independent. In experiments,

the robot runs the behavior presenting program by using software development kit’s,

namely open-DarwIn-SDK, and existing structures run on a GNU/Linux based oper-

ating system.

Figure 12: Darwin-OP

In the experiments, the robot is connected with a PC via wireless and wired

communication to send and receive data over TCP/IP and the wired Ethernet in order
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to use graphical interface of the operating system and run programs for actuations

and vision processing. In this system, the robot sends RGB values sensed from its

camera to remote computer and receives data for representing behavior. The received

data enable robot to activate its actuators to execute these behaviors. The behaviors

consist of two states which are categorized into positive and negative states. In the

positive state, the robot moves its head around and claps with voice announcement.

On the other hand, the robot will consecutively sit down and stand up to present

the negative state’s behavior. Note that these states are selected in the base-station

through calculating the total number of changed bits while running Hopfield Neural

Network dynamics.

3.4 Results and Discussions

This section presents the results obtained during the PC and robot experiments in

detail. These results are evaluated to indicate how our approach may be seen as a

biologically realistic model of what is observed in biological systems.

The dynamics of the Hopfield Neural Network coupled with energy self-monitoring

provides a neuron-based framework to implement. The number of changed pixel val-

ues are used as an output of the consumed energy by neurons. In this implementation

we use a threshold value to determine whether the robot will display a positive or

negative response towards a given stimuli. In other words, this value is applied to

modulate the behavior of the robot for the received input.

3.4.1 Analysis of energy conservation

In the PC experiments reported in this study, the maximum number of iterations

that the Hopfield Neural Network was allowed to run was 10000. If no unit changes

its state in response to the application of asynchronous update rule for a total of 1000

iterations, the network is deemed to have converged. This state of the network is thus

considered as the pattern recalled by the network. In general the converged pattern
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may or may not be one of the patterns that has been learned by the network.

It should be stated that Figure 13(a) and Figure 13(b) are obtained for the second

trained pattern to get 20 samples and in each time contamination rate is increased

by 5 up to 50 through PC experiments. These random values can be considered as

the contamination rate of the patterns which are taken by the robot’s retina and

contamination factors can be listed as the light in the environment, the camera focus

and the robot’s position towards images. This procedure is applied for all trained

patterns and the obtained data are plotted in Figure 13(c) and Figure 13(d). The

number of iterations and changed bits while converging varies for each patterns and

these values depend on the similarities of the trained patterns, consider bottom part

of the patterns in Figure 8(c) and 8(d), and the location of randomly changed bits.

Due to the characteristics of the Hopfield Neural Network, the network can converge

on the inverse of the trained patterns. To get an understanding of how the noise in the

input pattern affects the convergence time and the pseudo-energy (that we defined)

it consumed we run systematic noise contamination experiments. As can be seen in

Figure 13(a) and 13(c), the network does not reach the maximum iteration which is

10000 in all of the simulation runs indicating that with 10000 iteration limit we do

not prematurely interrupt the evolution of the network dynamics. Furthermore, the

network converges in different number of steps and require more flips, i.e. require more

energy depending on the level of noise contamination (see Figures 6(c,d)). Figures

6(a,b) are included to give an indication of the variability of the network dynamics

for a typical input pattern. This variability is the result of the the stochastic update

rule of the Hopfield Network as well as due the randomness in noise contamination.

These experiments provide considerable amount of data to evaluate the network

behavior and facilitate deriving a parameter, namely threshold, which will be used in

the robot experiments. In the all PC experiments, the network dynamics lead the

network state to the convergence state since there is no such energy threshold value
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(a) 20 sample curves and average curve of pattern
Fig. 8(c)
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(b) 20 sample curves and average curve of pattern
Fig. 8(c)
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Pattern 1 Fig4(b)

Pattern 2 Fig4(c)

Pattern 3 Fig4(d)

Pattern 4 Fig4(e)

Pattern 5 Fig4(f)

(c) Average Curves of all patterns
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Pattern 1 Fig4(b)

Pattern 2 Fig4(c)

Pattern 3 Fig4(d)
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Pattern 5 Fig4(f)

(d) Average Curves of all patterns

Figure 13: Converged pattern curves for Fig. 8(c) and average curves of all patterns
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Robot Behavior Trained Pattern Untrained Pattern
Positive ι 1
Negative χ λ

Table 11: Pattern and behavior matrix

to escape the recognition process. Yet, in the robot experiment the quantitative

comparison of the total number of changed bits and energy threshold value is applied

in deciding whether to display a negative or positive behavior.

3.4.2 Emotion based network dynamics

For the robot experiments, the energy threshold value is chosen to be 230 which cor-

responds approximately of maximum number of the changed bits (see Figure 13(d)).

The implemented energy regulation is very simple: for a given input stimulus the

number of changed bits is counted and when the threshold is reached the processing

(Hopfield Dynamics) is halted and an aversive behavior is generated. Otherwise, the

processing continues until convergence is reached. At this time the robot displays

a positive engaging behavior. Note that, in a more general setting and, the energy

threshold should be considered as an adaptive parameter that can be learned by the

organism.

Nevertheless, the current robot implementation captures the basic idea that neu-

ral energy might be one of the determinants of behavior. Moreover, the implemented

behavior regulation can be considered biologically realistic since under the unpre-

dictable conditions of the environment, an organism should decide the line of action

to take in order to satisfy its metabolic needs while minimizing the amount of neu-

ronal energy. Thus, this energy consumption and decision making trade off yields the

adaptability of the agent for undertaking complex tasks in the unknown environment.

Moreover, the attached media which can be seen in Figure 14 includes the robot

experiment which shows the robot has self-assessment mechanisms to decide the line of
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(a) Trained Pattern χ (b) Aversive behavior (sit down) (c) Aversive behavior (stand up)

(d) Trained Pattern ι (e) Engaging behavior (clap-
ping)

(f) Engaging behavior (clap-
ping)

Figure 14: Experiment media snapshots

action to take while receiving trained or untrained stimuli (see Table 11 pattern/be-

havior matrix). As mentioned before, the robot may display negative or positive

behaviors for both trained and untrained stimuli which indicates that there is no

deterministic output in the proposed system. In other words, the robot uses its own

internal dynamics to conclude whether it “likes” the received stimuli or not. The

conducted experiments’ processes highlight that the robot can regulate its own states

to minimize energy consumption while successfully executing recognition process and

presenting a behavior.
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CHAPTER IV

CONCLUSIONS

This chapter provides the concluding remarks of our studies on the brain mechanisms

of action recognition (e.g. mirror neurons) and emotions. In addition, future direc-

tions and key insights of the ongoing studies are emphasized to pave the road for

gaining answers to open questions in the literature.

4.1 Action Recognition (Mirror Neurons)

The obtained object level decoding results are explained in two subsections since

detecting mirror neurons among the neuron population and evaluating decoding per-

formance are based on execution-observation comparison and cross decoding meth-

ods. In short, we developed an automatic procedure for detecting mirror neurons and

classifying them according to their decoding characteristics.

4.1.1 Execution and observation decoding

As shown in Table 4 and Table 5, the neuron ids placed in a colored cells are per-

formed well according to their own absolute specificity values in both observation and

execution conditions. This finding indicates strong supporting remarks for these neu-

rons to be mirror neuron candidates. While mirror neuron candidates are detected

in a mechanistic way via adapted software frameworks, neural decoding types are

also marked in relatively large neuron population. Based decoding characteristics of

these mirror neuron candidates, three different decoder neuron types can be labelled

to classify neurons decoding behavior for a given object. It is worthwhile to state

that this conclusion is also compatible with the selective type of the neurons which

are highlighted in the literature [12].
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1. General decoder neuron: decodes all objects in observation-execution con-

ditions (e.g. neuron 54).

2. Multi-object decoder neuron: decodes more than one object in observation-

execution conditions but not all of them (e.g. neuron 93).

3. Object specific neuron: decodes only one object in observation-execution

conditions (e.g. neuron 131 and 168).

Labeling neurons with their decoding specificity paves the way for further analysis

of grasping ability of the ventral premotor cortex since obtaining any promising re-

sults will lead to considerable contributions in different areas such as computational

neuroscience and medical robotics. One of the possible implementations is to design

a grasping prosthesis for physically disabled people which receives motor command

trough neural activation.

4.1.2 Cross decoding

The cross decoding results presents an important fact that the neural representation

of the mirror neuron candidates have almost same features in both execution and ob-

servation conditions. The success of a decoder trained with data from one condition,

on the data obtained from another condition is very important as it indicates that the

representations in both conditions are the same. Our analysis with weight transfer on

available neuron set indicated that with single neurons object-specific decoders can

be constructed, i.e. the type of the object being grasped in both execution and ob-

servation conditions can be decoded (max 70% success rate, the chance level is 25%).

As expected, it was not always the case that a good decoder in execution condition,

became a good decoder in the observation condition. These decoder neurons in fact

correspond to selective type mirror neurons reported in the mirror neuron literature.

The critical question was whether there would be neurons that can become good
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decoders for say execution condition even though their decoder was formed using ob-

servation data. We found a few neurons that can do this for the Sphere (3 neurons,

with mean cross-decoding rate above 60%) and Ring (2 neurons with mean cross-

decoding rate above above 50% correct) in the observation-to-execution transfer. It

is also observed the the reverse similar results were obtained. These results are very

encouraging as even at the single neuron level we showed the existence of transfer.

To extend this analysis to population level we examined all pair performance of a

10-neuron set, of 4 were picked from the best solo decoders and the rest were picked

randomly. Out of the 45 pairs we found the best performing seven pairs (in cross-

decoding). The most successful neuron pairs gave 70% success on the average in

transfer performance. More interestingly, perfect pair that does the cross-decoding

well for all the objects did not appear and none of the 4 initial manually picked neurons

paired up to make up strong decoder. Yet, they all appeared in high-performing

pairs with a “helper” neurons, which were not good solo performers. These results,

strongly points to a population based representation: while a neuron itself may not

look important for decoding but it can become the best assisting partner to make a

robust 2-pair mirror neuron system.

These results bring about the idea of “temporal mirror neuron” term in which

the neuron can change its own decoding ability vary for each execution-observation

conditions. To extent event-wise neural representation transferring, we are planning

to perform same transfer between two monkeys to find whether same representation

exist in different neural system.

4.2 Emotions

The proposed emotion mechanism that the regulation of neural energy for cognitive

processes may lead to emergent behaviors that may be associated by the emotional

state of the agent. For example instead of trying to search for the best stimuli, an
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agent can settle for a less energy requiring sub-optimal solution. This behavior then

may be interpreted as an emotional behavior displayed by the agent. To show that

emotion-like behaviors may emerge through simple computational energy conserving

self-regulatory mechanisms, the proposal is realized on a humanoid robot with simple

cognitive architecture. The interaction experiments with the robot indicate that this

is a promising view that can place the concept of emotion on firm grounds. Combining

this with the novelty of the proposal, we think this is a very rich new research area

that needs to be attacked from multiple disciplines.

To extend this study, we will develop a bio-inspired emotion framework to model

specific regions of the brain including Prefrontal Cortex and Amygdala. This frame-

work will capture the reciprocal connections of the Prefrontal Cortex and Amygdala

and simulate agent’s emotions as introduced in this paper. Moreover, the framework

will provide a complex self-assessment mechanism to regulate an agent’s internal dy-

namics to adapt environmental changes and display behaviors accordingly. We predict

that the robot will be seen as having affections for certain patterns, even for those

seen for the first time, which puts less computational burden for the cognitive system

of the robot.
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