
EXTENDING STATIC ANALYSIS WITH
APPLICATION-SPECIFIC RULES BY ANALYZING

RUNTIME EXECUTION TRACES

A Thesis

by

Ersin Ersoy

Submitted to the
Graduate School of Sciences and Engineering
In Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in the
Department of Computer Science

Özyeğin University
July 2016

Copyright c© 2016 by Ersin Ersoy

EXTENDING STATIC ANALYSIS WITH
APPLICATION-SPECIFIC RULES BY ANALYZING

RUNTIME EXECUTION TRACES

Approved by:

Asst. Prof. Hasan Sözer (Advisor)
Department of Computer Science
Özyeğin University

Asst. Prof. Mehmet Aktaş
Department of Computer Engineering
Yıldız Technical University

Asst. Prof. Barış Aktemur
Department of Computer Science
Özyeğin University

Date Approved: 2016

I dedicate this thesis to my daughters, Elif Duru and Esma Derin.

You provided the inspiration necessary for me to complete this process.

iii

ABSTRACT

Static code analysis tools can generate alerts regarding only generic issues such as

uninitialized variables. They cannot detect violations of application-specific rules.

Tools can be extended with specialized checkers that implement the verification of

these rules. However, such rules are usually not documented explicitly. Moreover, the

implementation of specialized checkers is a manual process that requires expertise.

In this thesis, we present a novel approach to provide these extensions automatically.

In our approach, application-specific programming rules are automatically extracted

from execution traces collected at runtime. These traces are analyzed offline to iden-

tify programming rules, of which violation lead to errors. Then, specialized checkers

for these rules are introduced as extensions to a static analysis tool so that their

violations can be checked throughout the source code. We evaluated our approach

with two industrial case studies from the telecommunications domain. We were able

to detect real faults with checkers that were automatically generated based on the

analysis of execution logs.

iv

ÖZETÇE

Statik kod analiz araçları genel geçer hata tipleri için uyarı oluşturabilmektedir.

İlk değerleri atanmamış olan değişkenlere ilişkin hata uyarıları örnek olarak ver-

ilebilir. Uygulamaya özel kuralların ihlalini ise mevcut araçlar algılayamamaktadırlar.

Bu araçlar, özelleştirilmiş kontrol kuralları ile genişletilebilir ve bu şekilde uygula-

maya özel kuralları kontrol edebilirler. Ancak bu kurallar genellikle açık bir şekilde

dokümante edilmiş değillerdir. Üstelik özelleştirilmiş kontrol kuralları manuel olarak

hazırlanmaktadır ve bu uzmanlık gerektiren bir iştir. Bu tezde, statik kod analiz

kurallarının otomatik olarak genişletilmesi için yeni bir yaklaşım sunulmuştur. Bu

yaklaşımda, uygulamaya özel programlama kuralları, uygulama çalışırken oluşan kayıt-

lardan otomatik olarak elde edilmektedir. Bu kayıtlar çevrimdışı olarak analiz edilip

hataya neden olan programlama kuralı ihlali bulunmaktadır. Sonrasında, belirlenen

hataya uygun olan özelleştirilmiş kontrol kuralı kullanılarak statik kod analiz aracı

genişletilmektedir ve uygulamanın tamamı genişletilen araç ile analiz edilmektedir.

Bu yaklaşım telekomünikasyon alanındaki iki vaka analizi ile değerlendirilmiştir. Uygu-

lamaların çalışması esnasında toplanan kayıtlarının analizi sonucunda oluşturulan

özelleştirilmiş kontrol kuralları ile gerçek hataların bulunabildiği görülmüştür.

v

ACKNOWLEDGMENTS

Firstly, I would like to thank my advisor, Dr. Hasan Sözer for all his help and guidance

he has provided over the past two years. I would also like to thank Dr. Tankut Barış

Aktemur and Dr. Mehmet Aktaş for accepting to be part of the evaluation committee

for this thesis.

Secondly, I deeply thank my wife, Gönül Ersoy, my mother, Neşe Ersoy and my

father, Ahmet Ersoy for their unconditional trust, timely encouragement, and endless

patience. It was their love that raised me up again when I got weary.

I would also like to thank software developers at Turkcell Technology for sharing

their code base and supporting the case studies reported in this thesis.

This work is supported by The Scientific and Research Council of Turkey (TUBITAK),

grant number 113E548.

vi

TABLE OF CONTENTS

DEDICATION . iii

ABSTRACT . iv

ÖZETÇE . v

ACKNOWLEDGMENTS . vi

LIST OF TABLES . ix

LIST OF FIGURES . x

I INTRODUCTION . 1

II BACKGROUND . 3

2.1 Static Code Analysis . 3

2.2 Sonarqube . 8

2.3 PMD . 10

III RELATED WORK . 13

IV OVERALL APPROACH . 15

4.1 Analysis of Execution Logs . 17

4.2 Root Cause Analysis . 18

4.3 Generation of Specialized Checkers 20

4.4 Extension of Static Code Analysis Tool 21

V EVALUATION . 23

5.1 Subject systems . 23

5.2 Case Studies . 24

VI RESULTS AND DISCUSSION . 31

6.1 Results . 31

6.2 Discussions . 32

6.3 Threats to Validity . 33

vii

VII CONCLUSIONS AND FUTURE WORK 34

APPENDIX A — ABSTRACT SYNTAX TREE EXAMPLES . . 35

APPENDIX B — SONAR DASHBOARD SCREENSHOTS 40

APPENDIX C — REAL FAULT EXAMPLES 45

REFERENCES . 46

viii

LIST OF TABLES

1 A sample set of rules that are included in the Basic Rules ruleset of
PMD. 10

2 A sample list of errors detected for the SFA system. 33

ix

LIST OF FIGURES

1 The control flow graph model of the code snippet shown in Listing 2.1. 5

2 A call graph that is derived based on Listing 2.2. 7

3 An example AST and the corresponding source code snippet in PMD
Rule Designer. 12

4 The overall approach. 15

5 A snippet from a log file regarding a NullPointerException error. . . . 25

6 A snippet from the output of Log Parser regarding the instances of
the NullPointerException error recorded as shown in Figure 5. 25

7 A snippet from a log file regarding a LazyInitializationException error. 27

8 A snippet from the output of Log Parser regarding the instances of
the LazyInitializationException error recorded as shown in Figure 7. . 27

9 A snippet from a log file regarding a NullPointerException error on
CMS. 29

10 A snippet from the output of Log Parser regarding the instances of
the NullPointerException error recorded as shown in Figure 9. 29

11 Generated AST for sample code A.1 36

12 Generated AST for sample code A.2 37

13 Generated AST for sample code A.3 39

14 Sonar dashboard for TSFA module 41

15 Sonar dashboard for TSFAWEB module 42

16 Sonar dashboard for CMS . 43

17 Sonar Rules Page . 44

x

CHAPTER I

INTRODUCTION

Static analysis tools [1] can detect the violation of programming rules by checking

(violation of) patterns throughout control flow and data flow paths in the program.

The detected violations are reported in the form of a list of alerts. Although static

analysis tools have been successfully utilized in the industry [2, 3, 4], they have

limitations as well. A major limitation is that these tools can generate alerts regarding

only generic issues such as uninitialized variables. They fall short to detect the

violation of application-specific rules [5]. For example, it might be implicitly assumed

for a system that a particular method (e.g., open) is always called before a call to

another method (e.g., connect). It might also be necessary to check some of the

arguments and/or return values before/after certain method calls. Such rules are

application-specific and they are not considered by static analysis tools by default.

Static analysis tools can not also detect many generic faults that can lead to null

pointer exceptions for instance. In many cases, it is very hard or undecidable to

show whether an execution path is feasible or infeasible without the runtime context

information [6].

Some of the static analysis tools can be extended or modified in a modular way.

These extensions or modifications can fulfill two different purposes i) to supress some

of the generated alerts [7], ii) to generate more alerts by introducing additional

rules [5]. Hence, one can extend static analysis tools with specialized checkers to

detect the violation of application-specific rules as well. However, the implemen-

tation of specialized checkers is a manual process that requires expertise. In fact,

1

state-of-the-art static analysis tools provide special extension mechanisms for defin-

ing new rules, which can be then checked by these tools. Yet, such rules have to be

defined manually and they are usually not documented explicitly or formally.

In this thesis, we present a novel approach to extend static analysis tools, in

which specialized checkers are generated automatically. Our approach employs of-

fline analysis of execution traces collected at runtime. These traces comprise a set

of encountered errors. The source code is analyzed to identify the root causes of the

detected errors. Then, rules are inferred to prevent these root causes. Specialized

checkers are automatically generated for these rules and they are introduced as ex-

tensions to a static analysis tool. The extended tool can detect the violation of the

inferred rules throughout the source code.

We evaluated our approach with two industrial case studies from the telecommu-

nications domain. The execution logs of previous versions of two large scale legacy

systems were analyzed to generate specialized checkers for certain types of errors. The

static analysis tool that is employed in the company is extended with these checkers.

The extended tool was able to detect real faults. We observed that some of these

faults were fixed in later versions of the source code.

The remainder of this thesis is organized as follows. In the following chapter,

we provide background information on static code analysis in general and particular

tools that are employed in our case studies. We summarize the related studies in

Chapter 3. We present the overall approach in Chapter 4. The approach is illustrated

and evaluated in Chapter 5, in the context of two industrial case studies. We present

and discuss the results in Chapter 6. Finally, in Chapter 7, we provide the conclusions

and discuss possible future directions.

2

CHAPTER II

BACKGROUND

In this chapter, we provide background information on static code analysis. In par-

ticular, we introduce two tools, namely Sonar and PMD, which are employed in our

case studies.

2.1 Static Code Analysis

Static code analysis (SCA) or static program analysis is used for checking software

quality and potential faults without executing the program [8]. It is usually performed

by analyzing the source code of the program only. However, it is also possible to

perform the analysis on the executable/compiled code [8]. SCA is generally applied

in code review phase but it is more and more adopted in implementation phase

of the Software Development Life Cycle (SDLC) as well. It can be used easily in

implementation phase because SCA functionalities are usually employed in continuous

integration environments and Integrated Development Environments (IDE’s), such as

Eclipse. It is very useful to get warnings regarding potential faults in development

time. This creates an opportunity to fix the code quickly and easily.

Common bug types that can be captured by SCA are listed below [9].

• Improper resource management : Finding memory leaks, connection left open,

file left open, etc.

• Illegal operations : Division by zero, array out of bound exceptions, null pointer

exceptions, etc.

• Dead code and data: Non reachable code or data

3

• Incomplete code: Lack of variable initialization, not valid return statement in

function/method, not valid if-then-else statement etc.

In fact, currently SCA tools are not only used to find bugs but also to find code

duplication percentage, complexity of the software based on blocks/functions/pack-

ages and also to measure size of software using LOC or function point methods. In

the beginning, simple SCA tools were developed and used for finding security related

problems. These tools mainly used lexical analysis. Their analysis were mainly based

on a string search for predefined keyword list. As a result of compiler technology

improvements, Abstract Syntax Tree (AST) is started to be used for static analysis.

AST converts source code to a kind of tree structure with which it is possible to run

some semantic analysis. Currently modern SCA tools use AST [10] as the underlying

model. There are several example AST structures provided in Appendix A.

State-of-the-practice SCA tools mainly employ three types of analysis: control

flow graph analysis, call graph analysis, and data flow analysis. In the following, we

provide brief information on these analysis techniques.

Control flow graph (CFG) basically represents software instructions and the flow

of control among these instructions to cover all possible paths end to end for a pro-

gram [10]. There is a sample code in Listing 2.1. The CFG model of this sample

code is shown in Figure 1. Hereby, there are 5 nodes labelled as bb0, bb1, bb2, bb3,

and bb4. Each of these nodes represent an instruction taking place in the source

code. Directed edges among the nodes represent a possible flow of control among the

instructions. When the program is executed, there are only two paths to run instruc-

tions in Figure 1. The first path involves bb0, bb1, bb2 and bb4 in the given order.

The second possible sequence of instructions include bb0, bb1, bb3 and bb4. This is,

of course, a very simple presentation of a CFG model. In order to perform advanced

analysis, a SCA tool also maps elements of a CFG to elements of an AST [10].

4

Listing 2.1: An example code fragment that includes an if-else block.

a=getStatus () ;

i f (a>1) {

r e s u l t =0; // Fa i l

} e l s e {

r e s u l t =1; // Success

}

r e turn r e s u l t ;

a=getStatus();

if (a>1)

result=0; result=1;

return result;

bb0

bb1

bb2 bb3

bb4

Figure 1: The control flow graph model of the code snippet shown in Listing 2.1.

Call graph represents (call) relationships between methods and functions [10].

There is a sample code in Listing 2.2 and the corresponding call graph is provided in

Figure 2. From this call graph, we can see that sayHello calls sayByeBye, and say-

ByeBye calls itself. We can also see that saySomething can call returnNameFromDB

and sayHello.

5

Listing 2.2: An example code fragment used for deriving a call graph.

void sayHe l lo (S t r ing name)

{

System . out . p r i n t l n (” He l lo ” + name) ;

sayByeBye (name) ;

}

void sayByeBye (St r ing name)

{

System . out . p r i n t l n (”Bye Bye ” + name) ;

sayByeBye (name) ;

}

St r ing returnNameFromDB(i n t customerId)

{

r e turn ” Ers in ” ; //Not implemented yet .

}

void saySomething

{

St r ing customerName= returnNameFromDB (1) ;

i f (customerName!= n u l l && customerName . l ength ()>0)

{

sayHe l lo (customerName) ;

}

e l s e

{

System . out . p r i n t l n (” Error ! ! ! ”) ;

}

}

6

sayHello sayByeBye

returnName
FromDB

saySomething

Figure 2: A call graph that is derived based on Listing 2.2.

Data flow analysis is used for detecting dead code, performance issues, useless dec-

larations and unitialized variables. CFG analysis by itself is not enough to perform

such analysis. Program statements have to be annotated for recording different val-

ues assigned to variables. Each statement is represented with so-called Static Single

Assignment (SSA), which assigns each value to single variable. Different value assign-

ments to the same variable are differentiated by using different numeric subscripts

on variable names [10]. A sample code fragment and the corresponding SSA form is

listed below.

Sample code: SSA form:

sum = a + b; sum1 = a1 + b1;

b = b + c; b2 = b1 + c1;

sum = sum ∗ b; sum2 = sum1 ∗ b2;

In the following subsections, we introduce the tools that are used for implement-

ing our approach. These tools were already being used by the company, where we

performed our case studies. Therefore, we employed them to ensure compatibility

and easy integration with the existing processes.

7

2.2 Sonarqube

Sonarqube1 (also known as Sonar) is a common platform on which multiple SCA

tools can be deployed. It provides a continuous integration environment, in which

all the deployed tools are automatically executed and their results are presented via

automatically generated reports. In this work, we used Sonar to execute our custom

rules and obtain reports regarding the analysis results.

Sonar provides customization options by means of so-called dashboards. Using

these dashboards, it is possible to see analysis results at different levels of detail.

Sonar also has various plugins that facilitate integration with different SCA tools

(Findbugs [11], PMD [12], etc.) and software development environments (Eclipse [13],

NetBeans [14], etc.). We developed our custom rules as extensions to PMD. These

rules are executed by Sonar using its PMD Sonar plugin.

Sonar has already been employed by several companies, including the one where

we performed our case studies. Its main advantage is to provide a common plat-

form [15] for the execution of multiple analysis tools and consolidating their results

in its reports. As such, it combines the types of analysis that can be performed only

by a combination of SCA tools. The common types of analysis are listed below:

• Potential bugs : Analyze potential problems in source code, such as possible

null pointer exceptions. There are five severity levels defined by Sonar for such

potential issues: blocker, critical, major, minor and info.

• Coding rules : Analyze violations of coding rules in source code, such as naming

conventions (e.g., Class names should start with uppercase letters). There exist

five severity levels for the violations of coding rules as well.

• Unit Tests : Report on unit test case count, code coverage of these unit tests. If

code coverage is less then 60%, Sonar creates an issue for poorly code coverage.

1http://www.sonarqube.org/

8

• Duplications : Analyze code duplications in all files. It is possible to see the

percentage values based on project, class, or in more detail at the block level.

• Comments : Report on comment percentage in the form of lines of commented

code / total number of lines of code.

• Architecture and design : Provide hints for refactoring at the archtiecture design

or detailed design level, e.g., two different classes in different packages generally

make use of each other and they should have been placed in the same package.

• Complexity : Report on code complexity by using cyclomatic complexity as the

metric [16].

9

2.3 PMD

In this section, we will provide brief information about PMD [12], which is the SCA

tool that we employed in our approach. In fact, we extended this tool with custom

checkers that are automatically generated based on custom rules defined as templates.

We will explain the details of this extension mechanism later, in Section 4.3. In this

subsection, we will only provide general information about the tool.

PMD is an open-source SCA tool available online2. It can analyze source code

developed with a variaty of languages such as Java, JavaScript, PLSQL, Apache

Velocity, XML, and XSL. Its duplicate code checker functionality supports many

more, e.g., C, Ruby, Scala, Objective C, Matlab, Python, Go, and Swift.

PMD basically checks for violations of a set of rules in the source code. There

are many predefined rules [17] provided by the tool. These rules are categorized in

groups such as security, performance, design, etc. Currently there are 29 different

groups, each of which is called a ruleset. A few example rules included in the Basic

Rules ruleset is shown in Table 1.

Rule Name Rule Description

EmptyCatchBlock Empty Catch Block finds instances where an exception is
caught, but no action is performed. Such code blocks
swallow an exception which should either be handled
or reported.

MisplacedNullCheck The null check is misplaced. A null value of the variable
will lead to a NullPointerException. Either the check is
incorrect or useless, i.e., the variable will never be null.

SingularField This field is used in only one method and the first usage is
assigning a value to the field. This probably means
that the field can be changed to be a local variable.

Table 1: A sample set of rules that are included in the Basic Rules ruleset of PMD.

In addition to such predefined rules categorized in rulesets, PMD alllows for ex-

tensions with custom rules. There are two ways to define and develop custom rules in

2https://pmd.github.io/

10

PMD: i) in the form of plain Java methods, and ii) in the form of XPath expressions.

We have developed our custom rules using the Java language.

PMD uses JavaCC3 to parse the source code and generate its AST. It provides an

API to traverse this AST and define specialized checkers for custom rules. Figure 3

depicts a sample AST and the corresponding source code snippet being viewed with

the PMD Rule Designer tool. One can follow the source code and the corresponding

AST relations via this user interface.

PMD was already being used by the software test department within the company,

where we performed our case studies. It was already integrated to the continuous

integration tool chain as part of the Sonar environment. So, we implemented our

approach around this tool to be able to perform case studies. Otherwise, there is

no particular reason for employing the PMD tool in our approach. In principle, our

approach could be applied with any SCA tool as long as it supports programmable

checker extensions.

3https://javacc.java.net/

11

Figure 3: An example AST and the corresponding source code snippet in PMD Rule
Designer.

12

CHAPTER III

RELATED WORK

There have been studies for automatically deriving programming rules based on fre-

quently used code patterns [18, 19]. Hereby, pattern recognition, data mining and

heuristic algorithms are used for analyzing the program source code and detecting

potential rules. Then, the source code is analyzed again to detect inconsistencies with

respect to these rules. These studies utilize only (models of) the source code to infer

programming rules. They do not make use of runtime execution traces.

Another study [20] makes use of the analysis of previously fixed bugs to derive

application-specific programming rules. This is a semi-automated approach, where

the programmer defines the rules applied to fix these bugs. Rules are specified in the

form of dependence subgraphs [20]. Then, graph matching algorithms are used for

locating violations of the defined rules. As such, other instances of the previously

fixed bugs are identified in the overall source code. This approach do not also exploit

any information collected during runtime execution.

The method proposed by Williams et al. [21] relies on the history of bug fixes as

well. In this method, these fixes are manually analyzed to identify common bug types

first. Then, programming rules are defined to detect these types of bugs. In their case

studies, it was observed that the root cause of many bugs was the lack of checks on the

method return values. As a result, a new programming rule was introduced to check

the return value of every method. In our work, we utilize runtime execution traces to

derive programming rules. This enables us to determine error-prone scenarios more

precisely. For instance, rather than enforcing the control of return values for all the

methods, we define rules only for methods that contribute to a failure scenario. In

13

addition, our approach is automated. It does not rely on manual analysis.

In general, studies reported in the literature mainly utilize source code, previously

fixed bugs, changes applied to fix these bugs or changes that introduce bugs [22] for

deriving programming rules. There exist a few approaches [23, 24, 25] that exploit

dynamic analysis and runtime execution traces. DynaMine [25] uses dynamic analysis

for validating programming rules that are actually derived by mining the revision his-

tory. The program is instrumented to simulate the effect of the violation of rules and

as such, provide feedback to the programmer. Previously, console logs were analyzed

using machine learning techniques to detect anomalies [23]; however, deriving rules

for preventing these anomalies was out of the scope of the study. Daikon [24] derives

likely invariants of a program by means of dynamic analysis. However, Daikon focuses

on numerical properties of variables as system constraints rather than bug patterns

that can represent a wider range of bug types. The output of Daikon has been used

for supporting different verification techniques [24]. It was also used for supporting

static analysis [26]; however, the goal of this study was to generate test cases based

on static analysis, not to extend static analysis.

We have previously introduced an integrated static and dynamic analysis approach

for improving both runtime verification and static code analysis tools [7]. In that

approach, the goal is to identify alerts, which do not actually cause any failures at

runtime. Then, filters are automatically generated for a static code analysis tool

to suppress these alerts. Hence, the goal is to reduce false positives and increase

precision. In this work, we aim at reducing false negatives by detecting more faults

as a result of checking application-specific rules. As such, the goal of the approach

proposed in this thesis is to increase recall instead.

14

CHAPTER IV

OVERALL APPROACH

KEY: data flow
Tool

runtime
logs

Log
Parser

list of errors,
related modules

and events

source
code

Root Cause
Analyzer

list of
application

specific rules

Checker
Generator

application
specific
checker

alerts

artifact

4

11

2

2

2

33

4

4

Static Code
Analysis

Tool

External
Tool

checker
templates

3

analysis
procedures

2

Figure 4: The overall approach.

The overall approach is depicted in Figure 4, which involves 4 steps. First, Log

Parser takes runtime logs as input, parses these logs, and generates the list of errors

recorded together with the related modules and events (1). Then, this list is provided

to Root Cause Analyzer, which analyzes the source code to identify the cause of the

error by utilizing a set of predefined analysis procedures (2). For instance, if a null

pointer reference error is detected at runtime, the corresponding analysis procedure

15

analyzes the source code to locate the corresponding object and its last definition

before the error. Let’s assume that such an object was defined as the return value of a

method call. Then, a rule is inferred, imposing that the return value of that particular

method must be checked before use. The list of such rules are provided to Checker

Generator, which uses a library of predefined templates to generate a specialized

checker for each rule (3). The generated checkers are included as extensions to a

Static Code Analysis Tool, which applies them to the source code and reports alerts

in case violations are flagged (4).

As can be seen in Figure 4, the overall approach is automated; however, it relies

on a set of predefined analysis procedures and checker templates for performing root

cause analysis and checker generation, respectively. One analysis procedure should

be defined for each error type and one checker template should be defined for each

rule type. There can be many different types of application-specific rules that can

be checked with static analysis. These rules and the considered error types are open-

ended in principle and they can be extended when needed. Currently, we consider the

following types of errors and programming rules that are parametrized with respect

to the involved method and argument names.

• java.lang.NullPointerException: The return value of a method must be checked

for null reference after it is called, e.g., r = m(x); if(r != null) {...} or

if(r == null) {...}

• org.hibernate.LazyInitializationException: The JPA Entity1 should be initial-

ized at a transactional level (when persistence context is alive) before being

used at a non-transactional level, e.g., object a is a JPA Entity with LAZY

fetch type and it is an aggregate within object b. Then, a must be fetched from

the database when b is being initialized, for a possible access after the persistent

1A JPA (Java Persistence API) entity is a POJO (Plain Old Java Object) class, which has the
ability to represent objects in a database. They can be reached within a persistent context.

16

context is lost.

In the following, we explain the steps of the approach in more detail by explaining

the handling of null pointer exceptions as the running example. Then, in Chapter 5,

we illustrate the application of the approach in the context of two industrial case

studies. We developed the necessary tools and applied our approach for software

systems written in Java. In principle, the approach can be instantiated for different

programming languages and environments. Our design and implementation choices

were driven by the needs and the context of the industrial case.

4.1 Analysis of Execution Logs

The first step of our approach involves the analysis of execution logs. We have applied

our approach to legacy systems. Hence, we did not have the chance to instrument

the code and collect execution traces according to a predefined format. We had to

utilize the existing log files. Therefore, Log Parser is implemented as a dedicated

parser for these files. However, it can be replaced with any parser to be able to

process log files in other formats as well. So, our approach is agnostic to the log

file structure as long as the necessary information can be derived. The recorded

events should include at least the following information: i) Sequence of events and in

particular, encountered errors; ii) The types of encountered errors; iii) The location

of the encountered errors in the source code, i.e., package, class, method name, line

number. This information is usually recorded in any system in some format. Even

standard Java exception reports include such information together with a detailed

stack trace. Hence, existing instrumentation and logging tools can be employed to

obtain the necessary information.

Log Parser is parametric with respect to the focused error types and modules of

the system. We can filter out some error types or modules that are deemed irrelevant

or uncritical.

17

4.2 Root Cause Analysis

Once Log Parser retrieves the relevant error records together with their context in-

formation, it provides them to Root Cause Analyzer. This tool performs two main

tasks: i) finding the root cause of the error, ii) determining whether this root cause

is application-specific or not. We are not interested in generic errors. Hence, it is

important to be sure that the root cause of the error is application-specific. For

instance, consider the code snippet in Listing 4.1. When executed, it causes a

java.lang.NullPointerException; however, Root Cause Analyzer ignores this error be-

cause, the cause of the error is an uninitialized object at Line 1. This is a generic

error. The object has a null value because it is simply left unitialized.

Listing 4.1: An example code snippet for a generic error that is ignored by Root

Cause Analyzer.

s t a t i c Report aReport ;

pub l i c s t a t i c void p r i n t () {

System . out . p r i n t l n (aReport) ;

}

Listing 4.2: An example code snippet for an application-specific error that is consid-

ered by Root Cause Analyzer.

s t a t i c Report aReport

= getServ i ceRepor t () ;

pub l i c s t a t i c void p r i n t () {

System . out . p r i n t l n (aReport) ;

}

18

If the null value is obtained from a specific method in the application, then such

an error is deemed relevant (See Listing 4.2). That means, the return value of the

corresponding method (e.g., getServiceReport in Listing 4.2) must be always checked

before use. This is a type of rule that is determined by Root Cause Analyzer.

Algorithm 1 Root cause analysis procedure applied for errors that lead to null
pointer exceptions.

1: u← use of object that causes the exception
2: dcp← definition clear path for u
3: d← definition of object in dcp
4: if ∃ method m as part of d then
5: p← package of m
6: if p ∈ application packages then
7: reportRule(RETURNVALCHECK,m)
8: end if
9: end if

Root Cause Analyzer employs a set of predefined analysis procedures that are

coupled with error types. For example, the analysis procedure applied for errors that

cause null pointer exceptions is listed in Algorithm 1. Hereby, the use of the object

that caused a null pointer exception is located as the first step. Second, the definition

clear path is derived, which is the path from definition of the object to the use of the

object, on which the definition is not killed by another definition of the same object.

If the definition on this path is performed with a method call, the procedure checks

where the method is defined. If the method is defined within one of the packages of

the application, then a rule is reported for checking the return value of this method.

Root Cause Analyzer provides the type of rule to be applied and the parameters of

the rule (e.g., name of the method, of which return value must be checked) to Checker

Generator so that a specialized checker can be created. In the following subsection,

we discuss the checker generation process.

19

4.3 Generation of Specialized Checkers

Most of the static code analysis tools are extensible and they provide application

programming interfaces (API) for implementing custom checkers. Checker Generator

generates specialized checkers by utilizing/extending PMD as the static code analysis

tool.

As mentioned in in Chapter 2, there are two ways to define custom rules and

develop specialized checkers for these rules in PMD: i) with Java, and ii) with XPath

expressions. We developed specialized checkers with Java, conforming to the Visitor

design pattern [27]. Each checker is basically defined as an extension of an abstract

class, namely, AbstractJavaRule. The visit method that is inherited from this class

must be overwritten to implement the custom check. This method takes two ar-

guments: i) node of type ASTMethodDeclaration and ii) data of type Object. The

return value is of type Object. This visitor method is called by PMD for each method

in the source code. In each call, the visited method is provided as the first argument.

There are also other visitor methods defined for other types of nodes in the AST such

as expressions and declarations.

Checker generation is performed based on parametrized templates. We defined a

template for each rule type. Each template extends the AbstractJavaRule class and

overwrites the necessary visitor methods. A checker is generated by instantiating the

corresponding template by assigning concrete values to its parameters. For instance,

consider a specialized checker that enforces the handling of possible null references

returned from a method in the application. The corresponding pseudo code that is

implemented with PMD is listed in Algorithm 2. Hereby, all variable declarations

are obtained as a set (V at Line 1). For each of these declarations (v), the node

ID (vid) is obtained (Line 3). The name of the method call (m) is also obtained,

assuming that the declaration involves a method call (Line 4). If there indeed ex-

ists such a method call and if the name of the method matches the expected name

20

(i.e., METHOD), then an additional check is performed (isNullCheckPerformed at

Line 6). This check traverses the AST starting from the node with id vid and searches

for control statements that compare the corresponding variable (v) with respect to

null (i.e., if(v != null) {...} or if(v == null) {...}). If there is no such a control

statement before the use of the variable, then a violation of the rule is registered at

Line 8.

Algorithm 2 visit method of a specialized checker for a custom rule, i.e., handle
possible null pointer after calling the method.

1: V = getChildrenOfType(ASTV ariableDeclarator);
2: for all v ∈ V do
3: vid = v.getID();
4: m = v.getMethodCall();
5: if m! = null & m.name == METHOD then
6: isChecked = isNullCheckPerformed(vid)
7: if !isChecked then
8: addV iolation(vid)
9: end if

10: end if
11: end for

Checker Generator generates specialized checkers by instantiating the correspond-

ing template with the parameters (e.g., METHOD) provided by Root Cause Ana-

lyzer. Hence, multiple checkers can be generated based on the same rule type.

4.4 Extension of Static Code Analysis Tool

PMD is extended with the custom checkers generated by Checker Generator and it is

executed by Sonar version 4.0 (currently known as SonarQubeTM, available as version

5.6).

The extension is performed in two steps: i) adding a jar file that includes the

custom checker, and ii) extending the XML configuration file for rule definition. The

jar file basically contains an instantiation of a checker code template. The resulting

concrete source code is compiled into a jar file and included in a specific folder (i.e.,

21

extensions/rules/pmd) under the Sonar installation. The rule regarding the intro-

duced checker must also be defined in the XML configuration file of PMD as a new

entry. Then, the rule can be activated on the Sonar dashboard. A sample XML

code snippet for the introduction of a new rule is shown in Listing 4.3. Hereby, the

name, message and description are displayed to the user as part of the listed alerts,

when violations are detected. The class property points at the corresponding checker

code. In addition, a priority, and a compatible version number (since) have to be

provided for each rule. Such a new rule entry is added inside the ruleset entry for

each generated specialized checker.

Listing 4.3: A sample XML code snippet for the introduction of a new rule in PMD.

<r u l e s e t name= ‘ ‘ Sfa Custom Rules ”

. . .

<r u l e name= ‘ ‘ Poss ib leNul lPointerAtMethodCal lRule−

JavaForMethodTemplateDAOFind”

s i n c e = ‘ ‘0 .1”

message = ‘ ‘ Handle p o s s i b l e n u l l p o i n t e r a f t e r c a l l i n g

templateDao . f i n d method”

c l a s s = ‘ ‘com . t u r k c e l l . custom .pmd. r u l e s .

PossibleNullPointerAtMethodCallRuleForMethodTemplateDAOFind”

<d e s c r i p t i o n>

Handle p o s s i b l e n u l l p o i n t e r s a f t e r c a l l i n g

templateDao . f i n d method

</d e s c r i p t i o n>

<p r i o r i t y >3</p r i o r i t y >

</ru le>

. . .

</r u l e s e t >

22

CHAPTER V

EVALUATION

We have performed two case studies to detect faults in a Sales Force Automa-

tion (SFA) system and Campaign management system (CMS). These faults lead to

LazyInitializationException errors and NullPointerException errors, which are caused

by application specific method calls. CMS does not employ JPA. Hence, LazyInitial-

izationException erros are not applicable for this case study. As such, we focused on

only NullPointerException errors for the CMS case.

In this chapter, we illustrate the application of our approach on SFA and CMS.

Then, we will discuss the results in the next chapter. We can not share real code snip-

pets due to confidentiality; however, we will present representative (slightly modified)

examples that remain relevant for illustration and evaluation.

5.1 Subject systems

In the following, we briefly introduce the subject systems that used in our case studies.

5.1.1 Sales Force Automation (SFA) system

The code base of this system is maintained by Turkcell1, which is the largest mobile

operator in Turkey. The system comprises more than 200 KLOC. It is operational

since 2013, serving 2000 users. This system is used by corporate sales group to manage

and monitor sales, opportunity, meeting activities. It can be used via both desktop

and mobile platforms. We analyzed two modules of the SFA system, namely TSFA

and TSFAWEB. TSFAWEB is the user interface module. TSFA is the core module

of SFA. All services are deployed in TSFA to be accessible by the other modules.

1http://www.turkcell.com.tr

23

5.1.2 Campaign management system(CMS)

The code base of this system is maintained by Turkcell as well. The system com-

prises more than 250 KLOC. It is used for handling inbound and outbound campaign

definitions and executions. There are lots of integration points for reach different

types customers and communication channels such as SMS, e-mail, IVR etc. CMS

processes millions of requests every day via these integration points. The system is

operational since 2009, serving all Turkcell group companies (Turkcell, Superonline2,

Lifecell3, KKTCell4, etc.).

5.2 Case Studies

We have utilized Log Parser to focus our search in the log files. In particular, we

have discarded some error types and some packages that are not critical. First, we

downloaded all the log files regarding a previous version of the system from different

application servers5.

5.2.1 NullPointerException Error In SFA

A sample log content is shown in Figure 5. This snippet shows information collected

regarding a NullPointerException error. Log Parser consolidates information regard-

ing the recorded errors in multiple log files possibly generated at different application

servers. For instance, Figure 6 shows a snippet from the output of Log Parser regard-

ing the instances of the NullPointerException error as shown in Figure 5. Hereby, we

can see the location in the source code (e.g., line number and file name), where the

error first occurred.

Then, the source code is analyzed by Root Cause Analyzer based on the output

of Log Parser. The corresponding source code snippet is listed in Listing 5.1. The

2http://www.superonline.net/
3http://www.lifecell.com.ua/ru/
4http://www.kktcell.com/
5Several instances of the system are running on different application servers.

24

 2014-12-23 19:02:41,808 ERROR util.LogUtil (LogUtil.java:56) <> - thread id:38;; class:com.turkcell.crm.sfa.service.rest.OpportunityServiceResource;;method:getOptyNotes;;
 class:sun.reflect.GeneratedMethodAccessor9943;;method:invoke;;NullPointerException: ;;java.lang.NullPointerException
 at com.turkcell.crm.sfa.service.rest.OpportunityServiceResource.getOptyNotes(OpportunityServiceResource.java:293)
 at sun.reflect.GeneratedMethodAccessor9943.invoke(Unknown Source)
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
 at java.lang.reflect.Method.invoke(Method.java:597)
 at org.springframework.web.method.support.InvocableHandlerMethod.invoke(InvocableHandlerMethod.java:219)
 at org.springframework.web.method.support.InvocableHandlerMethod.invokeForRequest(InvocableHandlerMethod.java:132)
 at org.springframework.web.servlet.mvc.method.annotation.ServletInvocableHandlerMethod.invokeAndHandle(ServletInvocableHandlerMethod.java:104)
 at org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerAdapter.invokeHandleMethod(RequestMappingHandlerAdapter.java:745)
 at org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerAdapter.handleInternal(RequestMappingHandlerAdapter.java:686)
 at org.springframework.web.servlet.mvc.method.AbstractHandlerMethodAdapter.handle(AbstractHandlerMethodAdapter.java:80)
 at org.springframework.web.servlet.DispatcherServlet.doDispatch(DispatcherServlet.java:925)
 at org.springframework.web.servlet.DispatcherServlet.doService(DispatcherServlet.java:856)
 at org.springframework.web.servlet.FrameworkServlet.processRequest(FrameworkServlet.java:936)
 at org.springframework.web.servlet.FrameworkServlet.doGet(FrameworkServlet.java:827)

Figure 5: A snippet from a log file regarding a NullPointerException error.

***************ERROR type:0**
 firstErrorline :2014-12-23 19:02:41,808 ERROR util.LogUtil (LogUtil.java:56) <> - thread id:38;;
class:com.turkcell.crm.sfa.service.rest.OpportunityServiceResource;;method:getOptyNotes;;
class:sun.reflect.GeneratedMethodAccessor9943;;method:invoke;;NullPointerException: ;;
 firstClassStactTrace:at com.turkcell.crm.sfa.service.rest.OpportunityServiceResource.getOptyNotes(OpportunityServiceResource.java:293)
 firstTSFAClassStactTrace:at com.turkcell.crm.sfa.service.rest.OpportunityServiceResource.getOptyNotes(OpportunityServiceResource.java:293)

*************************** FULL ERROR DETAIL: **
***************TOPLAM TUM DOSYALARDA 1 kere olmus *********
***************AYNI KODUN ATTIGI FARKLI CESIT HATA SAYISI 1 *********
--
---------------------- TYPE : 1 --
java.lang.NullPointerException

Figure 6: A snippet from the output of Log Parser regarding the instances of the
NullPointerException error recorded as shown in Figure 5.

error was in Line 3, since the object opty was null. Then, Root Cause Analyzer

located the point in the source code, where this object was last defined. That is

Line 1 in Listing 5.1. It turned out that the definition was coming from a method

call, i.e., templateDao.find(Opty.class, optyNo);. This method performs an object-

relational mapping [28]. It creates and returns an object by utilizing information from

a relational database. If the required information cannot be found in the database, a

null value is returned.

25

Listing 5.1: The code snippet corresponding to the logged error.

1 Opty opty = templateDao.find(Opty.class , optyNo);

2 ...

3 if (opty.getCoptycategory ().equals (...))

4 {

5 ...

6 }

Then, an application-specific rule is inferred as: the return value of the method

find must be checked for null references before use. A specialized checker is automat-

ically generated based on this rule. It checks the whole code base and searches for

initialized objects using the return value of the method find without a null reference

check. As the last step, Sonar is extended with the specialized checker, which can be

(de)activated on the Sonar dashboard.

26

2015-02-06 16:01:59,659 ERROR util.LogUtil (LogUtil.java:80) <> - thread id:62;;
class:com.turkcell.crm.sfa.web.bean.user.PositionListBackingBean;;method:fetchNewRecordDataForUpdate;; entity_type: Pozisyon;;
LazyInitializationException: failed to lazily initialize a collection of role: com.turkcell.crm.sfa.entity.user.Position.substitutePositions, no session or session was closed
org.hibernate.LazyInitializationException: failed to lazily initialize a collection of role: com.turkcell.crm.sfa.entity.user.Position.substitutePositions, no session or session was
closed
 at org.hibernate.collection.AbstractPersistentCollection.throwLazyInitializationException(AbstractPersistentCollection.java:380)
 at org.hibernate.collection.AbstractPersistentCollection.throwLazyInitializationExceptionIfNotConnected(AbstractPersistentCollection.java:372)
 at org.hibernate.collection.AbstractPersistentCollection.readSize(AbstractPersistentCollection.java:119)
 at org.hibernate.collection.PersistentBag.isEmpty(PersistentBag.java:255)
 at org.apache.commons.collections.CollectionUtils.isEmpty(CollectionUtils.java:978)
 at org.apache.commons.collections.CollectionUtils.isNotEmpty(CollectionUtils.java:991)
 at com.turkcell.crm.sfa.web.bean.user.PositionListBackingBean.fetchNewRecordDataForUpdate(PositionListBackingBean.java:1231)
 at sun.reflect.GeneratedMethodAccessor43082.invoke(Unknown Source)
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
 at java.lang.reflect.Method.invoke(Method.java:597)
 at com.sun.el.parser.AstValue.invoke(AstValue.java:234)
 at com.sun.el.MethodExpressionImpl.invoke(MethodExpressionImpl.java:297)

Figure 7: A snippet from a log file regarding a LazyInitializationException error.

***************ERROR type:1**
 firstErrorline :2015-02-06 16:01:59,659 ERROR util.LogUtil (LogUtil.java:80) <> - thread id:62;;
class:com.turkcell.crm.sfa.web.bean.user.PositionListBackingBean;;method:fetchNewRecordDataForUpdate;; firstClassStactTrace:at
org.hibernate.collection.AbstractPersistentCollection.throwLazyInitializationException(AbstractPersistentCollection.java:380)
 firstTSFAClassStactTrace:at com.turkcell.crm.sfa.web.bean.user.PositionListBackingBean.fetchNewRecordDataForUpdate(PositionListBackingBean.java:1231)

*************************** FULL ERROR DETAIL: **
***************TOPLAM TUM DOSYALARDA 1 kere olmus *********
***************AYNI KODUN ATTIGI FARKLI CESIT HATA SAYISI 1 *********
--
---------------------- TYPE : 1 --
entity_type: Pozisyon;;LazyInitializationException: failed to lazily initialize a collection of role: com.turkcell.crm.sfa.entity.user.Position.substitutePositions, no session or
session was closedorg.hibernate.LazyInitializationException: failed to lazily initialize a collection of role: com.turkcell.crm.sfa.entity.user.Position.substitutePositions, no session
or session was closed

Figure 8: A snippet from the output of Log Parser regarding the instances of the
LazyInitializationException error recorded as shown in Figure 7.

5.2.2 LazyInitializationException Error In SFA

Another sample log content is shown in Figure 7. This snippet shows information

collected regarding a LazyInitializationException error. Figure 8 shows a snippet from

the output of Log Parser regarding the instances of the LazyInitializationException

error as shown in Figure 7.

Then, the source code is analyzed by Root Cause Analyzer based on the out-

put of Log Parser. The corresponding source code snippet is listed in Listing 5.2.

The error was in Line 7, since getSubstitutePositions method of the object selected-

Position was not initialized. Then, Root Cause Analyzer located the point in the

source code, where this object was last defined. That is Line 4 in Listing 5.2. It

turned out that the definition was coming from the definition of selectedPosition.

27

This object is not initialized correctly. There ise a JPA6 entity named Position which

has getSubstitutePositions method that is used in the application to get substitute

positions of a position. If the Position object is initialized by using the positionSer-

vice.getPositionByIdWithSubstitutePositions method, getSubstitutePositions method

runs properly. Howewer, if the Position object is initilazied by another positionService

method like getPositionById, it causes org.hibernate.LazyInitializationException.

Listing 5.2: The code snippet corresponding to the logged error.

1 Position selectedPosition;

2 Position solUpperPosition;

3 ...

4 selectedPosition = positionService.getPositionById(positionId);

5 ...

6 solUpperPosition = positionService.getPositionById(

7 selectedPosition.getSubstitutePositions ().get(0)...

8);

9 }

Then, an application-specific rule is inferred as: if the getSubstitutePositions

method of Position object is used, then the Position object should be initialized

properly using the getPositionByIdWithSubstitutePositions method. A specialized

checker is automatically generated based on this rule. It checks the whole code base

and searches for the usage of the getSubstitutePositions method. As the last step,

Sonar is extended with the specialized checker.

5.2.3 NullPointerException Error In CMS

The third sample log content is regarding a NullPointerException error as shown in

Figure 9. This time the log files come from the CMS system. Figure 10 shows a

6http://docs.oracle.com/javaee/6/tutorial/doc/bnbpz.html

28

2016-06-15 02:40:33,490 INFO [STDOUT] 06-15@02:40 33 ERROR (Logger.java:94) - null : NULL : USER->X : Exception Detail : null
java.lang.NullPointerException

at com.turkcelltech.comet.commonutil.services.impl.OBCampaignDefinitionServiceImpl.getCampaignDefinition(OBCampaignDefinitionServiceImpl.java:157)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
at java.lang.reflect.Method.invoke(Method.java:597)
at org.springframework.aop.support.AopUtils.invokeJoinpointUsingReflection(AopUtils.java:310)
at org.springframework.aop.framework.JdkDynamicAopProxy.invoke(JdkDynamicAopProxy.java:198)
at $Proxy171.getCampaignDefinition(Unknown Source)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

Figure 9: A snippet from a log file regarding a NullPointerException error on CMS.

***************ERROR type:0**
 firstErrorline :
 firstClassStactTrace:at
com.turkcelltech.comet.commonutil.services.impl.OBCampaignDefinitionServiceImpl.getCampaignDefinition(OBCampaignDefinitionServiceImpl.java:157)
 firstTSFAClassStactTrace:at
com.turkcelltech.comet.commonutil.services.impl.OBCampaignDefinitionServiceImpl.getCampaignDefinition(OBCampaignDefinitionServiceImpl.java:157)

*************************** FULL ERROR DETAIL: **
***************TOPLAM TUM DOSYALARDA 4 kere olmus *********
***************AYNI KODUN ATTIGI FARKLI CESIT HATA SAYISI 2 *********
--

Figure 10: A snippet from the output of Log Parser regarding the instances of the
NullPointerException error recorded as shown in Figure 9.

snippet from the output of Log Parser regarding the instances of the NullPointerEx-

ception error as shown in Figure 9. Hereby, we can see that this error was observed

4 times at different application servers. Currently, we do not utilize this information;

however, it can be used for prioritization in the future.

The source code of CMS is analyzed by Root Cause Analyzer based on the output

of Log Parser. The corresponding source code snippet is listed in Listing 5.3. The

error was in Line 2, since the object schedulerList was null. Then, Root Cause Ana-

lyzer located the point in the source code, where this object was last defined. That

is Line 1 in Listing 5.3. It turned out that the definition was coming from a method

call, i.e., schedulerService.getSchedulerList(schedulerSearch);. This method performs

a database call to get scheduler information. It creates and returns an object by

utilizing information from a relational database. If there is no scheduler record in the

database, a null value is returned.

29

Listing 5.3: The code snippet corresponding to the logged error on CMS

1 ...

2 List <Scheduler > schedulerList =

3 schedulerService.getSchedulerList(schedulerSearch);

4

5 if (schedulerList.size() > 0)

6 {

7 ...

8 }

Then, an application-specific rule is inferred as: the return value of the method

getSchedulerList must be checked for null references before use. A specialized checker

is automatically generated based on this rule. It checks the whole code base and

searches for initialized objects using the return value of the method getSchedulerList

without a null reference check. As the last step, Sonar is extended with the specialized

checker.

30

CHAPTER VI

RESULTS AND DISCUSSION

We performed our evaluation in two different ways for the two subject systems. For

the first subject system, SFA, we did not modify the source code. We aimed at

detecting real faults manifestated in the system by checkers automatically generated

based on existing log files.

For the second subject system, CMS, we also employed a controlled experiment

approach in addition to our case study. We injected a set of faults of the same type to

test the effectiveness of our approach in detecting instances of a detected fault type

in other parts of the source code. So, we injected 5 faults to 5 different classes of

the CMS randomly. Then, we triggered one of the faults at runtime to capture the

log of the failure caused by that fault. We applied our approach to generate checkers

regarding the recorded failure. Then, we checked if all the injected faults can be

detected in the source code. In the following, we share and discuss the obtained

results. Then, we discuss threats to validity.

6.1 Results

After the extension of the static code analysis tool and its execution on the SFA sys-

tem, 26 additional alerts were generated regarding the first rule concerning NullPoint-

erException errors caused by application-specific methods (See Figure 14). Examples

of these faults exist in Appendix C. Regarding the LazyInitializationException error,

there was one additional alert (See Figure 15. All these alerts were true positives and

the corresponding code locations really required to be fixed. In fact, we saw that 3 of

these locations caused runtime errors afterwards and they were fixed in a later version

of the source code. These errors were caused by the bug type listed in Listing 5.1 and

31

Listing 5.2. If our approach were applied and all the reported alerts were addressed,

these errors would not occur at all. As a result, 27 real faults were detected with spe-

cialized checkers and 3 of them were actually activated during operational time. This

result shows the importance and high potential of information collected at runtime

as a source for improving recall in static analysis.

For the CMS case, we used the checker generated based on a reported failure

regarding one of the injected fault instances. We observed that all the injected 5

instances were detected by the generated checker (See Figure 16).

6.2 Discussions

Our approach is used for extending static code analysis tool to catch application

specific bugs automatically. Although we generated checker templates for a set of

errors, there is a possibility that we cannot create a checker template for all types

application specific errors. There is a table in Table 2 that includes a list of sample

errors encountered in the SFA system logs for a period of time. The error type

number 2 and 5 are errors for which we generated checker templates. For the error

type number 4, it is possible to generate a checker template as well. However, it is

not possible to generate checker templates for the other error types in the list. For

example, an instance of error type number 1 occured when the system tried to insert

a record to a table that violates integrity constraints. Since our checker templates use

static code analysis, it is not possible to capture errors related to runtime data. As

an another example, an instance of the error type number 6 occurs when the remote

host is not available. This is not a application specific problem but a infrastructure

problem. So, it is not possible to detect other instances of such an error with static

analysis.

32

No Exception Description Custom Checker Possible?

1 ORA-00001:unique constraint N
2 java.lang.NullPointerException Y
3 Not all named parameters have been set N
4 InvocationTargetException Y
5 LazyInitializationException Y
6 UnknownHostException: NA

Table 2: A sample list of errors detected for the SFA system.

6.3 Threats to Validity

There are some validity threats to our evaluation. First, we have developed checker

templates only for two different error types. Also, we used two subject systems from

the same application domain. Therefore, we plan to develop more checker templates

for different error types and perform more case studies in different application do-

mains. Second, we have applied our approach only for software systems written in

Java. In principle, the approach can be instantiated for different programming lan-

guages and environments. For the SFA case, we detected 26 additional faults of one

type and only one for the other type. We can infer that this approach is more useful

for certain exceptions for some systems, and not for others. Our controlled experi-

ment is also limited to 5 instances of one fault type. We used dedicated log parser

to analyse the log files. However, it can be replaced with any parser to be able to

process log files in other formats as well.

33

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

In this thesis, we proposed an approach for improving the recall of static code analy-

sis. In our approach, we extract application-specific programming rules by analyzing

execution traces collected at runtime. We automatically generate specialized checkers

for these rules as part of a static code analysis tool. Then, the static code analysis

tool can detect more faults with high precision since it checks for instances of a fault

that previously caused an error at runtime.

We conducted two industrial case studies from the telecommunications domain.

We utilized existing execution logs of a legacy system to extend static code analysis.

We were able to detect real faults, which had to be fixed later on. Hence, information

collected at runtime can be effectively exploited for improving recall in static analysis.

In the future, we plan to extend our approach to cover different types of errors

and rules. We also plan to conduct more case studies.

34

APPENDIX A

ABSTRACT SYNTAX TREE EXAMPLES

There are three AST examples which are very similar but there are some small differ-

ences. All three example is about calling methodX method in same class and method.

First Example is base example so there is no local variable declaration and this usage.

In second example, there is local variable declaration as extra. And third example,

there is only this usage as extra. In Figure 12 and 13, there are also rectangle and

arrow to indicate the difference.

Listing A.1: Sample code for AST in Figure 11

pub l i c c l a s s Dummy

{

pub l i c s t a t i c void dummy() throws Exception

{

r e s u l t = methodX (2 , 2) ;

}

}

35

Figure 11: Generated AST for sample code A.1

36

Listing A.2: Sample code for AST in Figure 12

pub l i c c l a s s Dummy

{

pub l i c s t a t i c void dummy() throws Exception

{

i n t r e s u l t = methodX (2 , 2) ;

}

}

Figure 12: Generated AST for sample code A.2

37

Listing A.3: Sample code for AST in Figure 13

pub l i c c l a s s Dummy

{

pub l i c s t a t i c void dummy() throws Exception

{

r e s u l t = t h i s . methodX (2 , 2) ;

}

}

38

Figure 13: Generated AST for sample code A.3

39

APPENDIX B

SONAR DASHBOARD SCREENSHOTS

40

F
ig

u
re

1
4
:

S
on

ar
d
as

h
b

oa
rd

fo
r

T
S
F
A

m
o
d
u
le

41

F
ig

u
re

1
5
:

S
on

ar
d
as

h
b

oa
rd

fo
r

T
S
F
A

W
E

B
m

o
d
u
le

42

F
ig

u
re

1
6
:

S
on

ar
d
as

h
b

oa
rd

fo
r

C
M

S

43

F
ig

u
re

1
7
:

S
on

ar
R

u
le

s
P

ag
e

44

APPENDIX C

REAL FAULT EXAMPLES

Listing C.1: Fault example 1

1 ...

2 TcstPosition customerTeamRegular = templateDao.find(TcstPosition.

class , customerTeamRegularId);

3 ...

4 cstDto.setNposition(customerTeamRegular.getNposition ());

5 ...

Listing C.2: Fault example 2

1 ...

2 TcstPosition t = templateDao.find(TcstPosition.class , ncstpostn);

3 ...

4 if (t.getCtypecstpostn () ==...)

5 {

6 ...

7 }

Listing C.3: Fault example 3

1 ...

2 BulkImport bulk = templateDao.find(BulkImport.class , bulkKey);

3 ...

4 bulk.setNprocessedreccount(bulk.getNprocessedreccount () + 1);

5 ...

45

References

[1] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t software
developers use static analysis tools to find bugs?,” in Proceedings of the 35th
International Conference on Software Engineering, pp. 672–681, 2013.

[2] U. Yuksel and H. Sozer, “Automated classification of static code analysis alerts:
A case study,” in Proceedings of the 29th IEEE International Conference on
Software Maintenance, (Eindhoven, The Netherlands), pp. 532–535, 2013.

[3] R. Krishnan, M. Nadworny, and N. Bharill, “Static analysis tools for security
checking in code at motorola,” ACM SIG Ada Letters, vol. 28, no. 1, pp. 76–82,
2008.

[4] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. Hudepohl, and M. Vouk, “On
the value of static analysis for fault detection in software,” IEEE Transactions
on Software Engineering, vol. 32, no. 4, pp. 240–253, 2006.

[5] B. Sun, G. Shu, A. Podgurski, and B. Robinson, “Extending static analysis by
mining project-specific rules,” in Proceedings of the 34th International Confer-
ence on Software Engineering, (Zurich, Switzerland), pp. 1054–1063, 2012.

[6] N. Ayewah, D. Hovemeyer, J. Morgenthaler, J. Penix, and W. Pugh, “Using
static analysis to find bugs,” IEEE Software, vol. 25, no. 5, pp. 22–29, 2008.

[7] H. Sozer, “Integrated static code analysis and runtime verification,” Software:
Practice and Experience, vol. 45, no. 10, pp. 1359–1373, 2015.

[8] B. Chess and G. McGraw, “Static analysis for security,” IEEE Computer Society,
vol. 2, no. 6, pp. 76–79, 2004.

[9] P. Hellstrm, “Tools for static code analysis: A survey,” Master’s thesis, Linkping
University, The address of the publisher, 2 2009. An optional note.

[10] B. Chess and J. West, Secure Programming with Static Analysis. Boston, MA:
Pearson Education, Inc., 2007.

[11] “FindBugs official website,” 2016. [online] http://findbugs.sourceforge.net.

[12] “PMD official website,” 2016. [online] https://pmd.github.io/.

[13] “Eclipse official website,” 2016. [online] http://eclipse.org/.

[14] “NetBeans official website,” 2016. [online] http://netbeans.org/.

[15] G. A. Campbell and P. P. Papapetrou, Sonarqube in Action. Shelter Island, NY:
Manning, 2014.

46

[16] N. Fenton and S. Pfleeger, Software metrics: a rigorous and practical approach.
International Thomson Computer Press, 1996.

[17] “PMD official rulesets,” 2016. [online] http://pmd.sourceforge.net/pmd-
4.3.0/rules/index.html.

[18] R. Chang, A. Podgurski, and J. Yang, “Discovering neglected conditions in soft-
ware by mining dependence graphs,” IEEE Transactions on Software Engineer-
ing, vol. 34, no. 5, pp. 579–596, 2008.

[19] R. Chang and A. Podgurski, “Discovering programming rules and violations
by mining interprocedural dependences,” Journal of Software Maintenance and
Evolution: Research and Practice, vol. 24, pp. 51–66, 2011.

[20] B. Sun, X. Chen, R. Changand, and A. Podgurski, “Automated support for
propagating bug fixes,” in Proceedings of the 19th International Symposium on
Software Reliability Engineering, (Seattle, WA, USA), pp. 187–196, 2008.

[21] C. Williams and J. Holingsworth, “Automatic mining of source code repositories
to improve bug finding techniques,” IEEE Transactions on Software Engineering,
vol. 31, pp. 466–480, 2005.

[22] S. Kim, T. Zimmermann, K. Pan, and E. Whitehead, “Automatic identification
of bug-introducing changes,” in Proceedings of the 21st IEEE International Con-
ference on Automated Software Engineering, (Washington, DC, USA), pp. 81–90,
2006.

[23] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan, “Detecting large-
scale system problems by mining console logs,” in Proceedings of the 22nd ACM
SIGOPS Symposium on Operating Systems Principles, pp. 117–132, 2009.

[24] M. Ernst, J. Perkins, P. Guo, S. McCamant, C. Pacheco, M. Tschantz, and
C. Xiao, “The Daikon system for dynamic detection of likely invariants,” Science
of Computer Programming, vol. 69, no. 1-3, pp. 35–45, 2007.

[25] B. Livshits and T. Zimmerman, “Dynamine: Finding common error patterns
by mining software revision histories,” SIGSOFT Software Engineering Notes,
vol. 30, pp. 296–305, 2005.

[26] C. Csallner and Y. Smaragdakis, “DSD-Crasher: A hybrid analysis tool for bug
finding,” in Proceedings of the 2006 International Symposium on Software Testing
and Analysis, pp. 245–254, 2006.

[27] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-oriented Software. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1995.

[28] D. Barry and T. Stanienda, “Solving the java object storage problem,” IEEE
Computer, vol. 31, no. 11, pp. 33–40, 1998.

47

