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ABSTRACT

In this study, we investigate the inventory review policy for a healthcare facility to

minimize the impact of inevitable drug shortages when an alternative reliable supplier

is present. A continuous-time stochastic process is used to calculate optimal inventory

levels for the primary (unreliable) and secondary (reliable but costly) suppliers. We

present optimal strategies for tractable instances, provide insights through supervised

learning tools, and highlight how these results can be generalized. In particular, we

provide business rules for inventory managers that would simultaneously minimize

average inventory and secondary supplier usage.

Keywords: OR in health services, supply disruption, inventory management, Markov

chain, machine learning, dual sourcing.
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ÖZETÇE

Bu çalışmada, ilaç kıtlığı durumunu azaltmak için alternatif tedarikçiye sahip sağlık

tesisleri için stok yönetimi araştırılmak istenmektedir. İlk (güvenilmez) tedarikçi ve

ikinci (güvenilir ama maliyetli) tedarikçinin optimal stok seviyesini hesaplamak için

sürekli stokastik süreçler analizi kullanılmıştır. Çözülebilir örnekler için ideal strate-

jiler sunulmuş, denetimli öğrenme araçları aracılığıyla fikir verilmiş ve bu sonuçların

nasıl genelleştirilebileceğine dikkat çekilmiştir. Özellikle ortalama stok seviyelerini

düşürmek isteyen ve iki tedarikçi ile çalışan stok yöneticileri için işlerini kolaylaştıracak

yöntemler sunulmuştur.

Keywords: Sağlık Servisleri için Yöneylem Araştırması , Tedarik Kıtlığı, Stok Yönetimi,

Markov Zinciri, Yapay Zeka ile öğrenme, İkili Kaynak Kullanımı.
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CHAPTER I

INTRODUCTION

Pharmaceuticals’ effective supply chain management, especially inventory manage-

ment, is gaining importance considering its effect on the quality of care. According

to [1], in the United States, pharmaceuticals also compose a large portion (nearly

10%) of annual healthcare expenditures. Considering these costs and risks associated

with inefficient inventory management, novel mathematical models that potentially

increase the availability of pharmaceuticals are starting to receive attention from the

healthcare community.

Healthcare facilities aim to improve patients’ well-being, yet they operate with

associated risks. Medicine shortages, lack of stock visibility between hospitals and

suppliers, non-delivery risk of medicines, unexpected peaks in demand, warehouse

capacity issues, forecasting errors, and stock holding problems are some of these

risks, which directly or indirectly deteriorate the quality of care provided to patients.

Among these risks, drug shortages are one of the most frequently encountered issues

in the last decade. As of 16 February 2016, [2] reports 66 ongoing shortages, with

another 88 medicine unavailability recently resolved, and 56 drugs withdrawn from

the market in the United States. Shortages may lead to serious issues such as delays

in surgeries, irreversible health issues, even mortality.

Most of the healthcare facilities we observe in the United States and Turkey can

be classified as reactive instead of proactive in responding drug shortages. In prac-

tice, when a national shortage or a supply disruption occurs for a drug, hospitals

typically try and find the drug or its substitute through alternative channels, which

might be another hospital or warehouse. This approach is risky for the hospital and
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calls for additional effort and man-hours. Our aim in this study is to avoid exces-

sive costs associated with conventional approaches and propose a proactive inventory

management scheme in the presence of an unreliable supplier. For the sake of math-

ematical simplicity we assume there is one mainstream (unreliable) supply channel

and one alternative channel that is always available but costly. We do not propose a

new inventory management mechanism. However, we conjecture a careful selection of

inventory levels would lead to significantly less alternative channel searches. Mean-

while, average number of items on inventory is to be minimized that, in turn, reduce

inventory holding costs.

Healthcare facilities, particularly hospitals, bill patients (or insurance companies)

for all drugs that are used in treatments. This unique aspect of healthcare sup-

ply chains make problems theoretically different than those found in manufacturing

industry for the following reasons:

– High risk supply disruption: Drug shortages lead to lack of medicine, which

means that patients suffer from this disruption and it directly affects their life

or can result in death.

– Stockouts: When demand is uncertain, we can not predict it exactly in advance.

Since this causes damage to patients, it has critical importance in a healthcare

facility.

– Perishability: Pharmaceuticals are perishable items and have a fixed lifetime

that requires to keep low level stocks.

– Zero ordering costs: The contract between a hospital and a supplier typically

allows orders to be placed in any frequency and quantity. The trade off exists

between inventory level and quality of care, which differentiates this study from

the aforementioned works.
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– Care Quality: Quality of care is a significant issue in healthcare. Patients are

at risk due to the unavailability of a drug. It is hard to quantify of its impacts.

– Alternative Channel: Quality of care is directly proportional to the drug avail-

ability. Quality of care may decrease if we seek for alternative channel and it

can also be more costly.

– Zero lead time: Deliveries are made daily and overnight deliveries are possible

when the item is accessible, so lead time is negligible for drugs.

However, the notion of holding cost still exists as the items are stored for a dura-

tion, which cannot be billed. Therefore, we focus on two main objectives considering

all these issues: minimizing the average inventory level and minimizing purchases

through the alternative channel. We deliberately avoid the cost figures as they are

hard to estimate in practice and observe the set of dominating solutions. Looking

beyond the healthcare literature, a multiple objective model that considers disrup-

tions on one channel has not been introduced yet. We adopt the widely-used (Q, r)

inventory control policy, consider a single-item model, and compute separate order

and reorder quantity values for mainstream and alternative channels. While average

inventory level is simultaneously minimized, we investigate two cases where we ei-

ther minimize i. alternative supply total purchases (expected quantity ordered) or ii.

number of times alternative supply is used (expected usage frequency).

This thesis is organized as follows: Chapter 2 provides a literature review on

healthcare inventory management and general inventory problems with disruption.

Chapter 3 presents the problem description where the mathematical model and solu-

tions are explained. Chapter 4 involves computational results and insights obtained.

Conclusion chapter summarizes our research findings and offers directions for future

research.
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CHAPTER II

LITERATURE SURVEY

There exist several articles on continuous review inventory models without supply

disruptions. [3] utilizes a (Q, r) policy in a two player framework with asymmetric

information. (Q, r) policy model is extended by adding a two echelon system with

a supplier and a buyer. These two opposite inventory models are analyzed based

on the use of consignment stock in their functions. [4] focuses on a multi echelon

inventory system with a single supplier and multiple retailers under (Q, r) policy.

The article proposes a centralized replenishment policy for the system. The policy

adopts an inventory position for the retailer independently. Furthermore, an echelon

policy is proposed and the supplier’s stock policy is investigated with risk-pooling

and information sharing.

There are studies that consider inventory policies in the presence of supply short-

ages. A recent survey by [5] discusses supply chain disruptions in depth through

relevant articles on different areas of supply chain management. Most of the existing

models focus on inventory systems with zero lead time (e.g., [6] and [7]), but there

are also studies that consider constant lead time (e.g., [8] and [9]). [10] examines

the continuous review stochastic inventory problem under the standard (Q, r) policy

assumption where the supplier’s availability is changeable. [8] studies supply disrup-

tion in a continuous (Q, r) inventory system with unreliable suppliers which might be

either available or unavailable. These available or unavailable periods are exponen-

tially distributed and examined under two different situations for zero and nonzero

(constant) lead times. [6] consider the case of Erlang-k inter-failure times and gener-

ally distributed recovery times for suppliers in an EOQ framework. [9] focuses on a
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continuous-review lost-sales (s,Q) inventory system with Poisson demand and con-

stant lead time where the unreliable supplier’s on/off periods are hyper-exponentially

distributed. This study is extended by addition of Erlang-k lead times in [11]. [12]

target to provide an optimal base stock level to minimize expected inventory related

costs, for retailer under deterministic demand and zero lead time. Considered product

is perishable, retailer is open to supply disruptions, and disruption processes are mod-

eled as a discrete time Markov chain. Except for [6] that considers multiple suppliers,

most supply disruption studies such as [8] and [7] study single supplier problems. [7]

present a single unreliable supplier model using (S, s) inventory policy. Similar to

ours, a continuous-time Markov chain is utilized in their article. For this reason, we

do not use this model in our thesis.

The study in this thesis considers dual sourcing under supply disruptions, which

differentiates it from the aforementioned works. One of the most popular studies in

this area is introduced by [13], with a periodic review inventory policy for a reliable

supplier, an unreliable supplier, and one retailer. Backlogging part of the demand

is allowed, and lead times of suppliers are constant. Failure and repair periods of

the unreliable supplier are modeled in a discrete time Markov chain, which presents

the main difference between this model and ours. With a reliable and an unreliable

supplier, [14] examine gathering two types of risks together; disruptions and delays.

Using a newsvendor policy for single period, utilizations for both suppliers under

deterministic demand are observed. Later, this study is extended by including a

periodic review policy for an infinite time horizon in [15]. In addition, [16] adapts the

newsvendor model under deterministic demand for the case of one reliable and one

unreliable supplier, where unreliable supplier’s disruption probability is dependent

on order quantity. Retailer’s risk aversion is analyzed through an exponential utility

function.
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[17] develop a dynamic programming approach for one reliable and one unreli-

able supplier under stochastic demand and finite time horizon with discrete periods,

in which unreliable supplier’s disruption rate is estimated using a Bayesian update

model. [18] measure the performance of dual sourcing strategy for single buyer, single

supplier case, where every supplier can observe breakdown for uncertain amount of

time, and suppliers’ lead times are stochastic. Uncertainty in parameters of this study

is modeled as a Semi-Markov decision process. A sourcing strategy is introduced to

minimize buyer’s expected total costs for a long time horizon. In addition, with three

interrelated studies from the same group (i.e., [19], [20] and [21]) a newsvendor ap-

proach for dual sourcing is constituted. In these studies, there are one retailer and two

suppliers, where both suppliers are unreliable and open to disruptions, and the aim

is to maximize total weighted expected profits for a single period inventory system.

The studies that are closest to our inventory management framework are [22], [23]

and [24]. [22] focus on a case study of long term humanitarian emergency relief op-

eration by developing a stochastic inventory control model with two suppliers under

(Q, r) policy and lead times of suppliers are constant. An emergency order is never

placed before a normal order and backorders are allowed. We extend this problem to a

healthcare setting using a continuous time Markov chain with zero lead time. In [22],

emergency orders are placed due to demand explosion and there exists backorder cost,

whereas in our work, alternative supplier is used during disruption of the mainstream

supplier to prevent shortage cost. Dissimilarly, we do not use neither back order cost

nor shortage cost in our model. [23] work on an inventory system consisting of two

substitutable and perishable products with separate demands, where supply disrup-

tion is not included. They provide a steady state analysis for a continuous review

inventory policy. [24] consider a healthcare supply chain with warehouse capacity,

multiple commodities, and possible alternative drug shortages. Every commodity on

hand has a more expensive alternative, where both regular and alternative supplies

6



are open to disruptions. Similar to ours, a continuous-time Markov chain is uti-

lized, but order quantities and reorder levels for all commodities are obtained using a

stochastic optimization approach with a single objective based on cost minimization.

Next, we present our assumptions, details of our mathematical model, and solution

approach.
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CHAPTER III

MODEL

3.1 Problem Description

In this section, we present our assumptions to model the inventory control problem

of a healthcare facility with a realistic yet tractable approach.

3.1.1 A Single Reliable Supplier Model

We aim to investigate the (Q, r) inventory policy with one regular supply channel for

single item.

The proposed model is developed under the following assumptions: Regular supply

channel is always available. Patients arrive at the hospital of interest in accordance

with a Poisson process having rate λ and orders are placed with fixed cost. Variable

ordering costs are disregarded. Our real-life observations suggest that variable costs

are reflected on patients, thus have no effect on our decisions. There is no lead time

for the supply channel. The hospital has unlimited capacity. A continuous-review

inventory control policy is adopted where an order of size Q will be placed through

the regular channel when inventory level is at reorder level r and regular supply is

available.

Note that in this model the objective function is to minimize the expected total

costs of the system.

3.1.2 Two-Supply Channel Model with a Reliable and an Unreliable

Channel

We aim to investigate the (Q, r) inventory policy with one regular and one alternative

supply channel for single item. The alternative supply channel can either be (i) a
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less-preferred substitute drug or (ii) an alternative supplier. In the former case, the

substitute drug is typically more expensive or may not be clinically ideal. In the case

of alternative supplier, a more expensive supplier is welcome if mainstream channel

is unreliable, i.e., supply can be disrupted. In practice, when such disruptions occur,

hospitals seek for another supplier or hospital to supply a drug, which typically is

costly. See Fig. 1 for an illustration of our framework.

Hospital

Alternative Supply
(Substitute Drug or Alternative Supplier)

Regular Supply
(Mainstream Drug or Primary Supplier)

$ ↑

Figure 1: Two-supply channel model with a regular and an alternative channel

Notice that in this model the objective function is not minimize the expected

total costs of the system. There are two main objectives of this study which consider

different characteristics that can not be brought together in a single objective. One of

them takes costs into account, whereas the other one does not include any calculations

regarding costs. The first objective is minimizing expected inventory level, whereas

the second objective is increasing quality of care through minimization of expected

alternative supply usage frequency or and order quantity. We did not restrict ourselves

to a better defined objective as the alternative channel usage can lead to a number of

different issues that may need to be addressed differently. For instance an alternative

channel usage might imply an uncertain (unstructured) leadtime or loss of manpower

in a hospital during the search for an alternative supplier, a higher (per item) cost of

supply, a higher cost of care due to medical consequences of using a non-ideal drug

etc. Therefore, we propose a comprehensive multiobjective framework that sheds a
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light on most of these possible scenarios. The proposed model is developed under

following assumptions:

• Regular supply channel observes shortages, but alternative supply channel is

always available.

• Patients arrive at the hospital of interest in accordance with a Poisson process

having rate λ.

• Supply disruptions on the regular supply channel occur according to a Poisson

process with rate µ.

• Supply disruption periods are exponentially distributed with rate α.

• There is no lead time for both supply channels.

• The hospital has unlimited capacity.

• Fixed and variable ordering costs are disregarded. Our real-life observations

suggest that fixed costs are actually zero and variable costs are reflected to

patients, thus have no effect on our decisions.

• Drugs are delivered from either regular or alternative channel—order splitting

is not allowed.

• A continuous-review inventory control policy is adopted where an order of size

Q1 will be placed through the regular channel when inventory level is at reorder

level r1 and regular supply is available.

• During a disruption period, an order of size Q2 will be placed through the

alternative channel when inventory level hits reorder level r2.

Next, we define the mathematical model using a continuous time Markov chain

that features these assumptions mentioned above.

10



3.2 Mathematical Model

In this section, we firstly present a single reliable supplier model.

In the light of our assumptions, the continuous time Markov chain for given values

of Q and r is shown in Fig. 2. Using that the summation of limiting probabilities for

Figure 2: Transition rate diagram in a single reliable supplier model

all states is 1, i.e.,

Q−1
∑

j=0

PQ+r−j = 1

Q+r
∑

k=r+1

Pk = 1

Let us solve the last equation and obtain Pk.

Pk =
1

Q
k = r + 1, ..., r +Q

Secondly, we present two-supply channel model with a reliable and an unreliable

channel.

A stochastic process that accounts for separate reorder point and order quantities

for two supplier as well as disruption status for the regular supply channel is to be

11



modeled. States are denoted by pairs where first value represents the number of drugs

on hand and second value A or U indicate if regular supply channel is available or

unavailable, respectively. In the light of our assumptions, the continuous time Markov

chain for given values of Q1, Q2, and r1 is shown in Fig. 3.

Figure 3: Transition rate diagram for the inventory model

It should be noted that this Markov chain assumes

• r2 = 0,

• Q2 ≤ r1.

First assumption is trivial; alternative supply is always available and minimum

reorder point is preferred to ensure a lower stock level. Second assumption is for

mathematical tractability purposes and ensures a certain structure on the Markov

chain. Furthermore, real-life examples we have seen suggest that the alternative

channel purchases are typically in smaller quantities due to unwillingness of other

12



hospitals or warehouses in sharing drugs in larger quantities if a disruption is known

to be present. In practice, the items that are available in those disruption periods

hardly ever help hospitals achieve a higher level of inventory than their usual levels.

Thus it is not unreasonable to assume the quantity Q2 is a decision variable, but with

a natural upper bound r1, considering the possible scarcity of that drug.

The limiting probability PQ1+r1,A can be stated as follows:

α

Q1+r1−1
∑

j=0

PQ1+r1−j,U + λPr1+1,A = (λ+ µ)PQ1+r1,A (1)

To do generalization, we extract PQ1+r1,U and P1,U from the summation in equation

(1)

α (PQ1+r1,U + P1,U) + α

Q1+r1−1
∑

k=2

Pk,U + λPr1+1,A = (λ+ µ)PQ1+r1,A

Let us suppose that
∑Q1+r1−1

k=r1+1 Pk,U = SU1,
∑r1

k=Q2+1 Pk,U = SU2,

∑Q2

k=2 Pk,U = SU3 and substitute these equalities in the last equation to obtain

α (PQ1+r1,U + P1,U + SU1 + SU2 + SU3) + λPr1+1,A = (λ + µ)PQ1+r1,A (2)

The limiting probabilities between PQ1+r1−1,A and Pr1+1,A can be stated as follows:

PQ1+r1−1−j,A =

(

λ

λ+ µ

)j+1

PQ1+r1,A j = 0, ..., Q1 − 2 (3)

Let us substitute Q1 − 2 for j in equation (3) to obtain

Pr1+1,A =

(

λ

λ+ µ

)Q1−1

PQ1+r1,A (4)

To do generalization, we take the sum of geometric series in equation (3)

Q1−2
∑

j=0

PQ1+r1−1−j,A =

Q1+r1−1
∑

k=r1+1

Pk,A =





λ
(

(λ+ µ)Q1−1
− λQ1−1

)

µ (λ+ µ)Q1−1



PQ1+r1,A (5)

Suppose that
∑Q1+r1−1

k=r1+1 Pk,A = SA

SA =





λ
(

(λ+ µ)Q1−1
− λQ1−1

)

µ (λ+ µ)Q1−1



PQ1+r1,A (6)
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The limiting probability PQ1+r1,U can be stated as follows:

µ (PQ1+r1,A) = (λ+ α) (PQ1+r1,U) (7)

The limiting probabilities between PQ1+r1−1,U and Pr1+1,U can be stated as follows:

µ (PQ1+r1−1−j,A) + λ (PQ1+r1−j,U) = (λ+ α) (PQ1+r1−1−j,U) (8)

j = 0, ..., Q1 − 2

To do generalization, we take the sum of geometric series in the equation (8)

µ

α

Q1−2
∑

j=0

PQ1+r1−1−j,A +
λ

α
(PQ1+r1,U − Pr1+1,U) =

Q1−2
∑

j=0

PQ1+r1−1−j,U (9)

Q1+r1−1
∑

k=r1+1

Pk,U =
µ

α

Q1+r1−1
∑

k=r1+1

Pk,A +
λ

α
(PQ1+r1,U − Pr1+1,U)

We can rearrange the last equation using equation (5) to obtain

Q1+r1−1
∑

k=r1+1

Pk,U =
λ

α

[(

(λ+ µ)Q1−1
− λQ1−1

(λ+ µ)Q1−1

)

PQ1+r1,A + PQ1+r1,U − Pr1+1,U

]

(10)

Let us substitute the equality
∑Q1+r1−1

k=r1+1 Pk,U = SU1

SU1 =
λ

α

[(

(λ+ µ)Q1−1
− λQ1−1

(λ+ µ)Q1−1

)

PQ1+r1,A + PQ1+r1,U − Pr1+1,U

]

(11)

The limiting probabilities between PQ1+r1,A and Pr1+1,U can be stated with the help

of limiting probabilities between PQ1+r1,U and Pr1+1,U as follows:

From equation (7)

PQ1+r1,U =
µ

(λ+ α)
PQ1+r1,A (12)

From equation (8)

PQ1+r1−1,U =

[(

µ

λ+ α

)

PQ1+r1−1,A +

(

λ

λ+ α

)

PQ1+r1,U

]

(13)

We can substitute PQ1+r1−1,A and PQ1+r1,U in terms of PQ1+r1,A in equation (13) by

using equation (3) and equation (12) respectively to obtain

PQ1+r1−1,U =

(

µ

λ+ α

(

λ

λ+ µ

)

+
λ

λ+ α

(

µ

λ+ α

))

PQ1+r1,A (14)
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From equation (8)

PQ1+r1−2,U =

[(

µ

λ+ α

)

PQ1+r1−2,A +

(

λ

λ+ α

)

PQ1+r1−1,U

]

(15)

We can substitute PQ1+r1−2,A and PQ1+r1−1,U in terms of PQ1+r1,A in equation (15) by

using equation (3) and equation (14) respectively to obtain

PQ1+r1−2,U =

[

µ

λ+ α

(

λ

λ+ µ

)2

+
λ

(λ + α)

(

µ

λ+ α

(

λ

λ+ µ

)

+
λ

λ+ α

(

µ

λ+ α

))

]

PQ1+r1,A

PQ1+r1−2,U =
µλ2

(λ+ α)

[

1

(λ+ µ)2
+

1

(λ+ α) (λ+ µ)
+

1

(λ+ α)2

]

PQ1+r1,A

Generalization of equations can be stated as follows:

PQ1+r1−j,U =

µλj

(λ+ α)

[

1

(λ+ α)j
+

1

(λ+ α)j−1 (λ+ µ)1
+ ...+

1

(λ+ α)1 (λ+ µ)j−1 +
1

(λ+ α)j

]

PQ1+r1,A

(16)

j = 1, ..., Q1 − 1

We can substitute Pr1+1,A in equation (16) to obtain

Pr1+1,U = PQ1+r1,A

×
µλQ1−1

(λ+ α)

[

1

(λ+ α)Q1−1
+

1

(λ + α)Q1−2 (λ+ µ)1
+ ... +

1

(λ+ α)1 (λ+ µ)Q1−2
+

1

(λ+ α)Q1−1

]

Let us rearrange this by using some mathematical formula

Pr1+1,U =
µλQ1−1

λ+ α







(

1
λ+µ

)Q1

−
(

1
(λ+α)

)Q1

(

1
λ+µ

)

−
(

1
λ+α

)






PQ1+r1,A

We solve the last equation and obtain Pr1+1,U .

Pr1+1,U =
µ

(λ + α)Q1

(

λ

λ+ µ

)Q1−1
(λ+ α)Q1 − (λ+ µ)Q1

α− µ
PQ1+r1,A (17)

The limiting probabilities between Pr1,U and PQ2+1,U can be stated as follows:

Pr1−j,U =

(

λ

λ+ α

)j+1

Pr1+1,U j = 0, ..., r1 −Q2 − 1 (18)
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We can set j equal to r1 −Q2 − 1 in equation (18) to obtain

PQ2+1,U = Pr1+1,U

(

λ

λ+ α

)r1−Q2

The limiting probability PQ2,U can be stated as follows:

λ [P1,U + PQ2+1,U ] = (λ+ α)PQ2,U

We can substitute the equality for PQ2+1,U in the last equation to obtain

λ

[

P1,U + Pr1+1,U

(

λ

λ+ α

)r1−Q2

]

= (λ+ α)PQ2,U (19)

To do generalization, we take the sum of geometric series in the equation (18)

r1−Q2−1
∑

j=0

Pr1−j,U =

r1
∑

k=Q2+1

Pk,U =
λ

α

(

(λ+ α)r1−Q2 − λr1−Q2

(λ+ α)r1−Q2

)

Pr1+1,U

Let us substitute the equality
∑r1

k=Q2+1 Pk,U = SU2, under the condition r2 = 0.

SU2 =
λ

α

(

(λ+ α)r1−Q2 − λr1−Q2

(λ+ α)r1−Q2

)

Pr1+1,U (20)

The limiting probabilities between PQ2,U and P2,U can be stated as follows:

P2+j,U =

(

λ+ α

λ

)j+1

P1,U j = 0, ..., Q2 − 2 (21)

We can substitute PQ2,U in the last equation to obtain

PQ2,U =

(

λ+ α

λ

)Q2−1

P1,U (22)

To do generalization, we take the sum of geometric series in the equation (21)

Q2−2
∑

j=0

P2+j,U =

Q2
∑

k=2

Pk,U =

[

(λ+ α)Q2 − (λ+ α)λQ2−1

αλQ2−1

]

P1,U (23)

Let us substitute the equality
∑Q2

k=2 Pk,U = SU3 under the condition r2 = 0.

SU3 =

[

(λ+ α)Q2 − (λ+ α)λQ2−1

αλQ2−1

]

P1,U (24)
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By using equation (19) and equation (22), we can establish the relationship between

Pr1+1,U and P1,U in equation (25)

P1,U =
λr1

(λ+ α)r1−Q2

[

(λ+ α)Q2 − λQ2

]Pr1+1,U (25)

Using that the summation of limiting probabilities for all states is 1 as below.

PQ1+r1,A + Pr1+1,A + SA+ (PQ1+r1,U + P1,U + SU1 + SU2 + SU3) = 1

We can rearrange the last equation to state the limiting probabilities between PQ1+r1,U

and P1,U

PQ1+r1,U + P1,U + SU1 + SU2 + SU3 = 1− PQ1+r1,A − Pr1+1,A − SA

We can rewrite the right hand side in terms of PQ1+r1,A by using equation (4) and

equation (6)

PQ1+r1,U + P1,U + SU1 + SU2 + SU3 =

1− PQ1+r1,A −

(

λ

λ+ µ

)Q1−1

PQ1+r1,A −





λ
(

(λ+ µ)Q1−1
− λQ1−1

)

µ (λ+ µ)Q1−1



PQ1+r1,A (26)

Pr1+1,A and SA is replaced in the equation above. By substituting the right hand

side of the last equation in equation (2)

α



1− PQ1+r1,A −

(

λ

λ+ µ

)Q1−1

PQ1+r1,A −





λ
(

(λ+ µ)Q1−1
− λQ1−1

)

µ (λ+ µ)Q1−1



PQ1+r1,A





+ λPr1+1,A = (λ+ µ)PQ1+r1,A

Pr1+1,A is replaced in the last equation with the aid of equation (4) to obtain

α



1− PQ1+r1,A −

(

λ

λ+ µ

)Q1−1

PQ1+r1,A −





λ
(

(λ+ µ)Q1−1
− λQ1−1

)

µ (λ+ µ)Q1−1



PQ1+r1,A





+ λ

(

λ

λ+ µ

)Q1−1

PQ1+r1,A = (λ+ µ)PQ1+r1,A
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Let us solve this to obtain PQ1+r1,A.

PQ1+r1,A =
µα (λ+ µ)Q1−1

µ (λ+ µ)Q1−1 (λ+ µ+ α) + µ (α− λ)λQ1−1 − αλQ1

(27)

PQ1+r1,A in equation (27) is replaced in equation (4) to obtain Pr1+1,A .

Pr1+1,A =

(

λ
λ+µ

)Q1−1

µα (λ+ µ)Q1−1

µ (λ+ µ)Q1−1 (λ+ µ+ α) + µ (α− λ)λQ1−1 − αλQ1

Rearranging this to obtain

Pr1+1,A =
µαλQ1−1

µ (λ+ µ)Q1−1 (λ+ µ+ α) + µ (α− λ)λQ1−1 − αλQ1

(28)

Pr1+1,A is found in equation (28).

PQ1+r1,A in equation (27) is replaced in equation (7) to obtain PQ1+r1,U .

PQ1+r1,U =
µ2α (λ+ µ)Q1−1

(α + λ)
[

µ (λ+ µ)Q1−1 (λ+ µ+ α) + µ (α− λ) λQ1−1 − αλQ1

] (29)

PQ1+r1,U is found in equation (29).

PQ1+r1,A in equation (27) is replaced in equation (17) to obtain Pr1+1,U .

Pr1+1,U =
(λ+ µ)Q1−1

(

λ
λ+µ

)Q1−1

µ2α
[

(λ+ α)Q1 − (λ+ µ)Q1

]

(α + λ)Q1 (α− µ)
[

µ (λ+ µ)Q1−1 (λ+ µ+ α) + µ (α− λ)λQ1−1 − αλQ1

]

Rearranging this to obtain Pr1+1,U in equation (30).

Pr1+1,U =
λQ1−1µ2α

[

(λ+ α)Q1 − (λ+ µ)Q1

]

(α + λ)Q1 (α− µ)
[

µ (λ+ µ)Q1−1 (λ+ µ+ α) + µ (α− λ)λQ1−1 − αλQ1

]

(30)

Pr1+1,U in equation (30) is replaced in equation (25) to obtain P1,U .

P1,U =





λr1+Q1−1

[

(λ+ α)Q2 − λQ2

]

(λ+ α)r1−Q2+Q1 (α− µ)









µ2α
[

(λ+ α)Q1 − (λ+ µ)Q1

]

µ (λ+ µ)Q1−1 (λ+ µ+ α) + µ (α− λ) λQ1−1 − αλQ1



 (31)
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P1,U is found in equation (31).

P1,U in equation (31) is replaced in equation (22) to obtain PQ2,U .

PQ2,U =











(

λ+ α

λ

)Q2−1

λr1+Q1−1

[

(λ+ α)Q2 − λQ2

]

(λ+ α)r1−Q2+Q1 (α− µ)















µ2α
[

(λ+ α)Q1 − (λ+ µ)Q1

]

µ (λ+ µ)Q1−1 (λ+ µ+ α) + µ (α− λ) λQ1−1 − αλQ1





Let us rearrange the last equation to obtain PQ2,U in the equation (32)

PQ2,U =





λr1+Q1−Q2

[

(λ+ α)Q2 − λQ2

]

(λ+ α)r1−2Q2+Q1+1 (α− µ)









µ2α
[

(λ+ α)Q1 − (λ+ µ)Q1

]

µ (λ+ µ)Q1−1 (λ+ µ+ α) + µ (α− λ) λQ1−1 − αλQ1



 (32)

The limiting probabilities for states PQ1+r1,A, Pr1+1,A, PQ1+r1,U , Pr1+1,U , PQ2,U and

P1,U can be formulated as follows:

PQ1+r1,A =
µα (λ+ µ)Q1−1

µ (λ+ µ)Q1−1 (λ+ µ+ α) + µ (α− λ)λQ1−1 − αλQ1

(33)

Pr1+1,A =
µαλQ1−1

µ (λ+ µ)Q1−1 (λ+ µ+ α) + µ (α− λ)λQ1−1 − αλQ1

(34)

PQ1+r1,U =
µ2α (λ+ µ)Q1−1

(α+ λ)
[

µ (λ+ µ)Q1−1 (λ+ µ+ α) + µ (α− λ)λQ1−1 − αλQ1

] (35)

Pr1+1,U =
λQ1−1µ2α

[

(λ+ α)Q1 − (λ+ µ)Q1

]

(α+ λ)Q1 (α− µ)
[

µ (λ+ µ)Q1−1 (λ+ µ+ α) + µ (α− λ)λQ1−1 − αλQ1

] (36)

PQ2,U =





λr1+Q1−Q2

[

(λ+ α)Q2 − λQ2

]

(λ+ α)r1−2Q2+Q1+1 (α− µ)









µ2α
[

(λ+ α)Q1 − (λ+ µ)Q1

]

µ (λ+ µ)Q1−1 (λ+ µ+ α) + µ (α− λ)λQ1−1 − αλQ1



 (37)
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P1,U =





λr1+Q1−1

[

(λ+ α)Q2 − λQ2

]

(λ+ α)r1−Q2+Q1 (α− µ)









µ2α
[

(λ+ α)Q1 − (λ+ µ)Q1

]

µ (λ+ µ)Q1−1 (λ+ µ+ α) + µ (α− λ)λQ1−1 − αλQ1



 (38)

Next, we construct the objective functions, given the limiting probabilities.

3.3 Objective Functions

In a single reliable supplier model, the objective is to minimize expected annual to-

tal cost. Let T(Q,r) denote expected annual total cost which is summation of ex-

pected holding cost and fixed cost defined as respectively H(Q,r) and K(Q,r). In

this formulation h denotes holding cost, and k denotes fixed cost per item where

T (Q, r) = H(Q, r) +K(Q, r).

T (Q, r) = h

[

Q−1
∑

j=0

(Q + r − j)PQ+r−j

]

+
λk

Q
(39)

Let us substitute the equality PQ+r−j =
1
Q
in equation (39) to obtain

T (Q, r) = h

[

Q−1
∑

j=0

(Q+ r − j)
1

Q

]

+
λk

Q

Let us solve the last equation and obtain

T (Q, r) =
h

Q

[

rQ+
Q (Q+ 1)

2

]

+
λk

Q

= h

(

r +
Q+ 1

2

)

+
λk

Q
(40)

Let us take its derivative and equalize to zero, which provides to reach Q∗.

Let us solve the equation 0 = ∂T (Q,r)
∂Q

.
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∂T (Q, r)

∂Q
=

h

2
−

λk

Q2

λk

Q2
=

h

2

Q2 =
2kλ

h

Q∗ =

√

2kλ

h

Let us take derivative the expression (40) which provides to reach r∗.

∂T (Q, r)

∂r
= h

r∗ = 0

it is clear that r∗ is equal to 0.

The objectives in two-supply channel model with a reliable and an unreliable chan-

nel are minimizing expected inventory level and minimizing alternative supply pur-

chases. Besides, we investigate alternative supply order quantity and usage frequency

separately. Despite the fact that multiple items share the same warehouse space in

practice, we try to find the ideal levels in this model and understand a set of ideal

behaviours for single item, thus we study an uncapacitated model.

Let I(Q1;Q2; r1), SF (Q1;Q2; r1), SQ(Q1;Q2; r1) denote expected inventory level,

expected alternative supply monthly usage frequency and expected alternative supply

monthly order quantity, respectively. Instead of a month, last two objectives can be

computed annually, or with respect to another time unit that is appropriate consid-

ering the input. It should also be noted that expected inventory level is to be the

same regardless of the time units and can be computed as follows:

I(Q1;Q2; r1) =

Q1−1
∑

j=0

(Q1 + r1 − j)PQ1+r1−j,A +

Q1−1
∑

j=0

(Q1 + r1 − j)PQ1+r1−j,U

+

r1−Q2−1
∑

j=0

(r1 − j)Pr1−j,U +

Q2
∑

j=1

jPj,U (41)
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that can be rewritten as

I(Q1;Q2; r1) = (Q1 + r1)PQ1+r1,A +

Q1−2
∑

j=0

(Q1 + r1 − 1− j)PQ1+r1−1−j,A

+ (Q1 + r1)PQ1+r1,U +

Q1−2
∑

j=0

(Q1 + r1 − 1− j)PQ1+r1−1−j,U

+

r1−Q2−1
∑

j=0

(r1 − j)Pr1−j,U +

Q2−2
∑

j=0

(j + 2)Pj+2,U + P1,U . (42)

To provide easy formulation, we rearrange the summation in equation (42) with

probabilities PQ1+r1−1−j,A, PQ1+r1,U , PQ1+r1−1−j,U , Pr1−j,U and Pj+2,U by using equa-

tions (3), (12), (9), (18) and (21)

=

[

(Q1 + r1) + (Q1 + r1 − 1)

Q1−2
∑

j=0

(

λ

λ+ µ

)j+1

−

(

λ

λ+ µ

)Q1−2
∑

j=0

j

(

λ

λ+ µ

)j
]

PQ1+r1,A

+

[

(

µ

λ+ α

)

(Q1 + r1)PQ1+r1,A +
(µ

α

)

Q1−2
∑

j=0

(Q1 + r1 − 1− j)PQ1+r1−1−j,A

]

+

[

r1

r1−Q2−1
∑

j=0

(

λ

λ+ α

)j+1

−

(

λ

λ+ α

) r1−Q2−1
∑

j=0

j

(

λ

λ+ α

)j
]

Pr1+1,U

P1,U

[

(

λ+ α

λ

) Q2−2
∑

j=0

j

(

λ+ α

λ

)j

+ 2

Q2−2
∑

j=0

(

λ+ α

λ

)j+1

+ 1

]

We rearrange this summation by substituting the summation
∑Q1+r1−1

k=r1+1 Pk,A in

equation (5) and the probability Pj+2,U in equation (23). Additionally, rest of the

multiplications in this equation can be found with the aid of derivative of geometric
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series.

I(Q1;Q2; r1) = (Q1 + r1)PQ1+r1,A + (Q1 + r1 − 1)





λ
(

(λ+ µ)Q1−1 − λQ1−1
)

µ (λ+ µ)Q1−1



PQ1+r1,A

−





λ2
[(

(λ+ µ)Q1−1 − λQ1−1
)

−Q1λ
Q1−2µ

]

µ (2λ+ µ) (λ+ µ)Q1−1



PQ1+r1,A

+

(

µ

λ+ α

)

(Q1 + r1)PQ1+r1,A + (Q1 + r1 − 1)
(µ

α

)





λ
(

(λ+ µ)Q1−1 − λQ1−1
)

µ (λ+ µ)Q1−1



PQ1+r1,A

−
(µ

α

)





λ2
(

(λ+ µ)Q1−1 − λQ1−1
)

−Q1λ
Q1−2µ

µ (2λ+ µ) (λ+ µ)Q1−1



PQ1+r1,A

+ r1

[

λ

α

(

(λ+ α)r1−Q2 − λr1−Q2

(λ+ α)r1−Q2

)]

Pr1+1,U

−





λ2
[(

(λ+ α)r1−Q2 − λr1−Q2

)

− α (r1 −Q2)λ
r1−Q2−1

]

α (2λ+ α) (λ+ α)r1−Q2



Pr1+1,U

+ P1,U





(λ+ α)2
(

λQ2−1 − (λ+ α)Q2−1 + (Q2 − 1)α (λ+ α)Q2−2
)

− (2λ+ α)λQ2−1





+ P1,U

[

2

(

(λ+ α)Q2 − (λ+ α)λQ2−1

λQ2−1

)

+ 1

]

(43)

I(Q1;Q2; r1) is found in equation (43).

Alternative supply purchase calculations and respective objective functions are

relatively easier to compute. The number of times alternative supply channel is used

is synonymous to finding the rate of traversing arc (1, U) to (Q2, U). That is equal to

the limiting probability of node (1, U) multiplied by the rate over the corresponding

arc, i.e.,

SF (Q1;Q2; r1) = λP1,U . (44)

For expected alternative supply order quantity, the equation in (44) should be

multiplied by the order size as follows:

SQ(Q1;Q2; r1) = λ (Q2)P1,U (45)
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In the following section, we explain our solution and generalization approach for

the mathematical model together with insights obtained from the numerical study.
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CHAPTER IV

OPTIMIZATION STUDY

In this chapter, we first present data instances generated and how we solve those.

Next, we use well-known data mining tools to learn from instances so that generalized

business rules and insights are obtained. Also, we remind that we only focus on two-

supply channel model with a reliable and an unreliable channel in this chapter.

Test problems for the optimization study are generated using all combinations of

the parameter values shown in Table 1 and we end up with 12 instances. Note that

rates used in our study are monthly rates that are generated based on real data [24]

considering slow/fast recovery cases, rare/frequent shortages, and high/med/low de-

mands observed in critical drugs. We enumerate all possible values of Q1, Q2 and

r1 considering the annual demand conditions mandated by the Markov chain, i.e.,

Q2 ≤ r1. Upper bounds on order quantities and reorder point are annual demands of

12λ.

Our Study Saedi et al., 2016
Recovery Rate
(α)

Demand
Rate (λ)

Shortage Rate
(µ)

Recovery
Rate (α)

Demand
Rate (λ)

Shortage Rate
(µ)

(per month) (per
month)

(per month) (months) (items/day)(shortages/year)

1/6 2 1/12 10 0.06 0
Slow recovery Low Rare occurence Slow recovery Low Rare occurence
(lasts half a
year on avg.)

(once a year on
avg.)

1 12 1/3 1 28.25 1
Fast recovery Med Frequent Fast recovery Med Medium
(lasts a month
on avg.)

24 —
High

(once every
four months on
avg.)

152
High

2 — Frequent
occurence

Table 1: Rates used in the model with comparing real data
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Here, we consider two multi objective problems: (i) minimizing expected inventory

level and expected alternative supply usage frequency, and (ii) minimizing expected in-

ventory level and expected alternative supply order quantity. As stated, we perform

complete enumeration for all possible values of decision variables, that is inventory pa-

rameters. We identify the set of non-dominated solutions that constitute the efficient

frontier. These can be seen in Appendix (A). The red points show the dominated

solutions while the blue ones indicate the non-dominated solutions that are preferred.

These non-dominated solutions show a nonlinear trade-off between two objectives

considered. This nonlinear trade-off reflected by efficient frontiers’ shapes in blue,

vary depending on the input parameters. Note that the number of non-dominated

solutions is relatively low compared to dominated solutions. Because it is not easy

to derive a conclusion based on these figures (such as a set of decision variable values

that are always non-dominated), we utilize classification techniques to come up with

decision rules.

4.1 Approximating Objective Functions via Regression

Based on the experimental study of complete enumeration, we can say that there ex-

ists an exponential negative relationship between the two objective functions; which

are expected inventory level and alternative supply expected usage frequency or al-

ternative supply expected quantity ordered as shown in Appendix (A). Alternative

supply expected usage frequency can be used instead of alternative supply expected

quantity ordered as dependent variable and these individually could be a function

of the inventory level. The expected inventory level and alternative supply expected

usage frequency or order quantity are expected to be minimized because lower stock

level and less use of alternative channel are desired. These two objectives conflict

with each other as alternative channel is used when inventory is depleted during dis-

ruptions. Therefore, an efficient frontier is obtained that consist of non-dominated
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solutions. Different combinations of expected inventory level produce different lev-

els of alternative supply expected usage frequency or order quantity. The efficient

frontier represents the best of these combinations those that produce the minimum

expected usage frequency for a given minumum level of inventory. The graphs show

how many points have created the efficient frontier. The relation between the deci-

sion variables and the objective functions have been formulated with in equation (43),

(44) and (45). At the same time, these equations express the objective functions as

combination of the decision variables. We used regression analysis to explore whether

the decision variables, i.e., Q1, Q2, r1, may explain the objective functions as predic-

tors. Moreover, we compare the explanatory power of regression models that contain

different numbers of predictors by using adjusted R2. That would also eliminate the

necessity of using a number of highly nonlinear and nonconvex functions, thus might

lead to closed form (approximate) solutions. Despite the fact that this approach is

not theoretically interesting, it would be extremely useful from a practical standpoint.

Therefore, we first performed a regression analysis to investigate this relation.

Simple linear regression is performed on R software [25] and decent adjusted R2

values for our objective function regressors are obtained. In general, 0 ≤ R2 ≤ 1,

and the larger the value of adjusted R2, the better the model fits the data. Adjusted

R2 does not indicate whether a regression model is adequate. We can have a low

adjusted R2 value for a good model, or a high adjusted R2 value for a model that

does not fit the data. Determining adjusted R2 value is to structure of the problem

how is difficult to solution of problem. Thus, adjusted R2 can be provided in terms

of difficulties of problem. Consequently, threshold value have been chosen as %80

as approach in this study is readily soluble problem. Results for expected inventory

level, alternative supply usage frequency, and alternative supply order quantity are

shown in Tables 2, 4, and 5. Respective linear equations for these regression analyses

are also shown in Tables 3 and 6. Due to weakness of the linear regression results for
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shortage frequency shown in Table 4, logarithmic and polynomial regression are also

employed and equations with high adjusted R2 values are presented in (46).

4.1.1 Expected Monthly Inventory Level Regressors

Recovery Demand Shortage Linear func.
Instance α λ µ Adjusted R2

1 1/6 2 1/12 0.999
2 1/6 2 1/3 0.9945
3 1 2 1/12 0.9996
4 1 2 1/3 0.998
5 1/6 12 1/12 0.9988
6 1/6 12 1/3 0.9923
7 1 12 1/12 0.9995
8 1 12 1/3 0.9972
9 1/6 24 1/12 0.9988
10 1/6 24 1/3 0.9925
11 1 24 1/12 0.9997
12 1 24 1/3 0.9977

Table 2: Linear Regression Adjusted R2 Results for Expected Monthly Inventory
Level

Linear regression results for all combinations of α, µ and λ are shown in Table

2, where the expected inventory level is the dependent variable. High adjusted R2

values imply that the expected inventory level can be predicted from the indepen-

dent variable, i.e., Q1, Q2 and r1. Therefore, linear equations for all instances are

meaningful, and are presented in Table 3.

4.1.2 Alternative Supply Expected Usage Frequency Regressors

Adjusted R2 values for linear and polynomial regression for expected alternative sup-

ply usage frequency as the dependent variable are shown in Table 4. It can be seen

that these values are high only for instances 1 and 2. This means that alternative

supply usage frequency can be explained by Q1, Q2 and r1 values and the dependent

variable can be modelled as a second degree polynomial only for 2 cases. Nevertheless,
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Instance Linear Regression Function

1 yinv = −1.39939 + 0.54879Q1 + 0.92244r1 + 0.02702Q2

2 yinv = −3.92367 + 0.68680Q1 + 0.86052r1 + 0.05061Q2
3 yinv = −0.0771070 + 0.5875389Q1 + 0.9997017r1 + 0.0003949Q2

4 yinv = −1.273317 + 0.783101Q1 + 0.999284r1 + 0.001114Q2

5 yinv = −10.47182 + 0.54517Q1 + 0.92169r1 + 0.02436Q2

6 yinv = −23.73671 + 0.67406Q1 + 0.85224r1 + 0.05476Q2

7 yinv = −2.373458 + 0.582625Q1 + 0.999691r1 + 0.000804Q2

8 yinv = −8.080 + 0.7743Q1 + 0.9988r1 + 0.00006.343Q2

9 yinv = −14.32181 + 0.50934Q1 + 0.88989r1 + 0.04116Q2

10 yinv = −32.72157 + 0.58475Q1 + 0.79097r1 + 0.08021Q2

11 yinv = −3.3643227 + 0.5614046Q1 + 0.9991289r1 + 0.0004094Q2

12 yinv = −12.500016 + 0.721169Q1 + 0.997657r1 + 0.001331Q2

Table 3: Linear Regression Functions for Expected Monthly Inventory Level

Recovery Demand Shortage Linear Logarithmic Polynomial
Instance α λ µ Adjusted R2 Adjusted R2 Adjusted R2

1 1/6 2 1/12 0.6923 0.6957 0.8719
2 1/6 2 1/3 0.6581 0.7442 0.8242
3 1 2 1/12 0.2422 0.3033 0.4924
4 1 2 1/3 0.1956 0.2811 0.3797
5 1/6 12 1/12 0.3378 0.4186 0.5723
6 1/6 12 1/3 0.2992 0.2702 0.5194
7 1 12 1/12 0.1133 0.1764 0.2955
8 1 12 1/3 0.07121 0.211 0.1752
9 1/6 24 1/12 0.2342 0.1359 0.4079
10 1/6 24 1/3 0.2304 0.1936 0.4211
11 1 24 1/12 0.1153 0.185 0.2818
12 1 24 1/3 0.09722 0.1794 0.2297

Table 4: Regression Results for Alternative Supply Expected Usage Frequency

linear results are weaker than polynomial results. Therefore, corresponding polyno-

mial regressors for alternative supply expected usage frequency are shown below:

ysf =0.1601− 0.00106Q1 − 0.009066r1 − 0.00636Q2

+ 0.000007374(Q1)
2 + 0.0002086(r1)

2 + 0.000216(Q2)
2

ysf =0.3093− 0.002338Q1 − 0.01714r1 − 0.01243Q2

− 0.000002816(Q1)
2 + 0.0003978(r1)

2 + 0.0004271(Q2)
2

(46)
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4.1.3 Alternative Supply Expected Quantity Ordered Regressors

Recovery Demand Shortage Linear Logarithmic Polynomial
Instance α λ µ Adjusted R2 Adjusted R2 Adjusted R2

1 1/6 2 1/12 0.9282 0.6229 0.9473
2 1/6 2 1/3 0.9124 0.6336 0.9288
3 1 2 1/12 0.3443 0.3885 0.5756
4 1 2 1/3 0.2767 0.3533 0.4459
5 1/6 12 1/12 0.9178 0.6354 0.9407
6 1/6 12 1/3 0.8944 0.6389 0.9116
7 1 12 1/12 0.2475 0.3529 0.4531
8 1 12 1/3 0.17 0.3475 0.3193
9 1/6 24 1/12 0.9459 0.6139 0.9598
10 1/6 24 1/3 0.9396 0.6173 0.9506
11 1 24 1/12 0.3575 0.4577 0.568
12 1 24 1/3 0.3065 0.434 0.4739

Table 5: Regression Results for Alternative Supply Expected Quantity Ordered

Next, alternative supply order quantity being the dependent variable, adjusted R2

values for linear regression and polynomial regression for all the combinations of α, µ

and λ are shown in Table 5. Results are high only for instances 1, 2, 5, 6, 9, and 10,

which means that alternative supply order quantity can be explained by Q1, Q2 and

r1 values and the dependent variable can be modelled as a second degree polynomial

only for these instances. We present linear equations in Table 6, because polynomial

regression results are not highly better than linear regression results, and first degree

equations are easier to interpret.

Instance Linear Regression Function

1 ysq = 0.421452 − 0.006473Q1 − 0.012949r1 + 0.004496Q2

2 ysq = 0.813150 − 0.016132Q1 − 0.023281r1 + 0.008194Q2

5 ysq = 2.525766 − 0.006460Q1 − 0.013313r1 + 0.004407Q2

6 ysq = 4.970897 − 0.017093Q1 − 0.024669r1 + 0.008787Q2

9 ysq = 5.920876 − 0.009193Q1 − 0.018360r1 + 0.006890Q2

10 ysq = 11.72079 − 0.02291Q1 − 0.03487r1 + 0.01318Q2

Table 6: Linear Equations for Alternative Supply Expected Quantity Ordered

In addition to the results presented above, we investigate regressors for expected
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inventory level, alternative supply order frequency, and order quantity where inven-

tory parameters (i.e., Q1, Q2, r1) and α, µ and λ are all included as independent

variables and all data instances are considered together. Adjusted R2 values for lin-

ear, logarithmic and polynomial regression are presented for all regressors in Table

7.

Linear Logarithmic Polynomial
Dependent Variable Adjusted R2 Adjusted R2 Adj. R2

Expected Monthly
0.9819 0.8560 0.9821

Inventory Level

Alternative Supply
0.1824 0.0015 0.2498

Expected Usage Frequency

Alternative Supply
0.6093 0.1336 0.6107

Expected Quantity Ordered

Table 7: Regression Adjusted R2 Results with All regressors for All Dependent
Variable

Results are high only when expected inventory level is the dependent variable.

In addition, polynomial results are marginally better than linear results. Therefore,

linear equation with all instances is obtained for the expected inventory level as

follows:

yinv =− 12.72672 + 0.59724Q1 + 0.90857r1 + 0.03094Q2

+ 28.46543α− 0.67283λ− 12.90575µ

(47)

Next, alternative supply expected order quantity and frequency are not strongly

predictable. However, alternative supply expected order quantity has a relatively

better representation. It may be useful to note the linear regressor for alternative

supply expected order quantity as follows:

ysq =0.882484− 0.008287Q1 − 0.013637r1 + 0.005205Q2

− 2.305888α+ 0.186718λ+ 2.423232µ

(48)

It is mentioned in the mathematical model description that alternative supply

expected order quantity is obtained by multiplying alternative supply expected order
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frequency function by Q2. Since linear regression analysis for order quantity results in

better adjusted R2 values, it can be stated that dividing linear regression functions for

order quantity by Q2 will obviously provide a decent measure for expected alternative

supply order frequency.

4.2 Classification of Dominating and Non-dominating So-

lutions

The regression performance is quite high to approximate expected inventory level but

poor on the alternative channel usage, therefore, in an effort to derive business rules

we seek for an alternative approach. We employ classification tools to characterize

a discriminating function between set of dominating and non-dominating solutions.

For classification, we use Support Vector Machines (SVMs) [26] due to its appropriate

structure for both linear and nonlinear analysis. Support Vector Machines which

are developed by [27] is one of the simple and effective methods in classification

techniques. If the training data are linearly separable, it is possible to seperate two

groups in a hyperplane by drawing a boundary for classification. The place, which

this boundary will be drawn, should be near both groups points where there is the

highest distance between them. To begin with, all the datasets are normalized by

dividing Q1,Q2 and r1 values by the demand rate λ. With the help of this, more

accurate datasets for linear and nonlinear classification are observed and we denote

normalized respective inventory parameters with QN
1 ,Q

N
2 and rN1 .

4.2.1 Minimizing expected inventory level and expected alternative sup-

ply usage frequency

10-fold cross validation (CV) technique is used with a heavy penalty factor (C) of

1000 to avoid misclassifications, if possible. A CV accuracy of 80.20% is obtained,

which is considered acceptable for generalization. We obtain the following classifier

which provides a training accuracy of 92.38% for the entire dataset. Note that
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halfspace denoted by (49) contains instances that are dominated and (50) contains

instances that are non-dominated (more desirable).

1.8162QN
1 − 0.1279rN1 − 0.2494QN

2 − 3.7041α + 0.1763λ − 0.6728µ ≥ 3.7927 (49)

1.8162QN
1 − 0.1279rN1 − 0.2494QN

2 − 3.7041α + 0.1763λ − 0.6728µ ≤ 3.7927 (50)

We performed polynomial classification using Kernel functions with a set of pa-

rameters that are presented together with the corresponding CV accuracies in Table 8.

Soft margin parameter C is set to be 1000 as that value usually provided a better

cross validation accuracy. Combinations of the following parameters are used for the

Kernel function: Polynomial degree = (2, 3), γ = (1/6, 1, 6), Coefficient = (0, 1, 2). As

can be seen from the table, coefficients 1 and 2 with a degree of 2 results in relatively

high accuracy compared to other parameter values and the classifier performances

are quite insensitive to γ parameter values.

4.2.2 Minimizing expected inventory level and expected alternative sup-

ply order quantity

10-fold cross validation (CV) technique is used with a heavy penalty factor (C) of

1000 to avoid misclassifications, if possible. A CV accuracy of 97.78% is obtained,

which is considered excellent for generalization. We obtain the following classifier

which provides an extremely high training accuracy of 98.16% for the entire

dataset. Note that halfspace denoted by (51) contains instances that are dominated

and (52) contains instances that are non-dominated (more desirable).

0.5195QN
1 − 0.1372rN1 + 6.4336QN

2 + 2.9536α + 0.2068λ + 2.9179µ ≥ −7.4321 (51)

0.5195QN
1 − 0.1372rN1 + 6.4336QN

2 + 2.9536α + 0.2068λ + 2.9179µ ≤ −7.4321 (52)
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Classifier Degree γ Coefficient Accuracy

1 2 1/6 0 87.5383
2 2 1 0 86.9113
3 2 6 0 86.3538
4 3 1/6 0 78.5251
5 3 1 0 75.6804
6 3 6 0 82.3887
7 2 1/6 1 94.0916
8 2 1 1 94.43
9 2 6 1 93.6284
10 3 1/6 1 89.6687
11 3 1 1 86.4767
12 3 6 1 91.2825
13 2 1/6 2 93.9865
14 2 1 2 93.2152
15 2 6 2 93.9829
16 3 1/6 2 84.0417
17 3 1 2 89.6117
18 3 6 2 91.27

Table 8: 10-fold cross validation results for SVM with polynomial kernel to discrim-
inate dominating instances in for expected inventory level and expected alternative
supply usage frequency

For the sake of completeness, we also performed polynomial classification using

Kernel functions with a set of parameters that are presented together with the cor-

responding CV accuracies in Table 9. Soft margin parameter C is again set to 1000.

Combinations of the following parameters are used for the Kernel function: Polyno-

mial degree = (2, 3), γ = (1/6, 1, 6), Coefficient = (0, 1, 2).

Next, we provide managerial insights based on our numerical analyses.

4.3 Insights

In this section, we summarize the key results obtained from this numerical study,

which can be generalized for any real life problem that has the same framework. In

the light of our study, if a hospital’s inventory manager would like to simultaneously

minimize its inventory level and number of items purchased through the alternative
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Classifier Degree γ Coefficient Accuracy

1 2 1/6 0 97.3548
2 2 1 0 93.4343
3 2 6 0 97.3976
4 3 1/6 0 83.5714
5 3 1 0 66.3021
6 3 6 0 77.9996
7 2 1/6 1 98.4058
8 2 1 1 98.4271
9 2 6 1 95.5949
10 3 1/6 1 79.0114
11 3 1 1 85.6804
12 3 6 1 89.1539
13 2 1/6 2 98.3719
14 2 1 2 98.2009
15 2 6 2 97.6826
16 3 1/6 2 96.5497
17 3 1 2 80.8835
18 3 6 2 87.2444

Table 9: 10-fold cross validation results for SVM with polynomial kernel to discrim-
inate dominating instances in for expected inventory level and expected alternative
supply order quantity.

channel, we provide strong evidence that solutions that satisfy

0.5195Q1 − 0.1372r1 + 6.4336Q2 + 2.9536αλ+ 0.2068λ2 + 2.9179µλ ≤ −7.4321λ

are more desirable where α, λ, and µ denote (monthly) recovery, demand, and short-

age rates respectively. This implies that for about 4 units of increase in the reorder

point, the order quantity from the main supplier can be increased by one. On the

other hand, the order quantity from the alternative channel is quite resistant to in-

crease, which is in line with our expectations, considering the objective functions.

We also provide enough evidence that shows solutions that satisfy

1.8162Q1 − 0.1279r1 − 0.2494Q2 − 3.7041αλ+ 0.1763λ2 − 0.6728µλ ≤ 3.7927λ

are more desirable for a hospital where its inventory level and number of times an

alternative channel are used to be simultaneously minimized. This change in the

35



behavior of alternative channel order quantity can be explained by the change in

the second objective from quantity to frequency. In order to reduce the alternative

channel order frequency, higher Q2 values are more desirable. This is coupled with

a harder to increase Q1 variable so that expected inventory levels are minimized as

well.

The associated expected inventory level can be closely approximated using

yinv =− 12.72672 + 0.59724Q1 + 0.90857r1 + 0.03094Q2

+ 28.46543α− 0.67283λ− 12.90575µ

This function, despite being hard to foresee, is not counterintuitive. An increase in

reorder point has one to one effect on the average inventory level. Order quantity from

the regular supplier has a direct but relatively small effect, considering the constant

demand on drugs. Alternative supply order quantity has a minimal effect, which can

be explained by the relatively low fraction of time it is in effect.

Finally, the expected number of items purchased through the alternative channel

during a month can be loosely approximated using

ysq =0.882484− 0.008287Q1 − 0.013637r1 + 0.005205Q2

− 2.305888α+ 0.186718λ+ 2.423232µ

(53)

which can also be divided into Q2 to obtain number of times an alternative channel

is used. Here, regular supply order quantity and reorder point has an inverse effect

on the alternative channel usage.

We also provide evidence that, despite being slightly better, nonlinear classifiers

and regressors are not significantly better than their linear counterparts, hence not

worth investigating. Furthermore, they cannot be interpreted in closed form in the

case of classification, which is a major drawback considering the insights that can be

obtained from the aforementioned inequalities.
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CHAPTER V

CONCLUSION

In this study, a novel stochastic model for hospitals’ inventory management with

a continuous review policy under supply disruption is presented. Supplies can be

received from two suppliers, where regular supplier is open to disruptions and alter-

native supplier is always available. Shortage and recovery processes for the regular

supplier and the inventory levels are modeled as a continuous time Markov chain. The

two conflicting objectives in this model are minimization of expected inventory level

and purchase of alternative supply, which is measured through expected alternative

supply usage frequency and order quantity.

To the best of our knowledge, there exists no models considering supply disruption

for one of the suppliers and includes the second supplier as a backup to prevent possi-

ble supply shortages. Due to highly stochastic nature of the problem, approximation

of results are needed, thus regression techniques are employed to provide necessary

analysis on the outcomes of model under different scenarios. Moreover, we employ

classification tools to provide key functions for healthcare inventory managers that

sheds a light on how inventory related parameters should be tuned.

There exists further directions for the proposed study. To begin with, problem

setting can be made more realistic by extending current background into a two hos-

pitals and two suppliers case, where transshipment between hospitals is also allowed.

In addition, warehouse capacity constraints for suppliers can be introduced to the

model. Moreover, analysis performed in this paper can be made for multiple items

or with the existence of lead time under certain conditions.
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Figure 4: Illustration of solutions for α = 1/6 λ = 2 µ = 1/12.

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Expected Inventory Level

A
lte

rn
at

iv
e 

S
up

pl
y 

E
xp

ec
te

d 
U

sa
ge

 F
re

qu
en

cy

 

 
non−dominated
dominated

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Expected Inventory Level

A
lte

rn
at

iv
e 

S
up

pl
y 

E
xp

ec
te

d 
Q

ua
nt

ity
 O

rd
er

ed

 

 
non−dominated
dominated

Figure 5: Illustration of solutions for α = 1/6 λ = 2 µ = 1/3
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Figure 6: Illustration of solutions for α = 1 λ = 2 µ = 1/12
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Figure 7: Illustration of solutions for α = 1 λ = 2 µ = 1/3
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Figure 8: Illustration of solutions for α = 1/6 λ = 12 µ = 1/12
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Figure 9: Illustration of solutions for α = 1/6 λ = 12 µ = 1/3
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Figure 10: Illustration of solutions for α = 1 λ = 12 µ = 1/12
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Figure 11: Illustration of solutions for α = 1 λ = 12 µ = 1/3
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Figure 12: Illustration of solutions for α = 1/6 λ = 24 µ = 1/12
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Figure 13: Illustration of solutions for α = 1/6 λ = 24 µ = 1/3
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Figure 14: Illustration of solutions for α = 1 λ = 24 µ = 1/12
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Figure 15: Illustration of solutions for α = 1 λ = 24 µ = 1/3
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