
USING EIGENVOICES AND NEAREST-NEIGHBOURS
IN HMM-BASED CROSS-LINGUAL SPEAKER

ADAPTATION WITH LIMITED DATA

A Dissertation

by

Seyyed Saeed Sarfjoo

Submitted to the
Graduate School of Sciences and Engineering
In Partial Fulfillment of the Requirements for

the Degree of

Doctor of Philosophy

in the
Department of Computer Science

Özyeğin University
August 2017

Copyright c© 2017 by Seyyed Saeed Sarfjoo

USING EIGENVOICES AND NEAREST-NEIGHBOURS
IN HMM-BASED CROSS-LINGUAL SPEAKER

ADAPTATION WITH LIMITED DATA

Approved by:

Assistant Professor Cenk Demiroğlu,
Advisor
Department of Electrical and
Electronics Engineering
Özyeğin University

Professor Murat Saraçlar
Department of Electrical and
Electronics Engineering
Boğaziçi University

Associate Professor Murat Şensoy
Department of Computer Science
Özyeğin University

Associate Professor Ümit Güz
Department of Electrical and
Electronics Engineering
Işik University

Associate Professor H. Fatih Uğurdağ
Department of Electrical and
Electronics Engineering
Özyeğin University

Date Approved: 15 August 2017

To my family, my friends, and the professors who helped me to become

who I am.

iii

ABSTRACT

Cross-lingual speaker adaptation for speech synthesis has many applications, such as

use in speech-to-speech translation systems. Here, we focus on cross-lingual adapta-

tion for statistical parametric speech synthesis systems using limited adaptation data.

We propose new methods for hidden Markov model (HMM)-based and deep neural

network (DNN)-based speech synthesis. To that end, for HMM-based speech synthe-

sis we propose two eigenvoice adaptation approaches exploiting a bilingual Turkish-

English speech database that we collected. In one approach, eigenvoice weights ex-

tracted using Turkish adaptation data and Turkish voice models are transformed into

the eigenvoice weights for the English voice models using linear regression. Weighting

the samples depending on the distance of reference speakers to target speakers dur-

ing linear regression was found to improve the performance. Moreover, importance

weighting the elements of the eigenvectors during regression further improved the

performance. The second approach proposed here is speaker-specific state-mapping,

which performed significantly better than the baseline state-mapping algorithm both

in objective and subjective tests. Performance of the proposed state mapping al-

gorithm was further improved when it was used with the intra-lingual eigenvoice

approach instead of the linear-regression based algorithms used in the baseline sys-

tem. In addition to the rapid adaptation algorithm, we propose a new unsupervised

adaptation method for DNN-based cross-lingual speech synthesis. In this method,

using a sequence of acoustic features from a target speaker, we estimate continuous

linguistic features for unlabeled data. Based on objective and subjective experiments,

adapted model outperformed the gender-dependent average voice models in terms of

quality and similarity.

iv

ÖZETÇE

Ses sentezi için çapraz-dilli konuşmacıya uyarlanma, sesten sese çeviri sistemleri gibi

birçok kullanım alanına sahiptir. Bu tezde, sınırlı uyarlama verilerini kullanan is-

tatistiksel konuşma sentezi sistemleri için çapraz-dilli uyarlamaya odaklanılmış ve

HMM-/DNN-tabanlı konuşma sentezinde yeni yöntemler önerilmiştir. Bu amaçla,

topladığımız iki dilli bir Türkçe-İngilizce konuşma veritabanını kullanarak HMM-

tabanlı konuşma sentezi için, iki özses uyarlama yaklaşımı önermekteyiz. Bir yaklaşım-

da, Türkçe uyarlama verileri ve Türkçe ses modeli kullanılarak çıkarılan özses ağırlıkla-

rı doğrusal ba ‘glanım kullanılarak İngilizce ses modelleri için özses ağırlıklarına dönüşt-

ürülmüştür. Doğrusal ba ‘glanım esnasında referans konuşmacıların hedef konuşmacıla-

ra olan mesafesine bağlı olarak örneklerin ağırlıklandırılmasının performansı arttırdığı

gözlemlenmiştir. Dahası, ba ‘glanım sırasında özvektörlerin elemanlarının önem ağırlık-

landırılması performansı daha da geliştirmiştir. Burada önerilen ikinci yaklaşım temel

sistem olan durum-haritalama algoritmasından hem nesnel hem de öznel testlerde

daha iyi performans gösteren konuşmacıya özel durum-haritalamasıdır. Temel sis-

temde kullanılan doğrusal bağlanım temelli algoritmalar yerine dil içi öz ses yaklaşımı

ile birlikte kullanıldığında, önerilen durum-haritası algoritmasının performansı daha

da artmıştır. Hızlı uyarlanma yöntemlerinin yanında, çapraz-dilli, DNN-tabanlı konuş-

ma sentezi için bir güdümsüz uyarlama yöntemi önerilmiştir. Bu yöntemde, hedef

konuşmacının akustik özellik dizisi kullanılarak, etiketlenmemiş veriler için sürekli dil

özellikleri tahmin edilmiştir. Hem nesnel hem de öznel deney sonuçlarında, uyarlanan

modelin cinsiyete bağlı ortalama ses modellerini kalite ve benzerlik açısından geçtiği

gözlenmiştir.

v

ACKNOWLEDGEMENTS

I would like to express my gratitude towards my supervisor, Professor Cenk Demiroğlu,

for advising me through the learning process of this Ph.D. thesis. His precious guid-

ance and intimate attitude during this period has made me a much more dedicated

researcher. I also would like to thank my thesis committee members Professor Fatih

Uğurdağ, Professor Ümit Güz, and specially Professor Murat Şensoy and Professor

Murat Saraçlar for spending their precious time. During the period of this thesis,

many friends have been helpful to color my life. My past and present friends in the

speech processing lab made this journey more fun. I have been blessed with a friendly

and cheerful group of fellow students in the graduate school. I would also like to thank

my parents Nasir and Lina, for their unconditional love and support. Special thanks

to staff of our university for giving us an opportunity to work with wonderful people

in a warm environment.

vi

TABLE OF CONTENTS

DEDICATION . iii

ABSTRACT . iv

ÖZETÇE . v

ACKNOWLEDGEMENTS . vi

LIST OF TABLES . x

LIST OF FIGURES . xi

I INTRODUCTION . 1

II SPEECH SYNTHESIS SYSTEMS 6

2.1 Concatenative Speech Synthesis . 7

2.2 HMM-Based Speech Synthesis . 9

2.2.1 Speech Production and Vocoder 10

2.2.2 Hidden Markov Model . 11

2.2.3 Speech Parameter Generation From HMM 14

2.2.4 Training Part of HMM-based Speech Synthesis 16

2.2.5 Synthesis Part of HMM-based Speech Synthesis 18

2.3 Hybrid Systems in Speech Synthesis 19

2.4 Speech Synthesis Using Deep Neural Network 21

2.4.1 Framework of DNN-based Speech Synthesis 22

2.4.2 Speech Synthesis with BLSTM-RNN 24

III INTRA-LINGUAL SPEAKER ADAPTATION METHODS . . . 30

3.1 MLLR and CMLLR . 30

3.2 SMAPLR and CSMAPLR . 32

3.3 Eigenvoice Adaptation . 35

3.4 VTLN and Count Smoothing . 39

3.5 DNN-Based Adaptation . 41

vii

3.5.1 Adaptation in Input Layer 42

3.5.2 Adaptation in Hidden Layers 44

3.5.3 Adaptation in Output Layer 45

IV CROSS-LINGUAL SPEAKER ADAPTATION METHODS . . . 48

4.1 Phoneme-Mapping Based Adaptation 48

4.2 State-Mapping Based Adaptation 49

4.2.1 Data Mapping Based State Mapping 51

4.2.2 Transform Mapping Based State Mapping 51

4.3 DNN-Based Adaptation . 56

V PROPOSED ALGORITHMS . 58

5.1 Cross-lingual Eigenvoice Adaptation 59

5.1.1 Algorithms Based on Eigenvector Mapping 60

5.2 Algorithms Based on Data-Mapping 66

5.2.1 Nearest-neighbour State-mapping 66

5.2.2 Eigenvoice Adaptation Using Data-mapping 67

5.3 Unsupervised Speaker Adaptation Using Continuous Labels 68

VI EXPERIMENTS AND RESULTS 70

6.1 Experimental settings . 70

6.1.1 HMM-based Systems Experiments 71

6.1.2 DNN-based Systems Experiment 72

6.2 Objective Measures . 75

6.2.1 Tuning the Regularization Parameter 76

6.2.2 Objective Performance of Algorithms Based on Data-mapping 78

6.2.3 Objective Performance of Least-squares Algorithms 80

6.2.4 Objective Performance of the rPLS Algorithm 82

6.2.5 Direct Comparison of the Best Performing Algorithms 83

6.2.6 Summary of Objective Performance 85

6.2.7 Objective Performance of the DNN-based Algorithm 87

viii

6.3 Subjective Evaluation . 90

6.3.1 Speaker Similarity Tests in HMM-based Methods 90

6.3.2 Speech Quality Tests in HMM-based Methods 92

6.3.3 Speaker Similarity and Quality Tests in DNN-based Method 94

VII CONCLUSION AND FUTURE WORK 97

REFERENCES . 99

VITA . 109

ix

LIST OF TABLES

1 Summary of experimental setup for HMM-based methods. 72

2 Age bands of the training-set of DNN-based method. 72

3 Description of the target speakers for DNN-based intra-lingual adap-
tation approach. 73

4 Description of the target speakers for DNN-based cross-lingual adap-
tation approach. 73

5 α values used for 2, 5, or 10 utterances of adaptation data, for English
and Turkish. 76

6 Subjective evaluation of DNN-based models. Variance of scores is
shown with 95% confidence intervals. 95

x

LIST OF FIGURES

1 Overview of unit selection system. 9

2 Schematic view of human speech production. 11

3 Block model of human speech production. 12

4 Overview of human speech production process. 12

5 Source-filter model for simulating human speech production. 13

6 Example of a three-state, left-to-right HMM. 13

7 Simple illustration of speech parameter generation from a sentence-
level HMM for /a/ and /i/ phonemes. For each state, the mean and
standard deviation, are shown with dashed and shading lines, respec-
tively. 17

8 Overview of the HMM-based speech synthesis system. 19

9 Framework of DNN-based speech synthesis. 23

10 Long short term memory structure. 25

11 Bidirectional RNN. 26

12 DBLSTM-RNN based TTS synthesis. 27

13 MLLR algorithm with tree structure. Based on minimum size of adap-
tation data in each leaf node, the threshold for making a regression
class will be defined. Each regression class contains all node start-
ing from the threshold line and separate transformation matrix will be
defined for each regression class. 32

14 SMAPLR algorithm using tree structure. For each node i the adapta-
tion data Yi is associated with prior density p(Wi). In the SMAPLR
structure, for each child node i of parent node j, the prior density
p(Wi) will be defined as p(Wj|Yj). 34

15 Overview of adaptation methods for HSS systems. 35

16 Three ways to do speaker adaptation for DNN-based speech synthesis.
LHUC=Learning Hidden Unit Contributions. 42

17 Schematic representation of discriminant codes. WDCC is a projection
matrix that reduces one-hot vectors to DCC vectors. 44

xi

18 The architecture of DNNs using speaker code in hidden layer(s). (the
usual model, model structure with speaker code in a single and all
hidden layers are shown in the left, middle, and right sub-figures, re-
spectively.) . 46

19 DNN architecture of speech synthesis based on multi-speaker. 47

20 Overview of the “data mapping based state-mapping”. 52

21 Overview of the transform mapping based state-mapping. 53

22 Covariances of weight vectors (ws) for spectral envelope (MGC) and
fundamental frequency (LF0) extracted from 88 speakers using 10 ut-
terances per speaker using Eq. 73 are shown. Covariances of the 2,
5, and 10 dimensional weight vectors are shown separately. For an R-
dimensional case, an R×R image is plot where intensity of each pixel
is determined by the magnitude of the corresponding element in the
covariance matrix. 63

23 Generation of the eigenspace and extraction of weight vectors for ref-
erence speakers. The procedure is done for both input and output
languages while performing cross-lingual adaptation using eigenvector
mapping. 65

24 Cross-lingual adaptation of a target speaker to an output language
using eigenvector mapping. 66

25 Overview of the algorithm for finding the nearest reference speaker to
the target speaker in input language. 67

26 Overview of the data-mapping algorithms. After state-mapping, pro-
posed eigenvoice adaptation or CSMAPLR/CMLLR adaptations can
be done. Those two options are shown between horizontal fork/join bars. 68

27 Overview of unsupervised adaptation based on continuous labels. . . 69

28 Performance of regularization in intra-lingual adaptation for MGC and
LF0 features in English and Turkish with different α values. Note that
for the LF0 features, a difference of 0.01 log(Hz) corresponds to 17.3
cents. 76

29 Eigenvalues of reference speakers in Turkish and English languages. . 77

30 2D visualization of distance between reference and SI models in English
and Turkish data. 78

xii

31 Objective evaluation (RMSE and MCD) of algorithms based on data-
mapping for MGC and LF0 features, showing 95% confidence inter-
vals. The groups of results for “2utt”, “5utt” and “10utt” corre-
spond to 2, 5 and 10 utterances of adaptation data. Note that for
the LF0 features, a difference of 0.1 log(Hz) corresponds to 173 cents.
Cross-BEA+CSMAPLR was done with 10 dimensional PCA. WR-
PLS+CSMAPLR was done with 2 dimensional PCA. 79

32 Objective evaluation (RMSE and MCD) of the LS, WLS, PLS, and
WPLS algorithms for MGC and LF0 features using 2, 5 and 10 dimen-
sional PCA with 95% confidence intervals. The plots for “2utt”, “5utt”
and “10utt” correspond to 2, 5 and 10 utterances of adaptation data.
Note that for the LF0 features, a difference of 0.01 log(Hz) corresponds
to 17.3 cents. 80

33 Objective performance (RMSE for LF0 and MCD for MGC features)
of the WLS, WPLS, rPLS, and WRPLS algorithms using 2, 5 or 10
dimensional PCA; 95% confidence intervals are shown. Note that for
the LF0 features, a difference of 0.01 log(Hz) corresponds to 17.3 cents. 83

34 Objective evaluation (RMSE of LF0 and MCD of MGC features) of the
best performing algorithms WRPLS and Cross-BEA. NN-based state-
mapping is shown for LF0 only. 95% confidence intervals are shown.
Intra-lingual adaptation performance is included as an upper-bound.
Note that for the LF0 features, a difference of 0.01 log(Hz) corresponds
to 17.3 cents. 84

35 Comparison between mean of linguistic features in train and cross-
lingual adaptation sets. 87

36 Comparison between variance of linguistic features in train and cross-
lingual adaptation sets. 88

37 Objective evaluation (RMSE and MCD) of SI, intra- and cross-lingual
adapted DNN-Based models with 95% confidence intervals. Descrip-
tion of the target speakers for DNN-based intra- and cross-lingual adap-
tation approaches are shown in Table 3 and 4, respectively. 89

38 Listeners’ preferences for the speaker similarity of synthetic speech in
which LF0 was generated using different adaptation algorithms. 95%
confidence intervals are shown. 2, 5, or 10 utterances were used for
adaptation. 92

39 Listeners’ preferences for the speaker similarity of synthetic speech in
which MGC features were generated using different adaptation algo-
rithms. 95% confidence intervals are shown. 2, 5, or 10 utterances were
used for adaptation. 93

xiii

40 Box plot of MUSHRA result for quality evaluation of the best perform-
ing algorithms. The bottom and top of each box are the first and third
quartiles, respectively. Ends of the whiskers represent 1.5IQR (InterQuartile Range)
distances from the first and third quartiles. Outliers are shown with
”+” character. Median and mean of each box are shown with solid
and dashed lines, respectively. 94

xiv

CHAPTER I

INTRODUCTION

Text-to-Speech (TTS), or speech synthesis, refers to converting written text, into

spoken language signal, namely, speech. Nowadays, two prominent TTS approaches

are concatenative speech synthesis (CSS) and statistical parametric speech synthesis

(SPSS). In CSS, speech is segmented into smaller units and these units are stored in a

database. During synthesis, the units that best match the input text are selected and

an utterance is synthesized by concatenating the selected units [1]. Concatenative

speech synthesis systems can create high quality speech but requires a huge speech

database during the synthesis time. Statistical parametric speech synthesis (SPSS)

has proven to be a promising TTS approach with some advantages compared to the

concatenative approach [2]. An important advantage of the SPSS approach is the abil-

ity to adapt to a target speaker with limited adaptation data [3]. Compared to CSS

systems, SPSS are able to synthesize smoothly-varying speech but with some degra-

dation in quality. SPSS systems also have smaller footprint and use relatively less

resources. Decision tree-clustered context-dependent hidden Markov models (HMMs)

are typically used in conventional approaches of statistical parametric speech synthesis

to represent probability densities of speech parameters given text [4]. This approach

is effective but has some limitations, e.g., decision trees are not efficient for modeling

the complex context dependencies. An alternative scheme for modeling these depen-

dencies is using deep neural networks (DNNs) [5]. The relationship between input

texts and their acoustic realizations is modeled by a DNN. The use of the DNN can

address some limitations of the conventional approach. To capture the correlation or

1

co-occurrence information between any two instants in a speech utterance for para-

metric speech synthesis, Recurrent Neural Networks (RNNs) with Bidirectional Long

Short Term Memory (BLSTM) cells are proposed in [6].

Cross-lingual speaker adaptation (CLSA) for statistical parametric speech syn-

thesis is a method for adapting a text to speech for a desired output language, given

adaptation data (i.e., speech) from the target speaker in a different input language.

Applications of CLSA include speech-to-speech translation [7, 8].

In a commonly used approach [9–11], a speaker-independent acoustic model (an

“Average Voice Model” or AVM) for each of the two languages is required. A mapping

between pairs of corresponding states in the two models is constructed, on the basis

of the states’ acoustic similarity. Then, either the adaptation data itself, or speaker

transformation functions, can be mapped from the input language acoustic model to

the output language acoustic model.

Mismatch between the two AVMs degrades the output speech quality when map-

ping transforms [12, 13] since the speaker-specific transformations for states in the

input language acoustic model may not actually represent the corresponding state

in the output language acoustic model well. To alleviate that problem, a transform

mapping using shared decision tree context clustering is proposed in [14] where not

only acoustic-similarity but also contextual similarity of states is taken into account

during mapping.

DNN-based methods have also been used for training multilingual acoustic mod-

els [15–17]. Adaptation in DNN can be done in input, hidden, and output layers. Esti-

mating speaker codes using i-vector [18] or discriminant condition codes (DCC) [19,20]

are methods of speaker adaptation using modification in input layer. Learning hidden

unit contribution (LHUC) [21] is an example of speaker adaptation using modification

in hidden layers. Feature space transformation [22] and multi-speaker modeling [23]

do adaptation using modification in output layer.

2

In this dissertation, we focused on cross-lingual adaptation when only a few utter-

ances are available from a target speaker. In our recent paper [24], to achieve better

speaker similarity than existing state-mapping based algorithms under limited data

conditions, we proposed two methods. In the first method, eigenvoices were used for

rapid adaptation. Eigenvoice weights computed for the input language are linearly

transformed into output language weights. The transformation matrix is learned us-

ing a bilingual training database which contains English and Turkish speech data

from the same speakers.

In the second method, we proposed speaker-specific state-mapping, for which a

bilingual database was used. After generating speaker-adapted models for both input

and output languages, a speaker-specific state-map is constructed for each speaker

in the pool of bilingual speakers. Then, for a previously-unseen target speaker, a

nearest-neighbour is found in the pool and the state map of that nearest-neighbour

is used for adaptation. Performance for the excitation parameters was found to be

significantly better with the proposed method than the baseline generic state-mapping

algorithm, in objective and subjective tests.

In our proposed system, during eigenvector transformation, to avoid overfitting

and exploit correlations within eigenvector elements, a partial least squares (PLS)

approach is used. To further boost the performance, elements of eigenvectors are also

weighted using recursive PLS (rPLS). Moreover, in addition to weighting the eigen-

vectors in a least-squares linear regression approach, as done in [24], eigenvectors

are weighted in the proposed PLS and rPLS frameworks leading to weighted-PLS

and weighted-rPLS algorithms. The proposed state-mapping algorithm is used for

mapping the data in the input language to models in the output language and per-

forming cross-lingual eigenvoice adaptation which enabled significant improvement in

the spectral envelope features.

As last novelty, we introduce a new method of unsupervised speaker adaptation

3

using continuous labels. In this method, using BLSTM-RNN model, we estimate the

continuous labels (c-lab) for unlabeled adaptation data of target speaker. We used

DCC structure for estimating the speaker codes and speaker codes are combined with

gender and age codes in input layer. For eliminating the mismatch between binary

and continuous labels, AVM model is trained with c-labs. Using another BLSTM-

RNN model, we estimated the continuous labels (c-lab) from the binary labels (b-

lab). In synthesis time, b-lab is transformed to c-lab before applying to the adapted

model. Performance of the proposed method is shown with objective and subjective

experiments.

Summary of the research contributions of this dissertation is shown below:

• For spectral envelope features, adaptation using a linear transformation of the

eigenvoice weights from input to output language outperformed the baseline

data-mapping based state-mapping algorithm.

• Estimation of the eigenvoice weights directly in output language using nearest-

neighbor bilingual speaker model from the pool of references, significantly im-

proved the performance of adaptation.

• For excitation features, speaker specific state-mapping outperformed the base-

line data-mapping based state-mapping algorithm.

• Using continuous labels in unsupervised DNN-based adaptation, performance

of the cross-lingual adaptation was similar to the performance of intra-lingual

adaptation.

Publications from research contribution of this dissertation are shown below:

• Mohammadi, Amir, Seyyed Saeed Sarfjoo, and Cenk Demiroglu. “Eigenvoice

speaker adaptation with minimal data for statistical speech synthesis systems

using a MAP approach and nearest-neighbors.” IEEE/ACM Transactions on

Audio, Speech, and Language Processing 22, no. 12 (2014): 2146-2157.

4

• Sarfjoo, Seyyed Saeed, and Cenk Demiroglu. “Cross-Lingual Speaker Adapta-

tion for Statistical Speech Synthesis Using Limited Data.” In INTERSPEECH,

pp. 317-321. 2016.

• Sarfjoo, Seyyed Saeed, Cenk Demiroglu, and Simon King. “Using eigenvoices

and nearest-neighbors in HMM-based cross-lingual speaker adaptation with lim-

ited data.” IEEE/ACM Transactions on Audio, Speech and Language Process-

ing (TASLP) 25, no. 4 (2017): 839-851.

This dissertation is organized as follows. Speech synthesis systems are described

in Chapter 2. Intra-lingual speaker adaptation methods are described in Chapter

3. Cross-lingual speaker adaptation methods are described in Chapter 4. Proposed

algorithms are discussed in Chapter 5. Experiment results are presented and discussed

in Chapter 6. Finally, conclusion is done in Chapter 7.

5

CHAPTER II

SPEECH SYNTHESIS SYSTEMS

Speech synthesis or text-to-speech (TTS) is a method for generating comprehensible,

high quality human-like artificial speech for an input text. Navigation systems in

vehicles, e-book readers, screen readers for the visually impaired, and communication

devices for the speech impaired are samples samples of applications for speech synthe-

sis systems. Recently applications like speech enabled dialog systems, forthcoming

robots, singing style speech synthesizers, and speech-to-speech translation systems

are introduced for speech synthesis field.

Speech synthesis system can be fractioned in two main components, natural lan-

guage processing (NLP) part and digital speech processing (DSP), part which are

sometimes called “frontend” and “backend”, respectively. In the natural language

processing part, given text will be converted to sequence of linguistic features consist-

ing of linguistic elements like grapheme, phoneme, etc. In the DSP part, raw speech

waveforms are generated from the estimated linguistic features. The methods for gen-

erating raw speech waveform from input text have progressed from knowledge-based

and rule-based methods to data-driven methods. There are number of techniques to

create synthetic speech which is known as speech synthesis systems. Two prominent

approaches are concatenative speech synthesis (CSS) and statistical parametric speech

synthesis (SPSS). Most common method in SPSS was HMM-based speech synthesis

(HSS). CSS and HSS come with their own Pros and Cons. Therefore, researchers

in speech synthesis also investigated to use of both models together in different hy-

brid schemes to obtain the advantages of both techniques. An alternative scheme

in SPSS for modeling probability densities of speech parameters given texts is using

6

deep neural network (DNN) [5].

2.1 Concatenative Speech Synthesis

Because of lack of resources and processing powers, in the early 1970s, very low dimen-

sional acoustic parameters like formants were used in speech data generation methods.

These low dimensional features usually used to model the vocal tract resonances [25].

In the late 1980s, second and first halves of two adjacent phonemes were used as

units for the speech waveform generation. This unit in small dataset of phoneme is

called “diphones”. With concatenating these units based on the sequence of input

phonemes using some digital signal processing methods, such as “linear predictive”

(LP) analysis, the synthetic speech waveform was generated [26]. With increasing

the dataset sizes and processing powers, in the 1990s, for selecting more suitable

speech units that cover both phonemes and other “linguistic contexts” like “lexical

stress”, “pitch accent”, and “part-of-speech” information, bigger datasets were col-

lected. These datasets facilitate the generating of human-like and intelligible speech

waveform with appropriate prosody. This approach is usually called “unit selection”

system and using this system, various commercial systems were develop high quality

synthetic speech [27, 28]. This system has been the dominant approach both in the

industry and literature for decades. Despite the growing popularity of the SPSS, it

is still a major figure in TTS technology. Unit selection based on a very intuitive,

yet very successful idea: concatenating the recorded speech units to create synthetic

speech. In a general framework and formulation of unit selection systems [27], two

costs are defined, target cost CT (tt, ut) and concatenation cost CC(ut+1, ut). Then the

total cost of unit sequence U = [u1, u2, ..., uT] for a given sentence S = [t1, t2, ..., tT]

is given by

C(U, S) = ΣT
t=1C

T (tt, ut) + ΣT−1
t=1 C

C(ut+1, ut), (1)

7

where CT (tt, ut) is used to measure how suitable the unit ut is for target tt. C
C(ut+1, ut)

measures how well the adjacent units ut+1 and ut can be joined. Then a search is

applied over all possible sequence to find the optimal sequence Û which minimizes

the total cost C(U, S).

Û = argmin
U

C(U, S) (2)

Feature vectors used in the target cost calculations generally consist of phonetic

and prosodic contexts. Spectral and acoustic features may be used in concatenation

cost calculations to be used with acoustic distance measures. Researchers still look

at what features to be used and how to weigh them in cost calculations. Optimal

size of the unit is not a resolved issue in unit selection. There is wide variety of unit

sizes used in the works. Frame-sized [29], HMM state-sized [30], half-phones [31],

diphones [32] and varying sized [33] are the some examples of different unit sizes that

are used in unit selection systems. A general observation is that the longer the unit

size, the bigger database is required to cover given domain. Overview of unit selection

system is shown in Figure 1.

Output speech in the unit selection method, is constrained to be like the original

wave files and just a little changing to the selected units of natural speech are usually

done. For covering various speaking styles and emotions with unit selection method,

we need to record bigger speech database which contains vast speaking styles and

emotions. Usually, preparing large speech dataset with rich speaking styles and emo-

tions is expensive and takes significant amount of time [34]. For answering the need

for controlling the generated speech in some aspects such as covering singing style,

including emotion, or adapting to some specific target speaker, another data-driven

method called “statistical parametric speech synthesis” was introduced in the late

1990s.

8

Figure 1: Overview of unit selection system.

2.2 HMM-Based Speech Synthesis

A model for synthetic speech generation in “statistical parametric speech synthesis”

usually uses a “hidden Markov model” (HMM) as its generative model. This method

of speech synthesis is usually called HMM-based speech synthesis. In this method, in

addition of phoneme sequences, HMMs can model several suprasegmental specifica-

tion just like the unit selection method. In the synthesis time, based on segmental and

suprasegmental linguistic features, acoustic speech parameters will be generated from

HMMs. These acoustic parameters are input features of a vocoder, which is a source-

filter model of speech production. In this model, the speech is generated by applying

a filter or vocal tract to source or excitation parameters. Several well-developed and

optimized machine learning algorithms, like “BaumWelch”, “Viterbi”, and clustering

algorithms were applied in “automatic speech recognition” (ASR) field [35]. Apply-

ing these algorithms to speech synthesis and using several open-source toolkits that

contain natural language processing, digital signal processing, and HMMs [36–39],

9

caused the popularity of HMM-based speech synthesis such that it is used globally

for both research and commercial purposes.

In recent decade, the quality of HMM-based synthetic speech has been improved,

e.g. [40,41] and many techniques for controlling speech variations is proposed, e.g. [42,

43]. In this section, first we will investigate the process of human speech production

and simulation model of this production. Details of Hidden Markov Model, parameter

generation from HMM model, train and synthesis parts will be discussed sequentially.

2.2.1 Speech Production and Vocoder

Human speech system contains several components such as “lungs”, “larynx”, “pha-

ryngeal cavity” or “throat”, “tracher” or “windpipe”, “oral” or “buccal cavity” (mouth),

and “nasal cavity” (nose). The “oral tract” is the system containing the pharyngeal

and the oral cavity. Normally, the “nasal cavity” is called the “nasal tract”. Place of

these organs in human body is shown in Figure 2. Human speech system in schematic

form is shown in Figure 3.

Using signal processing techniques, the process of producing speech in human

(Figure 4) can be estimated with a digital “source-filter model” shown in Figure

5. The theory behind this “source-filter model” is based on the similar structure

in human voice production [44]. Excitation in the simplest model is white noise for

unvoiced and pulse train for voiced data. This source can be filtered with a single filter

to model the “spectral envelopes” of the “glottal flow”, “vocal tract resonance”, and

“lip radiation effect”. With this structure, components of human speech signal like

voiced/unvoiced tags, fundamental frequency (F0), and “spectral envelope” will be

modeled. Spectral envelope can be extracted by mel-cepstral coefficients [45] or line

spectral pairs (LSPs) [46], and at the end the sequence of these acoustic parameters

will be synthesized to generate the speech waveforms. Using input text, in HSS these

vocoder parameters will be predicted. Synthetic voice in frame level will be generated

10

Figure 2: Schematic view of human speech production.

by inverse Fourier transform of multiplying spectral and excitation parameter vectors

in frequency domain. In addition to LSP, the mel-cepstral coefficients, and LF0, other

spectral and excitation features, such as “mel-generalized cepstral coefficients” [47],

and aperiodicities [48]) can also be used.

2.2.2 Hidden Markov Model

Set of parameters λ in an N-state HMM can be modeled by sets of “initial-state

probabilities” {πi}Ni=1, “state-transition probabilities” {aij}Ni,j=1, and “state-output

probability distributions” {bi(.)}Ni=1. Usually, for simplicity the {bi(.)}Ni=1 are typically

assumed to be single “multivariate Gaussian distributions”

11

Figure 3: Block model of human speech production.

Figure 4: Overview of human speech production process.

12

Figure 5: Source-filter model for simulating human speech production.

Figure 6: Example of a three-state, left-to-right HMM.

bi(ot) = N (ot;µi, Σi) =
1√

(2π)d|Σi|
exp

{
− 1

2
(ot − µi)TΣ−1

i (ot − µi)

}
(3)

where µi and Σi are mean vector and covariance matrix with the dimension of the

acoustic parameters, d × 1 and d × d, respectively. An observation vector is shown

with ot, which contains frame level vocoder parameters with frame index t. Simplified

sample of a left-to-right HMM with three states, is shown in Figure 6.

The main idea in HMM-based speech synthesis is clear and causes the HMM to be

a suitable model for estimating acoustic features. Let O = [OT
1 ,O

T
2 , ...,O

T
T]T , and W

be acoustic speech feature sets and commensurate linguistic features like full-context

13

labels to be used for the training of HMMs, respectively. In this representation

for synthesis time, o = [oT1 ,o
T
2 , ...,o

T
T ′

]T , and w are acoustic speech features and

commensurate linguistic features that are extracted from input text. The training

and synthesis parts of HMMs can be formulated as:

Training : λmax = argmax
λ

p(O|λ,W) (4)

p(O|λ,W) =
∑
∀q

πq0

T∏
t=1

aqt−1qtbqt(Ot) (5)

Synthesis : omax = argmax
o

p(o|λmax, w) (6)

where q = {q1, q2, ..., qT} is a state sequence.

2.2.3 Speech Parameter Generation From HMM

The most probable estimated acoustic speech feature vector sequence using a set of

HMMs and an input text to be synthesized is determined as

omax = argmax
o

p(o|λmax, w) (7)

= argmax
o

∑
∀q

p(o, q|λmax, w) (8)

≈ argmax
o,q

p(o, q|λmax, w) (9)

= argmax
o,q

p(o|q, λmax)P (q|λmax, w) (10)

≈ argmax
o

p(o|qmax, λmax) (11)

= argmax
o

T
′∏

t=1

N (ot;µqmax,t, Σqmax,t) (12)

where

qmax = argmax
q

P (q|λmax, w). (13)

Using “state-duration probability distributions”, the maximization problem of 13 can

be solved. The maximization problem of 11 is maximizing p(o|q, λ) with respect to

o given the predetermined state sequence qmax.

14

By choosing the sequence of the mean state vectors as the estimated speech acous-

tic feature vector sequence, p(o|qmax, λ) in (3) will be maximized. Sequence of the

mean vectors are step-wise. This can be result of the conditional independence of

“state-output probabilities” assumed in the HMM. Human speech is continuous but

this step-wise speech generation will generate discontinuities at state boundaries in

a speech waveform. For alleviating this problem, in speech parameter generation

algorithm, dynamic features were used as constraints. Using this constraint, the

maximization problem, model the relationship between “static” and “dynamic fea-

tures”. Using first- and second-order time derivatives of speech parameters known as

delta and delta-delta features (dynamic features) as an acoustic vector, is a powerful

and efficient mechanism for sequence modeling in the HMM framework. This method

shows significant improvement in the performance of “HMM-based automatic speech

recognizers”. We can represent the speech parameter vector ot with the static ct and

dynamic features ∆ct as

ot = [ct,∆ct]
T . (14)

For simple example, the dynamic feature ∆2ct is removed from this equation. Dy-

namic features can be computed from their neighboring static features as regression

coefficients, i.e.,

∆ct =
L∑

τ=−L

w(τ)ct+τ (15)

where “window coefficients” for calculating the dynamic features are {w(τ)}Lτ=−L.

The maximum window length L is normally set to 14. For simplicity, the most

common case of ∆ct is mentioned as

∆ct = ct − ct−1. (16)

15

The observation vector o = [oT1 , ...,o
T
T ′

]T and static feature vector c = [c1, ..., cT ′]
T

are correlated and this correlation can be represented in a matrix form.

Using this correlation, maximizing the output probability with respect to o and

c are equivalent. This can be shown in

cmax = argmax
c
N (Wc;µqmax , Σqmax) . (17)

Linear equations to determine the most probable static feature vector sequence can

be shown by setting the partial derivative of the logarithm of (17) with respect to c

to 0. This equation can be derived as

WTΣ−1
q Wc = WTΣ−1

q µq (18)

where

µq = [µTq1 , ...,µ
T
q
T
′]
T (19)

Σq = diag[Σq1 , ...,Σq
T
′] (20)

Cholesky decomposition with O(T
′
) operations is a suitable tool for solving the set

of linear equations. Simple illustration of speech parameter generation is shown in

Figure 7.

The speech trajectory of the zero-th “mel-cepstral coefficient” c(0) in the estimated

static and dynamic acoustic features are shown in Figure 7. Each state output is

shown in rectangular blocks. In the diagonal covariance matrix condition, each state

has separate mean and variance. Mean and standard deviation of each state is shown

with dashed line and shaded zone, respectively.

2.2.4 Training Part of HMM-based Speech Synthesis

Overview of steps in an HMM-based speech synthesis system is shown in 9 which

contains the training and synthesis parts. Maximum-likelihood estimation of the

HMM coefficients using the BaumWelch algorithm is main part of HMM training.

16

Figure 7: Simple illustration of speech parameter generation from a sentence-level
HMM for /a/ and /i/ phonemes. For each state, the mean and standard deviation,
are shown with dashed and shading lines, respectively.

Overall steps are similar to the method used for speech recognition. However, we

can note some differences between applying HMMs in ASR and TTS systems. As an

example of this difference we can mention that HMMs in ASR usually are just based

on spectral parameters. These parameters can be modeled by continuous distribu-

tions. In TTS systems, HMMs must model both spectral and excitation parameters

at the same time. Mel-cepstral coefficients are samples of spectral parameters and

F0 can be sample of excitation parameters. Different algorithms have been used for

modeling F0 sequences [49–51] and currently for combined modeling of spectral and

excitation features, the HSS system uses “multi-space probability distributions” [52].

As an another example, we can mention the difference between estimation of state

duration in HMM-based ASR and TTS models. In HMM-based ASR model, with

increase of duration in each state, the duration probability will exponentially de-

crease. In this condition, controlling the temporal structure of the sequence of speech

17

coefficients is straight-forward. On the other hand, “semi-Markov structure” is usu-

ally used in HMM-based TTS. In this case, “temporal structure” is estimated by

a “Gaussian distribution” [53]. HMM-based ASR uses “phoneme information” as

“linguistic contexts”, but HMM-based TTS uses various linguistic information like

“lexical stress”, “pitch accent”, “tone”, and “part-of-speech” (POS) information for

modeling HMMs [54]. In the HMM-based TTS, there is exponential correlation be-

tween increasing the number of contextual factors and their combinations. As a result,

robustness and accuracy in estimation of “context-dependent HMM parameters” will

be decreased using a few utterances as training data. For alleviating this issue, using

“state tying techniques” homogeneous states are clustered and with tying model co-

efficients among group of context-dependent HMMs, we can increase the robustness

in estimation of the model parameters. “Hierarchical tree structure” is used in the

“state tying process”. Based on “minimum description length” (MDL) [55], The size

of this decision tree will automatically be determined. In HMM-based TTS, using

“stream-dependent decision trees” [56], the “spectral”, “excitation”, and “duration

parameters” will be clustered separately. Having different “context dependency” for

each of these acoustic features is the main reason for using “stream-dependent decision

trees”.

2.2.5 Synthesis Part of HMM-based Speech Synthesis

The overview of synthesis part of TTS system is shown in the underneath part of Fig-

ure 9. In the first step, sequence of full-context labels are generated from input text.

A “sentence-level” HMM can be generated by concatenating “context-dependent”

HMMs. Using “state duration probability distribution”, the duration of each state

is estimated to maximize its estimated probability. In the next step, with use of

the speech parameter generation algorithm, we can estimate the sequence of acoustic

features. Acoustic features, usually contain spectral and excitation parameters, are

18

Figure 8: Overview of the HMM-based speech synthesis system.

estimated to maximize the output probability. At the end, using vocoder from the

estimated acoustic parameters, synthetic speech waveform will be generated. Based

on spectral features, different vocoder will be used. For “mel-cepstral coefficients”

features usually the “mel-log spectral approximation” (MLSA) will be used as syn-

thesis filter [57]. For “linear-prediction based” spectral features, all-pole filter will be

used [58].

2.3 Hybrid Systems in Speech Synthesis

HSS and CSS systems come with their own pros and cons. Therefore, to use of both

models together in different schemes to obtain the advantages of both techniques, TTS

researchers also investigated to use both models together. Although, CSS and HSS

systems are both data driven approaches, they exhibit different characteristics due to

their fundamental difference in foundations. CSS systems are selection based systems.

They dont aim at producing a unit if there is no proper one in the database. Hence,

19

for covering the units for given domain, considerable amount of recorded speech must

be available to the system. On the other hand, for HSS model, small amount of

data is enough. Clustering and statistical estimation causes a much robust system

compared to CSS in such situations. As USS systems need all data to be available in

the synthesis time, they have bigger footprint with respect to statistical parametric

systems.

Most important advantage of HSS is its flexibility. Parametric structure of HSS

creates a very suitable infrastructure for changing the voice characteristics, emotion

and speaking style. Although small footprint and flexibility are the advantage of HSS

systems, because of its statistical nature, quality of synthesized speech is one of the

issues in HSS systems. Although using global variance algorithm [40] alleviate the

over-smoothing problem in HSS systems, because of using natural speech units, qual-

ity of CSS systems when having sufficient amount of data is significantly better than

HSS systems. Researchers have been proposed many hybrid schemes and algorithms

to combine the strong parts of both systems. HMM guided unit selection systems

use HMMs as a guide to selection of units from database. This can be accomplished

either using the HMM generated parameters directly as targets [29, 59, 60] or using

the HMM likelihoods in the cost calculations [61–63]. In some other methods, for es-

timating the “state-output distribution” some frame samples in the current states are

used. For instance, “frame-sized units” are used in the “unit-selection system” [64].

In this method, for computing the distance between the adjacent features, a “frame-

wise dynamic programming” (DP) search method is used. This method is sample of

maximum likelihood based approaches for generating the acoustic parameters. For

modeling each “state-output distribution” the discrete HMM-based speech synthesis

system is proposed in [65]. In this method, using vector quantization the distribu-

tion of each state-output will be modeled. For merging USS and HSS systems, a

20

“frame-wise” model of “state-output distribution” was proposed in [66]. Hybrid ap-

proaches have some advantages with respect to each of USS or HSS systems. By

replacing synthetic samples with natural acoustic samples in estimated samples, an

over-smoothing problem is avoided. Using the natural frame-level samples, we can

decrease the quality problem caused by vocoding. In addition, context dependencies

in each speech parameter can be observed by complicated “cost function” which are

designed using the HMM likelihoods. Using hybrid approaches have some disadvan-

tages with respect to the HSS system, like loosing the flexibility in controlling the

output voice quality, limitation in applying emotion in output speech, and “small

footprint”.

2.4 Speech Synthesis Using Deep Neural Network

Using “context-dependent” decision tree for clustering of HMM states is usual method

for modeling probability densities of acoustic features. Although this approach is al-

most effective but has a couple of limitations, e.g., for modeling complex “linguistic

context” dependencies, decision trees are inefficient. An alternative scheme using deep

neural network (DNN) is proposed in [5]. In DNN-based method, using maximum

likelihood approach (MLPG), a sequence of acoustic features will be estimated then

using vocoder a speech waveform is generated from the estimated acoustic features.

Input text can be converted to linguistic features and the correlation between these

features and their acoustic representation can be modeled with DNN. Using DNN can

eliminate some constraints of the usual HMM-based method. In DNN, sequence of

non-linear activation functions will define deep architecture and causes DNN to learn

non-linear correlation between linguistic features and their acoustic representations.

Some features of DNN is different from decision trees. Limitation of decision trees

for expressing some complicated functions like “XOR”, “d-bit parity function”, or

21

“multiplex problems” in input layer [67] are samples to show the inefficiency of deci-

sion trees. DNNs are suitable structure for representing these complicated functions.

Decision trees have poor generalization in parameter estimation that usually caused

by using a separate set of features for each terminal node. Word-level or some other

“weak” input features will thrown away while constructing decision trees [68]. But

because of updating the weights from all training data, DNNs provide better general-

ization. In addition, in input layer of DNN, high- dimensional or diverse features can

be combined. As with respect to decision trees, back-propagation step in training a

DNN usually requires vast amount of computation, we need to use larger dataset for

training the DNN model. In the prediction step, DNNs need a matrix multiplication

at each layer but as decision trees use just a subset of input features, traversing the

trees from root to the terminal nodes is enough for prediction. At the end, debugging

and interpretation of decision trees are easier than DNNs as weights in hidden layers

of a DNN are harder to interpret.

2.4.1 Framework of DNN-based Speech Synthesis

Transforming the information from the linguistic to the acoustic level for producing

the speech in humans contains several layers [69]. In speech synthesis systems, for

modeling this hierarchical structure, deep DNN-based architecture is applied. A

framework of DNN-based speech synthesis is shown in Figure 9. Sequence of linguistic

features {xtn}, where {xtn} denotes the nth input feature at frame t will be generated

from input text. Linguistic features in DNN usually contain binary representation of

sequence of phonemes (e.g. one-hot vector) and numerical features (e.g. the position

of the frame in the current phoneme, the number of words and syllables in the current

and adjacent phrases, and durations of the current and adjacent phonemes).

Mean while of training, DNN will find the map between the linguistic input fea-

tures and their corresponding acoustic output features ytm. Common structure for

22

Figure 9: Framework of DNN-based speech synthesis.

training a DNN is using feed-forward structure, where ytm shows the mth output

acoustic feature at frame t. Without using RNN, for modeling the sequence of acous-

tic features, output features must contains spectral and excitation parameters and

their dynamic features. Using linguistic input and acoustic output features as a

pair of frame-level feature, the weights of the DNN can be estimated. Using DNN

structure, it is possible to generate speech parameters similar to the HMM-based ap-

proach. For covering the statistics of both static features and their first and second

derivations, variances of acoustic output features will be computed from the train

waveforms. In the synthesis time, the estimated output acoustic features will be as-

sumed as mean vector containing both static and dynamic features and according

to these features, the speech “parameter generation” algorithm will produce smooth

trajectories of speech acoustic features. At the end, using these estimated acoustic

features, vocoder will generate the synthetic waveform. Using this DNN based model,

with respect to HMM based model, only the map between the “context-dependent”

23

linguistic features and their correlated acoustic features will be changed and other

parts in TTS system including text analysis for converting text to linguistic features,

duration estimation, speech parameter generation, and vocoder for generating the

synthetic waveform will be similar to HMM based model.

2.4.2 Speech Synthesis with BLSTM-RNN

Due to the intrinsic, feed-forward nature in DNN-based modeling, the long time span

contextual effect in a speech utterance is not easy to accommodate. To synthesize

a smooth speech trajectory, the dynamic features are commonly used to constrain

speech parameter trajectory generation in HSS systems. To capture the correlation

or co-occurrence information between any two instants in a speech utterance for

SPSS, recurrent neural networks (RNNs) with bidirectional long short term memory

(BLSTM) cells are proposed in [6]. The speech trajectory generated by the BLSTM-

RNN speech synthesis systems is fairly smooth and usually no dynamic constraints

are needed.

Recurrent Neural Network (RNN) computes hidden state vector sequence h =

(h1, ..., hT) and output vector sequence y = (y1, ..., yT), for a given input vector

sequence x = (x1, ..., xT), iterating the following equations from t = 1 to T :

ht = H(Wxhxt + Whhht−1 + bh) (21)

yt = Whyht + by, (22)

where W is the weight matrices, e.g. Wxh is the weight matrix between input and

hidden vectors; b is the bias vectors, e.g. bh is the bias vector for hidden state vectors;

and H is the nonlinear activation function for hidden nodes.

In the conventional RNNs nodes, H is usually a sigmoid or hyperbolic tangent

function. Gradient vanishing problem caused by these activation function prevents

RNN from modeling the long-span relations in sequential features. As a result, Long

24

Figure 10: Long short term memory structure.

short term memory (LSTM) network [70], as shown in Figure 10 is used. LSTM which

manually build a memory cell inside, can overcome the problems in conventional RNN

and can model signals that have a mixture of low and high frequency components.

For LSTM H is implemented with the following functions [71]:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (23)

ft = σ(Wxfxt + Whfht−1 + Wcfct−1 + bf) (24)

ct = ftct−1 + ittanh(Wxcxt + Whcht−1 + bc) (25)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (26)

ht = ottanh(ct), (27)

where σ is the sigmoid function; i, f, o, and c are input gate, forget gate, output gate

and cell memory, respectively.

Bidirectional RNN as shown in Figure 11 can access both the preceeding and suc-

ceeding contexts. It separates the hidden layer into two parts, forward state sequence,

−→
h , and backward state sequence,

←−
h . The iterative process is:

25

Figure 11: Bidirectional RNN.

−→
h t = H(W

x
−→
h
xt + W−→

h
−→
h

−→
h t−1 + b−→

h
) (28)

←−
h t = H(W

x
←−
h
xt + W←−

h
←−
h

←−
h t+1 + b←−

h
) (29)

yt = W−→
h y

−→
h t + W←−

h y

←−
h t + by (30)

Deep bidirectional RNN can be made by stacking multiple RNN hidden layers on

top of each other. Each hidden state sequence hn, is replaced by the forward and

backward,
−→
h n and

←−
h n, and the iterative process can be formulated as:

−→
h n
t = H(W−→

h n−1
−→
h n

−→
h n−1
t + W−→

h n
−→
h n

−→
h n
t−1 + bn−→

h
) (31)

←−
h n
t = H(W←−

h n−1
←−
h n

←−
h n−1
t + W←−

h n
←−
h n

←−
h n
t+1 + bn←−

h
) (32)

yt = W−−→
hNy

−→
h N
t + W←−−

hNy

←−
h N
t + by (33)

26

Figure 12: DBLSTM-RNN based TTS synthesis.

Deep bidirectional LSTM (DBLSTM) is the integration of deep bidirectional RNN

and LSTM. By taking the advantages of DNN and LSTM, it can model the deep

representation of long-span features. Human speech production process can be seen as

a process to select spoken words, formulate their phonetics and then finally articulate

output speech with setting the place and manner of articulators. As a result, So it is

a continuous physical dynamic process. DBLSTM-RNN can simulate human speech

production by a layered hierarchical and wide in time scale structure to transform

linguistic text information into its final speech output. Using DBLSTM-RNN for

TTS synthesis where usually a whole sentence is given as input can have a significant

effect in modeling the sequence of output acoustic features. The schematic diagram

of DBLSTM-RNN based TTS synthesis is shown in Figure 12.

In DBLSTM-RNN based TTS synthesis, rich contexts are also used as input fea-

tures, which contain the binary features for categorical contexts, e.g. phoneme labels,

27

part of speech (POS) labels of the current word, and TOBI labels, and numerical fea-

tures for the numerical contexts, e.g., the number of words or syllable in the current

phrase or the position of the current frame of the current phone. The output features

are acoustic features like spectral envelope and fundamental frequency. For frame-

by-frame time-alignment of input and output features, well-trained HMM model can

be used. RNN is also powerful to make it possible to model sequential data where

input-output alignment is unknown by Connectionist Temporal Classification [72]

and Sequence Transduction [73]. To minimize the errors between the mapped output

from the given input and the target output, the weights of DNN are trained by using

pairs of input and output features extracted from training data. L1, mean square

error (MSE), or sum square error (SSE) can be used as a cost function in BLSTM-

RNN models. Back-propagation through time (BPTT) is the most frequently used

algorithm for training BLSTM-RNN. BPTT first unfolds the RNN into feed-forward

network through time, and then training the unfolded network with back-propagation.

For deep bidirectional LSTM, BPTT algorithm is applied to both forward and back-

ward hidden nodes, and back-propagates layer by layer. In training time, the weights

are trained by back-propagation procedure with a mini-batch based SGD algorithm,

which select mini-batches of frames randomly from the whole training set. For par-

allel training, tens of utterances are randomly selected for each updating, then used

to update the weights of RNN simultaneously.

In synthesis time, the input text will be converted into the input feature vec-

tor through text analysis, then input feature vectors are mapped to output vectors

by a trained DBLSTMRNN. In DNN-based TTS, with using the estimated acoustic

features as mean vectors and pre-calculated “global variances” of acoustic features

from all training set and statistics of static and dynamic features, the speech fea-

ture generation can generate smooth trajectories of speech acoustic features, and

voiced/unvoiced flag is determined by an empirical threshold of DNN prediction. As

28

RNN is powerful in sequential modeling, the parameter generation module is im-

plicitly embedded inside the DBLSTM-RNN based TTS synthesis, i.e., the output

features of DBLSTM-RNN are only the static features contain spectral envelop, gain,

fundamental frequency, and V/U decision and then directly be fed into a vocoder to

synthesize final speech waveform. The functions can be compactly represented with a

k level deep architecture which can outperform a shallow architecture but with more

weights.Sample of shallow architecture is a decision tree, which is generally used in

HMM-based TTS for clustering the similar context-dependent state into tied states.

Although, both RNN and DNN can overcome the limitation of conditional indepen-

dence assumption in HMM, DNN only can model the relationship between text and

speech on the frame level, take the limited phoneme or HMM state as input, and

generate speech through the transition over the finite states. On the other hand,

with the same finite states as input, RNN can take the information from neighboring

frames, get different hidden states from the same input and break through the limits

from input finite states.

29

CHAPTER III

INTRA-LINGUAL SPEAKER ADAPTATION METHODS

With respect to USS systems, SPSS systems are more flexible for changing the voice

characteristics. In addition, changing speaking style like singing style speech syn-

thesis or including emotion meanwhile of keeping small footprint can be assumed

as other advantages of SPSS systems. In SPSS systems, for managing the variation

in output speech several methods have been introduced like “adaptation”, “interpo-

lation”, “eigenvoice”, and “multiple regression”. Using small amount of data from

target speaker adaptation method will generate high-quality synthetic model which

is similar to the target speaker’s voice. To that end, existing “speaker independent”

(SI) acoustic model will be transformed to match a target speaker [42]. Starting from

SI model, this method applies some adaptation methods which showed improvement

in adaptation performance in ASR field like “maximum-likelihood linear regression”

(MLLR) [74, 75] to adapt the HMMs states of SI model to a target speaker or to

a new speaking style or emotion. The SI model is a speaker independent HMM

model which is trained using suitable amount of training data. Usually, variation

between speakers’ acoustic features can be normalized using “speaker-adaptive train-

ing” (SAT) method [76]. In this section, we will review the common methods of

adaptation in the intra-lingual SPSS systems.

3.1 MLLR and CMLLR

Mismatch between acoustic features of train and test sets is one of the major is-

sues in ASR systems. Using adaptation technique like MLLR showed significant

improvement in performance of ASR systems. In MLLR method, a collection of

linear transforms for mapping the density functions from existing SI model to new

30

adapted model will be estimated. These density functions are usually assumed to

came from Gaussian distribution. Because of lack of adaptation data from target

speaker, Gaussian components will be clustered in a regression class tree. Acoustic

similarity of HMM states’ component is used as clustering criterion and each cluster

shares the same MLLR transform [77]. Similarly, in HSS systems speaker adaptation

has significant improvement in performance of adapted model. Using this adapta-

tion technique, HSS systems are able to generate high-quality TTS model for target

speaker when small amount of data from the target speaker is available. In this case,

small amount of adaptation data (57 minutes) from target speaker is sufficient for

generating a personalized HMM-based synthetic voice. Using this feature, for any

target speaker, synthetic voice model can be generated with transformation of HMM

states’ parameters of SI model [78]. Adaptation methods which are used for HSS are

almost identical to adaptation methods in ASR. MLLR and “maximum a posteriori”

(MAP) estimation [79] are samples of adaptation methods in ASR. In MLLR algo-

rithm, mean vectors of the “state output probability distributions” will transforms

linearly in (3)

bi(ot) = N (ot; ζkµi + εk, Σi) (34)

where ζk is transformation matrix of the kth regression class and εk is estima-

tion error of this transformation. In constrained MLLR (CMLLR), in addition of

mean vector, covariance matrices of the “state output probability distributions” will

be transformed using the same matrices [80] and the total transformation can be

formulated as:

bi(ot) = N (ot; ζkµi + εk, ζkΣiζ
T
k). (35)

For clustering the HMMs into regression classes, linguistic similarity of the adap-

tation data (e.g. vowel, consonant, etc) was used. Kullback-Leibler Divergence

31

(KLD) [81] in acoustic space would reach to the better result. Number of regression

classes are proportional to adaptation data size. Cut is defined in a tree where there

is no longer enough data for that branch of tree. Full and diagonal transforms were

tested. Full transforms perform better but they need more data to train. Performance

of diagonal improved by increasing the number of classes but never reached to the

best performance of full transformation. Tree-based MLLR algorithm is illustrated

in Figure 13.

Figure 13: MLLR algorithm with tree structure. Based on minimum size of adapta-
tion data in each leaf node, the threshold for making a regression class will be defined.
Each regression class contains all node starting from the threshold line and separate
transformation matrix will be defined for each regression class.

3.2 SMAPLR and CSMAPLR

Although, the estimation criterion used to estimate transformation parameters has

been mainly based on maximum likelihood (ML) estimation, Bayesian versions of

some of the most popular transformation-based adaptation methods like MAPLR, a

32

maximum a posteriori (MAP) based version of the MLLR is proposed to constraint

the parameter estimation in order to obtain reliable estimation with a limited amount

of data. This prior knowledge, not only prevent overfitting the adaptation data but

also allow integration of this knowledge into transformation-based adaptation tech-

niques. When bigger set of adaptation data is used, it is necessary to estimate a larger

amount of transformation coefficients. It is also required to define a large number

of prior densities for these parameters. Robust estimation of these prior densities is

therefore a crucial issue that directly affects the efficiency and effectiveness of the

Bayesian techniques. For estimating these priors, “structural maximum a posteriori

linear regression” (SMAPLR) algorithm was introduced in [82]. The hierarchical pri-

ors, embedded into the tree structure is used to control transformation complexity.

Using SMAPLR, for estimating the transformation in each regression cluster, MAP

estimation instead of ML estimation can be used. In SMAPLR, usually prior den-

sity of the root node p(W1) will be estimated as identity transformation, after that,

for the first level of child nodes p(W1|Y1) will be estimated as prior density. This

prior/posterior propagation will follow the same rule down to the cut nodes which

are defined based on pre-defined threshold. SMAPLR algorithm using tree structure

is illustrated in Figure 14.

Similar to SMAPLR, in the CSMAPLR method, a Bayesian approach is used to

estimate the constrained linear regression parameters which is especially useful when

there is limited amount of training data [42]. In this approach

Λ̂ = argmax
Λ

p(x|λ,Λ)p(Λ), (36)

where p(Λ) is the prior distribution of the transformation parameters Λ, and λ is

the parameter set of the Gaussians in the SPSS model. Because prior is taken into

account in estimation, parameter over-fitting because of data sparsity can be elim-

inated with the CSMAPLR algorithm. However, success of the algorithm depends

33

Figure 14: SMAPLR algorithm using tree structure. For each node i the adaptation
data Yi is associated with prior density p(Wi). In the SMAPLR structure, for each
child node i of parent node j, the prior density p(Wi) will be defined as p(Wj|Yj).

on the proper selection of the prior distribution and its hyper-parameters. In the

CSMAPLR approach, priors are estimated using a hierarchical approach embedded

into a tree structure. Imposing such a structure on prior estimation allows reliable

estimation of the prior distribution which is especially important in limited adapta-

tion data case since the posterior relies more on the prior pdf than the likelihood

function in that case. Similar to CMLLR, in CSMAPLR adaptation, using the same

transformation matrices, in addition to mean vectors, covariance matrices of the state

output probability distributions will be adapted. Mean and covariance matrices of

speaker adaptation methods in HSS systems are shown in Figure 15.

34

Figure 15: Overview of adaptation methods for HSS systems.

3.3 Eigenvoice Adaptation

Eigenvoice approach has been used for rapid adaptation in speech recognition and

SPSS [83,84]. The idea is to find a set of R vectors in the high-dimensional space Rn

(n >> R) that can be used to approximate a set of vectors in Rn by optimizing a

distance measure. One way to accomplish this is using principal components analysis

(PCA) that finds the directions in Rn where the data has the highest variance and the

L2 norm of the approximation error is minimum after projection. Solution with PCA

are the eigenvectors of the sample covariance matrix with the highest eigenvalues.

In the context of SPSS, each eigenvector is called an eigenvoice. The supervector

for speaker s can be created by µ(s) = [µ
(s)
1 µ

(s)
2 ...µ

(s)
Nst

] where Nst is the total number

of states in all decision trees in the acoustic model. In the eigenvoice approach, given

a set of R eigenvectors er ∈ Rn, the main supervector for speaker s is shown as

µ(s) = µsi +Ews + εs (37)

where E = [e1 e2 ... eR], ws is weight vector of the speaker s, and εs is the ap-

proximation error. Although E can be found by using the PCA method, it can also

35

be estimated from the training data using a maximum-likelihood (ML) approach.

One popular algorithm to do that is the Cluster Adaptive Training (CAT) technique

which is really an adaptive training algorithm but can also be used for eigenvoice

adaptation. In the case of CAT, columns of E can be seen to represent the clusters

in the training data, and the weights for a given speaker are the interpolation factors

between those clusters.

An iterative algorithm is proposed in [85] for learning E from a training dataset.

In the first step, E is initialized randomly. Then, weights are estimated using a

maximum-likelihood approach for each speaker. Using those estimated weights, E is

re-estimated and the whole procedure is repeated until convergence.

Although the algorithm in [85] is similar to the Expectation-Maximization (EM)

algorithm, it is not EM because posterior distribution of the weights, hence the un-

certainty in the weights, are not taken into account in the iterations. This can cause

problems especially when there is insufficient data for some of the speakers. The al-

gorithm proposed in [86] solves the problem by offering an exact EM solution. Here,

the algorithm proposed in [85] is used for training E since there is sufficient data for

each speaker during training.

In the ML-based CAT approach, given some adaptation data

χa = {x(1),x(2), ...,x(No,s)}, No,s is the total amount of observations from speaker s,

the likelihood function

p(χa|ws,E) ∝ exp(−1

2

Nst∑
c=1

N
(s)
c∑
i=1

(x
′(i)
c −Ecws)

TΣ−1
c (x

′(i)
c −Ecws)) (38)

where Ec is the cth block of the E matrix corresponding to state c, x
′(i)
c = x

(i)
c −

µc, x
(i)
c is ith observation that is aligned with state c, µc and Σc are the speaker

independent mean vector and covariance matrix of the Gaussian emission pdf of state

c, and N
(s)
c is the number of observations aligned with state c for speaker s.

36

After removing terms that are independent of w and E, the objective function

O = (−1
2

∑Nst

c=1 Sxx,c) +wT
sG

(s)
w ws −wT

s
1
2
k

(s)
w (39)

where

Sxx,c =

N
(s)
c∑
i=1

x
′(i)T

c Σ−1
c x

′(i)
c . (40)

G(s)
w =

Nst∑
c=1

N (s)
c E

T
c Σ−1

c Ec (41)

k(s)
w =

Nst∑
c=1

ET
c Σ−1

c S
(s)
x,c (42)

S(s)
x,c =

N
(s)
c∑
i=1

x
′(i)
c (43)

For maximize the likelihood function, EM method can optimize both E matrix

andws vector simultaneously. An alternative method is using iterative algorithm [85].

In this method, weight vector of speaker s, ws ∈ RR, is calculated as follows . Firstly,

E is fixed to a constant matrix. Then, the objective function is maximized with

respect to ws and

ŵcat = G(s)−1

w k(s)
w (44)

Once the ws vectors are computed for each speaker, they can be fixed, and the E

matrix can be estimated. In this case, the objective function

S∑
s=1

(−1

2

Nst∑
c=1

Sxx,c) +wT
sG

(s)
w ws −wT

s

1

2
k(s)
w (45)

is maximized with respect to Ec, and

Êc,cat = G−1
c Kc (46)

where

Gc =
S∑
s=1

N (s)
c wsw

T
s (47)

37

Kc =
S∑
s=1

N
(s)
c∑
i=1

wsx
′(i)T

c (48)

and S is the total number of speakers. The new estimate of E can then be used to

estimate ws for all training speakers. Estimates of E and ws can be improved with

more iterations until convergence.

Instead of estimating ŵ from maximum likelihood approach, maximum a posteriori

estimation is proposed in [87]. In this approach, E matrix is trained using the CAT

procedure described above. However, in the BCAT approach, the weight vector for a

target speaker s is estimated with the objective function

ŵbcat = argmax
w

p(χa|w)p(w) (49)

where p(w) is the prior distribution and set to N (0,Σw) here. Thus,

p(w) =
1√

(2π)R|Σw|
exp

(
−1

2
wTΣ−1

w w

)
. (50)

The suggested estimator is not “fully Bayesian” because a “point estimate” of w is

found. As prior distribution was used in the estimation time, the term “Bayesian” is

employed here.

After removing the terms that are independent of w from the objective function,

using (38) to replace the likelihood term p(χa|ws) and with some matrix manipulation,

the BCAT objective function becomes

ŵbcat = argmax
w

exp

(
wTETΣ−1Sx−

1

2
wTETNΣ−1Ew

)
exp

(
−1

2
wTΣ−1

w w

)
. (51)

where the block diagonal Σ−1 = diag(Σ−1
1 ,Σ−1

2 , ...,Σ−1
Nst

), Sx = [Sx,1,Sx,2, ...,Sx,Nst],

and N = diag(N1IF×F , N2IF×F , ..., NNstIF×F) where size of the feature vectors are

shown with F .

38

As posterior distribution p(w|χa) is a Gaussian since this Gaussian distribution

is the “conjugate prior” of the Gaussian likelihood function with unknown mean in

(38) the objective function can be maximized. So, from (49) we can reach to

ŵbcat = argmax
w

exp

(
−1

2
(w − µw|χ)TΣw|χ(w − µw|χ)

)
(52)

By completing the squares and using (51),

Σw|χ = (ETNΣ−1E + Σ−1
w), (53)

and

µw|χ = Σ−1
w|χE

TΣ−1Sx. (54)

BCAT estimate of w, ŵbcat, is the mean µw|χ of the posterior distribution. Hence,

ŵbcat = (ETNΣ−1E + Σ−1
w)−1ETΣ−1Sx. (55)

Σ−1
w is the hyperparameter of the prior distribution. It is used to enforce the

adaptation algorithm to move more in specific directions compared to other directions.

The idea is to learn the typical directions in the speaker space that the speaker-

dependent models move during adaptation and use that as a prior information in

adaptation when minimal observations are available.

3.4 VTLN and Count Smoothing

One of the techniques for adaptation when little amount of adaptation data is avail-

able is Vocal tract length normalization (VTLN) [88]. As major components of VTLN

we can mention a “warping function”, a “warping factor” and an “optimization cri-

terion”. For showing the ratio of the VTL of the target speaker to the mean VTL, a

variable called α is defined in “bilinear transform based warping function”. For cal-

culating the “warping factor” for each target speaker, an ML-based technique using

grid search is used. ML optimization is given by:

α̂s = argmax
α

p(χαs|Θ, ws)p(α|Θ) (56)

39

where the features for the speaker s which is shown with χαs is warped with the

warping factor αs. The model is shown with Θ parameter and linguistic transcriptions

correlated to the target speaker’s data are shown with ws and α̂s shows the best

“warping factor” for the current target speaker. The prior probability of the warping

factor α is shown with p(α|Θ).

Several rapid speaker adaptation methods use prior information to find robust

transforms when a few utterance of adaptation data is available. In [89], using some

rapid adaptation methods like VTLN or PCMLLR [90], first initial adaptation is

done for the target speaker. Then, for smoothing the statistics for computing the

transformation matrices in CMLLR, result of the previous rapid adaptation algorithm

will be used. This method of statistics smoothing is called “Count Smoothing”.

VTLN can be combined with the CSMAPLR algorithm. This approach improves

the performance of the CSMAPLR algorithm in case of small adaptation data like 1

utterance. Usually, the top global transformation matrix in CSMAPLR, is calculated

either using a maximum likelihood (ML) estimation or using a MAP approach with

an identity matrix as a prior. In [91], however, VTLN transformation is used as a

prior for the top transformation estimation. The VTLN transform can be viewed as

xα = Aαx (57)

where xα = (x̂1, ..., x̂M)T and x = (x1, ..., xL)T are the warped and original obser-

vation vectors if we truncate them at M-th and L-th dimensions, respectively. Aα is

defined as

Aml(α) =
1

(l − 1)!

l∑
n=max(0,l−m)

 l

n

× (m+ n− 1)!

(m+ n− l)!
(−1)nα2n+m−l (58)

where Aml(α) is the m-th row and the l-th column element of warping matrix Aα

and α is the warping factor. Aα may also be directly applied to the dynamic features,

where the transformation matrix is block diagonal with repeating Aα matrix:

40

Bα =


Aα 0 0 0

0 Aα 0 0

0 0 Aα 0

 (59)

In the SMAP criterion in the CSMAPLR estimation, the top transformation ma-

trix, Λ1, is calculated either using an ML estimation or a MAP estimation with

identity matrix as the prior. Then, Λ1 is used as the B hyper-parameter in MAP

estimation of Λ2 (refer to (38)). In [91], Bα is used as the B hyper-parameter in

MAP estimation of the top transformation matrix, Λ1.

This approach has been tested in matched and unmatched conditions of speaker

adaptation and also in both TTS and continuous speech recognition (CSR) setups.

This method has also been compared to a cascade algorithm where a VTLN adap-

tation is done and then its output is used as an SI model for the CSMAPLR al-

gorithm. The cascade algorithm showed no significant difference compared to the

original CSMAPLR algorithm. Results showed significant improvements compared

to the CSMAPLR with no prior especially in the cases of less than 10 utterances.

With respect to using CSMAPLR without the VTLN prior, applying VTLN will im-

prove the naturalness and intelligibility of HSS systems. In addition, this method

improved the performance of the HMM-based ASR models. Specially in mismatched

conditions, in some aspects like age, gender, and recording environments, applying

this method showed significant improvements in performance of adaptation.

3.5 DNN-Based Adaptation

In recent years, using deep neural networks (DNNs) as a mapping function between

linguistic and acoustic features, showed significant improvement in performance of

SPSS systems. Experimental analysis of DNN-based adaptation for SPSS systems at

several layers in DNN is discussed in [22]. In general, speaker adaptation for DNN-

based speech synthesis can be done in three different levels. In input layer, in hidden

41

layers, and in output layer. In input layer, speaker codes are augmented as input to

neural nets, in the middle layer direct modification of neural network coefficients is

applied to generate the adapted model. In the output layer, feature space transfor-

mations are performed for adapting to the target speaker. DNN adaptation in three

different ways are shown in Figure 16.

Figure 16: Three ways to do speaker adaptation for DNN-based speech synthesis.
LHUC=Learning Hidden Unit Contributions.

3.5.1 Adaptation in Input Layer

One of the methods for adapting to the target speaker is using i-vectors for estimating

speaker codes [18]. For showing the identity of each target speaker in a vector while

pool of training speakers exists, i-vector is proposed in [18]. Using i-vector signifi-

cantly improved the equal error rate (EER) performance of “text-independent speaker

verification” systems [18]. Using pool of training speakers, first speaker-independent

model will be trained. For the target speaker, the corresponding mean supervector s

can be shown as,

42

s ≈m+ Ti, i ∼ N (0, I), (60)

where mean supervector of all GMM coefficients of average voice model is shown

with m which is called “universal background model” (UBM) which is trained using

pool of training speakers, s is the adapted speaker’s mean super-vector which is

adapted from UBM model with applying the interpolation of i which is the speaker

identity vector (i-vector) to the total variability space matrix T which is estimated

from pool of training data. In DNN-based speech synthesis, meanwhile of training

average voice model (AVM), frame-level linguistic features will concatenated with

estimated i-vector of current speaker. This concatenation is usually done for applying

the speaker’s identity. In this case, detection of speaker’s identity of target or training

speakers while the same linguistic context is observed will be possible. After training

the model, when we have target speaker’s adaptation data, using total variability

space T matrix from (60), target speaker’s identity vector (i-vector) will be estimated.

Then, for generating target speaker’s voice model, the estimated i-vector will be

concatenated to frame-level linguistic features which usually contain binary features

for representation of sequence of observed phonemes (as one-hot vector) and numerical

features for representation of suprasegmental features, and this concatenated vector

will be used as input layer to adapt the target speakers voice model. For mapping to

the normalized space, “length normalization” is applied on all the i-vectors [92].

Another method for modifying synthetic speech characteristics based on the input

codes, is using data-driven numerical encoding sometimes called discriminant condi-

tion codes (DCC) [19]. DCCs were initially introduced by Xue et al. [19] for speech

recognition. Discriminant codes constitute hidden-unit activations obtained by pro-

jecting one-hot speaker codes into K dimensions using a matrix WDCC ∈ RN×K . The

DCCs are trained jointly with the weights and biases of a DNN. For distinguishing

sentences in synthesis, Watts et al. proposed the DCC based solution [93] and here

43

the equivalent code for distinguishing the speakers was used. In input layer, DCC

codes can be combined with gender and age codes [20]. Adding these codes, in addi-

tion of improving the adaptation performance, will have some new applications such

as morphing two speakers voice and manipulating the speaker codes for generating

new speaker. Schematic representation of discriminant codes in speaker adaptation

is shown in Figure 17.

Figure 17: Schematic representation of discriminant codes. WDCC is a projection
matrix that reduces one-hot vectors to DCC vectors.

3.5.2 Adaptation in Hidden Layers

When we train an SI model using DNN-based structure, for modeling the non-linear

correlation between input and acoustic output layers, hierarchical structure of hidden

units with non-linear activation function will be used. In the training step, with

monitoring specific patterns in its input, each unit can treat just like a specific function

that can be adapted. In the training time, single objective (e.g., MSE, L1, or L2

distances), will control the learning steps of the units in all layers of the DNN model.

In the training step, because of correlation between the units, all the units in overall

structure will be trained and learn the joint representation of the problem that need

to be solved. It means, in training time, for explaining different patterns in the

44

training data, all the hidden units are biased and agitated to complement each other.

Unfortunately in the adaptation time, this optimality of “relative importance” of

specific units for the target speaker’s data may no longer be valid. With rescaling the

cooperation of some property of hidden units like amplitudes, without changing their

feature receptors, LHUC will adapt to the target speaker. For limiting the number

of comparisons for evaluation tests amplitude re-parametrization can be eliminated

from the learning procedure [22]. As an advantage of LHUC, we can mention the

“model-agnostic” property of it. It means, this model can work with any kind of

non-linearities and architectures [94]. “Interpolation within pooling regions” is an

alternative method for re-weighting the hidden units [95]. But this method needs the

certain operations which are differentiable to be implemented in all layers. In other

word, this method is “model dependent”.

For fast adaptation in DNN, in addition of applying speaker codes in input layer,

it is possible to apply it in some hidden layers [96]. Using a multi speaker speech

corpus, weights for connection of several layers of DNN will be trained. In synthesis

time, first the speaker code must be chosen. If the selected target speaker exists in the

training corpus, the speaker code will be computed directly from the training corpus.

In the case of unseen target speakers some estimation methods like (i-vector) can be

used. After that, with selecting the speaker code and applying it to the DNN layers,

target speaker’s voice will be generated. The architecture of DNNs using speaker

code in hidden layer(s) is shown in Figure 18.

3.5.3 Adaptation in Output Layer

Feature space transformation is one of the adaptation methods using modification in

output layer [22]. Output of a DNN can be modified to transform the feature space

as

45

Figure 18: The architecture of DNNs using speaker code in hidden layer(s). (the
usual model, model structure with speaker code in a single and all hidden layers are
shown in the left, middle, and right sub-figures, respectively.)

y ≈ F(y
′
), (61)

where the estimated acoustic feature is shown with ′y, the transformed acoustic

features to target speaker is y, and F(.) is the function for transforming the acoustic

features to target speaker’s features or “reference vocoder coefficients”. For creating

the adapted target speaker’s voice, first frame-level linguistic features corresponding

to the target speaker’s data will be transformed to acoustic features using SI model.

At the end, using pairs of estimated acoustic features and “reference vocoder coef-

ficients” a transformation function will be trained. For applying the adaptation, in

the synthesis time, first using the AVM model the sequence of estimated acoustic

features given linguistic features will be generated. After that, for having the target

speaker’s voice, using the transformation function we will transform the predicted

acoustic features. For implementation of this feature space mapping, we can apply

any linear or non-linear transforms. State-of-the-art voice conversion method or “joint

density Gaussian mixture model” (JD-GMM) [97] is suitable option for implementing

this mapping transformation function. For better estimation of correlation between

features, full-covariance matrices will be used in the JD-GMM.

Multi-speaker modeling using output layer for speaker adaptation is another method

46

of adaptation in output layer [23]. In this point of view, DNNs hidden layers can be

viewed as deep transformation for linguistic features and the output layers as repre-

sentation of acoustic space to regress the transformed linguistic features to acoustic

parameters. The deep-layered architectures of DNN can not only represent highly-

complex transformation compactly, but also take advantage of huge amount of train-

ing data. In this structure, same hidden layers are shared among different speakers

while the output layers are composed of speaker-dependent nodes explaining the tar-

get of each speaker. DNN architecture of speech synthesis based on multi-speaker is

shown in Figure 19.

Figure 19: DNN architecture of speech synthesis based on multi-speaker.

47

CHAPTER IV

CROSS-LINGUAL SPEAKER ADAPTATION METHODS

An adaptation method for “statistical parametric speech synthesis” when using adap-

tation data of a target speaker in input language, the adapted model in different out-

put language will be generated is called “cross-lingual speaker adaptation” (CLSA).

Speech-to-speech translation systems are samples of applications for this kind of adap-

tation. TC-Star project [98] and “effective multilingual interaction in mobile environ-

ments” (EMIME) [99] are samples of projects on spoken language translation (SLT)

systems in recent years. Cross-lingual adaptation for SPSS systems can be done in

phoneme level [100] or state level [11]. In recent years, for “cross-lingual speaker

adaptation”, new DNN-based methods are proposed [101].

4.1 Phoneme-Mapping Based Adaptation

Phoneme mapping based method was the first proposed method for CLSA. Speaker

adaptation between English and Chinese languages in phoneme level was investi-

gated in [100]. Mapping the phoneme-level linguistic context, is the main part of

the phoneme mapping based adaptation method. Phoneme mapping between En-

glish and Chinese languages is sample of this kind of adaptation. After mapping

the Chinese phonemes to English phonemes, the mapped data will be assumed as

adaptation data in output language (English), and some “intra-lingual speaker adap-

tation” method like CMLLR or CSMAPLR will be applied to the adaptation data.

In this adaptation method, language mapping must be applied for both phonetic and

prosodic levels of information. For covering both kinds of linguistic contexts, “full

context” labels were used in “HMM-based speech synthesis”. By considering the

phonetic definition of Chinese and English phonemes in the international phonetic

48

alphabet (IPA), two rules for mapping between Chinese initial to final and Chinese

final phoneme to English phoneme were generated. Because of difference in linguistic

contents of two different languages, designing a suitable mapping in prosodic level

between two different languages is a challenging task. One solution for this issue can

be using triphones instead of full-context labels and making the regression classes

and transformation matrices for triphone models. At the end, these models will be

applied to fullcontext models [102].

4.2 State-Mapping Based Adaptation

For modeling the similarity of phonemes of two languages in acoustic space phoneme

mapping does not have suitable accuracy. For mapping the phonemes between

two languages with higher accuracy, state mapping based method for “cross-lingual

speaker adaptation” was suggested. In this method, first two “average voice models”

(AVMs) in input and output languages are trained, respectively. Based on the list

of states in input and output languages, a mapping function is defined to map the

states between these two language spaces. At the end, based on the defined map-

ping information, “cross-lingual speaker adaptation” will be applied. For finding the

nearest state between language spaces, “Kullback-Leibler divergence” (KLD) is used

as a distance measure for cross-lingual SPSS systems [9]. We can show the models of

states in input language with Ωs
k(k = 1, ..., N s), where the maximum number of state

models is denoted with N s. As a coefficient in each state model Ωs
k, we can mention

the “self-transition probability” ask, a mean vector µsk and a covariance matrix σsk.

These parameters are denoted mostly because here single Gaussian mixture is used.

Just like input language, we can define state models in the model space of output

language with Ωg
j (j = 1, ..., N g), and the corresponding self-transition probability,

mean vector and covariance matrix can be shown with agj , µ
g
j , and Σg

j , respectively.

In the cross-lingual adaptation scenario, we want to find the minimum distance

49

Ωg
j which is mostly KLD distance between the state models in output language Ωg

j

and input language Ωs
k. We will compute this calculation for each state in output

language. When modeling the states with single Gaussian mixture, the maximum

KLD distance between two models can be computed as

DKL(Ωg
j ,Ω

s
k) ≤

DKL(Gs
k||G

g
j)

1− ask
+
DKL(Gg

j ||Gs
k)

1− agj
+

(ask − a
g
j)log(ask/a

g
j)

(1− ask)(1− a
g
j)

(62)

where the “Gaussian distribution” related to the state model Ωs
k, is shown with Gs

k.

The parameters for this distribution are the mean vector µsk and covariance matrix

Σs
k, respectively. In this case, the KLD distance between two Gaussian distributions

can be calculated as

DKL(Gs
k||G

g
j) =

1

2
ln

(
|Σg

j |
|Σs

k|

)
− D

2
+

1

2
tr(Σg−1

j Σs
k) +

1

2
(µgj −µsk)TΣg−1

j (µgj −µsk) (63)

The KLD between two state models if we ignore the “transition probabilities”

effect, can be shown as

DKL(Ωs
k,Ω

g
j) ≈ DKL(Gs

k||G
g
j) +DKL(Gg

j ||Gs
k) (64)

For each state model in output language Ωg
j , the nearest state model in input

language Ωs
k′

using KLD distance can be found as

k
′

j = argmin
k

DKL(Ωg
j ,Ω

s
k). (65)

At the end, these state mappings between two languages can be calculated as

Ωg
j ⇒ Ωs

k
′
j
, j = 1, ..., N g. (66)

There are two approaches for using mapping information: data mapping and

transform mapping based state mapping.

50

4.2.1 Data Mapping Based State Mapping

For making a transformation between the adaptation data in the input language and

the states in output language data-mapping based approach of CLSA is proposed.

In this case, first two average voice models in both input and output languages must

be trained. After that, we must find the mapping between the states of input and

output state models, for instance for each state of input language find a nearest state

in output language. Next, based on the trained state mapping, we will connect the

adaptation data of target speaker to the output language voice model. At the end,

with assuming the adaptation data as the data in the output language and applying

some common intra-lingual speaker adaptation method (e.g., CSMAPLR or CMLLR)

on the voice model in output language, we can generate the adapted model in output

language. We can assume this data mapping method of cross-lingual adaptation as an

extension of phoneme mapping based method. However, in the state mapping based

adaptation, the mapping between input and output languages are done in the state

level. For each adaptation sentence, the knowledge for mapping in mostly relevant to

sequence of states. In this case, in the middle of training, forward-backward algorithm

is the part for defining the exact relation between models and data. Overview of the

“data mapping based state-mapping” is shown in the Figure 20.

4.2.2 Transform Mapping Based State Mapping

Similar to “data mapping” approach, in “transform mapping” method, we will find

the mapping between states of the voice models in input and output languages. Sim-

ilarly, SI models of both input and output languages must be trained. After that,

we will establish state mappings between the output and input state models, for in-

stance for each state model in output language we will find a nearest state model in

input language. Next, in input language with use of adaptation data, we will train

the transforms for the SI model. At the end, with use of transformation information

51

Multiple speaker’s data of
input language

Target speaker’s data
(input language)

Multiple speaker’s data of
output language

Average voice model
(input language)

Average voice model
(output language)State-map between

average input and output
voice models

Adapted model to
target speaker

(Output languages)

Cross-lingual
speaker adaptation

Figure 20: Overview of the “data mapping based state-mapping”.

of nearest state in input language, each state of the SI model in output language

will be transformed. In this method, adaptation is done in input language and the

transformations will be mapped to the output language, because of this reason, there

is no direct relation between the output AVM and input adaptation data. For map-

ping the adaptation transforms from input to output languages, this “transformation

mapping-based state-mapping” can be used. At the end, using these transforms the

state models in output language can be adapted. Overview of the transform mapping

based state-mapping is shown in Figure 21.

For having a successful transform mapping based cross-lingual adaptation, the dif-

ference between space of the models in input and output languages must be negligible.

For instance, for creating high quality adapted models, we need a bilingual speech

database with rich linguistic context to train models in input and output languages.

However, recording this kind of bilingual dataset which is suitable for creating average

models in input and output languages is cost inefficient and time consuming. Even

52

Multiple speaker’s data of
input language

Target speaker’s data
(input language)

Multiple speaker’s data of
output language

Average voice model
(input language)

Average voice model
(output language)State-map between

average input and output
voice models

Adapted model to
target speaker

(Output languages)

Cross-lingual
speaker adaptation

Intra-lingual
speaker adaptation Mapping linear

transforms

Figure 21: Overview of the transform mapping based state-mapping.

in the case when using balancing the input and output average voice model datasets

based on the number of speakers and gender, we minimize the mismatch between

input and output language spaces, still we will have the significant difference between

input and output language spaces.

In CLSA, difference between adaptation data in input language and SI model

in output language contains both speaker and language characteristics. The ideal

condition in cross-lingual adaptation is the condition when the characteristics of the

target speaker which is relevant to speaker identity is adapted while the characteristics

of output voice model is presumed. In other words, in CLSA with eliminating the

effect of language identity of AVM in input language, the language identity of output

language must be kept.

Both “Data mapping” and “transform mapping” methods of adaptation for CLSA

have some pros and cons. For the “data mapping” method, the adaptation data for

53

target speaker is directly used in output language. As a result, the speaker charac-

teristics of the target speaker can completely be adapted to the output model. But

adaptation of input language identity is one of the cons of “data mapping” method.

It means, in synthesis time the identity of the input language will be sensible in the

output speech waveform. This sensibility is mostly because of partially adaptation of

input language identity.

As an advantage for the “transform mapping” method we can mention the elimina-

tion of the influence of input language identity meanwhile of cross-lingual adaptation.

This elimination is caused by intra-lingual adaptation for “transform mapping” based

method. But this model is so sensitive to differences between input and output AVMs.

In other word, if there is a mismatch in linguistic and acoustic context of training

data for creating average voice model in input and output languages it will cause

the degradation in performance of cross-lingual adaptation. In other word, in syn-

thesis time the characteristics of synthesized speech will be different from the target

speaker’s voice.

As we mentioned before, mismatch between the two AVMs degrades the qual-

ity when mapping transforms [12, 13] since the speaker-specific transformations for

states in the input language acoustic model may not actually suit the corresponding

state in the output language acoustic model. To alleviate that problem, a transform

mapping using shared decision tree context clustering is proposed in [14] where not

only acoustic-similarity but also contextual similarity of states is taken into account

during mapping.

The AVM can also be trained using data from multiple languages and adapted

to a target speaker that speaks one of those languages [103]. However, the adapta-

tion of such a model may hampered by the fact that some leaf nodes of the decision

tree might be trained with data from only one language. A speaker and language

factorization technique to alleviate this problem is proposed in [104] where Cluster

54

Adaptive Training (CAT) is used to build an AVM using data from different lan-

guages. For a given target language, cluster weights are estimated for building a

language-dependent model, before adapting it to a speaker of that language.

For decreasing language dependency and also adapting prosodic information in

CLSA, the mapping between languages can be provided by a language-independent

space of perceptual characteristics (PC) [105]. This technique relies on two language

spaces of speakers’ voices in the input and output languages. Each speaker is repre-

sented by a mean super-vector. When a new target speaker enters the input language

speaker space, it is first projected to the intermediary PC space and, once an ap-

propriate representation for this speaker is found in that space, it is projected to

the output language. Finally, speaker interpolation is performed in the output lan-

guage to reconstruct the super-vector of the target speaker. The perceptual space is

constructed using listening tests.

Factor analysis-based CLSA using bilingual speech data is proposed in [106]. In

this method, model parameters representing language-dependent acoustic features

and factors representing speaker characteristics are simultaneously optimized using a

maximum likelihood approach and a single statistical model trained using bilingual

speech data. Assuming that the speaker characteristics factors are the same in both

languages, performance is expected to improve compared to training each eigenvoice

space independently.

A voice conversion algorithm is proposed in [107] for rapid cross-lingual adapta-

tion. An eigenvoice-based conversion model is learned using parallel data between

a source speaker and a pool of speakers speaking the same language as the source

speaker. Then, that model is adapted to a target speaker that speaks a foreign

language using a small amount of data.

55

4.3 DNN-Based Adaptation

For training the multilingual models, deep neural networks methods have also been

investigated [15–17]. Liao [108] investigated supervised and unsupervised adaptation

of different weight subsets using a few minutes of adaptation data. Learning hidden

unit contribution (LHUC) is unsupervised method which using adaptation data it

will rescale the weight coefficients (amplitudes) of each hidden units in the model.

In this case, it will not change the hidden units feature receptors [21]. For acoustic

modeling, activations at the output layer are normalized by a softmax operation to

produce posterior distribution over tied states at time t, st:

P (st|xt; θ) =
exp(UT

st)Φ
L∑

s′ exp(U
T
s′

)ΦL
, (67)

where xt is the input data in frame t, θ is model parameters, ΦL is non-linear transfer

function in L (last) hidden layer, and U is output weight matrix. This model is usu-

ally trained in a speaker independent (SI) fashion: a set of training speech examples

{(xt, st)}Tt=1 produced by some number of distinct speakers is used to train the net-

work. The objective of speaker adaptation is to adjust the parameters such that the

acoustic model generalizes better to unseen talkers. This is achieved by using some

amount of adaptation data {(xmt , smt)}Tm

t=1, T
m << T for speaker m in order to refine

the model such that it better approximates the posterior distribution P (st|xmt ; θm, θ)

for a given speaker. By defining a set of speaker-dependent (SD) parameters for

speaker m, θm = {r1
m, ..., r

L
m}, where rlm ∈ RM l

is the vector of SD parameters for the

lth hidden layer. If a(rlm) is element-wise function that constrains the range of rlm,

then we can modify the output of hidden layer l in SI

hl = Φl(WlThl−1), (68)

to define an SD hidden layer output:

hlm = a(rlm) ◦ Φl(WlThl−1
m), (69)

56

where ◦ is an element-wise multiplication. The SD term can be viewed as weighting

the hidden unit contributions.

Unsupervised adaptation using multi-speaker DNN structure is done in [101]. In

this model, using shared hidden layers of multi-speaker DNN structure, nearest labels

for unlabeled acoustic data of target speaker will be estimated. Common linguistic

content between training speakers can be modeled using multi-speaker DNN structure.

It will improve the robustness of mapping from linguistic to acoustic features. In

addition, it will have a positive effect on quality of the synthesized speech. As in

cross-lingual adaptation, correct frame-level linguistic features are not available for

adaptation, using unsupervised adaptation, for each frame of target speaker’s acoustic

feature, linguistic label will be estimated. Using multi-speaker DNN-based structure

for speech synthesis, optimal estimation of linguistic features l for each frame of

acoustic feature o based on some cost function like MSE can be shown as

l = argmin
l

D(argmin
s
Fs(l), o) (70)

where the mapping function from linguistic to acoustic features Using DNN model is

shown with Fs(.). Distance between estimated and real acoustic features for speaker

s is shown with D(.). Utilizing rich speech dataset, the accuracy of estimated labels

in unsupervised speaker adaptation will be increased. After estimation of the frame-

level linguistic features, unsupervised adaptation can be applied similar to supervised

adaptation. And in the multi-speaker DNN structure, using some estimation method

like least squares, for generating the adapted model, we can estimate the regression

layer of DNN.

57

CHAPTER V

PROPOSED ALGORITHMS

We mostly focused on cross-lingual adaptation when only a few utterances are avail-

able from a target speaker. To achieve better speaker similarity than existing state-

mapping based algorithms under limited data conditions, we proposed several meth-

ods. In the first method, eigenvoices were used for rapid adaptation. Eigenvoice

weights computed for the input language are linearly transformed into output lan-

guage weights. The transformation matrix is learned using a bilingual training

database which contains English and Turkish speech data from the same speak-

ers. During eigenvector transformation, to avoid overfitting and exploit correlations

within eigenvector elements, a partial least squares (PLS) approach is used. To fur-

ther boost the performance, elements of eigenvectors are also weighted using recursive

PLS (rPLS). Moreover, in addition to weighting the eigenvectors in a least-squares

linear regression approach, as done in [24], eigenvectors are weighted in the proposed

PLS and rPLS frameworks leading to weighted-PLS and weighted-rPLS algorithms.

In the second method, we proposed speaker-specific state-mapping, for which a

bilingual database was used. After generating speaker-adapted models for both input

and output languages, a speaker-specific state-map is constructed for each speaker in

the pool of bilingual speakers. Then, for a previously-unseen target speaker, a nearest-

neighbour is found in the pool and the state map of that nearest-neighbour is used for

adaptation. Performance for the excitation parameters was found to be significantly

better with the proposed method than the baseline target-speaker-independent state-

mapping algorithm, in objective and subjective tests.

As the next novelty, the proposed state-mapping algorithm is used for mapping

58

the data in the input language to models in the output language and performing cross-

lingual eigenvoice adaptation which enabled significant improvement in the spectral

envelope features.

In recent years, deep neural network has significant effect on statistical parametric

speech synthesis (SPSS) field. As the last novelty, for investigating DNN models on

cross-lingual adaptation, we proposed new method of unsupervised speaker adapta-

tion using continuous labels. In this method, using BLSTM-RNN based model, we

estimate the continuous labels (c-lab) for unlabeled adaptation data of target speaker.

For adaptation, DCC structure is used for estimating the speaker codes [20].

5.1 Cross-lingual Eigenvoice Adaptation

Eigenvoice for intra-lingual adaptation is discussed in Section 3.3. For eliminating the

effect of overfitting, regularization is done by imposing a zero-mean Gaussian prior,

p(w), on the weight vector. ws is then estimated using a maximum a posteriori

(MAP) adaptation.

In the MAP approach, the weight vector for a target speaker s is estimated with

the objective function

ŵs,map = argmax
w

p(χa|w)p(w) (71)

where p(w) is the prior, set to N (0,Σw) here.

Using (38) to replace the likelihood term p(χa|ws), removing the terms that are

independent of w from the objective function, and with some matrix manipulation,

the MAP objective function becomes

ŵs,map = argmax
w

exp(wTETΣ−1Sx −
1

2
wTETNΣ−1Ew) exp(−1

2
wTΣ−1

w w), (72)

where the block diagonal Σ−1 = diag(Σ−1
1 ,Σ−1

2 , ...,Σ−1
Nst

), Sx = [Sx,1,Sx,2, ...,Sx,Nst],

and N = diag(N1,N2, ...,NNst).

The objective function can be maximized by noting that the posterior distribution

p(w|χa) is a Gaussian since the Gaussian distribution is the conjugate prior of the

59

Gaussian likelihood function with unknown mean in (38). Therefore, (71) can be

written as

ŵs,map = argmax
w

exp(−1

2
(w − µw|χ)TRw|χ(w − µw|χ)) (73)

where Rw|χ is the precision matrix. By completing the squares and using (72),

Rw|χ = (ETNΣ−1E + Σ−1
w), (74)

and

µw|χ = R−1
w|χE

TΣ−1Sx. (75)

MAP estimate of w, ŵs,map, is the mean, µw|χ, of the posterior distribution. Σ−1
w

is a hyper-parameter of the prior which we set to αS−1 where α is a scalar (chosen

empirically) and S is the diagonal matrix

S = diag(λ1, λ2, ..., λR) (76)

where λi are the eigenvalues obtained while estimating the E matrix using PCA.

Because adaptation data is available only in the input language, the computations

above perform intra-lingual adaption: that is, they result in an estimate for ws,in.

However, the weight vector for the output language,ws,out, is required for cross-lingual

adaptation, so that we can compute

µ
(s)
out = µsi,out +Eoutws,out. (77)

where µ
(s)
out is the supervector, Eout is the eigenvoice matrix, and µSI,out is the speaker-

independent supervector for the output language. We have investigated both data-

mapping and vector-/space-mapping techniques to estimate ws,out. Our proposed

techniques are described below.

5.1.1 Algorithms Based on Eigenvector Mapping

Given ws,in, computed using intra-lingual adaptation, we can use linear regression to

predict ws,out. The ws vectors for a set of bilingual training speakers can be computed

60

for the input and output languages using (44). Then, a linear regression matrixA can

be trained such that ws,out = Aws,in + ε. In the simplest approach, the least-squares

(LS) algorithm is used for training A. Once A is trained using the training speaker

pool, it can be used to transform the eigenvoice weight vector of a target speaker in

input language space into a vector in output language space.

Because the relationship between the input and output vectors is not linear and

the number of bilingual speakers is not large, more sophisticated regression techniques

are investigated and described below.

5.1.1.1 Speaker-specific Regression of Eigenvoice Vectors

A linear model is chosen because nonlinear methods (e.g., neural networks) require

significantly more data, and collection of large bilingual databases is expensive. How-

ever, to improve the performance of the linear model, theAmatrix can be constructed

in a target-specific manner. To that end, we propose a weighted linear regression ap-

proach as described below.

Given adaptation data from a target speaker, the speaker-specific Atar matrix is

computed using:

Atar = argmin
A

Np∑
i=1

εTi,tarεi,tar (78)

where Np is number of training speakers and

εi,tar = Ltar(i).(wout(i)−Awin(i)) (79)

where Ltar(i) is the weight of the ith training speaker, wout(i) is its eigenvoice vector

in the output language and win(i) is its eigenvoice vector in the input language.

The speaker weights Ltar(i) are computed as follows. First, intra-lingual adapta-

tion is done and the distance of the target speaker to each of the training speakers is

found by using the Euclidean (L2) distance between the mean supervectors. Then,

61

these distances are compressed and normalized with

Ltar(i) = 1− log2

(
d(i)− dmin

dmax − dmin

+ 1

)
(80)

where d(i) is the distance of the ith training speaker to the target, dmax is the maximum

and dmin the minimum of such distances across all training speakers.

Once Ltar(i) and Atar are computed, the eigenvoice weight in the output language

is estimated as ŵtar,out = Atarwtar,in.

5.1.1.2 Partial Least-squares Regression

Because the number of bilingual speakers is, as already noted, not large, overfitting

can occur during linear regression, especially if the eigenvoice vector dimension is

large. Correlations between the elements of the eigenvoice vectors, as shown in Figure

22, can be exploited to avoid poor generalization.

When significant co-linearity exists, one way to address the overfitting problem

is to use PCA and reduce the dimension of the eigenvoice vectors. However, this

is not desirable in our case because the linear regression step is already preceded

by a PCA step and further reduction of dimensionality would cause degradation

in adaptation performance. Moreover, PCA only minimizes the distortion in the

vectors during dimensionality reduction whereas the objective should be to minimize

distortion during linear regression.

The partial least squares (PLS) linear regression approach is used here to solve

the generalization problem. In this approach, the input weight vector is

ws,in = Γxs,in + εs,in (81)

and the output weight vector is

ws,out = Ωxs,in + εs,out (82)

where the regression matrices Γ ∈ RR×Rr and Ω ∈ RR×Rr .

62

(a)
Covariance of ws vectors for spectral envelope
(MGC: see chapter 6)

(b)
Covariance of ws vectors for fundamental frequency
(LF0: see chapter 6)

Figure 22: Covariances of weight vectors (ws) for spectral envelope (MGC) and
fundamental frequency (LF0) extracted from 88 speakers using 10 utterances per
speaker using Eq. 73 are shown. Covariances of the 2, 5, and 10 dimensional weight
vectors are shown separately. For an R-dimensional case, an R×R image is plot
where intensity of each pixel is determined by the magnitude of the corresponding
element in the covariance matrix.

Because Rr < R, the dimensionality of the latent xs,in vectors is lower than the

dimensionality of ws,in vectors. Thus, dimensionality of ws,in is reduced in the first

equation and a linear regression function is defined between the xs,in andws,out vectors

in the second equation. Combining those two equations, the linear regression function

becomes

ws,out = Ψws,in + εs (83)

where Ψ ∈ RR×R. The solution with PLS minimizes
∑

s ‖εs‖2. The SIMPLS algo-

rithm is used to solve the PLS regression problem [109].

5.1.1.3 Recursive Weighted Partial Least-squares Regression (rPLS)

Some of the predictor variables in ws,in are probably more important than others

for explaining the observed variables in ws,out through linear regression. One way to

handle that in PLS is to use a method such as jack-knife [110] and remove unimportant

variables. However, assigning weights to variables depending on their prediction

power can lead to a more accurate solution. Recursive PLS (rPLS) algorithm is

63

used here to perform such importance weighting [111].

If the vectorsws,out andws,in are preprocessed to have zero mean and unit variance,

then for each element i of ws,out, ws,out(i), PLS algorithm can be used independently

so that

ws,out(i) = bTi ws,in, (84)

where bi is the regression vector for estimating ws,out(i). After a PLS solution is

found, bi can be used for importance weighting. In that case, the input vectors from

the previous iteration are reweighted using

witer
s,in = diag(bi)w

iter−1
s,in . (85)

where diag(bi) is a diagonal matrix where the elements of bi are on the diagonal. PLS

is then used again to re-estimate bi. The PLS and weighting steps are iterated until

convergence.

Note that rPLS performs importance weighting for each element of ws,out inde-

pendently. Thus, the rPLS model is trained independently for each element of ws,out

which could cause degradation if there is high correlation between the elements of

ws,out.

5.1.1.4 Weighted Partial Least-squares Regression (WPLS)

Similar to weighted linear regression, weighted PLS (WPLS) can be used for weighting

the eigenvoice vectors depending on their importance, during training. In this ap-

proach, the eigenvectors of the training speakers can be weighted such that
∑Np

s=1ws||εs||2

is minimized, where ws is the weight for speaker s. In our case, the weights are pro-

portional to the normalized distances of target speakers to training speakers and

they can be incorporated into the PLS training algorithm simply by duplicating the

training samples in proportion to their weight as described below.

Let the weight of each training speaker i be equal to Ltar(i) defined in (80). Then,

the data for each training speaker i can be repeated ri = round(Nr×wi) times in the

64

training set where Nr is an integer constant. Those repetitions will approximately

increase the size of the training database by a factor of Nr. If the SIMPLS training

algorithm is used, the contribution of each sample to the total error ε will be equally

weighted. However, because each sample is repeated ri times and same error εi(r)

is obtained for each repetition r, total error contributed by speaker i, εi, is equal

to ri||εi(r)||2 where ri is proportional to wi if we ignore the round-off effects. Thus,

minimization of the total error with the SIMPLS algorithm will minimize weighted

errors when samples are duplicated in proportion to their weights.

Multiple speaker's data

Average voice model

Intra-lingual speaker adaptation
for reference speakers

Generate eigenmatrix

Extract eigenvector for each
reference speaker

Input/Output Language

ref1

ref2 ref3

refn

...

SI

Figure 23: Generation of the eigenspace and extraction of weight vectors for ref-
erence speakers. The procedure is done for both input and output languages while
performing cross-lingual adaptation using eigenvector mapping.

Because the approach proposed here does not change the training algorithm – it

only modifies the training dataset – it can also be used with rPLS, giving us weighted

rPLS (WRPLS). Steps for training the AVMs and extracting the eigenvector for each

reference speaker in input or output languages are shown in Figure 23. An overview

of the various eigenvoice mapping cross-lingual adaptation algorithms is shown in

Figure 24.

65

Target
speaker's data

Eigenmatrix

Eigenvector for
each reference

speaker

Extract
eigenvector

of target
speaker

Estimate
eigenvector

of target
speaker

Adapted model
to target
speaker

Train linear regression model
between input and output

language eigenvectors
LS WLS PLS WPLS rPLS WRPLS

Eigenvector for
each reference

speaker

Eigenmatrix

Input Language Output Language

Figure 24: Cross-lingual adaptation of a target speaker to an output language using
eigenvector mapping.

5.2 Algorithms Based on Data-Mapping

Using data-mapping structure in state-mapping model of cross-lingual adaptation,

two algorithms are proposed. Nearest-neighbour state-mapping and Eigenvoice adap-

tation using data-mapping.

5.2.1 Nearest-neighbour State-mapping

The baseline algorithm performs state-mapping using the AVMs once and uses the

same map for all target speakers. However, data mapping could be more effective

if the state-mapping were done in a speaker-specific manner. To that end, separate

speaker-dependent models of each reference speaker were adapted for each of the

input and output languages.

A cross-lingual state map was learned separately for each of those training speak-

ers, using their speaker-dependent models. As a result, for each bilingual training

speaker si, a map Mi between that speaker’s models for the input and output lan-

guages was produced.

Our proposal is to select one of those pre-trained maps to use for adaptation of

a (previously unseen) target speaker. Similarity between the target speaker and the

training speakers can be used to select the nearest training speaker, Snn, to the target

speaker star. Euclidean distance, (µnn −µtar)T (µnn −µtar), is used as the similarity

66

measure, where µnn is the supervector of state means in the input language model of

nearest training speaker. Similarly, µtar is the supervector of the target speaker.

Once Snn is selected, the state-map Mnn is used for mapping the adaptation

data to output language states. Then, similar to the baseline approach, intra-lingual

adaptation is performed.

5.2.2 Eigenvoice Adaptation Using Data-mapping

Cross-lingual Bayesian eigenvoice adaptation (Cross-BEA) can be performed using

a data-mapping approach once a state-map Mtar is available for the target speaker.

Here, the nearest-neighbour based state-mapping algorithm described above is used

to find Mtar.

Once the adaptation data is mapped to the states of the output language, com-

putation of ŵs,out is exactly the same as the intra-lingual adaptation case. The

adaptation data-dependent variables S
(s)
x,c and N

(s)
c in (43) are computed by mapping

data to output language states using Mtar. Then, ws,out is estimated using (44).

Steps for finding the nearest reference to the target speaker is shown in Figure 25. A

diagrammatic overview of all algorithms based on data mapping is in Figure 26.

Multiple speaker's data

Average voice model

Intra-lingual speaker
adaptation for target

speaker

Target speaker's data

Intra-lingual speaker adaptation
for reference speakers

Find nearest reference
speaker to the target

speaker

Input Language

Figure 25: Overview of the algorithm for finding the nearest reference speaker to the
target speaker in input language.

67

CSMAPLR/CMLLR
speaker

adaptation

Target
speaker's

data

Reference speakers Reference speakers

State-mapping between the
input and output models of the

reference speaker

Extract
eigenvector of
target speaker

Adapted model to
target speaker

Input Language Output Language

Cross-BEA NN-based SM

Figure 26: Overview of the data-mapping algorithms. After state-mapping, proposed
eigenvoice adaptation or CSMAPLR/CMLLR adaptations can be done. Those two
options are shown between horizontal fork/join bars.

5.3 Unsupervised Speaker Adaptation Using Continuous La-
bels

In unsupervised adaptation of HSS systems, linguistic labels are mostly generated

from ASR [102]. When we use short units like senone, the quality of estimated lin-

guistic features from ASR can be unstable. Even using longer units (e.g. phoneme

or word) is also generally depend on the quality of the language model. In ASR

mostly shorter linguistic units like senones is common while for generating high qual-

ity waveforms, speech synthesis needs richer linguistic content like full context label.

For the long-span linguistic features, estimating the rich content linguistic features

from estimated ASR labels is problematic. Specially, in the cross-lingual adaptation

case, because of difference between linguistic content of input and output languages,

tied tri-phone state mapping can not be accurate. For alleviating the problem, using

BLSTM-RNN we propose new method for estimating the linguistic features. Instead

of multi-speaker DNN [101], for estimating the continuous label for each frame of

acoustic data, we used BLSTM-RNN model. Instead of binary label (b-lab) esti-

mation, which is common in DNN-based speech synthesis, with use of sum square

68

error (SSE) as cost function, we estimate continuous labels (c-lab) from the acoustic

features. For alleviating the mismatch between binary and continuous labels, TTS

model is trained with continuous labels. Then, target speaker is adapted using DCC

structure for estimating the speaker codes in input layer [20]. With keeping the DNN

weights unchanged in the adaptation time, in addition of the advantage of applying

the linguistic features and speaker codes in the same layer, this method doesn’t suffer

from the gradient vanishing problem. For improving the adaptation performance, age

and gender codes are added to the input layer. In the synthesis time, for alleviating

the mismatch between binary and continuous labels, another BLSTM-RNN model

was trained to convert b-labs to c-labs. Overview of unsupervised adaptation based

on continuous labels are shown in Figure 27. As this method of adaptation is not

biased to employ any specific language-related feature, it can be applicable for both

intra- and cross-lingual adaptation cases.

Figure 27: Overview of unsupervised adaptation based on continuous labels.

69

CHAPTER VI

EXPERIMENTS AND RESULTS

Experimental settings of the proposed methods are shown in Section 6.1. Performance

of the proposed methods were measured with both objective and subjective tests. The

objective test results are presented in Section 6.2 and the subjective test results are

presented in Section 6.3. The first set of objective tests were done to tune the regu-

larization parameter, α, of the eigenvoice adaptation technique discussed in Section

5.1. Then, the objective test results of the proposed data-mapping based algorithms

are presented in Section 6.2.2. Performance of the eigenvector-mapping methods LS,

WLS, PLS, and WPLS are discussed in Section 6.2.3 and the rPLS algorithm is dis-

cussed in Section 6.2.4. The best performing methods proposed HMM-based systems

are compared in Section 6.2.5 and the most important findings are summarized in

Section 6.2.6. Objective comparison of the proposed DNN-based method is shown in

Section 6.2.7.

The subjective test results are presented for the best performing algorithms in

Section 6.3. Speaker similarity test results are discussed in Section 6.3.1 and the

speech quality test results are discussed in Section 6.3.2. Subjective comparison of

the proposed DNN-based method is shown in Section 6.3.3.

6.1 Experimental settings

For the proposed methods experiments on HMM-based and DNN-based systems were

done.

70

6.1.1 HMM-based Systems Experiments

All HMM-based systems in our experiments employed 78 dimensional observation

vectors comprising 24 Mel-Generalized Cepstral Coefficients (MGCs), 1 log-energy,

1 log-F0 (LF0) coefficient, and their delta and delta-delta parameters. A 25 msec

analysis window with 5 msec frame shift is used for feature extraction. Phonemes are

modeled with 5 state Hidden Semi-Markov Models (HSMM).

Turkish is the input language and English is the output language. Two male (bdl

and rms) and two female (slt and clb) speakers from the CMU-ARCTIC database

(1130 utterances per speaker) were used to train the average voice model (AVM)

for English. For training the AVM in Turkish, speech from three female speakers

(1100 utterances each) were used. For the purposes of testing the proposed methods,

a bilingual Turkish-English database was created, containing speech from 88 female

speakers. From 29 speakers, used as targets, 50 Turkish and 50 English utterances

were recorded. 10 Turkish and 10 English utterances were recorded by each of the re-

maining speakers. For better comparison between reference speakers, same sentences

were used for all speakers.

For each speaker, a Turkish speaker-dependent model was created using the Turk-

ish AVM and CSMAPLR adaptation followed by MAP adaptation. Similarly, English

speaker-dependent models were created using the English AVM for each speaker. A

leave-one-out method was used in testing for each of the 29 training speakers in

turn. Thus, 87 training speakers were used for each target speaker. The rank hyper-

parameter of the PLS and rPLS algorithms was tuned using cross-validation. The

Nr parameter of the WRPLS algorithm was empirically set to 100. Summary of

experimental setup for HMM-based methods is shown in Table 1.

The state-mapping algorithm [11] described in Section 4.2.1 was used as the com-

parison baseline since in similarity case, it is one of the best performing cross-lingual

adaptation techniques available [14,105].

71

Table 1: Summary of experimental setup for HMM-based methods.
Average voice models Adapted intra-lingual models
Number of Number of Number of Number of Number of Number of
speakers utterances speakers utterances target speakers reference speakers

Input language 3 3217 88 10 (29 with 50 utts) 29 87
Output language 4 4528 88 10 (29 with 50 utts) - 87

Table 2: Age bands of the training-set of DNN-based method.

Age Male Female Total

10-20 8 8 16
21-30 8 8 16
31-40 8 8 16
41-50 8 8 16
51-60 8 8 16
61-70 8 8 16
71- 8 8 16

Total 56 56 112

6.1.2 DNN-based Systems Experiment

For the DNN-based experiment, For training the average voice model, we used the

Japanese Voice Bank corpus, containing studio-quality native Japanese speech uttered

by 56 male and 56 female speakers aged between 10 and 89. The training-set speakers

were chosen to be equally distributed for each age band (8 speakers for each age band

and gender). With approximately 100 utterances per speaker, this yielded a total of

11,170 training-data utterances. Age bands of the training-set are shown in Table 2.

For the adaptation, both intra-lingual and cross-lingual conditions were tested.

To this end, speech of one female and one male English-Japanese bilingual speakers

were used. This dataset was recorded in National Institute of Informatics (NII) insti-

tution in Tokyo, Japan. For the cross-lingual adaptation case, English and Japanese

were used as input and output languages respectively. For investigation of the effect

of adaptation data size on quality of the synthesized speech, for each speaker, 10,

100, and 200 utterances from English and Japanese languages were used as adapta-

tion data. Description of the target speakers for DNN-based intra- and cross-lingual

72

Table 3: Description of the target speakers for DNN-based intra-lingual adaptation
approach.

Name Gender Adaptation Size (utts)
JpnM00010 Male 10
JpnM00100 Male 100
JpnM00200 Male 200
JpnF00010 Female 10
JpnF00100 Female 100
JpnF00200 Female 200

Table 4: Description of the target speakers for DNN-based cross-lingual adaptation
approach.

Name Gender Adaptation Size (utts)
EngM00010 Male 10
EngM00100 Male 100
EngM00200 Male 200
EngF00010 Female 10
EngF00100 Female 100
EngF00200 Female 200

adaptation approaches are shown in Table 3 and Table 4, respectively. To evaluate

the speaker adaptation task, for each target speaker, 100 additional utterances in

English and Japanese languages were held out as test data.

The speech signal waveforms were sampled at 48 kHz, with 16 bits per sample.

World [112] analysis was used to obtain 259-dimensional acoustic feature vectors every

5 ms, each with 25 ms window length comprising 60 mel-cepstral coefficients (with

a bilinear frequency warping parameter of 0.77), a linearly interpolated fundamental

frequency in the mel scale, and 25-dimensional band aperiodicities, along with their

delta and delta-delta counterparts. The last feature was a binary voiced/unvoiced

flag. During synthesis time, to produce the most likely speech trajectory sequence,

the static and dynamic features were combined as described in [113], based on a

forced-alignment against the held-out natural speech (i.e., an oracle duration model

from HSMM alignment was used).

73

For the input linguistic features, Open JTalk1 was used to perform standard anal-

ysis of Japanese text for synthesis, including “grapheme-to-phoneme conversion”,

“part-of-speech tagging”, and “morphological analysis” with the MeCab parser [114].

Syntactic and prosodic linguistic information which is extracted from text and cal-

culated quin-phone identity were concatenated into a 389-dimensional mixed discrete

and numeric (365 discrete and 24 numeric) vector of linguistic features. As we ex-

plained before, we call this linguistic features “binary labels” (b-lab). For eliminat-

ing the mismatch between training and unsupervised adaptation data, with used of

BLSTM-RNN model, binary labels of training set is converted to continuous labels

(c-lab). This continuous labels were then augmented with age, gender, and speaker

codes as auxiliary features and used as the input to the neural network speech syn-

thesizer.

This DNN model was feed-forward DNN with five hidden layers of 1024 hidden

units per each layer. Sigmoid activation functions were used for all units in the hidden

and output layers. The models were initialized randomly and trained to minimize

mean square error using AdaGrad [115] as batch optimizer for 10 epochs with the

learning rate fixed to 0.05 and mini-batch size set to 256. When adapting to a new

speaker, speaker code was estimated using 10 back propagation epochs with learning

rate 0.2. For implementation Python wrapper of OpenCL (PyOpenCL)2 was used

and the model was trained on GPU Tesla K80.

For estimating the continuous labels from acoustic features, BLSTM-RNN model

was used. This RNN model was two feed-forward layers with 1024 hidden units per

each layer followed by two BLSTM layers with 256 hidden units per each. Stocas-

tic gradient descent (SGD) with 0.0004 learning rate with 256 mini-batch size for

40 epochs was used as batch optimizer. 90% of Japanese VoiceBank dataset was

1http://open-jtalk.sourceforge.net/
2https://mathema.tician.de/software/pyopencl/

74

used for training and 10% of this dataset was used for testing. For estimating the

continuous labels instead of binary labels, sum squared error (SSE) was used as a

cost function. CUDA-enabled machine learning library for recurrent neural networks

(CURRENNT)3 was used for implementation and the model was trained on GPU

Tesla K80.

For eliminating the mismatch between binary and continuous labels in synthesis

time, another BLSTM-RNN model was trained. The structure of this model is just

like previous BLSTM-RNN model, but instead of 259 dimension acoustic feature, 389

dimension binary label was used as input feature.

6.2 Objective Measures

Root-mean-square-error (RMSE) is used for objectively measuring the distortion in

LF0 features, with respect to natural references. Similarly, Mel-cepstral distortion

(MCD) [116] is used for the MGC features. For the HMM-based methods, synthetic

speech from speaker-dependent models was played to listeners as the reference sam-

ples. Objective performance of the DNN-based method is described in Section 6.2.7.

Now we discuss the objective performance of the HMM-based methods.

The duration model of the English AVM was used in all cases [100] and so the

duration of reference and test samples is always the same. For each target speaker,

adaptation was performed using 2, 5, or 10 utterances of adaptation data. For each

adapted model, 40 English sentences from the WSJ1 database were synthesized for

testing. Significance of the difference between models was measured with a t-test at

95% confidence interval.

3https://sourceforge.net/projects/currennt/

75

6.2.1 Tuning the Regularization Parameter

The hyper-parameter α that is used in the regularized eigenvoice approach described

in Section 5.1 was tuned experimentally for LF0 and MGC features. Tuning was done

for Turkish and English voices separately as shown in Figure 28. The values of α used

in the experiments are given in Table 5.

0 1 25 10
0

50
0
10
00

20
00

40
00

α

1.10
1.15
1.20
1.25
1.30
1.35
1.40

M
C
D
 (
d
B
)

(MGC in English)

2 PCA 2utt

5 PCA 2utt

10 PCA 2utt

2 PCA 5utt

5 PCA 5utt

10 PCA 5utt

2 PCA 10utt

5 PCA 10utt

10 PCA 10utt

0 1 25 10
0

50
0
10
00

20
00

40
00

α

0.06
0.07
0.08
0.09
0.10
0.11
0.12

R
M
S
E
 (
lo
g
 H
z)

(LF0 in English)

0 1 25 10
0
50
0
10
00
20
00
40
00

10
00
0

20
00
0

40
00
00

α

1.80
1.85
1.90
1.95
2.00
2.05
2.10
2.15
2.20
2.25

M
C
D
 (
d
B
)

(MGC in Turkish)

0 1 25 10
0
50
0
10
00
20
00
40
00

10
00
0

20
00
0

40
00
00

α

0.08
0.09
0.10
0.11
0.12
0.13
0.14

R
M
S
E
 (
lo
g
 H
z)

(LF0 in Turkish)

Figure 28: Performance of regularization in intra-lingual adaptation for MGC and
LF0 features in English and Turkish with different α values. Note that for the LF0
features, a difference of 0.01 log(Hz) corresponds to 17.3 cents.

Table 5: α values used for 2, 5, or 10 utterances of adaptation data, for English and
Turkish.

English Turkish
2 utt 5 utt 10 utt 2 utt 5 utt 10 utt

MGC 100 100 100 2000 10000 10000
LF0 25 100 100 500 1000 2000

When α increases, the possibility of overfitting decreases. However, if α is too

high, then the algorithm does not have enough flexibility to adapt. For Turkish,

regularization helped significantly both for LF0 and MGC features.

76

In the case of English, overfitting did not generally occur. Although a little over-

fitting occurred for the 10 PCA case, it was not significant for MGC and significant

for LF0 only in the 2 or 5 adaptation utterance situations.

There are differences between Turkish and English that explain the differing be-

haviour regarding regularization. The target speakers are native speakers of Turkish

and so their speech is well modelled by the average voice model and their prosodic

and pronunciation patterns are consistent when they speak Turkish. For English, this

is not the case. Therefore, stronger patterns and higher variability was observed in

the case of Turkish, as shown in Figure 29 where the eigenvalues obtained for Turkish

and English are shown.

0 5 10 15 20 25 30
PCA dimension

0

50

100

150

200

E
ig

en
va

lu
es

(MGC)

Tr
En

0 5 10 15 20 25 30
PCA dimension

0
10
20
30
40
50
60

E
ig

en
va

lu
es

(LF0)

Figure 29: Eigenvalues of reference speakers in Turkish and English languages.

For estimation of distance of average voice models in English and Turkish lan-

guages from the reference speakers, Euclidean distance of mean supervector of MGC

and LF0 features in English and Turkish languages is illustrated in Figure 30. For

MGC features, distance between SI and references in Turkish language is smaller than

English language. Using native Turkish speakers for recording the bilingual dataset

can be the reason of this observation. But for LF0 features, the observable distance

in both languages are similar.

77

Figure 30: 2D visualization of distance between reference and SI models in English
and Turkish data.

6.2.2 Objective Performance of Algorithms Based on Data-mapping

Two algorithms proposed here are based on data-mapping (Section 4.2.1). Perfor-

mance of the NN-based state-mapping algorithm is compared with the other algo-

rithms in Figure 31. Because CSMAPLR and CMLLR can each be used after data

is mapped to output language AVM states, both were tested in combination with

the baseline and proposed state-mapping methods. The proposed NN-based state-

mapping algorithm significantly outperformed the baseline algorithm both for MGC

and LF0 and for all adaptation data sizes. CSMAPLR and CMLLR performed equally

well for the MGC features. For LF0, CMLLR performed better than CSMAPLR for

the baseline system, and CSMAPLR performed better for the proposed system.

The baseline and NN-based state-mapping algorithms were also compared with

the Cross-BEA method in Figure 31 when 2-, 5-, and 10-dimensional eigenspaces were

used. The Cross-BEA method substantially improved the performance compared to

other techniques, for the MGC features.

78

For LF0, the Cross-BEA algorithm did not perform as well as NN-based state-

mapping. Because the state-mapping accuracy is high when NNs are used, low di-

mensional LF0 vectors could be adapted well with CSMAPLR. However, performance

of the eigenvoice algorithm saturated quickly and it so it does not perform as well as

CSMAPLR as the amount of data grows: the performance gap widens with increasing

data size.

2utt 5utt 10utt
1.2

1.4

1.6

1.8

2.0

2.2

2.4

M
C

D
(d

B
)

(MGC)

Baseline state-mapping (CSMAPLR)
Proposed state-mapping (CSMAPLR)
Baseline state-mapping (CMLLR)
Proposed state-mapping (CMLLR)
L2NN
Cross-BEA 2PCA

Cross-BEA 5PCA
Cross-BEA 10PCA
L2NN+CSMAPLR
Cross-BEA+CSMAPLR
WRPLS+CSMAPLR

2utt 5utt 10utt
0.05

0.10

0.15

0.20

R
M

S
E

(lo
g

H
z)

(LF0)

Figure 31: Objective evaluation (RMSE and MCD) of algorithms based on data-
mapping for MGC and LF0 features, showing 95% confidence intervals. The groups
of results for “2utt”, “5utt” and “10utt” correspond to 2, 5 and 10 utterances of
adaptation data. Note that for the LF0 features, a difference of 0.1 log(Hz) corre-
sponds to 173 cents. Cross-BEA+CSMAPLR was done with 10 dimensional PCA.
WRPLS+CSMAPLR was done with 2 dimensional PCA.

Algorithms that use data mapping were also compared with the case where speech

is synthesized with the nearest-neighbour (L2NN) without any further adaptation.

Even though this approach worked well, as shown in Figure 31, it did not perform

79

better than the Cross-BEA algorithm for the MGC features and the NN-based state-

mapping algorithm with CSMAPLR for the LF0 features.

Additional CSMAPLR adaptation was done after L2NN, Cross-BEA, and WR-

PLS algorithms to investigate if there is opportunity for further improvement with

additional adaptation steps. Results are shown in Figure 31. CSMAPLR degraded

the performance for the high-dimensional MGC features when applied after L2NN,

Cross-BEA, and WRPLS algorithms. Thus, the CSMAPLR algorithm overfit on

the adaptation data for the high-dimensional MGC features and that distorted the

models. However, it helped improve the performance for the low-dimensional LF0

features.

6.2.3 Objective Performance of Least-squares Algorithms

2utt 5utt 10utt
1.10

1.15

1.20

1.25

1.30

1.35

1.40

M
C

D
(d

B
)

(MGC)
LS 2PCA
WLS 2PCA
PLS 2PCA
WPLS 2PCA
LS 5PCA
WLS 5PCA
PLS 5PCA
WPLS 5PCA
LS 10PCA
WLS 10PCA
PLS 10PCA
WPLS 10PCA

2utt 5utt 10utt
0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

R
M

S
E

(lo
g

H
z)

(LF0)

Figure 32: Objective evaluation (RMSE and MCD) of the LS, WLS, PLS, and WPLS
algorithms for MGC and LF0 features using 2, 5 and 10 dimensional PCA with 95%
confidence intervals. The plots for “2utt”, “5utt” and “10utt” correspond to 2, 5 and
10 utterances of adaptation data. Note that for the LF0 features, a difference of 0.01
log(Hz) corresponds to 17.3 cents.

Performance of the LS, WLS, PLS, and WPLS algorithms for the MGC and LF0

features is shown in Figure 32.

80

MGC Features: For the 2 utterance case, the differences between the algorithms

are not significant. For the 5 utterance case, WLS performed significantly better

than LS for all PCA sizes but WPLS is not significantly better than PLS. In the 10

utterance case, for 2 and 5 dimensional PCA, all four algorithms performed equally

well. For the 10 dimensional PCA case, PLS and WPLS substantially outperformed

the LS and WLS algorithms. This is expected, since the variances of the eigenvectors

increase with more data and it becomes harder to predict the English eigenvectors

using linear regression. By exploiting correlations between eigenvector elements, PLS

is able to do the regression in a lower dimensional space and avoid overfitting.

Note that objectively-measured performance of linear regression algorithms gen-

erally becomes worse with increasing data: models deviate further from the AVM.

The small number of training speakers and non-linear relationship between input and

output eigenvectors cause degradation. Thus, for the MGC features, performance

with 2 utterances is actually better than with 5 or 10 utterances.

LF0 Features: Weighting the samples did not generally have a significant effect

on performance in the 2 utterance case (except for 5-dimensional PCA), as shown in

Figure 32. For 5-dimensional PCA, partial least-squares (PLS, WPLS) is worse than

straightforward least-squares (LS, WLS).

For the 5 utterance case, all algorithms performed equally well, except that LS and

WLS were significantly worse than the others for 10-dimensional PCA. Similarly to

the situation for MGC features, the partial least-squares (PLS) algorithm solved the

overfitting exhibited by least-squares (LS, WLS) for the 5 utterance, 10-dimensional

PCA case.

In the 10 utterance, 2-dimensional PCA case, least-squares (LS, WLS) outper-

formed partial least-squares (PLS, WPLS); this is as expected, because the correla-

tions between the elements of the eigenvoice vectors are minimal for the 2-dimensional

81

case, as we saw in Figure 22.

In contrast to MGC features, linear regression for LF0 performed better with more

data. That is, the linear regression approach performs better for lower dimensional

feature vectors. Moreover, degradation of performance with higher PCA sizes did

not occur for LF0, except for the 5 utterance, 10-dimensional PCA case; this can be

solved with PLS or WPLS.

6.2.4 Objective Performance of the rPLS Algorithm

The results above show that weighting the samples sometimes improves (and never

reduces) the performance of LS and PLS. Hence, the remaining objective evaluations

are presented for weighted least-squares (WLS, WPLS) only. In Figure 33, perfor-

mance of the weighted least-squares (WLS, WPLS) algorithms is compared with the

recursive variants (rPLS, WRPLS). Although rPLS did not perform well (at most

PCA sizes for the 5 utterance and 10 utterance cases, for MGC features), WRPLS

was consistently the best performing algorithm for all amounts of data and at all PCA

dimensions. This indicates that weighting is effective and should be speaker-specific.

Note that the rPLS algorithm works independently for each element of the eigen-

vector in the output language. This means that any correlations between elements of

the vector violate the independence assumption and are therefore likely to degrade

performance. Covariance matrices for the MGC features is shown in Figure 22: even

though the matrix for 2-dimensional PCA is diagonal, substantial covariances can

be observed for the 5- and 10-dimensional cases; this explains the relatively poor

performance of rPLS for MGC features (Figure 33.)

For LF0, no particular algorithms consistently and significantly outperforms the

others. This is probably because of relatively weak correlations between the elements

of LF0 eigenvectors (cf. Figure 22).

82

2utt 5utt 10utt
1.10

1.15

1.20

1.25

1.30

1.35

1.40

M
C

D
(d

B
)

(MGC)
WLS 2PCA
WPLS 2PCA
rPLS 2PCA
WRPLS 2PCA
WLS 5PCA
WPLS 5PCA
rPLS 5PCA
WRPLS 5PCA
WLS 10PCA
WPLS 10PCA
rPLS 10PCA
WRPLS 10PCA

2utt 5utt 10utt
0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

R
M

S
E

(lo
g

H
z)

(LF0)

Figure 33: Objective performance (RMSE for LF0 and MCD for MGC features) of
the WLS, WPLS, rPLS, and WRPLS algorithms using 2, 5 or 10 dimensional PCA;
95% confidence intervals are shown. Note that for the LF0 features, a difference of
0.01 log(Hz) corresponds to 17.3 cents.

6.2.5 Direct Comparison of the Best Performing Algorithms

WRPLS, which is the best performing linear regression based algorithm, is now com-

pared with the best performing data-mapping algorithm, Cross-BEA. Figure 34 shows

the performance of these approaches across different amounts of data and different

PCA dimensions. The performance of intra-lingual adaptation is included in the

figure, as an upper bound.

For the MGC features, WRPLS outperforms Cross-BEA when only 2 utterances

are available; the two algorithms become comparable with 5 utterances, and Cross-

BEA outperforms WRPLS algorithm (at all PCA dimensions) when there are 10

utterances. The performance gap between the algorithms increases with PCA dimen-

sion.

The situation is reversed for LF0 features. With only 2 utterances, Cross-BEA per-

forms better than WRPLS (at all PCA dimensions). With 5 utterances, WRPLS and

Cross-BEA perform similarly, then WRPLS slightly outperforms Cross-BEA when

83

there are 10 utterances.

NN-based state-mapping with CSMAPLR was also compared with WRPLS and

Cross-BEA for the LF0 feature and it outperformed them both substantially in the

5 and 10 utterances cases. For those relatively larger data sizes, even though a

more accurate state mapping is available, Cross-BEA is not able to exploit the data

effectively because its performance has already saturated. In contrast, CSMAPLR

performance keeps improving with increasing data (for the LF0 features). This also

partly explains why WRPLS outperforms Cross-BEA with increasing data size.

2utt 5utt 10utt
1.10

1.15

1.20

1.25

1.30

1.35

1.40

M
C

D
(d

B
)

(MGC)

WRPLS 2PCA
Cross-BEA 2PCA
Intra-lingual 2PCA
WRPLS 5PCA
Cross-BEA 5PCA

Intra-lingual 5PCA
WRPLS 10PCA
Cross-BEA 10PCA
Intra-lingual 10PCA
NN-based state-mapping (CSMAPLR)

2utt 5utt 10utt
0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

R
M

S
E

(lo
g

H
z)

(LF0)

Figure 34: Objective evaluation (RMSE of LF0 and MCD of MGC features) of
the best performing algorithms WRPLS and Cross-BEA. NN-based state-mapping
is shown for LF0 only. 95% confidence intervals are shown. Intra-lingual adapta-
tion performance is included as an upper-bound. Note that for the LF0 features, a
difference of 0.01 log(Hz) corresponds to 17.3 cents.

84

6.2.6 Summary of Objective Performance

A large number of objective comparison tests have been presented above. The most

important findings are:

• NN-based state-mapping outperforms baseline state-mapping for both MGC

and LF0 features. This is shown by objective experiments presented in Figure

31. Thus, using speaker-dependent state-mapping was found to be effective

compared to speaker-independent state-mapping.

• Cross-BEA performs substantially better than the CSMAPLR algorithm for

the MGC features as shown in Figure 31. Hence, the CSMAPLR algorithm

could not adapt the high-dimensional MGC features as well as the eigenvoice

adaptation algorithm with the limited data.

• Using the nearest-neighbour model without any further adaptation performed

significantly better than the baseline system as shown in the Figure 31. This

indicates that a nearest-neighbour model trained with intra-lingual adaptation

is preferable to a model trained with the baseline algorithm using limited data

if the nearest-neighbour sounds similar to the target speaker.

• For the MGC features, eigenvector mapping becomes relatively less effective

with increasing adaptation data. Importance weighting and PLS regression

improved the performance, although combining them together did not further

improve performance as shown in Figure 32 and Figure 33. PLS approach helped

reduce the overfit problem because it does regression in a lower dimensional

space. Importance weighting addresses the non-linear relationship between the

input and output vectors during regression by assuming piecewise linearity. One

reason the combination of the two did not further improve the performance could

be because of a reduction in non-linearity in the lower dimensional space that

85

the PLS regression operates in.

• For LF0, eigenvector mapping becomes more effective with increasing adapta-

tion data size. Because the feature dimensionality is much lower for LF0, even

the basic least-squares (LS) approach performs well, regardless of the amount

of adaptation data as shown in Figure 32 and Figure 33.

• rPLS did not perform well, presumably because of correlations in the features.

However, weighting remedied this substantially and WRPLS was the best per-

forming algorithm for MGC and LF0, along with WLS as shown in Figure 33.

• Performance degrades significantly with increasing PCA size for all regression

algorithms, especially with 5 or 10 utterances, due to overfitting and non-

linearities; the issue is more significant for MGC features as shown in Figure 32

and Figure 33.

• For the MGC features, Cross-BEA performs better than the best performing

regression method, WRPLS, with the largest amount of adaptation data (10

utterance). WRPLS performs better when only 2 adaptation utterances are

available. The converse is true for LF0 as shown in Figure 34. The LF0 features

are in a far smaller space compared to the MGC features and 2 utterances are

enough for an effective Cross-BEA adaptation whereas larger amount of data

is needed for the MGC features. WRPLS performs better than Cross-BEA for

the LF0 features with larger data possibly because the relationship between the

input and the output eigenvectors is more linear compared to the MGC case.

• NN-based state-mapping with CSMAPLR substantially outperforms both WR-

PLS and Cross-BEA for LF0 as shown in Figure 31 and Figure 34. Thus,

CSMAPLR can do effective adaptation for the low-dimensional LF0 features

with limited amounts of data and eigenvoice based techniques are not necessary

86

if CSMAPLR is used with the NN-based approach.

6.2.7 Objective Performance of the DNN-based Algorithm

Based on the initial experiments, if distribution of linguistic features for train and

adaptation speakers be different, performance of adaptation will be degraded. For

analyzing the distribution of linguistic features, mean and variance of these features

were compared. Comparison between mean and variance of linguistic features in train

and cross-lingual adaptation sets are shown in Figures 35 and 36, respectively.

Figure 35: Comparison between mean of linguistic features in train and cross-lingual
adaptation sets.

Based on these results, the difference between the distribution of the continuous

linguistic features in train and cross-lingual adaptation sets is negligible. As a re-

sult, using continuous labels, distribution of estimated linguistic features from acous-

tic features in input language, will be similar to distribution of estimated linguistic

features in output language. In other word, using continuous labels, the difference

between linguistic contents of two languages will be negligible and it will enhance

the performance of cross-lingual adaptation. Using BLSTM-RNN model for sequence

estimation is one of the main reasons for reaching to this result.

87

Figure 36: Comparison between variance of linguistic features in train and cross-
lingual adaptation sets.

Similar to HMM-based methods, root-mean-square-error (RMSE) is used for ob-

jectively measuring the distortion in LF0 features, with respect to natural references.

Mel-cepstral distortion (MCD) [116] is used for measuring the distances in MGC and

BAP features. As continuous labels are extracted from each frame of acoustic features

of target speaker’s data, there is no need for duration estimation in adaptation time.

As mentioned before, for test set, using HSMM alignment the oracle duration version

of time-aligned full context labels were generated. With setting the speaker code to

average of all training speaker codes, gender to 0.5, and age to average age (35), the

speaker independent (SI) model was generated. For fair comparison between the SI

model and adapted models, age of adapted speakers were assumed as average age

(35). Objective evaluation (RMSE and MCD) of SI, intra- and cross-lingual adapted

models are shown in Figure 37.

Based on objective results, for male speaker, except LF0 feature, the performance

of all models for all features is significantly better than SI model. In MGC feature,

increasing the adaptation size will improve the performance of adaptation. In this

88

Figure 37: Objective evaluation (RMSE and MCD) of SI, intra- and cross-lingual
adapted DNN-Based models with 95% confidence intervals. Description of the target
speakers for DNN-based intra- and cross-lingual adaptation approaches are shown in
Table 3 and 4, respectively.

case, in average performance of intra-lingual adaptation was better that cross-lingual

adaptation. But, when 100 utterances was used for adaptation, the difference between

them wasn’t significant. For LF0, cross-lingual adaptation outperformed the intra-

lingual adaptation models. But it doesn’t show improvement with respect to SI

model. One reason for this observation can be the difference between channels of

train and adaptation sets. For the BAP features, although all the adaptation models

outperformed the SI model, increasing the adaptation data from 10 utterances to 200

utterances will not improve the performance of adaptation.

89

The observed pattern for female speaker was different. The mismatch between

recording channels of male and female speakers is one possible reason for this ob-

servation. For the female speaker, the performance of all models for all features is

significantly better than SI model. For MGC features, increasing the adaptation data

size improved the performance of intra-lingual adaptation models, but this increasing

degrades the performance of cross-lingual adaptation cases. In average, the difference

between intra-lingual and cross-lingual adaptation performance wasn’t significant.

For LF0 feature, increasing the adaptation data from 10 utterances to 100 utterances

significantly improved the performance of adaptation but adding more utterances

doesn’t improve the adaptation performance. In BAP feature, similar to the male

case, although all the adaptation models outperformed the SI model, increasing the

adaptation data from 10 utterance to 200 utterances will not improve the performance

of adaptation.

6.3 Subjective Evaluation

6.3.1 Speaker Similarity Tests in HMM-based Methods

In HMM-based methods, to subjectively measure the similarity of the adapted speaker

to the target speaker we employed ABX testing. As with the objective measures, syn-

thetic speech from speaker-dependent models was used as the reference X. Listeners

were asked to select which of the speakers of sample A or sample B was more similar

to this, or to indicate that samples A and B sounded the same in terms of similarity

to X. The A and B samples were synthesized from different adaptation methods ran-

domly. 10 target speakers were selected randomly and, for each speaker, five English

sentences from the WSJ1 database were synthesized for each amount of adaptation

data (2, 5, or 10 utterances). The tests were done in two phases. In the first phase, 12

native (10 female and 2 male) listeners and 2 non-native male listeners took the tests

in soundproof booths and they all listened to one utterance from each speaker. Even

90

though those utterances were different for different speakers, they were the same for

all listeners given a speaker. In the second phase, a different set of 12 gender-balanced

native English speakers took the tests. In this phase, each listener judged one ut-

terance from each speaker and the utterances were randomly selected out of four

utterances synthesized for each speaker. Results from the two phases are combined

for analysis.

The average age of listeners was 22 years. The stimuli were presented over head-

phones and listener responses were collected via a simple web browser interface. Lis-

teners could play the A, B and X samples as many times as they desired and they

were informed about that before the test. However, they were not encouraged or

discouraged to do that. In each test, 30 samples were played to each listener and in

average it took 15 minutes to finish the test. The text was the same in A, B and X

within a single presentation.

Guided by the objective results, four subjective ABX tests were designed. In the

first, the performance of the baseline state-mapping algorithm, generic state-mapping

with no information from the target speaker, with CMLLR for LF0 was compared

with the proposed NN-based state-mapping algorithm with CSMAPLR; this was the

best performing algorithm for LF0 according to objective measures. In both cases,

Cross-BEA (10-dimensional PCA) was used to generate the MGC features. The

results are shown in Figure 38a. Clearly, the NN-based state-mapping algorithm

substantially outperforms the baseline state-mapping algorithm (which uses the same

state-map for all speakers).

In the second experiment, the proposed NN-based state-mapping algorithm with

CSMAPLR for LF0 was compared with Cross-BEA (10-dimensional PCA). As before,

Cross-BEA (10-dimensional PCA) was used to generate the MGC features. Results

are shown in Figure 38b. Even though the gap is not as dramatic as in the first

experiment, we see that the proposed NN-based state-mapping approach significantly

91

2utt 5utt 10utt
0

20

40

60

80

100

Pe
rc

en
ta

ge

Baseline
NN-based SM
Same

(a)
LF0 generated with either the baseline vs. the NN-
based state-mapping (SM).

2utt 5utt 10utt
0

20

40

60

80

100

Pe
rc

en
ta

ge

NN-based SM
Cross-BEA 10PCA
Same

(b)
LF0 generated using the NN-based state mapping vs.
the Cross-BEA with 10 dimensional PCA.

Figure 38: Listeners’ preferences for the speaker similarity of synthetic speech in
which LF0 was generated using different adaptation algorithms. 95% confidence
intervals are shown. 2, 5, or 10 utterances were used for adaptation.

outperformed the Cross-BEA algorithm, for all adaptation data amounts.

In the third experiment, MGC features generated using the baseline state-mapping

algorithm with CSMAPLR were compared with those from Cross-BEA (10-dimensional

PCA), which was the best performing algorithm for the MGC features according to

the objective measure (MCD). The NN-based state mapping algorithm was used to

generate LF0 in both cases. Results are shown in Figure 39a where we can see that

Cross-BEA is substantially preferred over the baseline system.

In the final ABX experiment, the WRPLS algorithm was compared with Cross-

BEA (10-dimensional PCA) for MGC features. Again, the NN-based state mapping

algorithm was used to generate F0. Results are shown in Figure 39b which reveals

that listeners had no particular preference for WRPLS or Cross-BEA.

6.3.2 Speech Quality Tests in HMM-based Methods

For evaluation of the speech quality with the proposed methods, the MUSHRA (MUl-

tiple Stimuli with Hidden Reference and Anchor) test was conducted. The samples

92

2utt 5utt 10utt
0

20

40

60

80

100

Pe
rc

en
ta

ge

Baseline
Cross-BEA 10PCA
Same

(a) Baseline vs. Cross-BEA with 10-dimensional PCA.

2utt 5utt 10utt
0

20

40

60

80

100

Pe
rc

en
ta

ge

WRPLS 2PCA
Cross-BEA 10PCA
Same

(b)
WRPLS with 2-dimensional PCA vs. Cross-BEA
with 10-dimensional PCA.

Figure 39: Listeners’ preferences for the speaker similarity of synthetic speech in
which MGC features were generated using different adaptation algorithms. 95% con-
fidence intervals are shown. 2, 5, or 10 utterances were used for adaptation.

were synthesized using the models generated with the best performing proposed adap-

tation methods and the baseline method in a random order. Five target speakers

were selected randomly and, for each speaker, five English sentences from the WSJ1

database were synthesized with the models adapted with 2 and 10 utterances.

14 native (7 female and 7 male) listeners took the tests in soundproof booths. The

average age of listeners was 24 years. The test is composed of 25 sets where each set

contains 9 stimuli of the same sentence generated by each of the four adaptation sys-

tems (baseline, NN-base state-mapping with CSMAPLR, WRPLS, and Cross-BEA)

for the 2 and 10 utterance adaptation data cases. Synthetic speech from speaker-

dependent models was used as the hidden reference. The listeners were asked to rate

each stimulus from 0 (extremely bad in naturalness aspect) to 100 (same as natural

speech).

The MUSHRA test results are presented in Figure 40. Paired t-test was used

to assess the significance of difference between the systems. For adaptation with

2 utterances, all proposed methods performed significantly better than the baseline

93

system. However, the proposed methods were not found to be significantly different

from each other. For adaptation with 10 utterances, the differences between the

baseline system, WRPLS 2PCA and Cross-BEA 10PCA methods were not significant

but the NN-based state-mapping method performed significantly better than them.

Increasing the adaptation data size improved the performances of the baseline and

the NN-based state mapping methods. But it does not have a significant effect on

the WRPLS 2PCA and the Cross-BEA 10PCA methods.

Bas
eli

ne
2u

tt

NN-b
as

ed
SM

2u
tt

W
RPLS

2P
CA

2u
tt

Cro
ss

-B
EA

10
PCA

2u
tt

Bas
eli

ne
10

utt

NN-b
as

ed
SM

10
utt

W
RPLS

2P
CA

10
utt

Cro
ss

-B
EA

10
PCA

10
utt

0

20

40

60

80

100

M
U

S
H

R
A

S
co

re

Figure 40: Box plot of MUSHRA result for quality evaluation of the best perform-
ing algorithms. The bottom and top of each box are the first and third quartiles,
respectively. Ends of the whiskers represent 1.5IQR (InterQuartile Range) distances
from the first and third quartiles. Outliers are shown with ”+” character. Median
and mean of each box are shown with solid and dashed lines, respectively.

6.3.3 Speaker Similarity and Quality Tests in DNN-based Method

For subjective evaluation of the DNN-based models in terms of speech quality and

speaker similarity, standard 5-point mean opinion score (MOS) and degrading mean

opinion score (DMOS) tests were conducted. For fair comparison of the models in

similarity aspect, we used speaker dependent (SD) model of each target speaker as

a reference model. For male speaker, 1500 utterances were used for training the

SD model. For female speaker, because of the limitation in adaptation data, 872

utterances were used for training the SD model. For fair comparison with SI model,

with setting the gender code to 0 and 1, gender dependent SI model was generated for

94

Table 6: Subjective evaluation of DNN-based models. Variance of scores is shown
with 95% confidence intervals.

Model MOS DMOS

SI M 2.76 ± 0.05 2.40 ± 0.05
EngM00010 2.86 ± 0.04 2.19 ± 0.04
EngM00100 2.74 ± 0.04 2.14 ± 0.03
EngM00200 2.67 ± 0.03 1.95 ± 0.04
JpnM00010 2.62 ± 0.04 2.12 ± 0.03
JpnM00100 2.78 ± 0.03 2.49 ± 0.04
JpnM00200 2.92 ± 0.04 2.23 ± 0.04
SI F 2.85 ± 0.05 2.00 ± 0.04
EngF00010 2.99 ± 0.04 2.16 ± 0.05
EngF00100 2.97 ± 0.04 2.29 ± 0.04
EngF00200 2.98 ± 0.03 2.12 ± 0.05
JpnF00010 3.06 ± 0.04 2.21 ± 0.05
JpnF00100 2.81 ± 0.03 2.32 ± 0.03
JpnF00200 2.66 ± 0.03 1.99 ± 0.04

female and male, respectively. For each listener, one gender was selected randomly

and 2 random samples was selected out of 100 samples and for each sample, 7 stimuli

(3 adaptation size × 2 adaptation type + gender dependent SI) were played in random

order. In each screen, we asked the listener to score the sample from 1 (totally poor

quality) to 5 (natural level quality) for MOS test. In addition, for DMOS test, we

asked the listener to score the samples from 1 (totally different) to 5 (totally similar)

with respect to the reference sample. 789 native Japanese listeners took the test via

crowdsourcing4. In average, each test took five minutes per listener. The result of

subjective test is shown in Table 6.

In average, using continuous labels showed better result in quality rather than

similarity. In male speaker, in cross-lingual adaptation case, increasing the adapta-

tion data degrade the quality and similarity of the synthesized speech. However, in

intra-lingual case, increasing the data improved the adaptation performance. In cross-

lingual adaptation case, just using 10 utterances of adaptation data improved the

4https://www.crowdflower.com/

95

adaptation performance. However, in intra-lingual case, using 100 and 200 of adapta-

tion data showed better performance. In female speaker, in cross-lingual adaptation

case, increasing the adaptation data does not have any significant effect of adaptation

performance and all cases showed better result with respect to average voice model.

In intra-lingual case, increasing the data degrade the adaptation performance, and

just using 10 utterance of adaptation data showed improvement in quality of the

synthesized speech. In short, using continuous labels, quality and similarity of cross-

lingual adaptation can be comparable with intra-lingual adaptation and increasing

the adaptation data size will enhance the quality and similarity of the synthesized

speech.

96

CHAPTER VII

CONCLUSION AND FUTURE WORK

We have investigated a variety of cross-lingual speaker adaptation algorithms for

HMM-and DNN-based speech synthesis systems, with the specific use case of small

amounts of adaptation data from the target speaker. This scenario is motivated by

practical applications, in which users are unlikely to be patient enough to provide

many minutes or hours of their speech.

In HMM-based systems, we proposed two approaches and compared them ob-

jectively and subjectively using a Turkish-English bilingual voice database. In the

first proposed approach, a speaker-specific state-mapping is constructed in which the

state-map belonging to the nearest-neighbour (NN) speaker to the target speaker is

used for adaptation. In the second proposed approach, linear regression is used to

relate the eigenvectors of the input and output language acoustic models.

Both approaches performed better than the baseline state-mapping method, both

objectively and subjectively. The NN-based state mapping using CSMAPLR adap-

tation performed the best for LF0. The cross-lingual eigenvoice adaptation technique

Cross-BEA performed the best for the MGC feature.

For DNN-based speech synthesis, we proposed a new unsupervised adaptation

method using estimation of linguistic features from the sequence of acoustic features.

As this method does not assume specific linguistic contents, it can be applied to

both intra-lingual and cross-lingual adaptation scenarios. Performance of the pro-

posed method was shown using objective and subjective experiments. Increasing the

adaptation data showed improvement in adaptation quality and it outperformed the

average voice model.

97

Even though the algorithms that are proposed here are language-independent,

experimenting with them for other language pairs is also interesting and will be

investigated in future work. Cross-lingual adaptation between languages that are

acoustically more similar to each other than the Turkish-English pair, Spanish and

French or Turkic languages for example, will be the focus of our future work. Using

continuous labels with other DNN-based adaptation methods like adding i-vectors in

input layer can be investigated as future works.

98

Bibliography

[1] X. Huang, A. Acero, H.-W. Hon, and R. Foreword By-Reddy, Spoken language
processing: A guide to theory, algorithm, and system development. Prentice hall
PTR, 2001.

[2] H. Zen, K. Tokuda, and A. W. Black, “Statistical parametric speech synthesis,”
Speech Communication, vol. 51, no. 11, pp. 1039–1064, 2009.

[3] J. Yamagishi and T. Kobayashi, “Average-voice-based speech synthesis using
hsmm-based speaker adaptation and adaptive training,” IEICE TRANSAC-
TIONS on Information and Systems, vol. 90, no. 2, pp. 533–543, 2007.

[4] K. Tokuda, Y. Nankaku, T. Toda, H. Zen, J. Yamagishi, and K. Oura, “Speech
synthesis based on hidden markov models,” Proceedings of the IEEE, vol. 101,
no. 5, pp. 1234–1252, 2013.

[5] H. Ze, A. Senior, and M. Schuster, “Statistical parametric speech synthesis using
deep neural networks,” in Acoustics, Speech and Signal Processing (ICASSP),
2013 IEEE International Conference on, pp. 7962–7966, IEEE, 2013.

[6] Y. Fan, Y. Qian, F.-L. Xie, and F. K. Soong, “Tts synthesis with bidirectional
lstm based recurrent neural networks,” in Fifteenth Annual Conference of the
International Speech Communication Association, 2014.

[7] S. Matsuda, X. Hu, Y. Shiga, H. Kashioka, C. Hori, K. Yasuda, H. Okuma,
M. Uchiyama, E. Sumita, H. Kawai, et al., “Multilingual speech-to-speech trans-
lation system: VoiceTra,” in Mobile Data Management (MDM), 2013 IEEE
14th International Conference on, vol. 2, pp. 229–233, IEEE, 2013.

[8] K. Oura, J. Yamagishi, M. Wester, S. King, and K. Tokuda, “Analysis of un-
supervised cross-lingual speaker adaptation for HMM-based speech synthesis
using KLD-based transform mapping,” Speech Communication, vol. 54, no. 6,
pp. 703–714, 2012.

[9] H. Liang, Y. Qian, F. K. Soong, and G. Liu, “A cross-language state map-
ping approach to bilingual (Mandarin-English) TTS,” in Acoustics, Speech and
Signal Processing, 2008. ICASSP 2008. IEEE International Conference on,
pp. 4641–4644, IEEE, 2008.

[10] Y.-N. Chen, Y. Jiao, Y. Qian, and F. K. Soong, “State mapping for cross-
language speaker adaptation in TTS,” in Acoustics, Speech and Signal Process-
ing, 2009. ICASSP 2009. IEEE International Conference on, pp. 4273–4276,
IEEE, 2009.

[11] Y.-J. Wu, Y. Nankaku, and K. Tokuda, “State mapping based method for
cross-lingual speaker adaptation in HMM-based speech synthesis.,” pp. 528–
531, Interspeech, 2009.

99

[12] H. Liang and J. Dines, “An analysis of language mismatch in HMM state
mapping-based cross-lingual speaker adaptation,” in Interspeech, pp. 622–625,
2010.

[13] X. Peng, K. Oura, Y. Nankaku, and K. Tokuda, “Cross-lingual speaker adapta-
tion for HMM-based speech synthesis considering differences between language-
dependent average voices,” in Signal Processing (ICSP), 2010 IEEE 10th In-
ternational Conference on, pp. 605–608, IEEE, 2010.

[14] D. Nagahama, T. Nose, T. Koriyama, and T. Kobayashi, “Transform map-
ping using shared decision tree context clustering for HMM-based cross-lingual
speech synthesis,” in Fifteenth Annual Conference of the International Speech
Communication Association, 2014.

[15] A. Mohan and R. Rose, “Multi-lingual speech recognition with low-rank
multi-task deep neural networks,” in Acoustics, Speech and Signal Process-
ing (ICASSP), 2015 IEEE International Conference on, pp. 4994–4998, IEEE,
2015.

[16] N. T. Vu, D. Imseng, D. Povey, P. Motlicek, T. Schultz, and H. Bourlard,
“Multilingual deep neural network based acoustic modeling for rapid language
adaptation,” in Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE
International Conference on, pp. 7639–7643, IEEE, 2014.

[17] G. Heigold, V. Vanhoucke, A. Senior, P. Nguyen, M. Ranzato, M. Devin, and
J. Dean, “Multilingual acoustic models using distributed deep neural networks,”
in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International
Conference on, pp. 8619–8623, IEEE, 2013.

[18] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-end
factor analysis for speaker verification,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 19, no. 4, pp. 788–798, 2011.

[19] S. Xue, O. Abdel-Hamid, H. Jiang, L. Dai, and Q. Liu, “Fast adaptation
of deep neural network based on discriminant codes for speech recognition,”
IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP),
vol. 22, no. 12, pp. 1713–1725, 2014.

[20] H.-T. Luong, S. Takaki, G. E. Henter, and J. Yamagishi, “Adapting and con-
trolling dnn-based speech synthesis using input codes,” in Acoustics, Speech
and Signal Processing (ICASSP), 2017 IEEE International Conference on,
pp. 4905–4909, IEEE, 2017.

[21] P. Swietojanski and S. Renals, “Learning hidden unit contributions for un-
supervised speaker adaptation of neural network acoustic models,” in Spoken
Language Technology Workshop (SLT), 2014 IEEE, pp. 171–176, IEEE, 2014.

100

[22] Z. Wu, P. Swietojanski, C. Veaux, S. Renals, and S. King, “A study of speaker
adaptation for dnn-based speech synthesis.,” in INTERSPEECH, pp. 879–883,
2015.

[23] Y. Fan, Y. Qian, F. K. Soong, and L. He, “Multi-speaker modeling and speaker
adaptation for dnn-based tts synthesis,” in Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2015 IEEE International Conference on, pp. 4475–4479,
IEEE, 2015.

[24] S. S. Sarfjoo and C. Demiroglu, “Cross-lingual speaker adaptation for statistical
speech synthesis using limited data,” Interspeech, pp. 317–321, 2016.

[25] D. H. Klatt, “Software for a cascade/parallel formant synthesizer,” the Journal
of the Acoustical Society of America, vol. 67, no. 3, pp. 971–995, 1980.

[26] E. Moulines and F. Charpentier, “Pitch-synchronous waveform processing tech-
niques for text-to-speech synthesis using diphones,” Speech communication,
vol. 9, no. 5-6, pp. 453–467, 1990.

[27] A. J. Hunt and A. W. Black, “Unit selection in a concatenative speech synthesis
system using a large speech database,” in Acoustics, Speech, and Signal Pro-
cessing, 1996. ICASSP-96. Conference Proceedings., 1996 IEEE International
Conference on, vol. 1, pp. 373–376, IEEE, 1996.

[28] R. E. Donovan and E. Eide, “The ibm trainable speech synthesis system.,” in
ICSLP, 1998.

[29] T. Hirai and S. Tenpaku, “Using 5 ms segments in concatenative speech syn-
thesis,” in Fifth ISCA Workshop on Speech Synthesis, 2004.

[30] R. E. Donovan and P. C. Woodland, “Improvements in an hmm-based speech
synthesiser,” in Eurospeech Proceedings: 4th European Conference on Speech
Communication and Technology, vol. 1, pp. 573–576, 1995.

[31] M. Beutnagel, A. Conkie, J. Schroeter, Y. Stylianou, and A. Syrdal, “The
at&t next-gen tts system,” in Joint meeting of ASA, EAA, and DAGA, vol. 1,
pp. 18–24, Berlin, Germany, 1999.

[32] A. W. Black and P. A. Taylor, “Automatically clustering similar units for unit
selection in speech synthesis.,” 1997.

[33] H. Segi, T. Takagi, and T. Ito, “A concatenative speech synthesis method using
context dependent phoneme sequences with variable length as search units,” in
Fifth ISCA Workshop on Speech Synthesis, 2004.

[34] A. W. Black, “Unit selection and emotional speech.,” in Interspeech, 2003.

[35] L. R. Rabiner and B.-H. Juang, “Fundamentals of speech recognition,” 1993.

101

[36] “HTK. [Online]. Available: http://htk.eng. cam.ac.uk/.”

[37] “Festival. [Online]. Available: http://www.festvox.org/festival/.”

[38] “HTS. [Online]. Available: http://hts.sp. nitech.ac.jp/.”

[39] “SPTK. [Online]. Available: http://sp-tk. sourceforge.net/.”

[40] T. Toda and K. Tokuda, “A speech parameter generation algorithm considering
global variance for hmm-based speech synthesis,” IEICE TRANSACTIONS on
Information and Systems, vol. 90, no. 5, pp. 816–824, 2007.

[41] Y.-J. Wu and K. Tokuda, “Minimum generation error training by using original
spectrum as reference for log spectral distortion measure,” in Acoustics, Speech
and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on,
pp. 4013–4016, IEEE, 2009.

[42] J. Yamagishi, T. Kobayashi, Y. Nakano, K. Ogata, and J. Isogai, “Analy-
sis of speaker adaptation algorithms for HMM-based speech synthesis and a
constrained SMAPLR adaptation algorithm,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 17, no. 1, pp. 66–83, 2009.

[43] K. Kazumi, Y. Nankaku, and K. Tokuda, “Factor analyzed voice models
for hmm-based speech synthesis,” in Acoustics Speech and Signal Processing
(ICASSP), 2010 IEEE International Conference on, pp. 4234–4237, IEEE,
2010.

[44] G. Fant, Accoustic theory of speech production: with calculations based on X-ray
studies of Russian articulations. Mouton & Company, 1970.

[45] T. Fukada, K. Tokuda, T. Kobayashi, and S. Imai, “An adaptive algorithm for
mel-cepstral analysis of speech,” in Acoustics, Speech, and Signal Processing,
1992. ICASSP-92., 1992 IEEE International Conference on, vol. 1, pp. 137–
140, IEEE, 1992.

[46] F. Itakura, “Line spectrum representation of linear predictor coefficients of
speech signals,” The Journal of the Acoustical Society of America, vol. 57,
no. S1, pp. S35–S35, 1975.

[47] K. Tokuda, T. Kobayashi, T. Masuko, and S. Imai, “Mel-generalized cepstral
analysis-a unified approach to speech spectral estimation.,” in ICSLP, vol. 94,
pp. 18–22, 1994.

[48] H. Kawahara, I. Masuda-Katsuse, and A. De Cheveigne, “Restructuring
speech representations using a pitch-adaptive time–frequency smoothing and
an instantaneous-frequency-based f0 extraction: Possible role of a repetitive
structure in sounds,” Speech communication, vol. 27, no. 3, pp. 187–207, 1999.

102

[49] G. Freij and F. Fallside, “Lexical stress recognition using hidden markov mod-
els,” in Acoustics, Speech, and Signal Processing, 1988. ICASSP-88., 1988 In-
ternational Conference on, pp. 135–138, IEEE, 1988.

[50] U. Jensen, R. K. Moore, P. Dalsgaard, and B. Lindberg, “Modelling intonation
contours at the phrase level using continuous density hidden markov models,”
Computer Speech & Language, vol. 8, no. 3, pp. 247–260, 1994.

[51] K. Ross and M. Ostendorf, “A dynamical system model for generating f0 for
synthesis,” in The Second ESCA/IEEE Workshop on Speech Synthesis, 1994.

[52] K. Tokuda, T. Masuko, N. Miyazaki, and T. Kobayashi, “Multi-space probabil-
ity distribution hmm,” IEICE TRANSACTIONS on Information and Systems,
vol. 85, no. 3, pp. 455–464, 2002.

[53] H. Zen, K. Tokuda, T. Masuko, T. Kobayasih, and T. Kitamura, “A hidden
semi-markov model-based speech synthesis system,” IEICE transactions on in-
formation and systems, vol. 90, no. 5, pp. 825–834, 2007.

[54] K. Tokuda, H. Zen, and A. W. Black, “An hmm-based speech synthesis system
applied to english,” in IEEE Speech Synthesis Workshop, pp. 227–230, 2002.

[55] K. Shinoda and T. Watanabe, “Mdl-based context-dependent subword model-
ing for speech recognition,” Acoustical Science and Technology, vol. 21, no. 2,
pp. 79–86, 2001.

[56] T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura, “Si-
multaneous modeling of spectrum, pitch and duration in hmm-based speech
synthesis,” in Sixth European Conference on Speech Communication and Tech-
nology, 1999.

[57] S. Imai, K. Sumita, and C. Furuichi, “Mel log spectrum approximation (mlsa)
filter for speech synthesis,” Electronics and Communications in Japan (Part I:
Communications), vol. 66, no. 2, pp. 10–18, 1983.

[58] B. Atal and J. Remde, “A new model of lpc excitation for producing natural-
sounding speech at low bit rates,” in Acoustics, Speech, and Signal Processing,
IEEE International Conference on ICASSP’82., vol. 7, pp. 614–617, IEEE,
1982.

[59] H. Kawai, T. Toda, J. Ni, M. Tsuzaki, and K. Tokuda, “Ximera: A new tts from
atr based on corpus-based technologies,” in Fifth ISCA Workshop on Speech
Synthesis, 2004.

[60] S. Krstulovic, J. Latorre, and S. Buchholz, “Comparing qmt1 and hmms for
the synthesis of american english prosody,” in Proc. Speech Prosody, pp. 67–70,
2008.

103

[61] H. Hon, A. Acero, X. Huang, J. Liu, and M. Plumpe, “Automatic generation of
synthesis units for trainable text-to-speech systems,” in Acoustics, Speech and
Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference
on, vol. 1, pp. 293–296, IEEE, 1998.

[62] T. Okubo, R. Mochizuki, and T. Kobayashi, “Hybrid voice conversion of unit
selection and generation using prosody dependent hmm,” IEICE TRANSAC-
TIONS on Information and Systems, vol. 89, no. 11, pp. 2775–2782, 2006.

[63] Z.-H. Ling and R.-H. Wang, “Hmm-based hierarchical unit selection combin-
ing kullback-leibler divergence with likelihood criterion,” in Acoustics, Speech
and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on,
vol. 4, pp. IV–1245, IEEE, 2007.

[64] Z.-H. Ling, “Hmm-based unit selection using frame sized speech segments,”
Proc. Interspeech (ICSLP), 2006, 2006.

[65] J. Yu, M. Zhang, J. Tao, and X. Wang, “A novel hmm-based tts system using
both continuous hmms and discrete hmms,” in Acoustics, Speech and Signal
Processing, 2007. ICASSP 2007. IEEE International Conference on, vol. 4,
pp. IV–709, IEEE, 2007.

[66] P. Taylor, “Unifying unit selection and hidden markov model speech synthesis,”
in Ninth International Conference on Spoken Language Processing, 2006.

[67] S. Esmeir and S. Markovitch, “Anytime learning of decision trees,” Journal of
Machine Learning Research, vol. 8, no. May, pp. 891–933, 2007.

[68] K. Yu, F. Mairesse, and S. Young, “Word-level emphasis modelling in hmm-
based speech synthesis,” in Acoustics Speech and Signal Processing (ICASSP),
2010 IEEE International Conference on, pp. 4238–4241, IEEE, 2010.

[69] D. Yu and L. Deng, “Deep learning and its applications to signal and informa-
tion processing [exploratory dsp],” IEEE Signal Processing Magazine, vol. 28,
no. 1, pp. 145–154, 2011.

[70] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural compu-
tation, vol. 9, no. 8, pp. 1735–1780, 1997.

[71] F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, “Learning precise timing
with lstm recurrent networks,” Journal of machine learning research, vol. 3,
no. Aug, pp. 115–143, 2002.

[72] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist tem-
poral classification: labelling unsegmented sequence data with recurrent neu-
ral networks,” in Proceedings of the 23rd international conference on Machine
learning, pp. 369–376, ACM, 2006.

104

[73] A. Graves, “Sequence transduction with recurrent neural networks,” arXiv
preprint arXiv:1211.3711, 2012.

[74] C. J. Leggetter and P. C. Woodland, “Maximum likelihood linear regression for
speaker adaptation of continuous density hidden markov models,” Computer
Speech & Language, vol. 9, no. 2, pp. 171–185, 1995.

[75] P. C. Woodland, “Speaker adaptation for continuous density hmms: A review,”
in ISCA Tutorial and Research Workshop (ITRW) on Adaptation Methods for
Speech Recognition, 2001.

[76] J. Yamagishi, M. Tamura, T. Masuko, K. Tokuda, and T. Kobayashi, “A train-
ing method of average voice model for hmm-based speech synthesis,” IEICE
transactions on fundamentals of electronics, communications and computer sci-
ences, vol. 86, no. 8, pp. 1956–1963, 2003.

[77] M. Gales and S. Young, “The application of hidden markov models in speech
recognition,” Foundations and trends in signal processing, vol. 1, no. 3, pp. 195–
304, 2008.

[78] J. Yamagishi, B. Usabaev, S. King, O. Watts, J. Dines, J. Tian, Y. Guan,
R. Hu, K. Oura, Y.-J. Wu, et al., “Thousands of voices for hmm-based speech
synthesis–analysis and application of tts systems built on various asr corpora,”
IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, no. 5,
pp. 984–1004, 2010.

[79] J.-L. Gauvain and C.-H. Lee, “Maximum a posteriori estimation for multivariate
gaussian mixture observations of markov chains,” IEEE transactions on speech
and audio processing, vol. 2, no. 2, pp. 291–298, 1994.

[80] M. J. Gales, “Maximum likelihood linear transformations for HMM-based
speech recognition,” Computer speech & language, vol. 12, no. 2, pp. 75–98,
1998.

[81] P. Liu, F. K. Soong, and J.-L. Thou, “Divergence-based similarity measure for
spoken document retrieval,” in Acoustics, Speech and Signal Processing, 2007.
ICASSP 2007. IEEE International Conference on, vol. 4, pp. IV–89, IEEE,
2007.

[82] O. Siohan, T. A. Myrvoll, and C.-H. Lee, “Structural maximum a posteriori lin-
ear regression for fast hmm adaptation,” Computer Speech & Language, vol. 16,
no. 1, pp. 5–24, 2002.

[83] R. Kuhn, J.-C. Junqua, P. Nguyen, and N. Niedzielski, “Rapid speaker adap-
tation in eigenvoice space,” Speech and Audio Processing, IEEE Transactions
on, vol. 8, pp. 695 –707, nov 2000.

105

[84] K. Shichiri, A. Sawabe, T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi,
and T. Kitamura, “Eigenvoices for HMM-based speech synthesis,” in Seventh
International Conference on Spoken Language Processing, pp. 1269–1272, 2002.

[85] M. J. F. Gales, “Cluster adaptive training of hidden Markov models,” Speech
and Audio Processing, IEEE Transactions on, vol. 8, no. 4, pp. 417–428, 2000.

[86] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-end fac-
tor analysis for speaker verification,” Audio, Speech, and Language Processing,
IEEE Transactions on, vol. 19, pp. 788–798, may 2011.

[87] A. Mohammadi, S. S. Sarfjoo, and C. Demiroglu, “Eigenvoice speaker adapta-
tion with minimal data for statistical speech synthesis systems using a MAP
approach and nearest-neighbors,” Audio, Speech, and Language Processing,
IEEE/ACM Transactions on, vol. 22, no. 12, pp. 2146–2157, 2014.

[88] L. Saheer, J. Dines, P. N. Garner, and H. Liang, “Implementation of vtln for
statistical speech synthesis,” tech. rep., Idiap, 2010.

[89] C. Breslin, K. Chin, M. J. Gales, K. Knill, and H. Xu, “Prior information for
rapid speaker adaptation,” in Eleventh Annual Conference of the International
Speech Communication Association, 2010.

[90] M. J. Gales and R. C. van Dalen, “Predictive linear transforms for noise robust
speech recognition,” in Automatic Speech Recognition & Understanding, 2007.
ASRU. IEEE Workshop on, pp. 59–64, IEEE, 2007.

[91] L. Saheer, J. Yamagishi, P. N. Garner, and J. Dines, “Combining vocal tract
length normalization with hierarchical linear transformations,” IEEE Journal
of Selected Topics in Signal Processing, vol. 8, no. 2, pp. 262–272, 2014.

[92] D. Garcia-Romero and C. Y. Espy-Wilson, “Analysis of i-vector length normal-
ization in speaker recognition systems.,” in Interspeech, vol. 2011, pp. 249–252,
2011.

[93] O. Watts, Z. Wu, and S. King, “Sentence-level control vectors for deep neural
network speech synthesis,” in Sixteenth Annual Conference of the International
Speech Communication Association, 2015.

[94] O. Abdel-Hamid and H. Jiang, “Rapid and effective speaker adaptation of con-
volutional neural network based models for speech recognition.,” in Interspeech,
pp. 1248–1252, 2013.

[95] P. Swietojanski and S. Renals, “Differentiable pooling for unsupervised speaker
adaptation,” in Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE
International Conference on, pp. 4305–4309, IEEE, 2015.

[96] N. Hojo, Y. Ijima, and H. Mizuno, “An investigation of dnn-based speech syn-
thesis using speaker codes.,” in INTERSPEECH, pp. 2278–2282, 2016.

106

[97] T. Toda, A. W. Black, and K. Tokuda, “Voice conversion based on maximum-
likelihood estimation of spectral parameter trajectory,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 15, no. 8, pp. 2222–2235, 2007.

[98] D. Sündermann, H. Höge, A. Bonafonte, H. Ney, and J. Hirschberg, “Tc-star:
Cross-language voice conversion revisited,” 2006.

[99] “Emime project: http://www.emime.org.”

[100] Y.-J. Wu, S. King, and K. Tokuda, “Cross-lingual speaker adaptation for HMM-
based speech synthesis,” in Chinese Spoken Language Processing, 2008. ISC-
SLP’08. 6th International Symposium on, pp. 1–4, IEEE, 2008.

[101] Y. Fan, Y. Qian, F. K. Soong, and L. He, “Unsupervised speaker adaptation for
dnn-based tts synthesis,” in Acoustics, Speech and Signal Processing (ICASSP),
2016 IEEE International Conference on, pp. 5135–5139, IEEE, 2016.

[102] S. King, K. Tokuda, H. Zen, and J. Yamagishi, “Unsupervised adaptation for
HMM-based speech synthesis,” ISCA, 2008.

[103] J. Latorre, K. Iwano, and S. Furui, “New approach to the polyglot speech
generation by means of an HMM-based speaker adaptable synthesizer,” Speech
Communication, vol. 48, no. 10, pp. 1227–1242, 2006.

[104] H. Zen, N. Braunschweiler, S. Buchholz, M. J. Gales, K. Knill, S. Krstulovic,
and J. Latorre, “Statistical parametric speech synthesis based on speaker and
language factorization,” Audio, Speech, and Language Processing, IEEE Trans-
actions on, vol. 20, no. 6, pp. 1713–1724, 2012.

[105] V. d. F. Oliveira, S. Shiota, Y. Nankaku, and K. Tokuda, “Cross-lingual speaker
adaptation for HMM-based speech synthesis based on perceptual characteristics
and speaker interpolation,” in Interspeech, pp. 983–986, 2012.

[106] T. Yoshimura, K. Hashimoto, K. Oura, Y. Nankaku, and K. Tokuda, “Cross-
lingual speaker adaptation based on factor analysis using bilingual speech data
for HMM-based speech synthesis,” in 8th ISCA Speech Synthesis Workshop,
pp. 317–322, 2013.

[107] M. Charlier, Y. Ohtani, T. Toda, A. Moinet, and T. Dutoit, “Cross-language
voice conversion based on eigenvoices,” in Interspeech, pp. 1635–1638, 2009.

[108] H. Liao, “Speaker adaptation of context dependent deep neural networks,” in
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International
Conference on, pp. 7947–7951, IEEE, 2013.

[109] S. De Jong, “SIMPLS: an alternative approach to partial least squares regres-
sion,” Chemometrics and intelligent laboratory systems, vol. 18, no. 3, pp. 251–
263, 1993.

107

[110] B. Efron, The jackknife, the bootstrap, and other resampling plans, vol. 38.
Philadelphia, Pa: Society for Industrial and Applied Mathematics, 1982.

[111] Å. Rinnan, M. Andersson, C. Ridder, and S. B. Engelsen, “Recursive weighted
partial least squares (rPLS): an efficient variable selection method using PLS,”
Journal of Chemometrics, vol. 28, no. 5, pp. 439–447, 2014.

[112] M. Morise, F. Yokomori, and K. Ozawa, “World: A vocoder-based high-quality
speech synthesis system for real-time applications,” IEICE TRANSACTIONS
on Information and Systems, vol. 99, no. 7, pp. 1877–1884, 2016.

[113] K. Tokuda, T. Yoshimura, T. Masuko, T. Kobayashi, and T. Kitamura, “Speech
parameter generation algorithms for hmm-based speech synthesis,” in Acous-
tics, Speech, and Signal Processing, 2000. ICASSP’00. Proceedings. 2000 IEEE
International Conference on, vol. 3, pp. 1315–1318, IEEE, 2000.

[114] T. Kudo, K. Yamamoto, and Y. Matsumoto, “Applying conditional random
fields to japanese morphological analysis.,” in EMNLP, vol. 4, pp. 230–237,
2004.

[115] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online
learning and stochastic optimization,” Journal of Machine Learning Research,
vol. 12, no. Jul, pp. 2121–2159, 2011.

[116] R. F. Kubichek, “Mel-cepstral distance measure for objective speech quality as-
sessment,” in Communications, Computers and Signal Processing, 1993., IEEE
Pacific Rim Conference on, vol. 1, pp. 125–128, IEEE, 1993.

108

VITA

Seyyed Saeed Sarfjoo received the B.Sc. degree in information technology from

Isfahan University, Isfahan, Iran, in 2009 and the M.Sc. degree in information tech-

nology from Qom University, Qom, Iran, in 2012. In 2009, he joined Asr Gooyesh

Pardaz Co, Tehran, Iran, as a Software Developer/Researcher, and worked there

till 2013. During that time, he worked on Persian text-to-speech synthesis, Persian

speech recognition, and Persian interactive voice response systems. Currently, he is a

Ph.D. student in the Computer Science Department of Özyeğin University, Istanbul,

Turkey. He is also a graduate research assistant at the Speech Processing Lab of

Özyeğin University. In the Ph.D. period, his research mostly focused on intra-lingual

and cross-lingual speaker adaptation in statistical parametric speech synthesis.

109

