
AUTOMATED PROCEDURE CLUSTERING FOR
REVERSE ENGINEERING PL/SQL PROGRAMS

A Thesis

by

Metin Altınışık

Submitted to the
Graduate School of Sciences and Engineering
In Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in the
Department of Computer Science

Özyeğin University
May 2016

Copyright c© 2016 by Metin Altınışık

AUTOMATED PROCEDURE CLUSTERING FOR
REVERSE ENGINEERING PL/SQL PROGRAMS

Approved by:

Asst. Prof. Hasan Sözer (Advisor)
Department of Computer Science
Özyeğin University

Asst. Prof. Mehmet Aktaş
Department of Computer Engineering
Yıldız Technical University

Asst. Prof. Gonca Gürsun (Advisor)
Department of Computer Science
Özyeğin University

Assoc. Prof. Ali Fuat Alkaya
Computer Science and Engineering
Department
Marmara University

Asst. Prof. Barış Aktemur
Department of Computer Science
Özyeğin University

Date Approved: 2016

To my parents, Fethullah and Şükran Altınışık, who have always loved

me unconditionally and whose good examples have taught me to work

hard for the things that I aspire to achieve.

This thesis work is also dedicated to my son Denizhan, my daughter

Ebru İpek and my wife, Nagihan, who has been a constant source of

support and encouragement during the challenges of graduate school

and life. I am truly thankful for having them in my life.

iii

ABSTRACT

Large software systems have to be decomposed into separate, modular units for pro-

viding appropriate abstractions and improving maintainability. There exist clustering

techniques that are applied to provide such abstractions by automatically grouping

system modules based on dependencies among them. Hereby, dependency is usually

measured as the extent to which a module refers to elements of another module. This

approach cannot be directly applied for all types of programs. Some programs in-

volve modules that are indirectly coupled. For instance, PL/SQL programs include

procedures that are in most cases coupled due to their database operations although

they do not make calls to each other. In this thesis, we provide an approach and a

tool that supports automated modularization of software systems by considering this

type of dependencies We also extend this approach for multiple, different types of

dependencies. We construct several dependency matrices each of which captures a

different type of dependency among the system modules. First, we perform clustering

according to each of these matrices separately. Then, we perform cluster aggregation

(meta clustering) on the obtained clustering results to propose a packaging structure

to the designer. We performed two industrial case studies on real PL/SQL programs

from the telecommunications domain. Many unexisted packages were proposed by

our tool and the accuracy of the results were confirmed by domain experts.

iv

ÖZETÇE

Büyük yazılım sistemlerinin bakımlarını daha verimli ve kaliteli bir şekilde gerçek-

leştirebilmek için bu sistemleri modüler ve daha küçük birimlere ayırmak bir zorun-

luluktur. Bu şekilde bir modüler yapı kurmak için bu tür sistemlerin aralarındaki

bağımlılıklarına göre otomatik olarak gruplamak için mevcutta değişik gruplama

teknikleri mevcuttur. Burada, bir modülün diğerine bağımlılığı genellikle bu modülün

diğer modülün bileşenlerine bağımlılığı yönünden ölçülür. Bu yaklaşım tüm pro-

gramlamlar için maalesef direk olarak uygulanamamaktadır. Çünkü bazı programlar

dolaylı olarak birbirlerine bağımlı modüller içerebilirler. Örneğin, PL/SQL program-

ları birbirlerini çağırmadıkları halde aynı veritabanı operasyonları yönünden birbirler-

ine oldukça bağımlı olan ayrık prosedürler içerirler. Bu tezde, bu tipteki bağımlılıkları

dikkate alarak sistemleri modüler bir yapıya otomatik dönüştürebilecek bir yaklaşım

ve araç geliştirdik. Ayrıca bu yaklaşımı farklı tipteki bağımlılıkları içerecek şekilde

genişleterek, sistem modülleri arasındaki farklı tipte bağımlılıkları içeren bağımlık

matrisleri oluşturduk. İlk olarak, her bir matris için ayrı ayrı olarak gruplama

çalışması yaptık. Sonrasında, ilk çalışmadan çıkan gruplamaları kümüle bir gru-

plama mekanizmasına dahil ederek nihai gruplamaları elde ettik. Çıkan sonuçları

mevcut modülleri bir paketleme önerisi olarak geliştiricilere sunduk. Bu çalışmayı

telekomunikasyon alanında bulunan iki farklı büyük ve kompleks sistem için (CRM

ve Faturalama) ayrı ayrı uyguladık. Bir çok ayrık prosedür geliştirdiğimiz bu araç

ile gruplanabildiğini gördük. Ayrıca, çıkan sonuçları yazılım mimarları tarafından

doğruluğunu teyit ettirdik.

v

ACKNOWLEDGMENTS

Firstly, I would like to thank my advisor, Dr. Hasan Sözer for all his help and guidance

that he has given me over the past two years. Secondly, I would also like to thank

Dr. Gonca Gürsun for providing me support during this period. Finally, I would like

to thank software developers at Turkcell Technology for sharing their code base with

me and supporting the my case study.

vi

TABLE OF CONTENTS

DEDICATION . iii

ABSTRACT . iv

ÖZETÇE . v

ACKNOWLEDGMENTS . vi

LIST OF TABLES . ix

LIST OF FIGURES . x

I INTRODUCTION . 1

II BACKGROUND . 4

2.1 Design Structure Matrix . 4

2.2 Cluster Aggregation . 6

2.3 PL/SQL Programs . 7

III RELATED WORK . 11

IV OVERALL APPROACH . 14

4.1 Single DSM Approach (SDSM) . 14

4.2 Multi DSM Approach (MDSM) . 16

V INDUSTRIAL CASE STUDY . 22

5.1 Legacy Systems . 22

5.2 Case Studies . 23

VI RESULTS AND DISCUSSION . 27

6.1 Results . 27

6.2 Discussions . 29

6.3 Threats to Validity . 30

VII CONCLUSIONS AND FUTURE WORK 32

APPENDIX A — GENERATED DSM MODELS FOR CRM . . . 34

vii

APPENDIX B — GENERATED DSM MODELS FOR BILLING 37

REFERENCES . 41

viii

LIST OF TABLES

1 An example of clustering aggregation 7

2 Support Vector Clustering parameters 24

3 SDSM Cluster Analyzer results for CRM System 27

4 SDSM Cluster Analyzer results for Billing System 28

5 MDSM Cluster Analyzer results for CRM System 29

6 MDSM Cluster Analyzer results for Billing System 30

ix

LIST OF FIGURES

1 A sample DSM with 4 procedures. 4

2 The sample DSM in Figure 1 after a reordering of rows and columns. 5

3 Packages are used for organizing PL/SQL programs to manage com-
plexity. 10

4 The overall SDSM approach. 15

5 The overall MDSM approach. 17

6 A snippet from the generated DSM model, capturing the set of database
elements that are commonly accessed by system modules for CRM sys-
tem. 26

7 A snippet from the generated DSM model, capturing model inter-
dependency in terms of direct references in the source code for the
CRM system. (The rows and columns are reordered to highlight cells
that have the value 1 in the sparse matrix) 35

8 A snippet from the generated DSM model, capturing modifications to
system modules that are applied by the same developer at the same
time for the CRM system. (The rows and columns are reordered to
highlight cells that have the value greater than 0 in the matrix) . . . 36

9 A snippet from the generated DSM model, capturing the set of database
elements that are commonly accessed by system modules for the Billing
system. 38

10 A snippet from the generated DSM model, capturing model inter-
dependency in terms of direct references in the source code for the
Billing system. (The rows and columns are reordered to highlight cells
that have the value 1 in the sparse matrix) 39

11 A snippet from the generated DSM model, capturing modifications to
system modules that are applied by the same developer at the same
time for the Billing system. (The rows and columns are reordered to
highlight cells that have the value greater than 0 in the matrix) . . . 40

x

CHAPTER I

INTRODUCTION

Modularity is one of the basic principles for supporting maintainability of software

systems [1]. Especially, large scale software systems have to be decomposed into

separate, modular units for providing appropriate abstractions. This decomposition

plays an important role for software architecture design, which embodies key design

decisions, gross-level components of a system, and their interactions [2, 3]. As such,

gross-level software decomposition is described as part of the software architecture

documentation, which is an important artifact for maintaining an evolving system [4].

Software architecture documentation might be unavailable for legacy systems.

Even if there exist documentation, this documentation can turn out to be obselete.

It can be inconsistent with the actual implementation of the system. Inconsistencies

might arise due to the evolution of the software system without necessary updates

being applied to documentation. This can lead to architectural drift [5, 6], which is

defined as the introduction of unintended design decisions that create architectural

anomalies.

Reverse engineering [7] and in particular, software architecture reconstruction [8]

approaches have been introduced to recover incorrect or incomplete architectural

documentation for a software system. Many of these approaches apply clustering

techniques on software modules to group them and as such, infer the high-level struc-

ture of the system. Clustering is performed according to inter-module dependencies

that are mainly identified with static and/or dynamic analysis on the source code.

Hereby, dependency is usually measured as the extend to which a module refers to

elements of another module. Most of the approaches [8] consider direct dependencies

1

(e.g., function call, variable access, etc.) [9, 10] only. There also exist approaches that

analyze information flow among the modules [11], their involvement in common usage

scenarios [12] and lexical similarities among comments in their source code [11]. In

this work, we focused on application programs that are developed with the PL/SQL

language. These programs include procedures that are in most cases coupled due to

their database operations although they do not necessarily make calls to each other.

We introduce and evaluate two different approaches for clustering PL/SQL programs

by explicitly modeling this type of dependencies among the procedures.

In our first approach, we derive (indirect) dependencies among PL/SQL proce-

dures by analyzing the accessed database elements. We represent these dependencies

in the form of a design structure matrix (DSM). Then, we cluster the procedures and

propose a packaging structure to the designer. An initial evaluation of this approach

showed promising results in which most of the procedures were successfully clustered

in relevant packages. An analysis of the remaining procedures revealed that some of

them directly refer to each other or they use common resources other than database

elements. Therefore, we introduced a second approach that utilizes input regarding

multiple types of dependencies at the same time.

In our second approach, we construct multiple DSMs, each of which captures a

different type of dependency among the system modules. First, we perform clustering

according to each of these DSMs separately. Then, we perform cluster aggregation

(meta clustering) on the obtained clustering results to propose a packaging structure

to the designer. We performed two industrial case studies on real PL/SQL programs

from the telecommunications domain. We employed 3 types of dependencies based

on: i) access to common database elements, ii) calls to common procedures, and iii)

modifications by common software developers at the same time. These dependency

types are aligned with the categorization provided before [13]. An analysis of the

results showed that our approaches successfully clustered a large set of stand-alone

2

procedures that did not belong to any package. The accuracy of these results were

confirmed by domain experts.

The remainder of this thesis is organized as follows. In the following chapter,

we provide background information on design structure matrices, cluster aggregation

and PL/SQL programs. We summarize the related studies in Chapter 3. We present

the approach in Chapter 4, which is illustrated in Chapter 5, in the context of the

industrial case study. We discuss the results in Chapter 6. Finally, in Chapter 7, we

provide the conclusions and discuss for possible future work directions.

3

CHAPTER II

BACKGROUND

In this chapter, we provide background information on design structure matrices,

cluster aggregation and PL/SQL programs.

2.1 Design Structure Matrix

Design structure matrix (DSM) is a modeling technique for managing complex sys-

tems [14]. It provides a compact, visual, intuitive representation. DSM is utilized in

many domains including engineering management, finance and social sciences. It has

also been applied for reasoning about software architectures [15, 16]. In this context,

it is also known as the dependency structure matrix [17].

P1 P2 P3 P4

P1

P2

P3

P4

15 20

30

5

40

Figure 1: A sample DSM with 4 procedures.

Figure 1 depicts a DSM for 4 modules, enumerated as P1, P2, P3 and P4. Hereby,

the rows and columns of the DSM represent the same modules. Each cell on the

diagonal represents the dependency of a module to itself. These cells are not relevant

and as such, they are shaded. The other cells represent the amount of dependencies

between different pairs of modules. For instance, we can see that the number of

dependencies from P3 to P1 is 15. An empty cell represents a lack of dependency

4

between the corresponding modules. For example, we can see that P2 does not depend

on any other module.

P4 P1 P3 P2

P4

P1

P3

P2

30

5

20

40

15

Figure 2: The sample DSM in Figure 1 after a reordering of rows and columns.

The columns and rows of a DSM are usually reordered to reveal highly coupled

modules of a system. The reordering can start with modules that depend on most of

the other modules and end with modules that are mostly depended by other modules

[16]. Figure 7 shows the result of such a reordering strategy for the DSM from

Figure 1. The reordering yields that P1 and P3 are highly coupled with each other.

Hence, they can be grouped to form a package.

DSM can help to reason about how coupled the modules of a system are. Different

clustering algorithms can be used for restructuring a DSM and for grouping highly

coupled modules together. This grouping can point out the inherent structure of the

system that supports the reverse engineering of its software architecture. Results can

also point out a need for refactoring to better modularize the system.

In this work, we employ DSMs for reasoning about PL/SQL programs. We con-

sider a PL/SQL procedure as the unit of a module. In section 2.3 , we shortly

introduce PL/SQL and its distinctive features with respect to other programming

languages.

5

2.2 Cluster Aggregation

Cluster aggregation is an approach to clustering that is based on the concept aggrega-

tion [18]. It takes a set of clusterings as input and aims at finding a single clustering

that agrees as much as possible with them. It can be used as a meta-clustering

method to increase the accurancy of a set of existing clusterings [19] [20].

Assume that we have set of objects and we have information about their clustering

information. This clustering information comes in the form of n clusterings K1, ..., Kn.

The aim of cluster aggregation is to find a single clustering K that agrees as much

as possible with the n clusterings. Hereby, a disagreement is defined between two

clusterings K and K ′ as a pair of objects (x, y) such that clustering K places them in

the same cluster, while clustering K ′ places them in different clusters, or vice versa.

If f(K,K ′) represents the number of disagreements between K and K ′, then the aim

is to find a clustering K that minimizes
∑n

i=1 f(Ki, K) .

As an example, consider the dataset provided as

D = {x1, x2, x3, x4, x5, x6, x7, x8}

that consists of eight objects, and assume that we have four clustering information

for D like below;

K1 = {{x1, x2}, {x3, x4}, {x5, x6}, {x7, x8}}

K2 = {{x1, x3}; {x2;x4}; {x5}, {x6}, {x7, x8}}

K3 = {{x1, x3}, {x2, x4}, {x5;x6}, {x7, x8}}

K4 = {{x1, x3}, {x2, x4}, {x5;x6}, {x7}, {x8}}

Table 1 shows the 4 clusterings, where each column represents a clustering, and a

value i in each cell shows that the tuple in that row belongs to the ith cluster of the

clustering in that column.

6

The rightmost column is the clustering K = {{x1, x3}, {x2, x4}, {x5, x6}, {x7, x8}}

that minimizes the total number of disagreements with the clusterings K1, K2, K3,

and K4. In this example, the total number of disagreements is 6: one with the

clustering K2 for the pair (x5, x6), one with the clustering K4 for the pair (x7, x8),

and 4 with the clustering K1 for the pairs (x1, x2), (x1, x3), (x2, x4), and (x3, x4).

K1 K2 K3 K4 K

x1 1 1 1 1 1
x2 1 2 2 2 2
x3 2 1 1 1 1
x4 2 2 2 2 2
x5 3 3 3 3 3
x6 3 4 3 3 3
x7 5 5 5 5 5
x8 5 5 5 6 5

Table 1: An example of clustering aggregation

In this work, we perform cluster aggregation on different clusterings of proce-

dures in PL/SQL programs. In the following, basic properties of these programs are

explained.

2.3 PL/SQL Programs

Structural Query Language (SQL) is used for performing basic operations on a database

such as select, insert, delete and update; however, its declarative structure and ex-

pressiveness fall short for developing large applications. PL/SQL (Procedural Lan-

guage/Structured Query Language) is a 3rd generation language that combines pro-

cedural language features with SQL such that SQL statements can be intermixed

with imperative code [21]. PL/SQL programs directly run on a Oracle1 database

management system without having to establish a separate connection. Its hybrid

nature makes it easy to develop large and complex applications. Significant part of

enterprise applications today are developed with PL/SQL.

1www.oracle.com

7

A PL/SQL program is composed of procedures and functions that can be grouped

into packages. The basic difference between procedures and function is that while

functions return a value procedures do not return a value. There can also be stan-

dalone procedures and functions, which do not belong to any package. All the pro-

cedures and functions are compiled and stored as part of the database. After being

compiled and stored in the database, they can be called by any application which

connects to the database.

Listing 2.1: The general structure of a PL/SQL block.

1 PROCEDURE P(id IN NUMBER) IS

2 sales NUMBER;

3 total NUMBER;

4 ratio NUMBER;

5 BEGIN

6 SELECT x,y INTO sales ,total

7 FROM result WHERE result_id = id;

8 ratio := sales/total;

9 IF ratio > 10 THEN

10 INSERT INTO comp VALUES (id ,ratio);

11 END IF;

12 COMMIT;

13 EXCEPTION

14 WHEN ZERO_DIVIDE THEN

15 INSERT INTO comp VALUES (id ,0);

16 COMMIT;

17 WHEN OTHERS THEN

18 ROLLBACK;

19 END;

PL/SQL procedures consist of 3 main parts as listed in Listing 2.1. The declaring

part (Lines 1-4) identifies any used variables or constants. The executable part, starts

with BEGIN keyword and ends with END keyword, (Lines 5 and 19, respectively)

8

contains the main logic. An exception-handling part, starts with EXCEPTION key-

word, (Line 13) handles errors that may be occured in the executable part of the

PL/SQL code. The first two parts are mandatory, whereas the last part is optional.

Enterprise level applications are usually large and complex. Hence, packages are

used for organizing and grouping PL/SQL procedures and functions to manage com-

plexity. Packages are composed of two parts: i) specification, and ii) body. The

specification part defines the interface of the package. It declares the types, vari-

ables, constants, exceptions, functions and procedures that can be referenced from

outside of the package [21]. The form of a standard package specification is shown in

Listing 2.2 .

Listing 2.2: The structure of a standard package specification in PL/SQL [21].

1 CREATE OR REPLACE PACKAGE

2 EGPCK

3 variables

4 constants

5 exceptions

6 procedure procedure_a(param1 , ...);

7 function function_b(param1 ,...) return varchar2;

8 END;

The package body contains the implementation of the programs which are declared

in the package specification and other private subprograms. The general outline of a

package body is illustrated in Listing 2.3. Related standalone procedures/functions

can be grouped under a package to manage complexity. Figure 3 shows an example,

which involves 2 standalone procedures p1 and p2, and a standalone function named

f3. Hereby, these 3 standalone objects are placed under a package named PKG1.

In the following chapter, we introduce our approach for automatically clustering

related procedures to reverse engineer the architecture of the system and to propose

a packaging structure to the designer.

9

Listing 2.3: The structure and contents of a package body in PL/SQL [21].

1 CREATE OR REPLACE PACKAGE BODY

2 package_name EGPCK

3 PROCEDURE procedure_1(arg1 ,...) IS

4 BEGIN

5 ...

6 EXCEPTION ...

7 END procedure_1;

8 FUNCTION function_1(arg1 ,...)

9 RETURN data_type IS

10 result_variable data_type

11 BEGIN

12 ...

13 RETURN result_variable;

14 EXCEPTION ...

15 END function_1;

16 END package_name;

Procedure p1(..)
Begin
..
End;

Procedure p2(..)
Begin
..
End;

Function f3(..)
Begin
..
End;

PACKAGE PKG1

Database

Standalone Procedures

Procedure p1(..)
Begin
..
End;

Procedure p2(..)
Begin
..
End;

Function f3(..)
Begin
..
End;

Figure 3: Packages are used for organizing PL/SQL programs to manage complexity.

10

CHAPTER III

RELATED WORK

There exist many tools and methods that have been developed for software reverse

engineering. Hereby, the goal is to recover incorrect, incomplete or unavailable docu-

mentation, and as such to aid in the maintenance of legacy systems [7]. There exists

an extensive literature [22, 7, 8] on this subject.

Some of the existing techniques aim at revealing dependencies among the high-

level modules/components of a system and visualize these dependencies [23, 24].

Other reverse engineering techniques derive low level models from a program like

call graphs or program dependency graphs [25]. Then, complementary tools [26]

can apply clustering algorithms on these models to infer main modules of a software

system and the inter-dependencies among them. Some of the approaches focus on

analyzing the runtime behavior for reconstructing execution scenarios [24] and be-

havioral views [27]. In another approach, execution traces of a system are utilized to

support static analysis by identifying related modules that are involved in the same

usage scenrios [12]. There are also tools that combine static and dynamic analysis to

construct both structural and behavioral views [23, 28]. All these tools are mainly

developed for reverse engineering C/C++ or Java programs. Some of them are lan-

guage independent; they take a module dependency graph [26] or execution traces [24]

as input. According to the reported case studies [26], however, these input models

are also derived from programs that are developed with procedural or object oriented

programming languages. In this work, we focus on reverse engineering PL/SQL pro-

grams. These programs are highly tangled with database operations and as such,

program modules are subject to indirect data dependencies.

11

In our approach, we use a partitional algorithm, which produces flat decomposi-

tions. However, large software systems are usually decomposed according to a hier-

archical structure. Software modules are grouped within packages each of which can

be part of another package itself at a higher level. There exist hierarchical clustering

algorithms [29] that can provide such a hierarchical decomposition. In this work, we

did not utilize a hierarchical clustering algorithm. We aimed at discovering the top

level decomposition only. However, these algorithms can also be used together with

our approach in principle.

There exist only a few studies [30, 31] that focus on reverse engineering PL/SQL

programs. One of these studies focus on deriving business rules from these programs

[30]. In another study [31], data flow graphs are generated by analyzing PL/SQL

source code and the accessed elements in the database. However, the derived graphs

are used just for visualizing information and providing an abstract representation

of the program. They are not processed further. In this work, we employ DSM

[14] for representing the dependencies among PL/SQL programs. DSM is also used

for providing a visual, abstract representation. However, our main goal is to apply

clustering techniques on the derived DSM to infer a packaging structure for a PL/SQL

program.

DSM has been applied for reasoning about software architectures and depen-

dencies among the software modules [15, 17, 16]. However, it was either used for

representing dependencies among high level modules/components of a system [15] or

classes/packages of Java programs [17, 16]. Hereby, the type of dependencies that

are documented are direct dependencies, e.g., the number of method calls from one

class to another. In this work, we focus on PL/SQL programs. These programs also

involve direct dependencies. Procedures and functions can make calls to each other.

However, the actual coupling and cohesion among them can only be revealed based

on their access patterns on database elements. To the best of our knowledge, DSM

12

structures that represent data dependencies have not been utilized for supporting

reverse engineering and refactoring of PL/SQL programs.

13

CHAPTER IV

OVERALL APPROACH

In this thesis, we present two different approaches for clustering PL/SQL programs

to reconstruct their software architecture design. The first one is named Single DSM

approach (SDSM) and we refer to the second one as Multi DSM approach (MDSM).

In SDSM approach, only one DSM is used, which represents dependencies among the

procedures and functions based on database tables that are commonly accessed. In

MDSM approach, we used 3 different DSMs that represent other types of dependencies

among the procedures and functions. First, we perform clustering according to each

of these DSMs separately. Then, we perform cluster aggregation (meta clustering)

on the obtained clustering results to propose a packaging structure to the designer.

Both approaches are explained in detail in the following sections.

4.1 Single DSM Approach (SDSM)

The overall SDSM approach, depicted in Figure 4, involves 3 steps. First, the program

source code and the database structure (meta-data) is provided to our Dependency

Analyzer tool as input (1). This tool creates a DSM that represents dependencies

among the procedures and functions based on database tables that are commonly

accessed. Second, the generated DSM is provided to an external tool for clustering

(2). We employed the Rapid Miner 1 tool and support vector clustering [32] for this

purpose. Finally, the identified clusters are processed by our tool Cluster Analyzer

to propose a package structure for the analyzed source code (3).

The main steps executed by Dependency Analyzer is outlined in Algorithm 1.

1https://rapidminer.com/

14

KEY:

data flow

Tool

Artifact

External
Tool

Database
Structure

Source
Code

Dependency
Analyzer

Design
Structure

Matrix

Clustering
Tool

Identified
Clusters

Cluster
Analyzer

Proposed
Package

Structure

1 1

1

2

23

3

3

Figure 4: The overall SDSM approach.

Hereby, the terms procedure and function are used interchangeably as they are pro-

cessed in the same way. There are in total N procedures (Line 1). Therefore, a DSM

is initialized with N rows and N columns (Lines 2-4). Then, each pair of procedures

are processed one by one (Lines 5-6). Dependency Analyzer finds the set of database

tables that are accessed by these procedures (Lines 7-8). A procedure accesses a table

if it performs any of the insert, update, delete, select operations on that table. Then

the intersection of the two sets is obtained (Line 9), which is the set of commonly

accessed tables for a pair. The size of this set is assigned as the dependency between

that pair (Line 10). Note that we do not consider a direction for dependency. Hence,

the generated DSM is symmetric in our case.

15

Algorithm 1 Dependency analysis procedure.

1: N ← the number of procedures
2: for i:=1 to N do
3: DSM [i][i]← 0
4: end for
5: for n:=1 to N-1 do
6: for k:=n+1 to N do
7: Tn ← the set of tables accessed by procedure n
8: Tk ← the set of tables accessed by procedure k
9: I ← Tn ∩ Tk

10: DSM [n][k]← DSM [k][n]← |I|
11: end for
12: end for

4.2 Multi DSM Approach (MDSM)

The overall MDSM approach is depicted in Figure 5, which involves 4 steps. All of the

involved processes are fully automated by tools. First, the program source code, the

database management system and the version control system are provided to Depen-

dency Analysis as input (1). The outcome of this process is a set of 3 DSM models.

The first DSM model captures the set of database elements that are commonly ac-

cessed by system modules. The second DSM model captures model inter-dependency

in terms of direct references in the source code. The third DSM model captures mod-

ifications to system modules that are applied by the same developer at the same time.

In the second step, each of the generated DSM models are clustered (2). We employ

the pivot algorithm , which was first proposed for solving the Clustering Aggregation

[33] [18] problem. Similar algorithm is used in a previous study [34]. In the third

step, we apply a second clustering phase in which the set of identified clusters are

provided as input to meta-clustering (3). Finally, the identified clusters are processed

to propose a package structure for the analyzed source code (4). In the following

subsections, we explain dependency analysis, the employed clustering algorithm and

our meta-clustering approach in detail. Then, in the next chapter, we explain the

evaluation of both SDSM and MDSM approach in the context of two industrial case

16

studies.

KEY:
data flow

Process

Artifact

Database
Management System

Source
Code

Dependency
Analysis

Design
Structure

Matrix

Identified
Clusters

Cluster
Analysis

Proposed
Package

Structure

1.1 1

1.2 2

2

34

3

Version Control
System

Clustering

1.3

Meta
Clustering

Identified
Clusters

4

4

Figure 5: The overall MDSM approach.

4.2.1 Dependency Analysis

Here, we explain the dependency analysis process. The main steps executed by

Dependency Analyzer is outlined in Algorithm 2. Hereby, the terms procedure and

function are used interchangeably as they are processed in the same way. In this step

we dependency analyzer creates 3 diffferent DSM. There are in total N procedures

(Line 1). Therefore, a DSM1, DSM2 and DSM3 are is initialized with N rows and

N columns (Lines 2-6). Then, each pair of procedures is processed one by one (Lines

7-8).

For DSM1 Dependency Analyzer finds the set of database tables that are accessed

by these procedures (Lines 9-10). A procedure accesses a table if it performs any of

17

Algorithm 2 Dependency analysis procedure.

1: N ← the number of procedures
2: for i:=1 to N do
3: DSM1[i][i]← 0
4: DSM2[i][i]← 0
5: DSM3[i][i]← 0
6: end for
7: for n:=1 to N-1 do
8: for k:=n+1 to N do
9: Tn ← the set of tables accessed by procedure n

10: Tk ← the set of tables accessed by procedure k
11: I ← Tn ∩ Tk
12: DSM1[n][k]← DSM1[k][n]← |I|
13:

14: On ← the set of objects accessed by procedure n
15: Ok ← the set of objects accessed by procedure k
16: I ← On ∩Ok

17: DSM2[n][k]← DSM2[k][n]← |I|
18:

19: Sn ← the set of modifications made on procedure n, where each modification
is represented by a tuple M =<date (dd.mm.yyyy format),developer>

20: Sk ← the set of modifications made on procedure k, where each modification
is represented by a tuple M = <date (dd.mm.yyyy format),developer>

21: I ← Sn ∩ Sk

22: DSM3[n][k]← DSM3[k][n]← |I|
23: end for
24: end for

18

the insert, update, delete, select operations on that table. Then the intersection of

the two sets is obtained (Line 11), which is the set of commonly accessed tables for a

pair. The size of this set is assigned as the dependency between that pair for DSM1

(Line 12).

For DSM2 Dependency Analyzer finds the set of objects that are accessed by these

procedures (Lines 14-15). A procedure accesses a object if it performs any operations

on that object. Then the intersection of the two sets is obtained (Line 16), which is

the set of commonly accessed objects for a pair. The size of this set is assigned as

the dependency between that pair for DSM2 (Line 17).

For DSM3 Dependency Analyzer finds the set of modifications to procedures that

are applied by the same developer at the same day (Lines 19-20). Then the inter-

section of the two sets is obtained (Line 21) . The size of this set is assigned as the

dependency between that pair for DSM3 (Line 22).

Note that we do not consider a direction for dependency. Hence, the all generated

DSMs are symmetric in our case.

4.2.2 Pivot Clustering

In this section we explain the clustering approach. We used the pivot algorithm

for clustering procedures according to each DSM. The main steps executed by Pivot

Clustering is outlined in Algorithm 3. The DSM and a threashhold is given as input to

the pivot function (Line 1) There are in total N procedures (Line 2). Procedure list P

is initialized (Line 3-5). P is re-created after randomly shuffiling the initial P (Line 6).

2 Each element of P is proccessed while size of P is greater than 0 (Line 7). A cluster

created with member of first processed procedure (Line 8). Then, each procedures

2There are other approaches for choosing the pivot member randomly such as in [34]. In their
study Gürsun et al. use a randomized algorithm since at every recursive call it picks a random prefix
to play the role of a pivot. However we prefer initial shuffling in order to comply with our DSM
structure since this approach also introduces randomization into the pivot selection procedure as
well.

19

with processed procedure we check DSM cell value between them compared the cell

value with the given threashhold (τ) (Line 9-10). If the cell value is greater than the

threashhold, that procedure is added to cluster C (Line 11). After completing the set,

P is re-created with P minus C (Line 14), Then all stuff is repeated until no member

remains (Lines 7-15).

In our cases Pivot Clustering is used for each 3 DSMs and we get 3 clustering

results. Threashhold value is given 2 for first and third DSMs and 1 for second

DSM. Because second DSM is a bit sparse. Then we used these clusters for cluster

aggregation (meta-clustering) to obtain single cluster which explained in section 4.2.3.

Algorithm 3 Pivot Clustering.

1: Function{Pivot}{DSM [][], τ }
2: N ← the number of procedures
3: for i:=1 to N do
4: P [i]← [i]
5: end for
6: P ← randomly shuffle P
7: while (|P | > 0) do
8: create a cluster C with member of P [1]
9: for n:=2 to |P | do

10: if DSM [P [1]][n] ≥ τ then
11: Add to n to Cluster C
12: end if
13: end for
14: P = P\C
15: end while
16: End Function

4.2.3 Meta Clustering

In this section we explain the meta clustering approach. The main steps executed by

Meta Clustering is outlined in Algorithm 4. There are in total N procedures (Line

1). The count variable is initialized with 0 (Line 2). There are in total clusters (Line

3). Then, each pair of procedures is processed one by one (Lines 4-5) . Then, for

each cluster (Line 6), if each pair of procedures are in same cluster then count is

20

incremented (Line 7-8). Then new similarity DSM is generated with this count value

(Line 11). The count variable is reset for next iteration (Line 12). After similarity

DSM completed, finally this DSM is provided to Pivot algorithm as input to generate

final single clustering, here threashhold value is given as half of sizeOfCluster which

is 3 in our case (Line 13).

Algorithm 4 Meta Clustering.

1: N ← the number of procedures
2: count← 0
3: C[]← Clusters
4: for n:=1 to N-1 do
5: for k:=n+1 to N do
6: for i:=1 to |C| do
7: if n and k are in same cluster then
8: count← count+ 1
9: end if

10: end for
11: DSM [n][k]← DSM [k][n]← count
12: count← 0
13: end for
14: end for
15: Pivot(DSM, |C|

2
)

In the next chapter we introduce industrial case studies and illustrate all the steps

of our approach in the context of these case studies. We also explain the employed

tools, models and techniques in more detail.

21

CHAPTER V

INDUSTRIAL CASE STUDY

In this section we present industrial case studies for automatically clustering modules

of a legacy application implemented with the PL/SQL language. We have applied

approaches on two large-scale PL/SQL programs developed and being maintained by

Turkcell1, which is the largest GSM operator in Turkey. The analyzed applications

are a Customer Relation Management (CRM) system and a Billing system. We have

applied our two approaches, which are SDSM and MDSM to each systems separately.

Firstly, we illustrate the application of our approaches for these systems. Then, we

will discuss the results. We can not share real procedure and package names due to

confidentiality; however, we will present abstracted artifacts and results.

5.1 Legacy Systems

In this section we explain two important legacy systems for Turkcell which are being

developed by the Turkcell development team. Each system is operational since 1993.

5.1.1 CRM System

CRM system is our first subject system. Approximately half of its source code is

developed with the PL/SQL language. The code base of this system is maintained

by Turkcell. The system comprises more than 1.800 KLOC PL/SQL code in total.

It is operational since 1993, serving more than 10000 users.

1http://www.turkcell.com.tr

22

5.1.2 Billing System

Our second subject system is Turkcell Billing system. Approximately half of the

source code of this system is developed with the PL/SQL language as well. The code

base of this system is also maintained by Turkcell. The system comprises more than

1.950 KLOC PL/SQL code in total. It is operational since 1993, serving more than

16 million post paid subscribers. Every month post paid customer invoices are being

prepared via this system.

5.2 Case Studies

As explained in Chapter 4 we have two different approaches. We applied two ap-

proaches to each legacy system which explained above seperately and we get promis-

ing results.

5.2.1 SDSM Approach on CRM System

In this case study, we analyzed one of the main schemas of the CRM system, which

consists of 157 stored procedures and 659 tables. Therefore, the generated DSM

included 157 rows and 157 columns. The DSM model captures the set of database

elements that are commonly accessed by system modules. Then, we applied support

vector clustering on this DSM by using the parameters listed in Table 2.

The first cropped snapshot of the clustered DSM is depicted in Figure 6, which

shows the first 33 rows and 33 columns of the matrix. We can also see an identified

cluster in this part of the matrix between rows/columns 24 and 30.

5.2.2 SDSM Approach on Billing System

In our this case study, we analyzed one of the main schemas of the Billing system,

which consists of 150 stored procedures and 1194 tables. Therefore, the generated

DSM included 150 rows and 150 columns. The DSM model captures the set of

23

Table 2: Support Vector Clustering parameters

parameter value

min pts 2
kernel type radial
kernel gamma 1.0
kernel cache 200
convergence epsilon 0.001
max iteration 100000
p 0.0
r -1.0
number sample points 20

database elements that are commonly accessed by system modules. Then, we applied

support vector clustering on this DSM by using the parameters listed in Table 2.

The cropped snapshot of the clustered DSM is depicted in Figure 9, which shows

the first 36 rows and 36 columns of the matrix. We can also see an identified cluster

in this part of the matrix between rows/columns 8 and 12.

5.2.3 MDSM Approach on CRM System

In our this case study, we analyzed same schema of the CRM system mentioned in

5.2.1. But here our tool generated 3 different DSMs for the system. The first DSM

model is the same DSM that is used first case study in 5.2.1 which captures the set of

database elements that are commonly accessed by system modules. The second DSM

model created captures model inter-dependency in terms of direct references in the

source code. The third DSM model captures modifications to system modules that

are applied by the same developer at the same time. After generation these DSMs,

we perform pivot clustering according to each of these matrices separately. Then, we

perform cluster aggregation (meta clustering) on the obtained clustering results to

propose a packaging structure to the designer.

The cropped snapshot of the clustered second and third DSMs are depicted in

Figure 7 and in Figure 8, which shows the partial rows and columns of the matrix

24

are shown in Appendices A section. As shown there second DSM in Figure 7 is very

sparse matrix. This show us there is not big inter-dependency in terms of direct

references in the source code for CRM system.

5.2.4 MDSM Approach on Billing System

In our this case study, we analyzed same schema of the Billing system mentioned in

5.2.2. Our tool generated 3 different DSMs for this system as mentioned in 5.2.3. Each

of DSMs captures a different type of dependency among the Billing system modules.

After generation these DSMs, we perform pivot clustering according to each of these

matrices separately. Then, we perform cluster aggregation (meta clustering) on the

obtained clustering results to propose a packaging structure to the designer.

The cropped snapshot of the clustered second and third DSMs are depicted in

Figure 10 and in Figure 11, which shows the partial rows and columns of the matrix

are shown in Appendices B section. As shown there second DSM in Figure 10 is

very sparse matrix. This show us there is not big inter-dependency in terms of direct

references in the source code for Billing system too.

For all case studies, these structures are further analyzed by Cluster Analyzer

to map it back to the source code and derive a package structure. We present and

discuss the results in the following section.

25

Figure 6: A snippet from the generated DSM model, capturing the set of database
elements that are commonly accessed by system modules for CRM system.

26

CHAPTER VI

RESULTS AND DISCUSSION

6.1 Results

For our first case study which we applied SDSM approach using support vector clus-

tering via Rapid Miner for CRM system, in total 7 clusters were derived as listed

in Table 3. Hereby, the number of items represent the number of procedures and

functions that are placed in the same cluster. For instance, Cluster 5 includes 8

procedures. These procedures were not belonging to any package in the original ap-

plication. They were defined as standalone procedures although they were working

on the same database tables. We have validated this result with 4 different domain

experts, all of whom agreed that these procedures perform related tasks and they

should have been placed in the same package. The results regarding the clusters

2, 3, 4 and 6 were also validated likewise.

Table 3: SDSM Cluster Analyzer results for CRM System

Cluster Number of Items

Cluster 0 77
Cluster 1 48
Cluster 2 3
Cluster 3 3
Cluster 4 12
Cluster 5 8
Cluster 6 6

Total 157

One can notice that clusters 0 and 1 include many items. The tool was basically

unable to differentiate these items further. They are neither related nor distinguished

in terms of the database tables they access.

For our other case study which we applied again SDSM approach using support

27

vector clustering via Rapid Miner for Billing system, in total 6 clusters were derived as

listed in Table 4. Hereby, the number of items also represent the number of procedures

and functions that are placed in the same cluster. For instance, Cluster 2 includes

8 procedures. These procedures were not belonging to any package in the original

application. They were defined as standalone procedures although they were working

on the same database tables. We have validated this result with 4 different domain

experts, all of whom agreed that these procedures perform related tasks and they

should have been placed in the same package. The results regarding the clusters 3, 4

and 5 were also validated likewise.

Table 4: SDSM Cluster Analyzer results for Billing System

Cluster Number of Items

Cluster 0 75
Cluster 1 52
Cluster 2 8
Cluster 3 8
Cluster 4 3
Cluster 5 4

Total 150

In this case clusters 0 has 75 items. The tool was basically unable to differentiate

some items further here too.

For our other case study which we applied MDSM approach using pivot clustering

via Cluster Aggregation for CRM system, in total 17 clusters were derived as listed

in Table 5. We can say that we get better results than compared the first case study.

Because while only 32 procedures are clustered with the first approach, now in total

87 procedures are clustered. The tool was now differentiated these items further

which are not clustered in the first case. We have also validated this result again with

4 different domain experts, all of whom agreed that these procedures perform related

tasks and they should have been placed in the same package.

Finally, for our last case study which we applied MDSM approach using pivot

28

Table 5: MDSM Cluster Analyzer results for CRM System

Cluster Number of Items

Cluster 0 42
Cluster 1 2
Cluster 1 2
Cluster 2 2
Cluster 3 2
Cluster 4 2
Cluster 5 2
Cluster 6 2
Cluster 7 2
Cluster 8 2
Cluster 9 2
Cluster 10 2
Cluster 11 3
Cluster 12 3
Cluster 13 5
Cluster 14 5
Cluster 15 9
Cluster 16 70

Total 157

clustering via Cluster Aggregation for Billing system, in total 18 clusters were derived

as listed in Table 6.

6.2 Discussions

As mentioned above we have two approaches, SDSM and MDSM. We applied both

approaches to legacy systems separately and we get promising results. In the first

approach (SDSM), the tool couldn’t differentiate some items further as mentioned

above. This problem was the main motivation for developing MDSM. By means of

MDSM, our tool differentiated these items and we got better results. We compared

the results obtained by using MDSM with the results obtained using SDSM. MDSM

approach succeded on average 30% better in terms of the percentage of procedures

that are confirmed to be clustered correctly in a package. But we observed that even

using the MDSM approach the tool couldn’t still differentiate some items further as

29

Table 6: MDSM Cluster Analyzer results for Billing System

Cluster Number of Items

Cluster 0 95
Cluster 1 2
Cluster 2 2
Cluster 3 2
Cluster 4 2
Cluster 5 2
Cluster 6 2
Cluster 7 2
Cluster 8 2
Cluster 9 2
Cluster 10 2
Cluster 11 3
Cluster 12 3
Cluster 13 4
Cluster 14 4
Cluster 15 4
Cluster 16 6
Cluster 17 11

Total 150

well. Each approach can be used standalone separately and additionally they can

be used serially, because they are complements of each other. So we suggest that

each approach should be used together. First SDSM approach can be used and then

MDSM tool should be used if necessary.

6.3 Threats to Validity

There are some validity threats to our evaluation. First, It is based on subjective ex-

pert opinion rather than quantitative measurements. We tried to mitigate this threat

by consulting 4 different domain experts who are software architects and they are

very skilled people in their area and have at least 10 years of professional experience.

It is essential to have at least 10 years of experience in a spesific domain and being

actively involved in at least 10 big projects to become a domain expert at Turkcell. A

second threat is regarding the use of only one main schema for each of the two systems

30

for the industrial case study and these schemas are not very big size. Therefore, we

plan to perform more case studies which are bigger size in the future.

In this work, we focused on PL/SQL programs. In fact, we plan to integrate

our approach in standard tools that are used for developing and maintaining these

programs. However, our approach is relevant and applicable for any type of program

that is highly coupled with a database management system.

31

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

In this thesis, we provide two approaches and toolset that supports automated mod-

ularization of software systems by considering different types of dependencies.

In our first approach, we derive (indirect) dependencies among PL/SQL proce-

dures by analyzing the accessed database elements. We represent these dependencies

in the form of a design structure matrix. Then, we cluster the procedures and pro-

pose a packaging structure to the designer. An initial evaluation of this approach

showed promising results in which most of the procedures were successfully clustered

in relevant packages. An analysis of the remaining procedures revealed that some of

them directly refer to each other or they use common resources other than database

elements. Therefore, we introduced a second approach that utilizes input regarding

multiple types of dependencies at the same time. We construct multiple depeden-

dency matrices each of which captures a different type of dependency among the

system modules. First, we perform clustering according to each of these matrices

separately. Then, we perform cluster aggregation (meta clustering) on the obtained

clustering results to propose a packaging structure to the designer. Procedures are

clustered according to these dependencies to propose a package structure for grouping

procedures.

We performed two industrial case studies from the telecommunication domain.

We observed promising results, in which several package suggestions were confirmed

to be necessary by domain experts. We conclude that our approaches and toolset can

support the re-factoring of legacy applications for better modularity and maintain-

ability.

32

In our future work, we plan to extend our toolset to new approaches to increase

the accuracy. We also plan to conduct more case studies.

33

APPENDIX A

GENERATED DSM MODELS FOR CRM

34

P8

P1

P2

P3

P4

P51

P5

P6

P7

P9

P10

P11

P12

P49

P13

P14

P15

P16

P17

P18

P19

P20

P21

P22

P23

P24

P25

P59

P26

P27

P28

P29

P30

P31

P32

P33

P
5

1
1

P
1

P
2

P
3

P
5

9
1

P
4

P
5

P
4

9
1

P
6

P
7

P
8

1
P

9

P
1

0

P
8

1
1

1
P

1
1

P
1

2

P
1

3

P
1

4

P
1

5

P
1

6

P
1

7

P
1

8

P
1

9

P
2

0

P
2

1

P
2

2

P
2

3

P
2

4

P
2

5

P
2

6

P
2

7

P
2

8

P
2

9

P
3

0

F
ig
u
re

7
:

A
sn

ip
p

et
fr

om
th

e
ge

n
er

at
ed

D
S
M

m
o
d
el

,
ca

p
tu

ri
n
g

m
o
d
el

in
te

r-
d
ep

en
d
en

cy
in

te
rm

s
of

d
ir

ec
t

re
fe

re
n
ce

s
in

th
e

so
u
rc

e
co

d
e

fo
r

th
e

C
R

M
sy

st
em

.
(T

h
e

ro
w

s
an

d
co

lu
m

n
s

ar
e

re
or

d
er

ed
to

h
ig

h
li
gh

t
ce

ll
s

th
at

h
av

e
th

e
va

lu
e

1
in

th
e

sp
ar

se
m

at
ri

x
)

35

P140

P141

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

P17

P18

P19

P20

P75

P21

P22

P46

P47

P76

P34

P41

P44

P36

P23

P24

P25

P26

P
1

P
2

P
3

P
4

P
1

4
0

1
4

2
1

1
1

2
1

1
1

P
4

6
1

1
1

2

P
4

7
1

1
2

P
5

P
6

P
7

P
8

P
9

P
1

0
4

1
1

1
1

P
1

1
1

1
P

1
2

P
1

3

P
1

4

P
1

5

P
1

6
1

1
P

1
7

P
1

8
2

1

P
1

9
1

P
2

0
1

P
2

1

P
2

2

P
2

3

P
2

4

P
2

5

P
2

6

P
2

7

P
2

8

P
2

9

P
3

0

F
ig
u
re

8
:

A
sn

ip
p

et
fr

om
th

e
ge

n
er

at
ed

D
S
M

m
o
d
el

,
ca

p
tu

ri
n
g

m
o
d
ifi

ca
ti

on
s

to
sy

st
em

m
o
d
u
le

s
th

at
ar

e
ap

p
li
ed

b
y

th
e

sa
m

e
d
ev

el
op

er
at

th
e

sa
m

e
ti

m
e

fo
r

th
e

C
R

M
sy

st
em

.
(T

h
e

ro
w

s
an

d
co

lu
m

n
s

ar
e

re
or

d
er

ed
to

h
ig

h
li
gh

t
ce

ll
s

th
at

h
av

e
th

e
va

lu
e

gr
ea

te
r

th
an

0
in

th
e

m
at

ri
x
)

36

APPENDIX B

GENERATED DSM MODELS FOR BILLING

37

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

P17

P18

P19

P20

P21

P22

P23

P24

P25

P26

P27

P28

P29

P30

P31

P32

P33

P34

P35

P36

P
1

1
1

1
1

P
2

P
3

P
4

1
1

1
1

1
1

1

P
5

1
1

1
1

P
6

1
1

1
1

P
7

1

P
8

3
3

2
P

9

P
1

0
1

1
1

1

P
1

1
3

3
2

P
1

2
3

3
2

P
1

3

P
1

4
1

1
1

1

P
1

5
1

P
1

6
1

P
1

7
2

2
2

P
1

8

P
1

9
1

1
1

2

P
2

0
1

1
1

1

P
2

1

P
2

2

P
2

3

P
2

4

P
2

5

P
2

6

P
2

7
1

1

P
2

8
1

1

P
2

9
2

P
3

0

P
3

1

P
3

2

F
ig
u
re

9
:

A
sn

ip
p

et
fr

om
th

e
ge

n
er

at
ed

D
S
M

m
o
d
el

,
ca

p
tu

ri
n
g

th
e

se
t

of
d
at

ab
as

e
el

em
en

ts
th

at
ar

e
co

m
m

on
ly

ac
ce

ss
ed

b
y

sy
st

em
m

o
d
u
le

s
fo

r
th

e
B

il
li
n
g

sy
st

em
.

38

P130

P141

P142

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

P17

P18

P19

P20

P21

P22

P23

P24

P25

P26

P27

P28

P29

P30

P31

P32

P33

P
1

P
2

P
1

4
2

1
P

3

P
4

P
5

P
6

P
9

4
1

1
P

7

P
8

P
1

3
0

1
P

9

P
1

0

P
1

1

P
1

2

P
1

3

P
1

4
P

1
5

1
P

1
6

1
P

1
7

P
1

8

P
1

9

P
2

0

P
2

1

P
2

2

P
2

3

P
2

4

P
2

5

P
2

6

P
2

7

P
2

8

P
2

9

P
3

0

P
3

1

P
3

2

P
3

3

F
ig
u
re

1
0
:

A
sn

ip
p

et
fr

om
th

e
ge

n
er

at
ed

D
S
M

m
o
d
el

,
ca

p
tu

ri
n
g

m
o
d
el

in
te

r-
d
ep

en
d
en

cy
in

te
rm

s
of

d
ir

ec
t

re
fe

re
n
ce

s
in

th
e

so
u
rc

e
co

d
e

fo
r

th
e

B
il
li
n
g

sy
st

em
.

(T
h
e

ro
w

s
an

d
co

lu
m

n
s

ar
e

re
or

d
er

ed
to

h
ig

h
li
gh

t
ce

ll
s

th
at

h
av

e
th

e
va

lu
e

1
in

th
e

sp
ar

se
m

at
ri

x
)

39

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P69

P70

P71

P72

P73

P74

P11

P12

P13

P14

P15

P16

P17

P18

P19

P20

P21

P22

P23

P24

P25

P26

P27

P28

P29

P30

P
1

P
2

P
3

P
4

1

P
5

1
P

6

P
7

P
8

P
6

9
2

3
2

P
7

0
1

2
3

4

P
7

1
1

1

P
7

2
3

3
2

1

P
7

3
1

1

P
7

4
2

4
2

P
9

P
1

0
1

P
1

1

P
1

2

P
1

3

P
1

4

P
1

5

P
1

6

P
1

7

P
1

8

P
1

9
1

P
2

0

P
2

1

P
2

2

P
2

3

P
2

4

P
2

5

P
2

6

P
2

7
2

F
ig
u
re

1
1
:

A
sn

ip
p

et
fr

om
th

e
ge

n
er

at
ed

D
S
M

m
o
d
el

,
ca

p
tu

ri
n
g

m
o
d
ifi

ca
ti

on
s

to
sy

st
em

m
o
d
u
le

s
th

at
ar

e
ap

p
li
ed

b
y

th
e

sa
m

e
d
ev

el
op

er
at

th
e

sa
m

e
ti

m
e

fo
r

th
e

B
il
li
n
g

sy
st

em
.

(T
h
e

ro
w

s
an

d
co

lu
m

n
s

ar
e

re
or

d
er

ed
to

h
ig

h
li
gh

t
ce

ll
s

th
at

h
av

e
th

e
va

lu
e

gr
ea

te
r

th
an

0
in

th
e

m
at

ri
x
)

40

References

[1] D. L. Parnas, “On the criteria to be used in decomposing systems into modules,”
Communications of the ACM, vol. 15, no. 12, pp. 1053–1058, 1972.

[2] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice.
Addison-Wesley, 3 ed., 2003.

[3] R. Taylor, N. Medvidovic, and E. Dashofy, Software Architecture: Foundations,
Theory, and Practice. 2009.

[4] P. Clements et al., Documenting Software Architectures. Addison-Wesley, 2002.

[5] S. Eick et al., “Does code decay? assessing the evidence from change management
data,” IEEE Transactions on Software Engineering, vol. 27, no. 1, pp. 1 – 12,
2001.

[6] G. Murphy, D. Notkin, and K. Sullivan, “Software reflexion models: Bridging
the gap between design and implementation,” IEEE Transactions on Software
Engineering, vol. 27, no. 4, pp. 364 – 308, 2001.

[7] M. Nelson, “A survey of reverse engineering and program comprehension,”
CoRR, vol. abs/cs/0503068, 2005.

[8] S. Ducasse and D. Pollet, “Software architecture reconstruction: A process-
oriented taxonomy,” IEEE Transactions on Software Engineering, vol. 35, no. 4,
pp. 573 – 591, 2009.

[9] H. Abdeen, S. Ducasse, H. Sahraoui, and I. Alloui, “Automatic package cou-
pling and cycle minimization,” in Proceedings of the 16th Working Conference
on Reverse Engineering, pp. 103–112, 2009.

[10] K. Praditwong, M. Harman, and X. Yao, “Software module clustering as a multi-
objective search problem,” IEEE Transactions on Software Engineering, vol. 37,
no. 2, pp. 264–282, 2011.

[11] G. Bavota, A. D. Lucia, A. Marcus, and R. Oliveto, “Using structural and se-
mantic measures to improve software modularization,” Empirical Software En-
gineering, vol. 18, no. 5, pp. 901 – 932, 2013.

[12] C. Patel, A. Hamou-Lhadj, and J. Rilling, “Software clustering using dynamic
analysis and static dependencies,” in Proceedings of the 13th European Confer-
ence on Software Maintenance and Reengineering, pp. 27–36, 2009.

[13] M. Cataldo, A. Mockus, J. A. Roberts, and J. D. Herbsleb, “Software depen-
dencies, work dependencies, and their impact on failures,” Software Engineering,
IEEE Transactions on, vol. 35, no. 6, pp. 864–878, 2009.

41

[14] S. Eppinger and T. Browning, Design Structure Matrix Methods and Applica-
tions. Cambridge, MA, USA: MIT Press, 2012.

[15] K. Sullivan, Y. Cai, B. Hallen, and W. Griswold, “The structure and value
of modularity in software design,” in Proceedings of the 8th European Software
Engineering Conference held jointly with 9th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, pp. 99–108, 2001.

[16] R. Sangwan and C. Neill, “Characterizing essential and incidental complexity in
software architectures,” in Proceedings of the Joint Working IEEE/IFIP Con-
ference on European Conference on Software Architecture, pp. 265–268, 2009.

[17] N. Sangal, E. Jordan, V. Sinha, and D. Jackson, “Using dependency models
to manage complex software architecture,” in Proceedings of the 20th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages and Applications, pp. 167–176, 2005.

[18] A. Gionis, H. Mannila, and P. Tsaparas, “Clustering aggregation,” ACM Trans-
actions on Knowledge Discovery from Data (TKDD), vol. 1, no. 1, p. 4, 2007.

[19] S. Vega-Pons and J. Ruiz-Shulcloper, “A survey of clustering ensemble algo-
rithms,” International Journal of Pattern Recognition and Artificial Intelligence,
vol. 25, no. 03, pp. 337–372, 2011.

[20] B. Abu-Jamous, R. Fa, D. J. Roberts, and A. K. Nandi, “Paradigm of tunable
clustering using binarization of consensus partition matrices (bi-copam) for gene
discovery,” PLoS One, vol. 8, no. 2, p. e56432, 2013.

[21] “Oracle Database Online Documentation 11g Release developing and us-
ing stored procedures.” http://docs.oracle.com/cd/B28359_01/appdev.

111/b28843/tdddg_procedures.htm. Accessed in September 2015.

[22] R. Koschke, “Software visualization in software maintenance, reverse engineering,
and re-engineering: a research survey,” Journal of Software Maintenance and
Evolution: Research and Practice, vol. 15, no. 2, pp. 87–109, 2003.

[23] G. Guo, J. Atlee, and R. Kazman, “A software architecture reconstruction
method,” in Proceedings of the First Working Conference on Software Archi-
tecture, (Deventer, The Netherlands, The Netherlands), pp. 15–34, 1999.

[24] T. Callo, P. America, and P. Avgeriou, “A top-down approach to construct execu-
tion views of a large software-intensive system,” Journal of Software: Evolution
and Process, vol. 25, no. 3, pp. 233–260, 2013.

[25] K. O. J. Ferrante and J. D. Warren, “The program dependence graph and its use
in optimization,” ACM Transactions on Programming Languages and Systems,
vol. 9, no. 3, pp. 319–349, 1987.

42

[26] B. Mitchell and S. Mancoridis, “On the automatic modularization of software
systems using the bunch tool,” IEEE Transactions on Software Engineering,
vol. 32, no. 3, pp. 193 – 208, 2006.

[27] L. Qingshan et al., “Architecture recovery and abstraction from the perspective
of processes,” in WCRE, pp. 57–66, 2005.

[28] C. Sun, J. Zhou, J. Cao, M. Jin, C. Liu, and Y. Shen, “ReArchJBs: a tool for
automated software architecture recovery of javabeans-based applications,” in
Proceedings of the 16th Australian Software Engineering Conference, pp. 270–
280, 2005.

[29] O. Maqbool and H. Babri, “Hierarchical clustering for software architecture re-
covery,” IEEE Transactions on Software Engineering, vol. 33, no. 11, pp. 759–
780, 2007.

[30] O. Chaparro, J. Aponte, F. Ortega, and A. Marcus, “Towards the automatic
extraction of structural business rules from legacy databases,” in Proceedings of
the 19th Working Conference on Reverse Engineering, pp. 479–488, 2012.

[31] M. Habringer, M. Moser, and J. Pichler, “Reverse engineering PL/SQL legacy
code: An experience report,” in Proceedings of the IEEE International Confer-
ence on Software Maintenance and Evolution, pp. 553–556, 2014.

[32] A. Ben-Hur, D. Horn, H. Siegelmann, and V. Vapnik, “Support vector cluster-
ing,” The Journal of Machine Learning Research, vol. 2, no. 12, pp. 125–137,
2002.

[33] N. Ailon, M. Charikar, and A. Newman, “Aggregating inconsistent information:
ranking and clustering,” Journal of the ACM (JACM), vol. 55, no. 5, p. 23, 2008.

[34] G. Gürsun, N. Ruchansky, E. Terzi, and M. Crovella, “Routing state distance:
a path-based metric for network analysis,” in IMC, 2012.

43

