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Department of Computer Science
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The only way to truly escape the mundane is for you to con-

stantly be evolving, whether you choose to aim high or low.

— Orihara Izaya
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ABSTRACT

Runtime specialization is used for optimizing programs based on partial information

available only at runtime. In this thesis, we present a purpose-built compiler to

quickly specialize Sparse Matrix-Vector Multiplication code for a particular matrix

at runtime. There are several specialization methods and the best one depends both

on the matrix and the platform. To avoid having to generate all the specialization

variations, we use an autotuning approach to predict the best specializer for a given

matrix. To this end, we define a set of matrix features for autotuning. Several of

these features are unique to our work. We evaluate our system on two machines and

show that our approach predicts either the best or the second best method in 91-

96% of the matrices. Predictions achieve average speedups that are very close to the

speedups achievable when only the best methods are used. By using an efficient code

generator and a carefully designed set of matrix features, we show the total runtime

costs of autotuning and specialization can be amortized to bring performance benefits

for many real-world cases.
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ÖZETÇE

Koşut zamanda özelleştirme, sadece koşut zamanda belli olan kısmi veriye daya-

narak programları optimize etmek için kullanılan bir yöntemdir. Bu tezde, seyrek

matris-vektör çarpımı için hızlı bir şekilde koşut zamanda özelleştirme yapma amacına

yönelik bir derleyici sunuyoruz. Seyrek matris-vektör çarpımı için çeşitli özelleştirme

metotları vardır; en iyi yöntemin hangisi olduğu hem matris hem de donanım mi-

marisine bağlıdır. Özelleştirme yöntemlerinin tümünü kullanarak kod üretmekten

kaçınmak için, otomatik ayarlama yaklaşımı kullanarak, girdi olarak verilen matris

için en iyi özelleştiriciyi tahmin eden bir yöntem oluşturduk. Otomatik ayarlama ya-

pabilmek için bir matris özellikleri kümesi tanımladık. Bu özelliklerin pek çoğu bizim

çalışmamıza özgüdür. Sistemimizi iki ayrı makina üzerinde test ettik ve yaklaşımımız

en iyi veya en iyi ikinci özelleştirme metotunu %91-96 oranında başarıyla tahmin

edebilmektedir. Otomatik ayarlamayla yapılan tahminlerimiz, yalnızca en iyi metod-

lar kullanıldığında elde edilen hızlanmaya çok yakın hızlanmalar elde etmektedir.

Verimli bir kod üreticisi ve dikkatlice oluşturulmuş bir matris özellikleri kümesi kul-

lanarak, otomatik ayarlama ve özelleştirme süreçlerinin toplam koşut zaman mas-

raflarını amortize edilebildiğini ve birçok gerçek-dünya matrisi için performans iy-

ileştirmesi sağlanabileceğini gösterdik.
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Murat Kırtay for being great TAs, it was a pleasure to work with you guys.

Last but not the least, I would like to thank my mom. I am indebted to her for

always being there whenever I needed her and for supporting me. Without her love,

support and patience, I would not be able to make it. This dissertation is dedicated

to her.
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CHAPTER I

INTRODUCTION

Sparse Matrix-Vector Multiplication (SpMV) is the kernel operation used in many

iterative methods to solve large linear systems of equations. Sparse matrices appear

in many problem domains. In the scientific or engineering domain, they are obtained

by discretization of partial differential equations and represent physical phenomena,

such as sound, heat, electro dynamics, or quantum mechanics. They can also be

obtained from graphs, in which case they represent the internet structure or social

interactions.

Various iterative methods, such as Krylov subspace methods, exist. Usually, they

converge after a large number of iterations. Thus, they are often combined with

matrix preconditioners to decrease the number of iterations. Preconditioning can

increase the runtime of each iteration, but the total runtime is reduced. The problem

with preconditioning is that finding a good one is usually viewed as a combination

of art and science [2]. For some matrices, there is simply no good preconditioner.

Thus, the problem of generating efficient code for SpMV, the kernel operation in

these iterative solvers, is a critical problem and one that has been and continues to

be extensively researched [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13].

Problems regarding generating efficient code for SpMV are listed below:

• The input matrix comes in various sparsity patterns. The SpMV kernel can

be specialized for the sparsity pattern of the input matrix to obtain efficient

code. Specialization can be performed offline for many problem domains (e.g.

when the matrix, or at least its pattern, is known beforehand). If the matrix

information is available only at runtime, online specialization can be performed.
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Runtime specialization can pay off in iterative methods if the associated runtime

costs are low enough; that is, if the specialized code can be generated quickly.

• There is no single best specialization method for all matrices. Several special-

ization methods should be developed. Their performance will be varying across

input matrices and architectures. The best one for the current input matrix

and architecture should be predicted without having to generate and run all

the code variants. This can be done with autotuning.

In this thesis, we address the issues above and show that runtime specialization

of SpMV for real-world matrices is feasible. Our contributions are three-fold:

• We investigate how accurately we can predict the best SpMV method for a given

matrix. Our approach uses a Support Vector Machine (SVM) machine-learning

technique to predict the best among 6 methods (including Intel’s MKL as the

baseline).

• For the SVM to predict the best specialization method, it is important to pro-

vide the set of features that determine the performance of SpMV. In addition to

using matrix features that were previously used in other work, we list features

that are unique to our work. We also experiment with an early-exit strategy

when extracting the matrix features to decrease matrix analysis costs signifi-

cantly.

• We developed an end-to-end special-purpose compiler that takes a matrix and

generates specialized executable code for the X86 64 architecture at runtime.

We show that the runtime costs and break-even points are low enough that

runtime specialization of SpMV for many real-world matrices in practical ap-

plications of iterative solvers is feasible.
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The novelty of our work is not in the use of autotuning for SpMV; that problem

has been studied extensively, in particular for selecting a matrix storage format (see

Chapter 8 for related work). We also do not claim that we generate aggressively

optimized SpMV code, for which there also exist outstanding body of work. The

novelty of our work lies in using autotuning for selecting a runtime specialization

method, defining the matrix features for this purpose, and in generating long SpMV

code very rapidly. These make runtime specialization of SpMV profitable in practice.

In the rest of this chapter, we explain the problem of SpMV, related performance

issues, and the runtime specialization approach to SpMV.

1.1 SpMV and Performance Issues

Sparse matrix vector multiplication is the operation

w ← w + A · v

where a sparse matrix A is multiplied with a dense vector v, and the result is stored

in vector w, which is also dense. Although today’s modern microprocessors exhibit

astounding computational power, to achieve close-to-peak FLOP performance, the

CPU has to be fed with data continuously. As new chips are developed, ratio of

peak memory bandwidth to peak FLOP ratio is decreasing with the increase in core

counts, further limiting the performance of bandwidth-limited applications [14, 6].

SpMV is notorious for being memory-bound and obtaining only small fractions of

the peak performance on modern microprocessors [14, 6]. While dense matrices are

stored in two dimensional arrays, custom representations are used for sparse matrices

to reduce space requirements. The sparse representation is a major factor in utilizing

the CPU. Perhaps the most popular sparse matrix representation is the Compressed

Sparse Row (CSR) format. An example that illustrates CSR format is given in Figure

1.

In CSR format, the matrix is represented with three arrays, namely, vals, cols

3



and rows. vals array holds the nonzero elements of the matrix. cols array holds the

column indices of nonzero elements, and finally, in the rows array, indices of the first

nonzero element of each row are stored.

5.2 2.7

9.0 3.5

4.2

4.8 -3.9

-1.5 2.0 3.7

vals:

5.2 2.7 9.0 3.5 4.2 4.8 -3.9 -1.5 2.0 3.7

cols:

0 1 1 3 0 2 4 2 3 4

rows:

0 2 4 5 7 10

Figure 1: CSR Format Example.

Figure 2 shows the SpMV operation using the CSR format. The given code is

in C syntax. While providing reduction in space requirements, storage formats like

CSR introduce indirect references (as in v[cols[j]]). These references also cause

irregular access patterns (in the input vector v for CSR). Irregular memory accesses

reduce cache utilization. Also, many matrices exhibit a large number of rows with

short length, causing a degradation in instruction-level parallelism (ILP) [15]. Hence,
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sparsity regime of the input matrix introduces various challenges. There is no silver-

bullet format or multiplication algorithm optimizing SpMV for every matrix and

platform. Autotuning is an effective approach to pick the most appropriate storage

format for a given matrix on a particular platform [16, 17, 18, 19, 20, 21, 22]. Here,

we use autotuning to select the best specialization method for a given matrix.

// w <- w + A.v, where A is in CSR

for (int i = 0; i < rowCount; i++) {

double s = w[i];

for (int j = rows[i]; j < rows[i+1]; j++) {

s += vals[j] * v[cols[j]];

}

w[i] += s;

}

Figure 2: SpMV implementation with CSR

Challenges regarding the performance of SpMV is studied extensively by Goumas

et al. [15]; below is a summary of the key points:

• Memory intensity (Lack of temporal locality): Kernel is memory bound.

• Indirect memory references: A sparse storage format requires storing indices

of nonzero values in separate data structures. This implies additional load

operations, indirect memory accesses (which is bad for the CPU pipeline), traffic

for the memory subsystem, and cache interference.

• Irregular access patterns for vector v : Access to v is dependent on the sparsity

regime of the matrix and is irregular in general.
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• Short row lengths: Many sparse matrices exhibit a large number of rows with

short length. This may hurt the performance due to loop overheads that become

significant with short loop body.

1.2 Optimizations on SpMV

To optimize SpMV and address performance bottlenecks mentioned in Section 1.1,

many techniques have been proposed.

• Reducing bandwidth requirements: Using efficient storage formats to store

only nonzeros of the matrix along with their indices is the most common ap-

proach. Examples are BiELL [23], BCOO [24], BRC [25], BELLPACK [26],

BTJDS [27], CSB [5], CSX [7], CSR-DU and CSR-VI [28], ELL-R [29], ELLPACK-

RT [30], ELL-RT [31], Hybrid ELLPACK/COO (ELL, COO, HYB) [11], PBR

[32], RowPattern CSR (RPCSR) [33], Cocktail Format [34]. A more complete

list of storage formats is provided in [35].

In addition to storage formats, index data reduction is a technique to reduce

bandwidth requirements [36, 33, 37, 32]. A problem with this approach is that

padding with zero may be necessary depending on the matrix structure [7].

An overview of blocking storage formats and performance issues of blocking

is provided in [38]. Reordering techniques to improve locality and minimize

communication costs are studied in [39, 40, 41, 42]. Williams et al. provide a

detailed study of these techniques on several multicore architectures [8].

• Irregular access patterns in vector v and indirect indexing: Irregular

access patterns in the input vector v introduce bad cache behavior due to poor

data locality. Permutation of the matrix or column reordering in favor of cache

reuse is known to be an effective technique. Im et al. [43] state that the

performance of sparse matrix operations tends to be much lower than their
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dense matrix counterparts for two reasons: (1) the overhead of accessing the

index information in the matrix structure, (2) the memory accesses tend to have

little spatial or temporal locality. They provide the following case study: On

an 167 MHz UltraSPARC I, there is a 2x slowdown due to the data structure

overhead (measured by comparing a dense matrix in sparse and dense format)

and an additional 5x slowdown for matrices that have a nearly random nonzero

structure.

Irregular access patterns and indirect memory access problems are usually ad-

dressed using matrix reordering, register blocking and cache blocking [43, 44,

45, 46, 47]. Toledo et al. address irregular access patterns to vector v by apply-

ing blocking to exploit temporal locality and to reduce indirect indexing [45].

Vuduc et al. extend the work in [43], but focus on register blocking only [46].

Pinar et al. show that permuting the nonzeros is NP-Complete and propose

a graph model to reduce it to Traveling Salesman Problem [44]. Vuduc et al.

apply blocking and split the matrix into a sum and store each submatrix in

their own format UBCSR [47]. Temam et al. do an analysis of cache behavior

of SpMV, and point out the problem of irregular access in [48].

Reordering may improve the locality of accesses to vector v, but the accesses

to the matrix data and output vector w may no longer be regular after the

reordering.

• Short row lengths: Mellor-Crummey and Garvin, and White et al. address

performance issues related to large number of rows with small lengths in [10, 49].

White et al. [49] state that in addition to data locality, rows with small lengths,

which are frequently encountered in sparse matrices, can drastically hurt the

performance (due to ILP reduction).
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1.3 Runtime Code Generation and Specialization

Specializing a general-purpose program to a specific context provides efficiency gains.

However, writing a special-purpose program needs more effort and time investment

as well as domain-specific knowledge. To compensate, one can use a code genera-

tion approach to write a general-purpose program that produces specialized code at

runtime.

Code generation (aka specialization) is the process of writing programs that

write programs. The main idea is to reduce human errors, improve efficiency, produc-

tivity, modularity and customization. There are various ways to do code generation:

Macros, ad-hoc code generation with strings, quasi-quotations, etc. Code generation

provides one with the ability to produce specialized code by utilizing domain-specific

knowledge. Code generation can be done at compile-time or at runtime depending

on when the inputs become available. If performed at runtime, code generation is

beneficial when the generated code is to be used many times. This is due to the fact

that code generation process introduces a runtime cost. There is a break-even point

indicating when the generated code compensates for its cost, as shown in Figure 3.

Iterative solutions are appropriate for runtime code generation because they involve

SpMV of a particular matrix with many vectors.

One of the earliest examples of code generation is by Ken Thompson [50]. Runtime

code generation is the key technology behind just-in-time(JIT) compilers, compiling

interpreters [51].

Notable performance improvements has been achieved due to specialization in the

areas of operating systems [52, 53, 54], method dispatch in object-oriented systems

[55, 56], fast dynamic code generation system [51], compiler extensions using staging

[57], eliminating abstraction overhead from generic programs using multi-stage pro-

gramming [58], and building efficient query engines using generative programming in

high-level languages [59].

8



Figure 3: Program generation is beneficial when the resulting code compensates for

the code generation cost.

1.4 Problem Statement and the Solution Approach

SpMV is a crucial operation in scientific computation. In many contexts (e.g. in

iterative solvers), a fixed sparse matrix is multiplied with several different vectors.

Hence, SpMV is an appropriate problem to apply code generation: the code can be

specialized to the matrix in hand once, and then used many times.

Problem:

There are various methods for SpMV specialization. It has been shown that a spe-

cialization method provides substantial speedup, however, no single method is the

best; the best method varies across machines and across matrices [1].

Solution Approach:

We use autotuning to predict the specialization method that will yield the best per-

formance for a particular matrix on a particular machine. This way, we can avoid

generating and profiling the performance of all the code variants. In doing so, we

pay extra care that the runtime costs associated with autotuning (i.e. analysis of the

matrix for prediction, and code generation for the predicted method) are low enough,
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so that performance benefits are obtained. To this end, we developed an SpMV spe-

cialization library that rapidly generates code at runtime, and an autotuning system

for the SpMV specialization methods we are using.

Figure 4: Runtime specialization library (SpMVLib) and the autotuner predicting
the best specializer and generating its code, given information from install time.

Our library is depicted in Figure 4. It combines a multi-class classifier with a

runtime code generator. Given an input matrix at runtime, it predicts the best

specializer to generate based on offline training. It generates specialized code for the

input matrix at runtime.

The autotuner is a hybridization of offline benchmarking and performance mod-

eling at run-time. At install time, predefined matrix features are collected. Then,

for each matrix and each specializer, code is generated, and the performance results

are collected. This information is used to train the multi-class classifier. At run-

time, when a new matrix is provided, the autotuner predicts the best specialization

method to be used based on its knowledge from install time. This general autotuning
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approach has been successfully used in prior art [60, 61, 22, 62, 63, 64, 65, 66].

Either a specialization method or the nongenerative baseline method can be pre-

dicted by the autotuner. The multi-class classifier is based on a machine learning

model (we use a Support Vector Machine). For a new input matrix, given the predic-

tion, the SpMV Library generates specialized code for the matrix or if the baseline

method is predicted, it runs the baseline method (since baseline method is nongener-

ative).

1.5 Organization of the Dissertation

This dissertation is organized as follows. The next Chapter describes specialization

methods used in the library. In Chapter 3, our code generation library is explained

in detail. This is followed by Chapter 4 where the autotuning framework is explained

in detail. In Chapter 5, we present our experimental setup and provide experimental

results. In Chapter 6, we evaluate the latency incurred by runtime prediction and

code generation. In Chapter 7, we discuss other optimizations considered for the

code generation library. Code generation costs and break-even points are provided.

Chapter 8 is where related work for SpMV and code generation is presented. This is

followed in Chapter 9 by our conclusions.

11



CHAPTER II

SPMV SPECIALIZATION METHODS

In this chapter, we describe the methods that can be used to specialize the SpMV

code. In the discussion of the methods below, we assume A is an N×N matrix, with

NZ nonzeros. We use C notation in the code snippets below. rows array contains

the row indices, cols array contains the column indices, and vals array contains the

nonzero elements of the matrix. The type of rows and cols is int*, and vals is

double*; v is the input vector, w is the output vector. Also, in Data order , Data

size and Code size , “nz” is number of nonzeros, “n” is number of rows, “ner” is

the number of non-empty rows.

As mentioned in Section 1.1, in the CSR format for sparse matrices, the vals

array contains NZ double precision floating-point values; the cols array contains the

column indices of nonzero elements (NZ integers); and the rows array contains, for

each row, the starting/ending index of elements in the rows and vals arrays (N+1

integers). Hence,

Data order: CSR does not reorder the data.

Data size: Data size is equal to nz ∗ 8 + nz ∗ 4 + (n + 1) ∗ 4.

Code size: CSR’s code is given in Section 1.1, Figure 2. It has one for-loop for each

row. We assume constant code size c for CSR.

Each specialization method imposes a custom layout of the matrix data. There-

fore, the interpretation and size of the arrays change according to the method.
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2.1 CSRbyNZ

This method groups the rows of A according to the number of nonzeros they contain

(i.e. the row length) and generates a loop for each group of rows [10]. This method

gains its efficiency from long basic blocks in each loop, which can be compiled ef-

ficiently. It provides, in effect, a perfect unrolling of the inner loop of CSR, and

so reduces loop overhead, which is an important factor in SpMV performance [15].

Code that would be generated by CSRbyNZ for 100 rows with a length of 3 is given

in Figure 5.

for (int a = 0, b = 0; a < 100; a++, b += 3) {

int row = rows[a];

w[row] += vals[b] * v[cols[b]]

+ vals[b+1] * v[cols[b+1]]

+ vals[b+2] * v[cols[b+2]];

}

// Set the pointers for the next loop.

rows += 100;

cols += 100*3;

vals += 100*3;

Figure 5: Sample code for CSRbyNZ

Data order: CSRbyNZ reorders the matrix data to group rows with the same length

together. Because of reordering, accesses to the output vector w are not sequential.

Data size: The rows array contains the indices of nonempty rows. Hence, the data

size of the matrix is the same as the CSR format, except for when there are rows with
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no elements. Data size is given as:

nz ∗ 8 + nz ∗ 4 + ner ∗ 4

Code size: Since this method generates one for-loop for each row length, and the

body of a loop contains as many multiplications as the row length, the code size is

proportional to the number of distinct row lengths and their sum. Code size is given

as:
Row nz∑
i=1

nz rowi ∗ c1 + Row nz ∗ c2

where “Row nz” is the number of distinct row lengths and “nz rowi” is the number

of nonzeros is group i.

2.2 RowPattern

This method analyzes the matrix to find the exact pattern of nonzero entries in each

row of A, and generates, for each pattern, a loop that handles all the rows that have

that pattern. Specifically, the pattern of each row is defined as the location of the

nonzeros with respect to the main diagonal. So, if row r has nonzeros in columns

r−2, r, r+1, and r+3, its pattern would be {−2, 0, 1, 3}. Sample code corresponding

to this row pattern, assuming there are 100 rows with that pattern, is given in Figure

6.

Data order: RowPattern reorders the matrix data to group rows with the same

pattern together; similar to CSRbyNZ, accesses to the output vector w are not se-

quential.

Data size: RowPattern provides matrix data reduction by making the column in-

dices explicit in the code, and thus eliminating the need to store column indices. This

is a saving of NZ-many integer values. Similar to CSRbyNZ, the length of the rows

array is equal to the number of nonempty rows.
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for (int a = 0, b = 0; a < 100; a++, b += 4) {

int row = rows[a];

w[row] += vals[b] * v[row-2] + vals[b+1] * v[row]

+ vals[b+2] * v[row+1] + vals[b+3] * v[row+3];

}

// Set the pointers for the next loop.

rows += 100;

vals += 100*4;

Figure 6: Sample code for RowPattern

Data size is given as:

nz ∗ 8 + ner ∗ 4

Code size: For matrices with a modest number of row patterns, this method can

be the most efficient. However, if there are many patterns, the code can get quite

large, reducing its efficiency. Since this method generates one for-loop for each row

pattern, and the body of a loop contains as many multiplications as the length of

the pattern, the code size is proportional to the number of row patterns and the sum

of their lengths. If a pattern is unique to only one row, completely unfolded code is

generated. We distinguish these cases in the formula below.

Code size is given as:
rowPatterns single∑

i=1

c1 +
rowPatterns multi∑

i=1

nz rowPatterni ∗ c2 +

(rowPatterns single + rowPatterns multi) ∗ c3

where “rowPatterns single” and “rowPatterns multi” are number of distinct row

patterns for patterns that cover single and multi rows. “nz rowPatterni” are the

number of rows in row pattern group i.
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RowPattern turns indirect indexing on the vector v (e.g. v[cols[b]]) to direct

indexing (e.g. v[row]), except for a single initial memory load per row. This can

reduce latency and utilize the CPU pipeline better [15].

2.3 GenOSKI

This method analyzes the matrix to find the patterns of nonzero entries in each block

of size r × c, and for each pattern, generates straight-line code [9]. A motivation

of this method is to avoid the zero-fill problem of OSKI [18] that generates efficient

per-block code by inserting some zeros into the matrix data. GenOSKI generates one

loop for each block pattern of nonzeros in the matrix. A sample 4× 4 block pattern

and the corresponding code is given below, assuming there are 100 blocks with that

pattern. The rows and cols arrays, in this case, store indices of blocks, not individual

nonzero elements. The index of a block is the location of the top-left corner of the

block.

Data order: GenOSKI reorders matrix data to group blocks with the same block

pattern together. The accesses to the output vector w are sequential within a block,

but not across blocks.

Data size: Because this method stores indices of blocks, not individual nonzero

elements, it can provide significant savings on the data size, unless there is a large

number of very sparse blocks.

Data size is given as:

nz ∗ 8 + nblocks ∗ (4 + 4)

Code size: GenOSKI generates one for-loop for each block pattern, and the body of

a loop contains as many multiplications as the length of the pattern. Hence, the code

size is proportional to the number of block patterns and the sum of their lengths.
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for (int a = 0, b = 0; a < 100; a++, b += 7) {

int row = rows[a];

int col = cols[a];

w[row] += vals[b] * v[col+1]

+ vals[b+1] * v[col+3];

w[row+1] += vals[b+2] * v[col]

+ vals[b+3] * v[col+2]

+ vals[b+4] * v[col+3];

w[row+2] += vals[b+5] * v[col+1];

w[row+3] += vals[b+6] * v[col+3];

}

// Set the pointers for the next loop.

rows += 100;

cols += 100;

vals += 100*7;

Code size is given as:
patterns∑

i=1

nz patterni ∗ c1 + patterns ∗ c2

where “patterns” is the number of block patterns and “nz patterni” is the number

of blocks with block pattern i.

GenOSKI often performs well, especially when most blocks are fairly dense. This

is because (1) locality within blocks is improved; (2) matrix data is usually reduced;

(3) there is room for compiler optimizations in for-loop bodies. Similar to RowPattern,

GenOSKI also eliminates indirect indexing on v. Nevertheless, this method may

greatly increase the number of writes into the output vector w; other methods write

each w element only once.

For the evaluation in this studys we use blocks of size 4 × 4 and 5 × 5, as these

were the block sizes that obtained the best performance in our previous study. We

abbreviate these as GenOSKI44 and GenOSKI 55, respectively.
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2.4 Unfolding

This method completely unfolds the CSR loop and produces a straight-line program

that consists of a long sequence of assignment statements of the form

w[i] += Ai,j0 * v[j0] + Ai,j1 * v[j1] + . . .;

where the italicized parts — i, Ai,j0 , j0, etc. — are fixed values, not variables or

subscripted arrays. This method eliminates the need to store rows or cols arrays

separately because all the matrix information is implicit in the code. It also produces

the lowest number of executed instructions, but should produce, by far, the longest

code. The size of the code is proportional to NZ. For this reason, it is not expected

to yield good performance usually. However, it occasionally beats the other methods

substantially. To give up-front information, we have measured Unfolding as the best

method for 13-21 matrices out of 610. For these matrices, Unfolding ’s performance

was on the average 1.23× to 1.35× of the performance of the second best method.

The ratio goes as high as 2.52×. These results show that Unfolding is not the winner

method in most of the time, but when it is, its performance may substantially exceed

the other methods. Therefore we decided to include Unfolding among the special-

ization methods we evaluate. It is also an interesting case from the point of view of

machine learning to include a class that does not have many samples.

The main reason why Unfolding may yield very good performance is the repeated

nonzero values of the matrix. To see why, suppose the following statements are

produced after Unfolding the SpMV loop, where 1.1 and 2.2 are matrix values.

w[0] += 1.1 * v[3] + 2.2 * v[4] + 1.1 * v[9];

w[1] += 2.2 * v[4] + 1.1 * v[9];

Compilers (we experimented with icc, clang and gcc) tend to put only the unique

floating point values into the data section, and load values from there. Because the
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nonzero values of the matrix are available, this is a valid optimization. Hence, the

statements are compiled as if the code were

double M[] = {1.1, 2.2};

w[0] += M[0] * v[3] + M[1] * v[4] + M[0] * v[9];

w[1] += M[1] * v[4] + M[0] * v[9];

Because the matrix values are loaded from a constant pool, they can be loaded to

registers once and reused multiple times, similar to

double M[] = {1.1, 2.2};

register double m0 = M[0];

register double m1 = M[1];

w[0] += m0 * v[3] + m1 * v[4] + m0 * v[9];

w[1] += m1 * v[4] + m0 * v[9];

In effect, using a pool of unique values may significantly reduce the memory traffic

required to transfer nonzero values and open up more space in the cache for other

data. This optimization was studied previously by Kourtis et al. [28] as “Value

Compression”. We also reported the impact of unique values on the performance in

[1] by Kamin et al.

Unfolding also enables arithmetic optimizations because nonzero values become

explicit in the code. An expression of the form e + 1.0 * v[i] can be simplified to e

+ v[i], and e + -1.0 * v[i] can be simplified to e - v[i]. Furthermore, the inverse

of distribution of multiplication over addition can be performed. E.g. 7.0 * v[6]

+ 7.0 * v[8] can be transformed into 7.0 * (v[6] + v[8]). These arithmetic

optimizations decrease the total number of FP operations needed in SpMV. Having

fewer unique values increases the opportunities for these optimizations.

Data order: Data order is kept as the original.
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Data size: Since Unfolding stores only distinct nonzeros, if number of nonzeros are

less than 5000, data size is reduced for these matrices. Else, all nonzeros are stored.

Data size is given as:

distinct nz ∗ 8

Code size: Unfolding simply unrolls loops, hence, code size is likely be proportional

to the number of nonzeros. However, the optimizations we discussed previously re-

duces the code size.

Code size is given as:

(possibly) nz ∗ c

Finally, Unfolding also increases opportunities for Common Subexpression Elim-

ination (CSE) when few distinct values exist. Consider the code snippet we used

above. CSE can reduce the FP operations as follows.

double M[] = {1.1, 2.2};

register double m0 = M[0];

register double m1 = M[1];

double subExp = m1 * v[4] + m0 * v[9];

w[0] += m0 * v[3] + subExp;

w[1] += subExp;

In our code generator, when using the Unfolding method, we create a pool of

unique values if the matrix has sufficiently few distinct nonzero values. We set the

threshold for this to 5000. We also do the arithmetic optimizations mentioned above.

We implemented a version of CSE and performed several experiments with it (details

are in Section 7.2), but we did not incorporate CSE into our final code generator.

To give concrete evidence of the impact of Unfolding optimizations, let us look

at Table 1. Here, we give the number of rows (N), number of nonzero values (NZ),

number of unique values, the number of MUL instructions generated by Unfolding,
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Matrix Unique
MUL inst.

Memory traffic (MB) and Speedup wrt Baseline

N NZ values Baseline CSRbyNZ RowPattern GenOSKI44 GenOSKI55 Unfolding

Andrews 29 60,000 9.0 9.0 14.7 9.8 9.8 9.1

60,000 410,077 1.32× 0.80× 1.00× 0.89× 1.50×
EAT RS 91 42,333 6.6 8.3 11.5 7.9 8.0 6.4

23,219 325,592 1.00× 0.73× 0.78× 0.77× 1.23×
kron g500-logn16 103 29,281 47.8 71.1 84.8 59.6 59.4 42.9
65,536 2,456,398 0.63× 0.49× 0.75× 0.76× 1.03×

Reuters911 165 14,856 3.0 4.3 5.3 3.6 3.7 2.9

13,332 148,038 0.97× 0.78× 0.82× 0.83× 1.55×
soc-sign-Slashdot081106 2 0 10.8 11.8 18.5 12.4 12.5 9.9

77,357 516,575 1.49× 0.68× 1.04× 1.04× 1.87×
delaunay n21 6,291,408 6,291,407 155.8 154.8 240.6 130.3 138.1 237.9

2,097,152 6,291,408 0.81× 0.73× 0.40× 0.44× 1.21×
roadNet-CA 2,766,607 2,766,606 87.8 87.1 94.2 62.4 62.4 125.6

1,971,281 2,766,607 1.19× 0.55× 0.46× 0.52× 1.50×
af 5 k101 9,027,150 9,027,150 181.8 181.8 147.5 150.4 144.6 299.8

503,625 9,027,150 0.74× 1.07× 0.96× 1.41× 0.49×
torso3 3,121,632 4,429,042 89.4 89.4 80.5 82.2 80.3 147.2

259,156 4,429,042 1.08× 1.17× 0.98× 0.91× 0.50×

Table 1: The impact of optimizations possible in Unfolding. Best performing
method’s speedup is in bold font.

and “memory traffic” values for plain CSR format (Baseline) and the specialization

methods. The memory traffic values imply the amount of data elements “touched” by

the corresponding SpMV computation, according to the model in [14], which ignores

the cache. So, in addition to the traffic incurred by the rows, cols and vals arrays,

whose elements are accessed once, we also include the data accesses to the input and

output vectors v and w. This means, for each method, an additional traffic of NZ×8

is incurred because of the accesses to v. In Baseline, CSRbyNZ, RowPattern, and

Unfolding, an element of the output vector w is accessed twice (one for read, one

for write). This incurs an additional NE×8×2 bytes, where NE is the number of

nonempty rows. For GenOSKI, the traffic incurred by the accesses to w is calculated

according to the block patterns and the number of blocks. The traffic values for

specialization methods also include the generated code size. In [1], we presented

formulas to calculate the matrix data and code sizes for these methods.

We show information for 9 matrices in Table 1. Unfolding gives the best perfor-

mance for the first 7 of these on turing (our testbed machine that has the Intel CPU),

using sequential execution. The best method for af 5 k101 is GenOSKI55 ; for torso3,
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it is RowPattern. The first 5 matrices have few unique elements while the other 4

have many. Normally, SpMV executes one multiplication instruction per each nonzero

element. Hence, a naive Unfolding would result in NZ-many MUL instructions in the

code. However, due to the optimizations we explained before, the MUL instructions

have been substantially reduced. An extreme case is soc-sign-Slashdot081106, where

no MUL instruction remains in the generated code, because the matrix contains only

1 and -1 as its nonzero values. Also, due to creating a unique value pool, Unfolding ’s

output is almost always smaller in terms of memory traffic when compared to the out-

puts of other methods. It is usually smaller than even the baseline. The reductions

in the number of instructions and the size is only possible if the number of distinct

values is small. The data for af 5 k101 and torso3 matrices illustrate this.

Finally, to our surprise, we have also observed that Unfolding gives the best perfor-

mance for some matrices that have no or very few repeated values. The delaunay n21

and roadNet-CA in Table 1 are two such matrices. Even though the optimizations we

discussed above are not applicable to these matrices, Unfolding performs very good

because it eliminates indirect indexes on the vector v and replaces them with constant

indices (e.g. v[9]). A common property we observed in these matrices is that they

are connectivity matrices that have a very large number of row patterns and a high

number of sparse blocks. So, RowPattern and GenOSKI do not perform well. Also,

the average length of rows is very low (e.g. 3.0 in delaunay n21, 1.4 in roadNet-CA).

This causes loop overheads and branch prediction penalties in other methods.

We acknowledge that our list of methods is not complete. There exist many

other matrix storage formats (e.g. ELL [67], DIA [2], SKS [36], etc.) that require

no specialization, yet may give better performance for some matrices. The problem

is, covering all the possibilities seems practically impossible, as there is a very large

number of formats and also hybrid combinations. So, we fix our set of methods at

some point and we specifically focus on specialization methods, not generic storage
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formats. (Keep in mind that specialization may be applied to those other formats as

well.) That said, in work by Kamin et al. [1], we had compared the specialization

methods that we evaluate in this work with BiCSB [6] and CSX [7]. The specialization

methods we use in this work had performed the best most of the time. We had also

experimented with hybrid approaches, but had not obtained high speedups. Hence,

in this work, we limited ourselves to the five specialization methods and a baseline

implementation.
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CHAPTER III

CODE GENERATOR

We developed a special-purpose compiler that generates executable SpMV code at

runtime. We do not generate source code, use scripts, or invoke an external compiler

at runtime. The compiler takes a matrix and a method name as inputs, and emits

X86 64 object code into a memory buffer. The emitted code is dynamically loaded

into the program and a function pointer is returned to the user.

For boilerplate tasks such as managing the object file format (e.g. arranging the

code/data sections in the Elf, Mach-O formats), and dynamic loading, we use LLVM

[68, 69]. Instructions are emitted into LLVM’s internal buffer at its machine-code

layer. We do not generate any LLVM intermediate representation code, but rather

emit machine instructions directly – bit by bit – to avoid time-consuming compiler

passes (e.g. alias analysis, register allocation, global value numbering, etc.). We took

this approach to minimize runtime code generation cost. The compiler is implemented

in C++ to best integrate with the LLVM API.

Our compiler generates parallel code. For this, the matrix is split into as many

partitions as the number of threads. Partitioning is row-oriented, and aims to as-

sign roughly equal number of nonzero values to each partition, using the following

approach: If there are t threads, starting from the first row, we assign consecutive

rows to the first partition until the number of elements contained by the partition

is at least nz/t. When the first partition has been given at least nz/t elements, we

continue the same process for the next partition using the subsequent rows. This

1D partition is a common approach [8, 9, 70, 13]. For each partition, a function

is generated using the specified specialization method. The generated functions are

24



ALGORITHM 1: The pseudo-code of the CSRbyNZ code generator. This generator

produces X86 64 code for each distinct row length in a matrix, corresponding to the source

snippet on page 13.

// rows array is in %rdx, cols is in %rcx, vals is in %r8,

// v is in %rdi, w is in %rsi, a is in %rbx, b is in %r9

foreach row length L do
M ← number of rows with row length L;
emit(xor %rbx, %rbx) ; // reset a to 0

emit(xor %r9, %r9) ; // reset b to 0

emit(alignment to 16 bytes) ; // for better cache line utilization

P ← current position in the object code buffer ;
emit(xor %xmm0, %xmm0) ; // reset xmm0 to 0

for i ← 0 to L do
// Emit code to calculate vals[b+i]*v[cols[b+i]] and accumulate in

%xmm0

emit(mov i× 8(%r8,%r9,8), %xmm1) ; // xmm1 ← vals[b+i]
emit(mov i× 4(%rcx,%r9,4), %rax) ; // rax ← cols[b+i]
emit(mul (%rdi,%rax,8), %xmm1) ; // xmm1 ← xmm1 * v[rax]

emit(add %xmm1, %xmm0) ; // xmm0 ← xmm0 + xmm1

end
emit(mov (%rdx,%rbx,4), %rax) ; // rax ← rows[a]

emit(add L, %r9) ; // b ← b + L
emit(add 1, %rbx) ; // a ← a + 1

emit(add (%rsi,%rax,8), %xmm0) ; // xmm0 ← xmm0 + w[rax]

emit(cmp M , %rbx) ; // compare M and loop counter a

emit(mov %xmm0, (%rsi,%rax,8)) ; // w[rax] ← xmm0

emit(jne P ) ; // Jump to loop header if limit not reached

emit(add M × 4, %rdx) ; // rows ← rows + M
emit(add M × L× 4, %rcx) ; // cols ← cols + M × L
emit(add M × L× 8, %r8) ; // vals ← vals + M × L

end

executed concurrently using OpenMP [71]. Because partitioning is row-oriented, no

two threads share a common row. Hence, a locking mechanism or a final reduce-add

operation is not needed.

When developing our purpose-built compiler, we naturally faced the problem of

which machine instructions to use; that is, how to derive the assembly code. For

this, we first generated code at source level and manually examined the assembly

code produced by icc and clang (using the -O3 flag) to learn what instruction choices

the compilers make. We focused on how the compilers compiled the loops similar to
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those we provided in Chapter 2. Although long, our code consists of replicating a

straightforward loop structure over and over. We then wrote the code generator to

match the output of compilers as closely as we can.

The way we generate assembly code is mostly straightforward. Algorithm 1 pro-

vides the CSRbyNZ code generator in pseudo-code. This generator produces X86 64

machine code corresponding to the sample source code given for CSRbyNZ in Section

2.1. The X86 64 code generated by this CSRbyNZ generator for the t2em matrix is

shown in Figure 7.

We wrote our own emit functions to write specific bits into the in-memory object

code buffer for the given opcode and arguments. A sample emit function, emitRegInst,

is provided in Figure 8. This function handles emission of several register-to-register

xorl %r9d, %r9d

xorl %ebx, %ebx

nopw (%rax,%rax)

xorps %xmm0, %xmm0

movslq (%rcx,%r9,4), %rax

movsd (%r8,%r9,8), %xmm1

mulsd (%rdi,%rax,8), %xmm1

addsd %xmm1, %xmm0

movslq 4(%rcx,%r9,4), %rax

movsd 8(%r8,%r9,8), %xmm1

mulsd (%rdi,%rax,8), %xmm1

addsd %xmm1, %xmm0

movslq 8(%rcx,%r9,4), %rax

movsd 16(%r8,%r9,8), %xmm1

mulsd (%rdi,%rax,8), %xmm1

addsd %xmm1, %xmm0

movslq 12(%rcx,%r9,4), %rax

movsd 24(%r8,%r9,8), %xmm1

mulsd (%rdi,%rax,8), %xmm1

addsd %xmm1, %xmm0

movslq 16(%rcx,%r9,4), %rax

movsd 32(%r8,%r9,8), %xmm1

mulsd (%rdi,%rax,8), %xmm1

addsd %xmm1, %xmm0

movslq (%rdx,%rbx,4), %rax

addq $5, %r9

; continued on the right

addq $1, %rbx

addsd (%rsi,%rax,8), %xmm0

cmpl $917300, %ebx

movsd %xmm0, (%rsi,%rax,8)

jne -140

addq $3669200, %rdx

addq $18346000, %rcx

addq $36692000, %r8

xorl %r9d, %r9d

xorl %ebx, %ebx

nopw %cs

xorps %xmm0, %xmm0

movslq (%rcx,%r9,4), %rax

movsd (%r8,%r9,8), %xmm1

mulsd (%rdi,%rax,8), %xmm1

addsd %xmm1, %xmm0

movslq (%rdx,%rbx,4), %rax

addq $1, %r9

addq $1, %rbx

addsd (%rsi,%rax,8), %xmm0

cmpl $4332, %ebx

movsd %xmm0, (%rsi,%rax,8)

jne -52

addq $17328, %rdx

addq $17328, %rcx

addq $34656, %r8

Figure 7: The CSRbyNZ code generated for t2em, a 921,632×921,632 matrix with
4,590,832 nonzeros. t2em has 917,300 rows whose length is 5, and 4,332 rows whose
length is 1.
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void SpMVCodeEmitter::emitRegInst(unsigned opCode, int XMMfrom, int XMMto) {

unsigned char data[5];

unsigned char *dataPtr = data;

if (opCode == X86::ADDPDrr)

*(dataPtr++) = 0x66;

else if (opCode == X86::ADDSDrr || opCode == X86::MULSDrr || opCode == X86::SUBSDrr)

*(dataPtr++) = 0xf2;

if (XMMfrom >= 8 && XMMto < 8) {

*(dataPtr++) = 0x41;

} else if (XMMfrom < 8 && XMMto >= 8) {

*(dataPtr++) = 0x44;

} else if (XMMfrom >= 8 && XMMto >= 8) {

*(dataPtr++) = 0x45;

}

*(dataPtr++) = 0x0f;

switch (opCode) {

case X86::ADDPDrr:

case X86::ADDSDrr: *(dataPtr++) = 0x58; break;

case X86::SUBSDrr: *(dataPtr++) = 0x5c; break;

case X86::XORPSrr: *(dataPtr++) = 0x57; break;

case X86::FsMOVAPSrr: *(dataPtr++) = 0x28; break;

case X86::MULSDrr: *(dataPtr++) = 0x59; break;

default:

std::cerr << "Unsupported opcode.";

exit(1);

}

unsigned char regNumber = 0xc0 + (XMMfrom % 8) + (XMMto % 8) * 8;

*(dataPtr++) = regNumber;

DFOS->append(data, dataPtr);

}

Figure 8: Our emitting function that emits various register-to-register instructions.

instructions (ADDPDrr, ADDSDrr, MULSDrr, SUBSDrr, XORPSrr, and FsMOVAPSrr). We

wrote emit functions by examining the bits corresponding to instruction opcodes and

their arguments as output by compilers.

Directly generating object code instead of going through the usual compiler passes

makes the quality of our generated code questionable. To make sure that we generate

efficient enough code, we compared our compiler’s output with icc’s. For this, we

generated source code for all the 23 matrices that were used in [1]. We compiled

these codes using icc with flags -O3 -no-vec (vectorization disabled, because our
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Figure 9: The performance ratio of our compiler’s output to icc’s output for the
matrices used in [1]. A value greater than 1 means we generated more efficient code
than icc.

generator does not do vectorization). We measured the performance of the compiled

code and compared against our code generator.

In Figure 9, we see the ratio of our code’s performance to the performance of

the code generated by icc. A value greater than 1 means our code performed better,

smaller than 1 means icc’s output performed better. The test was done on our Intel

CPU testbed machine using single-threaded execution. For CSRbyNZ, GenOSKI44,

and GenOSKI55, the ratio is consistently close and slightly above 1. On the average

(last column in Figure 9) ratios are, 1.01 for CSRbyNZ, 1.04 for GenOSKI44, and 1.06

for GenOSKI55. For RowPattern, our code performs better than icc for 21 cases out of

23. On the average, the ratio is 1.17, with a maximum of 1.61. Unlike other methods,

Unfolding ’s performance varies with the input matrix greatly. The performance ratio

for Unfolding ranges between 0.32 and 1.54, and is 1.08 on the average.

Table 2 shows the best of the 5 specialization methods for the code generated

by icc and our compiler. The last column gives the performance ratio between our

28



compiler’s winner and icc’s winner. Again, a value larger than 1 means our code

performs better. For 20 matrices out of 23, the winner method both for icc-compiled

code and our compiler is the same. These codes perform similarly, with our compiler’s

output giving 1.04× the performance of icc. The overall performance ratio of our code

to icc is 0.99×. The matrices for which winner methods differ are indicated in bold.

For webbase-1M, the winner method when using our generator is CSRbyNZ, while it

is Unfolding with icc. Similarly, for mc2depi, it is RowPattern vs. Unfolding and for

fidapm37, it it GenOSKI55 vs. GenOSKI44. While the performance gap between

our generator and icc is large for webbase-1M (23%), performances for mc2depi and

fidapm37 are close.

There are 4 matrices that are worth more discussion: soc-sign-Slashdot081106,

webbase-1M, mc2depi, and engine. In all of these, Unfolding is the winner among icc-

compiled code. Our Unfolding performed very close to icc for soc-sign-Slashdot081106.

This is a matrix that has only 1 and -1 as its nonzero values; we applied the arithmetic

optimizations and so were able to match icc’s performance. For engine, although Un-

folding performs the best among the code generated by our compiler, it is significantly

slower than icc-compiled Unfolding. Our compiler’s Unfolding also could not meet the

performance of icc’s Unfolding for mc2depi and webbase-1M; other methods, Row-

Pattern and CSRbyNZ, respectively, were the best. The performance of RowPattern

for mc2depi was close to icc’s Unfolding, but for webbase-1M there is a large gap.

When we examined icc’s Unfolding output for the matrices where icc outperforms our

generator, we saw that icc applies optimizations that we do not do, such as common

subexpression elimination (CSE) and instruction reordering.

Another optimization that icc applies over Unfolding is very similar to our Row-

Pattern specializer. RowPattern finds the exact pattern of nonzero entries in each row

and generates a loop for each pattern. Similarly, icc detects memory access patterns

of rows and generates a loop for them. Due to their sparsity pattern, mc2depi and
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Matrix
Best performing method when using

our code / icc
our generator icc

email-EuAll CSRbyNZ CSRbyNZ 0.99
cit-HepPh CSRbyNZ CSRbyNZ 1.01
soc-Epinions1 CSRbyNZ CSRbyNZ 1.00
soc-sign-Slashdot081106 Unfolding Unfolding 0.99
e40r5000 RowPattern RowPattern 1.17
fidapm11 CSRbyNZ CSRbyNZ 1.00
m133-b3 CSRbyNZ CSRbyNZ 1.01
torso2 RowPattern RowPattern 1.05
fidap011 GenOSKI44 GenOSKI44 1.12
cfd2 CSRbyNZ CSRbyNZ 1.02
m14b CSRbyNZ CSRbyNZ 1.01
s3dkt3m2 RowPattern RowPattern 1.09
conf6 0-8x8-20 RowPattern RowPattern 1.16
ship 003 CSRbyNZ CSRbyNZ 1.00
cage12 CSRbyNZ CSRbyNZ 0.99
debr CSRbyNZ CSRbyNZ 1.00
s3dkq4m2 RowPattern RowPattern 1.04
engine Unfolding Unfolding 0.38
thermomech dK GenOSKI44 GenOSKI44 0.99
web-NotreDame GenOSKI44 GenOSKI44 1.07
mc2depi RowPattern Unfolding 0.94
webbase-1M CSRbyNZ Unfolding 0.77
fidapm37 GenOSKI55 GenOSKI44 1.07

Avg. 0.99

Table 2: Comparing the performance of the code compiled by icc with our code
generator.

torso2 benefit from this optimization. This results in aggressive optimization over

Unfolding since loop shortens the code and compensates for lengthy code generated

by Unfolding. We do not apply this optimization in our Unfolding specializer, be-

cause we already have the RowPattern method. It is not surprising that among our

methods, RowPattern performed the best for torso2 and mc2depi.

In Figure 10, there is a small portion of the generated code using Unfolding with

icc for torso2. We reduced the precision here due to space limitations. As seen in the

code snippet, except for the first row, 3 consecutive rows have the same index values

for accessing vector v, differing only with an offset; e.g. for the third row we add 1
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w[0] += .86 * v[0] + -.06 * v[1] + -1.15 * v[65] + .28 * v[130] + .06 * v[103870];

w[1] += .06 * v[0] + .86 * v[1] + -.06 * v[2] + -1.15 * v[66] + .28 * v[131];

w[2] += .06 * v[1] + .86 * v[2] + -.06 * v[3] + -1.15 * v[67] + .28 * v[132];

w[3] += .06 * v[2] + .86 * v[3] + -.06 * v[4] + -1.15 * v[68] + .28 * v[133];

Figure 10: Code generated using Unfolding with icc for torso2.

to the second row’s indices. icc detects this and generates a loop for rows with such

access pattern. The reflection of this optimization over performance is provided in

Table 3. Although RowPattern performances of both our generator and icc are close

to each other, this optimization of icc results in Unfolding to perform very close to

RowPattern for icc. Yet, Unfolding, beating RowPattern, became the best method

for mc2depi.

Our generator icc iccUnfolding/ Winning method

Matrix RowPattern Unfolding RowPattern Unfolding ourUnfolding ours icc’s Winners ratio

torso2 1000.42 3640.25 1046.824 1148.856 0.32 Row Pattern Row Pattern 1.05

mc2depi 3390.77 8188.56 3713.255 3196.843 0.39 Row Pattern Unfolding 0.94

Table 3: Performance comparison of RowPattern and Unfolding specializers for both

our code generator and icc. Runtimes provided are per iteration.

In summary, the code that we generate, except for Unfolding, is either competitive

with or better than icc’s output. We were able to achieve this performance by gener-

ating code in a straightforward manner, and without having to go through compiler

phases, which are expensive to take at runtime. To give a measure, compiling the

C source codes for 23 matrices took about two days on our testbed machine. Code

generation has to be very rapid for runtime specialization to pay off. That is the

reason why we wrote our purpose-built compiler.

Our focus in this work is not generating the best SpMV code per se. We have not

aggressively optimized the code we are generating; we are not doing optimizations

31



such as vectorization, common subexpression elimination (CSE), or explicit prefetch-

ing. However, we separately experimented with vectorization and CSE. We report

details of these experiments in Chapter 7.

There are three dimensions of concern in runtime code generation in a setting like

ours: 1) quality of the generated code, 2) speed of code generation, 3) adaptability of

the generator to new architectures. Achieving high levels in all three dimensions does

not seem possible with the current state of the art. For instance, we could have fol-

lowed a template-based approach (e.g. [72]) to satisfy dimension (2) and (3), but not

(1); compiling templates separately misses inter-template optimization opportunities.

We could have generated code at an AST or intermediate representation level (e.g.

with Jumbo [73] or LMS [74]) and use an existing compiler back-end to optimize the

generated program, but this would fail to satisfy dimension (2). We opted for dimen-

sion (1) and (2) at the price of (3): our generator does not easily adapt to changes in

the architecture. To handle updates made to the target instruction set architecture,

first, we would have to write new emit functions to support the new instructions. This

is straightforward to do. Second, the code generator for each specialization method

would have to be updated to use the new instruction emitting functions. This would

have to be done by a programmer who knows where and under which conditions

to use these new instructions. Because we do not outsource code generation to an

external compiler, this step does not happen automatically, and would be the most

expensive part of the adaptation in terms of developer effort. This is a price we pay

in exchange for quickly generating fast code.
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CHAPTER IV

AUTOTUNING

Performance portability is a well-known challenge brought by the complexity of mod-

ern computer architecture. Autotuning has been successfully applied to solve this

problem for HPC kernels including SpMV, dense linear algebra, and discrete Fourier

transform [75, 61, 76, 22, 77, 66]. The same problem recurs in specialized SpMV code;

the best performing SpMV specialization method depends on both the matrix and the

machine [1]. In this chapter we discuss the use of autotuning to predict which method

will perform the best for a given matrix. Prediction is important to avoid having to

generate all the code variants and try them out, because runtime specialization has

non-trivial cost (we discuss code generation costs in Chapter 6).

The autotuning process is as follows:

1. At install time, code is generated for a set of training matrices using all the

specialization methods. The generated programs as well as a non-generative

one (i.e. Intel’s MKL as the baseline) are executed and their performances are

recorded.

2. The collected data are used to train a multi-class classifier where several matrix

properties are used as features (detailed below, in Section 4.2) and the names

of the best performing methods are used as classes.

3. At runtime, the user calls the library with a new matrix. Features are extracted

from the matrix and are fed into the previously-trained multi-class classifier.

The classifier outputs a class, which denotes the method that is predicted to

perform the best for the given matrix.
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4. SpMV code is generated using the predicted method if it involves specialization

(the baseline method may have been predicted as well).

5. A function pointer is returned to the user to be used for the subsequent SpMV

operations for the given matrix.

In this chapter we evaluate how one can accurately predict the best SpMV method

for a particular matrix. Our experimental results (Chapter 5) will show the predic-

tion accuracy and the cost of runtime prediction and code generation, that is, when

would specialization compensate its runtime overheads. We first discuss the impact of

memory bandwidth, and how this shapes the matrix features we chose for autotuning.

4.1 Memory Bandwidth

The performance of SpMV is highly affected by the amount of data transferred be-

tween CPU and the memory [14]. Non-specialized methods usually have small codes;

there the concern is the size of the matrix data. On one hand, specialization may

reduce matrix data significantly. On the other hand, code may become very long.

Both the matrix data size and the code size should be counted when talking about

memory bandwidth, because code is also brought into the CPU from the memory. In

Chapter 2, we commented on the code and data sizes implied by each method. In

[1], we used formulas to compute code and data size for the different methods. To

measure the role of memory bandwidth, we calculated the code and data size for all

the 610 matrices we use in this study. We then asked the question “How would an

autotuner perform if it always picked the method with the smallest data?” When

compared to the speedup that could be achieved by a (hypothetical) perfect predictor

that always picks the best performer, this smallest-size strategy yielded 86-91% of the

achievable speedup. However, an SVM-based approach using the features we list in

the next section obtains 97-99% of the achievable speedup (Chapter 5).
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Smallest (code + data) CSRbyNZ RowPattern GenOSKI44 GenOSKI55 Unfolding
size occurrence 63 117 193 229 8

Table 4: Number of times a method yields the smallest size (code and data size).

In Table 4, we provide the number of times each method has the smallest size.

CSRbyNZ is the smallest for only 63 times, but it performs the best for many more

matrices (see Figure 12 in Chapter 5). The opposite situation holds for GenOSKI

methods. They yield the smallest size for many matrices, but do not perform the

best for that many cases.

This shows that even though memory is a dominant factor in SpMV performance,

relying on only the size falls short of the achievable speedup. Table 1 also provides

concrete examples of this argument. Another problem with the pick-the-smallest-size

approach is that the total size of CSRbyNZ is most of the time slightly larger than

the baseline. Hence, making a choice between CSRbyNZ and the baseline method

solely based on size is insufficient. Other decision factors, such as looking at the

average length of rows or the number of distinct row lengths, are needed. At this

point, one starts to feel the need of a model, and that is what the machine-learning

based autotuning approach builds for us, based on the matrix features we provide

and also the actual performances on machines. Hence, it also provides adaptation for

a specific computer.

4.2 Features

We selected matrix features that indicate both the data and code size. We also

picked features that hint at the number of iterations the generated loops execute.

Table 5 shows the feature set we are using. The features are classified based on the

method that will have the highest impact from this feature. A total of 29 features

are collected for each matrix (4 general structure, 4 CSRbyNZ, 8 RowPattern, 1

Unfolding, 6 GenOSKI44, and 6 GenOSKI55 ). We collect the number of rows (N),
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General structure
Number of rows (N)
Number of nonzero elements (NZ)
Number of nonempty rows (NE)
Avg. number of nonzero elements per row (i.e. NZ / N)
CSRbyNZ
Number of distinct row lengths (RL)
Sum of distinct row lengths (SR)
Avg. number of rows for each row length (i.e. NE / RL)
Avg. of distinct row lengths (i.e. SR / RL)
RowPattern
Number of row patterns that apply to only a single row (R 1)
Number of row patterns that apply to multiple rows (R 2)
Sum of lengths of row patterns that apply to a single row (R 3)
Sum of lengths of row patterns that apply to multiple rows (R 4)
Avg. number of rows per row pattern that apply to multiple rows (R 5)
Avg. length of row patterns that apply to a single row (R 6)
Avg. length of row patterns that apply to multiple rows (R 7)
Ratio of NZ elements covered by effective row patterns (R 8)
Unfolding
Number of unique NZ values (capped at 5000) (U)
GenOSKI (for 4×4 and 5×5)
Number of block patterns (G 1)
Sum of lengths of block patterns (G 2)
Number of nonempty blocks (G 3)
Avg. number of blocks per block pattern (G 4)
Avg. length of block patterns (G 5)
Ratio of NZ elements covered by effective block patterns (G 6)

Table 5: Matrix features grouped under the method they impact the most.

number of nonzeros (NZ), and nonzeros per row to represent the general structure of

a matrix. We also include the number of nonempty rows because no code is generated

for empty rows by RowPattern, CSRbyNZ and Unfolding methods, and some matrices

have many empty rows. For instance, in our set of 610 matrices, 52 matrices have 10%

or more empty rows; in these, 28 have more than 20% of their rows empty. From our

point of view, MKL is a black box, and we cannot have features specifically designed

for it. This is yet another challenge for making successful predictions.

For CSRbyNZ we collect the number of distinct row lengths, which indicates how

many loops will be generated, and the sum of row lengths, which indicates how long

the generated loop bodies will be. So, the first two features represent the code length

for CSRbyNZ. The next two features are selected to indicate runtime. The average

number of rows per each row length denotes how many times, on the average, each
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loop will iterate. The average of distinct row lengths indicates how long, on the

average, a loop body will be; hence, it is an approximation of the runtime of one loop

iteration.

There are corresponding features for RowPattern and GenOSKI. The number of

patterns and the sum of pattern lengths indicate the code size. The average number

of rows (resp. blocks) per pattern, and the average length of patterns indicate the

average runtimes of generated loops. RowPattern generates a loop for each pattern;

however, if a pattern is unique to only one row, a completely unfolded code is gen-

erated. Therefore, we distinguish these cases when collecting RowPattern features.

RowPattern and GenOSKI features also include the ratio of NZ elements covered by

effective row patterns and block patterns, inspired from Belgin et al. [9]. We say a

row pattern is effective if its length is more than 3 and it covers at least 1000 NZ

elements; a block pattern is effective if its length is more than 3 and it applies to at

least 1000 blocks.

For GenOSKI, we collect the number of nonempty blocks. This denotes the total

number of iterations generated loops will execute. The corresponding feature for

CSRbyNZ and RowPattern is the number of nonempty rows, which is already in our

list. GenOSKI-related features are collected for both 4× 4 and 5× 5 block sizes.

Unfolding ’s performance is highly sensitive to the number of distinct NZ values

as discussed in Section 2.4. Hence, we have this value as a feature.

Before using for autotuning, we transformed the raw feature values as follows: (1)

We took the log of the values, because they show a skewed distribution. The effective

block coverage (i.e. G 6) is the only exception to this. (2) We normalized the features

to the [−1, 1] interval. This transformation is common in machine learning.

To the best of our knowledge, the features that we pick to indicate the code size

are unique to our work. In existing work, features are usually determined according

to the matrix storage formats, not code size. The number of rows and nonzeros of
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the matrix are almost always collected as features. (e.g. [78, 79, 80, 81, 82]). Average

NZ per row is also common [78, 34, 81]. Some other features used in the literature

are

• zero-fill ratios for formats like DIA [36], ELL [67] and BELLPACK [26] in [83,

81],

• variation of row lengths [83, 79, 80, 81],

• mean neighbor count of nonzero elements [79, 80],

• number of blocks and dense blocks per super row [34],

• number of diagonals, number of nonzero elements per diagonal [34, 81],

• max number of nonzeros per row [81, 82], and

• memory traffic (number of bytes fetched, number of writes to w) [9].

In an attempt to give more information to the learner, we also experimented with

other features as well. For instance, we decomposed the properties in the form of

histograms to carry more fine-tuned information. E.g. the number of row patterns

whose length is less than 3, between 3 and 10, and more than 10, etc. (and similarly

for CSRbyNZ and GenOSKI ). We also used mean and standard deviation values.

However, those attempts did not improve the prediction success, and often decreased

the quality, probably because of over-fitting (a.k.a. the curse of high dimensionality).

4.2.1 Full vs. Capped Feature Set

We call the features listed in Table 5 the full feature set. In Chapter 5, we will

see that full feature set gives us good prediction success, however, it is expensive to

compute. As an alternative, we have an option to stop collecting some of the features

when a certain cap is reached. We set this cap for RowPattern-related features at
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2000 row patterns, and for GenOSKI-related features at 5000 block patterns. We call

this the capped feature set. The only difference between the full feature set and the

capped feature set is that when the cap value is reached, associated feature values are

frozen and the matrix is no longer analyzed for those features. But analysis continues

normally for other features. The number of distinct values is always capped at 5000,

in both full and capped feature extraction.

The intuition behind the capped approach is that many matrices have too many

row or block patterns. When this is the case, full analysis is expensive, because the

set/map structures used for keeping track of the patterns become large. However, we

observed that in general it is unlikely for RowPattern and GenOSKI to be the best

method when there are too many patterns. So, there is no need to do a complete

analysis in this case. With the capped approach, many matrices will be only partially

analyzed for RowPattern and GenOSKI. The features related to these methods will

not always be the exact values. However, we saw that this inaccuracy causes only a

slight decrease in the prediction success. In return, the feature extraction costs are

reduced. We did not put a cap on CSRbyNZ features because the number of distinct

row lengths is usually low and CSRbyNZ analysis is not expensive. Details are in

Chapter 5.

We performed a correlation analysis between the features, shown in Figure 11. The

correlations show that in general we have low redundancy among features. There is

high correlation between N and NE (nonempty rows). This is because most of the

matrices have elements on every row. However, there are some that have empty

rows, and we want to distinguish them. (In our set of 610 matrices, 52 matrices

have 10% or more, 28 have 20% or more of their rows empty.) So, we kept NE

in the features. We also see high correlation between the corresponding features of

GenOSKI44 and GenOSKI55. This is not surprising since the two are instances of

the same method. Finally, there is correlation between the number of patterns (resp.
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Figure 11: Correlations between features of the full feature set.

distinct row lengths) and the sum of pattern lengths (resp. sum of row lengths) in

RowPattern, GenOSKI, and CSRbyNZ methods. This is also normal; the sum of

pattern lengths increases as the number of patterns increases. We nevertheless kept

these features in our set because they indicate important and separate properties

about the generated code size.

We determined the set of features according to the specialization methods and the

code generation approach. If a new method is added to the system, related features

would have to be included. Similarly, changes in the architecture may trigger an

update to the list. For instance, the ratio of consecutive column indices is potentially

a useful matrix feature in case of vectorization.
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4.3 Classifier

There are several options to pick from as the learning model for multi-class classifica-

tion. We experimented with many, including Random Forest Classifier and Decision

Tree Classifier. We found C-Support Vector Classification (SVC) to give the best

results when it is used with RBF (Gaussian) as the kernel. We tried a variety of C

and gamma parameters for RBF; we used the results for the parameter values that

yielded the best prediction rates.

4.4 Classes and Labeling Approaches

In the learning phase, the classifier is fed with the matrix features and the classes of

the matrices. The classifier learns from these data and creates a model that associates

matrix features with the corresponding classes. We tried different approaches to

specify the class:

4.4.1 Naive Labeling

We used the best performing method for a matrix as its class. In this approach, there

are as many classes as SpMV methods (6 in our case). This naive definition of classes

has a potential problem, though; it ignores the fact that methods may perform very

close to each other. For example, suppose CSRbyNZ is the best method for a matrix,

but RowPattern is also very good – good enough that, from the point of view of the

user, picking RowPattern as the SpMV method instead of CSRbyNZ would also be

acceptable. However, from the point of view of the classifier, picking RowPattern

instead of CSRbyNZ is simply incorrect, because that is not the class that the matrix

belongs to. In other words, defining the class of a matrix as its best method loses

information about what other methods are also good choices. We observed that the

average performance ratio of the best and the second best methods is 1.13-1.16× in

our test setup. The ratio is less than 1.01× in 6-8% of the matrices, less than 1.02×
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in 12-16%, less than 1.05× in 24-36%. We try to remedy this potential problem with

the next approach.

4.4.2 Paired Labeling

We used the top two performing methods for a matrix as its class. So, a class label

is a pair of method names. In this approach, the prediction output of the classifier

also contains two methods: a method predicted to be the winner and another that is

predicted to be the runner-up. To decide which method to use for code generation,

we ignore the runner-up and take the first method. To illustrate, let us take the

previous example. There, the matrix’s actual class would be CSRbyNZ-RowPattern

instead of just CSRbyNZ. If the classifier makes the prediction, say, CSRbyNZ-MKL,

we generate code for CSRbyNZ. This is the best case for prediction. If the matrix is

classified as, say, RowPattern-Unfolding or RowPattern-CSRbyNZ, we generate code

using the RowPattern method. Not the best one, but still a good choice.

Using the paired approach, more information is fed into the learner; however,

a potential problem is that the number of possible classes increases significantly as

compared to the naive approach. If M SpMV methods exist, there are a maximum

of M × (M − 1) classes. Having more classes may negatively impact the prediction’s

success because there will be fewer samples per class during the training phase, and

there are more classes to distinguish from each other.

Another potential problem with the paired approach is that if the best method is

substantially better than the second one, this information is not disseminated to the

learner. To address this issue, we tried a variation of the paired labeling approach

where we set a threshold value. The next approach explains this.

4.4.3 Paired Labeling with a Threshold

If the best method is better than the second best method by more than the thresh-

old, we repeated the best method also as the second method in the class name. For
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instance, suppose for some matrix, CSRbyNZ is the best method, Unfolding is the

second best, CSRbyNZ performs 1.30× of Unfolding, and the threshold value is 1.05×.

We labeled the matrix to be in the CSRbyNZ -CSRbyNZ class. This way we empha-

sized to the learner that for this matrix CSRbyNZ is really the best method. This

approach introduces as many new classes as the number of methods.

The results of the naive and paired labeling approaches are presented in Chapter 5.

Thresholding did not sufficiently improve the prediction results; we also give a brief

discussion about this in Chapter 5.

Labeling happens automatically, with no human effort. For each matrix, the auto-

tuner looks at the performance measurements of the SpMV methods, and determines

the class using the chosen approach (naive or paired).
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CHAPTER V

EXPERIMENTAL RESULTS

In this chapter, we provide the experimental results for both performance comparison

and prediction success of the classifier.

We provide, for 5 specialization methods and the baseline method (Intel’s MKL),

the number of times each method becomes the best across our two testbeds and with

different thread counts. We see that 86-94% of the time a specialization method

becomes the best method. The results show that there is no best method for all

machines and for all thread counts. We also observe differences in best method count

for a specialization method when thread counts change. The average and maximum

speedups for both machines and with different thread counts range between 1.33-

1.83× and 2.94-5.69× respectively.

We discuss the matrix features that we selected and why these are important

features. We also discuss and evaluate two different class labeling approaches that

we selected to train the SVM. Overall, our experimental results using 610 matrices

on 2 different machines show that in 71-86% of the matrices the best method can be

predicted, in 11-20% of the matrices, the second best method can be predicted. Only

5-8% of the predictions choose a method worse than the baseline. Predicted methods

give an average speedup of 1.31, 1.41, 1.37, and 1.77 on four scenarios, where the

maximum achievable average speedups are 1.33, 1.45, 1.39, and 1.83, respectively.

5.1 Experimental Setup

In our experimental evaluation, we use a set of 610 matrices obtained from the Matrix

Market [84] and the University of Florida collection [85]. All our matrices are square

and sparse. Their number of nonzero elements range from 100K to 15M, dimensions
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Name Processor & Freq (GHz) Cores Cache Sizes (Bytes) Mem Linux OS compiler
(Microarchitecture) L1 (I/D) L2 L3 (GB)

turing Intel Xeon E5-2620 @ 2.00 6 32K 256K 15M 16 Ubuntu 12.04 icc 14.0
(SandyBridge)

milner AMD FX-8350 @ 4.00 8 64K/16K 2M 8M 8 ArchLinux 3.14.4 gcc 4.8.2
Piledriver

Table 6: Target Platforms

range from 2K to 2.4M. 129 of the matrices are pattern matrices. In this case, the

matrix data downloaded from the collection do not provide any nonzero values, only

the positions of elements are stated. We populate such matrices with distinct values.

Some matrices are symmetric, but we ignore this property.

Several of the matrices in our set are compiled from previously published papers

[5, 7, 8]. Others are arbitrarily chosen from the matrix collections without any specific

criteria except that we preferred the matrices not to have more than 15M nonzeros to

make the experiments runnable in a reasonable amount of time. The matrices come

from a variety of domains including circuit simulation, duplicate model reduction,

electromagnetics, quantum chemistry, power network, computer graphics, etc.

We executed code on two unloaded X86 64 machines, one with an Intel (turing),

the other with an AMD processor (milner). The properties of our testbed computers

are in Table 6. On both machines we generated code using 5 specialization methods

(CSRbyNZ, RowPattern, GenOSKI44, GenOSKI55, Unfolding). We also collected

the runtime of Intel MKL’s SpMV function, and we use MKL as the baseline when

we calculate speedups. So, in total 6 SpMV methods are used on the machines. We

have also run the benchmarks on a third computer with an Intel Xeon E3-1220 CPU,

and found the results to be similar to turing; we do not include that machine’s timings

here.

We collected the running times as follows: For each matrix and SpMV code, we

measured the time it takes to run the code for a few hundreds or thousands of times.

The number of iterations is determined according to the matrix size, but we made sure
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that the measured time is long enough (e.g. at least 2 seconds) to avoid fluctuation.

We then divided the measured time by the number of iterations to find the running

time of one SpMV operation. We repeated this test three times, and took the lowest

time (i.e. the fastest execution time) with the intuition that it reflects the execution

with the least interference from external events. We measured feature collection,

matrix conversion, and code generation times again by running them three times and

taking the smallest measurement. We executed SpMV code both sequentially and

in parallel. For parallel executions, we set the number of threads to be equal to the

number of CPU cores (6 on turing, 8 on milner). We refer to the sequential runs as

turing-1 and milner-1, parallel runs as turing-6 and milner-8.

For comparing the performance of specialized code, we use Intel’s MKL library as

the baseline implementation. We could not use the AMD Core Math Library (ACML)

[86] on our testbed machine that has an AMD CPU, because ACML does not have

SpMV. ACML was recently retired and replaced by the BLIS [87] and libflame [88]

libraries, but these library do not provide SpMV, either.

For prediction experiments, we used the scikit-learn module of Python (version

2.7.9) [89]. We applied 10-fold cross validation for training and testing. This is a

standard approach in machine learning. We first shuffled the data, then split into

10 groups, each comprising of 61 matrices. For each group, training is done using

the other 9 groups (549 matrices). The chosen group is used for testing whether the

predictions made by the trained classifier is correct.

We used Principal Component Analysis (PCA), a technique in machine learning

to reduce the number of features in order to assist the classifier by supplying more

correlated data, but we did not observe any improvement in the quality of predictions.

Thus, the results we report do not include any application of PCA.
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Figure 12: Number of times each method is the best (610 matrices in total).

5.2 Performance Results

In this section we discuss the performance results of the specialization methods. Fig-

ure 12 shows the distribution of best methods.

In Figure 12, it is seen that although the best method counts vary across ma-

chines and with different thread counts, CSRbyNZ and GenOSKI methods (both

GenOSKI44 and GenOSKI55 ) are likely to be the winning methods most of the

time. Unfolding seems to fall behind in terms of the best method count, but it pro-

vides as much speedup as other specialization methods when it is a winning method.

Except for CSRbyNZ and Unfolding, specialization methods seems to benefit from

parallelization since their winning counts increase when moving from single-threaded

to multi-threaded runs (i.e. from turing-1 to turing-6, and from milner-1 to milner-

8). The percentage of the baseline implementation in Figure 12 is 10-14% for turing

and 6-14% for milner. Hence, most of the time a specialization method is the best

method.

Table 7 shows the average and maximum speedups w.r.t. the baseline performance

when using the best method for each matrix.
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Test Name Avg. Speedup with the best method Max. Speedup with the best method

turing-1 1.33 2.94

turing-6 1.45 4.28

milner-1 1.39 3.30

milner-8 1.83 5.69

Table 7: Average and maximum speedup w.r.t. the baseline performance when using
the best method for each matrix.

In this work, our intention is to determine whether runtime specialization is feasi-

ble for SpMV. Therefore, we have not aggressively tuned our library to gain the best

speedup we can achieve. We studied industry-strength compilers, icc and clang, and

tried to mimic their optimizations. But, we believe, there is still room for improve-

ment. Table 7 and Figure 12 show that runtime specialization can provide substantial

speedup for SpMV. The maximum speedup that the baseline method can achieve over

the best specialization method (not shown in the table) ranges between 2.00− 2.62.

5.3 Prediction Results

In this section we discuss the prediction results of the classifier. Figures 13 and 14

show the distribution of class labels when using the paired approach. In Figure 15

we show the prediction results for turing-1, turing-6, milner-1, and milner-8. For

each, we show the number of correct, semi-correct, incorrect, and bad predictions

(definitions given below), as well as the average speedup achieved when using the

predicted methods (on top of each bar). We tried all four combinations of naive/paired

labeling and full/capped feature sets.
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Figure 13: Class labels and corresponding counts for 610 matrices using the paired

approach on turing.

In the naive class labeling approach, a single method name is used as the class of

a matrix. Hence, if the autotuner’s classification for a given matrix is the same as the

actual best method, it is a correct prediction. Otherwise it is an incorrect prediction.
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Figure 14: Class labels and corresponding counts for 610 matrices using the paired

approach on milner.

In the paired class labeling approach, two method names are used as the class of

a matrix. The autotuner’s classification output is hence a pair of method names. As

previously explained, we take the first method as the predicted one and ignore the

second. If this first method is the same as the actual best method, we categorize this

prediction as correct ; if it is the same as the actual second best method, we categorize

this prediction as semi-correct. Otherwise, the prediction is considered incorrect. In
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Figure 15: Prediction results.

both naive and paired labeling approach, an incorrect or semi-correct prediction may

have worse performance than the baseline. We call this a bad prediction.

We achieve average speedups of 1.31, 1.41, 1.37, and 1.77 when using paired

labeling and the capped feature set (P-C bars in Figure 15). The speedups are

slightly better when using the naive approach or the full set. Recall from Table 7

that if always the best methods are used, the speedups are 1.33, 1.45, 1.39, and 1.83,

respectively. So, predictions obtain 97-99% of the maximum speedups. The best

method can be predicted in 71-86% of the matrices, and the second best method can

be predicted in 11-20% of the matrices. Only 5-8% of the predictions choose a method

worse than the baseline.

Full vs. Capped Feature Set

The full feature set gives only slightly better predictions than the capped feature set.

The average speedups are either the same or only differ by 0.01. Taking into account

that the capped feature set can be extracted faster than the full set (detailed in the
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next section), we favor the capped set and consider the marginal loss in the quality

of predictions an acceptable trade-off.

Naive vs. Paired Labeling

The naive and paired approaches yield similar speedups and prediction accuracy. The

advantage of the paired approach to the naive approach is the confidence it provides

from the machine learning (ML) point of view. Even though good speedup is achieved

with naive labeling, about 14-29% of the predictions are “incorrect”. This would make

a machine-learning-savvy person feel uncomfortable; a success rate of about 70% is

not considered the best in the ML community. By using the paired approach, we

relax the definition of class labels and feed more information into the learner. This

gives more confidence that the achieved speedups are good not just by luck.

Thresholding

We also experimented with the thresholding approach presented in Section 4.3. We

used 1.01, 1.02, 1.03, 1.05, 1.10, and 1.15 as the threshold values. Usually, using

the threshold yielded slight improvement in terms of correct predictions (∼5 more)

and bad predictions (∼4 fewer). The achieved speedups did not change. However,

the number of semi-correct and incorrect predictions were altered significantly. For

instance, for turing-1, we obtained 69 semi-correct and 23 incorrect predictions when

a threshold is not used, but 19 semi-correct and 67 incorrect when a threshold value

of 1.02 is used. This is because some classes contain repeated method names (e.g.

CSRbyNZ-CSRbyNZ) when a threshold is used. For those classes, there is no chance

for a semi-correct prediction, a prediction is either correct or incorrect, according to

our definition. We also examined the cases for which there is a large performance

difference between the winning method and the runner-up: In our four experimental

setups, there are 143-189 (24-30% out of 610 matrices) matrices where the winning

method performs 1.20× the second best method. Among these, paired labeling ap-

proach gives semi-correct predictions for 3-14 matrices, and incorrect predictions for
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2-9 matrices. For these reasons, we decided not to use the thresholding approach.
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CHAPTER VI

LATENCY

SpMV specialization is likely to occur at runtime, unless the matrix (or at least its

pattern) is available offline. If the matrix data is available only at runtime, the SpMV

library has to be quick in producing the specialized function in order for specialization

to bring profit. In this chapter, we discuss the issue of latency : How much time needs

to be spent for prediction and code generation? How many SpMV iterations should

be taken so that specialization compensates its costs and starts to bring benefits?

We show that, on the average, the total cost of specialization is equivalent to 58 and

53 calls to the baseline SpMV operations, respectively, on two machines where we

ran our experiments. For the matrices for which the predicted method brings 1.1×

or better speedup, we obtained average break-even points of 272 and 237 baseline

SpMV operations on our testbed computers.

In our SpMV library, we assume we are given a matrix defined in the standard

Compressed Sparse Row (CSR) format. SpMV specialization for a matrix and a

particular specialization method involves the following steps:

• Matrix analysis: Before generating code, the matrix is analyzed to collect

method-related information, e.g.: what block patterns exist and which blocks

have which patterns in GenOSKI. The result of matrix analysis is used for ma-

trix conversion (next step), and when emitting instructions (the step after), e.g.:

for each block pattern in GenOSKI, a loop is generated.

• Matrix conversion: The matrix data is converted from CSR format to the format

needed by the particular specialization method. This usually involves reordering

the matrix data.
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• Instruction emission: X86 64 instructions are emitted in accordance with the

specialization method, using the code generation approach explained in Chapter

3.

• Boiler-plate: A number of low-level tasks need to be carried out to execute the

emitted code at runtime. These tasks include creating a target-specific (e.g.

Mach-O or Elf) in-memory buffer to emit the instructions, and dynamically

loading this buffer for runtime execution. For these tasks, we use LLVM’s

machine-code layer.

We have parallelized Matrix analysis. The number of threads is set to number

of threads set for threaded-runs. Although we also parallelized Instruction emission

process, the results presented in this chapter are with single thread (denoted with

turing-1 and milner-1).

6.1 Cost of Code Generation

Average costs of the code generation steps in terms of one baseline SpMV operation

are given in Table 8. We provide two costs, “if best” and “overall”, for each method.

“Overall” column gives the cost averaged over the whole set of matrices; “if best”

gives the cost averaged over the matrices for which the particular method is the best

performer. We see that, in general, costs are lower when the method happens to

be the best. This is because shorter codes are often better than long codes, and

short code is generated quicker. For instance, if there is a large number of row

patterns in a matrix, both the analysis, instruction emission, and boiler-plate steps

take significantly longer time. A similar observation can be made for GenOSKI and

Unfolding as well. Compared to the other methods, CSRbyNZ is usually very fast to

analyze and generate.

Table 8 also provides the costs for extraction of full and capped feature sets, as well

as end-to-end specialization. The full feature extraction cost of a matrix is less than
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turing-1 milner-1
if best overall if best overall

CSRbyNZ
Analysis 1.7 1.3 1.0 0.8

Conversion 3.6 4.6 3.4 4.2
Emission 0.8 2.0 0.7 1.5

Boiler-plate 1.1 2.3 1.0 1.8

RowPattern
Analysis 19.4 27.9 16.2 20.5

Conversion 3.9 5.6 3.0 4.4
Emission 1.5 31.4 1.0 21.4

Boiler-plate 2.1 25.1 1.5 18.8

GenOSKI44
Analysis 34.3 40.9 29.0 30.5

Conversion 3.2 3.2 3.4 3.2
Emission 1.5 2.3 0.9 1.7

Boiler-plate 1.3 1.6 1.0 1.1

GenOSKI55
Analysis 38.0 42.7 27.3 32.2

Conversion 3.5 3.3 3.0 3.2
Emission 2.0 6.6 0.8 4.9

Boiler-plate 1.6 3.0 0.9 2.1

Unfolding
Analysis 3.0 4.0 2.3 3.3

Conversion 0.0 0.0 0.0 0.0
Emission 60.6 108.6 44.0 77.0

Boiler-plate 13.1 38.4 10.6 28.5

Full feature set
Extraction 71.2 57.0

End-to-end specialization 90.3 75.8

Capped feature set
Extraction 39.0 34.6

End-to-end specialization 58.0 52.9

Table 8: Costs of code generation steps and feature extraction in terms of one baseline
SpMV operation.

the sum of CSRbyNZ, RowPattern, Unfolding, GenOSKI44, and GenOSKI55 matrix

analysis costs, because feature extraction tracks less data than matrix analysis. For

instance, while the feature extraction step collects only the counts of patterns and

blocks for GenOSKI, matrix analysis also needs to collect which patterns apply to

which blocks. End-to-end specialization is calculated as

Feature extraction + Predicted method’s (Analysis + Conversion + Emission + Boiler-plate)

When calculating end-to-end specialization, we take the analysis cost as zero if

56



the predicted method is CSRbyNZ or Unfolding, because the needed information is

already computed during feature extraction. The feature extraction and end-to-end

specialization costs we report are averaged over all matrices.

The cost of end-to-end specialization is equivalent to 58.0 baseline SpMV calls

on turing, and 52.9 on milner when using the capped feature set. This means, even

when the baseline method or a method whose performance is very close to the baseline

is predicted, the amount of work that is spent due to specialization is about 50-60

iterations of SpMV. Considering that several hundreds of iterations in iterative solvers

is typical, this may be an acceptable trade-off.

In Table 8 we provide values for only single-threaded execution on both turing

and milner. The boiler-plate step is delegated to LLVM, and we are not sure if it can

be parallelized, but it is possible for all the other steps and feature extraction to run

concurrently by splitting the matrix and the analysis data into partitions.

6.2 Break-even Points

Considering the end-to-end specialization costs, we calculate the break-even point for

each matrix: how many times should we have to iterate SpMV so that specialization

compensates its cost, and starts to bring advantage over the baseline implementation?

Figure 16 shows the distribution of break-even points on turing and milner. The

values in this figure have been prepared according to the predictions made using the

paired labeling approach. The number of iterations used in iterative solvers depends

on the desired accuracy of the solution, but several hundreds or a few thousands is

common in practice. Considering this fact, the break-even points shown in Figure 16,

in particular those when the capped feature set is used, are practically useful, as for

many matrices speedup would be gained. Note that for some matrices, the baseline

method is predicted. This, along with bad predictions, is shown in Table 9. For those

matrices, no break-even point exists and no cost other than the feature extraction
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Figure 16: Distribution of break-even points of the predicted methods.

Bad Predictions Baseline Predicted
turing-1 milner-1 turing-1 milner-1

Full 33 40 77 75
Capped 35 41 81 77

Table 9: Count of bad predictions and baseline predictions for full and capped feature
sets using single thread on both turing and milner.

has to be paid. The bad predictions are the cases for when the predicted method

performs worse than the baseline. For these cases, the library may simply default

back to using the baseline implementation after detecting that the generated code

performs poorly.

Belgin et al. report average break-even points from 500 to 700 excluding code

generation cost in their work where they introduce the pattern-based representation

(PBR) for SpMV [9]. They report these break-even points for matrices for which at

least 1.1× speedup was observed (39 out of 53 matrices). Because we do analysis for

different methods and our matrix set is not the same (we have 610), our numbers are

not directly comparable to theirs. However, to give a similar evaluation, our average

break-even point for predictions that yield at least 1.1× speedup (when the capped

feature set is used and code generation cost is included) is 272 on turing (414 cases
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Full feature set Capped feature set
turing-1 milner-1 turing-1 milner-1

No. of predictions with ≥1.1×
speedup

417 435 414 432

Avg. break-even point of predic-
tions with ≥1.1× speedup

406 314 272 237

Table 10: Count and break-even points of predictions that yield 1.1x or better
speedup.

out of 610) and 237 on milner (432 cases out of 610), also shown in Table 10. Belgin

et al. generate code by writing C files on the disk and invoking a compiler. Therefore,

when runtime code generation is included, their break-even points increase to several

thousands. Our code emission costs are much smaller, due to our purpose-built code

generator.
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CHAPTER VII

ADDITIONAL OPTIMIZATIONS

We have experimented with two additional optimizations on the generated code,

vectorization and common subexpression elimination, to see their effect on the per-

formance. In this chapter we discuss these two optimizations.

7.1 Vectorization

In our experiments with several compilers (icc, gcc and clang), we have seen that

depending on the matrix’s shape and the specialization method, the generated code

can benefit from vectorization. Hence, we wanted to measure the impact of this

optimization on the performance.

We experimented with SSE2 (Streaming SIMD Extensions) instructions that op-

erate on vector registers (eight 128-bit registers known as XMM0 through XMM7).

Since XMM registers are 128 bit wide, they can hold two double-precision floating

point numbers. SSE instructions allow performing calculations with the two halves

of XMM registers simultaneously.

We can store two consecutive column indices in an XMM register. We used

MOVAPD and MOVUPD instructions to read two packed column indices from mem-

ory to an XMM register. These instructions allow loading data from aligned and

unaligned memory locations. We used an ADDPD instruction to add column indices

together which are stored in XMM registers. An example is provided in Figure 17.

HADDPD instruction (horizontal add) is similar to ADDPD instruction but add

contents of the registers horizontally, adding low and high quadwords of an XMM reg-

ister horizontally together. If we take the example in Figure 17, haddpd %xmm0, %xmm1

will add 8.0 and 6.0 together and store 14.0 in XMM0’s high quadword, and will add
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Figure 17: ADDPD instruction.

7.0 and 7.0 together and store 14.0 in XMM0’s low quadword.

In Unfolding, all the array indices are explicit. Therefore, vectorization opportu-

nities can be detected in a straightforward manner. Details of doing vectorization for

Unfolding can be found in [90]. Other methods that vectorization is applicable are

RowPattern and GenOSKI methods since both methods remove indirect indexing for

column indices. However, we only did our experiments for Unfolding.

In our experiments, we have combined vectorization together with Common Subex-

pression Elimination (CSE), explained in the next section.

SpMV and vectorization-related work includes [9, 64, 91]. In these work, an exter-

nal compiler is involved and code is generated at source level and vectorization is done

using compiler intrinsics. On the contrary, we detected vectorization opportunities

while generating code and emitted vector instructions appropriately.

7.2 Common Subexpression Elimination (CSE)

Common Subexpression Elimination (CSE) is one of the most well-known optimiza-

tion passes of a compiler. It detects common subexpressions in arithmetic expressions

to calculate these subexpressions only once and use multiple times. Multiplication

instruction is known for taking many cycles to execute and thus, for keeping the ALU

busy. Reducing the multiplication and addition instructions by CSE is expected to

have a noticeable effect on the performance. How Unfolding can benefit from CSE
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is discussed previously in Section 2.4. Here, we discuss the implementation of CSE

as integrated into the code generation phase of Unfolding. Our implementation of

CSE is customized to the context of Unfolding and hence differs from the traditional

definition, such as the one found in [92]. We call this specialization method Unfold-

ingWithCSE.

We did not integrate UnfoldingWithCSE in our library because our focus in this

dissertation is not to obtain the best SpMV speedup, but it is to show the feasibility

of runtime specialization by using autotuning; the speedups obtained without CSE

were sufficient for this purpose. We nevertheless present UnfoldingWithCSE here to

give an impression of how much improvement could possibly be gained for Unfolding,

at the expense of increasing code generation costs.

Below are the key properties of our CSE implementation:

• Application Level: We do not have a graph on which to perform the analysis.

Instead, we analyze matrix rows to find column indices that are common among

rows, and consider them as subexpressions that can be reused later.

• Type of common subexpressions: We restricted the common subexpres-

sions to have consecutive column indices and to be multiplied with the same

nonzero element of the matrix. This restriction is to make it easier to apply

some arithmetic optimizations we discussed in Section 2.4, and for vectorization.

This is demonstrated below in detail.

w[0]=8*v[1]+5*v[3]+5*v[4]+5*v[5]+5*v[6]+8*v[10]

w[1]=5*v[3]+5*v[4]+5*v[5]+9*v[11]

In this example, a common subexpression is given. We will call a common

subexpression as CSEXP in this context. Here, we consider two consecutive

rows. We see that the expression 5 * v[3] + 5 * v[4] + 5 * v[5] is com-

mon in both rows. The inverse of distribution of multiplication over addition
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is an arithmetic optimization we perform in Unfolding (see Section 2.4). So

the expression above becomes 5 * (v[3] + v[4] + v[5]). To enable these

optimizations and vectorization, we restricted CSEXPs to be multiplications of

a constant matrix element with the sum of consecutive elements of the vector

v; i.e. to situations that lead to the following expression format: c * (v[i] +

v[i + 1] +. . .+ v[i + k]). To do this, before CSE is applied, we group the row

elements according to the distinct nonzero values of the row. At the end of the

CSE analysis of two consecutive rows, a CSEXP object is created holding col-

umn indices and a value index for the nonzero value. The following subsection

explains the CSEXP object.

• Scope of CSE analysis: Unlike the classical CSE algorithm, we do not

analyze the whole search space and find every possible common subexpression.

We rather focus on consecutive rows and search for common subexpressions

locally within a sliding window of two matrix rows. This is decided based on

the observation that common subexpressions usually appear on the rows close

to each other. Banded matrices are an example to this. With this limitation,

we also reduce the analysis cost imposed by CSE.

Since we apply arithmetic operations like inverse distribution of multiplication

to take advantage of few distinct values, we vectorize only the accesses to the input

vector v. For instance, an expression such as 5 * (v[4] + v[5] + v[8] + v[9]) is

converted to the following pseudo assembly code:

mov v[4-5], %xmm0

mov v[8-9], %xmm1

addpd %xmm0, %xmm1

haddpd %xmm1

mul $5, %xmm1
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CSEXP Object:

A CSEXP object is an object that four fields (i.e. it is a four-tuple) that we use

to represent a common sub-expression in this format: c * (v[i] + v[i + 1] +. . .+

v[i + k]). Here, the nonzero constant c is a value loaded from the unique value

pool; therefore, the format is in fact vals[j] * (v[i] + v[i + 1] +. . .+ v[i + k]).

A CSEXP object has the following fields:

• Value index (i.e. j)

• Column indices (i.e. i, i + 1, . . . , i + k)

• Target register (i.e. xmm0 through xmm15)

• Availability (i.e. true or false)

Here, availability denotes whether the summation part of the expression (i.e. (v[i]

+ v[i + 1] +. . .+ v[i + k])) is already computed. Target register denotes where

the result of the summation will be stored. This representation allows us reuse a

CSEXP in a bigger CSEXP and regardless of the multiplied nonzero constant. E.g.

5 * (v[3] + v[4] + v[5]) can be used to construct 9 * (v[3] + v[4] + v[5] +

v[6] + v[7]). All we need to do is to add v[6] + v[7] to v[3] + v[4] + v[5] and

multiply it with 9. If, in the CSEXP object, we stored the result of the multiplication

5 * (v[3] + v[4] + v[5]) instead of only the summation v[3] + v[4] + v[5],

this reusability would not have been possible.

UnfoldingWithCSE

We integrated CSE together with vectorization into Unfolding. We call this spe-

cialization method UnfoldingWithCSE. In UnfoldingWithCSE, instead of looking for

common subexpressions in the entire search space, we limit the analysis to two con-

secutive rows in a sliding-window fashion. The motivation behind this choice is that
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Figure 18: Pairwise CSEXP analysis for row 322681 of matrix webbase-1M.

CSEXPs are more likely to appear in rows close to each other, in particular, in banded

matrices. Thus, each row of the matrix, except the first and the last, are analyzed

twice: once with its predecessor and then with its successor. When generating code

for a row, we favor the CSEXPs of whichever pair yields more coverage of elements.

This way, we only need a one-pass over the matrix data to detect CSEXPs, and we

substantially reduce the analysis cost when compared to a traditional CSE.

An example of the sliding window CSEXP analysis is given in Figure 18. Here, the

values are from the webbase-1M matrix. Row 322681 is being analyzed once with its

predecessor and once with its successor. In the first pair, a single common subexpres-

sion is found: 〈8.43028, v[124383]〉. In the second pair, two common subexpressions

exist: 〈8.43028, v[124383]〉 and 〈0.005917, v[309516]〉. CSEXP coverage of first the

first pair is one since we have only one common column index, CSEXP coverage of

the second one is two. When emitting code for row 322681, the analysis result of the

second pair is favored because its CSEXPs cover more elements.

Evaluation

For the evaluation of UnfoldingWithCSE, we chose a small subset of our matrices

that have very few distinct values and contain CSEXPs whose characteristics are

provided in Table 11. For some matrices, although they have few distinct values,

UnfoldingWithCSE did not find any CSEXPs. We omitted those cases here.
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matrixName N NZ Distinct vals % Dist. vals Avg NZ/row

cage12 130,228 2,032,536 350 0.01722 15.61

engine 143,571 2,424,822 1 0.00004 16.89

m133-b3 200,200 800,800 2 0.00025 4.00

soc-sign-Slashdot081106 77,357 516,575 2 0.00039 6.68

webbase-1M 1,000,005 3,105,536 565 0.01819 3.10

Table 11: Matrices selected for experimental evaluation of UnfoldingWithCSE.

Both m133-b3 and soc-sign-Slashdot081106 have 2 distinct values: 1 and −1.

These two matrices are good candidates for the arithmetic optimizations considered

in Unfolding since multiplication with 1 and −1 are transformed to addition and

subtraction. engine has only one distinct value, 8.

In our experiments, we observed that for some matrices, putting a lower bound

to the length of a CSEXP by using a threshold is beneficial. This decreases the

number of CSEXPs created, but eliminates very short ones that are not likely to

be useful. We give the threshold’s affect on the number of CSEXPs created, on the

number of column index pairs vectorized, and on the performance, in Table 12. To

understand CSE and vectorization’s affects on the performance better, one should

find out more about common subexpressions of a matrix. For this, we also created a

CSEXP histogram for each matrix in our set. In Tables 13, 14, and 15, we present

the length and count of CSEXPs detected by UnfoldingWithCSE.

For engine, when the threshold is 3, CSEXPs with at least of length 4 are created.

We see that the number of CSEXPs created are almost halved. Although the number

of vectorized pairs are slightly increasing when the threshold goes from 0 to 3, at 3 it

dropped down. Obviously, column indices became non-consecutive in this case. It is

seen that the runtime dropped by 18% (i.e. the performance is improved) when the

threshold is 3.
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cage12
threshold 0 1 2 3

num. of CSEXPs 28,937 0 0 0
num. of vectorized pairs 95,189 95,299 95,299 95,299

runtime 3,062 3,073 3,072 3,064

engine
threshold 0 1 2 3

num. of CSEXPs 258, 474 237, 304 216, 050 113, 914
num. of vectorized pairs 564, 896 573, 492 585, 482 524, 779

runtime 2, 469 2, 435 2, 437 2, 026

m133-b3
threshold 0 1 2 3

num. of CSEXPs 75, 790 0 0 0
num. of vectorized pairs 0 0 0 0

runtime 6, 998 7, 421 7, 412 7, 423

soc-sign-Slashdot081106
threshold 0 1 2 3

num. of CSEXPs 7,952 204 35 7
num. of vectorized pairs 30,210 30,852 31,043 31,086

runtime 3,417 3,443 3,477 3,509

webbase-1M
threshold 0 1 2 3

num. of CSEXPs 142,549 9,450 1,716 879
num. of vectorized pairs 83,232 67,646 78,188 80,189

runtime 4,732 4,972 4,958 4,949

Table 12: Effect of threshold on number of CSEXPs, number of vectorized pairs and
runtime.

However, there might be cases when increasing the threshold is not beneficial for

performance. m133-b3 is an example of this. As seen in Table 12, m133-b3 does not

benefit from vectorization at all. All we can do is make use of CSEXPs if there is any.

When no threshold is applied, UnfoldingWithCSE created 75, 790 CSEXPs. From its

histogram, given in Table 14, we see that all of these CSEXPs are of length 1. Hence,

when the threshold is set to a value higher than 1, we eliminate all CSEXPs resulting

in a 6% decrease in performance. webbase-1M also behaves similar to m133-b3, with

1, 415, 278 CSEXPs of length 1 (see Table 15).

For cage12, the number of vectorized pairs and performance are almost not af-

fected; however, the number of CSEXPs drop to zero when increasing the threshold

values, since the length of the CSEXPS is 1 (Table 14). To our surprise, although
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engine

length count length count length count length count
1 21, 058 6 98, 990 11 65 16 2
2 21, 058 7 269 12 6, 363 17 2
3 184, 997 8 269 13 10 18 328
4 26, 453 9 15, 850 14 10 21 32
5 26, 453 10 65 15 1, 925 24 6
27 8 Total 404, 213

Table 13: CSEXP histogram of engine.

CSEXP length soc-sign-Slashdot081106 m133-b3 as-caida cage12
1 15,953 127,158 3,308 29,056
2 241 7
3 31
4 8
5 2

Total 16,235 127,158 3,315 29,056

Table 14: CSEXP histogram of soc-sign-Slashdot081106, m133-b3, as-caida, and
cage12.

cage12 has 28, 927 CSEXPs, it did not benefit from CSE at all.

soc-sign-Slashdot081106 and webbase-1M are not affected significantly by the

threshold in terms of performance, although there are drastic changes in their num-

ber of CSEXPs and vectorized pairs. Both soc-sign-Slashdot081106 and webbase-1M

mostly have CSEXPs of length 1. However, setting the threshold to 1 affected their

CSEXP and vectorized pair counts differently. This is because the sparsity regime of

the matrix plays a very important role here. A matrix with many consecutive column

indices benefits from vectorization. Also, distribution of CSEXPs in the matrix is an

important factor on their reusability and the impact on the performance. We believe

that analyzing a small part of the matrix beforehand (i.e. matrix sampling [7]) may

reveal if CSE (and/or vectorization) will be beneficial.

In Table 16, we present performance comparison of Unfolding, UnfoldingWithCSE

and icc. We omitted other matrices because for only engine and soc-sign-Slashdot081106

Unfolding was the winning method. To see CSE’s and vectorization’s effects, we com-

pared Unfolding to UnfoldingWithCSE. And to see how good our implementation is,
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webbase-1M
length count length count length count

1 1, 415, 278 13 60 29 3
2 30, 675 14 15 31 1
3 6, 082 15 19 32 2
4 2, 179 16 46 34 9
5 1, 195 17 71 39 1
6 623 18 32 40 1
7 519 20 10 42 1
8 179 21 37 43 1
9 328 23 33 44 12
10 136 24 20 45 43
11 82 25 91 52 1
12 48 26 34 302 3

Total: 1, 457, 870

Table 15: CSEXP histogram of webbase-1M.

Matrix Unfolding UnfoldingWithCSE icc
engine 4,960.15 2,026.27 1,874.86

soc-sign-Slashdot081106 842.16 679.99 832.76

Table 16: Runtime comparison of Unfolding, UnfoldingWithCSE, and icc.

we compared Unfolding to icc. The implementation that is used with icc is the one pre-

sented in [1]. We used -O3 as the optimization level. We see that UnfoldingWithCSE

improves the results (by 2× for engine), and becomes competitive with icc. However,

icc still beats UnfoldingWithCSE for engine. Note that icc employs other optimiza-

tions such as register allocation (which we do manually) and instruction reordering

(we do not do this optimization). For soc-sign-Slashdot081106, UnfoldingWithCSE

improves the performance by 18.4%.

Also we provide the ratio of code generation performance of UnfoldingWithCSE

and Unfolding for all matrices in Table 17. It is seen that CSE with vectorization

increases code generation time significantly.

UnfoldingWithCSE is a specializer that we developed to understand the effect of

CSE and vectorization. Our motivation was to see, in our context, to what extend
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Matrix UnfoldingWithCSE / Unfolding
cage12 0.32
engine 0.45

m133-b3 0.31
soc-sign-Slashdot081106 0.49

webbase-1M 0.31

Table 17: Code generation performance ratio of UnfoldingWithCSE to Unfolding.

CSE and vectorization can be integrated to a code generator. This increases the

developer the effort and the complexity of the specialization method; however, del-

egating CSE optimization to a compiler is likely to increase the runtime costs well

beyond the limits of practical benefits.

Previous work on code generation for algebraic expressions and optimization with

CSE are [93, 94]. In these work, algebraic expressions are expressed as matrices

and factorization is applied to find common subexpressions. We could not take the

approach as an example to ourselves since we want to do CSE as quick as possible

and compress the data transferred as much as possible. Work on vectorization can

be found in [9, 64, 91]. In these work, code is generated at the source level and an

external compiler is involved; vectorization is done using compiler intrinsics.
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CHAPTER VIII

RELATED WORK

SpMV is a popular computational kernel that has been well-studied. This chapter

covers not all but many research papers in this area categorized as autotuning and

code generation. Under this categorization, both work aiming SpMV directly and

more general examples of autotuning and code generation tools are presented. Finally,

work focusing both on autotuning and code generation is given.

8.1 Autotuning

A variety of library generators use auto-tuning to generate sparse and dense linear

algebra kernels, such as PHiPAC [95], ATLAS [61], and SPARSITY/OSKI [18, 60].

These libraries employs empirical search for tuning parameters. ATLAS and PHiPAC

generate and tune kernels for dense matrices. Both SPARSITY and its successor

OSKI use a model to estimate the performance of a given blocking factor based on

architectural and matrix-specific parameters. Similar to ours, a hybrid offline/run-

time empirical search based autotuning approach is taken. pOSKI [4] builds on prior

work on the OSKI and targets both uniprocessor and multicore machines. It pro-

vides parallel functionality, and includes additional optimizations to OSKI. pOSKI

supports several parallel programming models to create multiple threads on multi-

core architectures, and it also supports several partitioning schemes to split a matrix

into submatrices. Other well-known uses of auto-tuning include FFTW [75], a library

that produces Fast Fourier Transform code, and SPIRAL [76], which generates digital

signal processing routines using a symbolic algebra system and genetic algorithms as

a search method.

Previous autotuning approaches for SpMV focus mostly on choosing an optimal
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storage format, because even the basic sparsity regime of a matrix can have profound

effect on the performance [11]. To this end, there exist work using decision trees [81],

dynamic-programming [96], reinforcement learning [79], heuristic-based autotuning

[83], and model-driven approaches [82, 26, 97].

Li et al. [81], introduce SMAT: an auto-tuning system providing both application

and architecture aware SpMV kernels. User provides the input matrix in CSR format

and SMAT determines the optimal format (among CSR, COO, DIA and ELL) and

implementation on a given architecture using machine-learning. SMAT uses a two-

staged approach being off-line and online for autotuning. Off-line stage consists of

optimal format and implementation search using machine-learning techniques. If this

stage fails to meet the requirements for a successful guess, online stage is triggered.

In this stage, available candidates are benchmarked and the one with the highest

performance is outputted. They report prediction accuracy of 82% on both Intel and

AMD architectures.

In [96], Guo et al. present a profile-based performance modeling and optimization

analysis tool to predict and optimize performance of SpMV on GPUs. A dynamic-

programming based autotuning algorithm is proposed to report on optimal storage

strategy, storage format(s) and execution time. Formats considered are CSR, ELL,

COO and HYB. First, execution times are collected from benchmark matrices. Then,

along with properties, the execution times are used to instantiate models used for

estimating performance of a SpMV kernel. In the model, partitioning the matrix and

using different storage format for each is also considered.

Armstrong et al. [79], use reinforcement learning to automatically choose between

COO, CSR, BCSR using number of rows, number of columns, number of nonzeros,

standard deviation of of nonzeros per row and number of neighbors as matrix features.

The learning agent is characterized by two parameters: an exploration rate and a

parameter that determines how the state space is partitioned.
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Sufah et al. [83], describe an autotuning framework for both selecting the op-

timal storage format (among ELLPACK, BELLPACK, DIA, HYB and their own

format BTJAD) and CUDA parameters for SpMV kernels on GPUs. The autotuning

framework uses heuristics to guide the search and it consists of two stages: Reduce

candidate storage formats based on matrix sparsity characteristics and select kernel

parameters based on matrix characteristics and/or specifications of the target GPU.

Pruning kernel parameters is partly based on architecture specifications and matrix

specific parameters like block size.

In [82], Neelima et al. propose a model-driven approach to choose an optimal

sparse matrix format for SpMV. Authors suggest that for predicting a suitable stor-

age format for SpMV on GPU, besides matrix features, one should also consider

communication overheads and transforming time caused by the chosen format. Ma-

trix features are used for categorizing the matrix into different sparseness levels and

determining the non-zero elements distribution. Then, data sizes for each format

(CSR, COO, ELLPACK and HYB) are computed. Using data size and PCI-E band-

width capability CPU to GPU communication time is also calculated. Based on this

observation optimal model is chosen.

In [26] Choi et al. introduce new storage format called BELLPACK and a perfor-

mance model based on model-driven approach to guide tuning. It is based on offline

benchmarking and a model that is instantiated at run-time. Kernel specific param-

eters are determined by offline benchmarking. This information is fed to the model

and performance is calculated.

In [97] Guo et al. present a performance-model driven approach for partitioning

sparse matrix into appropriate storage formats (COO, CSR, ELL, HYB) and an auto-

tuning framework to choose appropriate CUDA parameters. Auto-tuner benchmarks

predefined matrices to instantiate parameters of the performance model at offline

stage. Matrices are sorted based in number of non-zeros per row. At runtime, using
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the performance model, the incoming matrix is optimally partitioned by means of

load balance and each partition is transformed into specific format. Meanwhile, the

system adjusts CUDA parameters automatically by invoking all possible combinations

of parameters on the specific architecture and measure their performance in the first

iteration.

Su et al. [34] introduce a new format called Cocktail Format which partitions a

matrix into submatrices and stores them in best storage format falling into categories

flat, blocked and diagonal. The storage formats considered include DIA, BDIA, ELL,

CSR, COO, BELL and BCSR. The framework analyzes a given matrix at runtime

and predicts the best representations for different platforms. It benchmarks in off-line

phase using different sparse matrix settings such as matrix dimension and number of

non-zero elements and estimates performance. It solves Cocktail Matrix Partitioning

problem at runtime using greedy approaches using features collected for different

matrix formats.

In [78], Zein et al. study for SpMV, how to determine the best CUDA implemen-

tation for a given format. The goal is to come up with a blackbox implementation

that can determine this best CUDA implementation from some characteristics of the

sparse matrix. Using a code generator, all possible implementations are produced and

their performance is measured. To select among best performing implementations,

first a best implementation set (BPS) is selected among all implementations using

greedy approach. It is constructed incrementally by adding the one additional im-

plementation that gives rise to the biggest performance enhancement. Then, given a

BPS, a decision tree with attributes number of rows, number of columns and average

number of non-zeros per row is used to select the best implementation.

In [98], Yang et al. optimize graph-based data mining algorithms such as PageR-

ank, HITS, and RandomWalk on GPUs whose key computation is spMV. The work
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focuses on large graphs - typically with power-law characteristics. The authors pro-

pose a composite storage format which combines CSR and ELL and use tiling. Based

on empirical observations, problems causing memory traffic are addressed with several

optimizations. The framework can be used on both single- and multi-GPU systems.

Balancing the workload are determined with a performance model which relies on

executing model of CUDA kernels. Also automatically tunes parameters for tiling

using a greedy heuristic.

A new storage format for sparse matrices named blocked compressed common

coordinate (BCCOO) is introduced in [24] to address bandwidth problem. Yan et

al. propose a matrix-based segmented scan/sum approach to address load imbalance

problem. They also propose an auto-tuning framework to choose optimization pa-

rameters based on characteristics of the input sparse matrices and target hardware

platforms. Parameters include performing transpose online or offline, suitable block

size, number of nonzero blocks to be processed, number of threads in a workgroup,

and size of shared memory. The search space is pruned using heuristics. Also com-

piled kernels are cached for future use. OpenCL code is generated as the result of

auto-tuning.

Li et al. present performance analysis based on probability mass function (PMF)

for SpMV on GPUs [99]. PMF is used to analyze distribution pattern of non-zeros

in the sparse matrix giving its compression efficiency. Combined with hardware pa-

rameters of the target platform, PMF is used in performance estimation of the SpMV

kernel with different storage formats among COO, CSR, ELL, HYB and predicting

the most appropriate format for the input matrix. Since the analysis is based on a

mathematical model, no benchmarking is needed.

To the best of our knowledge, our work is the first study on applying autotuning

to pick among several specialization methods. This is challenging as the generated

code structure also needs to be considered in addition to the data format. We used a
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Support Vector Machine (SVM) based approach for autotuning. SVM is used in many

autotuning systems including the Nitro framework [66] and others [22, 63, 64, 65].

Most of the other autotuning work have smaller matrix sets than ours, e.g. ∼14-

150 [100, 66, 82, 96]. There also are studies with bigger matrix sets, e.g. ∼2000 in

[81], 1000 (synthetic) in [79].

In [8], Williams et al. discuss several optimizations that are effective on dif-

ferent multicore platforms to improve SpMV performance. Optimizations discussed

are divided into three categories: Low-level code optimizations, data structure op-

timizations and parallelization optimizations. Examples of optimizations provided

are software pipelining, branch elimination, pointer arithmetic, prefetching, blocking

(register, cache, TLB) and threading. Authors compare their work to OSKI [60]. The

framework uses a perl-based code generator to generate optimized spMV kernels for

the low-level optimizations considered. Their auto-tuning framework uses a heuristic

to minimize memory traffic and to select the appropriate parameters for tuning such

as block size. Additionally, the best prefetch distance is exhaustively searched on

each of their testbeds.

Vuduc et al. present ways of developing search-based systems for automatic tuning

in [22]. It proposes solutions to early-stopping problem and run-time implementation

selection. They develop a heuristic to stop an exhaustive compile-time search early

if a nearly-optimal implementation is found. The algorithm is based on user defined

search tolerance parameters. The method performs a partial search while still pro-

viding an estimate on the performance of the best implementation. In addition, they

show how to construct run-time decision rules based on runtime inputs to select best

implementation. The problem is formulated as statistical classification task in which

a set of decision rules are automatically constructed at runtime to select the best

implementation. Three models are used: Linear regression, separating hyperplanes

and support vector machines (SVM) and report on their misclassification rates.
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In [101], Demmel et al. introduce two systems:ATLAS for dense and BeBOP for

sparse linear algebra kernels. Both use heuristic search strategies to explore archi-

tecture parameter space. ATLAS generates different kernels, applies optimizations

such as software pipelining, register blocking, loop unrolling and then measures the

execution times and compares them. For the sparse case, performance also depends

on input matrix’s non-zero structure. Hence, most optimizations must be deferred

to runtime since matrix might not be known till runtime. The auto-tuning frame-

work is a combination of off-line benchmarking and heuristic performance modeling

at run-time. Benchmarks are run on the target machine and at run-time performance

relative structural properties of the matrix are estimated and these are combined

to predict the implementation for the best performance. Various optimizations are

considered including register blocking, cache blocking, variable block splitting and

exploiting diagonal structure. For determining the best implementation for a matrix,

a probability density function based classifier is used. For a new matrix, given its

feature vector method is found which maximizes the prob. density function. For

feature extraction and characterization of algorithms multi-variate Bayesian decision

rule is used.

POET (Parameterized Optimization for Empirical Tuning) [102] is an embedded

scripting language that allows for parameterizing complex code transformations so

that they can be empirically tuned. It aims at improving generality, flexibility and

efficiency of existing empirical tuning systems. Yi et al. show loop optimizations:

interchange, blocking and unrolling. POET can be embedded in code written C,

C++ or Fortran by treating input code fragments as parameterized strings without

the need to interpret the underlying language. The paper presents an example for

tuning optimizations for matrix multiplication for both sparse and dense cases.

A model-based approach for memory hierarchies to optimally block matrices is

proposed in [103]. The approach aims to amortize the cost of moving data between
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different levels of the memory. Hence, the framework suggests a family of algorithms

based on input shape which is locally optimal to each level of memory hierarchy. It

derives a cost model for the memory hierarchy starting from registers and various

blocking strategies of a matrix.

In [104], Lee et al. present optimizations for SpMV and SpMM when the matrix

is symmetric and an empirical modeling and search based auto-tuning approach for

selecting tuning parameters. Parameters to be tuned for SpMM are block size r,c and

vector width v. After off-line benchmarking per machine, performances are measured

for SpMM for a dense matrix stored in sparse format for all (r,c,v). Then, at run-

time true fill ratio of the matrices measured. Last, (r,c,v) that maximizes estimate

function of register blocking performance is chosen.

In [105] Guo et al. propose an auto-tuning framework for selecting optimal CUDA

parameters for CUDA CSR kernel. Parameters such as number of threads and number

of block size are chosen based on GPU architecture. Warp size is chosen based on

the input matrix. After combining all these parameters, CSR kernel is invoked with

different combinations. After the first iteration, the best combination is determined

and rest of the iterations are done using this combination.

In their study, Reguly et al. [106], focus on efficient implementation of SpMV

on cache-based GPU architectures. They introduce a model to select near-optimal

parameters such as number of threads per block with special attention on caching

mechanisms. Based on this, a dynamic run-time auto-tuning system to improve the

performance is introduced. And a fixed rule in which preset values for parameters

are chosen using exhaustive search is proposed. Fixed rule sometimes fails to deliver

near-optimal performance since characteristics are unknown until runtime. Hence, an

empirical algorithm based on exhaustive search is proposed.

Following work consist of autotuning for kernels other than SpMV or for general

compiler optimizations. First couple of work are examples of using machine learning
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techniques for optimization.

In [107], Li et al. study machine learning techniques to extend empirical search

for sorting algorithms. The library generator produces implementations of composite

sorting algorithms that are specialized for input characteristics and architecture of

the target machine. It uses genetic algorithms and a rule-based classifier to search

for the optimal sorting algorithm.

In [108], Monsifrot et al. address automatic generation of optimization heuristics

on a target processor by machine learning. Authors target compiler optimizations

in general but focused on loop unrolling in this study. Unrolling decision rules are

represented as oblique decision trees. The classifier is binary since it decides whether

to apply loop unrolling or not. Loop abstraction features used in the classifier are

memory access count, arithmetic operation count, size of loop body, control statement

in loop and number of iterations. These include both architecture-specific and -

independent features whereas we used only matrix related features in our work.

In [63], Stephenson et al., discuss how machine learning techniques can be used in

heuristic tuning in general. The authors focus on loop unrolling. Near Neighbor (NN)

Classification and Support Vector Machines (SVM) are used to predict unroll factors.

Open Research Compiler [109] is used as testbed. It uses two loop unrolling heuristics

by toggling software pipelining. The feature set for supervised learning contains loop

characteristics such as trip count of the loop and number of operations in the loop

body. Among 38 such features a subset that improves the classification accuracy is

chosen using Mutual Information Score (MIS) and Greedy Feature Selection (GFS).

The subset of features is the union of top 5 features selected using MIS and GFS.

Multi-class classifier has 8 classes corresponding to 8 different unrolling factors. The

supervised learning is trained offline. For accuracy leave-one-out cross validation is

used. In our work, we used features unique to our specialization methods as well as

common features such as number of rows and number of nonzeros. We have as many
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classes as the specialization methods and the baseline method. Like Stephenson

et al., we use SVM and train our classifier offline and use LOOCV for accuracy

measurements.

Cavazos et al., in [110], propose to use performance counters to determine good

compiler optimization settings by using machine learning. The model examines per-

formance counters of a new program and by using prior knowledge from previous

programs determines a set of optimizations that are most likely to result in a speed

up. Performance counters include cache hit, cache miss, branch prediction statistics.

The learning model is based on logistic regression and it predicts best transforma-

tion sequence for the input performance counter values. Study cases include various

benchmarks written in C, C++ and Fortran.

Another approach for auto-tuning optimization parameters is introduced in [111].

Ganapathi et al. propose to use static machine learning techniques: Kernel Canonical

Correlation Analysis (KCCA) to search the space of tunable optimization parameters

such as thread count, domain decomposition, software prefetching, padding and inner

loop. KCCA finds multivariate correlations between optimization parameters and

performance metrics and uses them to optimize performance and energy efficiency.

Authors show their results on stencil code optimization.

In [64], Stock et al. address the problem of selecting the most effective com-

bination of transformations for automatic vectorization on today’s compilers using

machine learning (ML) techniques. 6 different ML models from Weka are used: IBk,

K*, M5P, SVM and LR with features extracted from generated assembly code. Mod-

els are trained offline and used at compile-time to choose among generated variants.

Training of ML models are done on tensor contraction kernels and stencil computa-

tions. The code generator generates vector intrinsics after following optimizations:

loop permutation, unroll-and-jam and choosing loop to be optimized. ML models

are based on predicting the performance of vectorized codes without running them.
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Assembly features considered are: vector operation count, arithmetic intensity, suf-

ficient distance, sufficient distance ratio, total operations and critical path. In order

to benefit from the ability of different models to predict best transformations for dif-

ferent benchmarks, a second-order model combining the predictions of the two best

individual models is used. Also, using linear regression a weighted rank model is

developed to output the variant that ranked first.

In [65] Trouve et al. focus on using machine learning techniques to decide whether

it is beneficial or not to apply basic block vectorization to obtain speedup. Vector-

ization sometimes causes a slowdown. Authors use SVM and demonstrate that it

significantly improves the quality of the code produced by Intel Compiler. Proposed

approach relies on pattern matching and it focuses on loop unrolling. They conducted

two experiments differing only at inputs: Already transformed program to find out if

it were beneficial to do so or not and untransformed program along with an unrolling

factor. Feature extraction is done at IR and AST level, with 12 static and hardware-

independent features. This data is fed into SVM where training and test sets are 80%

to 20% and quality is measured by LOOCV and plotting the learning curve.

Cavazos et al. develop a method-specific approach that automatically select the

best optimizations on a per method basis within a dynamic compiler in [112]. The

approach uses logistic regression to derive a model that determines which optimiza-

tions to apply on the features of a method. The technique is implemented in Jikes

RVM Java JIT Compiler. Training data is generated by randomly applying differ-

ent optimizations to methods and timing the program performances. 26 features are

extracted denoting the optimizations applied.

In [113], Kamil et al. present a stencil auto-tuning framework that converts For-

tran 95 stencil expression to tuned parallel Fortran, C,or CUDA. Optimizations such

as loop unrolling and cache blocking are applied as transformations on the AST built
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from the problem specification. To generate code for different platforms several back-

end code generators are used. As part of the auto-tuning framework, strategy engines

are used to enumerate optimizations with different parameters. These are run, timed

and best is reported.

An optimization and auto-tuning framework for stencil computations is intro-

duced in [114] by Datta et al. . Proposed approach is both for multicore machines

and GPUs. Multi-threaded C code variants for different optimizations are gener-

ated using a perl based code generator. Then via benchmarking, parameter space is

searched using several search heuristics chosen intuitively based on their performance

experiments. Hence, auto-tuning framework outputs both peak performance and op-

timal parameters. Examples of parameters thread block size, core block size, register

block size and DMA size. And optimizations include hierarchical blocking, unrolling,

reordering and prefetching.

Autotuning unrolling factors has been studied widely using machine learning tech-

niques [108, 63, 65]. Examples using other techniques are [115, 116].

In [115], a semi-automatic compile-time approach for identifying optimal unrolling

loop factors for CUDA programs is proposed by Murthy et al. . To identify optimal

unrolling loop factors, the framework analyzes compiled CUDA codes using Orio

[117] and PTX analyzer of nVidia and estimate the performance of various unroll

configurations.

In [116], Kisuki et al. address selecting tile sizes and unroll factor problem simul-

taneously by means of iterative compilation. The framework applies a sequence of

transformations and decides the next transformation by a search algorithm such as

genetic algorithm, simulated annealing or windows search. Code variants with differ-

ent transformations are generated and benchmarked. After a number of iterations,

the search algorithm outputs the transformation with the shortest timing.

Following work are other general frameworks for autotuning.
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In [118], a specializer for the matrix powers kernel built by SEJITS[119] is in-

troduced. Optimizations applied by the specializer are thread and cache blocking,

tiling, symmetric representation and index array compression. First, the auto-tuner

tries out possible optimization parameters and then optimized code is translated from

Python to C using SEJITS. The auto-tuner benchmarks code variants for the best

implementation and reports back. SEJITS uses runtime code generation as we do

but it generates the same code with different parameters and benchmarks them to

find the best implementation. On the other hand, we have multiple specializers and

predict the best one using a multi-class classifier and generate code only for the pre-

dicted. Another difference is that they generate code at source-level while we do it

in assembly-level.

In [117], Hartono et al. introduce Orio: an extensible annotation-based empirical

tuning system which supports both architecture-specific and -independent optimiza-

tions. Orio generates many tuned versions of the same operation from annotated C

code and selects the one with the best performance. Code transformations range from

low-level loop optimizations to composed linear algebra operations such as memory

alignment, loop unroll/jamming, loop tiling, register tiling, multi-core parallelization

(using OpenMP). Orio also provides various heuristics (random search, Nelder-Mead

simplex method and simulated annealing) to prune the search space to reduce the

auto-tuning cost.

Jordan et al. introduce a multi-objective auto-tuning framework comprising com-

piler and runtime components in [120]. Framework focuses on individual code regions,

computes a set of optimal solutions by using a multi-objective optimizer resulting in

a multi-versioned executable. Hence, runtime system can choose among different ver-

sions dynamically adjusting to changing circumstances. Tunable parameters include

tile size, unrolling factors and number of threads. The framework is implemented

based on Insieme Compiler and Runtime Infrastructure [121]. Jordan et al. work on
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loop tiling as a study case for their framework.

Active Harmony, an automated runtime tuning system allowing runtime switching

of algorithms and library and application parameter tuning is proposed in [122].

Runtime switch of algorithms is based on a performance monitoring system. Tuning

algorithm is a parallel algorithm based on simplex method.

A parameter prioritizing tool for Active Harmony[122] to help focus on perfor-

mance critical parameters is described by Chung et al. in [123]. Each parameter is

specified with minimum, maximum, default values and distance between two neigh-

bor values. Using these, the tool tests the sensitivity of each parameter to determine

the impact of change of the parameter on performance. Also historical data is used

to speed up tuning.

Recently, a two-level approach to autotuning was shown effective to address the

complexities of mapping features to algorithmic configurations [124]. We leave it a

future work to see whether this approach improves the prediction accuracy for our

experiments.

8.2 Code Generation

There exist several work that employ code generation for SpMV. Some of these work

apply compile-time and some apply runtime specialization.

Willcock and Lumsdaine [33] generate matrix-specific compression/decompression

and multiplication functions. The authors propose two compressed storage formats

and their multiplication algorithms: DCSR and RPCSR. For DCSR, highly tuned

decompression and multiplication routines are generated at different levels for dif-

ferent processors. Hence, generated code is aggressively tuned while compromising

portability. For RPCSR, matrix-specific dynamic code which is again specific to the

processor is generated at runtime in assembly language. Kourtis et al. [7] also study

data compression; they generate specialized SpMV routines for their CSX format in
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the LLVM intermediate representation. We, too, use LLVM, but only for boiler-plate

tasks regarding object file management. Similar to our capped feature extraction

approach to reduce matrix analysis cost, Kourtis et al. employ matrix sampling and

show that it reduces costs by allowing minor loss speedups.

Sun et al. [125] introduce a runtime code generator for OpenCL that produces

code variants for diagonal patterns for their CRSD format. Belgin et al. [9] propose

a new format PBR which identifies recurring block structures that share the same

pattern of non-zeros within a matrix. (The GenOSKI method we use is a variant

of PBR.) A runtime code generator generates optimized custom kernel for each pat-

tern. They generate code at the source-level and invoke an external compiler. They

also have a code cache that can be used to dynamically link object files for existing,

already-compiled code. They show that priming this cache with common block pat-

tern code reduces runtime generation costs. Mateev et al. [126] introduce a generic

programming API to generate efficient sparse code using high-level algorithms and

sparse matrix format specifications. A similar work is presented in [100] by Grewe et

al. where efficient and system-specific SpMV kernels for GPUs are generated based

on a storage format description. While this line of research generates code according

to storage formats, we specialize code for a specific matrix.

Code generation for SpMV or related problems (i.e. matrix multiplication and

vector dot product) is found as a case study in several previous papers. Fabius [127]

is a compiler that generates native code at runtime from specifications given in a

subset of ML. It derives a code generator from source code that contains expressions

labeled with late and early annotations. Carette and Kiselyov [58] show how to elim-

inate abstraction overheads from generic programs using multi-stage programming

on Gaussian elimination. Rompf et al. [57] propose to combine various compiler

extension techniques to generate high-performance low-level code. They demonstrate

optimization of operations on sparse matrices, loop unrolling and loop parallelization.
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SpMV, in the context of Hidden Markov Models, was also proposed as a Shonan Chal-

lenge [128].

We developed our code generator manually. It may be possible to derive it sys-

tematically from source code using a code generation/staging approach as in Fabius

[127], LMS [57], or Tempo [129], but we have not tried this yet. It is unclear whether

we can do code emission rapidly and produce high quality code using one of these

approaches. As a trade-off, we comprise portability of our compiler.

Earlier examples of using code generation to optimize linear algebra operations

include [130] and [131]. They generate machine code based on the matrix structure.

Giorgi and Vialla [132] generate SpMV kernels based on characteristics of the input

matrix. Venkat et al. [12] address indirect loop indexing and irregular data accesses

in SpMV kernels and introduce new compiler transformations and automatically gen-

erated runtime inspectors. Our RowPattern and GenOSKI methods also eliminate

indirect indexing. Neither of these papers do runtime generation. Belter et al. in-

troduce a domain-specific compiler (BTO) in [133] to compile linear algebra kernels

automatically by optimally combining several BLAS routines. To reduce memory

traffic, BTO fuses loops of successive BLAS routines. It takes a matrix and vector

arithmetic in annotated MATLAB and produces a kernel in C++. On the contrary

to our compiler, BTO generates code at source level and applies some optimizations

and passes the AST to a compiler graph to apply other low-level optimizations. An

analytical model of the memory (cache and TLB) predicting the amount of data

access for each instruction is used to differentiate between optimization choices and

performance prediction.

There are several other examples of code generation frameworks for either general

purpose or for other scientific computational kernels such as stencil computations or

tensor contraction.

To bridge the performance gap between productivity-level languages (PLLs) such
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as Python, MATLAB and efficiency-level languages (ELLs) like CUDA, Cilk and C

with OpenMP, Catanzaro et al. propose use of just-in-time specialization PLLs in

[119]. PLLs emphasize programmer productivity over hardware efficiency and ELLs

lack the abstractions provided by DSLs. Code is dynamically generated in ELL within

the context of PLL interpreter. Only those parts that will provide high performance

improvement are generated in ELL compensating for runtime overhead. The JIT

machinery is embedded in the PLL itself making it easy to extend.

Holewinski et al. present a code generation scheme for stencil computations on

GPUs to decrease global memory bandwidth requirements in [134]. Several compiler

algorithms are developed for automatic generation of efficient, time-tiled stencil codes.

Input to the code generation scheme is a sequence of stencil operations described in

their stencil DSL and it outputs overlapped-tiled GPU code and a host driver function

written in C/C++.

In [91], Stock et al. describe a model-driven compile-time code generator that

transforms tensor contraction expressions into highly optimized short-vector SIMD

code. Since nested loops of tensor kernels can be fully permuted, a performance

model to estimate relative number of execution cycles for different loop permutations

is proposed. With the best loop permutation predicted by the model, unrolled loop C

code with SSE intrinsics is generated. The code synthesizer doesn’t generate assembly

code directly to focus on vectorization and leave register allocation to the compiler.

Kamil et al. introduce Asp (SEJITS for Python) in [135], a framework to bridge

the gap between productivity and performance. It embeds DSLs into Python for pop-

ular computational kernels such as matrix algebra and stencils providing a domain-

specific but language-independent AST along with an optimization strategy. And it

results in efficiency-level specialized code. SEJITS is a typical example to runtime

code specialization.
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8.3 Autotuning and Code Generation

Like our library, some research focus on both code generation and autotuning at the

same time. Our library generates specialized code and uses autotuning to decide on

the best specialization method.

In [136] Shin et al. discuss that auto-tuning frameworks like ATLAS and GOTO

perform well for large matrices achieving 70% of peak performance but for small ma-

trices achieves only 25%. For improving small matrix performances, optimizations

should focus on loop overhead, managing registers and exploiting ILP. Hence ag-

gressive loop transformations like loop permutation and unroll-and-jam are needed.

The paper presents code specialization done using CHiLL[137] combined with an

auto-tuning framework that uses heuristics to narrow down the space of different

implementations. As a result of benchmarking, the system reports a library of im-

plementations for a particular problem, domain and size. The framework is used

to speedup Nek5000, a spectral-element code in [138]. On the contrary, our library

focuses on large matrices, we use our own purpose-built code generator and our au-

totuner outputs a generative or non-generative method to generate specialized code

for the given matrix.

In [139], PATUS a code generation for both CPUs and GPUs and auto-tuning

framework for stencil computations is introduced. It takes three DSLs specifying

the problem, optimizations like parallelization, explicit SIMDization and loop nest

unrolling and hardware specifications. Then auto-tuner searches for the optimal pa-

rameters by running benchmarks and generating the kernel again and again based on

a search method.

In [140], Hall et al. provide code transformation recipes for code generation in

the form of specification of parametrized variants. Hence, it provides a common API

for a compiler transformation (unroll-jam, tile, permute, split, fuse...etc) framework.

Code generation is done using CHiLL[137] and POET[102] for OpenMP and CUDA

88



code. It is part the an auto-tuning framework which does benchmarking and selects

an implementation that meets a set of criteria the best.

PetaBricks: A new implicitly parallel language and compiler is presented in [141].

The motivation is to have multiple implementations of an algorithm and multiple al-

gorithms to solve a problem. It consists of a source-to-source compiler that translates

from PetaBricks language to C++, an auto-tuning system that is based on genetic

algorithm. The compiler performs static analysis and encodes algorithmic choices

and tunable parameters in the output code. An algorithmic choice is a first class

construct of the language. Choices include automatic parallelization techniques, data

distribution, algorithmic parameters, transformations and blocking. The autotuner

builds a multi-level algorithm in which each level consists of a range of input, cor-

responding algorithm and a set of parameters. Either this is run or fed back to the

compiler.

Han et al. present Pattern-driven Stencil Compiler-based tool (PADS) in [142]

which is a tool to reuse and tune stencil calculation kernels for different GPU plat-

forms. It consists of OpenMP-to-CUDA translator, an optimized stencil template

generator, a code generator with template library and a tuning system. C++ is used

to rewrite stencil kernel codes incorporating domain-specific knowledge. Code genera-

tor generates CUDA code for different stencil patterns and parameters. Both platform

-specific and -independent parameters such as blocking factors, grid thread size, loop

unrolling are tuned by the tuning system. And template library is responsible for

recording optimized template codes.

Tiwari et al. introduce a runtime compilation and tuning framework for parallel

programs in [143]. Previous work on Active Harmony [122] is extended for tunable

parameters that require code generation using CHiLL [137]. An online auto-tuner

that can tune multiple code-sections simultaneously is proposed. The code generator,

based on various parameters generates and compiles code on the fly. All generated
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code-variants are sent to a parallel machine for auto-tuning. Auto-tuning is car-

ried out in parallel. Parallel Rank Order (PRO) proposed by Tabatabaee [144] is

used together with a penalization method for boundary constraints. Optimizations

considered include loop unrolling, loop fusion, loop split and data-copy operations.
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CHAPTER IX

CONCLUSIONS

In this dissertation we have shown that it is possible to use runtime specialization to

form efficient SpMV in the context of iterative methods or when the same matrix is

multiplied by several vectors. We have developed an end-to-end special-purpose com-

piler that generates efficient SpMV code which is specialized for a given matrix. Our

compiler directly emits machine instructions without going through any intermediate

representation to avoid time-consuming compiler passes. We took this approach to

minimize runtime code generation cost.

We also experimented with vectorization and common subexpression elimination

(CSE): compiler optimizations that are observed to be beneficial for SpMV. We have

shown that vectorization can be integrated into the code generation library by im-

plementing emitting functions necessary and altering the specializers accordingly.

Vectorization is available only Unfolding, RowPattern and GenOSKI methods. We

implemented it only for Unfolding. We have showed that CSE can improve the SpMV

code’s performance significantly for some matrices, however, at the expense of sub-

stantial analysis cost. Hence, we did not include these optimizations into our code

generation library.

We experimented with 5 specialization methods and also Intel’s MKL. We eval-

uated two class labeling approaches and used SVM machine-learning technique to

predict the best method to eliminate the need to produce many code variants. Our

experimental results using 610 matrices and running on two different machines show

that for 91–96% of the matrices, either the best or the second best method can be

predicted.
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For autotuning, we used 29 matrix features; several of these are unique to our work.

We also experimented with a capped feature extraction approach that reduces matrix

preprocessing costs. We show that end-to-end specialization costs are equivalent to

53–58 baseline SpMV operations on the average. These costs are low enough that

runtime specialization of SpMV for many real-world matrices in practical applications

of iterative solvers is feasible.

Lastly, let us give a brief discussion about what is on our schedule next: We would

like to evaluate the performance results and better understand the bottlenecks and

try to solve them. We also want to report on parallel code generation. At a larger

scale, we aim to revisit vectorization, and add it to methods where applicable. Also,

we will also consider kernels other than SpMV and lastly, we hope to port our code

generation library and framework to GPUs.
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[76] M. Püschel, J. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong,
F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. Johnson, and N. Riz-
zolo, “SPIRAL: Code generation for DSP transforms,” Proceedings of the IEEE,
vol. 93, no. 2, pp. 232–275, 2005.

[77] R. Vuduc, J. Demmel, and K. Yelick, “Oski: A library of automatically tuned
sparse matrix kernels,” Journal of Physics: Conf. Series, vol. 16, no. 1, p. 521,
2005.

[78] A. El Zein and A. Rendell, “Generating optimal cuda sparse matrixvector prod-
uct implementations for evolving gpu hardware,” Concurrency and Computa-
tion: Practice and Experience, vol. 24, no. 1, pp. 3–13, 2012.

[79] W. Armstrong and A. Rendell, “Reinforcement learning for automated perfor-
mance tuning,” in Cluster Computing, pp. 411–420, Sept 2008.

[80] W. Armstrong and A. Rendell, “Runtime sparse matrix format selection,” Pro-
cedia Computer Science, vol. 1, no. 1, pp. 135 – 144, 2010.

[81] J. Li, G. Tan, M. Chen, and N. Sun, “Smat: An input adaptive auto-tuner
for sparse matrix-vector multiplication,” SIGPLAN Not., vol. 48, pp. 117–126,
June 2013.

[82] B. Neelima, G. R. M. Reddy, and P. S. Raghavendra, “Predicting an optimal
sparse matrix format for spmv computation on gpu,” in Parallel & Distributed
Processing Symp. Workshops, IPDPSW ’14, pp. 1427–1436, 2014.

99



[83] W. Abu-Sufah and A. Abdel Karim, “Auto-tuning of sparse matrix-vector mul-
tiplication on graphics processors,” in Supercomputing, vol. 7905 of Lecture
Notes in Computer Science, pp. 151–164, Springer, 2013.

[84] “Matrix Market Web Site.” http://math.nist.gov/MatrixMarket, 1997.

[85] T. Davis and Y. Hu, “The university of florida sparse matrix collection,” ACM
Trans. Math. Softw., vol. 38, pp. 1:1–1:25, Dec. 2011.

[86] “Amd core math library user guide 6.0.6.” http://amd-dev.wpengine.netdna-
cdn.com/wordpress/media/2013/12/acml.pdf, 2013.

[87] F. Van Zee and R. van de Geijn, “Blis: A framework for rapidly instantiating
blas functionality,” ACM Trans. Math. Softw., vol. 41, pp. 14:1–14:33, June
2015.

[88] F. Van Zee, E. Chan, R. van de Geijn, E. Quintana-Ort́ı, and G. Quintana-Ort́ı,
“The libflame library for dense matrix computations,” Computing in Science
Engineering, vol. 11, pp. 56–63, Nov 2009.

[89] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-
chine learning in Python,” J. of Machine Learning Research, vol. 12, pp. 2825–
2830, 2011.

[90] I. U. Akgün, Performance Evaluation Of Unfolded Sparse Matrix-Vector Mul-
tiplication. Master thesis, Ozyegin University, 2015.

[91] K. Stock, T. Henretty, I. Murugandi, P. Sadayappan, and R. Harrison, “Model-
driven simd code generation for a multi-resolution tensor kernel,” in Par-
allel Distributed Processing Symposium (IPDPS), 2011 IEEE International,
pp. 1058–1067, May 2011.

[92] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and
Tools. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1986.

[93] A. Hosangadi, F. Fallah, and R. Kastner, “Optimizing polynomial expressions
by algebraic factorization and common subexpression elimination,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 25,
pp. 2012–2022, Oct 2006.

[94] F. P. Russell and P. H. J. Kelly, “Optimized code generation for finite ele-
ment local assembly using symbolic manipulation,” ACM Trans. Math. Softw.,
vol. 39, pp. 26:1–26:29, July 2013.

[95] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel, “Optimizing matrix mul-
tiply using phipac: A portable, high-performance, ansi c coding methodology,”
in Proc. of the 11th Int. Conf. on Supercomputing, ICS ’97, pp. 340–347, ACM,
1997.

100



[96] P. Guo, L. Wang, and P. Chen, “A performance modeling and optimization
analysis tool for sparse matrix-vector multiplication on gpus,” IEEE Trans. on
Parallel and Distributed Systems, vol. 25, pp. 1112–1123, May 2014.

[97] P. Guo, H. Huang, Q. Chen, L. Wang, E.-J. Lee, and P. Chen, “A model-
driven partitioning and auto-tuning integrated framework for sparse matrix-
vector multiplication on gpus,” in Proceedings of the 2011 TeraGrid Conference:
Extreme Digital Discovery, TG ’11, (New York, NY, USA), pp. 2:1–2:8, ACM,
2011.

[98] X. Yang, S. Parthasarathy, and P. Sadayappan, “Fast sparse matrix-vector
multiplication on gpus: Implications for graph mining,” Proc. VLDB Endow.,
vol. 4, pp. 231–242, Jan. 2011.

[99] K. Li, W. Yang, and K. Li, “Performance analysis and optimization for spmv
on gpu using probabilistic modeling,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 26, pp. 196–205, Jan 2015.

[100] D. Grewe and A. Lokhmotov, “Automatically generating and tuning gpu code
for sparse matrix-vector multiplication from a high-level representation,” in
General Purpose Processing on Graphics Processing Units, GPGPU-4, pp. 12:1–
12:8, 2011.

[101] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc, R. Wha-
ley, and K. Yelick, “Self-adapting linear algebra algorithms and software,” Proc.
of the IEEE, vol. 93, pp. 293–312, Feb 2005.

[102] Q. Yi, K. Seymour, H. You, R. Vuduc, and D. Quinlan, “Poet: Parameter-
ized optimizations for empirical tuning,” in Parallel and Distributed Processing
Symposium, 2007. IPDPS 2007. IEEE International, pp. 1–8, March 2007.

[103] J. A. Gunnels, G. M. Henry, and R. A. v. d. Geijn, “A family of high-
performance matrix multiplication algorithms,” in Proceedings of the Interna-
tional Conference on Computational Sciences-Part I, ICCS ’01, (London, UK),
pp. 51–60, Springer-Verlag, 2001.

[104] B. C. Lee, R. W. Vuduc, J. W. Demmel, and K. A. Yelick, “Performance models
for evaluation and automatic tuning of symmetric sparse matrix-vector multi-
ply,” in Proceedings of the 2004 International Conference on Parallel Process-
ing, ICPP ’04, (Washington, DC, USA), pp. 169–176, IEEE Computer Society,
2004.

[105] P. Guo and L. Wang, “Auto-tuning cuda parameters for sparse matrix-vector
multiplication on gpus,” in Computational and Information Sciences (ICCIS),
2010 International Conference on, pp. 1154–1157, Dec 2010.

[106] I. Reguly and M. Giles, “Efficient sparse matrix-vector multiplication on cache-
based gpus,” in Innovative Parallel Computing (InPar), 2012, pp. 1–12, May
2012.

101



[107] X. Li, M. J. Garzaran, and D. Padua, “Optimizing sorting with genetic algo-
rithms,” in Proc. of the Int. Symp. on Code Generation and Optimization, CGO
’05, pp. 99–110, IEEE Computer Society, 2005.

[108] A. Monsifrot, F. Bodin, and R. Quiniou, “A machine learning approach to
automatic production of compiler heuristicsx,” in Proc. of the 10th Int. Conf.
on Artificial Intelligence: Methodology, Systems, and Applications, AIMSA ’02,
pp. 41–50, Springer-Verlag, 2002.

[109] “Open Reearch Compiler,” 2009. http://ipf-orc.sourceforge.net.

[110] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. P. O’Boyle, and O. Temam,
“Rapidly selecting good compiler optimizations using performance counters,”
in Proceedings of the International Symposium on Code Generation and Op-
timization, CGO ’07, (Washington, DC, USA), pp. 185–197, IEEE Computer
Society, 2007.

[111] A. Ganapathi, K. Datta, A. Fox, and D. Patterson, “A case for machine learning
to optimize multicore performance,” in Proceedings of the First USENIX Con-
ference on Hot Topics in Parallelism, HotPar’09, (Berkeley, CA, USA), pp. 1–1,
USENIX Association, 2009.

[112] J. Cavazos and M. F. P. O’Boyle, “Method-specific dynamic compilation using
logistic regression,” SIGPLAN Not., vol. 41, pp. 229–240, Oct. 2006.

[113] S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams, “An auto-tuning frame-
work for parallel multicore stencil computations,” in Parallel Distributed Pro-
cessing (IPDPS), 2010 IEEE International Symposium on, pp. 1–12, April 2010.

[114] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson,
J. Shalf, and K. Yelick, “Stencil computation optimization and auto-tuning on
state-of-the-art multicore architectures,” in Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, SC ’08, (Piscataway, NJ, USA), pp. 4:1–4:12,
IEEE Press, 2008.

[115] G. Murthy, M. Ravishankar, M. Baskaran, and P. Sadayappan, “Optimal loop
unrolling for gpgpu programs,” in Parallel Distributed Processing (IPDPS),
2010 IEEE International Symposium on, pp. 1–11, April 2010.

[116] T. Kisuki, P. Knijnenburg, and M. O’Boyle, “Combined selection of tile sizes
and unroll factors using iterative compilation,” in Parallel Architectures and
Compilation Techniques, 2000. Proc.. Int. Conf. on, pp. 237–246, 2000.

[117] A. Hartono, B. Norris, and P. Sadayappan, “Annotation-based empirical per-
formance tuning using orio,” in Parallel Distributed Processing, 2009. IPDPS
2009. IEEE International Symposium on, pp. 1–11, May 2009.

102



[118] J. Morlan, S. Kamil, and A. Fox, “Auto-tuning the matrix powers kernel with
sejits,” in High Performance Computing for Computational Science - VECPAR
2012 (M. Dayd, O. Marques, and K. Nakajima, eds.), vol. 7851 of Lecture Notes
in Computer Science, pp. 391–403, Springer Berlin Heidelberg, 2013.

[119] B. Catanzaro, S. A. Kamil, Y. Lee, K. Asanovi, J. Demmel, K. Keutzer, J. Shalf,
K. A. Yelick, and A. Fox, “Sejits: Getting productivity and performance with
selective embedded jit specialization,” Tech. Rep. UCB/EECS-2010-23, EECS
Department, University of California, Berkeley, Mar 2010.

[120] H. Jordan, P. Thoman, J. J. Durillo, S. Pellegrini, P. Gschwandtner,
T. Fahringer, and H. Moritsch, “A multi-objective auto-tuning framework for
parallel codes,” in Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis, SC ’12, (Los Alamitos,
CA, USA), pp. 10:1–10:12, IEEE Computer Society Press, 2012.

[121] “Insieme Compiler and Runtime Infrastructure,” 2001. http://insieme-
compiler.org.
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