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Department of Computer Science
Özyeğin University

Assoc. Prof. Onur Kaya
Department of Electrical and Electronics
Engineering
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ABSTRACT

802.11 networks have enabled and are fueled by the proliferation of connected mobile

devices with a wide variety of applications, which have been integral parts of our

daily lives. Currently, IEEE 802.11ac is a state-of-art protocol that provides higher

data rates than its predecessors to accommodate the increasing demands of users

with more bandwidth, spatial streams, modulation schemes, and downlink multi-user

MIMO (MU-MIMO). In addition, 802.11ac protocol inherits aggregation and QoS pri-

oritization, from 802.11n and 802.11e, respectively. On the other hand, some new fea-

tures of the latest 802.11 standard may cause adverse affects to the co-existing legacy

nodes. For example, the MU-MIMO feature may result in the deafness problem, and

QoS prioritization and MAC layer aggregation cause significantly lower performance

in classical hidden node scenario - even with the RTS/CTS handshake mechanism.

Also, delay and/or packet loss in TCP significantly decreases end-to-end throughput

due to congestion control. This thesis studies and verifies these problems, proposes

a methodology to mitigate the deafness problem in MU-MIMO, analyzes experimen-

tally the effectiveness of multiple TCP connections to improve TCP throughput, and

finally provides a framework via multiple-synced-sniffing methodology to diagnose

hidden-node problems.
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ÖZETÇE

802.11 ağlar, günlük yaşantımızda önemli yer tutan taşınabilir cihazların yaygınlaşmasını

mümkün kılmıştır. Bu ağ ailesinin -şuanki- en gelişkin üyesi 802.11ac, daha yüksek

kipleme oranı, uzaysal akım, band genişliği ve uydu-yer bağlantısında kullanılan çok

kullanıcılı çok girdili çok çıktılı haberleşme teknikleriyle seleflerinden daha yüksek

başarım oranı sağlamaktaıdır. Fiziksel katmandaki bu yeni tekniklerin yanısıra; 802.11ac

erişim katmanında veri birleştirilmesi ve önceliklendirilmesini de seleflerinden miras

edinmiştir. Yukarıda bahsedilen özelliklerden, çok kullanıcılı çok girdili çok çıktılı

sistemler -öncesiyle uyumlu olmadıklarından, 802.11ac protokolünü desteklemeyen

düğümlerde sağırlık sorunu oluşturarak; ağdaki başarım oranını düşürmektedir. Ben-

zer şekilde, klasik saklı düğüm topolojisinde de, erişim katmanında uygulanan veri

birleştirilmesi ve önceliklendirilmesi; RTS/CTS el sıkışmasının kullanılmasına rağmen

ciddi veri kaybına yol açmaktadır. 802.11 ağlardakı bu gibi problemlerin oluşturduğu

veri kaybı ve gecikmesi, uçtan uca veri aktarım kontrolü için kullanılan TCP protol-

lerindeki tıkanıklık kontrol algoritmalarından dolayı da -ilave olarak- başarım oranını

düsürmektedir. Bu tezde 802.11ac protokolünü desteklemeyen düğümlerde oluşan

sağırlık sorununu önleyici yaklaşım, çoklu bağlantılarla uçtan uca TCP başarım oranını

arttıcı deneysel çalçışmalar ve saklı düğüm problemini analiz etme metodolojisi sunulmuşur.
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CHAPTER I

INTRODUCTION

In 1985, the Federal Communications Commission (FCC) released the spectrum from

2.4-2.5 GHz for use by the Industrial, Scientific and Medical communities. This ex-

citing news meant that the spectrum would be available for developers of wireless

communication technologies without requirement of licensing fees; led many develop-

ments that were far from today’s ubiquitous, sprawling networks.

In the early 1990s, however, the IEEE realized that a wireless communications

infrastructure was necessary to meet a clearly desirable market niche and established

an executive committee -as part of the IEEE 8021 standard, to focus on developing a

wireless LAN (Local Area Network) standard [1]. This aim introduced “11” family of

IEEE 802 standards (IEEE 802.11), aka Wi-Fi. At that time, there were no handheld

mobile phones that utilized Wi-Fi and very few laptops. The challenge was providing

a reliable, fast, inexpensive wireless solution in 2.4-2.5 GHz band that could grow into

a standard with widespread acceptance.

In 1997, the IEEE ratified the original 802.11 standard with a maximum data

rate 2 Mbps, which holds compatibility with wired Ethernet networks in MAC layer

-see Figure 1. From that day to this, 802.11 networks has enabled and is fueled by

the proliferation of connected mobile devices with a wide variety of applications that

have been integral parts of our daily lives.

In this thesis, we first dedicate this chapter to introduce working principles of

802.11 protocol. Following this, we provide two throughput reductive case studies

that grew up from evolution of the protocol in Chapters 2 and 3 with our proposed

1The general IEEE designation for network standards
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Figure 1: 802.3 (ethernet) to 802.11 (Wi-Fi) encapsulation.

solutions. Lastly, we consider cross-layer optimization of Wi-Fi with TCP in Chapter

4 and draw conclusions in Chapter 5.

1.1 IEEE 802.11 summary

In this subsection, we would explain how does the client connect to the access point,

how do they operate and which problems do they experience during the operation

time.

1.1.1 Establishing Connection

Access points bridge traffic in between mobile stations and other devices on the net-

work. Before streaming data on the network, a mobile station should be in appropriate

connection state (authenticated and associated) with an AP.

The three 802.11 connection states are:

• Not authenticated or associated

• Authenticated but not yet associated

• Authenticated and associated

In order to join a Wi-Fi network, a mobile station first sends a probe requests to

discover 802.11 networks within his proximity. Probe requests advertise his supported

data rates and 802.11 capabilities.

2



After receiving a probe request, an AP -or APs- would try to find at least one

common supported data rate with the mobile station. If there is, an AP would send a

probe response, which advertises his SSID2, supported data rates, encryption types

and other 802.11 capabilities.

Consequently, the mobile station chooses compatible networks from probe re-

sponses that he received. Once compatible networks are discovered, the mobile station

will attempt to authenticate by sending 802.11 authentication frame with sequence

number 0x0001.

After receiving the authentication frame, the AP responds with authentication

frame set to open indicating a sequence of 0x0002. At this point the mobile station

is authenticated but not yet associated. If an AP receives any frame other than an

authentication or probe request from the mobile station, that is not authenticated, it

will respond with a de-authentication frame; placing the mobile into an unauthenti-

cated and non-associated state.

Once the mobile station determines an AP to associate, he will send an association

request. This frame contains chosen encryption types if required and other compatible

802.11 capabilities.

If the elements in the association request would match the capabilities of the

AP, the AP will create an Association ID for the mobile station and respond with

an association response with a success message - this grants network access to the

mobile station. Now the mobile station is successfully associated to the AP and data

transfer can begin -see Figure 2.

2Service Set Identifier, wireless network name

3



Figure 2: Association Procedure of mobile station to AP
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1.1.2 Data Transfer in 802.11

Once the mobile station connects to the AP, he utilize the bandwidth with respect to

the distributed or coordinated scheduling, which is selected by AP from the options

below.

• Point Coordination Function (PCF)

• Distributed Coordination Function (DCF)

The PCF has not been embedded in most of 802.11 chipsets and all of the work in

this thesis is considered with the existence of DCF. Nevertheless, we would dedicate

next paragraph to shortly explain PCF.

The point coordination function allows an 802.11 network to provide an enforced

“fair” access to the medium where access to the medium is restricted by the AP. At

the beginning, the AP transmits a Beacon frame containing the CF3 Parameter Set

element to gain control of the wireless medium. Consequently, associated stations

do not contend for the medium and can transmit data only when they are allowed

(actually polled) by the AP. Even though PCF has been part of the 802.11 standard

from the beginning, due to it’s higher overhead and interoperability (in between

different vendors) problems, vendors have always been reluctant to activate it.

Unlike PCF, DCF is a mechanism where mobile stations have channel access with

contention. Nevertheless, 802.11 APs are not able to decode concurrent transmissions

on same frequency. So, if more than one mobile station would transmit data towards

an AP on same time and frequency, none of them could utilize the network. For this

reason, each station with a packet to transmit, has to be sure that nobody is using

channel4 for a constant amount of time5. This is done by simply measuring the amount

3Contention Free
4Wi-Fi is usually called as listen-before-talk protocol for this reason
5DIFS, distributed inter-frame space
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Figure 3: Illustration of Carrier Sense Multiple Access in 802.11 networks.

of energy received on channel -called Carrier Sensing. Initiating transmission just

after this constant amount of time would still cause concurrent transmissions -which

is called collision. For this reason, stations initialize a back-off timer with a randomly

selected duration, decrement it every time they sense an idle channel, then initiate a

packet transmission.

This mechanism could be followed from Figure 3. Stations B, C, and D have pack-

ets to transmit, while Station A has data transmission. After completion of Station

A’s transmission and constant amount of time, all of them obtains a random back-off

duration in between [0, CW )6. Since Station C obtained lower back-off duration, he

consumes it and initiates his transmission earlier than others. Following this, Stations

B and C repeat the contention procedure.

The final task of the transmitter is waiting for an acknowledgement. If his trans-

mission was successful, the receiver would respond with an ACK frame and if the

transmitter would also receives an ACK frame successfully, he would be able to de-

crease his current Contention Window to minimum value of existing traffic7. This

gives an earlier access opportunity for the next transmission. As represented in the

6CW: Contention Window
7We would provide more details on it in next subsection
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Figure 4: Flow Diagram of 802.11 Carrier Sense Multiple Access.

Figure 4, upon unsuccessful data transmission or ACK reception, transmitter doubles

his Contention Window.

Due to the distance and existence of various signal fading elements in between

nodes (such as walls), it is possible for one station to not sense transmission of the

other. In such case, a mobile station could initiate a concurrent transmission with

his neighbour, which causes a collision -see Figure 5. This phenomenon is called the

hidden node problem which significantly decreases network performance due to waste

of time.

IEEE 802.11 has an optional RTS/CTS8 mechanism to mitigate the effect of this

phenomenon. In this case, after the back-off timer, the transmitter tries to reserve the

medium until end of expected ACK9 frame. This is expressed via Duration (2 bytes)

8Request to Transmit / Clear to Transmit
9Acknowledgement

7



Figure 5: Illustration of a collision caused by a hidden node setting: Station B
consumes back-off timer during transmission of Station A, since he does not sense;
consequently starts transmission towards AP too.

Figure 6: Illustration of RTS/CTS control frame exchange.
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Figure 7: RTS frame format.

Figure 8: CTS frame format.

field of RTS frame -see Figure 7. If the receiver successfully receives and decodes the

RTS frame, he responds with CTS frame, which also contains Duration10 field -see

Figure 8. Thus, hidden node decodes one of these two frames and does not access the

channel for a said duration.

1.2 Improvements of IEEE 802.11 in History

In this subsection, we present some of major improvements of 802.11 in physical layer

and medium access control layer.

1.2.1 PHY Layer Improvements

As it could be observed from Table 1, maximum link rate of 802.11 increased from 2

Mbps to 6.9 Gbps in 19 years. This improvement is mostly based on following PHY

10Note that, the value of the Duration is updated, since aim is reserving medium until end of the
ACK frame.
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layer elements: Modulation and Coding Scheme (MCS), Bandwidth, Multiple Input

Multiple Output communications.

From the original 802.11 to today’s 802.11ac, Modulation and Coding Scheme

increased from 1
11

QPSK to 5
6

256 QAM, bandwidth is increased from 20 MHz to 160

MHz and communication with 8 spatial streams were enabled.

802.11 Year Freq. Max. BW MIMO MU- Max. Rate
prot. (GHz) (MHz) MIMO MCS (Mbps)
802.11 1997 2.4 22 7 7 QPSK × 1/11 2
a 1999 3.7/5 20 7 7 QAM-64 × 3/4 54
b 1999 2.4 22 7 7 QPSK × 1/2 11
g 2003 2.4 20 7 7 QAM-64 × 3/4 54
n 2009 2.4/5 20, 40 4 7 QAM-64 × 5/6 600
ac 2013 5 160 8 4 QAM-256 × 5/6 6930

Table 1: IEEE 802.11 network standards PHY information

In addition, multiple user transmission on same frequency and time is firstly im-

plemented with release of IEEE 802.11ac

Beyond the deployed standards in Table 1, IEEE 802.11 has ongoing developments

in following protocols for particular purposes.

• 802.11ah (Wi-Fi HaLow)11: Operates in sub 1 GHz license-exempt bands.

The aim is providing lower energy consumption and higher range. Allows of-

floading cellphone tower traffic and creation of large groups of stations (or sen-

sors) that cooperate to share the signal, supporting the concept of the Internet

of Things (IoT) [2].

• 802.11ad and 802.11ay: Operates in 60 GHz band which has significantly

different propagation characteristics than 2.4 GHz and 5 GHz.

• 802.11ax: Operates in 5 GHz band, supports 4× 4 MIMO where each spatial

stream and 2 MHz sub-carrier could be scheduled via OFDMA. The aim is

11“HAY-Low”
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providing a fair and coordinated scheduling in dense WLAN scenarios –such as

stadiums or trains [3].

1.2.2 MAC Layer Improvements

Besides aforementioned improvements in PHY layer above, the evolution of 802.11’s

MAC layer also provided significant gains in terms of throughput and lower energy

consumption. Below, we provide a detailed information on major ones.

802.11 Purpose
prot.
e Enhancements; QoS including packet bursting
f Inter-Access Point Protocol (IAPP)
h 5 GHz spectrum, Dynamic Channel/Frequency Selection
k Radio resource measurements
r Fast roaming
s Wireless mesh networking
u Interworking with non-802 networks12

v Wireless network management

Table 2: IEEE 802.11 amendments

1.2.2.1 Frame Aggregation

802.11n was proposing extremely higher throughput (with MIMO and wider band-

width) than his predecessors and there was less tolerance for existing inter-frame time

overhead in between successive transmissions. For this reason, frame aggregation is

introduced with this protocol.

As we mentioned above, transmitter node waits an acknowledgement after trans-

mission. In detail, this “data transmission” event has following overhead13:

• Constant wait (DIFS14)

13-See Figure 9
14Distributed Inter Frame Space time, usually 34 us
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• Back-off wait. For best-effort traffic; CW is uniformly selected from [0, 24) in

best case and [0, 210) in worst case, in terms of slot time15.

• SIFS16 wait. Wi-Fi chips require this time to change mode from transmitter to

receiver (or vice versa)

Here, we provide A-MPDU17 methodology, which is most commonly used ap-

proach for frame aggregation in today’s Wi-Fi chips. Each 802.11 packet (as in Fig-

ure 1) is Mac Protocol Data Unit. Putting them back-to-back with MPDU delimiter

(to declare beginning and length of MPDU unit) would create an A-MPDU frame.

So, to avoid an inter-frame overhead, transmitter might transmit a single A-MPDU

frame and receiver would response with a Block Acknowledgement (which contains

sequence start number and bitmap) to inform which of the transmitted sequences are

received correctly. Since each MPDU has its own FCS18, receiver is be able to decode

and acknowledge them separately/independently.

1.2.2.2 Quality of Service

In order to differentiate delay-sensitive applications, such as Voice over Wireless LAN

and multimedia streaming, IEEE released the 802.11e amendment in the context of

MAC Enhancements QoS. The purpose of the amendment was providing a higher

chance of channel access for higher priority traffic -which is usually provided in Type

of Service (ToS) field of IP header. This is accomplished via setting different min-

imum and maximum Contention Window values for different types of traffic (usually

called as Access Categories) as illustrated in Table 3.

15Mostly 9 microseconds
16Short Inter-Frame Space time, usually 16 microseconds
17Aggregated-Mac Protocol Data Unit
18Frame Check Sequence
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Figure 9: Representation of frame aggregation.

Figure 10: Construction of A-MPDU packet.
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Access Category CWmin CWmax

Background (AC BK) 15 1023
Best Effort (AC BE) 15 1023

Video (AC VI) 7 15
Voice (AC VO) 3 7

Legacy DCF 15 1023

Table 3: Default CW values in 802.11e

In Equations 2 and 1 we provide the average time of channel access for video

traffic and best effort traffic, when there is no unsuccessful transmission.

AC V Iavg = DIFS +
7

2
× SLOT = 65.5µs (1)

AC BEavg = DIFS +
15

2
× SLOT = 101.5µs (2)

1.2.2.3 Wireless Mesh Networks and Roaming

IEEE 802.11 networks are able to construct wireless backbone to increase coverage

and/or throughput with usage of Wireless Distribution System (WDS). Routing traffic

flow in mesh network, hand-off connectivity of client from AP to AP and band steering

(such as forcing station to use 5 GHz, instead of using interference existing 2.4 GHz) of

mobile station has always been though challenge -and research interest- for industrial

and academic communities in such systems.

In order to ease hand-off operation, IEEE 802.11k is released in 2008 which pro-

vides topology information messaging in between AP and client. Another relevant

amendment for hand-off operation is IEEE 802.11r, which gives a chance to AP to

send “roam” directive to client.
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CHAPTER II

EXPERIMENTAL INVESTIGATION OF THE IMPACT

ON TCP TRAFFIC BY HIDDEN VIDEO-TAGGED UDP

TRAFFIC

In this chapter, we investigated the impact of video-tagged UDP traffic on best-effort

TCP traffic in an experimental setup with a novel observation approach [4]. Our

setup consists of three 802.11ac nodes in a hidden node topology, where a 20 Mbps

UDP and a best effort TCP traffic flow from the edge (hidden) nodes to the center

node, as illustrated in Figure 11.

We observe that, even though the RTS/CTS mechanism is enabled, when UDP

and TCP traffic flow simultaneously, video-tagged UDP traffic causes the best-effort

TCP traffic throughput to drop by 50%.

Figure 11: Graphical illustration of investigated hidden node problem.

Below, we first present our investigation approach of the case and causes that we

extracted.
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2.1 Investigation Methodology

First, we initiated TCP (best effort) and UDP (20 Mbps) traffic towards the same

receiver from different nodes via iperf1 for 60 seconds. Afterwards, we repeated the

experiment with “video tagging” UDP traffic. Here, we used iperf’s tagging support,

which actually manipulates Type of Service (ToS) field of IP header. By this way,

AP uses different minimum/maximum Contention Window values, as shown in Table

3.

Video Tagging TCP UDP UDPjitter UDPlost UDPtotal
7 270 Mbps 20 Mbps 0.67 ms 65 108664
3 129 Mbps 20 Mbps 0.57 ms 591 224572

Table 4: Throughput, delay, and packet loss statistics of video tagged and non video
tagged UDP traffic with existence of best-effort TCP.

As it could be seen from Table 4, IEEE 802.11e’s default “video tagging” compli-

ance drastically decreases TCP throughput in this topology.

Video Tagging TCPtx rts TCPrx cts UDPtx rts UDPrx cts

7 38896 27570 25088 16379
3 42381 17215 113661 50603

Table 5: Counters of transmitted RTS from sources (TCP, UDP) and received CTS

frames that addressed to sources.

Consequently, we obtained number of transmitted RTS frames from TCP and

UDP sources2 and number of received CTS frames (that addressed to this sources)

via sources -see Table 5. We suprisingly realized that, UDP source is transmitting

RTS frames 4 times more when video tagging is enabled and half of those frames are

not replied by receiver.

Collision of RTS frames from different sources is acceptable, since RTS is a control

frame that has less air-time usage than actual data. Also, after such case, collision

1Frequently used network bandwidth measurement tool[5]
2Using (wl -i wl1 counters) command of Broadcom 4360 Chip
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experienced node updates Contention Window, whereas this collision probability de-

creases. Nevertheless, such drastic throughput degradation is not expected at with

RTS collisions of hidden nodes.

Figure 12: Constructed sniffer setup to investigate problem.

At this stage, we aimed to understand the problem and started development of a

tool that would just plot the data on the air, as in previous Figures 5 or 6. We used

Python programming language for back-end, Javascript for front-end development.

First, to gather packets on the air, we put sniffer devices3 in the vicinity of all

three devices in network and sniffed the medium via tcpdump[6]. Consequently, we

parsed the data via open source libpcap parsing library pypcapfile[7] in Python

-contributed to it by implementing parsing of Wi-Fi packets.

3We used Qualcomm QCA9980 (Beeliner) cards for this purpose
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Wireless drivers provide each of the Layer 2 packets in an A-MPDU block as

separate packets. Nevertheless, these packets are transmitted as a whole in Layer 1;

thus, we need to re-assemble Layer 2 packets before air-time calculation of A-MPDU

blocks. Most wireless drivers timestamp all packets within an A-MPDU block with

the same timestamp (radiotap.mactime). We used this to group A-MPDU packets

together.

Consequently, we calculated air-time of each packet, considering physical layer

parameters -such as modulation and coding scheme, bandwidth, number of spatial

streams and guard interval. This information is available at radiotap [8] headers in

captured files, which is produced by wireless drivers too.

The next task was synchronization in the granularity of microseconds; since we

want to relate captured frames from different sniffers. Here, all sniffers are able to

hear transmissions of receiver and the source in his vicinity.

At this point, we decided to use timestamps of periodically (usually in 100 millisec-

onds) transmitted Beacon frames from receiver node, since it’s timestamp is broad-

casted on the air and unique. Nevertheless, we realized that clock speed of processors

of sniffing devices are not same, 1µs to 2µs shift is possible in each 100 milliseconds.

Here we realized that sync in 100 milliseconds won’t provide enough granularity to

detect RTS collisions.

In this case, we found that common Block Acknowledgement frames that are

transmitted from receiver might be useful. In all experiment period, B-ACKs can be

quite repetitive. However, considering B-ACKs jointly with Beacons provide enough

uniqueness to sync timestamps. Our approach was as following:

• Find a beacon frame that received from all three sniffers.

• Find the first B-ACK frame that is transmitted after common beacon and re-

ceived from all sniffers.
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• Sync timestamps and repeat the previous step

Distinguishing B-ACK frames are relatively easy in limited interval, since they

contain sequence number information which rounds in [0, 4096). Thus, we synced

timestamps of captured packets in granularity of microseconds.

2.2 Root Cause: RTS CTS collision

After calculating the air-time of each sniffed packet and synchronizing timestamps

of captured packets from multiple devices, we used Mike Bostock’s D3.js library to

visualize our findings[9].

Here, we visually observed the following pattern that we express step-by-step

below (also represented in Figure 13).

Figure 13: Graphical illusturation of root cause. UDP transmitter initiates RTS
frame concurrently with receiver’s CTS (going towards TCP source). Consequently,
A-MPDU block is consecutively collided with RTS frame of UDP source.

1. TCP source initiates an RTS frame towards the receiver, then waits for a SIFS

duration.

2. UDP source is hidden, did not sense this RTS frame, hence initiates a RTS

frame towards the receiver too.
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3. Receiver decodes the RTS of the TCP source and starts to switch from receiving

mode of hardware to transmitting mode –in SIFS period. Therefore, the receiver

could not decode (even not sense) RTS frame of the UDP source.

4. Receiver initiates a CTS frame towards the TCP source. Since TCP source

does not hear transmission of the UDP source, he can successively decode this

CTS frame.

5. After receiving the CTS frame, TCP source initiates an aggregated data frame.

6. UDP source does not get any response for his RTS frame, has an idle wait and

initiates another RTS frame, which causes collision with A-MPDU block. UDP

source repeats this procedure until the end of A-MPDU.

7. Receiver decodes some of the MPDU blocks in A-MPDU and acknowledges the

TCP source.

8. TCP source gets a B-ACK, even his transmission was partially unsuccessful,

does not increase his Contention Window.

The effect of video tagging becomes very critical at Step 6, since Contention

Window minimum/maximum limits in video access category are low. For this reason,

when UDP traffic is video tagged, more frequent RTS frames collides with more

MPDUs, hence drastic degradation occurs in TCP traffic.

In order to measure the negative impact, we compared transmitted MPDU’s via

the sequence number field4 of data packets and acknowledged MPDU’s via the start-

ing sequence number5 and the bitmap6 field of Block Acknowledgement packet from

capture of sniffer next to TCP source. Here, we provide a histogram of failed MPDU’s

in Figures 14, 15. As it could be realized, ”video tagging” causes more failed MPDU’s.

4wlan.seq
5wlan mgt.fixed.ssc.sequence
6wlan.ba.bm
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Figure 14: Histogram of failed MPDU’s (in 10 seconds), jointly extracted from Block
Acknowledgement and A-MPDU packets, in TCP traffic when UDP traffic is best
effort.
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Figure 15: Histogram of failed MPDU’s (in 10 seconds), jointly extracted from Block
Acknowledgement and A-MPDU packets, in TCP traffic when UDP traffic is video
tagged.
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Figure 16: Ratio of RTS packets (in 10 seconds) from video tagged UDP source that
collided with CTS packets from receiver over successful RTS packets.

2.2.1 Probability of RTS CTS collision

Although occurrence of initial RTS-CTS collision event seems to be very rare, we

found the probability of it as %11.58 during our studies. Here, we extract number

of successful RTS transmissions from the UDP source, then count overlaps of RTS

packets from the UDP source and CTS packets from the TCP source through time.

Consequently, we calculated the ratio of overlapping RTS-CTS packets and successful

RTS packets; plot it on Figure 16.

A simple approximate computation of the collision probability is as follows. In

our case, RTS packets from the UDP source can only collide with CTS packets of the

receiver, if it’s just transmitted in [0, SIFS) duration before the target CTS transmis-

sion time of the receiver.7 By using SLOT, SIFS duration and contention window (for

video-tagged node) parameters in Table 3, we can formulate the RTS-CTS collision

probability (given that first RTS frame is initiated by TCP source) as following:

7Since SIFS duration exists for changing hardware mode and the receiver does not listen for any
further packets upon receiving the RTS packet from the TCP source.
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Figure 17: Swap of RTS CTS collision probability with respect to contention window
of video-tagged node.

P (coll) = P (coll|CW3)P (CW3) + P (coll|CW4)P (CW4)

=
1

8
× P (CW3) +

1

16
× P (CW4)

Video tagging provides quicker channel access, since Contention Window lim-

its are lower -see Table 3. This introduces smaller A-MPDU’s, which is good for

smaller jitter; yet causes more control packet transmission (RTS, CTS and Block Ac-

knowledgement) and inter-frame spacing overhead. Here, we provide histograms in

Figures 18, 19, when video tagging is enabled and not.

Shortly after failed RTS frames, we observed that UDP source lowers MCS rate

to it’s minimum (MCS 0), upon getting the first CTS frame from the AP; although

RSSI level is satisfactory for MCS 4. This results in near 1
6

slower transmissions in

UDP traffic -see Table 8. Here, we provide MCS histogram of UDP source when UDP

traffic is video tagged or not in Figures 20, 21.
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Figure 18: Histogram of MPDU counters (in 10 seconds) in A-MPDU packets trans-
mitted from UDP source when traffic is video tagged
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Figure 19: Histogram of MPDU counters (in 10 seconds) in A-MPDU packets trans-
mitted from UDP source when traffic is best-effort
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Figure 20: Histogram of MCS counters (in 10 seconds) in A-MPDU packets trans-
mitted from UDP source when traffic is video tagged
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Figure 21: Histogram of MCS counters (in 10 seconds) in A-MPDU packets trans-
mitted from UDP source when traffic is best-effort
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2.3 CW Tuning to Mitigate the Effect

In order to protect MPDU frames from consecutive and frequent RTS collisions, we

intend to increase inter-arrival times of RTS frames. For this reason, we manipulated

minimum/maximum contention window values of video tagged UDP traffic8. Below,

we present throughput statistics in Table 6 and RTS/CTS statistics of sources in

Table 7.

UDPCW MIN UDPCW MAX TCP UDP UDPjitter UDPlost UDPtotal
15 31 149.7 Mbps 20 Mbps 0.579 ms 73 207680
31 63 210.5 Mbps 20 Mbps 0.727 ms 21 208065
63 127 263.7 Mbps 20 Mbps 0.806 ms 3 207581

Table 6: Effect of contention window tuning on throughput.

UDPCW MIN UDPCW MAX TCPtx cts TCPrx cts UDPtx rts UDPrx cts

15 31 40984 18831 88039 42582
31 63 45333 24371 48228 21167
63 127 45615 29033 23853 11821

Table 7: Counters of transmitted RTS from sources (TCP, UDP) and received CTS

addressed to sources after contention window tuning.

As demonstrated by Table 6, contention window limit manipulation decreases

number of non-replied RTS frames by UDP source. The expense of contention window

increment is extra jitter in video traffic. Nevertheless, even video traffic has always

been a lot important, less than 0.3 milliseconds extra jitter could be acceptable for

not losing video packets, also for 130 Mbps improvement in best-effort traffic.

8Here we used Broadcom’s wl -i wl1 wme ac ap vi ecwmin 15 (or ecwmax for maximum
limit) command
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Table 8: Modulation and coding schemes in 802.11ac
Index Modulation Coding Scheme Rate (Mbps)

0 BPSK 1/2 6.5
1 BPSK 3/4 13.0
2 QPSK 1/2 19.5
3 QPSK 3/4 26.0
4 16 QAM 1/2 39.0
5 16 QAM 3/4 52.0
6 64 QAM 1/2 58.5
7 64 QAM 3/4 65.0
8 256 QAM 3/4 78.0
9 256 QAM 5/6 86.7
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CHAPTER III

INVESTIGATIONS ON MULTI-USER MIMO FEATURE

IN IEEE 802.11 AC NETWORKS

In this chapter, we present our studies on the MU-MIMO feature with a hetero-

geneous Wi-Fi network where 802.11ac and legacy 802.11n nodes coexist [10]. In

MU-MIMO technique, the 802.11ac AP performs beamforming at the downlink in

order to increase the total throughput to its clients. Before initiating a MU-MIMO

transmission, the AP first sends an NDP Announcement frame including the estimated

duration of the MIMO transmission [11, 12]. Then it performs channel sounding in

order to be able to perform beamforming, and finally sends the data -Figure 23.

Here, we focused on following two concerns associated with MU-MIMO operation:

The first one is the overhead of the channel sounding operation before MU-MIMO

transmission, which increases linearly with the total number of clients.

The second one is with the coexisting legacy clients. Since the clients that are not

recipients may be at the low gain directions of the formed beams, they may not sense

Figure 22: Illustration of deafness problem during MU-MIMO transmission.
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Figure 23: Channel Sounding Procedure before MU-MIMO transmission

the ongoing transmission, nevertheless, they have to remain silent for the announced

duration of the MIMO transmission. However, since legacy clients are not able to

decode announcement frame -backward compatibility problem- they can’t be aware

of the ongoing MU-MIMO transmission and initiate their own transmission, resulting

in collision of both transmissions. This phenomenon is akin to the deafness problem

in ad-hoc networks [13], see Figure 22.

In order to study the these problems, we first developed a simulator that models

the PHY and MAC layers of 802.11ac and 802.11n networks in a detailed fashion.

Below, we first describe construction of our simulation platform. Consequently, we

present our studies on effect of the 802.11n users on the 802.11ac network during MU-

MIMO transmission and overhead-information trade-off during channel sounding.

3.1 Simulation Platform

In order to analyze the overhead of channel sounding procedure, the effect of the

deafness problem on the MU-MIMO transmissions and the proposed mitigation tech-

niques, we developed a realistic, event-driven simulator that implements all aspects

29



of the PHY and MAC layers of 802.11n and 802.11ac protocols in a detailed fashion.

The channels between the nodes in the network (the AP and the clients) are

modeled using the ITU indoor channel model [14]. The path loss in dB is computed

according to

Lpath = 20 log(f) + 10α log(d) + Lw(n)− 28, (3)

where α is the path loss coefficient, f is the carrier frequency, d is the distance

between nodes, and Lw(n) is the loss due to concrete walls between the nodes as given

in [14], where n is the number of concrete walls.

Log-normal shadowing with a standard deviation of 12 dB is assumed. A decor-

relation distance of 10 meters and walking speeds of 0.33 m/s are assumed, which

result in a shadowing coherence time of 30 s. The connections are assumed to be

non-line-of-sight (NLoS), thus, Rayleigh Fading model is used. Considering walking

speeds of 0.33 m/s and a carrier frequency of 5.2 GHz yield a Doppler frequency of 5.7

Hz, which results in a multi-path fading coherence time of 0.18 seconds. The beam

patterns of the MU-MIMO transmission are formed according to the beam patterns

for LTE antennas as given in [15].

The event driven simulation is carried out as follows. The data of the AP (down-

link data) and the clients (uplink data) are assumed to arrive with packets that are

uniformly distributed in time with a constant mean bitrate and enter the queues of

the AP and the clients respectively. When the AP has data to send in its queue, it

enters the CSMA procedure. After the back-off is complete, the AP either transmits

data to one client or initiates a MU-MIMO transmission.

For this, if the channel parameters are not recent enough, the AP first performs

channel sounding as explained above. Given the channel parameters, the AP decides

on the optimal number of receiving clients and the beam pattern, including the option

of sending to one client with no MIMO, that maximizes the throughput. At the end of
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Table 9: PHY and MAC layer parameters used in simulations.
PHY LAYER PARAMETERS

No. of antennas in AP, (M) 4
No. of antennas in client 1
No. of data sub-carriers in 802.11ac (Ndsc) 468
Feedback period 10 ms

Channel model ITU Office Area Model
Shadowing model Log-normal
Shadowing standard deviation 12 dB
Shadowing coherence time 30 s
Multi-path fading model Rayleigh
Multipath coherence time 0.18 s
Doppler frequency 5.7 Hz

Transmit power 17 dBm
Receiving sensitivity threshold −82 dBm

Center frequency 5.2 GHz
Channel bandwidth (802.11ac) 160 MHz
Channel bandwidth (802.11n) 40 MHz

MAC LAYER PARAMETERS

Aggregation scheme A-MPDU
Transmission opportunity (TXOP) (802.11ac) 5500 µs
Transmission opportunity (TXOP) (802.11n) 2064 µs
Bit arrivals Uniformly distr. in time
Average bit rate Constant
Payload size (802.11ac) 12000 bits
Payload size (802.11n) 2000 bits
Retransmission limit 4

NDP frame duration 36 + 4Mµs
NDP announcement frame 152 + 16n bits
(n = no of clients involved in channel sounding).
Compressed beamforming frame 40 + (8MNdsc) bits
Beamforming report poll frame 96 bits
RTS frame 160 bits
CTS frame 112 bits
BAR frame 192 bits
BA frame 256 bits
ACK frame 112 bits

DIFS duration 34 µs
PIFS duration 25 µs
duration 16 µs
Slot duration 9 µs
Minimum contention window size 16 slots
Maximum contention window size 1024 slots
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the MU-MIMO transmission, the AP transmits a Block Acknowledgement Request

(BAR) frame to each client and clients respond with a Block Acknowledgement (BA)

frame, according to which, the AP queue is updated.

The uplink process is also similar, where each client enters the CSMA procedure

given data to be transmitted exists in its queue. After the back-off, the client either

transmits the data directly or performs RTS/CTS handshake. Similar acknowledge-

ment procedure follows data transmission. If a collision occurs, the collided frames

indicated in the BA frame are kept for retransmission or dropped if retransmission

limit is reached.

3.2 Investigation of Channel Sounding Overhead

As mentioned earlier, channel sounding performed by the IEEE 802.11ac AP for MU-

MIMO beamforming has an overhead that increases linearly with the number of users.

In our simulations, we first investigate this overhead. Toward this end, we propose

two schemes with less overhead. In one scheme called HALF, instead of polling all

clients, the AP polls at most half of the clients that have highest amount of data

pending in the AP queue. In the second approach, the AP polls at most four clients

in a similar fashion, which we call FOUR. The original scheme where all clients are

polled is called ALL.

In all three schemes, after channel sounding, given the channel characteristics and

the pending data, the AP decides on the best MU-MIMO beam pattern and other

transmission parameters in order to maximize the total throughput achieved. This

means, some clients that are along the same directions might not be simultaneously

scheduled, or sometimes, MU-MIMO transmission may even be not optimal and the

AP might fall back to scheduling a single user. Clearly, there is a trade-off here,

which is the focus of this subsection. Polling more clients in the beginning incurs

higher airtime overhead but it also increases the expected throughput by increasing
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the possibility of scheduling more users with beamforming.

As a benchmark scheme, we also consider the case when no MU-MIMO trans-

mission is performed and the AP schedules the client with the best channel charac-

teristics. Although the channel information might not always be available without

channel sounding, since this is a benchmark case to compare the other cases above,

we idealistically assume that the overhead of this scheme is zero. We call this scheme

NONE.

In this simulation, we assume that only downlink traffic with an average rate of

5 Mbps per client exists and we compare the performances of the four cases listed

above. The network is assumed to be as illustrated in Figure 24 with 6, 12, 18 or 24

total clients distributed evenly around the circle.

We run the event-driven simulator to simulate a total duration of 10 seconds and

the results are reported in Table 10, where, the columns report average downlink

throughput, average number of MU-MIMO receivers, ratio of data packets that are

transmitted with MU-MIMO transmission, average bonded channel bandwidth nor-

malized to 20 MHz, and ratio of the time spent to channel sounding over the entire

simulation duration, respectively.

Surprisingly, as the number of total clients increase, the benefit of MU-MIMO

transmission is observed despite its increasing overhead. When there are a total of 6

clients, all methods satisfy the average traffic demand of 30 Mbps. However, as the

number of clients increase toward 24, the throughput of performing sounding with

all clients outperforms all other methods, although its channel sounding overhead

becomes as high as 28%. This is because, due to having better channel information,

a higher number of clients can be scheduled for transmission at a higher percent of

the time, as observed from the average number of receivers (3rd) and MU-MIMO

ratio (4th) columns. These benefits seem to pay-off the overhead of channel sounding,

and for our simulation setting, when the number of clients in the network is large,
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6 T. Beam MU-MIMO BW. Overhead
Clients [Mbps] Average Ratio Ratio Ratio
ALL 30.0 2.2 %52 7.44 %7

HALF 30.0 2.1 %34 7.51 %5
FOUR 30.0 2.1 %45 7.48 %6
NONE 30.0 - - 7.49 -

12 T. Beam MU-MIMO BW. Overhead
Clients [Mbps] Average Ratio Ratio Ratio
ALL 59.0 2.5 %75 7.14 %21

HALF 53.8 2.3 %64 7.10 %10
FOUR 54.6 2.2 %41 7.23 %6
NONE 59.3 - - 7.51 -

18 T. Beam MU-MIMO BW. Overhead
Clients [Mbps] Average Ratio Ratio Ratio
ALL 87.3 2.9 %97 7.38 %23

HALF 64.4 2.5 %86 7.34 %14
FOUR 57.0 2.2 %45 7.43 %7
NONE 72.0 - - 7.72 -

24 T. Beam MU-MIMO BW. Overhead
Clients [Mbps] Average Ratio Ratio Ratio
ALL 111.2 3.2 %99 7.58 %28

HALF 72.0 2.7 %97 7.15 %17
FOUR 57.0 2.1 %47 7.39 %6
NONE 75.3 - - 7.74 -

Table 10: Throughput Outcomes of downlink-only scenario

performing channel sounding with all the clients is always favorable.

3.3 Investigation of the Effect of Co-existing Legacy Clients

An IEEE 802.11ac AP performing MU-MIMO beamforming has an overhead that

increases linearly with the number of users. In our simulations, we first investigate

this overhead. To this end, we propose two schemes with less overhead. In one scheme

called HALF, instead of polling all clients, the AP polls at most half of the clients that

have highest amount of data pending in the AP queue. In the second approach, the

AP polls at most four clients in a similar fashion, which we call FOUR. The original
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Figure 24: Graphical illustration of simulation constellation.
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Table 11: Effect of deafness problem.

RTS/CTS cts2self Downlink Uplink Downlink Uplink Downlink Uplink
usage usage [Mbps] [Mbps] Ratio Ratio Succ. Succ.

7 7 11.1 11.5 %34 %66 %28 %84
3 7 45.5 8.3 %61 %38 %85 %58
7 3 45.0 11.9 %53 %47 %100 %100

scheme where all clients are polled is called ALL.

In all three schemes, after channel sounding, given the channel characteristics and

the pending data, the AP decides on the best MU-MIMO beam pattern and other

transmission parameters in order to maximize the total throughput achieved. This

means, some clients that are along the same directions might not be simultaneously

scheduled, or sometimes, MU-MIMO transmission may even be not optimal and the

AP might fall back to scheduling a single user. Clearly, there is a trade-off here,

which is the focus of this subsection. Polling more clients in the beginning incurs

higher airtime overhead but it also increases the expected throughput by increasing

the possibility of scheduling more users with beamforming.

As a benchmark scheme, we also consider the case when no MU-MIMO trans-

mission is performed and the AP schedules the client with the best channel charac-

teristics. Although the channel information might not always be available without

channel sounding, since this is a benchmark case to compare the other cases above,

we idealistically assume that the overhead of this scheme is zero. We call this scheme

NONE.

In this simulation, we assume that only downlink traffic with an average rate of 5

Mbps per client is present and we compare the performances of the four cases listed

above. The network is assumed to be as illustrated in Figure 24 with 6, 12, 18 or 24

total clients distributed evenly around the circle.

We run the event-driven simulator to simulate a total duration of 10 seconds and
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the results are reported in Table 10, where, the columns report average downlink

throughput, average number of MU-MIMO receivers, ratio of data packets that are

transmitted with MU-MIMO transmission, average bonded channel bandwidth nor-

malized to 20 MHz, and ratio of the time spent to channel sounding over the entire

simulation duration, respectively.

The results of this experiment are given in Table 11. The first and second columns

indicate whether the IEEE 802.11n clients use the regular RTS/CTS handshake, or

the IEEE 802.11ac AP uses the cts2self mechanism. In the table, the third to

last columns report the downlink and uplink throughputs, the ratio of downlink and

uplink data transmission times over total transmission time, the ratio of successful

downlink transmissions, and successful RTS frames or uplink transmissions of the

legacy clients, respectively.

We observe that when neither RTS/CTS mechanism nor the cts2self mechanism

is used, the IEEE 802.11ac downlink traffic is significantly impacted due to the deaf-

ness problem, as indicated by only 28% downlink success. When the legacy clients use

the RTS/CTS mechanism, the 802.11ac traffic may still collide with the RTS frames,

however, as RTS frames are short and actual uplink transmission does not start when

RTS frames are unsuccessful, the IEEE 802.11ac downlink MU-MIMO traffic does

not get effected from the deafness problem to a great extent. On the other hand,

the IEEE 802.11n uplink performance drops due to consecutive RTS collisions. In

the third row, we observe that usage of the cts2self mechanism by the AP provides

better results in sum throughput, since no uplink and downlink frames collide as seen

from the last two columns, and no airtime is wasted to collision.

37



CHAPTER IV

WI-FI PERFORMANCE INVESTIGATION WITH

COEXISTENCE OF TCP

In this chapter, we investigated performance of TCP congestion control algorithms

with coexistence of Wi-Fi when end-to-end connection consists lossy links. Before

presenting our work, we first like to shortly review history and motivations of TCP -

and its congestion control mechanism, from the days of a bit earlier than construction

of first ever packet switched network.

4.1 The Story

In March 1950, several top scientists in geophysics (including Lloyd Berkner, Sydney

Chapman, S. Fred Singer, and Harry Vestine) suggested that the time was ripe to have

a worldwide Geophysical Year; especially considering recent advances -mostly from

World War II- in rocketry, radar, and computing. Followingly, Berkner and Chapman

proposed to the International Council of Scientific Unions that an International Geo-

physical Year (IGY) be planned for 1957-58, coinciding with an approaching period

of maximum solar activity.

In 1955, President Eisenhower announced that, USA hoped to launch a small

Earth orbiting satellite for gathering information about the upper atmosphere. The

Kremlin announced that it hoped to do likewise. Planning in America focused on

a sophisticated three stage rocket, but in Russia they took a more direct approach.

Strapping four military rockets together, on 4 October 1957 the USSR launched

Sputnik I (a 70 kgs bleeping sphere the size of a medicine ball) into Earth orbit.

The effect in the United States was electrifying, since this proved that Soviets had
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rockets capable of sending nuclear weapons from Russia to Europe and even North

America. One of the immediate reactions was the creation of the Advanced Research

Projects Agency within the Ministry of Defence. Its mission was to apply state-of-the-

art technology to US defence and to avoid being surprised (again!) by technological

advances of the enemy. It was also given interim control of the US satellite program

until the creation of NASA in October 1958.

ARPA became the technological think-tank of the American defence effort, em-

ploying directly a couple of hundred top scientists and with a budget sufficient for

sub-contracting research to other top American institutions. Although the advanced

computing would come to dominate its work, the initial focus of ARPA’s activities

were on space, ballistic missiles and nuclear test monitoring. Even so, from the start

ARPA was interested in communicating between its operational base and its sub-

contractors, preferably through direct links between its various computers[16].

4.2 Networking with its motivation

In 1962 ARPA opened a computer research program and appointed to its head a

psychologist and computer scientist John Licklider from MIT to lead it. At that

time, Licklider had an envision of “Galactic Network” concept to have more effective

men&computer cooperation. The dream was having globally interconnected set of

computers through which everyone could quickly access data and programs from any

site. In May 1962, he pointed following tasks/requirements to do in “On-Line Man-

Computer Communication” paper[17] that we extract from and provide below.

1. Develop systems for sharing the time of digital computers among many users

on a split-millisecond basis.

2. Develop inexpensive electronic input-output surface which enables operator to

communicate with computer.

39



3. Develop programming system to facilitate real-time contingent selection and

shaping of information processing-procedures.

4. Develop systems for storage and retrieval of the vast quantities of information

required to support, simultaneously at several user stations.

5. Solve the problem of human co-operation in the development of large program

systems. It appears that the development of effective human cooperation and

the development of man-computer symbiosis are “chicken-and-egg” problems.

It will take unusual human teamwork to set up a truly workable man-computer

partnership, and it will take man-computer partnerships to engender and facil-

itate the human cooperation.

Many efforts have been made to satisfy those requirements with respect to both

political and industrial demands so far. For example, in the context of first require-

ment, development of Multics1(Multiplexed Information and Computing Service) is

trigged in DARPA funded Project MAC2 (Multiple Access Computing), as time-

sharing operating system. Below, we shortly introduce efforts to satisfy requirements

4 and 5 to stay in the scope of this thesis.

A major step along the path towards computer networking was from Leonard

Kleinrock at MIT, since he published the first paper on packet switching theory in

July 1961 and the first book on the subject in 1964. Consequently he convinced an-

other MIT researcher Lawrence Roberts on theoretical feasibility of communications

using packets rather than circuits. The other key step was to make the computers

talk together. To explore this, Roberts and Merill connected the TX-2 computer in

Massachusetts to the Q-32 in California with a low speed dial-up telephone line in

1965. This was the first (however small) wide-area computer network ever built. The

1Ancestor of Unix (Uniplexed Information and Computing System).
2Started at 1963
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result of this experiment was the realization that the time-shared computers could

work well together, running programs and retrieving data as necessary on the remote

machine. Nevertheless, circuit switched telephone system was totally inadequate for

the job. Kleinrock’s conviction of the need for packet switching was confirmed[18].

4.3 Arpanet

In late 1966 Roberts went to DARPA and publish a plan for nationwide computer

network system called “ARPANET”, that will interconnect many dissimilar comput-

ers at ARPA-supported research centers with 50-kilobit common-carrier circuits. The

primary goal of network is allowing persons and programs at one research center to

access data and use programs that exist and run in other computers of the network.

Below, we shortly provide basic working principles of Arpanet.

Figure 25: ARPANET (1971)

As illustrated in Figures 25 and 26, Arpanet was operating on non-fully connected
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Figure 26: Interface Message Processors in Arpanet

network. The research computers3 -that have time sharing operating system with

dozens of consoles for multiple users- are connected to small processors. The subnet

of this small processors (Interface Message Processor) stores copy of each message

until next node has successful reception, handles routing, buffering, synchronization,

error control and other related issues. The main reason of their existence was also

insulating network related problems from research computers as explained in reference

[19].

• Subnet should function as a communications system whose essential task is

reliable bit transmission.

3Represented as Hosts in Figure 26
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• Average transit time through the subnet should be under a half second to pro-

vide convenient interactive use of remote computers.

• Subnet should be completely autonomous. Since the subnet must function as a

store and forward system, an IMP must not be dependent upon its local Host.

The IMP must continue to operate whether the Host is functioning properly

or not and must not depend upon a Host for buffer storage or other logical

assistance such as program reloading.

• Establishment of Host-to-Host protocol and the enormous problem of planning

to communicate between different computers should be an issue separated from

the subnet design.

The working principle of Arpanet was a lot simpler than today’s networks. The

IMP subnet accepts only one message at a time on a given link4. So, source IMP

does not introduce any further message towards same destination before getting ac-

knowledgement from destination. After getting acknowledgement, he notifies Host

by sending RFNM (Ready for Next Message) packet. By this simple design -also

with maximum 8095 bit message size, Arpanet had preemptive mechanism to avoid

congestion, which might be arised if destination Host would be flooded from multiple

Hosts.

More details on routing, message handling etc. is available on reference [19].

4.4 Inter Network Communications

As we mentioned above, Arpanet became the basis for the Internet, which took ad-

vantage of the new idea of sending information in small units called packets. In order

to expand the size of the network, Vinton Cerf and Robert5 Kahn proposed a pro-

tocol that supports the sharing of resources that exist in different packet switching

4As it could be realized, this eliminates out of order problem.
5The duo said by many to be the Fathers of the Internet
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networks. The protocol provides for variation in individual network packet sizes,

transmission failures, sequencing, flow control, end-to-end error checking and the cre-

ation and destruction of logical process-to-process connections (via virtual ports); and

called it as Transmission Control Protocol (TCP) [20]. Below, we briefly introduce

the protocol.

4.4.1 TCP Overview

Initialization of TCP connection is handled by three negotiation messages, as follows:

1. Client sends a SYNchronize packet to Server

2. Server receives client’s SYN

3. Server sends a SYNchronize-ACKnowledgement

4. Client receives server’s SYN-ACK

5. Client sends ACKnowledge

6. Server receives ACK

After the sixth step, TCP connection state is called as established ; and this pro-

cedure is called as three-way-handshake. At this stage, client breaks up messages

into segments and transmits them to the server. Consequently, server reassembles

the segments, even if they are received out of order.

Once client has “no more data to send”, he sends a segment with the FIN bit set,

to request that the connection be closed. The server receiving the FIN responds with

an acknowledgement to the FIN to indicate that it was received. The connection as

a whole is not considered terminated until both sides have finished the shut down

procedure by sending a FIN and receiving an ACK -See Figure 27.
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Figure 27: Packet Exchanges in Transmission Control Protocol
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4.4.2 Congestion Control in TCP

As we mentioned above, clients send messages as segments and server reassembles

them. Here, client would re-transmit the non-acknowledged data packets. Similarly,

client might transmit multiple data packets without waiting an acknowledgement of

each, then got acknowledgements -see Figure 28.

In case of having memory and/or processing bottleneck in any hop (usually routers)

between end-to-end TCP connection, many packet drops and eventually re-transmissions

would come up, which causes in-efficiency. For this reason, in 1988 Jacobson proposed

a mechanism to avoid such circumstances in [21], which we call as congestion control.

The idea is tuning transmission number of un-acknowledged data packets, with

respect to congestion detection. Here, the number of transmitted yet not acknowl-

edged packets is called as congestion window size. In addition to this, congestion

detection might be handled differently, with respect to delay and/or packet loss infor-

mation. Combination of congestion-detection and window-size-manipulation is called

as congestion control algorithm, which is handled in the kernel space of the operating

system. For example, current algorithm in Linux could be seen via:

cat /proc/sys/net/ipv4/tcp congestion control

Usually, congestion control algorithms additionally increases window size (wi)

upon acknowledgement reception -as in Equation 4, multiplicatively decreases window

size upon congestion detection -as in Equation 5.

w2 ← w1 + a(w1) (4)

w2 ← w1(1− b(w1)) (5)

As an example, we overview TCP Tahoe congestion control algorithm [22] below:
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Figure 29: Graphical illustration of TCP Tahoe Congestion Control Algorithm.
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• Until reaching the slow-start threshold, window size is exponentially (square

function) incremented, upon acknowledgement reception.

• Once window size reaches the slow-start threshold, window size is linearly in-

cremented one – a(wi) = 1, upon acknowledgement reception.

• In case of lack of acknowledgement, transmitter would receive acknowledgement

packets with same sequence numbers -since they increase cumulatively, See Fig-

ure 28. This fact is an indication of congestion, hence congestion window size

would be halved -see Figure 29.

Below, we compare performance of said congestion-control algorithms in Wi-Fi

network with existence of wireless interference.

4.5 Comparison of TCP Congestion Control Algorithms in
Wi-Fi network

We considered performances of Scalable [23], HighSpeed [24], Cubic [25], Vegas [26],

Veno [27], Yeah [28], Illinois [29] and Westwood [30] in Wi-Fi network with and

without existence of interference [31].

We had the topology in Figure 30, and applied the following interference pattern

in 100 second experiment:

• Transmitter 1 initiates a TCP traffic towards 802.11ac receiver.

• Transmitter 2 stays idle for initial 25 seconds.

• Transmitter 2 transmits UPD traffic towards 802.11n receiver for 5 seconds,

then waits idle for 5 seconds; and repeats this procedure for ten times.

• Transmitter 2 stays idle for last 25 seconds.

48



Figure 30: Representation of experiment topology.

Here, we considered the performance of aforementioned congestion control algo-

rithms for 50 seconds, repeated the experiments without any interference and repre-

sent the output in Table 13. We used used loadable linux kernel module tcpprobe

[32], to measure instantaneous congestion-window size statistics. Lastly, we also re-

peated the experiments with UDP traffic in 802.11ac networks to have a benchmark

for the case.

Firstly, we observe that non of the TCP congestion control algorithms can reach

the performance of UDP, even without any interference; and existence of interference

-in our case- does not have a considerable impact on UDP traffic.

As we mentioned above, some congestion control algorithms use latency, some use

packet loss, and some use both to detect congestion and decrease the window size.

Vegas -highly depends on latency- had the worst output in our experiments, not able

to saturate to link-capacity due to instantaneous latency differences even without any

interference.

Veno, Yeah, Illinois and Westwood are the other congestion control algorithms

that use latency as a parameter. We realized that Illinois and Yeah provide higher

performance, due to their higher congestion window incrementation functions.
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Avg. Max. Min. Std. Dev.
Thr. Thr. Thr. Thr.
[Mbps] [Mbps] [Mbps] [Mbps]

UDP 355.4 372 312 8.3
UDP* 355.2 374 330 7.4

Table 12: Throughput statistics of UDP protocol.
Avg. Max. Min. Std. Dev. Avg. Std. Dev.
Thr. Thr. Thr. Thr. Window Window
[Mbps] [Mbps] [Mbps] [Mbps] [Kbits] [Kbits]

Cubic 309.7 322.0 253.0 12.4 48.6 4.3
Cubic* 298.6 320.0 161.0 15.5 35.3 7.9
Vegas 49.2 55.6 37.7 3.9 0.33 0.06
Vegas* 42.7 58.7 25.2 11.7 0.32 0.06
H.Speed 305.9 316.0 255.0 10.0 21.1 2.1
H.Speed* 282.3 317.0 226.0 27.9 17.8 2.2
Illinois 312.6 321.0 278.0 7.9 22.8 3.3
Illinois* 295.9 318.0 245.0 20.4 21.9 2.9
Scalable 301.8 309.0 243.0 11.2 24.0 3.8
Scalable* 295.9 318.0 219.0 23.5 20.9 1.8
Veno 276.9 288.0 240.0 12.3 7.5 0.9
Veno* 261.8 302.0 177.0 37.5 7.5 0.9
Westwood 301.0 306.0 265.0 6.0 12.8 0.8
Westwood* 264.1 306.0 198.0 41.1 11.2 0.8
Yeah 297.0 304.0 267.0 8.3 10.2 1.2
Yeah* 272.1 306.0 201.0 41.0 10.2 1.1

Table 13: Comparison of throughput and congestion window size statistics in TCP
congestion control algorithms with and without interference. The “*” notation is
used to declare existence of interference.
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Figure 31: Representation of experiment topology.

Scalable, Cubic and Highspeed only use packet-loss as a parameter to detect

congestion. After the detection of congestion, Scalable linearly increases window

size, but Highspeed dynamically (concave or convex depending on internals of al-

gorithm) increases the window size with respect to decreased window size. Cubic,

also dynamically increases the window size, also uses the prior window-size before

window-size degradation. We observed that, Scalable has better performance than

Highspeed; Cubic has the best performance in the entire algorithm set.

4.6 Benefits of Multiple TCP connections

In this section, we considered performance of multiple TCP connections vs. single

TCP connection with existence of virtually created packet loss scenarios. Here, we

used netem (Network Emulation Tool) [33], that is supported by the Linux Founda-

tion, to emulate loss with following commands:

• tc qdisc change dev eth0 root netem delay 100ms 10ms 25%

• tc qdisc change dev eth0 root netem loss 2.5%

In these experiments, we used Cubic, since, it’s the default congestion control

algorithm in linux kernel 2.6.19 and above. Our experiment topology is shown in

Figure 31.

We observed that, multiple TCP connections provide nearly %10 improvement in

case of not having packet-loss, as seen in Table 14. On the other hand, multiple TCP
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# Avg. Min. Std. Dev.
Connections Thr. Thr. Thr.

[Mbps] [Mbps] [Mbps]

1 300 212 33
2 327 252 19
3 322 244 27

Table 14: Delay: 0ms, Packet Loss Ratio: %0
# Avg. Min. Std. Dev.
Connections Thr. Thr. Thr.

[Mbps] [Mbps] [Mbps]

1 143 35 36
2 241 49 55
3 283 128 58

Table 15: Delay: 0ms, Packet Loss Ratio: %2.5
# Avg. Min. Std. Dev.
Connections Thr. Thr. Thr.

[Mbps] [Mbps] [Mbps]

1 88 12 31
2 170 42 39
3 237 106 46

Table 16: Delay: 0ms, Packet Loss Ratio: %5

connections provide significantly higher throughput, in case of having %2.5 and %5

packet-loss in TCP traffic, as shown in Tables 15 and 16.

The main reason for the such higher throughput is: Single TCP connection could

not utilize the medium in case of having packet losses, due to multiplicative decrease,

as we expressed above. Multiple connections, on the other hand, provides a higher

possibility of higher congestion window sizes; since packet loss of one connection does

not impact other’s window size.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

This thesis comprises performance improvement and degradation identification ef-

forts in Wi-Fi networks. As it could be realized above, some problems has backward-

compatibility origin and some has un-expected outcomes of particular features (such

as aggregation and qos-prioritization in hidden-node scenario) in particular circum-

stances. Beside wireless communications & networking knowledge for intuition, all

such work requires a lot experiment effort with patience, ability to find & use existing

tools in open source environment and data mining.

Below, we provide today’s “interesting” works in Wi-Fi networks, to improve user

experience and network performance; with their challenges.

5.1 Wi-Fi Mesh Networks

This technology is not new at all, but became attractive after Google’s interest for

last two years. As it’s very well known, number of mobile devices in home networks

and video applications are daily increasing and seems to increase more due to diverse

IoT devices. This requires more stable wireless connection in between clients and

Wi-Fi network for better user experience –especially in homes built on stone. Most

well known solution is multiple APs. The challenges and research activities in the

field are:

• Routing: Considering mesh-backbone, such as existence of plc, ethernet, or

multiple of them in between particular mesh nodes.

• Channel Selection: Considering dynamic frequency selection rules and mesh-

backbone.
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• Roaming: Both legacy clients that does not support fast roaming 802.11r and

measurement 802.11k protocol.

5.2 Managing and Monitoring Wi-Fi Networks from Cloud

Understanding user-experience and diagnosing network from cloud is another inter-

esting topic. One simple example would be, correlation of RSSI values and packet

losses in Wi-Fi networks. Vendors and/or operators might offer next access point to

the client with considering such data. Similarly, operators

5.3 Device Provisioning and Association

Adding third-party IoT devices to network, that might not have any input and/or

limited state output -such as electric bulb- in a secure fashion. Device Provisioning

Protocol task group of Wi-Fi alliance is working on standardization of such applica-

tions [34].
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