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ABSTRACT 

Photographing a large area in an instant is only made possible by satellites. 

Satellites are able to help reducing the time required for the photographing/monitoring 

process, however, satellite images are not available all the time, and even if they exist, 

they are not easy to evaluate for decision makers. So decision makers use surveillance 

drones, also called unmanned aerial vehicles to take photos of the predefined region. 

Given a set of nodes defining an area, each node should be monitored and analyzed. In 

that sense, the problem may be defined as a variant of Traveling Salesman Problem. It is 

not practical, however, just to go to every node and take a shot. Instead, one can make 

use of the concept of relative heights, meaning if there is a node in a higher or more 

appropriate position than that of another node, drones can go to that higher positioned 

node, take a photo and are able to monitor the other node that is ‘seen’ by the current 

node.  

In this study, we provide a mathematical model for this modified TSP, in which 

we should cover all the nodes either by photographing or physical visits and minimize 

the total travel cost. Then, we provide a greedy heuristic to find solutions and compare 

the values with optimal solutions as well as lower bounds to evaluate performance. We 

observe that in low photo costs, our algorithm may provide solutions within 1% of the 

solutions or lower bounds on hand, and in high photo costs the algorithm is still able to 

provide good solutions up to 5-10% of the solutions or lower bounds on hand.  
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ÖZET 

Büyük bir alanı anında fotoğraflayabilmek yalnızca uydular tarafından 

mümkündür. Uydular, fotoğraf/izleme süreci için gerekli zamanı azaltmaya yardımcı 

olabilir, ancak uydu görüntüleri her zaman mevcut değildir ve bu görüntüler mevcut 

olsa dahi karar vericiler için değerlendirilmesi kolay değildir. Bu sebeple karar vericiler, 

önceden tanımlanmış bölgenin fotoğraflarını çekmek için insansız hava araçları da 

denilen gözetim uçakları kullanmaktadır. Bir alanı tanımlayan bir düğüm kümesi (ağ) 

göz önüne alındığında, her düğüm izlenmeli ve analiz edilmelidir. Bu anlamda sorun, 

Gezgin Satıcı Problemi olarak tanımlanabilir. Bununla birlikte, her düğüme gitmek ve 

fotoğraf çekmek pratik değildir. Bunun yerine göreceli yükseklik kavramından 

yararlanılabilir, yani başka bir düğümden daha yüksek ya da daha uygun bir konumda 

bir düğüm varsa, dronlar daha yüksek konumlandırılmış düğüme gidebilir, bir fotoğraf 

çekebilir ve mevcut düğüm tarafından görülen diğer düğümleri otomatik olarak izlemiş 

olur.  

Bu çalışmada, yukarıdaki gibi modifiye edilmiş Gezgin Satıcı Problemi (MGSP) için, 

hepsi ziyaret edilmeksizin tüm düğümleri kapsayan ve toplam seyahat masrafı ile 

fotoğraf çekme maliyetini minimize eden bir matematiksel model sunulmaktadır. 

Ardından, çözüm bulmak için sezgisel bir yöntem önerilmekte ve performansı 

değerlendirmek için sezgisel tarafından bulunan değerler optimum çözümlerle ve alt 

sınır çözümleri ile karşılaştırılmaktadır. Düşük fotoğraf maliyeti olan durumlarda 

algoritmanın optimum çözümün ve alt sınır değerlerinin %1 fazlasına kadar iyi sonuçlar 

verdiği, yüksek maliyetli durumlarda ise nodlar arası görsel erişime bağlı olarak 

optimum çözümün veya alt sınır değerlerinin %5-10 fazlasına kadar sonuçlar 

üretebildiği görülmektedir.   
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CHAPTER I 

INTRODUCTION

 Monitoring and photographing large areas for security, safety or other specific 

reasons requires careful and detailed planning since decision makers always have 

limited time and other resources. In a given amount of time, an area within a building, a 

zone within a region or even a region itself should be monitored to take precautions 

against different emergencies. To prevent fires in a bank or school, to set up cameras or 

alarms for burglary, to conduct periodical controls in forests for fire prevention or to 

monitor borders for intruders and terror attacks are among different motivations of field 

scanning.  

For many years, Traveling Salesman Problem is approached in different ways by 

different researchers, and tremendous numbers of studies are created to effectively and 

efficiently solve the problem. Given the number of nodes, one should find an optimal 

way in terms of time or cost minimization or some other purpose together with 

contacting each node.  

In our problem, an agent does not have to go to each node physically, rather, the 

agent is able to reach some nodes from the current node visited, and this saves time and 

money. In that case, TSP behaves like the so called Set Covering Problem (SCP), where 

given an entity set S, one should select a minimum number of entities to cover all 

entities in terms of an objective. For example, municipalities aim to select a minimum 

number of sub-districts to open fire stations to reach all sub-districts within a predefined 

amount of time. In that sense our problem is a mix of TSP and SCP, where we should 

physically or digitally reach all nodes by either visiting them or making connections 

with them. In doing this, we should minimize time and/or cost incurred. Accordingly, 

we define our problem in the next section.  
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1.1 Problem Definition and Regarded Models 

As stated in the beginning of this chapter, our problem consists of- and is a mixed 

version of two different problems, namely the Set Covering Problem and the Traveling 

Salesman Problem. Given below are the simplest versions of both problems and some 

extensions used in various cases. Once an introduction is made to both problem types, 

we provide our model definition together with its mathematical model.   

1.1.1 Set Covering Problem and Traveling Salesman Problem 

Set covering problem, also known as set cover problem, concerns with 

minimizing the total cost of all selected elements or total number of selected elements 

itself given that these elements are required to cover a pre-given number of input sets. It 

has different versions such as edge covering problem and vertex covering problem, 

maximum coverage problem or geometric set cover. Even though the modified versions 

of this problem may be of mixed integer type (MIP), simplest version is a pure integer 

problem, whose formulation is pretty straightforward.  

To illustrate the Set Covering Problem, suppose that a municipality wants to setup 

fire stations within a specified region, which is divided into sub-regions with the 

motivation of efficient management. Then, the municipality seeks to minimize the 

number of stations to be set up such that all sub-regions are within at most 15 minutes 

of travel time. In some cases, some locations may be more expensive than others and if 

that is the case, the municipality may want to minimize the total cost incurred by setting 

up these fire stations rather than minimizing their number.  

The traditional formulation of TSP has sub-tour elimination constraints defined by 

subset S that denotes the set consisting of nodes in that particular subset of node set N 

and cardinality of S means the number of nodes in S, as also stated in [2] and as will be 

explained in literature search. For any subset to ever exist, there will be at least two 

nodes and a route, whenever there are nodes to form a subset due to cost optimality, it is 

prohibited in that the corresponding binary variables are not allowed to be equal to 1 all 

at the same time.  
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1.1.2 The Photo-Modified TSP  

Our model is verbally defined as follows: Given node set N, edge set E that 

connects each and every node in N, a starting node where our agent is located, we 

should cover each node in N containing also the starting node, by either directly visiting 

that node or reaching that node by photographing it from a distance without physically 

going there. It is possible for the agent to visit a node just to cover that particular node 

and not to take a photograph. As such, the agent is not allowed to take photograph at 

any node to which the agent does not physically go. This operation should be performed 

at the least cost, considering the travel costs between all the nodes making up a 

complete route and also the photographing costs that enable connecting to a node within 

a distance but incurring an extra technology cost. Another parameter to be taken into 

account is the reachability issue related to distances between the nodes. The reachability 

of a node from another one, at which a photo is taken, is defined by some function that 

assigns a probability of being “reachable” depending on the distance.  

The reason why we mention Set Covering Problem and also Traveling Salesman 

Problem is because the problem is a different version of TSP where all nodes should be 

covered without the necessity of visiting all of them one by one, rather, we have the 

opportunity to take a “photo” at a node to cover other nodes that are reachable from that 

particular node. SCP plays an important role in the heuristic algorithm we designed. In 

the first step, we divide the problem into two parts, and in the first part we define the 

photo nodes by which we are able to cover all nodes in the node set N. In that sense, the 

problem is similar to SCP and becomes relatively easier to solve.  

As you will infer from the application areas section, there are lots of real life 

cases where the problem we are dealing with is considered. We name our problem as 

the photo-modified TSP for general purposes, and any digital connection or remote 

operation will be defined as photographing. Throughout the study, we will refer to 

means of transportation, called salesmen in traditional TSP or vehicles or unmanned 

aerial vehicles as “agent”.  

Reachability Issue: Since we are dealing with monitoring costs and fuel costs in 

relation to traveling of the agent, it would be irrelevant to consider the highest 

technology. The reason is explained as follows: There are cameras able to recognize 

smallest insects from thousands of meters, so we should take into account that our 
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camera is of moderate size, moderate cost and moderate capability. These moderate 

characteristics correspond to gimbal cameras that are able to prevent vibration and 

movement based disqualifications and mainly used in mini unmanned aerial vehicles for 

border monitoring, security management and precautionary motivations. Mini 

unmanned aerial vehicles, called mini İHA in Turkish, are one of those used for short 

range trips in Turkey. If we consider agents that are able to see each and every node 

regardless of how far the distance is, then there is no sense in defining such a problem 

because the agent will be able to reach every node from the starting node.  

First and most important factor in a camera mounted on an unmanned aerial 

vehicle is the visibility range. Second factor in the camera tool’s capability is lens 

selection. There are two important things to consider in selecting the lens in a camera, 

namely the conformance to camera’s capabilities and conformance to environmental 

conditions. Another factor is the angle of view, determining how widely a camera can 

reach from its vertical focus and record videos or take photos. One should note that 

even though a point distanced vertically from a camera is seemingly qualified and 

enables easy detection, not all the points in the same angle of view may be of the same 

quality. We might as well use unattended ground sensors and improve the capability of 

the cameras, as Fargeas et al (2015) study in their work, however, such improvements 

are considered as future work since our target areas are deprived of such sensors and we 

want to maintain simplicity for our model structure. There can be lots of other details if 

we specify our problem to a real life case rather than generalizing it, thus we avoid 

giving here technical details regarding the visibility range of cameras or lens selection, 

for which we did additional research during the dissertation period. For simplicity, we 

assume that appropriate lens for our camera is used, that is, lens or any other factor such 

as focusing distance does not have quality-reducing effects on the camera itself and they 

are all selected appropriately. We also assume that after a distance from a node, that 

node becomes harder to “see”, that is, the probability to cover a node from the 

photographing node decreases. We explain how we determined this probability in 

Section 3.2.1.    
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1.2 Photo-Modified TSP Problem Formulation 

Our problem has already been defined in the introduction part with necessary 

assumptions. In this chapter, we provide our mathematical model with necessary 

notation.  

1.2.1 Notation 

Parameters: 

dij Distance between node i and node j 

ci Photographing cost in node i 

rij Binary number showing whether a photo taken at node i covers node j  

N Set of nodes including starting node (0) such that N={0, 1, 2….n} 

Decision Variables: 

xij Nj i,          
otherwise 0

j node  toi node from pathdirect a  is  thereif 1






 

yi Ni                             
otherwise 0

i nodeat   takenis photographa  if 1






 

ui Order of node i in any complete route                      Ni  
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1.2.2 Objective Function 

We seek to minimize the total cost incurred by traveling between the nodes and 

also photographing at certain nodes to consequently cover all nodes in N, as shown in 

(1):  

                  
  


n

i

n

j

n

i
iiijij ycxd

0 0 0

 (1)  

1.2.3 Constraints 

Node Coverage: All nodes should be covered. This can be done either by directly going 

to that node or taking a photo from a node that “covers” that particular node. This is 

mathematically expressed in (2): 

                                                
 


n

jii

n

jii
ijiij xyr

,0 ,0

j    1                                               (2) 

 

Visited Nodes Are Left: If there is a node for taking photo, that node should be left to 

go to another node to eventually build up the route, as given in (3): 

                                                                    



n

ijj
iji xy

,0

i                                                                                               (3) 

Note in advance that there is also another constraint assuring that visited nodes are 

arrived, however, the next constraint we write includes this arrival constraint by 

incorporating it into a balance equality.  

Node Balance: Node balance, together with (3) makes sure that any node will be left 

after physical or photographical visit to that node. The balance is given in (4): 

                     
 


n

ijj

n

ijj
jiij xx

,0 ,0

i   0 -  
 

          (4) 
 

  

Leaving the Source Node: Our agent is located at a starting node, so it should be 

leaving the starting node, shown in (5): 

   



7 

                                                      



n

j
jx

0
0 1                                                             (5)          

Arriving at the Source Node: Similarly, our vehicle should return to starting node after 

all nodes are covered. This is made sure by (6): 

                                                                         



n

j
ix

0
0      1                                                               (6) 

 

Sub-tour Elimination: The most important issue in solving our problem as well as 

solving a TSP is sub-tour elimination. This constraint correspondingly eliminates sub-

tours and makes sure that additional decision variables are only allowed to reflect the 

order of the nodes within a feasible route. This is given in (7): 

                     ji   0,j 0,i    1  nxnuu ijji  

 

         (7) 
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CHAPTER II 

PREVIOUS WORK 

Much effort has been devoted to searching for best solutions for Traveling 

Salesman Problem. Karp (2010) shows that the problem is NP-complete, which leads to 

development of countless heuristic algorithms and also LP relaxation methods to 

efficiently solve the problem [6]. So TSP includes combinatorial constraints such as 

sub-tour eliminations and similar to vehicle routing problem, it is also NP-hard [3-4]. 

Papadimitriou (1977)  concerns with Euclidean TSP and studies two different problems, 

namely the ordinary TSP, where one needs to go back to start node after visiting each 

node and the paths TSP, where one does not need to go back to original node after 

visiting all nodes [9]. In particular, Papadimitriou proves both problems’ Euclidean 

versions are NP-complete, and restrictions on distance inputs do not make TSP easier.  

This chapter continues with two subchapters explaining the solutions methods 

and different approaches for different versions of Set Covering and Traveling Salesman 

Problems previously studied.  
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2.1   Set Covering Problem 

One of the algorithms that comes to mind immediately when trying to solve Set 

Covering Problem is the Greedy Approximate Algorithm, mainly defined as α-

Approximation Algorithms since the results given by these algorithms cannot be worse 

than α times the objective function’s optimal value. Greedy algorithms’ working 

procedure is to find the node to be selected in such a way that it brings the maximum 

number of other nodes to be covered, and to do this job at minimum cost. This 

procedure is repeated until all nodes are covered. Mostly known values of α is 1.5, 2 

and 3, after which an algorithm increasingly becomes unsuccessful. The most literarily 

used greedy algorithm finds a solution with at most k ln n sets of nodes, given originally 

n nodes to cover. It is important, however, to note that even though Set Covering 

Problem does not contain a combinatorial constraint like sub-tour elimination seen in 

TSP, number of nodes exponentially increases the solution time and this makes it 

necessary to develop algorithms to efficiently solve the problem. Exact and approximate 

algorithms developed for Traveling Salesman Problem are also employed in SCP. 

Modified genetic algorithms are used in [10], [11] and [12] especially to handle local 

optima and provide efficient solution procedures. In [13] several algorithms able to 

provide both exact and approximate solutions are outlined and sorted. In that sense, [13] 

provides a useful index for different approaches for SCP. Before this study, same 

researchers had also suggested a Lagrangian-based heuristic for crew scheduling in a 

broader sense in [14]. Dynamic pricing as well as column fixing are effectively used to 

obtain improved solutions, providing optima in 92 out of 94 instances.  
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2.2   Traveling Salesman Problem 

 Much progress has been made since the introduction of TSP into literature. Soon 

after the problem was defined, solution procedures together with the required effort 

were suggested.  

2.2.1 Background and Pioneering Studies 

 Data plays an important role in TSP’s progress. Researchers like Dantzig and 

Karp provided very good distance matrices to start with, however as the problem size 

grew, their applicability reduced very fast. So over time, people began to create test 

instances to computationally experiment with TSP. Reinelt’s so-called TSPLIB, which 

contains examples up to 85900 cities is the mostly known test database. Other than 

TSPLIB, there are also National TSP Collection, VLSI TSP Collection, The World 

TSP, Mona Lisa TSP and United States TSP that can provide instances up to 1.904.711 

cities, which cover all the cities and populated areas in the world. In our study, we 

generate our own data when we create our binary matrices of accessibility, however, 

when it comes to generating distance matrices or test our model in IBM ILOG CPLEX, 

we simply made use of some of these instances as well. Years after [2]’s highly 

inspiring infrastructure to handle TSP, many people tried the database to test and 

validate their own algorithms, and even hardest instances were tried to be solved [15]. 

The difficulty in defining and handling these constraints is handled quite in an 

elegant manner by Dantzig, Fulkerson and Johnson (1954), where they employ an 

estimation procedure to estimate upper bounds for a 49-city problem and where they 

illustrate the sub-tour concept by using cutting plane methods and optimality concept by 

orthogonality and feasibility [2]. Even though literature seeks to find optimal solutions 

for TSP just as this study did in 1954, we should definitely note that exact methods such 

as cutting planes and branch and bound methods do not provide quick solutions when 

the problem size is much larger. The study is a pioneer, however, in that it is denoted as 

the first time such a large problem instance is solved to optimality. Cutting plane 

concept are further investigated in [15] and [20] where authors deeply discuss the 

concept of a cut procedure that is used throughout the solution process. It is the content 

of the authors that given a solution not satisfying all the constraints which impose 
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another cut to be added, a cut based on tangled tours and combined with old fashion 

cutting plane process is employed to effectively define a plane. Same authors enumerate 

other methods derived from numerous studies in [21]. Another cutting plane algorithm 

is proposed in [22], that is based on a polyhedra strengthening the LP relaxation. In 

exchange, the linear program created has about twice the size of the usual LP relaxation. 

Therefore, they propose a lifting step to reduce the size for solvable complexity. In our 

study, our model’s sub-tour elimination constraint makes our problem weaker in terms 

of LP relaxation, and in future studies, we may try to use this strengthening step in 

relaxing our model to find lower bounds.  

2.2.2 Finding Lower Bounds 

Laporte’s work sheds light on exact and approximate algorithms and provides an 

extensive guide to make use of in finding lower bounds in [23]. In addition to integer 

programming formulations, the assignment lower bound and related branch and bound 

algorithms allow finding a lower bound by relaxing integer constraints, leading to an 

assignment problem that can be solved in O(n3) time [24]. Other exact algorithms that 

may be of interest are the shortest spanning arborescence bound and related algorithms 

as in [25], the shortest spanning tree bound and related algorithms and 2-matching 

lower bound and related algorithms as in [26] and [27]. As for approximate algorithms, 

of which we have talked and will be talking below, heuristics with guaranteed worst 

case performance that base on spanning trees and are improved by Christofides 

heuristics as in [28], heuristics with good empirical performance such as nearest 

neighbor which can further be divided into tour construction, tour improvement and 

composite heuristics studied in [29]. Another study compares the lower bound obtained 

by their model by the Held-Karp bound and the lower bounds obtained in [30] and [31]. 

It is shown that the Held-Karp bound is at least as tight as van der Veen, which is as 

least as tight as minimum weight tree. Both Held-Karp and can der Veen yielded best 

bounds, among which van der Veen prevailed since it provides values in linear time 

[32]. Another study in [33] handles the issue of finding lower bounds by a 1-tree 

learning based Lagrangian relaxation technique. Obtaining lower bounds for large 

instances of a problem that cannot be solved within reasonable times is also important 

especially when it comes to compare a heuristic algorithm with other exact or 
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approximate algorithms in terms of solution time and solution quality. Mathematical 

programming formulations such as single or multi-commodity flow can be used to 

formulate a minimum spanning tree (MST) and then applying branch and cut and price 

algorithms [129]. Our approach is similar to what is studied in [130], but it is different 

in that we incorporate photographing variables and make a coverage possible also by 

taking a photo from a node able to cover other nodes.  

2.2.3 Mathematical Formulations 

In addition to the constraint formulation suggested by [2] and also the 

introductory chapter, there are several other formulations to integer programming of 

TSP, as summarized and computationally compared in [34]. Four types of classes, 

namely conventional (C), sequential (S), flow based (F) and time based (T). 

Conventional formulation is what we see in Dantzig, Fulkerson and Johnson’s work. It 

has 2n + 2n - 2 constraints and n(n - 1) binary variables. To solve the problem in 

tolerable times, sub-tour elimination constraints are added as they are violated, thus 

reducing total computation time.  

Second class is sequential formulation, which we used in CPLEX to effectively 

handle the sub-tour elimination constraints. Accordingly, the sub-tour constraint is 

replaced by what we write in constraint (7). Even though the constraint (7) is written 

such that the variable ui showing the sequence of node i visited in the route is defined as 

a continuous variable, it may be also be defined as integer to precisely notify the node 

sequence in a given route. Sequential formulation has n2 - n + 2 constraints, n(n-1) 

variables and n-1 continuous variables. This is known as the Miller-Tucker-Zemlin 

formulation, as stated in [35] and also compared in [36] and [37]. Main advantage of 

this formulation is the decreased problem size, and ease to manipulate the model in 

cases we want or prefer some cities to be visited earlier. It is also noted, however, that 

LP relaxation of this formulation compared to [17] is much weaker due to the need for 

elimination of continuous variables in relaxation process.  

Third class is flow based formulation, which we also see in vehicle routing 

problems, studied in [38], [39] and [40]. This formulation may be subdivided into single 

flow, two flow and multi-commodity flow formulations, in each of which appropriate 



13 

indices are defined but the conceptual definitions remain the same. Single flow 

formulation incorporates a yij to traditional formulation to denote the flow in the 

corresponding i-j arc and adds the following constraints: 

jiNjixny ijij  ,,    )1(  (8) 
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(9) and (10) allow n-1 units to flow into city 1 (starting node in our case) and 1 units 

from other cities, where any flow, as stated by (8), can exist if there is a direct path 

between the corresponding city i and city j. 2 flow and multi-commodity flow 

formulations can be looked and studied accordingly. As for multi-commodity TSP, [41] 

gives a formulation to model a transportation network. More formulations can be found 

in [42], [43], [44], [45], [46] and [47], where [42] compares the strengths of their LP 

relaxations and provides some base to select the best fit for conducted studies.    

Fourth class is time based formulation, where we divide the route and moves 

into time-based intervals, thus modeling the problem in such a way that whenever there 

is a condition in time t at a particular node, we impose another condition in time t+1 in 

another node and so on. In addition to binary arc variable xij, we add the following to 

the problem: 
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This model, as stated in the study, has n(n+2) constraints and n(n-1)(n+1) binary 

variables. Even though we may claim that the formulation is a more compact one, its LP 

relaxation form is weak and therefore becomes slow in terms of running time. [48] deals 

with more time-based models and puts all advantages and pitfalls in the modelling 
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process. We do not prefer this modelling approach since we need another variable to 

denote photographing/connection decisions and incorporating this variable would cause 

another complexity in modelling due to inclusion of time stages.  

2.2.4 Neural Networks 

As for neural networks studies, [54] and [55] investigate different methods used 

in solving TSP. [54] compares three different approaches: integer linear programming 

to obtain optimal solutions without time consideration, Hopfield Neural Network as 

explained in [56], and Kohonen Self Organizing Feature Map. As stated in [56], 

Hopfield Network is able to compute good enough solutions by using analog inputs and 

uses these solutions as the network is extended. These ‘milestones’ to shed light on the 

optimization of the problem by spending less time is actually the what makes a network 

a neural network where some solutions are collectively computed by utilizing an energy 

function. Lots of other problem types are also solved by making use of neural networks 

[55], where TSP is the mostly investigated problem type and is characterized either by 

binary variables as in integer formulations or continuous variables as in [57].  Studies 

[58], [59], [60] and [61] also consider Hopfield neural network and provide extensions 

in terms of computational structures of the same algorithm. In [62] Hopfield network 

performance is compared with an ant colony system. For more information on neural 

networks, [65] can be consulted which classifies all neural network studies based on 

solving TSP and TSP with backhauls as in [66] and divides the work into three main 

groups, namely the Hopfield-Tank Network, elastic net algorithms and self-organizing 

maps. For more neural network applications employing Hopfield networks, reader may 

look at [67] and [68]. An interesting neural network application is the so-called Cuckoo 

Search Algorithm, introduced firstly by [69] and inspired by cuckoo behavior in nature 

[70]. 

2.2.5 Swarm Based Techniques 

Another metaheuristics for solving TSP are swarm based optimization techniques, such 

as ant and bee colony algorithms [71], swarm particles or what we found in our thesis 

period, named African Buffalos. Particle swarm is developed by [72] and parametric 

extensions are created by the same logic in [73], [74]. Parameters like inertia weight or 
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discrete structures are also combined with the main concept to accelerate the method 

and obtain qualified solutions [75]. Precedence constraints in addition to sub-tour 

elimination constraints make TSP even more complex and this is where particle swarm 

optimization (PSO) comes in [76]. Convergence speed in such algorithms may be 

increased by eliminating crossovers, and re-designing subtraction operator contributes 

to possibility of solving even larger problems thanks to early convergence [48], [49], 

[77] and [78]. In [79], particle swarm techniques are combined with genetic simulated 

annealing ant colony system to solve 25 TSP instances obtained from TSPLIB, which is 

then compared with the self-organizing maps [53], and neural network approaches in 

[80] and [81]. [86] deals with TSP when there are time windows constraints. Time 

window constraint is handled by a beam ant colony optimization algorithm in [87], 

where stochastic sampling for differentiating between partial solutions is used. A 

combination of particle swarm optimization, ant colony optimization and 3-opt 

heuristics is employed to solve TSP in [88]. A bee algorithm in [90] investigates a 

deterministic case by the very same natural waggle dance behavior of bees. Different 

applications of swarm particle optimization approaches may be consulted in [92], [93] 

and [94].  

 A different aspect, namely an optimization technique called African Buffalo 

optimization, is concerned by [95] where the technique is compared with the 

Randomized Insertion Algorithm and performed better [96]. Buffalos run faster also in 

[97] and [98], where African Buffalos are compared to hybrid Honey Bees and Lin-

Kernighan algorithms on TSPLIB95 benchmark data.  

2.2.6 Simulated Annealing 

Simulated annealing is used also in [82], where a local search algorithm 

combines greedy approaches with simulated annealing to solve TSP. Problem types that 

are fit for simulated annealing are mentioned in [83] together with a Metropolis 

algorithm firstly introduced in 1953. The algorithm is compared to simulated annealing 

in [84] and in [85],  
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2.2.7 Genetic Algorithm 

[99] investigates different selection strategies in genetic algorithm (GA) 

approach to determine which parameter selection in terms of parent selection affects the 

solution time in the highest rate. As the problem size increases, it becomes more likely 

for tournament selection strategy to suffer from early convergence to some local optima 

[100]. As mentioned earlier, vehicle routing problem with precedence constraints is 

appropriate to be modeled as a TSP, which can produce invalid candidate solutions if 

solution representation is made order-based [101]. It is also important to prevent the 

algorithm to converge to some locally optimal solution by additional manipulation of 

results or preventive steps, such as evolutionary adaptation of simulated organisms 

[102]. Even though generalized chromosome genetic algorithms are claimed to solve 

standard TSPs as well as generalized TSPs (GTSP) where a tour is created by visiting 

single nodes in each clusters containing multiple nodes [103], generation of feasible and 

quality tours is an important aspect to achieve good enough solutions in the end, thus 

genetic algorithms are supported by local heuristics, such as the hybrid algorithm that 

produces solutions beforehand and then refines them by Lin-Kernighan local search 

[104]. It is also possible not to use a local search algorithm separately from the genetic 

algorithm but to convert local search heuristics into a genetic structure like it is done in 

[105]. [106] introduces a Memetic Algorithm that incorporates an extensive 

neighborhood search to generate new solutions using crossover. For the same problem, 

[107] again uses local search supported by genetic algorithm. Another genetic algorithm 

called the immune genetic algorithm (IGA) employs two ways to make use of an 

immune operator [108]. For more applications used in combinatorial problems, [109] 

classifies and enumerates previous studies based on scheme; [110],[111],[112] and 

[113] are extensive books providing traditional as well as combined approaches with 

respect to genetic algorithms, whereas [114], [115], [116] and [117] are the pioneering 

conference proceedings as cited in [107]. 

A different approach is used in [118], where symmetric and asymmetric TSPs 

are solved. Lots of different representations may be seen in [119]. Even creation of 

initial populations may be in tremendous numbers of ways, which in turn affect the 

solution quality and the rate at which the optimal solution is reached [120]. TSP with 
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precedence constraints is solved also by a genetic algorithm where the concept mainly 

bases on topological sort, namely the edges ordered in a directed graph [121]. As for 

mutation operators, a new one called Greedy Sub Tour Mutation (GSTM) is suggested 

in [122]. 

2.2.8 Other Approaches 

Tabu search [123], owing its name to its property of holding previous solution 

information in memory, is also used in TSP problems. A balance between tabu 

conditions and aspiration criteria is important and well defined memory function play a 

vital role in reducing the total solution time. More information can be found in [123].  

There are also algorithms that are motivated on their own and do not rely on 

Meta-heuristics, thus having no particular name like our algorithm. An example is given 

in [124], where edges are added to a tour progressively by selecting the less disturbing 

edge for the edges not yet selected. The algorithm is compared to famous Quick Method 

for evaluation.  

A different version of TSP is maximum reward collection problem, studied in 

[125] and in [126]. A variant of the same problem with multiple agents is studied in 

[127]. Salesmen try to maximize their reward minus any costs by visiting the nodes 

which worsen as time passes. A penalty based heuristic is suggested in [125]. In [127], a 

Cluster and Route Algorithm (CRA) is suggested to find good enough solutions.  

The maximum collection problem is studied also in [128], where this time a 

single constraint is imposed such that each nodes does not have to be visited exactly 

once, each node has a given reward and starting node should be returned to, maximizing 

the total reward within the given time. Similar to what we formulated in our heuristics, 

this study adds assignment problem’s constraints to easily solve the problem by 

Lagrange relaxation.  

  



18 

CHAPTER III 

SOLVING OUR PROBLEM BY MATHEMATICAL MODEL 
AND BY A GREEDY HEURISTIC

In this chapter, we solve our mathematical model by CPLEX, show that the 

problem is NP-Hard for higher numbers of nodes, explain the dynamics of a heuristic 

algorithm we designed to easily solve the problem and compare the results.  

3.1 Solving the Model Mathematically and Evaluation of Results 

In this section, we give information about how we generated our own problem 

instances and also our comments on computational results. To solve the problem, IBM 

ILOG CPLEX Optimization Studio 12.6.1 is used. The software is installed on 

Windows 7 Professional Operating System 64 bit, with Intel® Core™ i7-3630QM CPU 

@ 2.40 GHz processor and 8 GB RAM.  

3.1.1 Generation of Different Problem Instances 

Before explaining the methods we used for generating different problem 

instances, it is necessary to explain any assumptions we made for simplicity. In the 

construction of our distance matrix, distance is measured in Euclidean form. Since we 

want to maintain simplicity as much as possible, we directly took distance matrix as the 

traveling cost matrix, defining the traveling cost 1 monetary unit for 1 unit distance. We 

assumed a coordinate range between 0 and 1000, making the largest distance between 

any points at most 21000 .  

Reachability Issue Revisited: In the introductory part, reachability was 

mentioned as one of the inputs to our model.  To be able to adapt this characteristic into 

our model, we define a mathematical function through which we obtain our relative 

height (reachability) matrix. To reflect the decrease in capability as the distance 

increases we define the following function:  
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where dij denotes the distance between node i and node j and dmax denotes the maximum 

distance among all the pairs for a given set of nodes. As stated above, this function 

takes a value less than 0.1 after the integer value 392, a distance less than 400 unit 

distance when the maximum distance is 1400 units between two nodes. Note also that 

the coordinates of nodes vary between 0 and 1000, thus creating a square of 1000 x 

1000 unit distances. The curve that shows the probability of ‘seeing’ a node is given in 

Figure 1.  The maximum distance is determined as 1400. Note that if the distance is 

equal zero, the probability of seeing a node becomes 1. In other words, if we are at a 

node and we want to take a photo, we will definitely be able to cover that node. Note 

also that if two nodes are located by the maximum distance, the probability of them to 

see each other becomes zero.  

  

Figure 1. Distance-Probability Curve 

The motivation behind the selection of this probability function is simply the 

case we are considering. Technical details we obtain from [5] and also the rule stating 

the reachability capability of a camera is taken as an example. For our particular case 

where we assumed a 1000 x 1000 grid, we want the nodes to contain limited numbers of 

1s in the reachability matrix, thus allowing the problem to consider photographing 

opportunities. For this reason, we take the probability function to the seventh power to 

guarantee the steepness of the curve and be sure that a photo node does not cover 

“almost” all the nodes and does not make the problem meaningless since otherwise even 
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large numbers of nodes can easily be covered by photo nodes and the problem turns into 

SCP rather than TSP. For other cases where other factors play a role in reachability, this 

function may be defined based on those factors, for example, lens selection and weather 

conditions may be incorporated into the function appropriately. It should be noted that 

this function, at the end, is selected arbitrarily, the power of it could be 6 instead of 7, or 

10, depending on how much reachability we want in our reachability matrix. We 

selected 7 as to make sure that we have enough number of coverages in our reachability 

matrix.  

Next question to answer is how probabilities that a node covers another node are 

calculated. Depending on the distance, the function in (14) calculates a number between 

0 and 1, whose graph has already been given in Figure 1. Taking the value as an input, 

Excel generates a random number between 0 and 1. If the generated number is greater 

than the value of the function, corresponding coverage value in the reachability matrix 

takes the value of 0, and it takes the value of 1 otherwise. The following formula is used 

in generating reachability matrices: 

IF(RAND()>H406;0;1) 

To solve different instances of the model, we modified both distance matrices 

and also the cost vector. Distance matrix is manipulated in two different ways: 

1. Neighborhood Generation: We divide the distance matrix into numbers of 

neighborhoods which are defined by different distance ranges. For example, 

first neighborhood contains nodes whose coordinates are determined 

between the values 0 and 300, second neighborhood contains nodes whose 

coordinates are valued between 400 and 500 and third neighborhood 

contains coordinates between 800 and 1000 and so on. Depending on the 

instance, we also create neighborhoods together with a larger neighborhood 

containing the whole range. We create these neighborhoods to test and 

observe the solution structure of optimization software and heuristic 

framework. These two modifications are illustrated in Figure 2 and Figure 3, 

respectively. Numbers of neighborhoods are also increased in different 

instances and up to 5 neighborhoods are created.  
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Figure 2. 3 Neighborhoods 

 

Figure 3. 3 Neighborhoods with Full Range Nodes 

2. Distance Altering: Distance altering simply changes distances without 

changing the number or range of neighborhoods to measure the effect of 

different values in solution time and feasibility. Once the matrices are 

created, it is very easy to generate several versions.  
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While changing the distance matrix based on the above ways, cost vector is also 

manipulated by changing the ranges. The last input to our model is the cost vector 

showing photographing/digital monitoring cost of each node. If the model decides to 

take a photo at a particular node, the associated cost is automatically incurred in the 

objective function. We considered different ranges for these costs to alternatively 

determine optimal routes under diverse costs and to determine the dynamics where the 

model prefers taking photos instead of physically visiting the nodes. To illustrate, 

suppose that the costs of photographing in an instance are distributed between 1000 and 

4000. Suppose further that the costs of photographing in another distance are distributed 

between 500 and 1000. It will definitely be preferable to consider photographing 

opportunities at a higher rate in [500-1000] case since there can be some nodes at which 

photographing process would cover more nodes than physically visiting that many 

nodes at the same cost. Thus, the dynamics of the photographing considerations should 

also be parametrically analyzed. In that sense, we divide the cost ranges accordingly and 

create problem instances to test our cost vector.  

Based on these modifications, we create thirteen instances for numbers of nodes 

we solve in CPLEX. Each instance will be created based on the scheme given in Table 1. 

Table 1. Instance Information 

Instance 

Number 
Neighborhood Structure 

Cost Vector 

Structure 

Instance 1A No Neighborhood CV ϵ [50,500] 

Instance 1B No Neighborhood CV ϵ [250,1000] 

Instance 1C No Neighborhood CV ϵ [1000,4000] 

Instance 4A NH1:x,y ϵ [0,100] NH2: x,y ϵ [900,1000] CV ϵ [10,250] 

Instance 4B NH1: x,y ϵ [0,100] NH2: x,y ϵ [900,1000] CV ϵ [250,750] 

Instance 5A NH1: x,y ϵ [0,250]  NH2: x,y ϵ [400,600]  NH3: x,y ϵ [750,1000] CV ϵ [50,500] 

Instance 5B NH1: x,y ϵ [0,250]  NH2: x,y ϵ [400,600]  NH3: x,y ϵ [750,1000] CV ϵ [50,2000] 

Instance 6A NH1: x,y ϵ [200,400] NH2: x,y ϵ [500,550] NH3: x,y ϵ [800,1000] CV ϵ [10,400] 

Instance 6B NH1: x,y ϵ [200,400] NH2: x,y ϵ [500,550] NH3: x,y ϵ [800,1000] CV ϵ [300, 850] 

Instance 7A NH1: x,y ϵ [0,200]  NH2: x,y ϵ [200,400]  NH3: x,y ϵ [400,600] NH4: x,y ϵ [600,800] 

NH5: x,y ϵ [800,1000] 

CV ϵ [50,500] 

Instance 7B NH1: x,y ϵ [0,200]  NH2: x,y ϵ [200,400]  NH3: x,y ϵ [400,600] NH4: x,y ϵ [600,800] 

NH5: x,y ϵ [800,1000] 

CV ϵ [500,1000] 

Instance 8A NH1: x,y ϵ [0,250] NH2: x,y ϵ [200,450] NH3: x,y ϵ [300,700] NH4: x,y ϵ [500,850] 

NH5: x,y ϵ [925,1000] 

CV ϵ [50,500] 

Instance 8B NH1: x,y ϵ [0,250] NH2: x,y ϵ [200,450] NH3: x,y ϵ [300,700] NH4: x,y ϵ [500,850] 

NH5: x,y ϵ [925,1000] 

CV ϵ [400, 800] 
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3.1.2 CPLEX Computational Results and Solution Times 

Based on the problem instances created according to above procedures, a solution 

table with 8 nodes, 10 nodes, 12 nodes and 17 nodes is provided in Table 2. Note that the 

values are mean values for 5 runs for each node and instance number with different 

input data. Times are given in minutes, seconds and nanoseconds. Instances are named 

as number of nodes to solve and instance number to give as input. For example, 6-1A 

denotes a 6-node problem having input specified in instance 1A. All input data 

containing reachability matrices, cost vectors and distance matrices for CPLEX are 

stored in Excel files and read from Excel files by CPLEX. The nodes solved to 

optimality are given in Appendix A.  

Table 2. CPLEX Results 

Instance Average t Instance Average t Instance Average t Instance Average t 
8-1A 00:00,890 10-1A 00:00,910 12-1A 00:01,550 17-1A 00:01,580 
8-1B 00:00,950 10-1B 00:00,930 12-1B 00:02,700 17-1B 00:01,150 
8-1C 00:00,840 10-1C 00:01,310 12-1C 00:02,500 17-1C 00:01,150 
8-4A 00:00,880 10-4A 00:01,220 12-4A 00:04,950 17-4A 00:52,120 
8-4B 00:00,870 10-4B 00:01,600 12-4B 00:02,980 17-4B 01:45,720 
8-5A 00:00,910 10-5A 00:01,180 12-5A 00:05,140 17-5A 03:46,700 
8-5B 00:00,950 10-5B 00:02,550 12-5B 00:14,190 17-5B 02:57,520 
8-6A 00:00,860 10-6A 00:02,590 12-6A 00:02,370 17-6A 26:23,000 
8-6B 00:00,890 10-6B 00:02,440 12-6B 00:30,280 17-6B 09:34,720 
8-7A 00:00,830 10-7A 00:01,150 12-7A 00:33,330 17-7A 44:31,820 
8-7B 00:00,870 10-7B 00:01,550 12-7B 00:33,450 17-7B 16:25,170 
8-8A 00:00,910 10-8A 00:05,230 12-8A 00:29,740 17-8A 00:17,580 
8-8B 00:00,980 10-8B 00:03,550 12-8B 00:31,260 17-8B 00:02,980 

Results differ in terms of solution times. It is expected and observed that an 

optimal route with the corresponding objective function value is always found for most 

of the problem instances defined. However, as seen in instances where neighborhoods 

are defined, reachability matrices contain more 1s, there is almost no reachability 

between neighborhoods, and we observe diverse solution times. We observe these 

diversities in instances 17-6 and 17-7. Even though instances of 17-5 and 17-6 are 

created based on same problem instance data and only the costs for photographing differ 

from each other, there is a large difference between their solution times. Therefore, we 

conclude that it is due to the structure of the convex hull that is created by the inputs, 

which is caused by reachability matrices and cost vectors together.  
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Other than the results for 17 nodes, we can draw the following conclusions and 

observe the following for overall outputs: 

1. For small numbers of nodes, CPLEX solves the associated modified TSP in 

reasonable times, that is, it only takes seconds or couple of minutes to find the 

solution. The highest solution time is seen in instance 10-8A, which is around 

5 seconds. As for 12, 15 and 17 nodes, solution times are slightly beginning to 

increase especially in instances with neighborhoods. In 12 nodes, solution 

times reach up to 35 seconds but they do not exceed 1 minute. It is also seen 

that solution times for high photo costs associated with instances with 

neighborhoods are higher than low photo cost instances. As we compute 

results for 15 nodes, solution times of instances with neighborhoods is again 

more than instances with no neighborhoods up to 5 times, as is the case with 

instance 15-6B against the first three instances. The longest time is observed in 

of the runs as 15 hours 13 minutes, corresponding to 913 minutes in instance 

17-6A. Afterwards, CPLEX yielded more reasonable times and excluding this 

value yielded an average solution time of 26 minutes in 5 different runs. An 

average solution time of 16 minutes for instance 17-7B and 44 minutes for 

instance 17-7A are observed in 17 nodes computations. In Appendix A, we see 

other instances that belong to different node numbers. Even though in 

instances from 20-4 to 20-7 CPLEX showed memory errors, it seemed to 

approach to global optimal solutions as the gap in CPU diary always decreased 

and branching continued successfully.  

2. To be able to determine the breaking point of our model, that is, to determine 

the node number after which our optimization software fails to find solutions 

due to incapacitated computer memory or very high solution times and to be 

able to reflect the increase in solution time depending on number of nodes, we 

select instance 1 to initiate another running process, and we run the model for 

the same instance by incrementally increasing the node number in each run. 

The results are as obtained in Table 3. 
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Table 3. Instance 3 (No Neighborhood) Node-Solution Time 

Instance zopt xopt, yopt(shown by *) t 

6 2290,341 0-5-4-1-3-6-2-0 00:08,950 

7 2489,909 0-5-7-4-1-3-6-2-0 00:08,690 

8 2514,839 0-5-7-4-1-8-3-6-2-0 00:08,840 

9 2531,108 0-9-2-6-3-8-1-4-7-5-0 00:08,660 

10 2573,539 0-2*-6-3-8-1-4-7-5-0 00:08,730 

11 2658,788 0-2*-6-3-8-1-4-11*-5-0 00:08,940 

12 2661,869 0-5-11*-4-1-8-3-12-6-22-0 00:09,000 

13 2599,934 0-6-12-3-1-13*-5*-0 00:09,750 

14 2715,279 0-5*-14-7-11-1-8-3-12-6-2-9-0 00:07,650 

15 2851,261 0-6-12-3-15-13*-1-14-5*-0 00:07,920 

16 2868,061 0-2*-6-12-3-15-13*-1-4-14-5-0 00:07,870 

17 3055,662 0-5-14-4-1-13*-15-3-17-6-12-2*-0 00:09,080 

18 3055,662 0-2*-12-6-17-3-15-13*-1-4-14-5-0 00:09,880 

20 3381,822 0-5-14-4-19-1-13*-15-3-20-17-6-12-2*-0 00:12,980 

22 3391,423 0-9-2-15-17*-3-20-8-22-1-19-11-7-14-5*-0 00:13,160 

25 3803,031 0-2*-15-12-6-25-17-3-20-8-22-1-19-11-7-14-5*-10*-0 00:29,880 

30 3958,999 0-23-29-28-12-6-25-17-3-20-8-22-1-1911-7-14-5*-26*-2*-0 00:36,190 

35 4016,298 0-2*-27-28-31-25-17*-34-33*-32-22-1-19-11-7-14-5*-23*-0 01:34,260 

36 3853,368 0-23*-5*-14-7-11-19-1-22-32-33*-34-17-36*-28-27-2*-0 01:40,710 

37 3853,368 0-23*-5*-14-7-11-19-1-22-32-33*-34-17-36*-28-27-2*-0 01:34,570 

38 3853,368 0-23*-5*-14-7-11-19-1-22-32-33*-34-17-36*-28-27-2*-0 03:26,000 

39 3893,055 0-23*-5*-39-11-14-7-19-1-22-32-33*-34-17-36*-28-27-2*-0 09:05,430 

40 3893,055 0-23*-5*-39-11-14-7-19-1-22-32-33*-34-17-36*-28-27-2*-0 01:25:13,500 

41 3893,055 0-23*-5*-39-11-14-7-19-1-22-32-33*-34-17-36*-28-27-2*-0 33:53,970 

42 3893,055 0-23*-5*-39-11-14-7-19-1-22-32-33*-34-17-36*-28-27-2*-0 01:11:05,650 

43 4508,152 0-2*-27-28-36*-17-34-33*-43-32-22-1-19-7-14-11-39-5*23*-0 02:00:47,200 

44 4508,152 0-2*-27-28-36*-17-34-33*-43-32-22-1-19-7-14-11-39-5*23*-0 02:03:32,400 

45 4508,152 0-2*-27-28-36*-17-34-33*-43-32-22-1-19-7-14-11-39-5*23*-0 09:21:30,240 

50 Out of memory error 

 

Up to 18 nodes, CPLEX finds the solution in less than 10 seconds. The times are 

close to each other and since there are no neighborhoods, finding the solution does not 

take as many amount of time as the other instances with neighborhoods do. Up to 39 

nodes, CPLEX does not take more than 10 minutes to find the optimal solution, 

however, if there are 40 nodes or more, time increases tremendously even şf the optimal 

route and optimal solution remains the same. In 41 nodes, the time to find the solution 

again decreases, but in 42 nodes, it again increases by around 50%. This situation is 

explained again by different reachability matrices since all other cost vector and 
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distance matrix inputs remain the same. After 45 nodes we decided to solve the problem 

for 50 nodes, and received a memory error. The time taken to solve the different 

instances of our problem is shown in Figure 4. It is observed that as the number of nodes 

increases, the rate at which the time to solve the problem increases gets also larger. It 

should be noted that since these nodes belong to one instance, it is possible to have 

different solution times especially in larger numbers of nodes in different instances. 

Here we only deep delve into the speed for becoming NP-Hard for a non-neighborhood 

case, which has always shown smaller solution times as compared to neighborhood 

cases.  

 

Figure 4. Solution Times versus Nodes 
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3.2 NP-Hardness, Lower Bounds and Need for a Heuristic 

Algorithm 

The problem is a variant of TSP where a complete route should be found for the 

agent. If the reachability matrix has 1s only in its diagonal, it means that each node can 

be reached only from itself. In other words, each and every node should then be vsited 

physically, turning the problem into general TSP. Since TSP is NP-Hard, our problem is 

also NP-Hard and the time required for finding solutions for larger instances gets 

increasingly higher. To illustrate, we run CPLEX for 44 nodes and 45 nodes in Table 3, 

and even though the optimal route is exactly the same, the complexity of 45 nodes 

causes the problem to take a time of 9 hours and 21 minutes, which is 7 hours more 

from the time for 44 nodes. We ran the model for 45 nodes once again to see whether 

the instance will take the same amount of time, and after 5 hours we see that the 

problem is at the same place by looking at the gap amount and the best solution value 

obtained so far.  

The high times to solve the problem create the motivation to design our heuristic 

algorithm. We seek to obtain relatively quicker solutions that are within acceptable 

percentages of the optimal solution. If we know the optimal solution of a particular 

instance, we define term “acceptable” by looking at the gaps between the optimal 

solution and the solution obtained by our heuristic algorithm. If an optimal solution of 

an instance is not known, however, then lower bounds should be found for these 

instances to be able to do comparisons with our heuristic algorithm. After 50 nodes, we 

tried our heuristic in all instances for 30 nodes, 50 nodes, 100 nodes and eventually for 

400 nodes, for which we obtained lower bounds by a separate mathematical model. The 

model is defined below.    

3.2.1 Notation 

Parameters: 

We use the same parameters from Section 1.2.1.  

Decision Variables: 

In addition to decision variables we used in our original model, we introduce an 

additional variable to denote whether a node is physically visited or not.  
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3.2.2 Objective Function 

Our objective is the same as in our modified TSP model. We aim to minimize 

the total photographing and visiting cost as we cover all nodes, shown in (15): 
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3.2.3 Constraints 

Node Coverage: As previously stated, all nodes should be covered either by 

taking a photo or directly visiting them, assured in (16): 
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Photographing Requires Physical Visit: If a node is used for taking a photo, 

then that node should be visited by the agent itself. This is satisfied by (17): 

                         i          ii yz                                                       (17) 

 Physical Visited Nodes Should Be Arrived and Left: To formulate this 

constraint, (18) is used. 
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 Visits Imply Edges: If a node is visited, necessary route to that node consisting 

of the edges should be formed, shown in (19): 
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It is known that the spanning forest we obtain by solving the above mathematical 

model provides a lower bound for the problem instances which we cannot solve to 

optimality with the resources on hand. The lower bounds for 30 nodes, 50 nodes and 

100 nodes will be used in Section 3.4 where we compare the optimal solutions as well 

as lower bounds with the solutions of our algorithm. We might also have tried to 

connect all node clusters in our initial solution to obtain complete MST, however, it 

would not then be sure that we get a lower bound, as the tree we obtain is not 

necessarily a minimum spanning tree. In fact, it is possible to find better solutions than 

what we could call a tree, which, in this case, means we cannot find the lower bound. 

Another method to find the lower bounds is using CPLEX solver’s solution 

diary to track the gap and best solution information obtained so far. Even though in 

different numbers of nodes this process cannot be pursued due to tremendous waiting 

time, it may still provide quality lower bounds considering also the gap, and these 

bounds can be compared to our heuristics solutions. In some instances where we are 

able to track the information, we waited until we are within 5-10% of gap, and we took 

the solution obtained so far as the lower bound. This makes sense because the lower 

bound we obtain by minimum spanning forest ignores connections between these 

forests, and since these forests, when connected, incur more cost, these costs are not 

included in our minimum spanning forest, which makes the lower bound relatively 

‘low’. 
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3.3 The Proposed Algorithm 

Our algorithm is a combination of a route construction algorithm for TSP and a 

modified SCP, which are solved in a loop to first select a group of solutions and then try 

to find the best solution among them. The pseudocode of our algorithm is given as 

follows: 

Step 0.  Initialization 
Read coordinates, cost vectors and reachability matrix from Excel  
Take the reachability matrix and give it as input to modified SCP 

Step 1. Determination of Base Node Set 
Solve modified SCP to determine the nodes to cover all nodes in the network 
in the least cost 
Create the base list BLSCP such that all photo nodes in SCP are ordered in 
increasing order 
       If the starting node 0 is already in LSCP, go to Step 2 
       Else add the starting node 0 to LSCP and go to Step 2 

Step 2. For each LSCP do 
       Approximate the associated TSP by Christofides Algorithm to obtain 
       total route travel cost 
       Add zSCP and zTSP to obtain the cumulative cost zCUM of photo-modified  
       TSP 
       If no more exclusion is possible in BLSCP, go to Step 4 
       Else go to Step 3 

Step 3. For each photo node in BLSCP do 
       Exclude the node from BLSCP, solve SCP with remaining nodes to obtain   
       new LSCP, go to Step 2 

Step 4. Obtain the best zCUM  
Record the route, cost and solution time of all other iterations 
Stop 

 Here, BLSCP denotes the list obtained by solving the modified SCP for the first 

time, and the main loop follows this list. LSCP is the list obtained by solving SCP in each 

re-start of the loop. The values zSCP and zTSP refer to objective function values of SCP 

and TSP, respectively. The value zCUM is the total cost associated with the 

corresponding step of the algorithm, best of which is reported after the algorithm is 

complete.  
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To illustrate our algorithm, we will solve instance 12-4A and compare the results. 

This is one of the instances having two neighborhoods, so it is reflected in the 

reachability matrix. The coordinates and also the cost vector are assigned random 

numbers based on the input structure.  Our algorithm is then run on this instance.   

Step 0: All input data is read by our algorithm, taken into memory by Excel files. 

The modified SCP differs from the original SCP in that it also incorporates physical 

visits to nodes in order to cover them, shown below: 

            min   



n

i
ii

n

i
ii yfzc

00
0 )(                                                              (20) 

subject to 

                j        1)(
0




j

n

i
iij zyr                                                                (21) 

                00 z                                                                                              (22) 

The second part in (20) facilitates physical visits with the cost of arriving at that 

node from the center node. Even though an agent does not necessarily arrive at a node 

from the center node in practice, it is assumed to do so for computational purposes. (21) 

ensures that all nodes are covered either by photo taking or physical visits while (22) 

ensure that the center node is not physically visited during the tour.  

Step 1: Accordingly, SCP uses reachability matrix and solves the resulting 

problem. The problem is straightforward and our heuristic yields the base node set as 

follows:  

Base Node Set: 10*, 7*, 3* where * denotes a photo taking node 

Accordingly BLSCP becomes: 3*, 7*, 10* 

Since the node 0 is initially not in the list, we add it to BLSCP.  

Step 2 and 3: We apply Christofides Algorithm in the following sub-steps to 

approximate TSP tour for LSCP: 
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1. Insert Basic Information 

2. Find Minimum Spanning Tree 

3. Find Odd Degree Vertices  

4. Minimum Weight Matching  

5. Find Euler Cycle Path 

6. Find TSP Cycle Path 

We obtain the solution route as 0-10*-7*-3*-0 with zCUM = 2841.14. Next the 

algorithm searches for any exclusion possibilities. Exclusion means elimination of a 

photo taking node from the base solution set BLSCP, which is followed by re-solving the 

problem under the new constraints. In our case, we have three photo-taking nodes, 

meaning the loop will be called three times to solve the problem in absence of these 

photo taking nodes. First, the algorithm removes node 3, as given in BLSCP and resolves 

the modified SCP. We obtain new LSCP as: 5*, 7*, 11* with zCUM = 2901.17, which is 

greater than our Base Node Set solution. Secondly, the algorithm removes node 7, 

allows node 3 again and re-solves the problem. We obtain LSCP as: 5*, 10*, 12*, with 

also node 0 and with zCUM = 2914.28, again greater than initial z value. Lastly, the 

algorithm removes node 10 and solves the problem again, obtaining LSCP as 5*, 7*, 12* 

with zCUM = 2987.032.  Since there is no exclusion alternative left, the algorithm 

proceeds with Step 4.  

Step 4: The best solution obtained is reported with zCUM and the associated tour: 

zCUM = 2841.14 with tour 0-10*-7*-3*-0  
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3.4 Comparing the Greedy Heuristic to CPLEX Results  

3.4.1 Objective Function Values 

Results are given in terms of solution quality in Table 4, measured by the gap 

between the optimal objective function value or the lower bound: 

opt

optheur

z

zz )( 
 

where for instances for which we do not have a solution we simply replace the 

term zopt by zlower bound. 

Table 4. Solution Gaps for 6, 8, 12 and 17 Nodes 

Instance Gap Instance Gap Instance Gap Instance Gap 

6-1A 0,42 8-1A 0,29 12-1A 0,64 17-1A 0,38 

6-1B 0,52 8-1B 0,60 12-1B 0,93 17-1B 0,66 

6-1C 0,51 8-1C 0,57 12-1C 0,98 17-1C 1,10 

6-4A 0,01 8-4A 0,07 12-4A 0,05 17-4A 0,04 

6-4B 0,31 8-4B 0,50 12-4B 0,34 17-4B 0,28 

6-5A 0,17 8-5A 0,19 12-5A 0,09 17-5A 0,29 

6-5B 0,21 8-5B 0,75 12-5B 0,24 17-5B 0,36 

6-6A 0,08 8-6A 0,09 12-6A 0,10 17-6A 0,18 

6-6B 0,32 8-6B 0,23 12-6B 0,38 17-6B 0,71 

6-7A 0,13 8-7A 0,27 12-7A 0,19 17-7A 0,29 

6-7B 0,23 8-7B 0,70 12-7B 0,65 17-7B 1,18 

6-8A 0,15 8-8A 0,26 12-8A 0,14 17-8A 0,28 

6-8B 0,45 8-8B 0,86 12-8B 0,90 17-8B 0,69 

The gaps of instance B of all nodes are higher than instance A. This means that 

when we increase the photographing costs of nodes, our algorithm begins to give worse 

solutions in terms of objective function value. Since our algorithm depends on photo-

taking nodes in the beginning of its structure by solving a preliminary set covering 

problem, increasing photographing costs results in higher objective function values in 

exchange for speed for obtaining a solution.  

We obtain solutions within 1-10% of the optimal solution in instances 4, 5, 6 and 7 

of all nodes. Even though instance B solutions of the nodes are higher than those of 
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instance A, they go in parallel with instance A solutions, and there is consistency 

between their solution gaps. The gap averages for these nodes are provided in Table 5.  

Table 5. Average Performances of 6, 8, 12, 17 Nodes 

Node Instance A Instance B Instance C 
6 0.16 0.34 0.51 
8 0.19 0.60 0.56 
12 0.20 0.57 0.97 
17 0.24 0.64 1.11 

It is seen that as the numbers of nodes increase while increasing photographing 

costs, z value gaps also increase. Even if the algorithm provides good quality solutions 

for some instances, it performs increasingly worse as increasing photographing costs 

makes it preferable to physically visit the nodes rather than taking photos of them. 

Similarly, solution gaps for 20, 30, 50 and 100 nodes are provided in Table 6.  

Table 6. Average Performances of 20, 30, 50 and 100 Nodes 

Node Instance A Instance B Instance C 
20 0.62 0.98 1.05 
30 0.67 0.91 0.55 
50 0.51 0.55 0.97 

100 0.47 0.60 1.67 

The graphs of A and B instances again follow a consistent pattern, and the 

difference between them gets closer, however, this reduction is caused by two very 

important factors: 

1. The average gaps of A instances increase at higher rates than B instances, 

which reduces the gap between two curves. 

2. Since we are computing lower bounds in large numbers of nodes in order for a 

reasonable comparison and since these bounds are lower than their associated 

optimal objective function values, the gaps eventually increase, leading to 

reduced solution quality. 

To understand the effects of photographing costs and also the reachability matrix 

on z value gaps, we re-computed the instances as to solve them to optimality and also to 

obtain heuristic solutions. We derive two conclusions about the solution quality being 

affected by photographing costs and reachability structure: 
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1. Under the condition that all input data remain the same, as photographing costs are 

decreased, the algorithm performs better because each candidate node for taking 

photos will then incur much less values to optimal objective function value. This is 

best illustrated in instances with multiple photo taking nodes and also high z value 

gaps. We re-solve 10 instances randomly by stepwise reduction of photographing 

costs and obtain the results shown in Table 7.  

Table 7. Average Gaps under Decreasing Photo Costs 

%Reduction Gap 
0 1,12 
5 1,08 

20 0,83 
40 0,72 
60 0,60 
80 0,58 
90 0,59 

There is a decrease in z value gaps as the photo taking costs are decreased, 

however, after a certain value problem structure changes and the lower bound 

finder we developed in CPLEX provides different lower bounds, which, depending 

on the photo-taking nodes and also the distances, change at different rates. This in 

turn causes the gap increase to 0.71 and 0.76 in the last two cases. It should also be 

noted for cases having many photo nodes in the optimal solution that the amount of 

reduction in z value gap is much greater since any reduction in photo costs directly 

impacts objective function value. In addition, z value gap has a lower bound due to 

TSP part of the problem, so even if the photo costs are set to zero, MST lower 

bounds will be smaller than TSP routes that we obtain by our heuristic.  

2. Increase in reachability promotes the algorithm’s solutions and enhances solution 

quality in that the feasibility regions of instances increasingly begin to contain the 

extreme points where photo nodes that cover more nodes exist. We illustrate this 

concept best by resolving 10 instances again, where the optimal solution simply 

visits all nodes without taking any photos or takes at most 1-2 photos in the optimal 

solution, and our heuristic algorithm takes photos at multiple nodes, leading to an 

average z value gap of 0.26. We increase number of visual connections of each 

node by certain numbers and randomly, then investigate the change in z value gaps 

by resolving the problem, whose results are shown in Table 8.  
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Table 8. 30-1B Reachability-Gap Changes 

Increase in 
Reachability 

Gap 

0 0,26 
1 0,15 
2 0,12 
4 0,07 
6 0,10 
8 0,11 

As is the case in photo costs, z gaps decrease significantly at first, and they 

increase after a certain point because of the change in feasibility region and also the 

stability of our heuristic to take into account these reachability changes. This graph also 

shows that our heuristic is able to produce solution within 5% of the optimal solution 

even in cases where photo costs are higher. The reachability issue that we explain in the 

very beginning to shed light on our selection of reachability function can now be 

exploited better. Decreasing the power of the function significantly enhances our 

algorithm, which makes sense in real life applications because if there is a hill or certain 

point higher in altitude than its neighbor points, that point will have visual access to all 

nearby points, which makes it reasonable to reduce the power of the reachability 

function.  

So far we looked at reachability and photographing aspects separately. We now 

illustrate these concepts together in instance 30-1B, where we decrease photo costs by 

percentages while increasing reachability. We use the same increasing and decreasing 

structure and obtain the results summarized in Table 9.  

Table 9. 30-1B Photo Cost and Reachability Impact on Solution Quality 

% 
Reduction 
in Photo 

Costs 

Increase in 
Reachability Gap 

% 
Reduction 
in Photo 

Costs 

Increase in 
Reachability Gap 

% 
Reduction 
in Photo 

Costs 

Increase in 
Reachability Gap 

0% 

0 0,28 

40% 

0 0,34 

80% 

0 0,41 
1 0,13 1 0,22 1 0,06 
2 0,14 2 0,18 2 0,09 
4 0,06 4 0,23 4 0,24 
6 0,08 6 0,24 6 0,30 
8 0,13 8 0,11 8 0,18 

20% 

0 0,35 

60% 

0 0,47 
1 0,31 1 0,13 
2 0,26 2 0,10 
4 0,28 4 0,18 
6 0,27 6 0,30 
8 0,14 8 0,12 
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Reader should note that even though we judge based only on one instance, more 

instances should be investigated for better comparison. The results show that it is not 

necessarily true that we obtain better results as we provide more reachability and lower 

photo costs, rather, it causes more time to evaluate each alternative and thus increases 

overall solution time. In addition, although CPLEX solves each problem to optimality 

and obtains better solutions as we give better input, our algorithm is not able to find 

better solutions in some cases, as seen in 60% and 80% decreased photo costs, in 

particular the cases in which reachability is increased by 4 and 6 nodes. We already 

stated that these increases in z gaps are due to preliminary SCP that our algorithm 

solves. Even if the z gaps increase by some percent, however, the overall performance 

of the algorithm reaches 6%, 14%, 11%, 10% and 6% in respective photo cost 

reductions. Solution changes under both sensitivity analyses are shown in Figure 5.  

 

Figure 5. 30-1B Z Gaps under Reachability and Photo Cost Changes 

In all cases, the largest gap does not exceed 0.47 that we obtained in initial 

solution. As we increase number of 1s in reachability matrix, average gaps first decrease 

significantly, then increase and then decrease again. In different numbers of 1s, z gaps 

increase when we decrease photo costs by 20%. They then increase or decrease 

depending on the convex hull we create by changing input values.  
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3.4.2 Solution Times 

Reduction in solution times is the other objective in constructing our heuristic 

algorithm. During the solution process it is seen that when there are neighborhoods in 

reachability part of the problem, even 20 nodes show high level of complexity, making 

it necessary to solve the problem by heuristics. This is also observed in Table 9, where 

both decreasing photo costs and increasing reachability causes more time to solve the 

problem to optimality. Our heuristic algorithm, on the other hand, is not affected in 

terms of solution times and it provides solutions in less than 1 second. As numbers of 1s 

in reachability matrices are increased, a photo node increasingly begins to cover more 

nodes, and as the costs of photographing is reduced, photo nodes begin to become of 

alternatives to take photos. Both changes lead to a more complex structure since they 

enlarge the feasible region and number of extreme points. This in turn causes solution 

times to increase exponentially.  

CPLEX is able to solve instances up to 17 nodes in almost no time, after which it 

increasingly spends time finding the optimal solution especially in neighborhood 

instances. Instances 20-4, 20-5 and 20-6 cannot be solved by CPLEX in reasonable 

times. Instance 20-7A and 20-7B takes around 5 hours while their no neighborhood 

versions take less than 10 seconds to solve. Next we give our algorithm’s solution times 

for 17 and 20 nodes in Figure 6.  

 
Figure 6. Heuristic Solution Times for 17-20 Nodes 

The largest time is around 1.5 seconds for 20-5A, except which all instances are 

solved between 0.4 and 1.2 seconds. Our algorithm significantly reduces the amount of 

time to reach good enough solution for the problem. For 30 nodes and more, solution 

times differ between nanoseconds and 3 seconds up to 400 nodes.   

Instances 

Time 
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CHAPTER IV 

CONCLUDING REMARKS

Monitoring and photographing large areas for security, safety or other specific 

reasons requires careful and detailed planning since decision makers always have 

limited time and other resources. In a given amount of time, an area within a building, a 

zone within a region or even a region itself should be monitored to take precautions 

against different emergencies. To prevent fires in a bank or school, to set up cameras or 

alarms for burglary, to conduct periodical controls in forests for fire prevention or to 

monitor borders for intruders and terror attacks are among different motivations of field 

scanning.  

For many years, Traveling Salesman Problem is approached in different ways by 

different researchers, and tremendous numbers of studies are created to effectively and 

efficiently solve the problem. In this study we aimed to provide optimal as well as 

heuristic solutions for a modified TSP problem, where agents do not have to go to each 

node physically, rather, they are able to reach some nodes from the current node visited, 

and this saves time and money. We provided a mathematical model for this problem, 

showed that it is a combination of TSP and SCP and is NP-Hard, provided a greedy 

heuristic algorithm to solve the problem in acceptable times and compared the results. 

We have seen that the problem structure is dependent on reachability and photo costs, 

and we tried to investigate these structures in various numbers of nodes and input 

schemes.  

All in all, our algorithm is able to provide good solutions even within 1% of the 

optimal solution. We have observed that solution quality may change depending on the 

reachability probability function, and since our heuristic algorithm initializes by solving 

a preliminary SCP, it approaches to solutions with multiple photo taking nodes, thus 

failing to provide good enough solutions for the associated problem instance. 

Nevertheless, the algorithm is capable of providing solutions for each instance ranging 

from 6 to 400 nodes, and it take only nanoseconds to obtain a good solution. The 

algorithm provides solutions within %5-10 of the optimal solution on the average and 

performs flawlessly on digital framework.  

There are several pitfalls of the algorithm, among which preliminary SCP’s 

photo costs worsen the solution. Since a physically visited node should incur a cost 
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based on distance, and since we cannot possibly know the physically visited node’s 

distance cost before it is visited, we simply made the assumption that any physically 

visited node incurs the cost of its distance from the center node. This assumption leaves 

the algorithm’s performance for probabilistically changing levels due to random number 

generation in distances. If the center node is close to physical visit node, then there is 

less cost incurred to objective function value, and if there is a large distance between the 

visit node and the center node, the algorithm is not able to measure it correctly to select 

it. Suppose that in a good enough solution that far distanced node incurs a little cost 

because its neighborhood nodes are very close. However, since the SCP of the 

algorithm cannot measure it directly, it may automatically eliminate that node and may 

start with a worse solution to start searching. So in future studies it should be the 

objective of us to handle the SCP part of the algorithm so that photographing as well as 

physical visits are given the correct costs and the algorithm does not miss any solution 

in the beginning.  

Another point of improvement can be made in the main loop of the algorithm 

where it removes any photo nodes and resolves the problem to look for better solutions. 

We consider the photo nodes only the Base Node Set, however, in any sub-set created 

by the removal of photo nodes, there can be other photo nodes not initially considered, 

and removal/addition of them may lead to better solutions. So our algorithm may be 

improved to take into account the multiple level photo node improvements instead 

basing on only the initial set.  
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APPENDIX A. CPLEX Solutions for Other Nodes

Instance zopt xopt, yopt(shown by *) t 
6-1A 2419,645 0-3-1-4-6-2-5-0 00:01,410 
6-1B 2419,645 0-3-1-4-6-2-5-0 00:01,260 
6-1C 2419,645 0-3-1-4-6-2-5-0 00:01,160 
6-4A 2759,711 0-2-6*-3-1-0 00:01,090 
6-4B 2811,973 0-1-3-4-6-5-2-0 00:00,960 
6-5A 2458,802 0*-3-6-5-4-1-0 00:00,910 
6-5B 2577,136 0-2-1-4-5-6-3-0 00:01,030 
6-6A 1771,107 0-2-1-4-3-5-6-0 00:01,120 
6-6B 1771,107 0-2-1-4-3-5-6-0 00:00,960 
6-7A 2796,662 0-4-5*-3-2-1-0 00:01,140 
6-7B 2820,302 0-1-2-3-5-6-4-0 00:00,890 
6-8A 2353,23 0-2-5-6-4-3-1-0 00:01,110 
6-8B 2353,23 0-2-5-6-4-3-1-0 00:01,110 
7-1A 2275,806 0-5-6-7-2-1-3-4-2 00:01,140 
7-1B 2275,806 0-5-6-7-2-1-3-4-1 00:00,170 
7-1C 2275,806 0-5-6-7-2-1-3-4-0 00:01,140 
7-4A 2597,465 0-2-3-6-4*-1-0 00:00,810 
7-4B 2636,868 0-2-3-4-6-7-5-1-0 00:01,910 
7-5A 2624,015 0-1-3-5-6-7-4-2-0 00:00,970 
7-5B 2624,015 0-1-3-5-6-7-4-2-0 00:00,940 
7-6A 2148,844 0-1-4*-6-5-7-0 00:00,880 
7-6B 2195,763 0-1-4-7-6-5-3-2-0 00:00,910 
7-7A 2329,696 0-5-7-6-4-2*-0 00:00,940 
7-7B 2335,472 0-1-5-7-6-4-3-2-0 00:00,960 
7-8A 2713,544 0-1-3-4-7-6-5-2-0 00:00,890 
7-8B 2713,544 0-1-3-4-7-6-5-2-0 00:00,960 
9-1A 2444,961 0-6-8-9-5-2-1-3-7-4-0 00:00,910 
9-1B 2444,961 0-6-8-9-5-2-1-3-7-4-0 00:00,890 
9-1C 2444,961 0-6-8-9-5-2-1-3-7-4-0 00:00,870 
9-4A 2593,477 0-4*-8-7*-0 00:01,050 
9-4B 2775,331 0-9-5-6-8-7-3-4-1-2-0 00:01,110 
9-5A 2590,607 0-2-5-7*-3-4-1-0 00:01,000 
9-5B 2646,656 0-2-5-6-8-9-7-3-4-1-0 00:01,340 
9-6A 2157,404 0-5-9*-3-4-2-1-0 00:01,670 
9-6B 2186,642 0-5-6-8-9-7-3-4-2-1-0 00:01,050 
9-7A 2623,664 0-3-5-7*-6-4-2-1-0 00:01,050 
9-7B 2642,353 0-3-5-6-8-7-9-4-2-1-0 00:01,110 
9-8A 2366,091 0*-4-3-5-9-8-7-6-0 00:01,020 
9-8B 2397,169 0-1-2-6-7-8-9-5-3-4-0 00:01,080 

15-1A 3129,343 0-2-7-1-5-13-12-6-9-15-4-14-8-3-10-11-0 00:15,580 
15-1B 3129,343 0-2-7-1-5-13-12-6-9-15-4-14-8-3-10-11-0 00:06,970 
15-1C 3129,343 0-2-7-1-5-13-12-6-9-15-4-14-8-3-10-11-0 00:06,000 
15-4A 2664,904 0*-13*-0 00:04,440 
15-4B 2793,892 0-3-14-15-11-9-12-10-13-6-7-8-2-4-5-1-0 00:06,620 
15-5A 2720,731 0-3-2-9-6*-11*-12-7-10-4-1-0 01:34,620 
15-5B 2870,999 0-3-2-9-5-6-8-11-13-15-14-12-7-10-4-1-0 00:45,110 
15-6A 2134,442 0-2-1-9-7-8-6-12*-11-13*-5-4-3-0 02:35,650 
15-6B 2249,49 0-2-1-9-7-8-6-12-14-11-10-15-13-5-4-3-0 05:38,960 
15-7A 2954,179 0-4-7-11-13-15-10*-8-6-5-1*-0 01:42,450 
15-7B 2998,71 0-4-7-9-11-13-15-14-10-12-8-6-5-2-3-1-0 00:32,780 
15-8A 2747,465 0-1-2-3-8-12-11-15-14-13-10-7-9-5-6-4-0 00:57,470 
15-8B 2747,465 0-1-2-3-8-12-11-15-14-13-10-7-9-5-6-4-0 00:17,430 
20-1A 4036,494 0*-20-17-18-19-9-10-3-13-1-7-5-4-14-16-2-0 00:06,480 
20-1B 4036,494 0*-20-17-18-19-9-10-3-13-1-7-5-4-14-16-2-0 00:05,040 
20-1C 4071,03 0-15-6-2-8-16-14-4-5-7-1-13-3-10-9-19-18-17-20-11-12-0 00:03,050 
20-7A 2332,931 0-3-4-5-6-7-12-11-9-20*-16-13-15-14-10-8-1-2-0 05:16:33,147 
20-7B 2848,931 0-3-4-5-6-7-12-11-9-20*-16-13-15-14-10-8-1-2-0 04:57:00,040 
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Instance zopt xopt, yopt(shown by *) t 

20-8A 2989,167 0-4-3*-7-11-13-15-16-14-17*-10-12-5-6-2-0 00:17:28,070 
20-8B 3194,28 0-1-4-3-7-6-5-12-10-11-13-15-16-14-18-19-20-17-9-8-2-0 01:51:26,310 
30-1A 3327,206 0*-18*-10*-27*-11-7*-19*-26-20-6-23-0 00:00:06,670 
30-1B 4400,607 0-22-23-8-16-13-30-18-27*-12-15-4-19-26-29-20-9-1-6-0 00:00:08,610 

30-1C 4982,442 
0-6-1-9-20-29-26-4-19-28-15-12-2-25-10-27-5-21-3-14-24-8-30-13-16-8-

23-22-0 00:00:08,660 
50-1A 4673,481 0-5*-18*-13-6-20-9-49-34-16*-45-32-1-24-11*14-46-22-19*-17-26*-12*-0 00:04:24,350 
50-1B 5707,910 all nodes visited except 13 and 5's coverages 00:02:00,380 
50-1C 5786,210 all nodes visited 00:03:12,430 
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