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Boğaziçi University

Assistant Professor Emrah Aktunç
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ABSTRACT

Extending our knowledge about brain mechanisms and behavior can lead to many ad-

vantages from shedding light on the diagnosis of nervous system diseases and injuries

to inspiring the current state of the art in robotics and artificial intelligence.

Ventral premotor cortex, i.e. area F5, in a macaque monkey’s brain is one of the

areas of interest in the literature. Studies have shown that F5 area in monkeys is

involved in arm movements and hand configuration, enabling the animal to grasp

objects with different shapes (different grip types). Furthermore, it is shown in the

studies that F5 area contains neurons called mirror neurons which are active not only

during the period the animal moves his arm and hand but also while the animal is

observing another monkey or person performing the same action.

In this study, we aim to investigate whether, by using F5 area neural activity,

monkey’s arm kinematics can be decoded in real-time or not. Furthermore, how the

decoding capacity of mirror and non-mirror neurons can be differentiated. To this

end, the neural behavior of 32 neurons (including mirror and non-mirror neurons)

in the stated area was recorded while a monkey was performing grasping tasks on

different objects. Also, monkey’s motion was video captured simultaneously. Us-

ing image processing techniques and tools, kinematics data was extracted from the

videos. Later, the possibility of single neuron’s decoding of the kinematics data was

investigated.

Results reveal that although single neuron real-time decoding of the kinematics

is not always ideal, reasonable performance is achievable with selected neurons from

both groups. Based on the results of this study non-mirror neurons seem to act as
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better single-neuron decoders. Although it seems obvious that population-level ac-

tivity is required for more robust decoding, neurons in the F5 area can be categorized

based on their success measure in single-neuron decoding.
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ÖZETÇE

Beyin mekanizmaları ve davranışıyla ilgili bilgimizi genişletmek, sinir sistemi hastalıkl-

arının ve yaralanmaların teşhisine ışık tutmaktan mevcut olan en gelişkin robotik ve

yapay zekâ alanlarına ilham vermeye kadar pek çok avantaj sağlayabilir.

Makaklardaki ventral premotor korteks, yani F5 bölgesi, literatürdeki ilgi alan-

larından biridir. Araştırmalar, maymunlardaki F5 alanının kol hareketleri ve el kon-

figürasyonunda rol oynadığı ve farklı şekillerdeki objelerin (farklı kavrama tipleri)

kavranmasını sağladığını gösteriyor. Ayrıca f5 alanınında sadece hayvanın hareketi

sırasında değil, başka bir maymunun aynı hareketini izlerken de aktif olan ayna-nöron

adı verilen nöronların bulunduğu gösterilmiştir.

Bu çalışmada, F5 alanındaki sinir aktivitesini kullanarak maymunun kol kine-

matiğinin gerçek zamanlı olarak çözülüp çözülemeyeceğini, dahası, ayna ve ayna

olmayan nöronların şifre çözme kapasitesinin nasıl ayırt edilebileceğini araştırmayı

amaçlıyoruz. Bu amaçla, belirtilen bölgedeki 32 nöronun (ayna ve ayna olmayan

nöronlar dahil) sinirsel davranışları, bir maymun farklı nesneler üzerinde kavrama

görevleri yürütürken kaydedilmiştir. Ayrıca, maymunun hareketi aynı anda videoya

çekilmiştir. Görüntü işleme teknikleri ve araçlarını kullanarak videolardan kinematik

veriler çıkarılmıştır. Daha sonra, tek bir nöronun kinematik verileri çözme yeteneği

araştırılmıştır.

Sonuçlar, kinematiklerin tek bir nöron tarafından gerçek zamanlı kod çözümü her

zaman ideal olmasa da, her iki gruptan seçilen nöronlarla makul bir performansa

ulaşılabileceğini ortaya koymaktadır. Bu çalışmanın sonuçlarına dayanarak, ayna

olmayan nöronların tek nöronlu kod çözücüleri olarak daha iyi oldukları söylenebilir.

Daha güçlü kod çözme için çoklu nöron etkinliğine ihtiyaç duyulduğu açıkça görülse
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de, F5 bölgesindeki nöronlar, tek nöron şifre çözme yöntemindeki başarı ölçülerine

göre kategorize edilebilir.
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CHAPTER I

INTRODUCTION

Our brain is the main source of our actions, decisions, problem-solving strategies, emo-

tion, etc. Understanding the underlying mechanism of brain can be very inspiring and

advantageous in different disciplines such as neural prosthesis[1] and robotics[2]. The

fascinating capability of brain majorly relies on its massive networks of neurons. As a

very simple explanation, neurons can be seen as electrochemical cells with a threshold

which receive the electrochemical signal from one or multiple neighbor neurons. If

the received signal by a neuron is strong enough (passes its threshold), the neuron

transmits the signal through and have the same interaction with its neighbors. Neu-

rons are generally simplified as binary units which have state of 1 if they are passing

any signal i.e. neural firing, or 0 otherwise. Brain power is the result of connection

and interaction among its neurons. Understanding what the brain does, given the

neural firing, which is referred as decoding problem is one of the main challenges of

the interdisciplinary field of computational neuroscience. More technical definition of

decoding is to model the stimuli using the brain data. The complexity and difficulty

of decoding problem can be perceived by assuming the example of understanding how

a computer system is running a word processor application only by having access to

the pattern of varying state of its transistors[3].

In action, to capture neural data from different regions of the brain, there are

multiple recording methods which are categorized into two main groups: invasive

and non-invasive recording. With invasive recording, by implanting micro-electrodes

inside the brain, one can capture spike occurrence of a single neuron[1]. Having

recorded neural activity in the presence of predefined and measurable stimuli, the
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decoding problem can be solved by a wide variety of machine learning and statistical

approaches.

As mentioned at the start of this section, Brain Computer Interfaces (BMI), par-

ticularly neural prosthesis, is one of the fields that gets benefits from the discoveries

made about the brain and its mechanism[1]. In the literature, studies can be found

that attempted to apply the decoding paradigm for producing data to improve the

development of neural prosthesis[4, 5]. Neuroprosthesis development draws more and

more attention due to its potential in helping disabled people e.g. the ones who have

experienced a loss of limbs or spinal cord injuries[1]. Thinking about disabilities and

our daily life activities, one can not deny how the ability to move hand and arm is

necessary. Loss of arm and hand movement equals to loss of being self-directed and

independent in daily life[6]. According to the survey done in[7], people with spinal

cord injury were asked about the ability they hope they could regain it. Regaining

hand and arm function was ranked as number one among other abilities.

Majorly, we use our arm and hand to perform reach and grasp tasks. Multiple

regions of our brain are involved in grasping which their homologues areas in macaques

brain that have been investigated in many studies. Ventral premotor cortex, i.e. area

F5, is one of these regions in a macaque monkey brain. It is proved that neurons

in F5 are involved in hand movements[8]. The majority of these neurons fire when

grasping is performed. However, not all of the grasping-related neurons in F5 has the

same firing profile. Their neural response varies according to different factors such as

required grip type, finger configuration, visibility of the target object e.g. grasping in

dark or light, and action segmentation[9].

F5 area contains another group of neurons called mirror neuron which has a fas-

cinating property. These neurons are active not only when a monkey performs a

grasping task but also when the animal observes the same action being done by an-

other subject (experimenter or another animal)[10, 11, 12]. Some studies suggested
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that mirror neurons are possibly associated with action recognition in monkeys[13]

and empathy in humans[14].

According to what mentioned so far, F5 becomes one of the areas of interest

in the literature. There have been empirical studies with the focus on grip type

classification/decoding in this area. In the following section, some of these works

are introduced. The results of these studies might be useful in the neural prosthesis

development for rehabilitation purposes. To the best of our knowledge, there is a lack

of research on the capability of F5 area neurons in the real-time decoding of grasping

details, kinematics of arm and hand during the grasping, which can be beneficial for

building more realistic and practical neuroprosthesis. Moreover, there are still open

questions about mirror neurons and their possible roles in motor control. In this

thesis, we aim to investigate whether there are neurons in area F5 with power of

real-time decoding of arm kinematics during grasping. Furthermore, how mirror and

non-mirror neurons’ real-time decoding power can be distinguishable. To this end, the

neural activity of 32 neurons (both mirror and non-mirror) from F5 area of a macaque

monkey was recorded while the animal was performing grasping. Simultaneous to the

neural recording, the monkey’s motion was captured with a camera. The animal’s

arm kinematics were extracted from videos and used to investigate whether recorded

neural data can accurately decode the arm kinematics in real-time or not.

1.1 Related Works and Thesis Contribution

In the literature, there have been efforts targeting grasp classification/decoding using

neural data from multiple brain regions such as ventral premotor cortex (F5), dorsal

premotor cortex, primary motor cortex (M1), and anterior intraparietal cortex (AIP).

These studies mostly suggest that grip classification can be done with an acceptable

accuracy using neural activity of aforementioned areas. The following provides details

about some of these studies. In [15] and [16], Support Vector Machines classifier is
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applied on F5 neural data for decoding grip types. In [16], two sets of object were

provided to the animal, and each set contained 6 different 3D objects requiring a

specific grip type. One of the sets needed more advanced grasping comparing to the

other set. Their result showed that 90%-95% accuracy can be achieved in predicting

object types using population-level activity. Similarly, in [15], at least 96% of accuracy

has been obtained decoding 6 different grips.

The work presented in [17] is also about the grip classification (4 objects with

different shapes) using SVM. Whereas, the neural data used in this study was recorded

from dorsal premotor cortex i.e dPM. This study revealed that information for grasp

classification is available in the dPM, however, this information can be obtained right

after the movement onset.

A Naive Bayesian based decoding was used in [18] for classifying two grip types

and five different wrist orientations. Neural data was recorded from AIP and F5

while the monkey was grasping a bar oriented in 5 different angles by applying either

precision or power grip. They reported that area F5 is the more accurate decoder for

grip type while AIP is a better decoder for the grip orientation.

The provided study in [19] contains the results of target-based decoding which

relies on unsorted spike trains rather than sorted spike trains. In this work, neural

data is recorded as the monkey was trying to reach a target on a screen using a

manipulator in front of him. This work is not much related to grasping decoding but

the findings are noteworthy as spike sorting is costly in computation.

In[20], authors provide details about investigating how mirror and non-mirror

neurons in area F5 are able to code self-hand visual feedback. In this study, neural

recording took place in the light and dark conditions while their animal was grasping

a cone shape object. Results of [20] suggest that mirror neurons show sensitivity to

self-hand visual feedback during grasping the object. In [21], it has been shown that

grip type prediction based on single neuron activity can be made for some of the F5
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neurons.

As a recent study, [22] discusses that using population level neural activity, in

addition to grip type decoding, the details of hand configuration and reaching phase

can be accurately decoded. Neural data in this study is captured from M1, F5, and

AIP areas while the animal was manipulating a wide range of objects. Results of this

study convey that the information of decoding reaching and grasping movements is

present in the mentioned area. However, F5 and M1 show higher performance in the

decoding than AIP.

Most of the mentioned studies more or less reveal the possibility of grip type clas-

sification using neural activity of subsets of neurons in F5 area. Suggested decoding

approaches can be used for developing neuroprosthesis to restore arm movements.

But, a device with the ability to convert the brain activity to movement e.g. moving

a prosthetic arm, in real-time seems more realistic and practical. On the other hand,

the level of contribution F5 neurons show in the real-time decoding of arm movement

can provide a new aspect to investigate the differences between neurons with and

without mirror property.

In this study, we explored the single neuron power in the real-time decoding of

the arm kinematics data. Recorded neurons are all from F5 including both mirror

and non-mirror neurons. Then, we investigate the decoding power of both groups in

a comparative way which has not been addressed in the literature to the best of our

knowledge.

1.2 Thesis Outline

The thesis is organized as follows. In chapter II the experimental setup and data col-

lection are discussed in detail. Chapter III explains how kinematics data are extracted

from the videos and concurrency of neural data and kinematics data is assured. Chap-

ter IV discusses the methods and techniques used for the decoding. The results of
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the study can be found in chapter V. In the end chapter VI provides the conclusion.
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CHAPTER II

EXPERIMENTAL SETUP

In this chapter, experimental scheme and data preparation are described. The whole

experiment, including 25 sessions, took place in 8 days from 23/7/2015 to 11/8/2015

by Vassilis Raos and colleagues at University of Crete. During these sessions, neural

activity of 44 neurons from a macaque monkey was recorded. Simultaneous to neu-

ral recording, sessions were video captured. This chapter is organized in following

subsections: First subsection contains details on how the animal training and prepa-

ration were carried out. Details on how neural recording took place is provided in the

second subsection. The behavioral paradigm and experimental setup are explained

in the third subsection. And, the description of the data we received from the Crete

lab can be found in the last subsection.

All the procedures and experiments described in this chapter were performed by

our collaborators, Vassilis Roas and colleagues, at Crete University. Technical infor-

mation presented in this chapter is also given to us by our collaborator. Furthermore,

our project partner assured us that: All experimental protocols were approved by the

Veterinary authorities of the Region of Crete and complied with the European (direc-

tive 2010/63/EU and its amendments) and National (Presidential Decree 56/2013)

laws on the protection of animals used for scientific purposes.

2.1 Animal Preparation and Training

An adult female monkey (Macaca mulatta) was trained and involved in the exper-

iments. An authorized supplier (Deutsches Primatenzentum, Gottingen, Germany)

purpose bred her. The first step in training is to make the animal accustomed to

having a collar which is used to guide her to his seat in the experimental setup. On
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the seat, except for real experiment, monkey is partially fastened to the chair in order

to make the experiment secure. Whereas, during real recording, the animal is fully

fixed to prevent any damage as the recording device is attached to his head. she can

only move her right arm to perform the grasping.

At the early stages of training, objects are shown to the monkey. Being curious,

animal tries to examine and grasp the objects. Cylinder, sphere, and ring seem more

trivial for monkey to grasp. Whereas, grasping cube takes more time and effort to

be fully learned by the animal. There is an LED light on objects which is used for

guiding the animal during the real recording. Next step in training is that monkey

needs to learn to fixate on the LED for a certain amount of time or till the moment a

cue occurs. There is a window around the object to keep track of the animal’s gaze.

Reward is offered only if the monkey was looking at object during the fixation.

All phases of training are reward based. Whenever monkey performs a correct grip

or stays fixated on LED for a desired period, she receives juice as reward. Training

takes place in the morning as animal is more eager to drink. Being aware of the

daily water need of monkeys, animals were offered their extra required water after

the training. Moreover, lab animals are always under observation for their health to

be maintained at its best condition.

2.2 Neural Recording

After training, a recording chamber was surgically implanted over the left hemisphere

of the monkey. After implantation, the cortical areas accessible through the chamber

were explored and localized. Area F5, the region of interest for the current study,

rostral to area F4, was assessed by neurons discharge during goal-directed hand move-

ments and observation of actions.

Glass-coated tungsten microelectrodes were used for single neuron recording. Af-

ter several steps of signal processing and filtering followed by spike sorting using
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Spike2 software (http://ced.co.uk/products/spkovin), neural activity was saved as a

binary vector with 1 ms resolution.

2.3 Experimental Setup and Behavioral Paradigm

In this experiment, 4 different objects were provided to the monkey for the grasping

task. Each of the objects requires its own particular grip. Objects and the needed

grip are presented in the Fig.1 and explained in the following:

• Cylinder which needs finger prehension, object wrapped by all fingers other

than thumb

• Sphere which needs whole hand prehension, object wrapped by whole fingers

and palm being in touch

• Ring which needs hook grip, by inserting index finger in the ring

• Cube in a groove which needs advanced precision grip, object grasped by the

pulpar surface of index finger and thumb being involved

These objects were placed on a rotating turntable apparatus and were shown to

the animal one at a time, always in the same central position. The monkey seat was

at 25 cm distance of the turntable[23].

At the beginning of each trial, an LED above the selected object turned on and

the monkey had to fixate on it and press a key. Following a fixation period, a dimming

of the LED signaled the onset of the reach-to-grasp movement. The monkey had to

reach for, grasp, pull and hold the object while fixating on it until the turning off of

the LED cuing its release. Each trial can be seen as 9 events:

1. beginning of spontaneous activity

2. object LED turns on

3. monkey fixates on the object LED
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4. monkey presses the button.

5. go cue (the LED dims for a moment)

6. movement onset

7. object grasped

8. release cue (the LED turns off)

9. the object is released.

Figure 1: Objects with different grip presented to the monkey, a) Cylinder, finger
prehension, b) Sphere, whole hand prehension, c) Ring, hook grip, d) cube, precision
grip

The period from the start of the monkey’s movement to the time of object pulling

is defined as the movement epoch, 6th event. Monkey’s movement was recorded at 120

frames per second by a camera that viewed the experimental setup from a constant
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distance. A second LED, hidden from the monkey’s view, was used to align the video

frames with neural activity. This LED changed its state when the monkey’s hand

left the home position to reach for the object and when the object was grasped. For

alignment purposes, it was crucial to robustly detect the state of this LED.

Neurons which were discharging while the grasping movements were further ex-

amined for the mirror property.

2.4 Data Definition

The Crete lab sent us two types of data which were Matlab structure files, a ’.mat’ file

for each neuron, and video files recorded during the experiment sessions, one video

file for each session. Two additional Excel files were also provided. One excel file

contained information for addressing the recorded units for each video and the other

carried information whether a neuron have mirror property or not.

For a particular neuron, one should refer to the Excel file to find out which video

file contains the session of recording this neuron activity. Then from the neuron’s

structure file, following information can be extracted:

• Number of trials performed per object by the monkey

• For each trial, starting time in the corresponding video file (the reported time

is not accurate enough for video and neural activity alignment)

• The time of each event during a particular trial (time origin is the advent of

event 2)

• For each trial, A 5000 length Binary vector with 1 ms accuracy, each element

shows whether the neuron spiked at that time interval or not.
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CHAPTER III

VIDEO PROCESSING

This chapter explains how the kinematics data is extracted from the video files and

how the alignment of derived kinematics and neural data is achieved. It is very

crucial for the neural data and kinematic data, extracted form the video files, to

be synchronous in order to achieve reliable decoding results. The following section

contains details on alignment of the data from videos and neural activities. Later,

the method used for kinematics data extraction from video files is explained.

3.1 Alignment

Extracting the video frames corresponding to each trial is the first step in data align-

ment. As mentioned before, during a trial, the monkey was performing the grasping

in a predefined set of events, nine in total. These events cover moments before mon-

key fixates on the object till the moment the animal releases the object. Throughout

a trial, although the brain activity may vary, the monkey is physically motionless

except during movement epoch i.e. event 6. Therefore, motion parameters should be

extracted from the frames which are concurrent with this event. As stated earlier,

there is an LED which the monkey has no hint about. The purpose of this hidden

light is for synchronizing the neural activity with corresponding video frames.

The LED can have two states of being on or off and it switches between the states

depending on the animal movement. From the start of a trial till the 6th event onset,

LED stays off. When animal releases the home position, it turns on and remains on

until the moment the object is grasped. While the animal is holding the object, the

LED stays turned off. Next switching happens as the object is released and the hand

is moving back to the home position. In short, during a trial, LED switching happens
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twice. Both times are when the arm is moving and not placed on home position or

the target.

It is crucial to detect the first switching in order to extract exact concurrent frames

of the movement epoch. For the detection, changes in average pixel intensity were

measured in the rectangular area of frames which holds this LED. In the next step,

by using semi-manual filtering, frames in which the LED switches from on to off or

vice versa were found. The synchronous video frames of a trial for a particular neuron

and object were obtained following these steps:

1. Given a neuron, deriving the related video file using the Excel file

2. Extracting the approximate start time of the trial in the video file using infor-

mation in the neuron’s Matlab structure file.

3. Starting from obtained time in the previous step, Looking at frames for detecting

the one frame in which second LED switching happens (This frame is concurrent

with the advent of event 6.)

4. Keep saving frames until the frame in which second LED turns off.

5. Storing the frames in a file with a distinct name comprising neuron’s, object’s

and trial’s information

Described steps can be explained simpler by looking at Fig.2. In the figure, pixel

intensity measurement can be seen in a video file. Blue and red plots depict pixels

value and our filtering result respectively. None of these plots are perfect near to

the end because of the noise in the captured videos. For a given trial, one should

first extract the approximate start time of the trial (step one), next finding the cor-

responding frame on the horizontal axis. The first rise in the red plot after the found

frame point is the onset of movement epoch for the given trial.
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Figure 2: Changes in average pixel intensity in the rectangular area containing the
LED, blue plot shows the intensity for each frame and red plot is the filtering result

As mentioned above, all the valuable changes (grasping action) occur during the

first switching of the LED. Therefore, it is critical to be assured that first and second

switching are not confused in the detection. Sometimes, due to the noise in videos, it

was impossible or time consuming to detect the LED state. Another problem faced

was that the starting time in the ’.mat’ file was overlapping with the finishing of the

previous trial i.e., the second on-off state of the LED. This made the approximation of

the starting time of a trial erroneous almost fifty percent of the times. Unfortunately,

the noise effect was unavoidable. But, for the later problem, frames of both on-off
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phases of the LED has been extracted and saved to different files. Video files showing

meaningful grasping action were separated manually. Due to these problems some

trials were eliminated from the analysis. As a final result, the number of usable trials

in the analysis became fewer than the performed trials even dropping to 6 out of 10

in some cases.

One negligible error for some neurons was that the given times for a particular

object were not directly mapped to that object. This problem caused to eliminate

some of the trials or the neuron entirely from the analysis. Table 1 shows the number

of usable trials for each neuron and object. Neurons with 0 trials for all objects were

eliminated from analysis due to noise or error in the data. In the end, for each valid

trial, there is a video file named in a descriptive way showing neuron and object that

the trial is related.

3.2 Motion parameter extraction

So far, a separate video file is available for each valid trial. As the camera had been

located at the same point during the whole experiment, the physical measures of the

setup and pixel scale conversion can be done consistently for all the video frames.

For more accurate result, the coordinates of the monkey’s wrist at home position

and the center of objects have been marked manually in the frames related to each

object. These coordinates can be used to define the sub-area of the frames where

the action happens. A set of image processing methods was applied on the extracted

sub-area. Two parameters of arm motion could be calculated consistently for each

frame in a trial: the approximate position of the wrist and the angle of the monkeys

arm with the axis parallel to his body. The latter is the summation of two angles

which shoulder and elbow joints make to perform the action. These two kinematics

values, henceforth are called as angle and distance. Following steps were applied on

the extracted sub-area to obtain motion parameters:
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Unit No. Cyl. Sph. Ring Cube Unit No. Cyl. Sph. Ring Cube

423 0 0 0 0 437 0 0 0 0
424 0 0 0 0 438 0 0 0 0
426 20 17 10 10 441 9 7 7 8
427 20 17 10 10 446 7 6 6 10
428 20 19 9 10 447 7 7 7 9
429 20 19 9 10 448 7 15 6 9
430 8 8 7 8 449 7 15 6 9
431 8 8 7 8 450 0 0 0 0
434 0 0 0 0 451 8 17 7 9
435 13 14 8 10 452 8 17 7 9
436 0 0 0 0 453 9 8 9 8
437 0 0 0 0 454 9 8 9 8
438 0 0 0 0 455 6 9 9 8
441 9 7 7 8 456 0 0 0 0
446 7 6 6 10 457 10 10 10 10
447 7 7 7 9 458 10 10 10 10
448 7 15 6 9 459 8 10 10 10
449 7 15 6 9 463 9 9 9 10
450 0 0 0 0 470 0 0 0 0
451 8 17 7 9 471 0 0 0 0
452 8 17 7 9 472 10 10 10 10
453 9 8 9 8 473 20 10 17 10

Table 1: Number of usable trials for each neuron and object

1. Applying MATLAB ForegroundDetector from computer vision toolbox to get

a mask for each frame showing the moving pixels.

2. Using different filters to reduce noise as much as possible without losing the

integrity of the pixels of the arm.

3. Assigning time profile for components defined by moving pixels ( noises from

level 2 can be large enough to affect the kinematics extraction negatively. These

noises can be caused by brief jerks that happen in the parts of the setup con-

nected to the monkeys seat as monkey eagerly wants to grasp the object. This

kind of noises may be large, but they are short in duration. So, by assigning time

profile for each component of the mask, these sudden jerks can be detected.)
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4. Using canny (for edge detection), findContour, and minAreRect tool from

OpenCV to obtain the motion parameters

Fig.3 shows a frame corresponding to sphere object grasp. It can be seen that all

unwanted noises are eliminated and only arm pixels are detected as the main moving

component. The bold gray rectangle in the figure is the selected sub-area of frames

where motion happens. Points marked by green, blue, and red colors are the center of

the object, home position of the wrist and monkey’s shoulder respectively. The other

rectangle, in the figure, is the output of minAreaRect tool from OpenCV which is

used to extract the kinematics data. The lower edge of minAreaRect, blue edge in

the figure, was used to define the angle lower arm makes with the vertical axis. The

wrist position is estimated as an average of pixel positions which were located in 15%

of the minAreaRect area at the ending near the object.

We faced some challenges during the kinematics extraction using findContour

tool of openCV which is worthwhile to mention. Although the input image for

findContour was a clean frame out of noise only containing arm pixels as a single

component, the output was a composition of several distinct contours. It was hap-

pening because of the effect of edge detection needed before. Having a fully connected

contour outlining the arm’s pixel is very necessary for the minAreaRect tool.

Another problem encountered was the effect of hand configuration on calculating

the angle. As shown in the Fig.4, by fingers placing lower than the arm, the rectangle

covering whole hand and arm can’t be used as correct reference for the angle. In

order to overcome this problem, we masked half portion of the available pixels at the

object side (where pixels related to hand are present), then we repeated the same

procedure by applying findContour and minAreaRect. The result is the green

rectangle shown in Fig.4.

In spite of our hope, no details about hand shaping or finger aperture were ex-

tracted from the videos. Obtaining more kinematics details were impossible because
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of two reasons. First, we were limited to a 2D lateral view of the action with no

marker on the wrist or critical joints. Second, FPS (frame per second) of the camera

seems to be not enough to capture monkey’s fast motion. Consequently, the captured

frames were blurry at the fingers and it was impossible to achieve more details. An-

other option for future research can be instead of having only one object representing

a grip type, multiple objects with different sizes be included for each grip category. In

this way, considering the smallest object as a baseline, a proportional factor of hand

shaping or finger aperture can be estimated by pixel-wise comparison.

Figure 3: The output of motion parameters detection

Trials were different in length even within the ones related to a single object and

neuron. For the convenience in the decoding, for each neuron, it was desired that

trials related to a single object have the same length. Therefore, for each trial, some

starting and ending frames were neglected.

At the start of each trial, there is no arm movement ( no changes in wrist position)

and monkey spends some time to shape his hand. Some frames after the movement
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Figure 4: Effect of hand and fingers configuration on calculating the angle

onset, the monkey starts to move the arm towards the target. As mentioned earlier,

motion parameters extracting method is only able to obtain information of lower arms

angle and approximate wrist position. Therefore, for early frames, there is no value

for the kinematics parameters. These frames have been neglected from the beginning

of a trial until the first frame with meaningful value for lower arm.

A partially similar thing happens for the ending frames where monkey spends

time on placing the hand on the object, tightening his grip, and completing the

task. Therefore, there is no movement of the arm and wrist anymore. This time,

motion parameters extracting method generates constant values for the kinematics

data. These frames with repetitive data are also neglected from the end of the trials.

After shortening the trials from head and tail, if a neuron still contains trials with

different length for a single object, then these trials are cropped further from the end

to become equally long as the shortest one.

In order to avoid losing the concurrency of video data and neural activity, the

number of neglected frames was saved. Valid frames were numbered considering the
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Figure 5: Average of extracted kinematics of all of the trials and neurons

count of skipped frames. By using frame rate of the video, these numbers were

converted to time and summed with the event 6’s onset time. Using Eq.1, for each

data point in the kinematics array, corresponding time index in the neural firing array

is calculated and saved along with the kinematics array. In the mentioned equation,

tfr, FPS,frno and tonset are time index of a frame, frame rate of the videos, number

of the frame counted from movement onset and time index of the movement onset

respectively.

tfr =
1000

FPS
frno + tonset (1)

As a conclusion, for each trial, an array of kinematics data and corresponding

time index were generated. Due to the mentioned limitations, these data don’t cover

the 6th event entirely. Instead, they cover the movement event from the moment that

the monkey’s arm appears in the scene (after achieving initial hand configuration) to

the time the object is reached but not fully grasped.

Fig.5 summarizes the output of kinematics extraction for both angle and distance.

Each curve shows the average of kinematics data over all the trials for a particular

object. Shaded area around the curves depicts the corresponding standard deviation.
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CHAPTER IV

ARM KINEMATICS DECODING

In order to find out whether the neural activity can decode kinematics data or not,

linear regression was used. Before going into the decoding details which is provided in

the last part of this chapter, suggested pre-processing approaches applied on neural

spike train can be found in the following section.

4.1 Pre-processing

The first step in pre-processing of neural activity was to convert neural spikes into

a continuous signal. Sliding windows with Gaussian convolution over each window

has been used. Width and center point for each window considered as 50 ms and

the time index corresponding to each data point in the kinematics array, respectively.

One-third of the window’s width was selected as the variance for Gaussian. Over

each window, first, a Gaussian was placed. Then each Gaussian was multiplied by

the number of spikes in the corresponding window. As windows were overlapping,

the final signal was the summation of all windows (Fig.6(b)).

Once the continuous signal was achieved, the neural activity values for time in-

dexes of kinematics data were extracted. As a result, for every trial, there was a

kinematics array with a corresponding activity array of the same length extracted

from the continuous signal.

Two more levels of pre-processing were applied after extracting the continuous

signal. One of them was to aggregate the continuous signal by time, and the other

was to include the neural activity, which happened before the movement event, into

the continuous signal.

One can presume that the signal (described in the beginning of this section) during
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the movement is driving the monkey’s arm while grasping. As this is a plant with

non-negligible dynamics, for running the arm, it is reasonable to assume that a neural

activity at a given time is not only effective instantaneously, but it also has its impact

on the future. Therefore, at each point in time,in addition to the current activity, past

activities are also taken into account in a decaying manner. The decaying manner

means the current time gets affected more by nearly occurred activities than further

activities in time. We modeled the decaying factor as an exponentially descending

function which starts from 1 and gradually decreases to 0, e
−t2

0.2 . Fig.6(b) represents

the explained procedure. The top subplot shows the spike rate as a continuous signal.

At each point in time (time points correspond to video frames), the signal value is

multiplied by the decaying function which is shown in the middle subplot. The final

version of the signal is the aggregation of all these descending functions multiplied by

the corresponding neural activities (Last subplot in Fig.6(b)).

In order to contribute the activity that a neuron illustrates before the movement

epoch in the decoding, brief information as a summary of the activity before movement

onset is concatenated with the signal. This information is simply firing rate (the

number of spikes divided by duration in ms) during each event before event 6. As

mentioned, motion parameter detection approach was unable to capture kinematics

data for some time at the beginning of the event 6. The uncovered interval of event6

onset was assumed as event five continuation. As a result, 5 discrete values were

concatenated to the signal.

4.2 Decoding

Polynomial family is considered as a candidate model for the decoding. In order

to solve the decoding problem, linear regression with pseudo-inverse solution was

used. Input and output for the linear regression were pre-processed neural signal and

kinematics data respectively. According to the pre-processing approaches explained
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Figure 6: (a)Gaussian convolution of neural spike count, from top: Neural spikes,
Gaussian of each window, Multiplied Gaussian by the spikes counts, Continuous sig-
nal (b) Aggregation of the continuous signal by time, from top: Continuous signal,
Consideration of decaying effect at each time point, Aggregated signal

earlier, there were 4 possible ways to prepare the input for the linear regression.

Regression input data can be extracted from:

• 1. convoluted spike count

• 2. aggregated signal with decaying effect

• 3. the convoluted spike train concatenated with pre-movement activity infor-

mation.

• 4. aggregated signal after applying decaying signal concatenated with pre-

movement activity information. Henceforth, these approaches are referred as

pre0-agg0, pre0-agg1, pre1-agg0, pre1-agg0 respectively. agg1 or agg0 means

whether convoluted spikes count signal is aggregated or not. The Same logic
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works for pre1 or pre0 which indicates whether pre-movement data are concate-

nated to the signal or not.

Angle and distance are two available kinematics data to be used separately as

regression output. For each neuron, linear regression was solved for 32 times consid-

ering all 4 objects, 2 type of kinematics data and 4 possible ways to provide neural

activity as regression input.

As mentioned above, polynomial based model with linear regression solution was

suggested for the decoding. Based on a cross-validation result, polynomial with degree

2 was selected as a suitable model. The derived model for pre0-agg0 and pre0-agg1

inputs is defined with 3 parameters which can be seen in Eq.2. In the equation, WD
1...3

refer to model parameters corresponding to distance kinematics decode and WA
1...3

refer to model parameters corresponding to angle kinematics decode. S can be either

pre0-agg0 or pre0-agg1. Like the kinematics type, the choice of signal type also leads

to a different model.

Distance(t) = WD
0 + WD

1 S(t) + WD
2 S(t)2

Angle(t) = WA
0 + WA

1 S(t) + WA
2 S(t)2

(2)

For more augmented inputs which contain pre-movement information( pre1-agg0

and pre1-agg1), regression model needs 5 extra parameters which is shown in Eq.3.

In this equation, WD
1...3 and WA

1...3 are same as Eq.2. ωD
1...5 and ωA

1...5 refer to the

model parameters corresponding to the pre-movement information. Pre-movement

information, as mentioned, is the number of spikes a neuron generated during each

event before movement onset- event 6. In the equation, Ev1...5 represents the number
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of generated spikes during events 1 to 5.

Distance(t) =WD
0 + WD

1 S(t) + WD
2 S(t)2 + ωD

1 Ev1 + ωD
2 Ev2+

ωD
3 Ev3 + ωD

4 Ev4 + ωD
5 Ev5

Angle(t) =WA
0 + WA

1 S(t) + WA
2 S(t)2 + ωA

1 Ev1 + ωA
2 Ev2

+ ωA
3 Ev3 + ωA

4 Ev4 + ωA
5 Ev5

(3)

As stated in the previous chapter, the number of valid trials among all neuron and

object combinations varies between 6 to 20. The difference in the number of available

trials was moderated by involving at most 10 trials for each neuron and object. This

deduction seemed necessary to guarantee statistical fairness. Selected trials should

be distributed in two groups: train and test. Train group members define the model

and generate training error while test members assess the suitability of the calculated

model and produce test error. Train and test errors are defined as mean squared error.

Because of the high variance in neural activity among the trials of a single neuron

and object, it is safer to have all the trials contributed in the train and test phase

of regression. Therefore, as a perfect option, leave one out or also known as LOO,

was used to determine the test and train members. LOO approach, in an iterative

manner, leaves one trial out and uses the remaining to solve the regression problem

and later uses the left out trial to test the defined model. At the end, training error

and test error are reported as an average of training and test errors of each iteration.

The final model also is an average of the models obtained in each iteration.

Obtained LOO test error is considered as measure of neurons’ performance in the

decoding.
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CHAPTER V

RESULTS AND DISCUSSION

In this section, the results of the last step, decoding kinematics data using neural

activity, are visualized and interpreted considering different aspects of the problem.

As mentioned, for each neuron, linear regression was solved 32 times considering all

4 objects, 2 types of kinematics data and 4 possible ways to provide neural activity

as regression input. This variety makes possible multiple directions from which to

explore the results. The effect of each factor (kinematics type, object, neuron type

and pre-processing of the spike train) can be visualized and analyzed separately or

in combination. The criteria of comparison and evaluation is based on single neurons

decoding performance in the kinematics decoding (LOO test error).

We examine the signal pre-processing effect at first. Having pre0-agg0 as input, the

regression did not perform well, and it simply generated an approximately constant

line which is equal to the average of real data. On the other hand, feeding aggregated

signal, pre0-agg1, as regression input improves the decoding performance considerably

and generates output curve with a better approximation of real data. The results

also suggest that feeding pre1-agg0 and pre1-agg1 as regression input causes obvious

overfitting or makes no difference at all comparing to pre0-agg0 case.

Fig.7 presents the decoding result for neuron 453 for a single object, cylinder,

but different signal preparation. Every subplot provides corresponding data in the

form of shaded curves. The leftmost column is related to pre0-agg0 input, and it

is followed by subplots related to pre0-agg1, pre1-agg0 and finally, pre1-agg1. In

the figure, neural activity, the result of decoding angle, and the result of decoding

distance can be seen in the first, second and third rows respectively. The curves are
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Figure 7: neuron 453 performance as average ± standard deviation over all the trials
for cylinder object and different inputs, the first row is the average of the aggregated
neural activity, second and third rows represent angle and distance respectively: blue
curve is the average of extracted kinematics and the red curve is the average of the
corresponding predicted kinematics.

the average, and the shaded regions are the standard deviation of all the trials. This

plot clearly shows that pre0-agg1 and pre1-agg1 are wise choices to be given as input

for decoding.

Fig.8 and Fig.9 support the selection of pre0-agg1 over pre1-agg1 which will be

helpful for further investigation by narrowing the results. In order, Fig.8 regards

to the mirror neurons’ performance in decoding angle with pre0-agg1 input and the

mirror neurons performance in decoding angle with pre1-agg1 input. In these figures,

neurons’ performances are provided for all objects in a sorted manner. Training and

test errors regarding each neuron can be seen as two adjacent bars with different

shades. By observing these bars, overfitting can be seen clearly in the plots related
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Figure 8: List of neurons ordered based on their performance (test error) in decoding
the angle data required for each object by using pre0-agg1 input, neurons number on
horizontal axis

to the decoding with pre1-agg1 input specifically at the end of the list. Same plots

related to non-mirror neurons and distance decoding can be seen in the appendix 2.

In Fig.11, the decoding results related to neuron 429 using the pre0-aqq1 input,

are presented. Similar figures for some other neurons can be found in appendix 1,

Fig.16...18. These figures are similar to Fig.11 in all aspects except for what they

represent in the columns. Each column, in Fig.11...18, is related to a particular

object. What was mentioned so far shows that an admissible kinematics decoding

using single neuron activity (using pre0-agg1,) is possible. This leads us to further

investigation in the results which is the comparison between mirror and non-mirror

neurons.
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Figure 9: List of neurons ordered based on their performance (test error) in decoding
the angle data required for each object by using pre1-agg1 input, neurons number on
horizontal axis

Fig.10 summarizes the result in most aspects. Each neuron can be seen as a point

based on its decoding performance of both kinematics data. Red points and blue

points are showing non-mirror and mirror neurons respectively. Each subplot stands

for a specific object. These plots can be an intuitive way to see whether or not any

separation based on decoding performance can be found between mirror and non-

mirror neurons. Neurons can be separated by considering both kinematics decoding

results or each kinematics data individually. In order to observe neurons performance

on single kinematics data decoding, one can envision each point projection on the

related axis. Two things can be concluded from Fig.10: First, mirror and non-mirror

neurons performance may be distinguished considering specific object or kinematics.
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Figure 10: Neurons’ performance in decoding both angle and distance data for each
object

Second, there are some outlier neurons in both groups. The former issue needs to

be proved statistically. After examining the data for normality (Shapiro-Wilk test

with 0.05 significance level), we tried T-test with 0.05 significance level to recognize

any difference between neural groups. Bar plots in Fig.12 and Fig.13, summarize the

T-test result.

Fig.12 and Fig.13 provides T-test outcome for angle and distance decoding re-

spectively. Each subplot stands for a particular object. In both neural groups, a

few neurons have a very noisy performance and seem to be outliers. We exclude

these units by taking into account a percentage of each set population. The selected

percentages (80%, 85% and 95%) can be seen in the horizontal axis of subplots. For

each percentage, blue and red bars depict mirror and non-mirror neurons performance
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Figure 11: non-mirror neuron 429 performance as average ± standard deviation over
all the trials for each object: the first row is the average of the aggregated neural activ-
ity, second and third rows represent angle and distance respectively: blue curve is the
average of extracted kinematics and the red curve is the average of the corresponding
predicted kinematics.

respectively. For a valid statistical comparison, T-test with 0.05 significance level is

practiced. Moreover, for each comparison, the corresponding p-value can be seen on

top of each compared bars. If the difference is significant, then corresponding pairs

are marked with ’*’. From the recent plots, no solid or consistent conclusion can be

interpreted. This can be because of the small size of each group population. On the

other hand, some neurons might be object-selective or non-selective at all (general

decoder). Although subplots in Fig.12 and Fig.13, are object based, object selectivity

of neurons has no reflection in the plots. If a neuron is object-selective it will have

higher decoding performance regarding that specific object, but, still, same neurons
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Figure 12: Comparing mirror and non-mirror neurons performance in decoding angle
data required for each object

performance has been taken into account in other subplots related to other objects.

In simpler terms, if a mirror neuron is a good decoder for angle decoding of a cube,

it will raise the average performance of mirror groups for angle and cube. On the

contrary, the same neuron will cause a drop in the average performance of mirror

groups considering other object and kinematics data.

In order to overcome stated issues, two alternative methods were defined for com-

paring the neural groups. The first method is named all-object error which is the

average value of decoding errors of all objects. The second method is named best-

object error which is the minimum value of the generated decoding errors among all

objects.
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Figure 13: Comparing mirror and non-mirror neurons performance in decoding dis-
tance data required for each object

Fig.14 and Fig.15 summarize decoding results for mirror and non-mirror neurons

considering both kinematics. Vertical axis shows all-object decoding error in Fig.14

and best-object decoding error in Fig.15 respectively. For each mirror and non-mirror

group, reported all-object/best-object error is the average of corresponding error of

the neurons in the respective group. Same as Fig.12 and Fig.13, horizontal axis of

subplots represents the number of included neurons of each group in percentage (80%,

85% and 95% percent of each population). Similarly, t-test with 0.05 significance level

is applied to determine the differences. And, the p-value of compared bars is shown

in the plots. * is used to mark the pairs with a significant difference.
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Figure 14: Comparing mirror and non-mirror neurons decoding performance based
on mean all-object prediction error for each group

Figure 15: Comparing mirror and non-mirror neurons decoding performance based
on mean best-object prediction error for each group

Non-mirror neurons seem to be better decoders than mirror neurons when evalua-

tion of neurons’ performance is carried out based on all-object error. And, by focusing

on angle kinematics and involving 85% of each population, non-mirrors becomes sig-

nificantly better decoders. In contrast, the comparison based on best-object error

shows no significant difference between mirror and non-mirror neurons. However,

in some cases, slightly mirrors seem to be a better decoder. These results suggest

that non-mirror neurons appear to be better general decoders whereas mirror neurons
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seem to be more object specific decoders.
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CHAPTER VI

CONCLUSION

In this thesis, arm kinematics decoding of a monkey while grasping is investigated

using neural activity . The activity of 32 neurons from F5 area of a macaque monkey

was recorded while the animal was performing grasping tasks. Four objects, each

requiring a distinct grip type, were provided to the monkey. Simultaneous to neural

recording, the activity of monkey was video captured in order to extract arm kine-

matics detail. Steps taken for this work are as following. First, we tried to obtain

synchronous frames with each trial. Second, kinematics data was extracted from the

frames. Although we could extract only two kinematics elements, our plots showed

us extracted data are distinguishable for each object. In the last step, we tried to

solve the kinematics data decoding problem using concurrent neural activity.

For the decoding, we focused on single neuron and regression based decoding.

Concurrent neural activity with the movement epoch and kinematics data were used

as regression input and output respectively. Four different preprocessing approaches

were carried out on raw spiking train, and decoding problem was solved by consid-

ering degree 2 polynomial as a model for decoding. Results show that single neuron

decoding of kinematics data is possible with aggregated neural signal over time as

input. It was not far from our expectation that the animal arm which is a dynamical

system might be more compatible with the aggregated input. Decoding results were

satisfying as the plots in Appendix A show that despite the high variance in the neural

activity through the trials, decoding output (prediction data) is robust and reliable.

Therefore, the performance of the decoding (decoding test error) was used as a metric

to compare mirror and non-mirror contribution in kinematics formulation.
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In this study, four different objects were provided to the monkey to grasp. Each

object has its own affordance. The extracted kinematics data reveal that the ani-

mal takes shorter time to grasp cylinder and sphere in comparison to other objects.

Moreover, the curves depicting kinematics data of cylinder and sphere look similar.

On the other hand the curves related to ring and cube look like each other as well.

Based on these findings, objects can be categorized in two sets. Although, we were

expecting that mirror and non-mirror neurons decoding power will be distinguishable

for these two sets, object-based analysis on the results of the decoding did not reveal

any consistent differences except for two cases. The first case was decoding angle for

object sphere and the second case was decoding distance for the cube. This can be the

side effect of our small sample size or other factors which need more investigations.

As another option for comparing mirror and non-mirror neurons decoding power,

we defined all-object error which is the mean of decoding errors over the objects. In

this case, non-mirror neurons become significantly better decoders in decoding angle

when 85% of each population were included. This shows that non-mirror neurons

are likely better general decoders. Therefore single-neuron decoding capacity may be

used as a quantitative means to classify neurons in a given region.

Although main line view on mirror neurons favors that they are involved in high-

level cognitive function such as intentions encoding, we found that some mirror neu-

rons may encode low-level motion features. Investigation with more neurons and

better motion capture system is needed to support the current results.
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APPENDIX A

Figure 16: non-mirror neuron 449 performance as average ± standard deviation over
all the trials for each object: the first row is the average of the aggregated neural activ-
ity, second and third rows represent angle and distance respectively: blue curve is the
average of extracted kinematics and the red curve is the average of the corresponding
predicted kinematics.
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Figure 17: mirror neuron 453 performance as average ± standard deviation over all the
trials for each object: the first row is the average of the aggregated neural activity,
second and third rows represent angle and distance respectively: blue curve is the
average of extracted kinematics and the red curve is the average of the corresponding
predicted kinematics.
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Figure 18: mirror neuron 479 performance as average ± standard deviation over all the
trials for each object: the first row is the average of the aggregated neural activity,
second and third rows represent angle and distance respectively: blue curve is the
average of extracted kinematics and the red curve is the average of the corresponding
predicted kinematics.
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APPENDIX B

Figure 19: List of mirror neurons ordered based on their performance (test error) in
decoding the distance data required for each object by using pre0-agg1 input, neurons
number on horizontal axis
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Figure 20: List of mirror neurons ordered based on their performance (test error) in
decoding the distance data required for each object by using pre1-agg1 input, neurons
number on horizontal axis
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Figure 21: List of non-mirror neurons ordered based on their performance (test error)
in decoding the angle data required for each object by using pre0-agg1 input, neurons
number on horizontal axis
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Figure 22: List of non-mirror neurons ordered based on their performance (test error)
in decoding the angle data required for each object by using pre1-agg1 input, neurons
number on horizontal axis
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Figure 23: List of non-mirror neurons ordered based on their performance (test error)
in decoding the angle data required for each object by using pre0-agg1 input, neurons
number on horizontal axis
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Figure 24: List of non-mirror neurons ordered based on their performance (test error)
in decoding the distance data required for each object by using pre1-agg1 input,
neurons number on horizontal axis
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