
SOLVING A MODIFIED TSP PROBLEM BY A GREEDY

HEURISTIC FOR COST MINIMIZATION

A Thesis

by

Murat Çal

Submitted to the

Graduate School of Sciences and Engineering
In Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in the
Department of Industrial Engineering

Özyeğin University

June 2017

Copyright © 2017 by Murat Çal

SOLVING A MODIFIED TSP PROBLEM BY A GREEDY

HEURISTIC FOR COST MINIMIZATION

Approved by:

Assoc Prof Ali Ekici, Advisor,
Department Industrial Engineering
Özyeğin University

Asst Prof Enis Kayış,
Department Industrial Engineering
Özyeğin University

Asst Prof Fahrettin Eldemir,
Department Industrial Engineering
Yıldız Technical University

 Date Approved: 14 August 2017

iii

To My Mother and Father

iv

ABSTRACT

Photographing a large area in an instant is only made possible by satellites.

Satellites are able to help reducing the time required for the photographing/monitoring

process, however, satellite images are not available all the time, and even if they exist,

they are not easy to evaluate for decision makers. So decision makers use surveillance

drones, also called unmanned aerial vehicles to take photos of the predefined region.

Given a set of nodes defining an area, each node should be monitored and analyzed. In

that sense, the problem may be defined as a variant of Traveling Salesman Problem. It is

not practical, however, just to go to every node and take a shot. Instead, one can make

use of the concept of relative heights, meaning if there is a node in a higher or more

appropriate position than that of another node, drones can go to that higher positioned

node, take a photo and are able to monitor the other node that is ‘seen’ by the current

node.

In this study, we provide a mathematical model for this modified TSP, in which

we should cover all the nodes either by photographing or physical visits and minimize

the total travel cost. Then, we provide a greedy heuristic to find solutions and compare

the values with optimal solutions as well as lower bounds to evaluate performance. We

observe that in low photo costs, our algorithm may provide solutions within 1% of the

solutions or lower bounds on hand, and in high photo costs the algorithm is still able to

provide good solutions up to 5-10% of the solutions or lower bounds on hand.

v

ÖZET

Büyük bir alanı anında fotoğraflayabilmek yalnızca uydular tarafından

mümkündür. Uydular, fotoğraf/izleme süreci için gerekli zamanı azaltmaya yardımcı

olabilir, ancak uydu görüntüleri her zaman mevcut değildir ve bu görüntüler mevcut

olsa dahi karar vericiler için değerlendirilmesi kolay değildir. Bu sebeple karar vericiler,

önceden tanımlanmış bölgenin fotoğraflarını çekmek için insansız hava araçları da

denilen gözetim uçakları kullanmaktadır. Bir alanı tanımlayan bir düğüm kümesi (ağ)

göz önüne alındığında, her düğüm izlenmeli ve analiz edilmelidir. Bu anlamda sorun,

Gezgin Satıcı Problemi olarak tanımlanabilir. Bununla birlikte, her düğüme gitmek ve

fotoğraf çekmek pratik değildir. Bunun yerine göreceli yükseklik kavramından

yararlanılabilir, yani başka bir düğümden daha yüksek ya da daha uygun bir konumda

bir düğüm varsa, dronlar daha yüksek konumlandırılmış düğüme gidebilir, bir fotoğraf

çekebilir ve mevcut düğüm tarafından görülen diğer düğümleri otomatik olarak izlemiş

olur.

Bu çalışmada, yukarıdaki gibi modifiye edilmiş Gezgin Satıcı Problemi (MGSP) için,

hepsi ziyaret edilmeksizin tüm düğümleri kapsayan ve toplam seyahat masrafı ile

fotoğraf çekme maliyetini minimize eden bir matematiksel model sunulmaktadır.

Ardından, çözüm bulmak için sezgisel bir yöntem önerilmekte ve performansı

değerlendirmek için sezgisel tarafından bulunan değerler optimum çözümlerle ve alt

sınır çözümleri ile karşılaştırılmaktadır. Düşük fotoğraf maliyeti olan durumlarda

algoritmanın optimum çözümün ve alt sınır değerlerinin %1 fazlasına kadar iyi sonuçlar

verdiği, yüksek maliyetli durumlarda ise nodlar arası görsel erişime bağlı olarak

optimum çözümün veya alt sınır değerlerinin %5-10 fazlasına kadar sonuçlar

üretebildiği görülmektedir.

vi

vii

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZET .. v

TABLE OF CONTENTS .. vii

LIST OF TABLES ... ix

LIST OF FIGURES .. x

I INTRODUCTION .. 1

1.1 Problem Definition and Regarded Models ... 2

1.1.1 Set Covering Problem and Traveling Salesman Problem 2

1.1.2 The Photo-Modified TSP ... 3

1.2 Photo-Modified TSP Problem Formulation ... 5

1.2.1 Notation .. 5

1.2.2 Objective Function ... 6

1.2.3 Constraints .. 6

II PREVIOUS WORK .. 8

2.1 Set Covering Problem ... 9

2.2 Traveling Salesman Problem .. 10

2.2.1 Background and Pioneering Studies ... 10

2.2.2 Finding Lower Bounds ... 11

2.2.3 Mathematical Formulations .. 12

2.2.4 Neural Networks ... 14

2.2.5 Swarm Based Techniques .. 14

2.2.6 Simulated Annealing .. 15

2.2.7 Genetic Algorithm .. 16

2.2.8 Other Approaches ... 17

III SOLVING OUR PROBLEM BY MATHEMATICAL MODEL AND BY A
GREEDY HEURISTIC .. 18

3.1.1 Generation of Different Problem Instances 18

viii

3.1.2 CPLEX Computational Results and Solution Times 23

3.2 NP-Hardness, Lower Bounds and Need for a Heuristic Algorithm 27

3.2.1 Notation .. 27

3.2.2 Objective Function ... 28

3.2.3 Constraints .. 28

3.3 The Proposed Algorithm .. 30

3.4 Comparing the Greedy Heuristic to CPLEX Results 33

3.4.1 Objective Function Values ... 33

3.4.2 Solution Times ... 38

IV CONCLUDING REMARKS .. 39

APPENDIX A. CPLEX Solutions for Other Nodes 41

BIBLIOGRAPHY ... 43

VITA ... 51

ix

LIST OF TABLES

1 Table 1. Instance Information .. 22
2 Table 2. CPLEX Results ... 23
3 Table 3. Instance 3 (No Neighborhood) Node-Solution Time .. 25
4 Table 4. Solution Gaps for 6, 8, 12 and 17 Nodes .. 33
5 Table 5. Average Performances of 6, 8, 12, 17 Nodes ... 34
6 Table 6. Average Performances of 20, 30, 50 and 100 Nodes 34
7 Table 7. Instance 20-6B Gaps under Decreasing Photo Costs 35
8 Table 8. 30-1B Reachability-Gap Changes.. 36
9 Table 9. 30-1B Photo Cost and Reachability Impact on Solution Quality 36

x

LIST OF FIGURES
10 Figure 1. Distance-Probability Curve .. 19
11 Figure 2. 3 Neighborhoods ... 21
12 Figure 3. 3 Neighborhoods with Full Range Nodes .. 21
13 Figure 4. Solution Times versus Nodes .. 26
14 Figure 5. 30-1B Z Gaps under Reachability and Photo Cost Changes 37
15 Figure 6. Heuristic Solution Times for 17-20 Nodes .. 38

1

CHAPTER I

INTRODUCTION

 Monitoring and photographing large areas for security, safety or other specific

reasons requires careful and detailed planning since decision makers always have

limited time and other resources. In a given amount of time, an area within a building, a

zone within a region or even a region itself should be monitored to take precautions

against different emergencies. To prevent fires in a bank or school, to set up cameras or

alarms for burglary, to conduct periodical controls in forests for fire prevention or to

monitor borders for intruders and terror attacks are among different motivations of field

scanning.

For many years, Traveling Salesman Problem is approached in different ways by

different researchers, and tremendous numbers of studies are created to effectively and

efficiently solve the problem. Given the number of nodes, one should find an optimal

way in terms of time or cost minimization or some other purpose together with

contacting each node.

In our problem, an agent does not have to go to each node physically, rather, the

agent is able to reach some nodes from the current node visited, and this saves time and

money. In that case, TSP behaves like the so called Set Covering Problem (SCP), where

given an entity set S, one should select a minimum number of entities to cover all

entities in terms of an objective. For example, municipalities aim to select a minimum

number of sub-districts to open fire stations to reach all sub-districts within a predefined

amount of time. In that sense our problem is a mix of TSP and SCP, where we should

physically or digitally reach all nodes by either visiting them or making connections

with them. In doing this, we should minimize time and/or cost incurred. Accordingly,

we define our problem in the next section.

2

1.1 Problem Definition and Regarded Models

As stated in the beginning of this chapter, our problem consists of- and is a mixed

version of two different problems, namely the Set Covering Problem and the Traveling

Salesman Problem. Given below are the simplest versions of both problems and some

extensions used in various cases. Once an introduction is made to both problem types,

we provide our model definition together with its mathematical model.

1.1.1 Set Covering Problem and Traveling Salesman Problem

Set covering problem, also known as set cover problem, concerns with

minimizing the total cost of all selected elements or total number of selected elements

itself given that these elements are required to cover a pre-given number of input sets. It

has different versions such as edge covering problem and vertex covering problem,

maximum coverage problem or geometric set cover. Even though the modified versions

of this problem may be of mixed integer type (MIP), simplest version is a pure integer

problem, whose formulation is pretty straightforward.

To illustrate the Set Covering Problem, suppose that a municipality wants to setup

fire stations within a specified region, which is divided into sub-regions with the

motivation of efficient management. Then, the municipality seeks to minimize the

number of stations to be set up such that all sub-regions are within at most 15 minutes

of travel time. In some cases, some locations may be more expensive than others and if

that is the case, the municipality may want to minimize the total cost incurred by setting

up these fire stations rather than minimizing their number.

The traditional formulation of TSP has sub-tour elimination constraints defined by

subset S that denotes the set consisting of nodes in that particular subset of node set N

and cardinality of S means the number of nodes in S, as also stated in [2] and as will be

explained in literature search. For any subset to ever exist, there will be at least two

nodes and a route, whenever there are nodes to form a subset due to cost optimality, it is

prohibited in that the corresponding binary variables are not allowed to be equal to 1 all

at the same time.

3

1.1.2 The Photo-Modified TSP

Our model is verbally defined as follows: Given node set N, edge set E that

connects each and every node in N, a starting node where our agent is located, we

should cover each node in N containing also the starting node, by either directly visiting

that node or reaching that node by photographing it from a distance without physically

going there. It is possible for the agent to visit a node just to cover that particular node

and not to take a photograph. As such, the agent is not allowed to take photograph at

any node to which the agent does not physically go. This operation should be performed

at the least cost, considering the travel costs between all the nodes making up a

complete route and also the photographing costs that enable connecting to a node within

a distance but incurring an extra technology cost. Another parameter to be taken into

account is the reachability issue related to distances between the nodes. The reachability

of a node from another one, at which a photo is taken, is defined by some function that

assigns a probability of being “reachable” depending on the distance.

The reason why we mention Set Covering Problem and also Traveling Salesman

Problem is because the problem is a different version of TSP where all nodes should be

covered without the necessity of visiting all of them one by one, rather, we have the

opportunity to take a “photo” at a node to cover other nodes that are reachable from that

particular node. SCP plays an important role in the heuristic algorithm we designed. In

the first step, we divide the problem into two parts, and in the first part we define the

photo nodes by which we are able to cover all nodes in the node set N. In that sense, the

problem is similar to SCP and becomes relatively easier to solve.

As you will infer from the application areas section, there are lots of real life

cases where the problem we are dealing with is considered. We name our problem as

the photo-modified TSP for general purposes, and any digital connection or remote

operation will be defined as photographing. Throughout the study, we will refer to

means of transportation, called salesmen in traditional TSP or vehicles or unmanned

aerial vehicles as “agent”.

Reachability Issue: Since we are dealing with monitoring costs and fuel costs in

relation to traveling of the agent, it would be irrelevant to consider the highest

technology. The reason is explained as follows: There are cameras able to recognize

smallest insects from thousands of meters, so we should take into account that our

4

camera is of moderate size, moderate cost and moderate capability. These moderate

characteristics correspond to gimbal cameras that are able to prevent vibration and

movement based disqualifications and mainly used in mini unmanned aerial vehicles for

border monitoring, security management and precautionary motivations. Mini

unmanned aerial vehicles, called mini İHA in Turkish, are one of those used for short

range trips in Turkey. If we consider agents that are able to see each and every node

regardless of how far the distance is, then there is no sense in defining such a problem

because the agent will be able to reach every node from the starting node.

First and most important factor in a camera mounted on an unmanned aerial

vehicle is the visibility range. Second factor in the camera tool’s capability is lens

selection. There are two important things to consider in selecting the lens in a camera,

namely the conformance to camera’s capabilities and conformance to environmental

conditions. Another factor is the angle of view, determining how widely a camera can

reach from its vertical focus and record videos or take photos. One should note that

even though a point distanced vertically from a camera is seemingly qualified and

enables easy detection, not all the points in the same angle of view may be of the same

quality. We might as well use unattended ground sensors and improve the capability of

the cameras, as Fargeas et al (2015) study in their work, however, such improvements

are considered as future work since our target areas are deprived of such sensors and we

want to maintain simplicity for our model structure. There can be lots of other details if

we specify our problem to a real life case rather than generalizing it, thus we avoid

giving here technical details regarding the visibility range of cameras or lens selection,

for which we did additional research during the dissertation period. For simplicity, we

assume that appropriate lens for our camera is used, that is, lens or any other factor such

as focusing distance does not have quality-reducing effects on the camera itself and they

are all selected appropriately. We also assume that after a distance from a node, that

node becomes harder to “see”, that is, the probability to cover a node from the

photographing node decreases. We explain how we determined this probability in

Section 3.2.1.

5

1.2 Photo-Modified TSP Problem Formulation

Our problem has already been defined in the introduction part with necessary

assumptions. In this chapter, we provide our mathematical model with necessary

notation.

1.2.1 Notation

Parameters:

dij Distance between node i and node j

ci Photographing cost in node i

rij Binary number showing whether a photo taken at node i covers node j

N Set of nodes including starting node (0) such that N={0, 1, 2….n}

Decision Variables:

xij Nj i,
otherwise 0

j node toi node from pathdirect a is thereif 1






yi Ni
otherwise 0

i nodeat takenis photographa if 1






ui Order of node i in any complete route Ni

6

1.2.2 Objective Function

We seek to minimize the total cost incurred by traveling between the nodes and

also photographing at certain nodes to consequently cover all nodes in N, as shown in

(1):

  
  


n

i

n

j

n

i
iiijij ycxd

0 0 0

 (1)

1.2.3 Constraints

Node Coverage: All nodes should be covered. This can be done either by directly going

to that node or taking a photo from a node that “covers” that particular node. This is

mathematically expressed in (2):

  
 


n

jii

n

jii
ijiij xyr

,0 ,0

j 1 (2)

Visited Nodes Are Left: If there is a node for taking photo, that node should be left to

go to another node to eventually build up the route, as given in (3):

 



n

ijj
iji xy

,0

i (3)

Note in advance that there is also another constraint assuring that visited nodes are

arrived, however, the next constraint we write includes this arrival constraint by

incorporating it into a balance equality.

Node Balance: Node balance, together with (3) makes sure that any node will be left

after physical or photographical visit to that node. The balance is given in (4):

  
 


n

ijj

n

ijj
jiij xx

,0 ,0

i 0 -

 (4)

Leaving the Source Node: Our agent is located at a starting node, so it should be

leaving the starting node, shown in (5):

7

 



n

j
jx

0
0 1 (5)

Arriving at the Source Node: Similarly, our vehicle should return to starting node after

all nodes are covered. This is made sure by (6):

 



n

j
ix

0
0 1 (6)

Sub-tour Elimination: The most important issue in solving our problem as well as

solving a TSP is sub-tour elimination. This constraint correspondingly eliminates sub-

tours and makes sure that additional decision variables are only allowed to reflect the

order of the nodes within a feasible route. This is given in (7):

 ji 0,j 0,i 1  nxnuu ijji

 (7)

8

CHAPTER II

PREVIOUS WORK

Much effort has been devoted to searching for best solutions for Traveling

Salesman Problem. Karp (2010) shows that the problem is NP-complete, which leads to

development of countless heuristic algorithms and also LP relaxation methods to

efficiently solve the problem [6]. So TSP includes combinatorial constraints such as

sub-tour eliminations and similar to vehicle routing problem, it is also NP-hard [3-4].

Papadimitriou (1977) concerns with Euclidean TSP and studies two different problems,

namely the ordinary TSP, where one needs to go back to start node after visiting each

node and the paths TSP, where one does not need to go back to original node after

visiting all nodes [9]. In particular, Papadimitriou proves both problems’ Euclidean

versions are NP-complete, and restrictions on distance inputs do not make TSP easier.

This chapter continues with two subchapters explaining the solutions methods

and different approaches for different versions of Set Covering and Traveling Salesman

Problems previously studied.

9

2.1 Set Covering Problem

One of the algorithms that comes to mind immediately when trying to solve Set

Covering Problem is the Greedy Approximate Algorithm, mainly defined as α-

Approximation Algorithms since the results given by these algorithms cannot be worse

than α times the objective function’s optimal value. Greedy algorithms’ working

procedure is to find the node to be selected in such a way that it brings the maximum

number of other nodes to be covered, and to do this job at minimum cost. This

procedure is repeated until all nodes are covered. Mostly known values of α is 1.5, 2

and 3, after which an algorithm increasingly becomes unsuccessful. The most literarily

used greedy algorithm finds a solution with at most k ln n sets of nodes, given originally

n nodes to cover. It is important, however, to note that even though Set Covering

Problem does not contain a combinatorial constraint like sub-tour elimination seen in

TSP, number of nodes exponentially increases the solution time and this makes it

necessary to develop algorithms to efficiently solve the problem. Exact and approximate

algorithms developed for Traveling Salesman Problem are also employed in SCP.

Modified genetic algorithms are used in [10], [11] and [12] especially to handle local

optima and provide efficient solution procedures. In [13] several algorithms able to

provide both exact and approximate solutions are outlined and sorted. In that sense, [13]

provides a useful index for different approaches for SCP. Before this study, same

researchers had also suggested a Lagrangian-based heuristic for crew scheduling in a

broader sense in [14]. Dynamic pricing as well as column fixing are effectively used to

obtain improved solutions, providing optima in 92 out of 94 instances.

10

2.2 Traveling Salesman Problem

 Much progress has been made since the introduction of TSP into literature. Soon

after the problem was defined, solution procedures together with the required effort

were suggested.

2.2.1 Background and Pioneering Studies

 Data plays an important role in TSP’s progress. Researchers like Dantzig and

Karp provided very good distance matrices to start with, however as the problem size

grew, their applicability reduced very fast. So over time, people began to create test

instances to computationally experiment with TSP. Reinelt’s so-called TSPLIB, which

contains examples up to 85900 cities is the mostly known test database. Other than

TSPLIB, there are also National TSP Collection, VLSI TSP Collection, The World

TSP, Mona Lisa TSP and United States TSP that can provide instances up to 1.904.711

cities, which cover all the cities and populated areas in the world. In our study, we

generate our own data when we create our binary matrices of accessibility, however,

when it comes to generating distance matrices or test our model in IBM ILOG CPLEX,

we simply made use of some of these instances as well. Years after [2]’s highly

inspiring infrastructure to handle TSP, many people tried the database to test and

validate their own algorithms, and even hardest instances were tried to be solved [15].

The difficulty in defining and handling these constraints is handled quite in an

elegant manner by Dantzig, Fulkerson and Johnson (1954), where they employ an

estimation procedure to estimate upper bounds for a 49-city problem and where they

illustrate the sub-tour concept by using cutting plane methods and optimality concept by

orthogonality and feasibility [2]. Even though literature seeks to find optimal solutions

for TSP just as this study did in 1954, we should definitely note that exact methods such

as cutting planes and branch and bound methods do not provide quick solutions when

the problem size is much larger. The study is a pioneer, however, in that it is denoted as

the first time such a large problem instance is solved to optimality. Cutting plane

concept are further investigated in [15] and [20] where authors deeply discuss the

concept of a cut procedure that is used throughout the solution process. It is the content

of the authors that given a solution not satisfying all the constraints which impose

11

another cut to be added, a cut based on tangled tours and combined with old fashion

cutting plane process is employed to effectively define a plane. Same authors enumerate

other methods derived from numerous studies in [21]. Another cutting plane algorithm

is proposed in [22], that is based on a polyhedra strengthening the LP relaxation. In

exchange, the linear program created has about twice the size of the usual LP relaxation.

Therefore, they propose a lifting step to reduce the size for solvable complexity. In our

study, our model’s sub-tour elimination constraint makes our problem weaker in terms

of LP relaxation, and in future studies, we may try to use this strengthening step in

relaxing our model to find lower bounds.

2.2.2 Finding Lower Bounds

Laporte’s work sheds light on exact and approximate algorithms and provides an

extensive guide to make use of in finding lower bounds in [23]. In addition to integer

programming formulations, the assignment lower bound and related branch and bound

algorithms allow finding a lower bound by relaxing integer constraints, leading to an

assignment problem that can be solved in O(n3) time [24]. Other exact algorithms that

may be of interest are the shortest spanning arborescence bound and related algorithms

as in [25], the shortest spanning tree bound and related algorithms and 2-matching

lower bound and related algorithms as in [26] and [27]. As for approximate algorithms,

of which we have talked and will be talking below, heuristics with guaranteed worst

case performance that base on spanning trees and are improved by Christofides

heuristics as in [28], heuristics with good empirical performance such as nearest

neighbor which can further be divided into tour construction, tour improvement and

composite heuristics studied in [29]. Another study compares the lower bound obtained

by their model by the Held-Karp bound and the lower bounds obtained in [30] and [31].

It is shown that the Held-Karp bound is at least as tight as van der Veen, which is as

least as tight as minimum weight tree. Both Held-Karp and can der Veen yielded best

bounds, among which van der Veen prevailed since it provides values in linear time

[32]. Another study in [33] handles the issue of finding lower bounds by a 1-tree

learning based Lagrangian relaxation technique. Obtaining lower bounds for large

instances of a problem that cannot be solved within reasonable times is also important

especially when it comes to compare a heuristic algorithm with other exact or

12

approximate algorithms in terms of solution time and solution quality. Mathematical

programming formulations such as single or multi-commodity flow can be used to

formulate a minimum spanning tree (MST) and then applying branch and cut and price

algorithms [129]. Our approach is similar to what is studied in [130], but it is different

in that we incorporate photographing variables and make a coverage possible also by

taking a photo from a node able to cover other nodes.

2.2.3 Mathematical Formulations

In addition to the constraint formulation suggested by [2] and also the

introductory chapter, there are several other formulations to integer programming of

TSP, as summarized and computationally compared in [34]. Four types of classes,

namely conventional (C), sequential (S), flow based (F) and time based (T).

Conventional formulation is what we see in Dantzig, Fulkerson and Johnson’s work. It

has 2n + 2n - 2 constraints and n(n - 1) binary variables. To solve the problem in

tolerable times, sub-tour elimination constraints are added as they are violated, thus

reducing total computation time.

Second class is sequential formulation, which we used in CPLEX to effectively

handle the sub-tour elimination constraints. Accordingly, the sub-tour constraint is

replaced by what we write in constraint (7). Even though the constraint (7) is written

such that the variable ui showing the sequence of node i visited in the route is defined as

a continuous variable, it may be also be defined as integer to precisely notify the node

sequence in a given route. Sequential formulation has n2 - n + 2 constraints, n(n-1)

variables and n-1 continuous variables. This is known as the Miller-Tucker-Zemlin

formulation, as stated in [35] and also compared in [36] and [37]. Main advantage of

this formulation is the decreased problem size, and ease to manipulate the model in

cases we want or prefer some cities to be visited earlier. It is also noted, however, that

LP relaxation of this formulation compared to [17] is much weaker due to the need for

elimination of continuous variables in relaxation process.

Third class is flow based formulation, which we also see in vehicle routing

problems, studied in [38], [39] and [40]. This formulation may be subdivided into single

flow, two flow and multi-commodity flow formulations, in each of which appropriate

13

indices are defined but the conceptual definitions remain the same. Single flow

formulation incorporates a yij to traditional formulation to denote the flow in the

corresponding i-j arc and adds the following constraints:

jiNjixny ijij  ,,)1((8)

1
1,

1 


ny
jj

j (9)

  
 


jii kik

jkij yy
, ,

1-Nj 1 (10)

(9) and (10) allow n-1 units to flow into city 1 (starting node in our case) and 1 units

from other cities, where any flow, as stated by (8), can exist if there is a direct path

between the corresponding city i and city j. 2 flow and multi-commodity flow

formulations can be looked and studied accordingly. As for multi-commodity TSP, [41]

gives a formulation to model a transportation network. More formulations can be found

in [42], [43], [44], [45], [46] and [47], where [42] compares the strengths of their LP

relaxations and provides some base to select the best fit for conducted studies.

Fourth class is time based formulation, where we divide the route and moves

into time-based intervals, thus modeling the problem in such a way that whenever there

is a condition in time t at a particular node, we impose another condition in time t+1 in

another node and so on. In addition to binary arc variable xij, we add the following to

the problem:






otherwise 0

 tstageat traversedis j-i arc if 1t
ijy

such that

,,

ny
tji

t
ij  (11)

 1i 1
2,, ,

 


Ntyty
ttj tk

t
kt

t
ij (12)

 
t

t
ijij yx 0 (13)

This model, as stated in the study, has n(n+2) constraints and n(n-1)(n+1) binary

variables. Even though we may claim that the formulation is a more compact one, its LP

relaxation form is weak and therefore becomes slow in terms of running time. [48] deals

with more time-based models and puts all advantages and pitfalls in the modelling

14

process. We do not prefer this modelling approach since we need another variable to

denote photographing/connection decisions and incorporating this variable would cause

another complexity in modelling due to inclusion of time stages.

2.2.4 Neural Networks

As for neural networks studies, [54] and [55] investigate different methods used

in solving TSP. [54] compares three different approaches: integer linear programming

to obtain optimal solutions without time consideration, Hopfield Neural Network as

explained in [56], and Kohonen Self Organizing Feature Map. As stated in [56],

Hopfield Network is able to compute good enough solutions by using analog inputs and

uses these solutions as the network is extended. These ‘milestones’ to shed light on the

optimization of the problem by spending less time is actually the what makes a network

a neural network where some solutions are collectively computed by utilizing an energy

function. Lots of other problem types are also solved by making use of neural networks

[55], where TSP is the mostly investigated problem type and is characterized either by

binary variables as in integer formulations or continuous variables as in [57]. Studies

[58], [59], [60] and [61] also consider Hopfield neural network and provide extensions

in terms of computational structures of the same algorithm. In [62] Hopfield network

performance is compared with an ant colony system. For more information on neural

networks, [65] can be consulted which classifies all neural network studies based on

solving TSP and TSP with backhauls as in [66] and divides the work into three main

groups, namely the Hopfield-Tank Network, elastic net algorithms and self-organizing

maps. For more neural network applications employing Hopfield networks, reader may

look at [67] and [68]. An interesting neural network application is the so-called Cuckoo

Search Algorithm, introduced firstly by [69] and inspired by cuckoo behavior in nature

[70].

2.2.5 Swarm Based Techniques

Another metaheuristics for solving TSP are swarm based optimization techniques, such

as ant and bee colony algorithms [71], swarm particles or what we found in our thesis

period, named African Buffalos. Particle swarm is developed by [72] and parametric

extensions are created by the same logic in [73], [74]. Parameters like inertia weight or

15

discrete structures are also combined with the main concept to accelerate the method

and obtain qualified solutions [75]. Precedence constraints in addition to sub-tour

elimination constraints make TSP even more complex and this is where particle swarm

optimization (PSO) comes in [76]. Convergence speed in such algorithms may be

increased by eliminating crossovers, and re-designing subtraction operator contributes

to possibility of solving even larger problems thanks to early convergence [48], [49],

[77] and [78]. In [79], particle swarm techniques are combined with genetic simulated

annealing ant colony system to solve 25 TSP instances obtained from TSPLIB, which is

then compared with the self-organizing maps [53], and neural network approaches in

[80] and [81]. [86] deals with TSP when there are time windows constraints. Time

window constraint is handled by a beam ant colony optimization algorithm in [87],

where stochastic sampling for differentiating between partial solutions is used. A

combination of particle swarm optimization, ant colony optimization and 3-opt

heuristics is employed to solve TSP in [88]. A bee algorithm in [90] investigates a

deterministic case by the very same natural waggle dance behavior of bees. Different

applications of swarm particle optimization approaches may be consulted in [92], [93]

and [94].

 A different aspect, namely an optimization technique called African Buffalo

optimization, is concerned by [95] where the technique is compared with the

Randomized Insertion Algorithm and performed better [96]. Buffalos run faster also in

[97] and [98], where African Buffalos are compared to hybrid Honey Bees and Lin-

Kernighan algorithms on TSPLIB95 benchmark data.

2.2.6 Simulated Annealing

Simulated annealing is used also in [82], where a local search algorithm

combines greedy approaches with simulated annealing to solve TSP. Problem types that

are fit for simulated annealing are mentioned in [83] together with a Metropolis

algorithm firstly introduced in 1953. The algorithm is compared to simulated annealing

in [84] and in [85],

16

2.2.7 Genetic Algorithm

[99] investigates different selection strategies in genetic algorithm (GA)

approach to determine which parameter selection in terms of parent selection affects the

solution time in the highest rate. As the problem size increases, it becomes more likely

for tournament selection strategy to suffer from early convergence to some local optima

[100]. As mentioned earlier, vehicle routing problem with precedence constraints is

appropriate to be modeled as a TSP, which can produce invalid candidate solutions if

solution representation is made order-based [101]. It is also important to prevent the

algorithm to converge to some locally optimal solution by additional manipulation of

results or preventive steps, such as evolutionary adaptation of simulated organisms

[102]. Even though generalized chromosome genetic algorithms are claimed to solve

standard TSPs as well as generalized TSPs (GTSP) where a tour is created by visiting

single nodes in each clusters containing multiple nodes [103], generation of feasible and

quality tours is an important aspect to achieve good enough solutions in the end, thus

genetic algorithms are supported by local heuristics, such as the hybrid algorithm that

produces solutions beforehand and then refines them by Lin-Kernighan local search

[104]. It is also possible not to use a local search algorithm separately from the genetic

algorithm but to convert local search heuristics into a genetic structure like it is done in

[105]. [106] introduces a Memetic Algorithm that incorporates an extensive

neighborhood search to generate new solutions using crossover. For the same problem,

[107] again uses local search supported by genetic algorithm. Another genetic algorithm

called the immune genetic algorithm (IGA) employs two ways to make use of an

immune operator [108]. For more applications used in combinatorial problems, [109]

classifies and enumerates previous studies based on scheme; [110],[111],[112] and

[113] are extensive books providing traditional as well as combined approaches with

respect to genetic algorithms, whereas [114], [115], [116] and [117] are the pioneering

conference proceedings as cited in [107].

A different approach is used in [118], where symmetric and asymmetric TSPs

are solved. Lots of different representations may be seen in [119]. Even creation of

initial populations may be in tremendous numbers of ways, which in turn affect the

solution quality and the rate at which the optimal solution is reached [120]. TSP with

17

precedence constraints is solved also by a genetic algorithm where the concept mainly

bases on topological sort, namely the edges ordered in a directed graph [121]. As for

mutation operators, a new one called Greedy Sub Tour Mutation (GSTM) is suggested

in [122].

2.2.8 Other Approaches

Tabu search [123], owing its name to its property of holding previous solution

information in memory, is also used in TSP problems. A balance between tabu

conditions and aspiration criteria is important and well defined memory function play a

vital role in reducing the total solution time. More information can be found in [123].

There are also algorithms that are motivated on their own and do not rely on

Meta-heuristics, thus having no particular name like our algorithm. An example is given

in [124], where edges are added to a tour progressively by selecting the less disturbing

edge for the edges not yet selected. The algorithm is compared to famous Quick Method

for evaluation.

A different version of TSP is maximum reward collection problem, studied in

[125] and in [126]. A variant of the same problem with multiple agents is studied in

[127]. Salesmen try to maximize their reward minus any costs by visiting the nodes

which worsen as time passes. A penalty based heuristic is suggested in [125]. In [127], a

Cluster and Route Algorithm (CRA) is suggested to find good enough solutions.

The maximum collection problem is studied also in [128], where this time a

single constraint is imposed such that each nodes does not have to be visited exactly

once, each node has a given reward and starting node should be returned to, maximizing

the total reward within the given time. Similar to what we formulated in our heuristics,

this study adds assignment problem’s constraints to easily solve the problem by

Lagrange relaxation.

18

CHAPTER III

SOLVING OUR PROBLEM BY MATHEMATICAL MODEL
AND BY A GREEDY HEURISTIC

In this chapter, we solve our mathematical model by CPLEX, show that the

problem is NP-Hard for higher numbers of nodes, explain the dynamics of a heuristic

algorithm we designed to easily solve the problem and compare the results.

3.1 Solving the Model Mathematically and Evaluation of Results

In this section, we give information about how we generated our own problem

instances and also our comments on computational results. To solve the problem, IBM

ILOG CPLEX Optimization Studio 12.6.1 is used. The software is installed on

Windows 7 Professional Operating System 64 bit, with Intel® Core™ i7-3630QM CPU

@ 2.40 GHz processor and 8 GB RAM.

3.1.1 Generation of Different Problem Instances

Before explaining the methods we used for generating different problem

instances, it is necessary to explain any assumptions we made for simplicity. In the

construction of our distance matrix, distance is measured in Euclidean form. Since we

want to maintain simplicity as much as possible, we directly took distance matrix as the

traveling cost matrix, defining the traveling cost 1 monetary unit for 1 unit distance. We

assumed a coordinate range between 0 and 1000, making the largest distance between

any points at most 21000 .

Reachability Issue Revisited: In the introductory part, reachability was

mentioned as one of the inputs to our model. To be able to adapt this characteristic into

our model, we define a mathematical function through which we obtain our relative

height (reachability) matrix. To reflect the decrease in capability as the distance

increases we define the following function:

7

max

1)(









d

d
xf ij (14)

19

where dij denotes the distance between node i and node j and dmax denotes the maximum

distance among all the pairs for a given set of nodes. As stated above, this function

takes a value less than 0.1 after the integer value 392, a distance less than 400 unit

distance when the maximum distance is 1400 units between two nodes. Note also that

the coordinates of nodes vary between 0 and 1000, thus creating a square of 1000 x

1000 unit distances. The curve that shows the probability of ‘seeing’ a node is given in

Figure 1. The maximum distance is determined as 1400. Note that if the distance is

equal zero, the probability of seeing a node becomes 1. In other words, if we are at a

node and we want to take a photo, we will definitely be able to cover that node. Note

also that if two nodes are located by the maximum distance, the probability of them to

see each other becomes zero.

Figure 1. Distance-Probability Curve

The motivation behind the selection of this probability function is simply the

case we are considering. Technical details we obtain from [5] and also the rule stating

the reachability capability of a camera is taken as an example. For our particular case

where we assumed a 1000 x 1000 grid, we want the nodes to contain limited numbers of

1s in the reachability matrix, thus allowing the problem to consider photographing

opportunities. For this reason, we take the probability function to the seventh power to

guarantee the steepness of the curve and be sure that a photo node does not cover

“almost” all the nodes and does not make the problem meaningless since otherwise even

0

0,2

0,4

0,6

0,8

1

1 45 89 13
3

17
7

22
1

26
5

30
9

35
3

39
7

44
1

48
5

52
9

57
3

61
7

66
1

70
5

74
9

79
3

83
7

88
1

92
5

96
9

Distance Based Reachability-
Probability Function

f

Probability

Distance

20

large numbers of nodes can easily be covered by photo nodes and the problem turns into

SCP rather than TSP. For other cases where other factors play a role in reachability, this

function may be defined based on those factors, for example, lens selection and weather

conditions may be incorporated into the function appropriately. It should be noted that

this function, at the end, is selected arbitrarily, the power of it could be 6 instead of 7, or

10, depending on how much reachability we want in our reachability matrix. We

selected 7 as to make sure that we have enough number of coverages in our reachability

matrix.

Next question to answer is how probabilities that a node covers another node are

calculated. Depending on the distance, the function in (14) calculates a number between

0 and 1, whose graph has already been given in Figure 1. Taking the value as an input,

Excel generates a random number between 0 and 1. If the generated number is greater

than the value of the function, corresponding coverage value in the reachability matrix

takes the value of 0, and it takes the value of 1 otherwise. The following formula is used

in generating reachability matrices:

IF(RAND()>H406;0;1)

To solve different instances of the model, we modified both distance matrices

and also the cost vector. Distance matrix is manipulated in two different ways:

1. Neighborhood Generation: We divide the distance matrix into numbers of

neighborhoods which are defined by different distance ranges. For example,

first neighborhood contains nodes whose coordinates are determined

between the values 0 and 300, second neighborhood contains nodes whose

coordinates are valued between 400 and 500 and third neighborhood

contains coordinates between 800 and 1000 and so on. Depending on the

instance, we also create neighborhoods together with a larger neighborhood

containing the whole range. We create these neighborhoods to test and

observe the solution structure of optimization software and heuristic

framework. These two modifications are illustrated in Figure 2 and Figure 3,

respectively. Numbers of neighborhoods are also increased in different

instances and up to 5 neighborhoods are created.

21

Figure 2. 3 Neighborhoods

Figure 3. 3 Neighborhoods with Full Range Nodes

2. Distance Altering: Distance altering simply changes distances without

changing the number or range of neighborhoods to measure the effect of

different values in solution time and feasibility. Once the matrices are

created, it is very easy to generate several versions.

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

Neighborhood Nodes

Neighborhood Node Locations

y Coordinates

x Coordinates

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

Node Locations

Node Locations

y Coordinates

x Coordinates

22

While changing the distance matrix based on the above ways, cost vector is also

manipulated by changing the ranges. The last input to our model is the cost vector

showing photographing/digital monitoring cost of each node. If the model decides to

take a photo at a particular node, the associated cost is automatically incurred in the

objective function. We considered different ranges for these costs to alternatively

determine optimal routes under diverse costs and to determine the dynamics where the

model prefers taking photos instead of physically visiting the nodes. To illustrate,

suppose that the costs of photographing in an instance are distributed between 1000 and

4000. Suppose further that the costs of photographing in another distance are distributed

between 500 and 1000. It will definitely be preferable to consider photographing

opportunities at a higher rate in [500-1000] case since there can be some nodes at which

photographing process would cover more nodes than physically visiting that many

nodes at the same cost. Thus, the dynamics of the photographing considerations should

also be parametrically analyzed. In that sense, we divide the cost ranges accordingly and

create problem instances to test our cost vector.

Based on these modifications, we create thirteen instances for numbers of nodes

we solve in CPLEX. Each instance will be created based on the scheme given in Table 1.

Table 1. Instance Information

Instance

Number
Neighborhood Structure

Cost Vector

Structure

Instance 1A No Neighborhood CV ϵ [50,500]

Instance 1B No Neighborhood CV ϵ [250,1000]

Instance 1C No Neighborhood CV ϵ [1000,4000]

Instance 4A NH1:x,y ϵ [0,100] NH2: x,y ϵ [900,1000] CV ϵ [10,250]

Instance 4B NH1: x,y ϵ [0,100] NH2: x,y ϵ [900,1000] CV ϵ [250,750]

Instance 5A NH1: x,y ϵ [0,250] NH2: x,y ϵ [400,600] NH3: x,y ϵ [750,1000] CV ϵ [50,500]

Instance 5B NH1: x,y ϵ [0,250] NH2: x,y ϵ [400,600] NH3: x,y ϵ [750,1000] CV ϵ [50,2000]

Instance 6A NH1: x,y ϵ [200,400] NH2: x,y ϵ [500,550] NH3: x,y ϵ [800,1000] CV ϵ [10,400]

Instance 6B NH1: x,y ϵ [200,400] NH2: x,y ϵ [500,550] NH3: x,y ϵ [800,1000] CV ϵ [300, 850]

Instance 7A NH1: x,y ϵ [0,200] NH2: x,y ϵ [200,400] NH3: x,y ϵ [400,600] NH4: x,y ϵ [600,800]

NH5: x,y ϵ [800,1000]

CV ϵ [50,500]

Instance 7B NH1: x,y ϵ [0,200] NH2: x,y ϵ [200,400] NH3: x,y ϵ [400,600] NH4: x,y ϵ [600,800]

NH5: x,y ϵ [800,1000]

CV ϵ [500,1000]

Instance 8A NH1: x,y ϵ [0,250] NH2: x,y ϵ [200,450] NH3: x,y ϵ [300,700] NH4: x,y ϵ [500,850]

NH5: x,y ϵ [925,1000]

CV ϵ [50,500]

Instance 8B NH1: x,y ϵ [0,250] NH2: x,y ϵ [200,450] NH3: x,y ϵ [300,700] NH4: x,y ϵ [500,850]

NH5: x,y ϵ [925,1000]

CV ϵ [400, 800]

23

3.1.2 CPLEX Computational Results and Solution Times

Based on the problem instances created according to above procedures, a solution

table with 8 nodes, 10 nodes, 12 nodes and 17 nodes is provided in Table 2. Note that the

values are mean values for 5 runs for each node and instance number with different

input data. Times are given in minutes, seconds and nanoseconds. Instances are named

as number of nodes to solve and instance number to give as input. For example, 6-1A

denotes a 6-node problem having input specified in instance 1A. All input data

containing reachability matrices, cost vectors and distance matrices for CPLEX are

stored in Excel files and read from Excel files by CPLEX. The nodes solved to

optimality are given in Appendix A.

Table 2. CPLEX Results

Instance Average t Instance Average t Instance Average t Instance Average t
8-1A 00:00,890 10-1A 00:00,910 12-1A 00:01,550 17-1A 00:01,580
8-1B 00:00,950 10-1B 00:00,930 12-1B 00:02,700 17-1B 00:01,150
8-1C 00:00,840 10-1C 00:01,310 12-1C 00:02,500 17-1C 00:01,150
8-4A 00:00,880 10-4A 00:01,220 12-4A 00:04,950 17-4A 00:52,120
8-4B 00:00,870 10-4B 00:01,600 12-4B 00:02,980 17-4B 01:45,720
8-5A 00:00,910 10-5A 00:01,180 12-5A 00:05,140 17-5A 03:46,700
8-5B 00:00,950 10-5B 00:02,550 12-5B 00:14,190 17-5B 02:57,520
8-6A 00:00,860 10-6A 00:02,590 12-6A 00:02,370 17-6A 26:23,000
8-6B 00:00,890 10-6B 00:02,440 12-6B 00:30,280 17-6B 09:34,720
8-7A 00:00,830 10-7A 00:01,150 12-7A 00:33,330 17-7A 44:31,820
8-7B 00:00,870 10-7B 00:01,550 12-7B 00:33,450 17-7B 16:25,170
8-8A 00:00,910 10-8A 00:05,230 12-8A 00:29,740 17-8A 00:17,580
8-8B 00:00,980 10-8B 00:03,550 12-8B 00:31,260 17-8B 00:02,980

Results differ in terms of solution times. It is expected and observed that an

optimal route with the corresponding objective function value is always found for most

of the problem instances defined. However, as seen in instances where neighborhoods

are defined, reachability matrices contain more 1s, there is almost no reachability

between neighborhoods, and we observe diverse solution times. We observe these

diversities in instances 17-6 and 17-7. Even though instances of 17-5 and 17-6 are

created based on same problem instance data and only the costs for photographing differ

from each other, there is a large difference between their solution times. Therefore, we

conclude that it is due to the structure of the convex hull that is created by the inputs,

which is caused by reachability matrices and cost vectors together.

24

Other than the results for 17 nodes, we can draw the following conclusions and

observe the following for overall outputs:

1. For small numbers of nodes, CPLEX solves the associated modified TSP in

reasonable times, that is, it only takes seconds or couple of minutes to find the

solution. The highest solution time is seen in instance 10-8A, which is around

5 seconds. As for 12, 15 and 17 nodes, solution times are slightly beginning to

increase especially in instances with neighborhoods. In 12 nodes, solution

times reach up to 35 seconds but they do not exceed 1 minute. It is also seen

that solution times for high photo costs associated with instances with

neighborhoods are higher than low photo cost instances. As we compute

results for 15 nodes, solution times of instances with neighborhoods is again

more than instances with no neighborhoods up to 5 times, as is the case with

instance 15-6B against the first three instances. The longest time is observed in

of the runs as 15 hours 13 minutes, corresponding to 913 minutes in instance

17-6A. Afterwards, CPLEX yielded more reasonable times and excluding this

value yielded an average solution time of 26 minutes in 5 different runs. An

average solution time of 16 minutes for instance 17-7B and 44 minutes for

instance 17-7A are observed in 17 nodes computations. In Appendix A, we see

other instances that belong to different node numbers. Even though in

instances from 20-4 to 20-7 CPLEX showed memory errors, it seemed to

approach to global optimal solutions as the gap in CPU diary always decreased

and branching continued successfully.

2. To be able to determine the breaking point of our model, that is, to determine

the node number after which our optimization software fails to find solutions

due to incapacitated computer memory or very high solution times and to be

able to reflect the increase in solution time depending on number of nodes, we

select instance 1 to initiate another running process, and we run the model for

the same instance by incrementally increasing the node number in each run.

The results are as obtained in Table 3.

25

Table 3. Instance 3 (No Neighborhood) Node-Solution Time

Instance zopt xopt, yopt(shown by *) t

6 2290,341 0-5-4-1-3-6-2-0 00:08,950

7 2489,909 0-5-7-4-1-3-6-2-0 00:08,690

8 2514,839 0-5-7-4-1-8-3-6-2-0 00:08,840

9 2531,108 0-9-2-6-3-8-1-4-7-5-0 00:08,660

10 2573,539 0-2*-6-3-8-1-4-7-5-0 00:08,730

11 2658,788 0-2*-6-3-8-1-4-11*-5-0 00:08,940

12 2661,869 0-5-11*-4-1-8-3-12-6-22-0 00:09,000

13 2599,934 0-6-12-3-1-13*-5*-0 00:09,750

14 2715,279 0-5*-14-7-11-1-8-3-12-6-2-9-0 00:07,650

15 2851,261 0-6-12-3-15-13*-1-14-5*-0 00:07,920

16 2868,061 0-2*-6-12-3-15-13*-1-4-14-5-0 00:07,870

17 3055,662 0-5-14-4-1-13*-15-3-17-6-12-2*-0 00:09,080

18 3055,662 0-2*-12-6-17-3-15-13*-1-4-14-5-0 00:09,880

20 3381,822 0-5-14-4-19-1-13*-15-3-20-17-6-12-2*-0 00:12,980

22 3391,423 0-9-2-15-17*-3-20-8-22-1-19-11-7-14-5*-0 00:13,160

25 3803,031 0-2*-15-12-6-25-17-3-20-8-22-1-19-11-7-14-5*-10*-0 00:29,880

30 3958,999 0-23-29-28-12-6-25-17-3-20-8-22-1-1911-7-14-5*-26*-2*-0 00:36,190

35 4016,298 0-2*-27-28-31-25-17*-34-33*-32-22-1-19-11-7-14-5*-23*-0 01:34,260

36 3853,368 0-23*-5*-14-7-11-19-1-22-32-33*-34-17-36*-28-27-2*-0 01:40,710

37 3853,368 0-23*-5*-14-7-11-19-1-22-32-33*-34-17-36*-28-27-2*-0 01:34,570

38 3853,368 0-23*-5*-14-7-11-19-1-22-32-33*-34-17-36*-28-27-2*-0 03:26,000

39 3893,055 0-23*-5*-39-11-14-7-19-1-22-32-33*-34-17-36*-28-27-2*-0 09:05,430

40 3893,055 0-23*-5*-39-11-14-7-19-1-22-32-33*-34-17-36*-28-27-2*-0 01:25:13,500

41 3893,055 0-23*-5*-39-11-14-7-19-1-22-32-33*-34-17-36*-28-27-2*-0 33:53,970

42 3893,055 0-23*-5*-39-11-14-7-19-1-22-32-33*-34-17-36*-28-27-2*-0 01:11:05,650

43 4508,152 0-2*-27-28-36*-17-34-33*-43-32-22-1-19-7-14-11-39-5*23*-0 02:00:47,200

44 4508,152 0-2*-27-28-36*-17-34-33*-43-32-22-1-19-7-14-11-39-5*23*-0 02:03:32,400

45 4508,152 0-2*-27-28-36*-17-34-33*-43-32-22-1-19-7-14-11-39-5*23*-0 09:21:30,240

50 Out of memory error

Up to 18 nodes, CPLEX finds the solution in less than 10 seconds. The times are

close to each other and since there are no neighborhoods, finding the solution does not

take as many amount of time as the other instances with neighborhoods do. Up to 39

nodes, CPLEX does not take more than 10 minutes to find the optimal solution,

however, if there are 40 nodes or more, time increases tremendously even şf the optimal

route and optimal solution remains the same. In 41 nodes, the time to find the solution

again decreases, but in 42 nodes, it again increases by around 50%. This situation is

explained again by different reachability matrices since all other cost vector and

26

distance matrix inputs remain the same. After 45 nodes we decided to solve the problem

for 50 nodes, and received a memory error. The time taken to solve the different

instances of our problem is shown in Figure 4. It is observed that as the number of nodes

increases, the rate at which the time to solve the problem increases gets also larger. It

should be noted that since these nodes belong to one instance, it is possible to have

different solution times especially in larger numbers of nodes in different instances.

Here we only deep delve into the speed for becoming NP-Hard for a non-neighborhood

case, which has always shown smaller solution times as compared to neighborhood

cases.

Figure 4. Solution Times versus Nodes

27

3.2 NP-Hardness, Lower Bounds and Need for a Heuristic

Algorithm

The problem is a variant of TSP where a complete route should be found for the

agent. If the reachability matrix has 1s only in its diagonal, it means that each node can

be reached only from itself. In other words, each and every node should then be vsited

physically, turning the problem into general TSP. Since TSP is NP-Hard, our problem is

also NP-Hard and the time required for finding solutions for larger instances gets

increasingly higher. To illustrate, we run CPLEX for 44 nodes and 45 nodes in Table 3,

and even though the optimal route is exactly the same, the complexity of 45 nodes

causes the problem to take a time of 9 hours and 21 minutes, which is 7 hours more

from the time for 44 nodes. We ran the model for 45 nodes once again to see whether

the instance will take the same amount of time, and after 5 hours we see that the

problem is at the same place by looking at the gap amount and the best solution value

obtained so far.

The high times to solve the problem create the motivation to design our heuristic

algorithm. We seek to obtain relatively quicker solutions that are within acceptable

percentages of the optimal solution. If we know the optimal solution of a particular

instance, we define term “acceptable” by looking at the gaps between the optimal

solution and the solution obtained by our heuristic algorithm. If an optimal solution of

an instance is not known, however, then lower bounds should be found for these

instances to be able to do comparisons with our heuristic algorithm. After 50 nodes, we

tried our heuristic in all instances for 30 nodes, 50 nodes, 100 nodes and eventually for

400 nodes, for which we obtained lower bounds by a separate mathematical model. The

model is defined below.

3.2.1 Notation

Parameters:

We use the same parameters from Section 1.2.1.

Decision Variables:

In addition to decision variables we used in our original model, we introduce an

additional variable to denote whether a node is physically visited or not.

28

zj
Ni

otherwise 0

 visitedphysically is j node theif 1






3.2.2 Objective Function

Our objective is the same as in our modified TSP model. We aim to minimize

the total photographing and visiting cost as we cover all nodes, shown in (15):

  
  


n

i

n

j

n

i
iiijij ycxd

0 0 0

 (15)

3.2.3 Constraints

Node Coverage: As previously stated, all nodes should be covered either by

taking a photo or directly visiting them, assured in (16):

 



n

jii
jiij zyr

,0

j 1 (16)

Photographing Requires Physical Visit: If a node is used for taking a photo,

then that node should be visited by the agent itself. This is satisfied by (17):

 i  ii yz (17)

 Physical Visited Nodes Should Be Arrived and Left: To formulate this

constraint, (18) is used.

 



n

ijj
jiiji xxz

,0

)(2 (18)

 Visits Imply Edges: If a node is visited, necessary route to that node consisting

of the edges should be formed, shown in (19):

   
n

i

n

i
i

n

j
ij zx (19)

29

It is known that the spanning forest we obtain by solving the above mathematical

model provides a lower bound for the problem instances which we cannot solve to

optimality with the resources on hand. The lower bounds for 30 nodes, 50 nodes and

100 nodes will be used in Section 3.4 where we compare the optimal solutions as well

as lower bounds with the solutions of our algorithm. We might also have tried to

connect all node clusters in our initial solution to obtain complete MST, however, it

would not then be sure that we get a lower bound, as the tree we obtain is not

necessarily a minimum spanning tree. In fact, it is possible to find better solutions than

what we could call a tree, which, in this case, means we cannot find the lower bound.

Another method to find the lower bounds is using CPLEX solver’s solution

diary to track the gap and best solution information obtained so far. Even though in

different numbers of nodes this process cannot be pursued due to tremendous waiting

time, it may still provide quality lower bounds considering also the gap, and these

bounds can be compared to our heuristics solutions. In some instances where we are

able to track the information, we waited until we are within 5-10% of gap, and we took

the solution obtained so far as the lower bound. This makes sense because the lower

bound we obtain by minimum spanning forest ignores connections between these

forests, and since these forests, when connected, incur more cost, these costs are not

included in our minimum spanning forest, which makes the lower bound relatively

‘low’.

30

3.3 The Proposed Algorithm

Our algorithm is a combination of a route construction algorithm for TSP and a

modified SCP, which are solved in a loop to first select a group of solutions and then try

to find the best solution among them. The pseudocode of our algorithm is given as

follows:

Step 0. Initialization
Read coordinates, cost vectors and reachability matrix from Excel
Take the reachability matrix and give it as input to modified SCP

Step 1. Determination of Base Node Set
Solve modified SCP to determine the nodes to cover all nodes in the network
in the least cost
Create the base list BLSCP such that all photo nodes in SCP are ordered in
increasing order
 If the starting node 0 is already in LSCP, go to Step 2
 Else add the starting node 0 to LSCP and go to Step 2

Step 2. For each LSCP do
 Approximate the associated TSP by Christofides Algorithm to obtain
 total route travel cost
 Add zSCP and zTSP to obtain the cumulative cost zCUM of photo-modified
 TSP
 If no more exclusion is possible in BLSCP, go to Step 4
 Else go to Step 3

Step 3. For each photo node in BLSCP do
 Exclude the node from BLSCP, solve SCP with remaining nodes to obtain
 new LSCP, go to Step 2

Step 4. Obtain the best zCUM
Record the route, cost and solution time of all other iterations
Stop

 Here, BLSCP denotes the list obtained by solving the modified SCP for the first

time, and the main loop follows this list. LSCP is the list obtained by solving SCP in each

re-start of the loop. The values zSCP and zTSP refer to objective function values of SCP

and TSP, respectively. The value zCUM is the total cost associated with the

corresponding step of the algorithm, best of which is reported after the algorithm is

complete.

31

To illustrate our algorithm, we will solve instance 12-4A and compare the results.

This is one of the instances having two neighborhoods, so it is reflected in the

reachability matrix. The coordinates and also the cost vector are assigned random

numbers based on the input structure. Our algorithm is then run on this instance.

Step 0: All input data is read by our algorithm, taken into memory by Excel files.

The modified SCP differs from the original SCP in that it also incorporates physical

visits to nodes in order to cover them, shown below:

 min 



n

i
ii

n

i
ii yfzc

00
0)((20)

subject to

 j 1)(
0




j

n

i
iij zyr (21)

 00 z (22)

The second part in (20) facilitates physical visits with the cost of arriving at that

node from the center node. Even though an agent does not necessarily arrive at a node

from the center node in practice, it is assumed to do so for computational purposes. (21)

ensures that all nodes are covered either by photo taking or physical visits while (22)

ensure that the center node is not physically visited during the tour.

Step 1: Accordingly, SCP uses reachability matrix and solves the resulting

problem. The problem is straightforward and our heuristic yields the base node set as

follows:

Base Node Set: 10*, 7*, 3* where * denotes a photo taking node

Accordingly BLSCP becomes: 3*, 7*, 10*

Since the node 0 is initially not in the list, we add it to BLSCP.

Step 2 and 3: We apply Christofides Algorithm in the following sub-steps to

approximate TSP tour for LSCP:

32

1. Insert Basic Information

2. Find Minimum Spanning Tree

3. Find Odd Degree Vertices

4. Minimum Weight Matching

5. Find Euler Cycle Path

6. Find TSP Cycle Path

We obtain the solution route as 0-10*-7*-3*-0 with zCUM = 2841.14. Next the

algorithm searches for any exclusion possibilities. Exclusion means elimination of a

photo taking node from the base solution set BLSCP, which is followed by re-solving the

problem under the new constraints. In our case, we have three photo-taking nodes,

meaning the loop will be called three times to solve the problem in absence of these

photo taking nodes. First, the algorithm removes node 3, as given in BLSCP and resolves

the modified SCP. We obtain new LSCP as: 5*, 7*, 11* with zCUM = 2901.17, which is

greater than our Base Node Set solution. Secondly, the algorithm removes node 7,

allows node 3 again and re-solves the problem. We obtain LSCP as: 5*, 10*, 12*, with

also node 0 and with zCUM = 2914.28, again greater than initial z value. Lastly, the

algorithm removes node 10 and solves the problem again, obtaining LSCP as 5*, 7*, 12*

with zCUM = 2987.032. Since there is no exclusion alternative left, the algorithm

proceeds with Step 4.

Step 4: The best solution obtained is reported with zCUM and the associated tour:

zCUM = 2841.14 with tour 0-10*-7*-3*-0

33

3.4 Comparing the Greedy Heuristic to CPLEX Results

3.4.1 Objective Function Values

Results are given in terms of solution quality in Table 4, measured by the gap

between the optimal objective function value or the lower bound:

opt

optheur

z

zz)(

where for instances for which we do not have a solution we simply replace the

term zopt by zlower bound.

Table 4. Solution Gaps for 6, 8, 12 and 17 Nodes

Instance Gap Instance Gap Instance Gap Instance Gap

6-1A 0,42 8-1A 0,29 12-1A 0,64 17-1A 0,38

6-1B 0,52 8-1B 0,60 12-1B 0,93 17-1B 0,66

6-1C 0,51 8-1C 0,57 12-1C 0,98 17-1C 1,10

6-4A 0,01 8-4A 0,07 12-4A 0,05 17-4A 0,04

6-4B 0,31 8-4B 0,50 12-4B 0,34 17-4B 0,28

6-5A 0,17 8-5A 0,19 12-5A 0,09 17-5A 0,29

6-5B 0,21 8-5B 0,75 12-5B 0,24 17-5B 0,36

6-6A 0,08 8-6A 0,09 12-6A 0,10 17-6A 0,18

6-6B 0,32 8-6B 0,23 12-6B 0,38 17-6B 0,71

6-7A 0,13 8-7A 0,27 12-7A 0,19 17-7A 0,29

6-7B 0,23 8-7B 0,70 12-7B 0,65 17-7B 1,18

6-8A 0,15 8-8A 0,26 12-8A 0,14 17-8A 0,28

6-8B 0,45 8-8B 0,86 12-8B 0,90 17-8B 0,69

The gaps of instance B of all nodes are higher than instance A. This means that

when we increase the photographing costs of nodes, our algorithm begins to give worse

solutions in terms of objective function value. Since our algorithm depends on photo-

taking nodes in the beginning of its structure by solving a preliminary set covering

problem, increasing photographing costs results in higher objective function values in

exchange for speed for obtaining a solution.

We obtain solutions within 1-10% of the optimal solution in instances 4, 5, 6 and 7

of all nodes. Even though instance B solutions of the nodes are higher than those of

34

instance A, they go in parallel with instance A solutions, and there is consistency

between their solution gaps. The gap averages for these nodes are provided in Table 5.

Table 5. Average Performances of 6, 8, 12, 17 Nodes

Node Instance A Instance B Instance C
6 0.16 0.34 0.51
8 0.19 0.60 0.56
12 0.20 0.57 0.97
17 0.24 0.64 1.11

It is seen that as the numbers of nodes increase while increasing photographing

costs, z value gaps also increase. Even if the algorithm provides good quality solutions

for some instances, it performs increasingly worse as increasing photographing costs

makes it preferable to physically visit the nodes rather than taking photos of them.

Similarly, solution gaps for 20, 30, 50 and 100 nodes are provided in Table 6.

Table 6. Average Performances of 20, 30, 50 and 100 Nodes

Node Instance A Instance B Instance C
20 0.62 0.98 1.05
30 0.67 0.91 0.55
50 0.51 0.55 0.97

100 0.47 0.60 1.67

The graphs of A and B instances again follow a consistent pattern, and the

difference between them gets closer, however, this reduction is caused by two very

important factors:

1. The average gaps of A instances increase at higher rates than B instances,

which reduces the gap between two curves.

2. Since we are computing lower bounds in large numbers of nodes in order for a

reasonable comparison and since these bounds are lower than their associated

optimal objective function values, the gaps eventually increase, leading to

reduced solution quality.

To understand the effects of photographing costs and also the reachability matrix

on z value gaps, we re-computed the instances as to solve them to optimality and also to

obtain heuristic solutions. We derive two conclusions about the solution quality being

affected by photographing costs and reachability structure:

35

1. Under the condition that all input data remain the same, as photographing costs are

decreased, the algorithm performs better because each candidate node for taking

photos will then incur much less values to optimal objective function value. This is

best illustrated in instances with multiple photo taking nodes and also high z value

gaps. We re-solve 10 instances randomly by stepwise reduction of photographing

costs and obtain the results shown in Table 7.

Table 7. Average Gaps under Decreasing Photo Costs

%Reduction Gap
0 1,12
5 1,08

20 0,83
40 0,72
60 0,60
80 0,58
90 0,59

There is a decrease in z value gaps as the photo taking costs are decreased,

however, after a certain value problem structure changes and the lower bound

finder we developed in CPLEX provides different lower bounds, which, depending

on the photo-taking nodes and also the distances, change at different rates. This in

turn causes the gap increase to 0.71 and 0.76 in the last two cases. It should also be

noted for cases having many photo nodes in the optimal solution that the amount of

reduction in z value gap is much greater since any reduction in photo costs directly

impacts objective function value. In addition, z value gap has a lower bound due to

TSP part of the problem, so even if the photo costs are set to zero, MST lower

bounds will be smaller than TSP routes that we obtain by our heuristic.

2. Increase in reachability promotes the algorithm’s solutions and enhances solution

quality in that the feasibility regions of instances increasingly begin to contain the

extreme points where photo nodes that cover more nodes exist. We illustrate this

concept best by resolving 10 instances again, where the optimal solution simply

visits all nodes without taking any photos or takes at most 1-2 photos in the optimal

solution, and our heuristic algorithm takes photos at multiple nodes, leading to an

average z value gap of 0.26. We increase number of visual connections of each

node by certain numbers and randomly, then investigate the change in z value gaps

by resolving the problem, whose results are shown in Table 8.

36

Table 8. 30-1B Reachability-Gap Changes

Increase in
Reachability

Gap

0 0,26
1 0,15
2 0,12
4 0,07
6 0,10
8 0,11

As is the case in photo costs, z gaps decrease significantly at first, and they

increase after a certain point because of the change in feasibility region and also the

stability of our heuristic to take into account these reachability changes. This graph also

shows that our heuristic is able to produce solution within 5% of the optimal solution

even in cases where photo costs are higher. The reachability issue that we explain in the

very beginning to shed light on our selection of reachability function can now be

exploited better. Decreasing the power of the function significantly enhances our

algorithm, which makes sense in real life applications because if there is a hill or certain

point higher in altitude than its neighbor points, that point will have visual access to all

nearby points, which makes it reasonable to reduce the power of the reachability

function.

So far we looked at reachability and photographing aspects separately. We now

illustrate these concepts together in instance 30-1B, where we decrease photo costs by

percentages while increasing reachability. We use the same increasing and decreasing

structure and obtain the results summarized in Table 9.

Table 9. 30-1B Photo Cost and Reachability Impact on Solution Quality

%
Reduction
in Photo

Costs

Increase in
Reachability Gap

%
Reduction
in Photo

Costs

Increase in
Reachability Gap

%
Reduction
in Photo

Costs

Increase in
Reachability Gap

0%

0 0,28

40%

0 0,34

80%

0 0,41
1 0,13 1 0,22 1 0,06
2 0,14 2 0,18 2 0,09
4 0,06 4 0,23 4 0,24
6 0,08 6 0,24 6 0,30
8 0,13 8 0,11 8 0,18

20%

0 0,35

60%

0 0,47
1 0,31 1 0,13
2 0,26 2 0,10
4 0,28 4 0,18
6 0,27 6 0,30
8 0,14 8 0,12

37

Reader should note that even though we judge based only on one instance, more

instances should be investigated for better comparison. The results show that it is not

necessarily true that we obtain better results as we provide more reachability and lower

photo costs, rather, it causes more time to evaluate each alternative and thus increases

overall solution time. In addition, although CPLEX solves each problem to optimality

and obtains better solutions as we give better input, our algorithm is not able to find

better solutions in some cases, as seen in 60% and 80% decreased photo costs, in

particular the cases in which reachability is increased by 4 and 6 nodes. We already

stated that these increases in z gaps are due to preliminary SCP that our algorithm

solves. Even if the z gaps increase by some percent, however, the overall performance

of the algorithm reaches 6%, 14%, 11%, 10% and 6% in respective photo cost

reductions. Solution changes under both sensitivity analyses are shown in Figure 5.

Figure 5. 30-1B Z Gaps under Reachability and Photo Cost Changes

In all cases, the largest gap does not exceed 0.47 that we obtained in initial

solution. As we increase number of 1s in reachability matrix, average gaps first decrease

significantly, then increase and then decrease again. In different numbers of 1s, z gaps

increase when we decrease photo costs by 20%. They then increase or decrease

depending on the convex hull we create by changing input values.

0
0,1
0,2
0,3
0,4
0,5

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

0 1 2 4 6 8
Increase in Number of 1s and %Reduction in Photo Costs

Z Value GapsGap

38

3.4.2 Solution Times

Reduction in solution times is the other objective in constructing our heuristic

algorithm. During the solution process it is seen that when there are neighborhoods in

reachability part of the problem, even 20 nodes show high level of complexity, making

it necessary to solve the problem by heuristics. This is also observed in Table 9, where

both decreasing photo costs and increasing reachability causes more time to solve the

problem to optimality. Our heuristic algorithm, on the other hand, is not affected in

terms of solution times and it provides solutions in less than 1 second. As numbers of 1s

in reachability matrices are increased, a photo node increasingly begins to cover more

nodes, and as the costs of photographing is reduced, photo nodes begin to become of

alternatives to take photos. Both changes lead to a more complex structure since they

enlarge the feasible region and number of extreme points. This in turn causes solution

times to increase exponentially.

CPLEX is able to solve instances up to 17 nodes in almost no time, after which it

increasingly spends time finding the optimal solution especially in neighborhood

instances. Instances 20-4, 20-5 and 20-6 cannot be solved by CPLEX in reasonable

times. Instance 20-7A and 20-7B takes around 5 hours while their no neighborhood

versions take less than 10 seconds to solve. Next we give our algorithm’s solution times

for 17 and 20 nodes in Figure 6.

Figure 6. Heuristic Solution Times for 17-20 Nodes

The largest time is around 1.5 seconds for 20-5A, except which all instances are

solved between 0.4 and 1.2 seconds. Our algorithm significantly reduces the amount of

time to reach good enough solution for the problem. For 30 nodes and more, solution

times differ between nanoseconds and 3 seconds up to 400 nodes.

Instances

Time

39

CHAPTER IV

CONCLUDING REMARKS

Monitoring and photographing large areas for security, safety or other specific

reasons requires careful and detailed planning since decision makers always have

limited time and other resources. In a given amount of time, an area within a building, a

zone within a region or even a region itself should be monitored to take precautions

against different emergencies. To prevent fires in a bank or school, to set up cameras or

alarms for burglary, to conduct periodical controls in forests for fire prevention or to

monitor borders for intruders and terror attacks are among different motivations of field

scanning.

For many years, Traveling Salesman Problem is approached in different ways by

different researchers, and tremendous numbers of studies are created to effectively and

efficiently solve the problem. In this study we aimed to provide optimal as well as

heuristic solutions for a modified TSP problem, where agents do not have to go to each

node physically, rather, they are able to reach some nodes from the current node visited,

and this saves time and money. We provided a mathematical model for this problem,

showed that it is a combination of TSP and SCP and is NP-Hard, provided a greedy

heuristic algorithm to solve the problem in acceptable times and compared the results.

We have seen that the problem structure is dependent on reachability and photo costs,

and we tried to investigate these structures in various numbers of nodes and input

schemes.

All in all, our algorithm is able to provide good solutions even within 1% of the

optimal solution. We have observed that solution quality may change depending on the

reachability probability function, and since our heuristic algorithm initializes by solving

a preliminary SCP, it approaches to solutions with multiple photo taking nodes, thus

failing to provide good enough solutions for the associated problem instance.

Nevertheless, the algorithm is capable of providing solutions for each instance ranging

from 6 to 400 nodes, and it take only nanoseconds to obtain a good solution. The

algorithm provides solutions within %5-10 of the optimal solution on the average and

performs flawlessly on digital framework.

There are several pitfalls of the algorithm, among which preliminary SCP’s

photo costs worsen the solution. Since a physically visited node should incur a cost

40

based on distance, and since we cannot possibly know the physically visited node’s

distance cost before it is visited, we simply made the assumption that any physically

visited node incurs the cost of its distance from the center node. This assumption leaves

the algorithm’s performance for probabilistically changing levels due to random number

generation in distances. If the center node is close to physical visit node, then there is

less cost incurred to objective function value, and if there is a large distance between the

visit node and the center node, the algorithm is not able to measure it correctly to select

it. Suppose that in a good enough solution that far distanced node incurs a little cost

because its neighborhood nodes are very close. However, since the SCP of the

algorithm cannot measure it directly, it may automatically eliminate that node and may

start with a worse solution to start searching. So in future studies it should be the

objective of us to handle the SCP part of the algorithm so that photographing as well as

physical visits are given the correct costs and the algorithm does not miss any solution

in the beginning.

Another point of improvement can be made in the main loop of the algorithm

where it removes any photo nodes and resolves the problem to look for better solutions.

We consider the photo nodes only the Base Node Set, however, in any sub-set created

by the removal of photo nodes, there can be other photo nodes not initially considered,

and removal/addition of them may lead to better solutions. So our algorithm may be

improved to take into account the multiple level photo node improvements instead

basing on only the initial set.

41

APPENDIX A. CPLEX Solutions for Other Nodes

Instance zopt xopt, yopt(shown by *) t
6-1A 2419,645 0-3-1-4-6-2-5-0 00:01,410
6-1B 2419,645 0-3-1-4-6-2-5-0 00:01,260
6-1C 2419,645 0-3-1-4-6-2-5-0 00:01,160
6-4A 2759,711 0-2-6*-3-1-0 00:01,090
6-4B 2811,973 0-1-3-4-6-5-2-0 00:00,960
6-5A 2458,802 0*-3-6-5-4-1-0 00:00,910
6-5B 2577,136 0-2-1-4-5-6-3-0 00:01,030
6-6A 1771,107 0-2-1-4-3-5-6-0 00:01,120
6-6B 1771,107 0-2-1-4-3-5-6-0 00:00,960
6-7A 2796,662 0-4-5*-3-2-1-0 00:01,140
6-7B 2820,302 0-1-2-3-5-6-4-0 00:00,890
6-8A 2353,23 0-2-5-6-4-3-1-0 00:01,110
6-8B 2353,23 0-2-5-6-4-3-1-0 00:01,110
7-1A 2275,806 0-5-6-7-2-1-3-4-2 00:01,140
7-1B 2275,806 0-5-6-7-2-1-3-4-1 00:00,170
7-1C 2275,806 0-5-6-7-2-1-3-4-0 00:01,140
7-4A 2597,465 0-2-3-6-4*-1-0 00:00,810
7-4B 2636,868 0-2-3-4-6-7-5-1-0 00:01,910
7-5A 2624,015 0-1-3-5-6-7-4-2-0 00:00,970
7-5B 2624,015 0-1-3-5-6-7-4-2-0 00:00,940
7-6A 2148,844 0-1-4*-6-5-7-0 00:00,880
7-6B 2195,763 0-1-4-7-6-5-3-2-0 00:00,910
7-7A 2329,696 0-5-7-6-4-2*-0 00:00,940
7-7B 2335,472 0-1-5-7-6-4-3-2-0 00:00,960
7-8A 2713,544 0-1-3-4-7-6-5-2-0 00:00,890
7-8B 2713,544 0-1-3-4-7-6-5-2-0 00:00,960
9-1A 2444,961 0-6-8-9-5-2-1-3-7-4-0 00:00,910
9-1B 2444,961 0-6-8-9-5-2-1-3-7-4-0 00:00,890
9-1C 2444,961 0-6-8-9-5-2-1-3-7-4-0 00:00,870
9-4A 2593,477 0-4*-8-7*-0 00:01,050
9-4B 2775,331 0-9-5-6-8-7-3-4-1-2-0 00:01,110
9-5A 2590,607 0-2-5-7*-3-4-1-0 00:01,000
9-5B 2646,656 0-2-5-6-8-9-7-3-4-1-0 00:01,340
9-6A 2157,404 0-5-9*-3-4-2-1-0 00:01,670
9-6B 2186,642 0-5-6-8-9-7-3-4-2-1-0 00:01,050
9-7A 2623,664 0-3-5-7*-6-4-2-1-0 00:01,050
9-7B 2642,353 0-3-5-6-8-7-9-4-2-1-0 00:01,110
9-8A 2366,091 0*-4-3-5-9-8-7-6-0 00:01,020
9-8B 2397,169 0-1-2-6-7-8-9-5-3-4-0 00:01,080

15-1A 3129,343 0-2-7-1-5-13-12-6-9-15-4-14-8-3-10-11-0 00:15,580
15-1B 3129,343 0-2-7-1-5-13-12-6-9-15-4-14-8-3-10-11-0 00:06,970
15-1C 3129,343 0-2-7-1-5-13-12-6-9-15-4-14-8-3-10-11-0 00:06,000
15-4A 2664,904 0*-13*-0 00:04,440
15-4B 2793,892 0-3-14-15-11-9-12-10-13-6-7-8-2-4-5-1-0 00:06,620
15-5A 2720,731 0-3-2-9-6*-11*-12-7-10-4-1-0 01:34,620
15-5B 2870,999 0-3-2-9-5-6-8-11-13-15-14-12-7-10-4-1-0 00:45,110
15-6A 2134,442 0-2-1-9-7-8-6-12*-11-13*-5-4-3-0 02:35,650
15-6B 2249,49 0-2-1-9-7-8-6-12-14-11-10-15-13-5-4-3-0 05:38,960
15-7A 2954,179 0-4-7-11-13-15-10*-8-6-5-1*-0 01:42,450
15-7B 2998,71 0-4-7-9-11-13-15-14-10-12-8-6-5-2-3-1-0 00:32,780
15-8A 2747,465 0-1-2-3-8-12-11-15-14-13-10-7-9-5-6-4-0 00:57,470
15-8B 2747,465 0-1-2-3-8-12-11-15-14-13-10-7-9-5-6-4-0 00:17,430
20-1A 4036,494 0*-20-17-18-19-9-10-3-13-1-7-5-4-14-16-2-0 00:06,480
20-1B 4036,494 0*-20-17-18-19-9-10-3-13-1-7-5-4-14-16-2-0 00:05,040
20-1C 4071,03 0-15-6-2-8-16-14-4-5-7-1-13-3-10-9-19-18-17-20-11-12-0 00:03,050
20-7A 2332,931 0-3-4-5-6-7-12-11-9-20*-16-13-15-14-10-8-1-2-0 05:16:33,147
20-7B 2848,931 0-3-4-5-6-7-12-11-9-20*-16-13-15-14-10-8-1-2-0 04:57:00,040

42

Instance zopt xopt, yopt(shown by *) t

20-8A 2989,167 0-4-3*-7-11-13-15-16-14-17*-10-12-5-6-2-0 00:17:28,070
20-8B 3194,28 0-1-4-3-7-6-5-12-10-11-13-15-16-14-18-19-20-17-9-8-2-0 01:51:26,310
30-1A 3327,206 0*-18*-10*-27*-11-7*-19*-26-20-6-23-0 00:00:06,670
30-1B 4400,607 0-22-23-8-16-13-30-18-27*-12-15-4-19-26-29-20-9-1-6-0 00:00:08,610

30-1C 4982,442
0-6-1-9-20-29-26-4-19-28-15-12-2-25-10-27-5-21-3-14-24-8-30-13-16-8-

23-22-0 00:00:08,660
50-1A 4673,481 0-5*-18*-13-6-20-9-49-34-16*-45-32-1-24-11*14-46-22-19*-17-26*-12*-0 00:04:24,350
50-1B 5707,910 all nodes visited except 13 and 5's coverages 00:02:00,380
50-1C 5786,210 all nodes visited 00:03:12,430

43

BIBLIOGRAPHY

[1] R. Necula, M. Breaban, and M. Raschip, “Performance Evaluation of Ant Colony Systems
for the Single-Depot Multiple Traveling Salesman Problem,” Springer International
Publishing, 2015, pp. 257–268.

[2] G. B. Dantzig, D. R. Fulkerson, and S. Johnson, “Solution of a Large-Scale Traveling-
Salesman Problem,” J. Oper. Res. Soc. Am., vol. 2, no. 4, pp. 393–410, 1954.

[3] R. K. Ahuja, T. L. Magnanti, J. B. Orlin, and M. R. Reddy, “Chapter 1 Applications of
network optimization,” Handbooks Oper. Res. Manag. Sci., vol. 7, no. Network Models,
pp. 1–83, 1995.

[4] M. Jünger, G. Reinelt, and G. Rinaldi, “Chapter 4 The traveling salesman problem,”
Handbooks Oper. Res. Manag. Sci., vol. 7, no. Network Models, pp. 225–330, 1995.

[5] J. A. Ratches, “Review of current aided / automatic target acquisition technology for
military target acquisition tasks technology for military target acquisition tasks,” Opt.
Eng., no. Army Research Lab, 2016.

[6] R. M. Karp, “Reducibility among combinatorial problems,” 50 Years of Integer
Programming 1958-2008: From the Early Years to the State-of-the-Art. pp. 219–241,
2010.

[7] Y. Nobert, “Exact Algorithms for the Vehicle Routing Problem,” North-holl. Math. Stud.,
vol. 132, pp. 147–184, 1987.

[8] J. K. Lenstra and A. H. G. R. Kan, “Complexity of vehicle routing and scheduling
problems,” Networks, vol. 11, no. 2, pp. 221–227, 1981.

[9] C. H. Papadimitriou, “The Euclidean travelling salesman problem is NP-complete,”
Theor. Comput. Sci., vol. 4, no. 3, pp. 237–244, 1977.

[10] J. . Beasley and P. . Chu, “A genetic algorithm for the set covering problem,” Eur. J.
Oper. Res., vol. 94, no. 2, pp. 392–404, Oct. 1996.

[11] M. Solar, V. Parada, and R. Urrutia, “A parallel genetic algorithm to solve the set-
covering problem,” Comput. Oper. Res., vol. 29, no. 9, pp. 1221–1235, 2002.

[12] U. Aickelin, “An indirect genetic algorithm for set covering problems,” J. Oper. Res. Soc.,
vol. 53, no. 10, pp. 1118–1126, Oct. 2002.

[13] A. Caprara, P. Toth, and M. Fischetti, “Algorithms for the Set Covering Problem,” Ann.
Oper. Res., vol. 98, no. 1/4, pp. 353–371, 2000.

[14] A. Caprara, M. Fischetti, and P. Toth, “A Heuristic Method for the Set Covering
Problem,” Oper. Res., vol. 47, no. 5, pp. 730–743, Oct. 1999.

[15] D. Applegate, R. Bixby, V. Sek, and C. Atal, “Finding Cuts in the TSP (A preliminary
report),” 1995.

[16] M. Grötschel and L. Nemhauser, George, “George Dantzig’s contributions to integer
programming,” Discret. Optim., no. 5, pp. 168–173, 2008.

44

[17] S. J. G. Dantzig, R. Fulkerson, “SOLUTION OF A LARGE-SCALE TRAVELING-SALESMAN
PROBLEM,” J. Oper. Res. Soc. Am., vol. 2, no. 4, pp. 393–410, 1954.

[18] R. E. Gomory, “Outline of an algorithm for integer solutions to linear programs,” Bull.
Am. Math. Soc., no. 64, pp. 275–278, 1958.

[19] R. Bellman and Richard, “Dynamic Programming Treatment of the Travelling Salesman
Problem,” J. ACM, vol. 9, no. 1, pp. 61–63, Jan. 1962.

[20] D. Applegate, R. Bixby, V. Chvátal, and W. Cook, “TSP Cuts Which Do Not Conform to
the Template Paradigm.”

[21] D. Applegate, R. Bixby, C. Vasek, and W. Cook, “On the Solution of Traveling Salesman
Problems,” Doc. Math., vol. Extra Volu, pp. 645–656, 1998.

[22] E. Balas, S. Ceria, and G. Cornuéjols, “A lift-and-project cutting plane algorithm for
mixed 0–1 programs,” Math. Program., vol. 58, no. 1–3, pp. 295–324, Jan. 1993.

[23] G. Laporte, “The Traveling Salesman Problem: An overview of exact and approximate
algorithms,” Eur. J. Oper. Res., vol. 59, pp. 231–247, 1992.

[24] E. Balas and N. Christofides, “A restricted Lagrangean approach to the traveling
salesman problem,” Math. Program., vol. 21, no. 1, pp. 19–46, Dec. 1981.

[25] R. E. Tarjan, “Finding optimum branchings,” Networks, vol. 7, no. 1, pp. 25–35, 1977.

[26] K. Helbig Hansen and J. Krarup, “Improvements of the Held—Karp algorithm for the
symmetric traveling-salesman problem,” Math. Program., vol. 7, no. 1, pp. 87–96, Dec.
1974.

[27] T. H. C. Smith and G. L. Thompson, “A Lifo Implicit Enumeration Search Algorithm for
the Symmetric Traveling Salesman Problem Using Held and Karp’s 1-Tree Relaxation,”
Ann. Discret. Math., vol. 1, pp. 479–493, 1977.

[28] N. Christofides, “Worst-Case Analysis of a New Heuristic for the Travelling Salesman
Problem.” 1976.

[29] M. Gendreau, A. Hertz, and G. Laporte, “New Insertion and Postoptimization
Procedures for the Traveling Salesman Problem,” Oper. Res., vol. 40, no. 6, pp. 1086–
1094, Dec. 1992.

[30] E. de Klerk, D. V. Pasechnik, and R. Sotirov, “On Semidefinite Programming Relaxations
of the Traveling Salesman Problem,” SIAM J. Optim., vol. 19, no. 4, pp. 1559–1573, Jan.
2009.

[31] J. Van der Veen, “Solvable cases of the traveling salesman problem with various
objective functions,” 1992.

[32] E. Klerk and C. Dobre, “A comparison of lower bounds for the symmetric circulant
traveling salesman problem,” Discreete Appl. Math., vol. 159, pp. 1815–1826, 2011.

[33] R. Zamani and S. K. Lau, “Embedding learning capability in Lagrangean relaxation: An
application to the travelling salesman problem,” Eur. J. Oper. Res., vol. 201, no. 1, pp.
82–88, 2010.

[34] A. J. Orman and H. P. Williams, “A survey of different integer programming

45

formulations of the travelling salesman problem,” London, 2005.

[35] C. E. Miller, A. W. Tucker, and R. A. Zemlin, “Integer Programming Formulation of
Traveling Salesman Problems,” J. ACM, vol. 7, no. 4, pp. 326–329, Oct. 1960.

[36] G. Pataki, “Teaching Integer Programming Formulations Using the Traveling Salesman
Problem *,” vol. 45, no. 1, pp. 116–123.

[37] G. Pataki, “The bad and the good-and-ugly: formulations for the travelling salesman
problem,” 2000.

[38] M. Teresa Godinho, L. Gouveia, T. L. Magnanti, P. Pesneau, and J. Pires, “On the Unit
Demand Vehicle Routing Problem : Flow Based Inequalities implied by a Time -
dependent Formulation.”

[39] M. T. Godinho, L. Gouveia, T. L. Magnanti, P. Pesneau, and J. Pires, “On Time-
Dependent Models for Unit Demand Vehicle Routing Problems.”

[40] B. Gavish and S. C. Graves, “The travelling salesman problem and related problems,”
Cambridge, Working Paper OR-078-78, 1978.

[41] B. Gendron, T. G. Crainic, and A. Frangioni, “Multicommodity Capacitated Network
Design,” in Telecommunications Network Planning, Boston, MA: Springer US, 1999, pp.
1–19.

[42] T. Öncan, İ. K. Altınel, and G. Laporte, “A comparative analysis of several asymmetric
traveling salesman problem formulations,” Comput. Oper. Res., vol. 36, no. 3, pp. 637–
654, 2009.

[43] S. C. Sarin, H. D. Sherali, and A. Bhootra, “New tighter polynomial length formulations
for the asymmetric traveling salesman problem with and without precedence
constraints,” 2005.

[44] A. Langevin, F. Soumis, and J. Desrosiers, “Classification of travelling salesman problem
formulations,” Oper. Res. Lett., vol. 9, no. 2, pp. 127–132, Mar. 1990.

[45] A. Claus, “A New Formulation for the Travelling Salesman Problem,” SIAM J. Algebr.
Discret. Methods, vol. 5, no. 1, pp. 21–25, Mar. 1984.

[46] T. Ibaraki, “Integer programming formulation of combinatorial optimization problems,”
Discrete Math., vol. 16, no. 1, pp. 39–52, Sep. 1976.

[47] H. D. Sherali, S. C. Sarin, and P.-F. Tsai, “A class of lifted path and flow-based
formulations for the asymmetric traveling salesman problem with and without
precedence constraints,” Discret. Optim., vol. 3, no. 1, pp. 20–32, 2006.

[48] L. Gouveia and S. Voß, “A classification of formulations for the (time-dependent)
traveling salesman problem,” Eur. J. Oper. Res., vol. 83, no. 1, pp. 69–82, 1995.

[49] U. Pferschy and R. Staněk, “Generating subtour elimination constraints for the TSP from
pure integer solutions,” Cent. Eur. J. Oper. Res., pp. 1–30, 2016.

[50] M. Drexl, “A note on the separation of subtour elimination constraints in elementary
shortest path problems,” Eur. J. Oper. Res., vol. 229, no. 3, pp. 595–598, 2013.

[51] M. Grötschel and O. Holland, “Solution of large-scale symmetric travelling salesman

46

problems,” Mathematical Programming, vol. 51, no. 1–3. pp. 141–202, 1991.

[52] M. Hahsler and K. Hornik, “TSP – Infrastructure for the Traveling Salesperson Problem,”
J. Stat. Softw., vol. 1, no. 1, pp. 1–21, 2007.

[53] B. Angeniol, G. Croix Vaubois, and J. Y. Le Texier, “Self-Organizing Feature Maps and the
Travelling Salesman Problem,” Neural Networks, vol. 1, pp. 289–293, 1988.

[54] B. F. J. La Maire and V. M. Mladenov, “Comparison of neural networks for solving the
travelling salesman problem,” in 11th Symposium on Neural Network Applications in
Electrical Engineering, 2012, pp. 21–24.

[55] C.-K. Looi, “Neural network methods in combinatorial optimization,” Comput. Oper.
Res., vol. 19, no. 3, pp. 191–208, 1992.

[56] J. J. Hopfield and D. W. Tank, “Neural Computation of Decisions in Optimization
Problems,” Biol. Cybern., vol. 52, pp. 141–152, 1985.

[57] R. Durbin and D. Willshaw, “An analogue approach to the travelling salesman problem
using an elastic net method,” Nature, vol. 326, no. 6114, pp. 689–691, Apr. 1987.

[58] D. E. V. den Bout and T. K. Miller, “Graph partitioning using annealed neural networks,”
IEEE Transp. Neural Networks, no. 1, pp. 192–203, 1990.

[59] S. U. Hegde, J. L. Sweet, and W. B. Levy, “Determination of Parameters in a
Hopfield/Tank Computational Network,” IEEE Transp. Neural Networks, vol. 2, pp. 291–
298, 1988.

[60] J. Balicki, Z. Kitowski, and A. Stateczny, “Extended Hopfield models of neural networks
for combinatorial multiobjective optimization problems,” in 1998 IEEE International
Joint Conference on Neural Networks Proceedings. IEEE World Congress on
Computational Intelligence (Cat. No.98CH36227), vol. 2, pp. 1646–1651.

[61] B. W. Lee and B. J. Sheu, “Combinatorial optimization using competitive Hopfield neural
network,” Biol. Cybernet, no. 62, pp. 415–423, 1990.

[62] S. M. Abdel-Moetty, “Traveling Salesman Problem Using Neural Network Techniques,”
in Informatics and Systems (INFOS), 2010 The 7th International Conference, 2010.

[63] M. Dorigo and L. M. Gambardella, “Ant colonies for the travelling salesman problem,”
Biosystems, vol. 43, no. 2, pp. 73–81, 1997.

[64] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative learning approach
to the traveling salesman problem,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 53–66,
Apr. 1997.

[65] J.-Y. Potvin, “The Traveling Salesman Problem: A Neural Network Perspective.”

[66] H. Ghaziri and I. H. Osman, “A neural network algorithm for the traveling salesman
problem with backhauls,” Comput. Ind. Eng., vol. 44, no. 2, pp. 267–281, 2003.

[67] J.-C. Créput and A. Koukam, “A memetic neural network for the Euclidean traveling
salesman problem,” Neurocomputing, vol. 72, no. 4, pp. 1250–1264, 2009.

[68] M. . Saadatmand-Tarzjan, M. . Khademi, M.-R. . Akbarzadeh-T., and H. A. Moghaddam,
“A Novel Constructive-Optimizer Neural Network for the Traveling Salesman Problem,”

47

IEEE Trans. Syst. Man Cybern. Part B, vol. 37, no. 4, pp. 754–770, Aug. 2007.

[69] X.-S. Yang and Suash Deb, “Cuckoo Search via Lévy flights,” in 2009 World Congress on
Nature & Biologically Inspired Computing (NaBIC), 2009, pp. 210–214.

[70] A. Ouaarab, B. Ahiod, and X.-S. Yang, “Discrete cuckoo search algorithm for the
travelling salesman problem,” Neural Comput. Appl., vol. 24, no. 7–8, pp. 1659–1669,
Jun. 2014.

[71] D. Karaboga and B. Gorkemli, “A combinatorial Artificial Bee Colony algorithm for
traveling salesman problem,” in 2011 International Symposium on Innovations in
Intelligent Systems and Applications, 2011, pp. 50–53.

[72] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in MHS’95.
Proceedings of the Sixth International Symposium on Micro Machine and Human
Science, pp. 39–43.

[73] J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle swarm
algorithm,” in 1997 IEEE International Conference on Systems, Man, and Cybernetics.
Computational Cybernetics and Simulation, vol. 5, pp. 4104–4108.

[74] T. Zeugmann et al., “Particle Swarm Optimization,” in Encyclopedia of Machine
Learning, Boston, MA: Springer US, 2011, pp. 760–766.

[75] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in 1998 IEEE
International Conference on Evolutionary Computation Proceedings. IEEE World
Congress on Computational Intelligence (Cat. No.98TH8360), pp. 69–73.

[76] M. F. F. Ab Rashid, N. M. Zuki, and A. N. M. Rose, “Optimization of Traveling Salesman
Problem with Precedence Constraint using Particle Swarm Optimization,” J. Sci. Res.
Dev., vol. 2, no. 13, pp. 212–216, 2015.

[77] X. H. Shi, Y. Zhou, L. M. Wang, Q. X. Wang, and Y. C. Liang, “A discrete particle swarm
optimization algortihm for travelling saelsman problem,” in Computational Methods,
Springer International Publishing, 2006, pp. 1063–1068.

[78] X. H. Shi, Y. C. Liang, H. P. Lee, C. Lu, and Q. X. Wang, “Particle swarm optimization-
based algorithms for TSP and generalized TSP,” 2007.

[79] S. M. Chen and C. Y. Chien, “Solving the traveling salesman problem based on the
genetic simulated annealing ant colony system with particle swarm optimization
techniques,” Expert Syst. Appl., vol. 38, pp. 14439–14450, 2011.

[80] S. Somhom, A. Modares, and T. Enkawa, “A self-organising model for the travelling
salesman problem,” J. Oper. Res. Soc., vol. 48, no. 9, pp. 919–928, Sep. 1997.

[81] T. A. S. Masutti and L. N. de Castro, “A self-organizing neural network using ideas from
the immune system to solve the traveling salesman problem,” Inf. Sci. (Ny)., vol. 179,
no. 10, pp. 1454–1468, 2009.

[82] X. Geng, Z. Chen, W. Yang, D. Shi, and K. Zhao, “Solving the traveling salesman problem
based on an adaptive simulated annealing algorithm with greedy search,” Appl. Soft
Comput., vol. 11, no. 4, pp. 3680–3689, 2011.

[83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,”

48

Sci. New Ser., vol. 220, no. 4598, pp. 671–680, 1983.

[84] K. Meer, “Simulated Annealing versus Metropolis for a TSP instance,” Inf. Process. Lett.,
vol. 104, no. 6, pp. 216–219, Dec. 2007.

[85] I. Wegener, “Simulated Annealing Beats Metropolis in Combinatorial Optimization,”
Springer, Berlin, Heidelberg, 2005, pp. 589–601.

[86] C.-B. Cheng and C.-P. Mao, “A modified ant colony system for solving the travelling
salesman problem with time windows,” Math. Comput. Model., vol. 46, no. 9, pp.
1225–1235, 2007.

[87] M. L. Ibanez and C. Blum, “Beam-ACO for the travelling salesman problem with time
windows,” Comput. Oper. Res., vol. 37, no. 9, pp. 1570–1583, 2010.

[88] M. Mahi, Ö. K. Baykan, and H. Kodaz, “A new hybrid method based on Particle Swarm
Optimization, Ant Colony Optimization and 3-Opt algorithms for Traveling Salesman
Problem,” Appl. Soft Comput., vol. 30, pp. 484–490, 2015.

[89] Z. Wang, J. Guo, M. Zheng, and Y. Wang, “Uncertain multiobjective traveling salesman
problem,” Eur. J. Oper. Res., vol. 241, no. 2, pp. 478–489, 2015.

[90] L.-P. Wong, M. Y. H. Low, and C. S. Chong, “A Bee Colony Optimization Algorithm for
Traveling Salesman Problem,” in 2008 Second Asia International Conference on
Modelling & Simulation (AMS), 2008, pp. 818–823.

[91] Y. Marinakis and M. Marinaki, “A Hybrid Multi-Swarm Particle Swarm Optimization
algorithm for the Probabilistic Traveling Salesman Problem,” Comput. Oper. Res., vol.
37, no. 3, pp. 432–442, 2010.

[92] Wei Pang, Kang-ping Wang, Chun-guang Zhou, and Long-jiang Dong, “Fuzzy discrete
particle swarm optimization for solving traveling salesman problem,” in The Fourth
International Conference onComputer and Information Technology, 2004. CIT ’04., pp.
796–800.

[93] M. Clerc, “Discrete Particle Swarm Optimization, illustrated by the Traveling Salesman
Problem,” Springer Berlin Heidelberg, 2004, pp. 219–239.

[94] Kang-Ping Wang, Lan Huang, Chun-Guang Zhou, and Wei Pang, “Particle swarm
optimization for traveling salesman problem,” in Proceedings of the 2003 International
Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693), pp. 1583–
1585.

[95] J. B. Odili, M. N. M. Kahar, S. Anwar, and M. A. K. Azrag, “A Comparative Study of
African Buffalo Optimization and Randomized Insertion Algorithm for Asymmetric
Travelling Salesman’s Problem,” in 4th International Conference on Software
Engineering and Computer Systems, 2015, pp. 90–95.

[96] J. B. Odili, M. N. M. Kahar, and S. Anwar, “African Buffalo Optimization: A Swarm-
Intelligence Technique,” Procedia Comput. Sci., vol. 76, pp. 443–448, 2015.

[97] J. B. Odili and M. N. Mohmad Kahar, “Solving the Traveling Salesman’s Problem Using
the African Buffalo Optimization,” Comput. Intell. Neurosci., vol. 2016, pp. 1–12, 2016.

[98] J. B. Odili, M. N. Kahar, and A. Noraziah, “Solving Traveling Salesman’s Problem Using

49

African Buffalo Optimization, Honey Bee Mating Optimization & Lin-Kerninghan
Algorithms,” World Appl. Sci. J., vol. 34, no. 7, pp. 911–916, 2016.

[99] N. M. Razali and J. Geraghty, “Genetic Algorithm Performance with Different Selection
Strategies in Solving TSP,” in The 2011 International Conference of Computational
Intelligence and Intelligent Systems, 2011.

[100] H. Braun, “On solving travelling salesman problems by genetic algorithms,” in Parallel
Problem Solving from Nature, Berlin/Heidelberg: Springer-Verlag, 1990, pp. 129–133.

[101] N. M. Noraini, “An Efficient Genetic Algorithm for Large Scale Vehicle Routing Problem
Subject to Precedence Constraints,” Procedia - Soc. Behav. Sci., vol. 195, pp. 1922–
1931, 2015.

[102] D. B. Fogel, “An evolutionary approach to the traveling salesman problem,” Biol.
Cybern., vol. 60, no. 2, pp. 139–144, Dec. 1988.

[103] J. Yang, C. Wu, H. P. Lee, and Y. Liang, “Solving traveling salesman problems using
generalized chromosome genetic algorithm,” Prog. Nat. Sci., vol. 18, no. 7, pp. 887–892,
2008.

[104] R. Baraglia, J. I. Hidalgo, and R. Perego, “A hybrid heuristic for the traveling salesman
problem,” IEEE Trans. Evol. Comput., vol. 5, no. 6, pp. 613–622, 2001.

[105] N. L. J. Ulder, E. H. L. Aarts, H.-J. Bandelt, P. J. M. van Laarhoven, and E. Pesch, “Genetic
local search algorithms for the traveling salesman problem,” Springer Berlin Heidelberg,
1991, pp. 109–116.

[106] B. Bontoux, C. Artigues, and D. Feillet, “A Memetic Algorithm with a large neighborhood
crossover operator for the Generalized Traveling Salesman Problem,” Comput. Oper.
Res., vol. 37, no. 11, pp. 1844–1852, 2010.

[107] L. V. Snyder and M. S. Daskin, “A random-key genetic algorithm for the generalized
traveling salesman problem,” Eur. J. Oper. Res., vol. 174, no. 1, pp. 38–53, 2006.

[108] Licheng Jiao and Lei Wang, “A novel genetic algorithm based on immunity,” IEEE Trans.
Syst. Man, Cybern. - Part A Syst. Humans, vol. 30, no. 5, pp. 552–561, 2000.

[109] J.-Y. Potvin, “Genetic algorithms for the traveling salesman problem,” Ann. Oper. Res.,
vol. 63, no. 3, pp. 337–370, Jun. 1996.

[110] A. M. S. Zalzala and P. J. Fleming, Genetic algorithms in engineering systems. London:
The Institution of Electrical Engineers, 1997.

[111] G. Winter, M. Periaux, P. Galan, and P. Cuesta, Genetic algorithms in engineering and
computer science. New York: Wiley Subscription Services, Inc., A Wiley Company, 1995.

[112] M. Kaufmann, Foundations of genetic algorithms. San Mateo, 1991.

[113] K. F. Man, K. S. Tang, and B. W. S. Wah, Genetic algorithms: concepts and designs. New
York: Springer, 1999.

[114] J. T. Alander, “Proceedings of the First Nordic Workshop on Genetic Algorithms and
their Applications (1NWGA),” 1995.

[115] W. Banzhaf et al., “Proceedings of the genetic and evolutionary computation

50

conference,” 1999.

[116] J. J. Grefenstette, Naval Research Laboratory (U.S.), and Texas Instruments
Incorporated., Proceedings of the First International Conference on Genetic Algorithms
and Their Applications : July 24-26, 1985 at the Carnegie-Mellon University, Pittsburg,
PA. .

[117] J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, Eds., “Genetic programming:
proceedings of the first annual conference,” 1996.

[118] B. Freisleben and P. Merz, “A genetic local search algorithm for solving symmetric and
asymmetric traveling salesman problems,” in Proceedings of IEEE International
Conference on Evolutionary Computation, pp. 616–621.

[119] P. Larrañaga, C. M. H. Kuijpers, R. H. Murga, I. Inza, and S. Dizdarevic, “Genetic
Algorithms for the Travelling Salesman Problem: A Review of Representations and
Operators,” Artif. Intell. Rev., vol. 13, no. 2, pp. 129–170, 1999.

[120] Y. Deng, Y. Liu, and D. Zhou, “An Improved Genetic Algorithm with Initial Population
Strategy for Symmetric TSP,” Math. Probl. Eng., vol. 2015, 2015.

[121] C. Moon, J. Kim, G. Choi, and Y. Seo, “An efficient genetic algorithm for the traveling
salesman problem with precedence constraints,” Eur. J. Oper. Res., vol. 140, no. 3, pp.
606–617, 2002.

[122] M. Albayrak and N. Allahverdi, “Development a new mutation operator to solve the
Traveling Salesman Problem by aid of Genetic Algorithms,” Expert Syst. Appl., vol. 38,
no. 3, pp. 1313–1320, 2011.

[123] F. Glover, “Artificial intelligence, heuristic frameworks and tabu search,” Manag. Decis.
Econ., vol. 11, no. 5, pp. 365–375, 1990.

[124] J. M. Basart and L. Huguet, “An approximation algorithm for the TSP,” Inf. Process. Lett.,
vol. 31, no. 2, pp. 77–81, Apr. 1989.

[125] E. Erkut and J. Zhang, “The maximum collection problem with time-dependent
rewards,” Nav. Res. Logist., vol. 43, no. 5, pp. 749–763, Aug. 1996.

[126] E. Balas, “The prize collecting traveling salesman problem,” Networks, vol. 19, no. 6, pp.
621–636, 1989.

[127] A. Ekici and A. Retharekar, “Multiple agents maximum collection problem with time
dependent rewards,” Comput. Ind. Eng., vol. 64, no. 4, pp. 1009–1018, 2013.

[128] S. Kataoka and S. Morito, “An Algorithm for Single Constraint Maximum Collection
Problem,” Oper. Res. Soc. Japan, vol. 31, no. 4, pp. 515–530, 1988.

[129] A. M. Chwatal, G. R. Raidl, and nther R., “Solving the Minimum Label Spanning Tree
Problem by Mathematical Programming Techniques,” Adv. Oper. Res., vol. 2011, pp. 1–
38, 2011.

[130] N. Fan and M. Golari, “Integer Programming Formulations for Minimum Spanning
Forests and Connected Components in Sparse Graphs,” Springer, Cham, 2014, pp. 613–
622.

51

VITA

SUMMARY OF PROFESSIONAL EXPERIENCE

Researcher with 5 years of experience in TUBITAK, mainly working in R&D projects

in logistics and transportation as well as strategic management. Actively working in

data analysis, logistics, mathematical modelling applications, network scheduling and

ORER planning. Strategic planning, project management and process management are

the secondary fields. Working also as instructor conducting strategical management

trainings, project management trainings and PMP trainings. Took part in leadership

programs to host and train managers from other countries. Developed business

strategies with foreign managers from European countries, in particular EU-Horizon

projects. Designed German and English trainings from beginner to advance level, and

gave courses in mathematics, statistics, data management and optimization methods.

Giving special trainings such as operations research, simulation and statistics.

Currently working as a strategy developer and data analyzer as well as reporter in

DOKAP’s (Black Sea Regional Development Authority) project named “Development

of Entrepreneurship and Innovation Ecosystem of SMEs” and working as process

consultor in “Integrated Management System Project” of PTT (Post and Telegraph

Organization).

CONFERENCES, NOTICES & PUBLICATIONS

 M.ÇAL, İ. ÖNDEN, F.ELDEMİR, M. SAMASTI “Istanbul Traffic Problem: Expert

Opinions”, ISMA 13th Strategic Management Conference, 2017

 F.ELDEMİR, M.ÇAL and A.ÜNAL, ”Istanbul Metrobus System Demand

Forecasting Models” TRANSİST 2013 Notice Booklet, pp.311–315, 201

 M. ÇAL, A. ÜNAL, F. ELDEMİR, “The Optimization Of Drivers In Bus Rapid

Transit System: A Case For Istanbul Metrobus System, 2015

 M.ÇAL, “General Driver Assignment Model in a Metrobus System”, 2014

 M.ÇAL, ITU Quality in Healthcare Conferences: Ventilator Associated Pneumonia

and VAP Bundle, Industrial Applications, 2014

 Umraniye Municipality Wunderkinds Leadership Seminars, 2014

