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Department of Mechanical Engineering
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ABSTRACT

From grasping to fine manipulation, the human hand with its diverse functionality

is the result of a highly evolved anatomical model along with an elaborate control

system governed by a large portion of the motor cortex. In the robotics context, the

flexible and the dexterous manipulation are one of the most desired type of skills.

Although simple manipulation tasks can often be performed by grippers of lesser

kinematic complexity, their limitations are well-known. To this end, we investigate

dexterous manipulation skills on an anthropomorphic robot hand.

The thesis can be considered as the investigation of two related manipulation

skills. In the first part of the study, a sensorless grasping method is described. The

human hand has a high-precision, fine-grained sensory feedback in the palm and the

inside of the fingers. Although this feedback is highly relevant for precise grasps,

precision is often not necessary to perform power grasps. Instead of complicated

sensor setups, an alternative approach is proposed for robotic grasping tasks based

on external force estimation using the dynamic model of the hand and disturbance

observers. Estimation accuracy is confirmed using a force sensor and the estimations

are found to be useful for creating soft/power grasp behavior.

In the second part, human-in-the-loop control with heterogeneous control for dex-

terous manipulation is investigated on a setup with a robotic hand and a robotic arm.

The goal of the study is to experimentally verify that in tasks where the manual and

explicit trajectory tuning is not possible, the autonomous movement can be learned

by giving a basic policy to a robotic system, after which a human can learn and trans-

fer an orthogonal complex part of the policy. The approach is particularly useful for

dexterous manipulation tasks since the human can learn an otherwise difficult task
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at a slower speed and the merged autonomous policy can further be improved using

other techniques. The approach is shown on a ball swapping task in which a robotic

arm is controlled by the human and a robotic hand is given an initial basic policy.

After the human learns to adapt to the movement of the hand, a base autonomous

policy is fused. As a result, we experimentally show that, in certain tasks, complex

autonomous policies can be constructed by first destructuring the control policy into

a simple and complex part, then delegating the complex learning part to a human,

and finally creating an autonomous control policy by recombining the parts.
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ÖZETÇE

İnsan eli obje kavramadan hassas manipulasyona oldukça farklı fonksiyonları yerine

getirebilmektedir. Bu işlemler gelişmiş anatomik el yapısının yanısıra motor korteksin

büyük bir kısmını kullanan kontrol mekanizmasını da kullanmaktadır. Robotik bağlamında,

esnek ve cerbezi manipülasyon en çok ihtiyaç duyulan becerilerdendeir. Basit ma-

nipülasyon görevleri kinematiği karmaşık olmayan tutucularla yapılabilmesine rağmen,

kısıtlamalar yaygın olarak bilinmektedir. Bu sebeple, bu tezde, insansı bir robot el

üzerinde cerbezi manipülasyon becerileri araştırılmıştır.

Bu tezde birbiriyle alakalı iki manipülasyon becerisi araştırılmıştır. Çalışmanın

ilk kısmında, sensörsüz bir kavrama yöntemi açıklanmıştır. İnsan elinin avuç ve

parmak içi alanlarda yüksek hassasiyete sahip sensör geribeslemesi bulunmaktadır.

Bu geribesleme hassas kavrama için gerekli olsa da, güçlü kavrama için yüksek has-

sasiyet çoğu zaman ihtiyaç duyulmamaktadır. Karmaşık sensör kurulumlarına alter-

natif olarak, robotik kavrama için elin dinamik modeline ve dışsal kuvvet tahminine

dayalı bir sensörsüz kavrama yöntemi geliştirilmiştir. Tahmin doğruluğu bir kuvvet

sensörü kullanılarak onaylanmıştır ve önerilen yöntemle yumuşak veya sıkı kavrama

yeteneklerinin gerçekleştirilebildiği görülmüştür.

İkinci kısımda, cerbezi manipülasyon için heterojen kontrollü insanlı-döngü kon-

trolü, bir robot kol ve robot elden oluşan bir sistem üzerinde incelenmiştir. Çalışmanın

amacı, elle veya otomatik yörünge ayarlamanın mümkün olmadığı durumlarda, rob-

ota temel bir idare vererek idarenin karmaşık kısmın insandan elde edilebileceğini,

sonuç olarak karmaşık bir görev için gerekli otonom idarenin bulunabileceğini deneysel

olarak göstermektir. İnsanlar zor bir görevi düşük hızda öğrenebileceği ve öğrenimden

sonra diğer tekniklerle idare geliştirilebildiği için bu yaklaşım cerbezi manipülasyon
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görevleri için özellikle uygundur. Yöntem, örnek olarak bir robot kolun insan tarafından

kullanıldığı ve bir robot elin otonom çalışarak geröekleştirdiği avuç-içi top çevirme

görevinde gösterilmiştir. Elde edilen sonuçlarda, karmaşık otonom idarelerin, karmaşık

kısımlarını öğrenmeyi insana delege ederek, insan öğreniminden sonra otonom control

idaresinin elde edilebilecği gösterilmiştir.
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Uğur for their very helpful feedback.

vii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
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CHAPTER I

INTRODUCTION

Among hand studies, it is generally agreed that, after the human hand was freed from

the constraints of locomotion, it evolved primarily for tool manipulation abilities[1, 2].

Napier identifies two unique grasps, namely precision and power grasps[3] and these

grasps are hypothesized to be specializations for aggressive throwing and clubbing[4].

Learning the plethora of manipulation skills and learning to use tools effectively took

millions of years in the process and these skills are still at the heart of the modern

human civilization.

The goal of the robotics is to develop and invent the necessary theories and tech-

nologies to create capable robots so that we do not have to do as much. Many of these

desired capabilities directly correspond to manipulation. Therefore, in this thesis, we

study dexterous manipulation for the purpose of improving our knowledge on the

subject.

The thesis is organized as follows. In the rest of this chapter, a brief literature

overview is given. In the second chapter, we propose a practical external force estima-

tion method which can be utilized for common grasps. In the third chapter, technical

setup for the human control of an arm robot is explained. In the fourth chapter,

teaching a robot a dexterous manipulation task is studied on a ball swapping task.

Finally, in the fifth chapter, a brief discussion is provided.

1.1 Manipulation Dexterity

In the robotics domain, the definition of the dexterity is not clear-cut and varies

significantly[5]. To give two examples; Klein et al. define it as ”the kinematic extent

over which a manipulator can reach all orientations”[6]. Bicchi gives the definition
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”capability of changing the position and orientation of the manipulated object from

a given reference configuration to a different one, arbitrarily chosen within the hand

workspace”[7]. The important difference in definitions is often where they fall be-

tween object-centric and manipulator-centric views. On the other hand, a dexterous

manipulation is differentiated from a non-dexterous one as being performed by mul-

tiple cooperating manipulators to change an object’s state[8]. Used in this sense, it

is easy to understand why dexterous manipulation is commonly used in its relation

to hand manipulators with complex kinematic structure, although it is not exclusive

to them.

Motor synergy appears to be one of the key mechanisms of CNS in generating

dexterous hand function [9]. With this inspiration, robotic hands are sometimes

designed synergistically and/or controlled via synergies imposed over finger joints.

For instance, Ajoudani et al. utilized tele-impedance control in simplifying hand

complexity into distinct motor patterns [10]. Gabiccini et al. proposed a framework

that incorporates the structural properties of a hand in a quasi-static setting so that

it could be driven via synergistic actions [11]. Catalano et al. made use of adaptive

synergies to demonstrate various grasping behavior on the UNIPI-hand [12].

In robotics, dexterous manipulation is sought, besides synergies, through learning-

by-demonstration [13] and reinforcement learning (see [14],[15]) which have proven to

be powerful techniques for generating complex robotic hand skills.

In general for grasping, statistical learning appears to be effective [16][17], and

the contribution of tactile input seems important once the object is in contact with

the hand.

1.2 Human in the Loop Learning

In human in the loop(HitL) control, the main goal is to increase task efficiency by

involving the human to the robot’s control loop. For complex tasks, the robot may
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fail to learn the task efficiently and involving the human may improve the success.

Similarly, leaving the easily automatable tasks to the robot will reduce the load on

the human.

There are different variations of human in the loop learning. In [18] Leeper et al.

categorizes the HitL control strategies to three types. We add the fourth one to it:

• Direct control: The human directly controls the movement of the robot. This

is common in teleoperation tasks.

• Shared control: The human and the robot both controls the movement. In

this mode of control, the robot controls some aspects of the movement and the

human controls the motion. Driving assistance is a good example of this type.

Another alternative can be the human and the robot both controls the same

aspects of the movement at the same time.

• Supervisory control: The human decides the high-level behavior and the robot

has the control over the movement. This is utilized in scenarios where the

human decides on the waypoints and the motion is autonomous.

• Heterogeneous control: The human and the robot operates on different parts

of the robot. Control domains of the robot and the human are orthogonal and

their responsibility is strictly separated.

Several successful applications exist in the literature for the HitL control. DeDo-

nato et al. apply the approach to control a limited bandwidth robot. Tsui et al. use a

supervisory type of control to a wheel-mounted robotic arm to reduce cognitive load

on the human. Leeper et al. discuss the HitL robotic grasping strategies.

1.3 Human-in-the-Loop Learning

Human in the loop learning methods are based on the human in the loop control.

The goal of these methods is to create autonomous policies by having the robot learn
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from the human in the control loop. The goal is to learn the task controls effectively

in cases where the human cannot teach alone or the robot cannot feasibly learn alone.

Although learning by demonstration is a very effective technique for tasks involving

position control, there are few examples where it is used for dynamic tasks because

the force policies can not be demonstrated. HitL learning, on the other hand, is

significantly effective on dynamic skills and cooperative manipulation.

As an early example, Oztop et al. demonstrated synthesis of ball swapping task

using human-in-the-loop robot skill generation[19]. In a follow-up work[20], they

propose to integrate a hand robot to the human’s body schema. The idea is that once

the human internalizes the robot as a part of an extension to their body, controls for

rich dexterous skills can be obtained.

Babic̆ et al. proposes an interestimg approach in [21] to learn dynamic skills. In-

stead of using the cognitive functions of the human, they utilize sensorimotor learning

skills of the human. They show the success of the task on a seesawing task. In [22],

Peternel et al. teach a humanoid robot to balance by using the approach and consid-

erably simplifies the learning process. These type of force based skills usually cannot

be easily transferred by ”learning by demonstration”.
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CHAPTER II

ENVIRONMENTAL FORCE ESTIMATION WITH A

ROBOTIC HAND

It is well known that humans mostly rely on tactile feedback for manipulation

tasks and infants heavily utilize tactile feedback when learning how to grasp[24].

Therefore, contact force information is the primary factor in dexterous manipulation

task performance and is seen as a prerequisite[25].

For precise grips, precise force sensing in three axes becomes a necessity. This

is an important consideration in hand design process and adds complications to the

overall design because of the required sensor and wiring accommodation. The sensors

also come with a financial cost and calibration processes take more time.

On the other hand, for power grips, these restrictions do not apply and coarse

force estimations can be found control methods. With this in mind, we aimed at

utilizing disturbance observer (DoB) technique, which is extensively used in industrial

automation for robust control [26, 27], so that we can infer environmental forces acting

on the robot fingers.

In general, a DoB can estimate the overall disturbance acting on the system due

to robot dynamics (i.e. inertial forces, Coriolis effect, and gravity), friction, and ex-

ternal forces. In [28], Ugurlu et al. hypothesized that if the robot dynamics and

frictional loads are sufficiently compensated, DoBs would solely output environmen-

tal interaction forces thereby eliminating the need for special sensors. Sharing the

This chapter is published in [23] and used in accordance with IEEE and Ozyegin University
reuse policy.
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Figure 1: The compensation scheme when the robot is in torque control mode.

common objective, a framework is presented to estimate contact force information, in

an attempt to eliminate the need for tactile/force sensors to reduce complexity in dex-

terous robotic manipulators, e.g. a multi-fingered anthropomorphic robot hand. The

framework incorporates model-based compensation loops to account for disturbances

based on robot dynamics and joint friction.

2.1 Compensation Schemes

The general compensation scheme is given in Fig 1. It includes dynamics (Corio-

lis&centrifugal, gravity) and friction compensation loops.

2.1.1 Dynamic Load Compensation

Coriolis and gravity compensation torques are calculated using the dynamics model

of the robot and CAD data. Angular velocities for joints, θ̇, are low-pass filtered to

reduce the noise. Inertia term is omitted in equations, as the joint acceleration values

were observed to be negligible during the nominal operation.

2.1.2 Friction Compensation

With the condition of gravity and Coriolis forces are compensated, friction becomes

the only effective disturbance force observed on the system while no external force
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Figure 2: a) Frictional torque - angular velocity variations for 4 distinct ramp in-
puts. The piece-wise fitted friction model is acquired by using these data. b) Having
compensated all dynamics and frictional loads, the DoB outputs near zero variation,
adequately confirming the accuracy of the proposed compensation scheme. In other
words, the robot is approximately free of any dynamics and frictional load.

is applied. Therefore, DoB outputs frictional torque. With this in mind, we imple-

mented ramp inputs with various slope values and observed the frictional torque-

angular velocity variations for a single joint is given in Fig. 2(a) [26]. In this figure,

red, cyan, green, and blue curves indicate actual frictional torque-angular velocity

variations while black lines stand for the fitted model. A similar procedure was car-

ried out for all other joints, thus not plotted.

As may be seen in Fig. 2(a), joint friction can be modeled as a piecewise linear

equation, composed of stiction and viscous friction (see the black curve). These two

components constitute an accurate representation of the friction model as Stribeck

effect is observed to be negligible in our case. The model for the ith joint can be

formulated in terms of its angular velocity (θ̇i) as follows,

Tfr(θ̇i) = a1(λ1 + λ2θ̇i)− a2(λ3 − λ4θ̇i) (1)
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where λ1 and λ3 are static friction coefficients for positive and negative direction, and

λ2 and λ4 are viscous friction coefficients when θ̇i > 0, a1 = 1 and a2 = 0. Likewise,

when θ̇i < 0, a1 = 0 and a2 = 1. Following the model parameter identification, friction

compensation is realized by feeding the actuator with Tfr to account for loads due to

joint friction.

2.1.3 Compensation Procedure

General dynamic model of a torque controlled robot is defined by the following equa-

tion,

Tcmd = Jrθ̈ + Tl + Tfr(θ̇), (2)

M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = Text + Tl, (3)

where θ is the joint angle vector, Jr is the rotor inertia, Tcmd is motor command

torque vector, Text is external force vector, Tl is the joint torque vector on the links,

Tfr is the frictional torque vector, M(θ), G(θ), C(θ, θ̇) are inertia, gravity, and coriolis

terms, respectively. Combination of (2) and (3) results as follows.

Tcmd = M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ)

+ Tfr(θ̇) + Jrθ̈ − Text (4)

To eliminate the effects of these dynamic forces acting on the system, overall

compensation scheme is designed as shown in Fig. 1 [28]. In this scheme, actuators

are supplied with additional torques Tfr, Tgr, Tcc to respectively compensate for Fr(θ̇),

G(θ), C(θ, θ̇) in a feedforward manner. Incorporating the compensation terms, Tcmd

can be rewritten as:

Tcmd = Tinp + Tfr + Tgr + Tcc (5)
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In (5), Tinp is the task-specific input. Provided the compensation torques suffi-

ciently account for Coriolis, gravity and frictional loads (Tcc + Tgr + Tfr ∼= C(θ, θ̇)θ̇+

G(θ) +Fr(θ̇)), these terms may be canceled out; therefore, the dynamic model of the

robot can be expressed as follows.

Tinp + Text = Jrθ̈ (6)

Having compensated torques based on Coriolis effect, gravity and friction terms,

we re-ran disturbance estimation to experimentally verify the accuracy of the com-

pensation schemes. To this end, the robot joints are actuated via torque inputs and

we observed the DoB outputs for every joint. No external force was implemented.

An exemplary data is provided in Fig 2(b). As may be observed, DoB output is

simply varied near zero; adequately validating the fact that the robot is free of any

dynamics and frictional load. Furthermore, this figure also validates our approach in

omitting the inertia terms, as there is almost zero DoB output. Though using DoB

for friction identification may be infeasible for more complex joint designs and less

accurate under model uncertainties [29], we found it to be accurate where the explicit

dynamic model exists.

2.1.4 Force Estimation

The simple DoB architecture for a single joint is displayed in Fig. 3 [26]. Motor

model, rotor inertia, actual disturbance torque, estimated disturbance torque (DoB

output) and command torque input are symbolized with P (s), Jr, Td, T
∗
d and Ti,

respectively. In this scheme, an approximation for the inverse plant model is utilized

to estimate the disturbance acting on the joint.
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T ∗
d = gJrsθ −

g

s+ g
(Ti + gJrsθ) (7)

T ∗
d =

s2Jrθ
1
g
s+ 1

− 1
1
g
s+ 1

Ti (8)

T ∗
d
∼=

(
Jrθ̈ − Ti

)
∼= Td (9)

For a multi-joint robotic system, T ∗
d term consist of the resultant disturbance

torque that arises due to robot dynamics (inertial, Coriolis, and gravity) friction, en-

vironmental interaction. Given the fact that inertial effect is negligible, and Coriolis,

gravity and friction terms are compensated, DoB simply outputs the environmental

force. At this stage, please note the analogy between the final DoB equation, (9)

and our final derivation after the compensation, namely, Eq. (6). Input torque and

external force (Tinp, Text) in Eq. (6) corresponds to Ti and Td in Eq. (9).

Since the torque that occurs due to environmental interaction, Text, can be ob-

tained via DoBs, fingertip forces (Ftip) can be calculated via the related Jacobian for

each finger.
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(a)

(b) (c)

Figure 4: Dimensions of the Gifu Hand-III.

Ftip = (J−T )Text (10)

If the Jacobian matrix, J , is not square, pseudo-inverse can be used.

2.2 Target Tasks and Experiment Results

2.2.1 Hardware Testbed: Gifu Hand-III

The robotic hand used in this study is the Gifu Hand III (Dainichi Co. Ltd., Japan)

which consists of a thumb and four fingers (see Fig. 4) with total 16 degrees of

freedom. The robot is connected to a Windows machine with several PCI boards,

namely, A/D, D/A, Counter and Timer Boards. The A/D PCI cards allow the PC

to read the motor currents. The Counter PCI cards are used to obtain a number

of encoder clicks, i.e. joint angle changes. The D/A cards convert the PC’s digital

outputs to analog voltages that drive the hand motors. The controller of the robot

hand runs at 500 Hz. Dimensions of the hand and a single finger is given in Fig. 4.

Fig. 5 displays the actual robot while grasping two distinct objects.

Even though the robot hand is equipped with force-sensing resistors, they could
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(a) (b)

Figure 5: Gifu Hand-III graps two distinct objects. a) Plastic ball. b) Cartoon box.

not provide reliable sensory information. Therefore, we stripped off force sensing re-

sistors from the hand and investigated an approach to estimate environmental contact

force.

2.2.2 Contact Force Estimation

While running the proposed contact force estimation method, the fingers pushed a

force sensor to see whether the estimation matches well with actual measurements.

Fig. 6 depicts results for index and little fingers, where solid green and purple lines

respectively indicate actual (sensor output) and estimated force outputs.

Scrutinizing Fig. 6, one can see that estimation results are in good agreement

with actual measurements. The data sets shown in Fig. 6 are strongly correlated.

Specifically, the Pearson correlation coefficient for index and little fingers are r = .940

and r = .905, respectively.

Similar results were acquired for other fingers. Although time responses differ in a

sense, it is approved that the estimation algorithm can eliminate the need for tactile

sensors. This greatly simplifies the hardware design and potentially reduces the costs.

2.2.3 Compliant Contact Detection

When performing a grasp in the presence of positioning inaccuracies, acquiring tactile

sensing is of importance to detect early and/or unexpected contacts with objects. For
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instance, Chen et al. utilized integrated joint torque sensors to detect early contacts

for a compliant grasp with position uncertainties [30].

To see whether a similar contact detection task is technically possible with no

tactile or torque sensors, we designated a task in which the robot hand fingers unex-

pectedly contacts with a rigid object. To assure compliant contact, the admittance

controller in Fig. 7 was implemented. This controller uses a PD controller for the

position control loop. On top of this controller, a force control loop is constructed

using an admittance control scheme. In this controller, force estimator is used by

means of fingertip force measurement.
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Figure 7: Admittance control was implemented to assure compliant contact. In
this control scheme, both position and force control loops act on the actuator in a
synergistic manner. Force control loops produces θc and updates the position reference
so as to comply with the force constraint compliantly.

The force control loop processes the joint torque error. It is then inputted to

an admittance block to compute the corresponding joint displacement θc. In other

words, θc is the joint displacement that corresponds to the force error. When the

system experiences force errors due to unexpected contact with the environment, θc

updates the position reference θref := θref − θc. The sensitivity to force error can be

adjusted by the admittance parameters, namely, k and b.

In case there is no force error, θc simply becomes zero. Then the system becomes

equivalent to a classical PD-based position controlled robot. Note that compensation

scheme in Fig. 1 is enabled at all times to refine the controller performance.

In order to validate this approach, experiments were conducted when the proposed

admittance control was activated. Only-PD control experiments are also conducted

to provide a frame of reference for our results. Exemplary experiment results can be

observed in Fig. 8 and Fig. 9 from index finger middle joint, and little finger base

joint. Similar results were acquired from other joints, hence, not included.

Around t = 0.4, the robot hand fingers unexpectedly contacted with the object in

such a way that the robot hand motion was restrained, i.e., it could not move.

In Fig. 8(a) and Fig. 9(a), dotted blue and solid purple lines indicate reference
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and actual joint angles when the robot was controlled using the PD controller. As the

robot hand motion was restrained after the contact, the actual angles stayed constant,

and therefore, could not track the reference signals.

Dotted cyan and solid green lines stand for reference and actual joint angles when

the robot was controlled using the proposed admittance controller. In this case,

reference angles were updated so as to comply with the force constraints; the joints

maintained their positions after the contact.

The current measurements are displayed in Fig. 8(b) and Fig. 9(b). Orange and

red signals indicate current sensor readings for the proposed admittance and classical

PD controllers, respectively. It should be noted that desired grasp behavior is achieved

by proper admittance parameter selection. While Fig. 8(b) shows a soft and damped

touch for an end-joint, a base joint in Fig. 9(b) has a less sensitive behavior which

overshoots and oscillates before settling. Since the classical PD controller does not

incorporate force constraint, the motors consume maximum current in an attempt

to pierce through the object to follow the reference signals. As a result, the motor

drives halted due to overcurrent protection. Grasp stability can further be improved

by tuning admittance parameters.

The proposed controller simultaneously process force and position constraints in

a compliant way; thus, the reference signal is automatically updated to cope with

unexpected contact with the object. By the virtue of this approach, current con-

sumption was well contained and the robot hand maintained its position. Compared

to the case with PD controller, current consumption was decreased 3 to 5 times.

In this task, our force estimation algorithm played a major role as it facilitated

the contact force information. As mentioned, the main contribution presented in this

task is not utilizing an admittance controller, but rather showing that a task such as

compliant contact detection or compliant grasping can be realized with the proposed

force estimation method removing the need for extra sensors.
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CHAPTER III

HUMAN CONTROL OF ROBOT ARM

Providing an initial movement to a robot directly often becomes a time consuming

menial hand-tuning with a lot of trial and error. It becomes especially difficult when

the robot is multi-DoF and the task is dynamic. In such setups, movement imitation

often becomes the preferred way of transferring the human skill to a robot. For

compliant robots, kinesthetic teach-in is used in numerous works such as in [31, 32, 33].

In our setup, the robot arm is not compliant, therefore we used teleoperation to guide

the robot movement. Human control is tested on both joint space and end effector

space. Control in end effector found to be more suitable.

3.1 Hardware

For the teleoperation task, we used an OptiTrack optical tracker system and a Kuka

robotic arm and GifuHand III robotic hand. Two computers are also used, one for

each. The robot hand is not teleoperated and integrated later. Relevant technical

information for the tracker and the arm are given in following subsections.

3.1.1 OptiTrack

For human control, an Optitrack S250:E model optical tracker system is used to

track the poses of tracked objects[34]. It is a low-latency infrared camera system

with 5 cameras which captures and streams the frames to a PC for processing. As

the standard practice goes, rounded silver markers are placed on objects of interests

to capture their position. Three or more such markers are arranged planarly so that

orientation can also be calculated. In the rest of this thesis, the term ’marker’ is used

as a shorthand for 3-marker rigid body, ’single marker’ is used otherwise.

17



As software, a program named Motive and an SDK named NatNetSDK is pro-

vided. Motive software and the custom client -which uses the SDK- works in a server-

client model. Motive is used for calibration, marker tracking, and data broadcasting.

Camera parameters such as FPS, exposure and threshold reflectivity for binarization

are also configured through the program. The image resolution is 832x832. The SDK

is a C library, with available bindings for C, C++, Matlab and some .NET languages.

In this work, we used the maximum 250 FPS, hand-tuned the exposure and threshold

values according to the illumination of the environment. We used a native C++ client

to process the data.

3.1.2 Kuka R900 Agilus

An Industrial type 6-DoF robotics arm, Kuka R900 Agilus sixx[35], is used as the tar-

get plant for teleoperation. Its joint configuration sequence from the base is RPPRPR

(R meaning roll, P meaning pitch). As in most industrial type robots, by default,

movements are preprogrammed and run in an open loop. Its internal controller logic

and trajectory planner are not accessible or reprogrammable. It is controllable in

position control and velocity control modes, torque-control is hardware locked and

not available. The robot is controllable in joint space, configuration space of the

end-effector and configuration space of a predefined tool.

To create online behavior an extra software package called RSI(remote sensor

interface) is provided by the vendor, which enables users to execute online trajectories

as long as torque, velocity and position are within limits. In this interface, external

inputs are expected as either target position or target velocity.

Joint axes of the robot are shown in Figure 10 for reference.

3.1.3 Computers

Three computers are used for the system. The first computer is used as the robot arm

controller which is connected to the arm with a cross-ethernet cable and connected to
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Figure 10: Joint axes of KUKA R900-sixx AGILUS robot.

the optical tracker computer and robot hand controller via the local network. It has

2.5 GHz Intel Core i5-3210 CPU, 3.5 GB memory, and runs on Linux. The second

computer runs the optical tracker program Motive and the custom client performing

the coordinate transformation. It has 2.53 GHz Intel Xeon-5649 CPU, 12 GB memory,

and runs on Windows 7. The third computer controls the robot hand. Integration of

the hand is explained later in chapter 4 It has 3.07 GHz Intel Xeon-X5675 CPU, 3.48

GB usable memory, and runs on a 32-bit Windows 7. OS choice (and therefore the

memory limit) was dictated by robot hand encoder drivers.

3.2 Optical Tracker Setup

The global frame of the cameras is initialized to the ground plane in calibration stage.

Axes are shown in Figure 10. To track hand pose, two markers are used which are

called base marker and hand marker in the rest of the thesis. Base marker is placed
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on an immobile table and used as base reference and hand marker is fastened to the

back of the demonstrator’s hand.

Although the hand marker alone is sufficient to track the pose of the demon-

strator’s hand, the base marker is still necessary to have continuous Euler angles in

a well-defined workspace which roughly corresponds to camera-visible poses of the

hand marker.

As a side note, base marker was initially planned to be used as torso frame and

second marker to be attached to human hand. The scenario was that when demon-

strator moves or rotates while keeping relative pose of their hand the same, the robot
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should stand still. Although it works as desired when the markers are visible to cam-

eras, allowing the demonstrator to move, often makes tracking harder due to markers

getting occluded. It is also comparatively better to fix base marker to a station-

ary base since human torso slightly moves and creates noticeable noise. The setup

explained below and the calculations reflect this case.

3.3 Pose Tracking and Coordinate Mapping

The demonstration is performed as follows. The demonstrator is instructed to ini-

tialize their upper arm parallel to the body, elbow angle making a straight angle and

back of the hand -where the marker is attached- facing cameras. In robot’s home con-

figuration, orientation is matched to demonstrator’s orientation to make the human

control feel natural, the position is based on the reachable positions of the human

hand. For example, if the demonstrator can reach 50 cm in a certain direction, the

robot also needs to be able to reach. Positional configuration is not very strict since

the demonstrator observes the robot during operation, however orientational dispar-

ity between the robot end-effector and demonstrator hand may create a slight sense

of disorientation. This is not studied as it is out of scope, however, anecdotally the

demonstrators are observed to be not aware of this effect to some extent and felt

disoriented when the disparity is above a certain threshold. Setting the robot’s ini-

tial joint state to a similar state as of demonstrator’s also prevents the robot getting

close to singular configurations. Technically this may not be a very sound solution,

but it could be argued that singular poses of the robot and the human arm mostly

overlaps due to them having almost same joint sequences and similar proportions of

link lengths. A scaling factor for target position would be necessary for this to work

if the robot had vastly different link lengths. In practice, no significant problem was

encountered with such a direct mapping approach.
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In equations below, Qb andQh denotes ground-to-base marker rotation and ground-

to-hand marker transformation; Pb and Ph denotes the positions of base and hand

markers. Where used, subscript t0 denotes the value at the start of demonstration

which is initial configuration. These values are directly streamed from the server

program in quaternions, therefore they are denoted with Q rather than R. The value

b
hQt is calculated with the following equations.

At t = 0, Qb(t0), Qh(t0), Pb(t0) and Ph(t0) are captured. Positional offset between

base and hand markers is simply calculated as Poffset = Ph(t0) − Pb(t0). Rotational

offset is calculated as Qoffset = Qh(t0)/Qb(t0), where division is the right division. In

the following frames, the target position Ptarget and target rotationQtarget is calculated

by

Ptarget = Ph − Pb − Poffset

Qtarget = (Qh/Qb)/Qoffset

Qtarget is then converted to Euler angles with ZYX ordering with right-handed

coordinates. Since mapping between quaternions and Euler angles is not one-to-one,

X-Y-Z angles are restricted to the conventional intervals [−π, π], [−π/2, π/2], [−π, π],

respectively. To map the target reference from camera frame to robot frame, following

transformations are also performed where Etarget is the Euler angle representation of

Qtarget, P and E are 3 element column matrices.

R =


0 0 −1

0 1 0

1 0 0


Ptarget = R · Ptarget

Etarget = R · Etarget
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3.4 Configuration of the Arm

The mechanical and electronic switches of the robot along with the computer running

its software reside in a cabinet called KRC(Kuka Robot Controller). The computer

runs two operating systems in parallel, a Windows XP Embedded OS for user in-

terface, and a real-time VxWorks OS for robot control. RSI package, in specific,

allows direct communication with the controller. Following steps were Configuration

of communication with a custom external controller goes through these steps.

• An XML message configuration file is created. In this file input message fields

and output message fields are declared. Protocol, server IP, and port are also

declared in this file.

• A configuration diagram for the controller is created. The diagram is designed

through a program named RSIVisual and resembles circuit diagrams. In execu-

tion, values from input messages are passed to special blocks such as positional

correction blocks or the correction blocks. Outputs that can be received are

joint positions, end-effector pose, and motor currents of joints. Other parame-

ters -which includes workspace limits, output units and precision, port number,

of dropped packets before timeout- are also configured in this file.

• These two files are copied to a specified folder in KRC Windows machine.

• A KRL(Kuka Robot Language) script is written. It facilitates communication

loop with an external UDP server, which is the custom controller. Whether

to run in absolute or relative mode is declared in this script. Initialization of

robot’s home position is also performed here for practical reasons.

• KRC cabinet is connected to a server PC through a crossover cable.

• A custom controller, server program, is implemented.
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3.5 Control of the Arm

In this section, implemented custom controllers are explained. As mentioned in the

previous section, the controller runs as a server program. It listens to the robot’s

output through a UDP connection and sends back a target position/velocity as input

in a control loop.

Before implementing the controllers, we experimented with simple point-to-point

trajectories which use the robot’s internal controller. With internal controller, run-

ning smooth trajectories, such as composition of sine trajectories and minimum jerk

trajectories, work exceptionally well with near-zero tracking error in both joint space

and cartesian space. In each cycle, a new target position is given to the robot, and the

built-in controller guarantees that it the by next cycle. In a sense, it can be thought

of as robot’s built-in trajectory planner is overridden by a custom planner. However,

when the trajectory is not very smooth, it creates very jerky motion and often causes

the robot to halt.

If the server program fails to send a response, the robot will produce a timeout

error and will halt. The target must be realizable by the robot’s internal controller

in one control cycle, otherwise, it will result in a torque limit error or velocity limit

error or workspace limit error. Except for the workspace limit error(which is set in the

configuration), other limits are dynamic and undocumented. For instance, velocity

limits for going up and down for the third joint is different, since the required torque

is dependent on the state of other joints.

We experimented with different PD controllers; in joint space and in cartesian

space, crossed with absolute position control and relative position control. In abso-

lute control mode targets are passed as absolute targets to the robot, in relative mode

relative updates with respect to the previous timestep is passed, which can also be con-

sidered as discrete velocity. For this reason, absolute position control required extra

acceleration and velocity limiters to run without jerks and errors. Relative position
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control, on the other hand, proved to be more useful for all use cases. Therefore, rela-

tive controller is used in both joint space and cartesian space. Also to note, cartesian

space is used for teleoperation and joint space is used for autonomous execution and

replaying recorded session. An exponential filtering is also applied during teleopera-

tion to eliminate the effects of human-caused sudden movements and tracking-caused

noise. This filtering is not needed and used in the autonomous execution.

The final controller used is a straightforward one. General control loop logic

including gain values is given below.

Algorithm 1 Control logic.

sock robot← init robot connection()
sock camera← init camera connection()
s← init home state()
sref ← s
g ← s
if mode is JOINT then

Kp ← 0.03 · [1, 1, 1, 1, 1, 1]
Kd ← 0.0005 · [1, 1, 2, 2, 2, 2]

if mode is CARTESIAN then
Kp ← 0.04 · [1, 1, 1, 0.8, 0.8, 0.8]
Kd ← 0.005 · [1, 1, 2, 1.5, 1.5, 1.5]

while listen([sock kuka, sock camera]) do
if data available(sock camera) then

g ← read goal state(sock camera)

if data available(sock robot) then
s← read state(sock robot)
et ← g − s
sref ← et ·Kp − (et − et−1) ·Kd

if filtering is enabled then
sref ← sref ∗ 0.7 + sref(t−1) ∗ 0.3

send reference state(sock robot, sref )

Two simple sine reference are sent to all joints to observe tracking delay and track-

ing error in joint space control. The results are shown in Figure 12. For clarification,

in both graphs, A refers to joints A1 to A6 but they may not be visible since same

reference is used for all of them. In the first reference amplitude is modulated and in
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the second frequency is modulated. The system has about 120ms of delay. Therefor

error with respect to 120ms-shifted position is also shown(red lines in the graphs).

The simple sine references cannot be tested directly in cartesian-space control due

to the robot’s singular configurations. Therefore, a sample execution of the controller

is shown in Figure 13. It is also more representaative of the actual use. In Figure

13, references and actual values for position and orientation is given on the left and

tracking errors are given on the right. The input is filtered aggressively in order to

ensure hardware safety. In effect, this causes flatter velocity and acceleration profiles

at the expense of some delay.
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Figure 13: Human control of the arm.

27



CHAPTER IV

HUMAN-IN-THE-LOOP LEARNING OF A DEXTEROUS

TASK

In this chapter, human-in-the-loop control with heterogeneous control is examined for

dexterous manipulation. Heterogeneous control is a type of shared control in which

the control channels of the human and the robot are orthogonal. The robot is initially

given a basic control policy for a subset of parameters, which is insufficient to perform

a given task but close enough to a successful policy. To complement the policy, the

human demonstrator is expected to learn the remaining parameters to achieve the

task. After the human learning is completed, initial robot policy parameters and the

parameters learned by the human are aggregated to achieve full autonomy.

For demonstration, a ball swapping task[36] is chosen, which requires a robot hand

to swap the positions of a pair of balls. A still from the task is shown in Figure 14. The

experimental setup consists of the human controlled robot arm and an autonomous

robot hand attached to it. Joints of robot fingers are given sine trajectories with a 4

second period and constant phase differences between consecutive fingers. The hand

alone completely fails to perform the task and needs additional arm movement to

perform it. Although initially not clear, operator can learn how to control the arm to

achieve the task. Combining the successful performance of the human for the robot

arm and the autonomous robot hand resulted in a fully autonomous ball swapping.

The human control part is executed the same as in chapter 3. The only addition

is, to synchronize the start times of the hand and arm, the hand is also sent a start

signal from the optical tracker cameras.
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Figure 14: Ball swapping task setup.

4.1 Robot Hand Joint Trajectories

The main goal in the selection the finger joint trajectories was to pick as simple

trajectories as possible. This is sensible since the goal is to not having to fine-tune the

parameters. Therefore we chose a basic convex position for the hand’s home position

and chose sine waves as trajectories. Yaw joints of the fingers are disabled and phases

of two pitch joints in fingers are set to the same value for further simplification. The

thumb is also not used since it was not needed for the task. The trajectories f(t)

along with their phases φ and amplitudes A are given below. Indices the as defined

in chapter 2.

fi(t) = Aisin(2πωt+ φi)

φ0,3,6,9 = 0, φ1,2 = 0.2π, φ4,5 = 0.6π, φ7,8 = π, φ10,11 = 1.4π

A0,3,6,9 = 0, A1,4,7,10 = 30, A2,5,8,11 = 20

ω = 0.25
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4.2 Human Learning of Arm Movement

A sample learning session of a human is shown in Fig. 15. The control is performed

in cartesian space and the data shown in the figure are the recorded joint positions

(not reference data). The user in this case is not a naive user and have tried the task

a few times priorly. These previous sessions were mostly used for gain tuning and

finding a suitable home position. As can be noticed from the rhythmic cycles, the

human learns how to perform the task around t = 150s. Once learned, the human can

consecutively repeat it a number of times until dropping the balls around t = 195s.

The balls are placed back again around t = 210s and the human continues to execute

the task successfully.
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Figure 15: Recorded joint angle data while the demonstrator learns and performs
the tasks.

During human learning, the state of the robot is recorded. After that, the move-

ment is broken into 4-second cycles and each one is replayed in a loop to find the

successful trajectories. Since the start state and the end state are not continuous an

extra second is added to reset from end state to start state for looping. The hand is

paused for this duration and arm movement is linearly interpolated between end to

start. Most successful cycles are decided with a simple procedure. First, successful
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Figure 16: a) Joint angles of the robot during demonstration between t=[156, 176].
This is the same data shown in Figure 15, b) Position of end-effector in millimeters.
c) Orientation of end-effector in degrees with Euler-XYZ ordering.

cycles are found by executing each cycle 10 times, failing cycles are eliminated. Then,

the cycle with the flattest joint space acceleration is selected as the best one.

For clarity, a zoomed version of Figure 15 is shown for t = [156, 176] in Figure

16. The best cycle in joint space according to the criteria was t = [164, 168]. Further

processes are performed on this specific trajectory.

4.3 Reduction of Dimensionality with PCA

In human learning experiments, one common observation was that the learns the

task by reducing their movements to a few specific movements. Although all 6 DOFs

are available, it is logical to expect that the task is easier to perform by mostly

changing the orientation with little change in position and the experimenter behavior

demonstrates this. In this light, it is plausible to think that the main intention

is to move within a few principal axes and the changes in other axes are mostly

noise. With this in mind, removing the redundant axes can greatly improve the task

performance. Another motivation is that our main goal is finding a simple successful
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movement which is hard to fine manually but easy to extract from a human. Also,

fewer parameters are always a plus for any kind of movement.

Principal component analysis is a very standard process for this purpose and

we used linear PCA. The method is applied in joint space on extracted data and

surprisingly first component alone was able to correspond to 99.2% of the variance

and execute the task successfully. In Figure 17, some PC’s are barely used in the

movement, therefore found redundant.
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Figure 17: (left) Mean-shifted joint trajectories. (right) Trajectory encoded in the
component space.

Additionally, we applied the method also on the reference data recorded from the

user. Although it was fairly good it has two problems. One problem is that there

need to be at least two PCs (for position and orientation) or an arbitrary scaling

parameter is needed to normalize the data. Second, the Euler angles are not linear

and this creates small artifacts in reconstructed data. Therefore, the method is used

in joint space. Lastly, kernel PCA with RBF kernels is also evaluated and we found

that linear PCA performs better for this specific data unless a great number of kernels

used.

4.4 Representation of the Trajectory with Movement Prim-
itives

In most learning-by-demonstration setups one common step is the parametrization of

the movement. The main reason for parametrization is that generally not repeating
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the movement strictly but capturing a general model of a baseline behavior. When

a modification is desired, the behavior is later modified using only these parameters,

hence reduces the complexity to a great degree.

The are various existing methods to learn a demonstrated trajectory. One very

common approach is using splines, where the trajectory is fit to a combination of a

number of splines. The number of splines and their viapoints are decided by different

heuristics[37, 38]. The success is heavily dependent on these heuristics which are often

difficult to find. Another problem is that it is usually a poor fit for nonlinear functions

[39]. A similar method to overcome the nonlinearity problem is using Gaussian kernel

regression. However, the main problem with this approach is its time dependency,

which makes temporal perturbations difficult. One successful method global stability

guarantees by Khansari-Zadeh et al. learns the attractor patterns in state-space from

demonstrations with Gaussian mixture models [39, 40]. This method could have been

used although we did not.

We have used dynamic movement primitives(DMPs) because it allows encoding

rhythmic movements and probably the most established method for rhythmic trajec-

tories. The method is briefly presented here. For a thoroughly detailed exposition

please refer to [41, 42, 43].

DMP method consists of three main parts, which are, canonical system, trans-

formation system, and a nonlinear function approximator(also called forcing term).

Main transformation system is defined as in Eq. 11. The model is a damped spring

model where y and ẏ are desired position and velocity, g is the goal state, f is a

nonlinear forcing term, τ is time constant, αz and βz are positive constants. With

the proper selection of αz and βz and by setting the forcing term f = 0, the model is

a stable linear dynamical system with the attractor state g.

τ ÿ = αz(βz(g − y)− ẏ) + f (11)
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The main idea is to introduce a nonlinear forcing term to exhibit arbitrarily com-

plex trajectories until reaching the goal state. However, direct modification of the

Eq. 11 makes the system nonlinear. To solve the problem a canonical equation is

introduced and f is defined as a function of phase. The addition of the canonical

system removes the need for explicit time coupling in the control policy and allows

for adaptive and reactive movements to emerge. Compared to discrete version, in

rhythmic version canonical equation is simple and linear. It is usually chosen as in

Eq. 13 where φ is the phase. Forcing term is defined as the normalized weighted sum

of N activation function ψ, weighted by w so that it becomes linear. Gaussian basis

functions are one of the most common general function approximator and activation

functions ψ are defined as Gaussians with centers ci and bandwidth hi. In rhythmic

primitives, cosine of the distance to the center is used to activate the function in every

cycle. The centers are equally spaced in phase because the phase function is linear

they are also equally spaced in time which is not the case in discrete form.

τ φ̇ = 1 (12)

f =

∑N
i=1 ψiwi∑N
i=1 ψi

, where ψi = exp(−hicos(φ− ci)) (13)

Weights of the activations are often simply called parameters and their values are

found with a regression method. Locally weighted regression(LWR) is often used with

dynamic motor primitives although any other suitable regression method can be used.

LWR is a common used local nonparametric memory-based modeling method[44, 45].

In parametric models, data is fit to a function with predefined number of parameters

and these parameters are found using all data points, hence global. In comparison,

nonparametric models build local models which fit a variable number of parameters

to a subset of data points. Therefore, LWR and its variations are often used in
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robotics for its efficiency to estimate local linear models and its suitability for real-

time control[46, 47].

We used the method with the open parameters: αz = 50, βz = 12.5, ci = 2πi/N ,

hi = 1. τ is used as 4/2π in fitting phase as it is the movement period. Trajectory

used here is the first principal component found in the previous section, the method

would be applied to other components in the same manner independently had they

been used.

In Figure 18, input trajectory and learned trajectory are shown with the velocity

profile. Two consecutive cycles are shown to display the discontinuity at cycle ends,

which is removed in the learned trajectory due to its guarantees. In Figure 19 phase,

activation functions and learned weights are shown. In Figure 20 learned dynamical

system is executed with different time constants. Although the graph gives the wrong

impression that it is a linear timescaling, it is not. Good selection of open parameters

provides convergence guarantee and critical damping no matter how small τ is.

As the final step learned trajectory is mapped back to joint space by applying

inverse-PCA and used as it is. The resulting movement was simple and performed

the task successfully. The execution could be sped up by a factor of 2.1 above which

the robustness starts to degrade.

The simple movement is difficult to create by hand as the axis is quite arbitrary

and the trajectory is hard to guess. In a dynamic task such as this, finding a hand-

coded trajectory would take a significant amount of time because the balls can drop

often. Therefore, the benefits of the human control are clear. On the other hand, in

the human learning sessions, humans failed to learn the task at higher speeds. The

procedure was able to achieve this improvement by finding a better version of the

human provided policy.

One glaring fact is that aside from temporal scaling additional benefits of the DMP

method -such as spatial scaling, spatial or temporal disturbance handling- are not
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employed. Still, having the critical damping is exteremely important and cannot be

satisfied with more direct methods, such as splines. Another reason for using DMPs

is that no other method creates parameters in phase space Since the phase(rather

than state) is the most important aspect of the the task, it will be highly useful in

follow-up works.
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Figure 18: Reference and learned trajectories and their derivatives.
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CHAPTER V

CONCLUSION

To conclude, in this work, we investigated manipulation strategies on two experimen-

tal setups. In the first experiment, we proposed that with a good dynamic model of a

robot hand, stable grasps with variable stiffness can be executed by estimating envi-

ronmental contact forces on fingertips. In the method, forces exerted on the fingertips

are measured with a force sensor and found consistent with the estimations. To en-

sure compliant contacts, a variable stiffness admittance controller is implemented.

The controller performance was found suitable for cylindrical grasp tasks for stiff and

soft power grasps.

The limitations and the problems of the approach are also clarified. The most

important limitation is that the approach is not very suitable for precision grasps as

expected, due to low sensory precision. Another limitation is that dynamic model

accuracy is naturally affected by mechanism wear. Mechanical backlashes on the

fingers have a negative effect specifically on stiffness variations.

We conclude that the proposed simple method is a good alternative to using

pressure sensors in certain scenarios for the reasons of lower complexity and reduced

cost.

In ball swapping task, we also found many interesting problems specific to dynamic

and dexterous tasks. One problem is that many policy search reinforcement learning

methods used in robotics, (e.g. REPS[48], PI2[49], PoWER[50]) aim to optimize

weight parameters without changing phase, even if the task might be more suitable

with a modified phase. In not very dynamic tasks, such as commonly benchmarked

reaching task, optimal parameters are independent of execution speed and it does not
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create any problems. However, in dynamic tasks the assumption becomes counter-

intuitive. For example, increasing the cycle duration of the ball swapping task without

modifying other parameters would fail the task if the human learned the policy makes

use of the inertia of the balls. The opposite problem occurs for making the task faster.

How the human adapts to the task is often cannot be qualitatively answered even

by the person. Although, the selected task might seem irrelevant for real-world use

cases, similar tasks such as bipedal walking or carrying a liquid-filled glass exhibit the

same behavior. A naive approach for learning the faster movement would also require

the human to learn the faster movement, which is not a solution since the learning

phase would be considerably more difficult for humans. In our experiment, this was

the case and the human failed to learn the task at lower periods. In reinforcement

learning scenarios for this type of dexterous tasks, we believe the main improvement

would come with learning the phase modulation and the weight parameters would

be of secondary importance. In its most simple form, a representative example task

would be learning the optimal policy for rotating a cart-pole as fast as possible or as

slow as possible.

To the best of our knowledge, this type of temporal task improvement is not well-

studied and we intend to investigate the problem in a future work. To this end, we

have done an amount of preliminary work which is not reported in this work due to

lack of results. In this work, we created a reinforcement learning setup. Initially,

we planned to use the force estimation method devised in chapter 2 to detect the

ball positions, unfortunately as mentioned in its limitations we were not able to have

precise estimation due to the dexterous movement and low weight of the balls. In

order to have a reward signal, a regular camera is used to track the phases of the

balls and a few reward functions are devised. We found that it is difficult to find a

successful policy for very fast movements by only optimizing the weights of the arm

movement. The problem, as mentioned previously, is that the phases and amplitudes
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of the fingers start to become more important as the period of the movement changes.

Therefore we decided to use the same canonical system of the arm movement with the

finger movement and intend to find significant improvements by learning the phase

function. The results are yet to be had and will be presented in a future work.

Another interesting observation in human learning was that after the human gets

used to the controls, they focus on coming up with a task decomposition plan which

is often considered a difficult problem in robotics domain. The subtasks in the ball

swapping task were moving the ball from some space between two fingers to another

and moving from lower finger joints to the upper joints between some two fingers.

This is clearly observable from the replays of the recorded data. This can also be

observed from slight pauses in the movement where the joints are not moved and the

proper phase waits for the next subtask. It would be fair to say that actual learning

time was mostly spent on finding a repeatable decomposed subtasks and various

spontaneous plans were discovered spontaneously by the human. It is an interesting

question whether there is a general principle in people governing how we evolve our

task decomposition plans and if there is one could this form a better understanding

for the robotics counterpart.
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