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Özyeğin University

Professor Cenk Demiroglu
Department of Electrical and Electronics
Engineering
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ABSTRACT

Cooperative communication (CC) exploits the broadcasting nature of wireless

transmission and creates a distributed multiple-input multiple-output (MIMO) sys-

tem among the wireless nodes which are physically separated from each other. Ear-

lier works on cooperative communication typically build on time division multiple

access (TDMA). However, it is well known that conventional CC systems experience

throughput loss due to additional time slots required for relaying phase which partic-

ularly become prohibitive with the increasing number of relay nodes. Network coded

cooperative (NCC) systems have been proposed as a powerful alternative with sig-

nificantly higher throughput efficiency. In an NCC system, the relay nodes perform

either XOR operation or form a linear combination of the messages received from

distinct sources. Through proper combining, network coding improves the spectral

efficiency over conventional unidirectional cooperative communication systems.

In the first chapter of this thesis, we provide an overview of NCC systems and dis-

cuss their advantages over conventional CC systems in terms of diversity multiplexing

tradeoff (DMT).

All existing works on the DMT analysis of NCC systems assume perfect channel

state information (CSI) at relay and destination nodes and focus on asymptotical

analysis. It is known that asymptotical DMT analysis overestimates the performance

since most communication systems operate in low and moderate signal-to-noise ratio

(SNR) regime. To characterize DMT within more practical SNR regime, finite-SNR

DMT is a more meaningful performance measure. In the second chapter, we inves-

tigate the outage probability and finite-SNR DMT performance for NCC wireless
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networks in the presence of imperfect CSI. We show that our results are general-

ized versions of those earlier presented in the literature and coincide with them in

high SNR regime. Our analysis further reveals that the DMT is highly dependent of

channel estimation quality particularly at finite-SNR values.

In an effort to have further gains over the initial works, which build upon the

assumption of TDMA, the combined use of orthogonal frequency division multiplexing

(OFDM) with NCC has been proposed in the literature. In the third chapter, we

consider orthogonal frequency division multiple access (OFDMA), an extension of

the OFDM to a multiuser system where subsets of carriers are assigned to different

users. We derive a closed-form expression for the outage probability of the system over

Rayleigh fading channels and present the DMT analysis. Our results demonstrate that

NCC-OFDMA system is able to fully exploit both frequency and spatial diversity.

In the third chapter, we investigate only asymptotic DMT analysis of NCC-

OFDMA systems over Rayleigh fading channels. In the fourth chapter, we investigate

both finite-SNR DMT and asymptotic DMT performance over Rician fading chan-

nels. Such an analysis helps us see the difference of performances over Rayleigh and

Rician fading channels. Otherwise, DMT results for Rayleigh and Rician channels

coincide each other for asypmtotical SNR values.
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ÖZETÇE

İşbirlikli haberleşme (cooperative communication, CC) kablosuz iletim kanalının

doğasında bulunan her yöne yayılım özelliğini kullanır ve fiziksel olarak birbirinden

ayrılmış olan kablosuz düğümler arasında dağıtık yapıda bir çok-girişli çok-çıkışlı

(multiple-input, multiple-output, MIMO) sistem oluşturur. İşbirlikli haberleşme konu-

sundaki önceki çalışmalar genellikle zaman bölmeli çoklu erişim (time division multi-

ple access, TDMA) tekniği kullanılarak gerçekleştirilmiştir. Bununla birlikte, klasik

CC sistemleri aktarma fazındaki iletim için ek zaman aralığı gerektirdiği için birim

iletim zamanı başına iletilen veri miktarında kayıba neden olması ile tercih edilme-

zler. İşbirlikli ağ kodlama (network coded cooperation, NCC) sistemleri ise birim

iletim zamanı başına iletilen veri miktarını önemli oranda artırdığı için CC sistem-

lerine güçlü bir alternatif olarak önerilmiştir. NCC sisteminde röle düğümleri, ayrı

kaynak düğümlerinden aldığı mesajların XOR işlemininin sonucunu veya doğrusal

kombinasyonlarını alıcı düğümlere iletir. Ağ kodlama, uygun birleştirme sayesinde

spektral verimliliği geleneksel tek yönlü işbirlikli haberleşme sistemlerine göre artırır.

Bu tezin ilk bölümünde NCC sistemleri ile ilgili genel bilgiler verilip bu sistem-

lerin çeşitleme ve çoğullama ödünleşimi (diversity and multiplexing tradeoff, DMT)

açısından geleneksel CC sistemlerine göre avantajları ortaya konmuştur.

NCC sistemlerinin DMT analizini inceleyen önceki çalışmalarda, kanal durum bil-

gisinin (channel state information, CSI) röle ve alıcı düğümleri tarafından hatasız

olarak bilindiği varsayılmaktadır ve ayrıca sadece asimptotik analizler ele alınmıştır.

Haberleşme sistemlerinin büyük bir çoğunluğu düşük ve orta seviyede sinyal-gürültü-

oranı (signal-to-noise-ratio, SNR) değerlerinde çalışır. Sonlu-SNR için DMT analizi

ise pratikte kullanılan SNR aralığındaki DMT analizini gerçekleştirebilmek için daha
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anlamlı bir başarım ölçütüdür. Literatürdeki bu boşluğu gidermek üzere tezin ikinci

bölümde NCC sistemlerinin ideal olmayan CSI durumdaki sonlu-SNR DMT anal-

izi gerçekleştirilmiştir. Bu bölümde elde edilen sonuçların literatürdeki çalışmaların

genelleştirilmiş halleri olduğu ve yüksek SNR bölgesinde bu çalışmalarla örtüştüğü

gösterilmiştir. Ayrıca DMT başarımının kanal kestirim kalitesine bağlı olduğu ortaya

konmuştur.

TDMA kullanan önceki çalışmalara göre ek kazanımlar elde etmek için dik frekans

bölmeli çoğullama (orthogonal frequency division multiplexing, OFDM) tekniğinin

NCC sistemlerinde kullanılması literatürde önerilmiştir. Üçüncü bölümde, OFD-

Min çok kullanıcılı sistemlere genişletilmiş hali olan dik frekans bölmeli çoklu erişim

(orthogonal frequency multiple access, OFDMA) sistemi ele alınmıştır. Sistemin

Rayleigh sönümlemesi altındaki kesinti olasılığı ifadeleri kapalı formda elde edilmiştir.

Elde edilen sonuçlar NCC-OFDMA sisteminin hem frekans hem de uzay çeşitlemesini

tam olarak elde edebildiğini göstermiştir.

Tezin üçüncü bölümünde ise NCC-OFDMA sistemine ait asimptotik DMT analizi

Rayleigh sönümlemeli kanal için incelenmiştır. Dördüncü bölümde ise hem sonlu-

SNR hem de asimptotik DMT başarımlarını Rician sönümlemeli kanallar için ele

alınmıştır. Asimptotik SNR değerleri için elde edilen Rayleigh ve Rician kanallardaki

DMT sonuçları birbiriyle örtüşmektedir. Sonlu SNR değerlerinde ise Rayleigh ve

Rician sönümlemeli kanallar arasındaki başarım farkı bu analizler sayesinde ortaya

konmuştur.
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CHAPTER I

INTRODUCTION

Cooperative communication (CC) [1–3], also referred as cooperative diversity, is

an effective approach to exploit spatial diversity when the deployment of multiple

antennas is not feasible. CC takes advantage of the broadcasting nature of wireless

transmission and creates virtual multiple-input multiple-output (MIMO) channels

among the nodes willing to share their resources with each other [4]. Conventional CC

systems build upon time division multiple access (TDMA) and experience throughput

loss due to additional time slots required for relaying phase. Inspired by the earlier

work on network coding in [5] for wired networks, network coded cooperation (NCC)

has been proposed [6–8] to address the throughput efficiency in wireless networks.

In NCC, the relay nodes perform a combining operation (which takes the form of

XOR or linear combinations) on the data received from distinct sources and send the

resulting signal to the destination. This method reduces the total transmission time

and improves the spectral efficiency over conventional CC.

In [9], Peng et al. consider N source-destination pairs and M relay nodes with

dynamic coding (DC-NCC). Particularly, the best relay (which has the best end-to-

end path between source and destination) among the set of M available relay nodes

are selected and then the relay dynamically employs XOR operation on the source

packets based on instantaneous source to relay channel quality. It is shown that

the DC-NCC system can achieve a full diversity gain of M + 1. However, diversity

gain of M + 1 can only be obtained under the assumption where the destination can

successfully overhear the data from other source nodes. If this optimistic assumption

is removed, the achievable diversity gain of the DC-NCC system reduces to only two
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and does not improve by increasing the number of relay candidates. In an effort to

improve the diversity gains, random NCC (RNCC) system and deterministic NCC

(DNCC) system are presented in [10], where relay nodes encode the sources packets

using an encoding matrix of size (N+M)×N . In this set-up, the first N rows form an

identity sub-matrix, corresponding to the direct transmission in broadcasting phase.

In addition, the remaining columns and rows correspond to the packets transmitted

by relays in relaying phase. In DNCC system the coefficients in encoding matrix are

preset while in RNCC system are drawn randomly from finite field. The associated

DMT analysis reveals that a full diversity gain of M + 1 can be maintained through

the use of maximum distance separable (MDS) codes typically used for point to point

channels.

Diversity-multiplexing tradeoff (DMT) determines the set of diversity and multi-

plexing gain pairs that can be obtained simultaneously. Fig. 1 depicts diversity gain

d versus multiplexing gain r for different cooperative communication protocols. It is

known that CC systems including space-time coding [11] and opportunistic relaying

[12] achieve the same DMT of d(r) = (M+1)(1−2r), r ∈ (0, 0.5) while [12] does not

require coordination and space-time coding among relay nodes. The DMT expressions

of DC-NCC and DNCC/RNCC systems are given in [10]. As can be seen from Fig. 1,

CC and RNCC/DNCC systems can achieve full diversity gain of M + 1 when r = 0.

However, DNCC/RNCC systems outperform CC systems in terms of multiplexing

gain and offer higher diversity gain than that of CC systems for the same spectral

efficiency. On the other hand, in comparison to other schemes, DC-NCC system has

the highest multiplexing gain and offers more diversity gain as r increases. This is

due to the fact that only one relay XORes source packets and therefore the overall

transmission takes place in N + 1 orthogonal time slots. It is worth mentioning that

as N increases the spectral efficiency of the NCC systems moves towards the ideal

case. Therefore, NCC systems have better DMT performance and outperform CC
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Figure 1: DMT comparison for different cooperative communication protocols.

systems.

In contrast to majority of the existing works on NCC which build upon the as-

sumption of TDMA, the use of orthogonal frequency division multiplexing (OFDM)

with NCC is explored in [13–15]. NCC-OFDM achieves high spectral efficiency and

requires low complexity receivers. These initial works present performance evalua-

tion of NCC-OFDM with a focus either on bit error rate [13] or network throughput

[14]. Some other works also address optimal resource allocation to maximize the sum

capacity [15] or weighted sum rate [16].

Some related works which focus on the DMT analysis of stand-alone OFDM(A)

systems are also worth mentioning. For example, in [17–19] the DMT analysis of

OFDM system is investigated. In [20], Bai et al. consider multi-user setting and

show that the maximum diversity gain of an OFDMA system with a judiciously

designed subcarrier allocation scheme is the same as that of point-to-point OFDM

system. Another DMT analysis of OFDMA systems is presented in [21] and the
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so-called maximum constraint κ1,K-matching approach (MCMA) is proposed as an

optimal subcarrier allocation method.

The derivation of conventional DMT assumes asymptotically high signal-to-noise

ratio (SNR), i.e., when SNR goes to infinity. For characterizing DMT within more

practical SNR range, finite-SNR DMT is proposed in [22–24]. Furthermore, finite-

SNR analysis is essential to observe the possible performance differences among vari-

ous fading channel types [23]. Finite-SNR analyis has already been applied to various

bidirectional communication protocols [25–31]. In [25], Liu and Kim investigate finite-

SNR DMT of three different bidirectional protocols namely time-division broadcast

(TDBC), physical-layer network coding (PNC), and opportunistic source selection

(OSS). It is shown that TDBC and OOS protocols outperform PNC and two-phase

analog network coding (ANC) [26–28] in terms of diversity gains. On the other hand,

PNC and two-phase (ANC) require only two time slots to exchange one information

symbol and therefore, achieve higher multiplexing gains. To further increase diver-

sity gain of ANC, three-phase ANC is proposed in [29] which takes advantage of

direct link between two source nodes. Asymptotical and finite-SNR DMT analysis of

three-phase ANC can be found in [30] and [31] respectively.

This thesis makes several contributions to the information theoretical performance

analysis of NCC systems. More specifically, all existing works on the DMT analysis

of NCC systems assume perfect channel state information (CSI) at relay and destina-

tion nodes and focus on asymptotical analysis. It is known that asymptotical DMT

analysis overestimates the performance since most communication systems operate in

low and moderate SNR regime. In the first part of the thesis, we investigate the out-

age probability and finite-SNR DMT performance for NCC systems in the presence

of imperfect CSI. We show that our results are generalized versions of those earlier

presented in [10] and coincide with them in high SNR regime. Our analysis further

reveals that the DMT is highly dependent of channel estimation quality particularly
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at finite-SNR values.

In the second part of the thesis, we extend the DMT analysis of [10] presented for

single-carrier TDMA-based NCC systems to orthogonal frequency division multiple

access (OFDMA), an extension of the OFDM to a multiuser system where subsets of

carriers are assigned to different users. We derive the outage probability of the system

over Rayleigh fading channel and present the asymptotic DMT analysis. Our results

demonstrate that NCC-OFDMA system is able to fully exploit both frequency and

spatial diversity. Since asymptotical DMT of Rayleigh and Rician fading channels

are identical, we characterize DMT for finite SNRs of practical relevance. As opposed

to Rayleigh fading, over Rician fading channels, the maximum diversity gain is not

achieved at zero multiplexing gain. It can be observed from our results that the

presence of line-of-sight (LOS) components in Rician fading leads diversity gains

higher than asymptotic SNR values at some multiplexing gains and SNRs.

The rest of the thesis is organized as follows: In Chapter II, we investigate the

information theoretical limits of NCC systems in the presence of imperfect CSI. We

derive exact outage probability and finite-SNR DMT for NCC wireless networks over

Rayleigh fading channels. In Chapter III, we investigate asymptotic DMT analysis of

NCC-OFDMA systems over Rayleigh fading channels. In Chapter IV, we investigate

both finite-SNR DMT and asymptotic DMT performance over Rician fading channels.

Finally, we conclude in Chapter V.

Notation: In this paper, ln(·), and E [·] denote natural logarithm, and expec-

tation operator respectively. Pr {·}, (·)T ,

(
·
·

)
, ‖ · ‖, and ≈ denote probability,

matrix transpose, binomial coefficient, cardinality of the set, and approximate equal-

ity, respectively. b·c denotes the floor function. CN (0, 1) represents circularly sym-

metric complex Gaussian random variable with zero mean and variance one. Let

F = {f1, ..., fN} denote the set of subcarriers where fn is the nth subcarrier. Q1 (·, ·)

and In (·) respectively, are Marcum Q-function of order one and nth order modified

5



Bessel function of the first kind.
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CHAPTER II

FINITE-SNR DMT ANALYSIS FOR NCC SYSTEMS

WITH IMPERFECT CSI

In this chapter, we investigate the performance of general multisource multirelay

NCC systems in the presence of imperfect CSI. Based on the derived outage proba-

bility, we obtain closed-form expression for finite-SNR DMT. Our results reveal that

at practical channel estimation quality and SNR regime, the DMT of the system is

substantially less than that of asymptotic one. This analysis can be useful to pre-

dict the performance of NCC system under realistic operating conditions taking into

account channel estimation errors and finite SNR regime.

2.1 System Model

We consider an NCC system with P source nodes Si, (i = 1, ..., P ), M relay

nodes Rj, (j = 1, ..., M), and a single destination D as shown in Fig. 2. During the

first phase, source nodes broadcast their packets Ii, (i = 1, 2, ..., P ) to the destina-

tion in P orthogonal time slots and relay nodes overhear transmissions. During the

second phase, the source nodes remain silent and relay nodes transmit their packets

I ′j, (j = 1, 2, ..., M) to the destination. Relay nodes encode the sources’ packets

using an encoding matrix Z given by

Z =



1 0 · · · 0 α1,1 · · · αM,1

0 1 · · · 0 α1,2 · · · αM,2

...
...

. . .
...

...
. . .

...

0 0 · · · 1 α1,M · · · αM,P



T

P×(P+M)

, (1)

7



Source
 1

Source  
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 M
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 M-1

Figure 2: NCC system with P source nodes, M relay nodes, and one destination.
Solid lines: broadcasting phase. Dashed lines: relaying phase. Relay nodes which
decode all the packets from P source nodes correctly are allowed to participate in
relaying phase.

where the first P rows of Z form an P ×P identity sub-matrix, corresponding to the

direct source to destination transmission links in broadcasting phase. The remaining

columns and rows correspond to the packets transmitted by relays. We assume that

only the relays which successfully decode all of their received packets from P source

nodes are allowed to participate in the relaying phase. Assume that m out of M relays

do not decode all P packets correctly. Therefore, the rows of Z which correspond to

thesem relays with erroneous decisions are deleted. Practically, this can be determined

through the use of error detection codes such as cyclic redundancy check (CRC). It

is assumed that relays and destination are able to decode packets correctly if source-

to-destination, source-to-relay, and relay-to-destination links are not in outage.

The channel between any pair of nodes is identically independent quasi-static

Rayleigh fading. Let hXY, XY ∈
{
SiD,SiRj, RjD

}
denote the channel gain of X→
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Y link, which is circular symmetric complex Gaussian random variable with zero

mean and variance σ2
hXY

= 1. The envelope of hXY follows Rayleigh distribution. We

assume that each node has a transmit power Pt and the noise for each link is additive

white Gaussian noise (AWGN) with zero mean and variance of N0. We assume

linear minimum mean-square error (LMMSE) channel estimation at the receiver side.

Therefore the received signal from link X→ Y is given by

yXY =
√
Pt

(
ĥXY + eXY

)
xXY + wXY, (2)

where xXY is the symbol transmitted from link X→ Y and wXY is AWGN. In (2), ĥXY

is the estimated version of hXY and eXY is the channel estimation error and indepen-

dent of ĥXY. This is a valid assumption for LMMSE estimation where the estimate

and the error are orthogonal. Note that the term
√
PteXYxXY can be interpreted as ei-

ther additional signal power or AWGN. The former interpretation yields upper bound

of channel capacity while the latter can be used to obtain the lower bound of channel

capacity [32]. As discussed in [33], under the assumption that channel estimation

error power contributes as an additional signal power, the upper bound is a loose

bound since it can take a large value even when ĥXY is near zero. Therefore, similar

to the approach followed in [28,31], we assume that the channel estimation error acts

like AWGN/interference, where it cannot be properly detected and be exploited as

signal throughout the communication process. The variance of the estimation error

is given by σ2
eXY

= σ2
hXY

/ (
1 + δρσ2

hXY

)
= 1/ (1 + δρ) [33], where ρ = Pt/N0 is the

average transmit SNR and δ > 0 reflects the quality of the CSI and depends on the

training duration and the training SNR [28, 31, 33, 34]. In this case, the variance of

ĥXY can be expressed as σ2
ĥXY

= σ2
hXY
− σ2

eXY
= δρσ4

hXY
/
(
1 + δρσ2

hXY

)
= δρ/ (1 + δρ).

2.2 Finite-SNR DMT Analysis

The outage probability of the X→ Y link is given by

Pout = Pr {log2 (1 + γXY) < R0} , (3)
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where R0 = (P +M)R/P is the transmission rate and R is the system rate [10].

Based on (2), the instantaneous received SNR over the link X → Y is obtained as

γXY = Pt

∣∣∣ĥXY

∣∣∣2 / (Ptσ2
eXY

+N0

)
. The average received SNR can be then expressed

as

E [γXY] = γ̄XY =
Ptσ

2
ĥXY

Ptσ2
eXY

+N0

=
δρ2

(1 + δ) ρ+ 1
. (4)

Let rf denote the finite-SNR multiplexing gain. Replacing R (ρ) = rf log2 (1 + ρ) [22]

in (3) and noting that the CDF of γXY under Rayleigh fading assumption is given by

FγXY
(y) = 1− exp (−y/γ̄XY), we have

Pout = 1− exp (−ϑ) , (5)

where ϑ =
(

(1 + ρ)(P+M)rf/P − 1
)

((1 + δ) ρ+ 1)
/

(δρ2).

In NCC system, if the destination is able to decode at least P packets from out of

P+M potential packets transmitted in broadcasting and relaying phases, it is capable

to recover all original packets, otherwise it is in outage. The outage probability of

the system under consideration is given by

Po (rf , ρ) =
M∑
m=0

 M

m

PM−m
c (1− Pc)m

︸ ︷︷ ︸
Θ1

×
P−1∑
j=0

 P +M −m

j

P P+M−m−j
out (1− Pout)j

︸ ︷︷ ︸
Θ2

,

(6)

where Pc is the probability that any relay successfully decodes all P packets received

during the broadcasting phase and expressed as Pc = (1− Pout)P = exp (−Pϑ). In

(6), Θ1 denotes the probability of all possible events that m out of M relays are in

outage and Θ2 denotes the probability of all possible events that at most P −1 nodes

from P source nodes and M −m participating relays are not in outage.

10



The finite-SNR DMT is given by [22]

df (rf , ρ) = −∂ ln (Po (rf , ρ))

∂ ln (ρ)
= − ρ

Po (rf , ρ)

∂Po (rf , ρ)

∂ρ
. (7)

Inserting (6) in (7), for the second term of (7), we have

∂Po (rf , ρ)

∂ρ
= Θ2

∂Θ1

∂ρ
+ Θ1

∂Θ2

∂ρ
. (8)

Taking derivative of Θ1 and Θ2 with respect to ρ, we respectively have

∂Θ1/∂ρ =
M∑
m=0

 M

m

 ∂Pc/∂ρP
M−m−1
c (1− Pc)m−1

× (−m+M (1− Pc)) , (9)

∂Θ2/∂ρ =
P−1∑
j=0

 P +M −m

j

 ∂Pout/∂ρP
P+M−m−j−1
out

× (1− Pout)j−1 (P +M −m− j − (P +M −m)Pout) . (10)

In (9) and (10) we have

∂Pc/∂ρ = −P exp (−Pϑ) ∂ϑ/∂ρ, (11)

∂Pout/∂ρ = exp (−ϑ) ∂ϑ/∂ρ, (12)

where ∂ϑ/∂ρ is given by

∂ϑ

∂ρ
=

P+M
P

rf (1 + ρ)
P+M
P

rf−1 ((1 + δ) ρ+ 1) + (1 + δ)

(
(1 + ρ)

P+M
P

rf − 1

)
δρ2

−
2

(
(1 + ρ)

P+M
P

rf − 1

)
((1 + δ) ρ+ 1)

δρ3
. (13)

11



After some mathematical manipulations and substituting (8) into (7), we obtain the

finite-SNR DMT given by

df (rf , ρ) = 1

Po(rf ,ρ) M∑
m=0

 M

m

Pϑ exp (−Pϑ) ΛPM−m−1
c (1− Pc)m−1 (m−M (1− Pc)) Θ2

︸ ︷︷ ︸
υ1

+

P−1∑
j=0

 P +M −m

j

ϑ exp (−ϑ) ΛP P+M−m−j−1
out (1− Pout)j−1

(P +M −m− j − (P +M −m)Pout) Θ1


︸ ︷︷ ︸

υ2

, (14)

where Λ is given by

Λ = 2−

P+M
P

rf (1 + ρ)
P+M
P

rf−1 ((1 + δ) ρ+ 1) ρ+ (1 + δ)

(
(1 + ρ)

P+M
P

rf − 1

)
ρ(

(1 + ρ)
P+M
P

rf − 1

)
((1 + δ) ρ+ 1)

.

(15)

In the following, we discuss the effect of channel estimation on the finite-SNR

DMT. It should be noted that the limiting diversity gain as rf → 0 is not meaningful

since the channel estimation error variance contributes to nonzero mutual information

irrespective of the fading realization [33]. However it is worth studying the impact

of the channel estimation quality on limiting behavior of DMT at zero multiplexing

gain (i.e., rf → 0).

When rf → 0, ϑ goes to zero which yields lim
ϑ→0

Pout = ϑ, and lim
ϑ→0

(1− Pc) = Pϑ.

After some mathematical manipulations, we obtain

lim
ϑ→0

Po (rf , ρ) = ξϑM+1, (16)

where ξ =
∑M

m=0

 P +M −m

P − 1


 M

m

Pm.

12



Now consider the remaining term of (14). It can be checked that lim
rf→0

Λ has

indeterminate form. Applying L’Hopital’s rule, lim
rf→0

Λ = Λ̃ can be expressed as

Λ̃ = 2− ((1 + δ) ρ+ 1) ρ (1 + ρ)−1 + (1 + δ) ρ ln (1 + ρ)

((1 + δ) ρ+ 1) ln (1 + ρ)
. (17)

Similar to (16), by considering the smallest order of ϑ for the other terms, we have

lim
ϑ→0

υ1 = ξϑM+1Λ̃m, (18)

and

lim
ϑ→0

υ2 = ξϑM+1Λ̃ (M −m+ 1) . (19)

Finally we obtain

lim
rf→0

df (rf , ρ) = (M + 1)

(
2− ((1 + δ) ρ+ 1) ρ (1 + ρ)−1 + (1 + δ) ρ ln (1 + ρ)

((1 + δ) ρ+ 1) ln (1 + ρ)

)
.

(20)

It is observed that the diversity gain is given by the product of M + 1 and a term

which is function of the channel estimation error and SNR. This term can be less than

1. Thus, it can be seen that zero multiplexing gain does not always give maximum

diversity gain.

Special case (Perfect CSI): When δ → ∞ i.e., no estimation error, (20) reduces

to

lim

rf → 0

δ →∞

df (rf , ρ) = (M + 1)

(
1− ρ

(1 + ρ) ln (1 + ρ)

)
. (21)

For ρ → ∞, i.e., asymptotical SNR regime, both (20) and (21) reduces to M +

1 indicating that full diversity is achieved. This is due to the fact that channel

estimation errors tend to zero as the SNR goes to infinity. In this case, in asymptotical
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SNR regime channel estimation errors does not impact on the diversity gain and full

diversity gain can be obtained.

Special case (Asymptotical SNR): In this section, we investigate the asymptotical

DMT. For ρ → ∞, we have lim
ρ→∞

ϑ = (1 + δ) ρ((P+M)r/P )−1
/
δ. Noting that r <

P/ (P +M) [10], we obtain ϑ→ 0. In addition, lim
ρ→∞

Λ = 1−(P +M) r/P . Following

similar steps for obtaining (20), we have

lim
ρ→∞

df (rf , ρ) = d (r) = (M + 1)

(
1− P +M

P
r

)
, (22)

where the maximum diversity gain is obtained for r = 0 i.e., M+1. On the other hand

the maximum multiplexing gain P/ (P +M) is achieved when d (r) = 0. In fact, (21)

coincides to asymptotical DMT expression derived in [10] under the assumption of

perfect CSI. This is due to the fact that the channel estimation errors tend to zero in

high SNR regime and do not affect on the DMT expression. It can be easily checked

that for zero multiplexing gain (r = 0), (22) will be equal to (20) when ρ→∞.

2.3 Numerical Results and Discussion

In this section, we present numerical results as well as Monte-Carlo simulations

to confirm the accuracy of our derivations.

Fig. 3, depicts the outage probability of NCC system for different number of relay

nodes and channel estimation errors. We assume P = 4 source nodes, R0 = 0.2,

M = 2, 3 relay nodes, and δ = 0.4, 2. As a benchmark, perfect CSI (i.e., δ → ∞)

is also plotted. It can be seen that the derived expressions in (6) matched well with

simulation results confirming the accuracy of derivations. It is observed that channel

estimation quality significantly impacts the outage performance. For example, to

achieve an outage probability of 10−6 for M = 2, an SNR of 19 dB is required under

the assumption of perfect CSI. This increases to 21 and 25 dB respectively for the

cases of δ = 2, 0.4. It can be noted that the slope of the curves becomes identical in
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Figure 3: Outage probability of NCC system for different number of relay nodes
under imperfect CSI.

high SNR regime and is equal to the maximum diversity gain M + 1 confirming the

accuracy of (20) when ρ→∞.

Fig. 4, represents the finite-SNR diversity gain versus SNR for P = 4, M = 2, 3

and δ = 2. It can be seen as SNR increases, the system can achieve higher diversity

gain. In addition, NCC system with M = 2 and high multiplexing gain rf has better

diversity gain than that of with M = 3. However, as rf decreases, higher diversity

gain can be obtained for M = 3. More specifically, for rf = 0.5, NCC system with

M = 2 has better performance in all SNR regime. However, for lower values of

multiplexing gain such as rf = 0.1, the performance of the system is always better

for M = 3. In addition, for high SNR regime, diversity gain of the system converges

to its asymptotic value (22). For example at SNR=100 dB and M = 3 the diversity

gains are 0.4, 1.89, and 3.27 for rf = 0.5, 0.3 and 0.1, respectively.

Fig. 5, represents finite-SNR diversity gain versus δ for P = 4, M = 2, 3 and
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Figure 4: Finite-SNR diversity gain versus SNR.

rf = 0.1. It can be seen for all values of δ, NCC system with M = 3 outperforms

that of with M = 2. Furthermore, more accurate channel estimations yields higher

diversity gain. However, as SNR increases, the diversity gain does not depend on the

δ and is equal to (22).

Fig. 6, illustrates finite-SNR DMT curves for a system with P = 4, M = 2,

δ = 0.4, 2 and different values of SNR. It can be seen at practical channel estimation

quality and SNR regime, the DMT of the system is significantly less than that of

asymptotic one. However, by increasing SNR the DMT performance gets better and

approaches to the asymptotical one given by (22). Furthermore, for the finite-SNR

regime and imperfect CSI, the system cannot achieve full diversity gain of 3 at zero

multiplexing gain. For example, at SNR=5 dB, the diversity gains for δ = 0.4, 2

are respectively 1.94 and 1.68 while it is 1.4 for perfect CSI. These values can also

be obtained by using (20) and (21) confirming the accuracy of our derivations. It
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should be noted that at low values of multiplexing gain and SNR, lower values of δ

i.e., worse CSI quality, achieve higher diversity gain. More specifically, for SNR=5

dB, the diversity gain for δ = 0.4 is higher than that of δ = 2 and perfect CSI for

rf < 0.03. The reason is that the error variances lead to non-zero mutual information

at low multiplexing gain and low SNR regime. This leads the outage probability

to decrease faster for worse channel estimation quality and therefore yields higher

diversity gain. However, it can be seen that for higher values of SNR, better channel

estimation quality yields higher diversity gain.
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CHAPTER III

ASYMPTOTIC DIVERSITY-MULTIPLEXING

TRADEOFF FOR NETWORK CODED COOPERATIVE

OFDMA SYSTEMS OVER RAYLEIGH FADING

CHANNELS

In this chapter, we consider OFDMA, an extension of the OFDM to a multiuser

system where subsets of carriers are assigned to different users, and investigate the

outage probability and asymptotic DMT of NCC-OFDMA systems over Rayleigh

fading channels. Our results demonstrate that NCC-OFDMA system is able to fully

exploit both frequency and spatial diversity. Therefore NCC-OFDMA significantly

outperforms stand-alone OFDMA (which only relies on frequency diversity) in terms

of diversity gain. On the other hand, in NCC-OFDMA more time slots are required

because of the relaying phase, therefore stand-alone OFDMA has better performance

in terms of multiplexing gain. Simulation results are presented to verify our theoretical

analysis.

3.1 System Model

We consider an OFDMA system with P source nodes Si (i = 1, ..., P ), M relay

nodes Rj (j = 1, ...,M), and a single destination. We assume a total number of N

subcarriers satisfying the condition of N ≥ P, N ≥ M . In our system, the trans-

mission protocol consists of two phases, namely the broadcasting and the relaying

phases. During the broadcasting phase, N subcarriers are allocated among P source

nodes. During the relaying phase, the source nodes are silent and N subcarriers are
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allocated among M relay nodes.

The destination assigns subcarriers to source and relay nodes based on the so-

called maximum constraint κ1,K-matching approach (MCMA) proposed in [21]. This

ensures providing the maximum number of non-outage nodes in each phase. In

MCMA, the OFDMA system is modeled as a correlated random bipartite graph

which consists of a set of vertices divided into two partitions such that the vertices

in the same partition are not adjacent. One of these sets represents the set of users

and the other represents the set of subcarriers. Subcarriers within a coherence band-

width have highly correlated channel gains, while the channel gains of subcarriers in

different coherence bandwidths are independent. An edge connects a user vertex to a

subcarrier vertex if and only if the subcarrier is not in outage for a user depending on

the distribution of the channel fading. Otherwise, vertices remain unconnected. After

subcarrier allocation by destination using MCMA, one bit feedback per subcarrier is

enough to provide information about the allocated subcarriers to each user.

Let Fi, i = 1, ..., P denote the set of subcarriers exclusively assigned to source Si,

i = 1, ..., P with ‖Fi‖ = K1 = bN/P c and Fj denote the set of subcarriers exclusively

assigned to relay node Rj, j = 1, ...,M with ‖Fj‖ = K2 = bN/Mc.

The channel between any pair of nodes is frequency-selective quasi-static Rayleigh

fading with AWGN. Let B and Bcoh respectively denote the system bandwidth and

the channel coherence bandwidth. We assume that B is large enough so that it spans.

L coherence bandwidths, i.e., B = LBcoh. We assume that P > L. The number of

subcarriers within the coherence bandwidth (Bcoh) is therefore given by N̂ = N/L.

Each packet transmitted from source node Si consists of Q bits and is given by

Ii = (xi,1 [n] , ... , xi,w [n]) , which is composed of w symbols drawn from a linear mem-

oryless modulation scheme such as phase shift keying (PSK) or quadrature amplitude

modulation (QAM). Here, the index n indicates that symbol is transmitted through

the subcarrier fn ∈ FSi . Similarly, each packet transmitted from each relay node has
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a size of w symbols. Therefore, broadcasting and relaying phases respectively, take

place over T1 = wTs/K1 and T2 = wTs/K2 time slots where Ts ≈ N/B is the symbol

duration and B is the system bandwidth. This indicates that the total transmission

time lasts T1 + T2 time slots. The overall transmission rate with unit in bits per

second per Hertz (bits/s/Hz) is equal to

R =
PQ

T2 + T1

=
PK1K2

N (K1 +K2)
R0, (23)

where R0 = Q/w is transmission rate of nodes in broadcasting and relaying phases.

During broadcasting phase, each source transmits its own packet to the destination

using the allocated K1 subcarriers. OFDMA signals received by the destination and

the relay nodes in the broadcasting phase are given by

YSiD [n] =
√
ρHSiD [n]Xi [n] +WSiD [n] ,

i = 1, ..., P, n ∈ Fi (24)

YSiR [n] =
√
ρHSiR [n]Xi [n] +WSiR [n] ,

i = 1, ..., P, n ∈ Fi (25)

where ρ is the average transmit power in each subcarrier at source node Si, and

WSiD [n], WSiR [n] are complex AWGN terms following CN (0, 1). In (24), (25),

HSiD [n] andHSiR [n] respectively denote frequency-domain channel gains of ith source-

to-destination and ithsource-to-relay links.

In the relaying phase, relays encode the sources’ packets using an encoding matrix

(such as MDS codes as proposed in [10]) which describes linear relation between the

sources’ packets and network coding coefficients αi,j.

Each of the remaining M −m relays transmits the linear combination of packets

which takes the form of I
′
j =

∑P
i=1 αj,iIi where I

′
j =

(
X ′j,1 [n] , ..., X ′j,w [n]

)
using
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allocated K2 subcarriers. The received signals at the destination are given by

YRjD [n] =
√
ρHRjD [n]X

′

j [n] +WRjD [n] , n ∈ Fj (26)

where HRjD [n] is the frequency-domain channel gain of j th relay-to-destination link,

and WRjD [n] is complex AWGN following CN (0, 1).

3.2 Derivation of Outage Probability

In this section, we first obtain outage probability per subcarrier, and then derive

outage probability of the system under consideration.

3.2.1 The Outage Probability for Subcarriers

The outage probability for each subcarrier depends on the number of non-outage

subcarriers that each source or relay may use. Let K1 and K2 respectively denote the

number of non-outage subcarriers for each source and relay. In broadcasting phase,

the subcarrier is in outage if it cannot support a fixed target transmission for a specific

source and the corresponding outage probability is given by

Pout,sub (K1) = Pr

{
1

N ′
Cn,i < Rs1

}
, (27)

where Cn,i is instantaneous channel capacity of the link between source Si and the

destination over the subcarrier fn ∈ Fi and Rs1 = R0/K1 is the transmission rate per

subcarrier. Expressing the instantaneous channel capacity as a function of SNR, (27)

takes the form of

Pout,sub (K1) = Pr
{

log2

(
1 + |HSiD [n]|2 ρ

)
< Rs1N̂

}
. (28)

Since |HsiD [n]|2 is exponentially distributed, we can easily obtain

Pout,sub (K1) =

∫ β1

0

exp (−x) dx = 1− exp (−β1) , (29)
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where β1 =
(

2Rs1N̂ − 1
)/

ρi. Similarly for the relaying phase, the outage probability

per subcarrier for a specific relay is equal to

Pout,sub (K2) = Pr
{

log2

(
1 +

∣∣HRjD [n]
∣∣2 ρ) < Rs2N̂

}
= 1− exp (−β2) , (30)

where β2 =
(

2Rs2N̂ − 1
)/

ρ and Rs2 = R0/K2 is the transmission rate per subcarrier

in the relaying phase.

3.2.2 The Overall Outage Probability of System

In our system, if the destination is able to decode at least P packets (either over

broadcasting phase or relaying phase) from out of P+M potential packets transmitted

in these two phases, it is capable to recover all original packets. Due to outages in

subcarriers, there may not be enough packets decoded and the overall system is in

outage. The overall outage probability of the system under consideration is given by

Pout =
M∑
m=0

Pout,mPl, (31)

where Pout,m denotes the probability that m out of M relays decode erroneously

and Pl denotes the probability that from P source nodes and M −m participating

relay nodes, at most P − 1 nodes are not in outage. In the following, we present the

calculation of each of these terms and discuss their limiting behaviors. Pout,m can be

calculated as

Pout,m =

 M

m

PM−m
R (1− PR)m , (32)

where PR is the probability that any relay successfully decodes all P packets re-

ceived during the broadcasting and expressed as PR = (1− Pout1)
P where Pout1 =
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(Pout,sub (K1))L = (1− exp (−β1))L [21]. On the other hand, Pl is expressed as

Pl =
M−m∑
j=0

 M −m

j

PM−m−j
out2 (1− Pout2)

j

×
P−1−j∑
i=0

 P

i

P P−i
out1

(1− Pout1)
i , (33)

where Pout2 = (Pout,sub (K2))L = (1− exp (−β2))L. Replacing (32) and (33) in (31),

we have

Pout =
M∑
m=0

 M

m

PM−m
R (1− PR)m

×
M−m∑
j=0

 M −m

j

PM−m−j
out2 (1− Pout2)

j

×
P−1−j∑
i=0

 P

i

P P−i
out1

(1− Pout1)
i . (34)

Asymptotical cases: It can be readily checked that, for asymptotically high SNR

values, i.e., ρi →∞, we have β1 → 0, therefore, we obtain lim
β1→0

PR = 1−PPout1which

yields lim
β1→0

(1− PR) = PPout1 = PβL1 . Replacing this in (32), the first term of (31) is

given by

lim
β1→0

M∑
m=0

Pout,m =
M∑
m=0

 M

m

(PβL1 )m . (35)

On the other hand, for β1, β2 → 0 we have

lim
β1,β2→0

Pl =
M−m∑
j=0

 M −m

j

 β
L(M−m−j)
2

P−1−j∑
i=0

 P

i

 β
L(P−i)
1 . (36)

In the high SNR regime, we can safely assume β ≈ β1 ≈ β2 and by considering the

smallest order of β1 in the second summation of (36), we obtain

lim
β1,β2→0

Pl =
M−m∑
j=0

 M −m

j


 P

P − 1− j

 βL(M+1−m). (37)
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Finally, by substituting (35) and (37) into (34), we obtain outage probability in high

SNR regime as

lim
β1,β2→0

Pout = CβL(M+1), (38)

where C =
∑M

m=0

 P +M −m

P − 1


 M

m

Pm.

3.3 Diversity-Multiplexing Tradeoff Analysis

In this section, we first provide the DMT definition and then present the associated

DMT analysis for our system. Definition: A scheme is said to achieve a multiplexing

gain of r and a diversity gain of d, if the transmission rate satisfies [4]

lim
ρ→∞

R

log2 (ρ)
= r (39)

and the outage probability Pout satisfies

lim
ρ→∞

log2 (Pout)

log2 (ρ)
= −d. (40)

Theorem:The DMT of NCC-OFDMA system with P source nodes, M relays, and L

coherence bandwidths using MCMA for subcarrier allocation is given by

d (r) =


L (M + 1)

(
1− P+M

L
r
)
, r ∈

[
0, L

P+M

]
, P > M

L (M + 1)
(

1− M(P+M)
PL

r
)
, r ∈

[
0, PL

M(P+M)

]
, P < M

L (M + 1)
(
1− 2P

L
r
)
, r ∈

[
0, L

2P

]
, P = M

(41)

Proof: Recall that Rs1 and Rs2 are the transmission rates per subcarrier over broad-

casting and relaying phases. First consider the broadcasting phase. Substituting

(23) into Rs1 = R0/K1, we have Rs1 = N (K1 +K2)R/ (PK2
1K2). Replacing this

expression in (38), we obtain

lim
ρ→∞

Pout = C

2
N2(K1+K2)

LPK2
1K2

R
− 1

ρ


L(M+1)

. (42)
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Furthermore replacing R = r log ρ in (42), we obtain

lim
ρ→∞

Pout = Cρ
L(M+1)

(
N2(K1+K2)

LPK2
1K2

r−1

)
. (43)

Finally, by using the resulting expression in (40), we obtain the DMT expression

d (r) = lim
ρ→∞

log2

(
Cρ

L(M+1)

(
N2(K1+K2)

LPK2
1K2

r−1

))
− log2 (ρ)

= L (M + 1)

(
1− P +M

L
r

)
(44)

where the second equality holds if K1 = N/P and K2 = N/M .

The maximum diversity gain L (M + 1) is obtained when multiplexing gain is

r = 0. When d (r) = 0, the maximum multiplexing gain L/ (P +M) is achieved.

Therefore, the multiplexing gain r takes values between 0 and L/ (P +M).

Now consider the relaying phase. Substituting (23) into Rs2 = R0/K2, we have

Rs2 = N (K1 +K2)R/ (PK1K
2
2). With similar steps above, the DMT expression can

be obtained as

d (r) = L (M + 1)

[
1− N2 (K1 +K2)

LPK1K2
2

r

]
= L (M + 1)

(
1− M (P +M)

PL
r

)
, (45)

where the multiplexing gain r takes values between 0 and PL/ (M (P +M)).

For P = M , both (44) and (45) reduce to

d (r) = L (M + 1)

(
1− 2P

L
r

)
, (46)

where the multiplexing gain r takes values between 0 and L/2P .

The smaller of the maximum multiplexing gains determines the overall multiplex-

ing gain of the system which depends on the number of source nodes and relays.

When P > M , the maximum multiplexing gain in (44) is smaller than that of (45)

i.e., L/ (P +M) < PL/ (M (P +M)), while for P < M the maximum multiplexing
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Figure 7: DMT comparison of stand-alone OFDMA and NCC-OFDMA systems
(P > M).

gain in (45) is smaller than (44)i.e., PL/ (M (P +M)) < L/ (P +M). Therefore, we

use (44) for P > M and use (45) in the case of P < M . Hence, we complete the proof.

Special case: If we consider that our system has no relays, i.e., M = 0, it can be seen

from (44) that DMT equation reduces to (15) of [21] i.e., d(r) = L (1− rP /L).

Fig. 7 represents DMT curves of NCC-OFDMA and stand-alone OFDMA system

[21]. In this figure, the DMT curve of (44) and that in [21] are plotted. It can

be observed that the maximum diversity gain achieved by our system is equal to

L (M + 1). This means that NCC-OFDMA is capable to exploit both frequency

and spatial diversity gain and outperform stand-alone OFDMA system in terms of

diversity gain. In NCC-OFDMA more time slots are required because of relaying

phase, therefore stand-alone OFDMA has better performance in terms of multiplexing

gain.
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Figure 8: Outage probability for NCC-OFDMA for different values of R0.

3.4 Numerical Results and Discussion

In this section, we present Monte-Carlo simulations to confirm the accuracy of

derived outage expression in (34). As a benchmark, the asymptotic lines SNRd ∗(r)2

are further included to verify the accuracy of diversity gains. In Monte-Carlo simula-

tions, the channel coefficients are randomly generated following Rayleigh distribution.

At each SNR, Pout1 and Pout2 are calculated to determine the outage probability in

broadcasting and relaying phases, respectively. In our simulations, based on the out-

age state of source and relay nodes we update the rows of matrix Z and determine

whether the destination is capable to recover all P packets or not. If rank (Z) < P ,

we declare that the system is in outage, otherwise it is capable to recover all original

packets Ii (i = 1, ..., P ).

In Fig. (8), we assume that the number of coherence bandwidths is L = 4, the

number of subcarriers is N = 128, the number of source nodes is P = 8, and the

number of relays is M = 2 and present the exact outage probability of NCC-OFDMA

for different transmission rates R0 = 0.5, 0.6, 0.7 along with Monte-Carlo simulation
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Figure 9: Outage probability of NCC-OFDMA for different values of P .

results. It is observed that the derived expression in (34) is in excellent agreement

with simulation results. It is also observed that as R0 increases, the system is more

likely to undergo outage, leading higher values of outage. For example, at R0 = 0.5,

SNR of 5 dB is required to achieve an outage probability of 10−4. This climbs to 6

dB and 7 dB, respectively for R0 = 0.6 and R0 = 0.7. However the slopes of the

curves remain constant and all of them provide a diversity gain of L (M + 1) = 12

confirming the derived maximum diversity gain as observed from (41).

In Fig. (9), we assume L = 4, N = 128, M = 2, and R0 = 0.5 and present the

outage performance for different number of source nodes i.e., for P = 6, 8, 12. Similar

to Fig. 12, the derived exact expression perfectly matches to simulation results. It is

also observed that when the number of source nodes increases, the system performance

deteriorates. For example, for the system with P = 6 sources, an outage probability of

10−6 is achieved at SNR=5 dB. For the same SNR values, the systems with P = 8 and

P = 12 sources are able to achieve outage probability of 10−4 and 10−2, respectively.

However, due to the fact that diversity gain does not depend on the number of sources,
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Figure 10: Outage probability of NCC-OFDMA for different values of M .
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Figure 11: Outage probability for NCC-OFDMA for different values of L.

30



as observed from (41), all systems yield a diversity gain of 12.

In Fig. 10, we assume L = 4, N = 128, P = 8, and R0 = 0.5 and present the

outage performance for different number of relays, i.e., M = 1, 4, 6. When M = 1,

SNR of 15 dB is required to achieve an outage probability of 10−10. This decreases

to about 7 dB and 5 dB, respectively for M = 4 and M = 6. It is also observed that

having more relays offers more diversity gain for a given R0. The diversity gain for

M = 1 is equal to 8 while for M = 4 and M = 6 respectively, are 20 and 28.

In Fig. 11, we assume N = 128, P = 8, M = 2, and R0 = 0.5 and present the

outage performance for L = 3, 4, 5. Recall that L is the ratio of between system

bandwidth and coherence bandwidth. It is observed that the increase in L results

in the increase of diversity gain. The diversity gains achieved for L = 3, 4, 5 are

respectively, 9, 12, and 15.
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CHAPTER IV

FINITE-SNR DIVERSITY-MULTIPLEXING TRADEOFF

FOR NETWORK CODED COOPERATIVE OFDMA

SYSTEMS OVER RICIAN FADING CHANNELS

In this chapter, we derive an exact closed-form outage probability of NCC-OFDMA

systems over Rician fading channels and obtain asymptotical DMT expression. Asymp-

totical DMT of Rician fading channels coincides with that of Rayleigh channel and

does not provide insight into practical SNR ranges. We further derive finite-SNR

DMT over Rician fading channels. As opposed to Rayleigh fading, for Rician fading,

the maximum diversity gain does not always occur at zero multiplexing gain. It can

be observed from our results that the presence of LOS components in Rician fading

leads diversity gains higher than asymptotic SNR values at some SNRs and multi-

plexing gains. We also demonstrate that finite-DMT expression is equivalent to the

conventional DMT expression when SNR approaches to its asymptotic value.

4.1 System Model

We consider the same NCC-OFDMA system model as explained in chapter 3.

We assume that the channel between any pair of nodes is identically independent

frequency-selective quasi-static Rician fading. Let HXY [n], XY ∈
{
SiD, SiR, RjD

}
denotes the frequency domain channel gain of X → Y link at subcarrier n. The

envelope of HXY [n] follows Rician distribution [35]. HXY [n] can be expressed as

HXY [n] =

√
k

k + 1
+

√
1

k + 1
H̃XY [n] , (47)
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where k ≥ 0 is the Rician factor defined as the power ratio between the LOS and

random (scattered) components. In (47), H̃XY [n] is complex Gaussian random vari-

able with unit average power and modeled as H̃XY [n] =
√

0.5 (a+ jb), where a and

b are circularly symmetric Gaussian distributed random variables with variance one.

It can be noted that the envelope of H̃XY [n] is Rayleigh distributed and for k = 0

HXY [n] = H̃XY [n].

In following, we first obtain outage probability per subcarrier over Rician fading

channels and then derive outage probability of the overall system.

4.2 Derivation of Outage Probability

4.2.1 Outage Probability for Subcarriers

In broadcasting phase, the subcarrier is in outage if it cannot support a fixed

target transmission rate for a specific source. Since HXY [n] is complex Gaussian

distributed with non-zero mean, |HXY [n]|2 is non-central chi-square distributed with

two degrees of freedom. The cumulative distribution function (CDF) of |HSiD [n]|2 is

given by

F|HSiD
[n]|2 (y) = 1−Q1

(√
2k,
√

2 (1 + k) y
)
. (48)

Using (28), we have

Poutsub′ (K1) = 1−Q1 (α, β1) , (49)

where α =
√

2k and β1 =

√
2 (1 + k)

(
2Rs1N̂ − 1

)/
ρ. Similarly, for Si → R link, the

outage probability of the subcarriers can be obtained and has a similar form of (48).

For the relaying phase i.e., Rj → D, the outage probability per subcarrier for a

specific relay is equal to

Poutsub′ (K2) = Pr
{

log2

(
1 +

∣∣HRjD [n]
∣∣2 ρ) < Rs2N̂

}
= 1−Q1 (α, β2) , (50)

where β2 =

√
2 (1 + k)

(
2Rs2N̂ − 1

)/
ρ.
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4.2.2 Overall Outage Probability

Substituting (49) and (50) in (34), we have

Pout (R0, ρ) =
M∑
m=0

 M

m

PM−m
R (1− PR)m

×
M−m∑
j=0

 M −m

j

PM−m−j
outRD

(1− PoutRD
)j

×
P−1−j∑
i=0

 P

i

P P−i
outSD

(1− PoutSD)i . (51)

In (51), PR = (1− PoutSR)P where PoutSR =
(
Pout

sub
′ (K1)

)L
= (1−Q1 (α, β1))L

[21] is the outage probability of the link S → R. PoutRD =
(

(Pout
sub
′ (K2)

)L
=

(1−Q1 (α, β2))L, PoutSD =
(

(Pout
sub
′ (K1)

)L
= (1−Q1 (α, β1))L respectively denote

the outage probability of the link R→ D and S → D.

4.3 DMT Analysis

4.3.1 Derivation of Asymptotical DMT

Recall that the variables α =
√

2k and β1 =

√
2 (1 + k)

(
2Rs1N̂ − 1

)/
ρ in (48)

are Rician factor (k) dependent. It can be readily checked that for asymptotically

high SNR values, i.e., ρ→∞, we have β1 → 0 and therefore PoutSR → 0 which yields

lim
β1→0

PR = 1 − PPoutSR . Thus, lim
β1→0

(1− PR) = lim
β1→0

P (1−Q1 (α, β1))L. Marcum

Q-function is given in terms of its series form as [36]

Q1 (α, β) = 1− exp

(
−α

2 + β2

2

) ∞∑
m=1

(
β

α

)m
Im (αβ) . (52)

In (52), we use the power series expansion for modified Bessel function [37] and

replace exponential function with its Maclaurin series form [38] to find the smallest

order of β1. This results in lim
β1→0

Q1 (α, β1) = 1 − exp (−α2/2) β2
1/2. Therefore, we

have

lim
β1→0

(1− PR) = P

(
exp

(
−α

2

2

)
β2

1

2

)L
. (53)
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After some mathematical manipulation as we did in chapter 3, we finally have

lim
β→0

Pout (R0, ρ) = C

(
exp

(
−α

2

2

)
β2

2

)L(M+1)

, (54)

where C =
∑M

m=0

 P +M −m

P − 1


 M

m

Pm.

Theorem : The asymptotic DMT of NCC-OFDMA system over Rician fading

channel with P source nodes, M relay nodes, and L coherence bandwidths using

MCMA for subcarrier allocation is given by

d (r) =


L (M + 1)

(
1− P+M

L
r
)
, r ∈

[
0, L

P+M

]
, P > M

L (M + 1)
(

1− M(P+M)
PL

r
)
, r ∈

[
0, PL

M(P+M)

]
, P < M

L (M + 1)
(
1− 2P

L
r
)
, r ∈

[
0, L

2P

]
, P = M

(55)

Proof: Recall that Rs1 and Rs2 are the transmission rates per subcarrier over

broadcasting, and relaying phases. Substituting (23) into Rs1 = R0/K1, we have

Rs1 = N (K1 +K2)R/ (PK2
1K2). Replacing this expression in (54), we obtain

lim
ρ→∞

Pout = ξ

2
N2(K1+K2)

LPK2
1K2

R
− 1

ρ


L(M+1)

, (56)

where ξ = C exp (−L (M + 1)α2/2) (1 + k)L(M+1). Following same steps as we did in

chapter 3, we obtain (55).

Special case I: It should be noted that due to the dominant scattered component

in high SNR regime, the slopes of the outage probability in the case of Rician fading

channel and Rayleigh fading channel (k = 0) are identical. Therefore, the asymptot-

ical DMT expression in (55) derived for Rician fading coincides to that of Rayleigh

fading (41).
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4.3.2 Derivation of Finite-SNR DMT

We have R (ρ) = rf log2 (1 + ρ) [22]. Substituting it into β1 and β2, we respectively

have

β̄1 =

√
2 (1 + k)

(
(1 + ρ)(P+M)rf/L − 1

)/
ρ, (57)

and

β̄2 =

√
2 (1 + k)

(
(1 + ρ)(M(P+M))rf/(PL) − 1

)/
ρ. (58)

Inserting (57) and (58) into (51), we can express the outage probability in terms of

rf and ρ as

Pout (rf , ρ) =
M∑
m=0

 M

m

 P̄M−m
R

(
1− P̄R

)m

×
M−m∑
j=0

 M −m

j

 P̄M−m−j
outRD

(
1− P̄outRD

)j

×
P−1−j∑
i=0

 P

i

 P̄ P−i
outSD

(
1− P̄outSD

)i
, (59)

where P̄R =
(

1−
(
1−Q1

(
α, β̄1

))L)P
, P̄outRD

=
(
1−Q1

(
α, β̄2

))L
, and P̄outSD =(

1−Q1

(
α, β̄1

))L
.

Noting that ∂Q1 (α, β) /∂β = −β exp (−(α2 + β2) /2) I0 (αβ) and after some math-

ematical manipulations in (59), the finite-SNR DMT is given by

df (rf , ρ) = − ρ

Pout (rf , ρ)

∂Pout (rf , ρ)

∂ρ

=
ζ1 + ζ2 + ζ3

Pout (rf , ρ)
, (60)
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where ζ1, ζ2, and ζ3 are respectively defined as

ζ1 =
M∑
m=0

 M

m

Ω
(
β̄1

)
Λ (L)P

(
1− P̄outSR

)P−1

×
(
1− P̄R

)m−1
P̄M−m−1
R L

(
m−M

(
1− P̄R

))
×

M−m∑
j=0

 M −m

j

 P̄M−m−j
outRD

(
1− P̄outRD

)j

×
P−1−j∑
i=0

 P

i

 P̄ P−i
outSD

(
1− P̄outSD

)i
, (61)

ζ2 =
M−m∑
j=0

 M −m

j

Ω
(
β̄2

)
Λ

(
PL

M

)(
1− P̄outRD

)j−1

× P̄M−m−j−1
outRD

L
(
M −m− j − (M −m) P̄outRD

)
×

M∑
m=0

 M

m

 P̄M−m
R

(
1− P̄R

)m

×
P−1−j∑
i=0

 P

i

 P̄ P−i
outSD

(
1− P̄outSD

)i
, (62)

ζ3 =

P−1−j∑
i=0

 P

i

Ω
(
β̄1

)
Λ (L)

(
1− P̄outSD

)i−1
P̄ P−i−1
outSD

× L (P − i− PPoutSD)
M∑
m=0

 M

m

 P̄M−m
R

(
1− P̄R

)m

×
M−m∑
j=0

 M −m

j

 P̄M−m−j
outRD

(
1− P̄outRD

)j
. (63)

In (61)-(63), Ω (·) and Λ (·) are respectively expressed as

Ω (ω) = (1−Q1 (α, ω))L−1 exp
(
−α2+ω2

2

)(
ω2

2

)
I0 (αω) (64)
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and

Λ (λ) = 1−
(P+M)

λ
rfρ (1 + ρ)

(P+M)
λ

rf−1

(1 + ρ)
(P+M)

λ
rf − 1

. (65)

4.3.3 Asymptotic Behavior of Finite-SNR DMT

In this section, we demonstrate that asymptotical DMT can be obtained as a

special case of the finite-SNR DMT. It can be readily checked that, for asymptot-

ically high SNR values, we have lim
ρ→∞

β̄1 =
√

2 (1 + k) ρ((P+M)r/L)−1 and lim
ρ→∞

β̄2 =√
2 (1 + k) ρ(M(P+M)r/(PL))−1. From (41) we have r < min (L/ (P +M), PL/ (M (P +M))),

therefore β̄ ≈ lim
ρ→∞

β̄1 ≈ lim
ρ→∞

β̄2 ≈ 0. Following the same steps as in section 4.3.2 we

obtain

lim
β̄→∞

Pout (rf , ρ) = C

(
exp

(
−α

2

2

)
β̄2

2

)L(M+1)

. (66)

Now consider lim
ρ→∞
−ρ∂Pout (r, ρ) /∂ρ. By Noting that lim

ω→0
Ω (ω) = (exp (−α2/2)ω2/2)

L
,

and lim
ρ→∞

Λ (λ) = 1− (P +M) r/λ, we have

lim
β̄1→0

ζ1 = C

(
exp

(
α2

2

)
β̄2

1

2

)L(M+1)(
1− P +M

L
r

)
Lm, (67)

lim
β̄2→0

ζ2 = C

(
exp

(
α2

2

)
β̄2

2

2

)L(M+1)(
1− M (P +M)

PL
r

)
L (M −m− j) , (68)

and

lim
β̄1→0

ζ3 = C

(
exp

(
α2

2

)
β̄2

1

2

)L(M+1)(
1− P +M

L
r

)
L (j + 1) . (69)

For the case of P > M , maximum multiplexing gain is limited by L/ (P +M). Hence,

we replace the term 1− (M (P +M)) r/ (PL) of (68) by 1− (P +M) r/L. Therefore,

we obtain

lim
β̄→0

−ρ∂Pout (rf , ρ)

∂ρ
= lim

β̄1→0
ζ1 + lim

β̄2→0
ζ2 + lim

β̄1→0
ζ3

= C

(
exp

(
α2

2

)
β̄2

2

)L(M+1)

L (M + 1)

(
1− P +M

L
r

)
. (70)
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Finally, by substituting (66) and (70) into (7), we obtain

lim
ρ→∞

df (rf , ρ) = L (M + 1)

(
1− P +M

L
r

)
. (71)

With similar steps above, we can obtain DMT relations in asymptotic case for

P < M and P = M . For the case of P < M , the maximum multiplexing gain is

limited by PL/ (M (P +M)), therefore, we replace the term 1− (P +M) r/L of (67)

and (69) by 1 − (M (P +M)) r/ (PL). For P = M , both 1 − (P +M) r/L, and

1− (M (P +M)) r/ (PL) reduce to 1− 2Pr/L. This demonstrates that the derived

finite-SNR DMT in Section 4.3.3 converges to the asymptotical one presented in

Section 4.3.2 as expected confirming the accuracy of our derivations.

4.3.4 Finite-SNR Diversity Gain for a Fixed transmission Rate

Here, we investigate finite-SNR diversity gain where transmission rate R0 is fixed.

By substituting (51) into (7) and after some mathematical manipulations, we have

df (R0, ρ) = − ρ

Pout (R0, ρ)

∂Pout (R0, ρ)

∂ρ

=
ζ ′1 + ζ ′2 + ζ ′3
Pout (R0, ρ)

, (72)

where ζ ′1, ζ ′2, and ζ ′3 are respectively expressed as

ζ ′1 =
M∑
m=0

 M

m

Ω (β1)P (1− PoutSR)P−1 (1− PR)m−1

× PM−m−1
R L (m−M (1− PR))

×
M−m∑
j=0

 M −m

j

PM−m−j
outRD

(1− PoutRD
)j

×
P−1−j∑
i=0

 P

i

P P−i
outSD

(1− PoutSD)i , (73)
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ζ ′2 =
M−m∑
j=0

 M −m

j

Ω (β2) (1− PoutRD
)j−1

× PM−m−j−1
outRD

L (M −m− j − (M −m)PoutRD
)

×
M∑
m=0

 M

m

PM−m
R (1− PR)m

×
P−1−j∑
i=0

 P

i

P P−i
outSD

(1− PoutSD)i , (74)

ζ ′3 =

P−1−j∑
i=0

 P

i

Ω (β1) (1− PoutSD)i−1 P P−i−1
outSD

× L (P − i− PPoutSD)

×
M∑
m=0

 M

m

PM−m
R (1− PR)m

×
M−m∑
j=0

 M −m

j

PM−m−j
outRD

(1− PoutRD
)j . (75)

From (60) and (72), it can be easily checked that d (rf , ρ) = Λ (L) (ζ ′1 + ζ ′3)|R=rf log2(1+ρ)+

Λ (PL/M) ζ ′2|R=rf log2(1+ρ) . When ρ→∞, we obtain

lim
ρ→∞

df (R0, ρ) = L (M + 1) . (76)

It is expected that in high SNR regime the diversity gain at the fixed R0 (72)

becomes equal to lim
ρ→∞

df (rf , ρ)

∣∣∣∣
r=0

or equivalently equal to (55) when r = 0. It can

be easily checked that for r = 0, (55) yields L (M + 1) which is consistent with (76).

This result indicates that in high SNR regime the diversity gain of system is restricted

by the number of relay nodes and number of coherence bandwidths.

Special Case II: For Rayleigh fading channels, we have k = 0, hence the Marcum

Q-function in (49) is reduced to exponential function [36]. Then, we can obtain the
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finite-SNR DMT and diversity gain for Rayleigh fading channels. The associated

analytical results are provided in the following section.

4.4 Numerical Results and Discussion

In this section, we present analytical results as well as Monte-Carlo simulations

to confirm the accuracy of our derivations. As a benchmark, we also plot curves for

k = 0 i.e., the channel gains follow Rayleigh distribution.

Fig. 12 demonstrates the outage probability given by (51) along with the Monte-

Carlo simulation results for N = 128 subcarriers, P = 4 source nodes, M = 1, 2

relay nodes assuming a transmission rate of R0 = 0.5, Rician factor k = 6, 8 dB and

L = 2 coherence bandwidths. It is observed that the derived expression in (51) is in

excellent agreement with simulation results confirming the accuracy of our derivation.

It is also observed that an impressive performance improvement is obtained through

spatial diversity gain achieved by relay nodes. Specially, the required SNR to achieve

a target outage probability of 10−6 for non-cooperative case (M = 0) i.e., stand-alone

OFDMA system is 16 dB over a Rician channel with k = 8 dB. This reduces to

7.8 dB for M = 1. It further reduces to 5.5 dB for M = 2. It should be noted

that we plot the analytical curves for extremely low values up to 10−30 to clearly

observe the slope of the curves in high SNR regime. It can be seen that the slope of

the plots are identical to that of asymptotic lines. The diversity gains in high SNR

regime for M = 1, 2 are respectively equal to 4 and 6 confirming that the diversity

gain is determined by L (M + 1). As expected, due to the dominant of the scattered

component in high SNR regime, the slope of the outage probability over Rician fading

channel is identical to that of Rayleigh fading channel (k = 0).

Fig. 13 depicts finite diversity gain, i.e., df (R0, ρ) at a fixed transmission rate

given by (72). We consider the same parameters as in Fig. 12. As can be seen in

Fig. 12, in finite-SNR regime there is a significant drop in the outage probability
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Figure 12: Outage probability for different values of M .

which leads to have a peak in the finite-SNR diversity gain as shown in Fig. 13.

Specifically, the maximum diversity gain is achieved at SNR=5 dB for M = 1, 2. As

the Rician factor increases, higher diversity gains are obtained. This is due to the

presence of LOS in finite-SNR regime playing as an additional diversity source. For

higher values of SNR, the scattered component begins to dominate the performance

of the system and therefore decreases the diversity gain to L (M + 1) given by (76).

It should be further emphasized that, in contrast to Rician fading channels, there

is not such a diversity peak in finite SNR regime for Rayleigh fading channels. The

maximum diversity gain is achieved at asymptotically high SNR values and is equal

to that of Rician channels.

Fig. 14 presents finite diversity gain versus SNR for various number of coherence

bandwidths L = 2, 3 assuming N = 128, P = 4, M = 1, R0 = 0.5, and k = 6

dB. It can be seen that for the high SNR regime the diversity gain for L = 2, 3 are
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Figure 13: Diversity gain for different values of M at fixed transmission rate.

respectively 4 and 6 confirming (76).

In Fig. 15, we assume L = 2, N = 128, P = 4, M = 1, k = 6 dB, and

investigate the diversity gain for various values of R0 = 0.5, 0.7, 1. As can be seen

from figure, the asymptotic diversity gains are independent of R0 and do not change.

This indicates that diversity gain does not depend on transmission rate and just by

increasing R0 the system is more likely to undergo outage, leading higher values of

outage.

In Fig. 16, we assume L = 2, N = 128, M = 1, k = 6 dB, and R0 = 0.5 and

investigate the diversity gain for various values of P = 4, 8, 12. It is obvious that by

increasing the number of source nodes the outage probability of the system increases.

However, the asymptotic diversity gain of the system does not change. It is observed

that for all different values of P the diversity gain of the system in high SNR regime

is equal to 4.
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Figure 14: Diversity gain for different values of L at fixed transmission rate.
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Figure 16: Diversity gain for different values of P at fixed transmission rate.

Fig. 17, shows the finite-SNR DMT (60) for L = 2, N = 128, P = 4, and k = 6

dB for a fixed SNR=10 dB. We consider various number of relay nodes M = 1, 2, 3.

It is observed that by adding the number of relay nodes the diversity gain is increased

for multiplexing gain rf = 0. At rf = 0, both Rician and Rayleigh fading channels

achieve the same diversity gains, i.e., 2.48, 3.73, and 5 for M = 1, 2, 3, respectively.

However, as opposed to Rayleigh fading channels in which the maximum achievable

diversity gain always occurs at zero multiplexing gains, the maximum diversity gains

over Rician fading channels are obtained at specific multiplexing gains. Specifically,

maximum diversity gains of 2.78, 4.28, 5.6 are obtained at rf = 0.06, 0.07, 0.09 for

M = 3, 2, 1 respectively. Furthermore, for a zero diversity gain, we observe that

maximum multiplexing gains are equal to 0.4, 0.33, 0.28 for M = 1, 2, 3, confirming

the accuracy of (55).

Fig. 18 represents the finite-SNR DMT (60) for L = 2, N = 128, P = 4, M = 1,
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Figure 17: Finite-SNR DMT for different values of M .

and k = 6 dB. We consider various values of SNR=10, 20, 30 dB. It is observed

that over Rayleigh fading channels increasing SNR leads to higher diversity gain

throughout multiplexing range. However, for Rician fading channels, increasing SNR

does not guarantee to have a higher diversity gain in the multiplexing range. For

example, at some multiplexing gain values, it is possible to achieve a higher diversity

gain at SNR=10 dB in comparison to that of SNR=30 dB. When SNR increases, the

DMT curve approaches to d(r) = 4(1 − 2.5r), c.f. Eq. (55), for both Rayleigh and

Rician fading channels. Therefore, the asymptotic DMT is determined by number of

coherence bandwidths as well as number of relay nodes.
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CHAPTER V

CONCLUSION

In this thesis we have worked on the information theoretical performance analysis

of NCC systems. In the first part of the thesis, we investigated the performance of

NCC systems in the presence of imperfect CSI. Based on the derived outage proba-

bility, we obtained closed-form expression for finite-SNR DMT. Our results revealed

that at practical channel estimation quality and SNR regime, the DMT of the sys-

tem is substantially less than that of asymptotic one. This analysis can be useful to

predict the performance of NCC system under realistic operating conditions taking

into account channel estimation errors and finite SNR regime.

In the second part of the thesis, we have extended the DMT analysis of [10]

presented for single-carrier TDMA-based NCC systems to NCC-OFDMA systems.

Specifically, we have considered a system with P sources, M relays and one destination

and employed maximum constraint κ1,K-matching approach for subcarrier allocation.

We derived a closed-form expression for the outage probability of the system over

fading channel and present the asymptotic DMT analysis. Our results demonstrated

that NCC-OFDMA system is able to fully exploit both frequency and spatial diversity.

In the third part of the thesis, we derived finite-SNR DMT of NCC-OFDMA

system over Rician fading channels. As opposed to Rayleigh fading, over Rician

fading channels, the maximum diversity gain does not occur at zero multiplexing

gain. It can be observed from our results that the presence of LOS components

in Rician fading leads diversity gains higher than asymptotic SNR values at some

multiplexing gains and SNRs.
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