SINGLE-SHOT OBJECT DETECTION AND
CLASSIFICATION USING HAAR-LIKE FEATURE
BASED RANDOM DECISION FOREST

A Thesis
by

Nekruzjon Maxudov

Submitted to the
Graduate School of Sciences and Engineering
In Partial Fulfillment of the Requirements for
the Degree of

Master of Science

in the
Department of Computer Science

Ozyegin University
May 2017

Copyright (© 2017 by Nekruzjon Maxudov

SINGLE-SHOT OBJECT DETECTION AND
CLASSIFICATION USING HAAR-LIKE FEATURE
BASED RANDOM DECISION FOREST

Approved by:

Assistant Professor M. Furkan Kirac,
Advisor

Department of Computer Science
Ozyejin University

Professor A. Tanju Erdem
Department of Computer Science
Ozyegin University

Professor Lale Akarun
Department of Computer Engineering
Bogazi¢i University

Date Approved: 31 May 2017

To my parents and my beloved wife Aysoltan

1l

ABSTRACT

Object detection and tracking have been studied for decades and many algorithms
have been introduced. Vision-based object detection and tracking became an impor-
tant task with the increasing number of surveillance cameras. However, false alarm
rates are still an issue to be solved in human operator managed scenarios. As preci-
sion and accuracy increase, false alarm rates become more manageable. In this thesis,
a novel system for single-shot detection and classification of the object in images is
introduced. For this purpose, we implemented Random Decision Forests (RDF) us-
ing Haar-like features. RDF and Haar-like feature calculation implemented on GPU
are known for their test time speed. Thus, we are using RDFs for pixel level object
classification, a methodology known for its balanced test-time performance both for
speed and quality. The increase in accuracy is shown by conducting experiments on
MNIST, INRIA, and PETS09 datasets. As a demonstrative application, we used pro-
posed RDF for on-road vehicles detection and tracking. A Sequential Monte Carlo
method based algorithm, also known as Particle Filter (PF), is implemented for track-
ing detected objects. For non-linear and non-Gaussian processes, PF is a powerful
methodology and is easy and preferable to be implemented on GPU with RDF. The
proposed system puts emphasis on real-time speed of the algorithm on conventional
computers. Compared to YOLO (You Only Look Once), our method shows compara-
ble vehicle detection accuracy and computational speed in a conventional computer.
Moreover, we are introducing a new framework where different tracking algorithms
can be implemented and tested. It provides various modules for data extraction, data
generation, training and testing algorithms with different parameters. Usage of the

modules in the framework is also discussed.

v

OZETCE

Son yirmi yilda gozetim sistemleri sayisinin artmasi ile goriiye dayali nesne algilama ve
takip algoritmalarina yonelik aragtirmalar hiz kazanmigtir. Bu arastirmalar dahilinde
nesne algilama ve takip problemleri bir¢ok yonii ile incelenmistir, fakat otomatik
alarm tretimi problemleri icin basarim orani daha yiiksek izleme algoritmalarina
halen ihtiya¢ duyulmaktadir. Gozetim sistemlerinin yanhs alarm vermesi, insan
operatorlere dayali sistemlerde heniiz tamamen ¢oziilmemis bir problemdir. Nesne
tanima bagariminin artmasi, yanlig alarm verilen durumlarin azalmasina neden ol-
maktadir. Bu tez kapsaminda resimde bulunan objeleri tek-seferde saptayan ve
simiflandiran bir yontem geligtirilmisgtir. Rastgele Karar Ormanlarinin (RDF) test
hizinin oldukca yiiksek oldugu bilinmektedir. Bu baglamda, onerilen sistem piksel se-
viyesinde obje siniflandirma iglemini RDF ile yapmaktadir. Kullanilan RDF’in perfor-
mansini arttirmak amaci ile Haar benzeri 6znitelikleri kullanan bir RDF geligtrilimigtir.
Haar ozniteliklerinin kullanan RDF’in performansi arttirdigr el yazisi ile yazilmig
olan rakamlardan olugsan MNIST, insan resimleri iceren INRIA ve PETS09 verita-
banlar1 iizerinde yapilan testler ile gosterilmigtir. Ornek bir uygulama alani olarak,
onerilen RDF arac saptama ve takibi problemi tizerinde test edilmistir. Saptanan ob-
jeleri takip etmek i¢in Sirali Monte Carlo, diger adiyla Pargacik Filtresi (PF) uygu-
lanmigtir. Saptama agamasinda her bir piksel i¢in elde edilen olabilirlik degerleri
ile parcaciklarin agirliklari hesaplanmistir. PF kullanilmasinin temel nedeni, Gauss
ve gizgisel olmayan iglemler icin giiclii bir algoritma olmasinin yani sira RDF gibi
GPU’ya uygun bir yapiya sahip olmasidir. Onerilen takip sistemi standard bilgisa-
yarlarda gercek zamanh uygulamaya agirlik vermektedir. YOLO ile kiyaslandiginda,

onerilen yontem arag saptama bagariminda yakin bir performans sunarken, standard

bilgisayarlarda daha yiiksek bir hiza sahip oldugu gozlemlenmistir. Onerilen sisteme
ek olarak bu tez kapsaminda, farkl algoritmalar:i uygulamak ve test etmek icin bir
framework geligtirilmistir. Bu framework, veri oziitleme, veri olusturma, algoritma
egitimi ve algoritmalar1 degisik parametrelerle test etmek icin tasarlanan modiillerden

olugsmaktadir. Tez iceriginde modiillerin kullanimi ve fonksyonlar1 anlatilmisgtir.

vi

ACKNOWLEDGEMENTS

During the continuation of my graduate study, I have had the privilege and honor of
working with Dr. Furkan Kirag, my research advisor, Dr. Ali Ozer Ercan and Prof.
Tanju Erdem. I have learned so much from their technical knowledge and research
philosophy. They supported me throughout my research by providing their valuable
time and knowledge. I consider myself extremely lucky to have a chance to work and
learn from such a technical pioneers and wonderful people.

Special thanks to Dr. Furkan Kirac for his invaluable encouragement and support.
I thank him for patiently listening to me on technical subjects or any other life-related
topics and sharing his wisdom.

I would like to thank my peers at the OzU Vision and Graphics Lab for their valu-
able friendship and support. Working with them was a privilege and most memorable
for me at OzU.

Special thanks to my parents and my wife. I am so grateful for their encourage-
ments and sacrifices during my educational life. They were very supportive at all
levels of my study. They helped me to go through all challenges without giving up.

This work has been done at Vision and Graphics Laboratory at Ozyegin Univer-
sity and supported with funds from Scientific and Technological Research Council
of Turkey (TUBITAK) through the ”2215 - Graduate Scholarship Programme for

International Students” scholarship program.

vil

TABLE OF CONTENTS

DEDICATION

ABSTRACT

OZETCE

ACKNOWLEDGEMENTS

LIST OF TABLES

LIST OF FIGURES o ..

I

11

111

v

INTRODUCTION e

PREVIOUS WORK
2.1 Object Detection
2.1.1 Traditional Methods
2.1.2 Deep Learning Based Methods
2.2 Tracking

PROPOSED METHOD

3.1 Overviewo

3.2 Random Decision Forest
3.2.1 Random Decision Trees
3.2.2 Compressed Random Decision Forest (Compressed-RDF')

3.3 Particle Filter o

3.4 Framework
3.4.1 Histogram of Gaussian Extractor Module
3.4.2 Data Extractor Module
3.4.3 Random Decision Forest Trainer module

3.4.4 Particle Filter Tracking Module

viil

xi

[0 N T N

12

4.2 Result

V. CONCLUSION e

REFERENCES

1X

LIST OF TABLES

Particle Filter Settings

Detection accuracy for MNIST dataset obtained from a toy problem
evaluating Haar-like feature contribution

Detection accuracy for INRIA Person dataset obtained from a toy prob-
lem evaluating Haar-like feature contribution

Detection pixel accuracy for MNIST dataset obtained from a toy prob-
lem evaluating Haar-like feature contribution

Detection pixel accuracy for INRIA Person dataset obtained from a
toy problem evaluating Haar-like feature contribution

MNIST Accuracy
Average detection ratio in Vehicle Tracking

Average number of frames processed per second for CPU and GPU in
conventional computer Lo

© oo N O ot

11
12
13

14
15
16
17

18
19
20
21
22
23

LIST OF FIGURES

(a,b) Two-rectangle features (¢) Three-rectangle feature (d) Four-rectangle
feature

HOG Features
SIFT feature computed for 2 x 2 grid

(a) coarse root filter (explanation needed) (b) several higher resolution
part filters (c) spatial model for the location of each part relative to
theroot [1]

Selective Search training procedure [2]
Region-based Convolution Networks (R-CNNs) [3]
Faster R-CNN Detection System [3]
SSD framework [4]o
YOLO Detection System [5] L
YOLO Detection Model [5]
General Structure of the Proposed System
Sample pixel clasiffication on decision tree node

An example of complex Haar-RDF process during testing. Leaves are
represented as square nodes in the tree. On left, each vector and haar
feature is the f,(x) for each node with the same color.

Haar-like Features
Sample tree and its leaves that stores object label likelihoods
Sample compressed Tree oL

Random Decision Forest pixel clasification: (left) input image, (right)
RDF pixel classification result

Particle-Filter block diagram
Sample output of searcher particles and their clustering
Histogram of Gaussian Extractor User Interface
Data Extractor User Interface
Random Decision Forest Training User Interface

Random Decision Forest Testing User Interface

x1

24
25
26
27
28

29
30
31
32

Particle Filter Tracking User Interface
Random Decision Forest Training Params for MNIST
Random Decision Forest Training Params for INRIA
Random Decision Forest Training Params for Vehicle Detection

Regression Random Decision Forest voting result and computed bond-
ing boxes after Mean-Shift clustering

Average feature selection rate for MNIST
Average feature selection rate for INRIA
Random Decision Forest MNIST test result.

Sample training output oL

xii

CHAPTER 1

INTRODUCTION

Multiple object tracking (MOT) is a fundamental research area in the field of com-
puter vision [6][7][8]. It has been studied extensively for decades and many algorithms
have been developed [9][10]. Recent advances in detection and tracking of multiple
objects have led to its application to diverse practical problems such as visual surveil-
lance, augmented reality and bio-medical imaging [8]. As the number of surveilance
cameras on buildings, roads are increasing, the subject of object detection and track-
ing became even more popular. Nonetheless, it is not an easy task and complexity
increases because of imprecise and noisy detections, occlusions by the other objects or
background, and dynamic interactions among objects [11]. Despite the fact that nu-
merous methods have been introduced in the literature, object detection and tracking
is still a prominent problem.

Current technological advancements in deep learning allow us to detect most ob-
jects precisely[4][5]. Consequently, many recent studies on MOT adopt tracking-by-
detection approaches [12][13] where the key research topic is data association to link
object detections in a sequence of frames. However, data association problem is a
complicated task on its own. Although this method has its advantages in handling
complex images, it is difficult to achieve real-time performance. Furthermore, deep
learning algorithms need big data and they are much more expensive computationally.

Mobile technologies have also become popular as well as efficient. As a result,
fast object tracking has become essential. Most of the algorithms proposed in the
literature need high computation power, which might not be feasible for the mobile

applications. We are proposing an algorithm that puts emphasis on real-time speed

of the algorithm on the conventional computers. For this purpose, we decided to use
two well known algorithms for their fast test-time speed in the literature: Random
Decision Forests (RDF) [14] and Haar-like features [15]. Proposed algorithm for ob-
ject detection and classification utilizes RDF that proposes a weak hypothesis of the
bounding box with posterior distribution over the classes for each pixel in the input
image in one pass. Combining these weak hypothesis proved to be more stable and
unbiased in contrast to stronger alternatives. Designed RDF exploits a Haar-like fea-
ture set responses around the sample. Moreover, it is known that RDF' is extremely
fast on GPU due to its binary nature which makes it feasible to real time applications.
By clustering this bounding box hypothesis map via Mean Shift, object detections
with their posterior class probability distributions are obtained. The Haar-like fea-
ture is well suited to the rigid object detection [16], since rectangular features are
sensitive to edges, bars, vertical and horizontal details, and symmetric structures. It
has been widely used for face [15], pedestrian [17], vehicle [18] and hand pose detec-
tion and tracking algorithms [19][20]. Introduced algorithm was tested on MNIST
handwritten digits, INRIA person and PETS09 pedestrian datasets and hight detec-
tion precisions were obtained. To test introduced algorithm for object tracking we
used it in combination with Particle Filters (PF) [21], also known as the Sequential
Monte Carlo, for single-shot vehicle detection and tracking. PF is implemented for
tracking detected objects by RDF. PF is widely used for multi-object detection [22],
multi-object segmentation, multi-object tracking [23][24], real-time simultaneous lo-
calization and mapping (SLAM) [25] etc. tasks. For non-linear and non-Gaussian
processes, PF is fast, powerful methodology which is easy and preferable to be imple-
mented on GPU with RDF. Likelihoods obtained from single-shot detection by RDF
are used to compute the weights for the particles that are used for tracking vehicles.
The usage of PF and RDF is fast and therefore suitable for doing computations on

a conventional computer. This enables us to track vehicles in a responsive fashion

by using resources available in our conventional computers. The state of the art

regarding object detection and tracking is explained in detail in Chapter 2.

CHAPTER 11

PREVIOUS WORK

2.1 Object Detection

Object detection in static images is one of the fundamental tasks in computer vision
and has been studied intensely during past few decades [15][26][27][22]. It is a chal-
lenging task to accomplish because of its complexity in identifying where the object
is located. Detection has to take into account the image transformations and needs
to be invariant to those changes. The knowledge of the object characteristics must
be determined and learned by the detector in order to detect an object in an image.
Thus, the most important stage in the object detection is feature extraction stage.
For this purpose, different algorithms utilize features like color information, texture,
edge orientation etc. With the advancement in computational power, we are now
able to process and train huge amounts of data by using various machine learning
algorithms efficiently. In general, object detection systems start with robust feature
(Haar [15], SIFT [26], HOG [28], Convolutional [29]) extraction, which is followed by
training classifiers for object identification in the feature space [5]. There are many
different approaches used for this task. However, we can put them into two main

categories: traditional methods and deep learning based methods.
2.1.1 Traditional Methods

With the popularity of mobile technology and its applications, traditional methods
became even more important. Generally, traditional methods are computationally
cheaper than deep learning methods in almost every scenario. There are lots of

different algorithms in the literature [1][2][30][31]. The general outline is as follows:

Extract robust features

e Pre-process and transform features

Use transformed features to train some machine learning algorithm

Use trained expert network for detection

Until now many varieties of features have been introduced in the literature but
most commonly used features among all are Haar-like [15], HOG [28] and SIFT [26]
features. Many traditional algorithms use one of these features with some modifi-
cations and preprocessing. Traditional methods generally use sliding windows for

detection.

1. Haar-like: It is a feature similar to Haar wavelet introduced for object detec-
tion by Viola and Jones initially for face detection [15]. It is a weak classifier
with one of the fastest implementation in the literature. A large number of
Haar-like features are necessary to describe an object with sufficient accuracy.
A Haar-like feature focuses on adjacent rectangular regions at a specific location
in a detection window. It computes the sum of pixel intensities in each region
and calculates the difference between these sums and is used to categorize sub-
sections of an image. In Figure 1, example rectangle features shown relative
to the enclosing detection window. The sum of the pixels which lie within the

white rectangles is subtracted from the sums of pixels in the gray rectangles.

Figure 1: (a,b) Two-rectangle features (c) Three-rectangle feature (d) Four-rectangle
feature

2. HOG: Histogram of oriented gradients is a type of feature descriptor introduced
by Dalal and Triggs in 2005 for human detection [28]. The algorithm computes
a gradient vector at each pixel. It slides an overlapping 16 x 16 window which is
composed of four 8 x 8 cells. So, per cell, there are 64 gradient values which are
quantized into 9-bin histograms. The histogram bins range from 0 to 180 degrees
with step size 20 degrees per bin. Thus, for a 64 x 128 detection window, there
are 7 x 15 blocks, 4 cells per block, and 9 bins per histogram that produce 3 780
value feature. The produced histogram is normalized to make it illumination

invariant. This is widely established in computer vision literature.

Fekwsa
(a) cell histogram (b) HOG visualized

10 30 50 70 90 110 130 150 170

Figure 2: HOG Features

3. SIFT: Scale-invariant feature transform is a type of feature descriptor intro-
duced by David Lowe in 1999 [26]. In the image domain, it is invariant to
translations, rotations, and scaling transformations. Moreover, it is robust to
moderate perspective transformations and illumination variations. This descrip-
tor is a position dependent histogram of local gradient directions around the
interest point. Neighborhood histogram of gradients is computed and normal-
ized to make it scale invariant. To make it rotation invariant, dominant vector
is computed in the obtained neighborhood and the grid is reoriented based on
computed dominant vector. Lowe stated that 4 x 4 grid is often a good choice

based on experiments he conducted [26]. Therefore, local histograms computed

at each 4 x 4 grid cell pixels and 8 quantized directions lead to an image de-

scriptor with 4 x 4 x 8 = 128 dimensions per interest point.

Figure 3: SIFT feature computed for 2 x 2 grid

Two most popular advanced examples of traditional detection algorithms are De-
formable Part Model (DPM) [1] and Selective Search [2]. They both have been used
for object detection and have demonstrated similar performances. They are still
widely-used algorithms [3][32][33][34].

DPM is an algorithm between generative and discriminative model. It represents
objects using mixtures of deformable part models. The first step in this algorithm is
to construct a pyramid for different scale of the input image. It uses HOG features
on pyramid levels before filtering [1]. Then, different root filters and part filters are
used to get responses. Finally, classifiers are trained using latent SVM by combining
responses and cost functions. Figure 4 shows a detection obtained with a single

component person model is shown. It can be summarized as follows:

1. Strong low-level features based on histograms of oriented gradients (HOG)

2. Efficient matching algorithms for deformable part-based models (pictorial struc-

tures)

3. Discriminative learning with latent variables (latent SVM)

A
z
)
!
i
{

Figure 4: (a) coarse root filter (explanation needed) (b) several higher resolution part
filters (c) spatial model for the location of each part relative to the root [1]

In contrast to DPM, Selective Search algorithm uses bag-of-words for object recog-
nition [2], which are more complicated and stronger features. To compute feature,
it samples descriptors at each pixel on a single scale. Used codebook size is four
thouthand and pyramid with 4 levels 1 x 1, 2 x 2, 3 x 3 and 4 x 4 division. Produced
feature vector length is three hundtred sixty thouthand. This descriptor is more rep-
resentative of deformable object types due to coarser spatial subdivisions. Finally,
classifiers are trained using Support Vector Machines (SVM) [35] with a histogram

intersection kernel. The training procedure is illustrated in Figure 5.

Medel False Positives Training Examples
e T .

SVM

(Histogram Intersection
Kemel)

Audd 1o braining >

I - —— -
s % examples 1
I Retrain |

Figure 5: Selective Search training procedure [2]

2.1.2 Deep Learning Based Methods

Despite its long history, deep learning was not that popular and widely used until
last decade, because of the computational cost of the artificial neural networks (ANN)

and lack of big enough training data. Moreover, it was not yet completely understood

that a patient training using weak features of greater numbers would beat a relatively
smaller number of more complex features. Advances in hardware and processing
power brought by powerful graphics processing units (GPUs) played an important
role in the resurgence of deep learning. The other important turning point in using
deep learning in object detection was brought by the availability of huge datasets
presented by big corporations such as Google [36], Facebook [37], Microsoft [38], etc..
Deep learning (Convolutional Neural Networks) techniques became even more popular
after the introduction of Region-CNN by Ross Girshick [39] and became a state of the
art methodology in object detection in single-shot image detection. Today in terms
of accuracy they dominate object detection benchmarks like PASCAL VOC [40] and
Microsoft COCO [38]. State of the art algorithms in object detection and recognition
are: Faster R-CNN [3], SSD [4] and YOLO [5].

Faster R-CNN is the extension of the R-CNN introduced by Ross Girshick [39)].

It follows the steps as shown in the figure below.

P y :
_______________ CNNiNg
'| tvmonitor? no.,

Input Extract region Compute CNN Classify and refine
image proposals (*2k / image) features on regions
e.g., selective search regions

[van de Sande, Uijlings et al.]

Figure 6: Region-based Convolution Networks (R-CNNs) [3]

It is composed of two modules [3]:
1. Region Proposal Networks (RPNs) module

2. Fast R-CNN module

The RPN module is a fully convolutional network that processes regions and tells
the Fast R-CNN module where to look. The Fast R-CNN processes proposed regions
and detect objects. They are unified as a single object detector network as shown

below.

classifier

proposals i ;
Region Proposal Network,
feature maps

Figure 7: Faster R-CNN Detection System [3]

Another algorithm is Single Shot MultiBox Detector (SSD) [4] which is the other
popular CNN algorithm. The idea behind this algorithm is similar to the usage of
RPN module [3] in Faster R-CNN algorithm. For detection predictions, it uses fixed
sized boxes similar to anchor boxes used in Faster R-CNN [3]; however, it is applied to
several feature maps of different resolutions. The space of possible output box shapes
is efficiently discretized by allowing different default box shapes. Since scores for each
category are computed simultaneously, the need for extra classifier for combining
region predictor and core CNN is avoided. Therefore, training is much faster, easier
and provides easy integration with other applications [4].

Another deep learning algorithm that we stated is YOLO [5] which was introduced
in CVPR 2016. Unlike other systems like R-CNN [5], which require thousands of
networks for a single image, YOLO makes predictions with a single network evaluation

pass. It uses information that has a global context in the image during prediction

10

L
iy ity i
[[
i N
T bl N
I:::JI::: :: |___I:II
K I
== 4 — - P A I
:-E::__JI::: /'—"'/_:------.
QR ¥ioc : A(ez, ey, w, h)
3 conf : (c1,¢2,-++,¢p
(a) Image with GT boxes (b) 828 feature map (c) 44 feature map

Figure 8: SSD framework [4]

stage. Prediction steps are done by applying a single neural network to the full
image. The applied network divides the image into regions and predicts bounding
boxes and probabilities for each region. Then, these bounding boxes are weighted by

the predicted probabilities.

1. Resize image.
2. Run convolutional network.
3. Non-max suppression.

Figure 9: YOLO Detection System [5]

Detection system works as follows:

1. resizes the input image to 448 x 448
2. runs a single convolutional network on the image

3. thresholds the resulting detections by the model’s confidence

The YOLO models detection as a regression problem [5]. It divides the image into
a S x S grid and for each grid cell predicts B bounding boxes, confidence for those

boxes, and C class probabilities. These predictions are encoded as an S xS X (Bx5+C)

tensor [5].

11

Class probability map

Figure 10: YOLO Detection Model [5]

2.2 Tracking

After the detection has been computed, we need to track objects. Over the past
decade, a large amount of work that has been devoted to multi-modal object tracking
algorithms [9]. If any object detector introduced in proceeding section is used, the
problem of tracking becomes data association of the detection results. This approach
has become the recent popular method [12][13][41]. However, data association prob-
lem is a complicated task on its own [8]. Numerous algorithms have been developed
to reduce complexity and provide better algorithmic speed [41][42][43]. Although
this method has its advantages on handling complex images, alleviating drift and
processing temporary disappearance of objects, it is difficult to achieve real-time per-
formance.

Nevertheless, most tracking algorithms in the literature are focused on only one
object class, e.g. tracking either cars or people in the scene. Therefore, applying
such heavy algorithms might be considered overkill for these kinds of problems. The
current problem has generally been approached by applying some kind of background
subtracter to identify foreground images, which most probably are the objects we are

interested in. The, connected component analysis is used to obtain individual moving

12

blobs which are tracked using Kalman Filter (KF)[8]. The usage of KF is one of the
earliest techniques introduced in the literature, which is a recursive method that
predicts the current object position based on information from the previous frame.
It is considered as one of the optimal methods assuming everything operating under
Gaussian probability distribution; however, real world cases are usually non-Gaussian
23].

On the one hand, with non-Gaussian problems, it is almost impossible to evaluate
the distribution analytically. On the other hand, particle filters (PF), also known
as the Sequential Monte Carlo [44], recursively construct the posterior PDF of the
state space using the Monte Carlo integration. Particle filter samples from proposal
distribution in order to get a group of weighted particles for representing current
status. Methods using PF are fast [23]. The improvement in object detection algo-
rithms made PF popular in multi-object tracking algorithms. For example, Okuma
et al. [21] introduced the Haar feature-based cascade classifier to particle filtering
framework. They used the classifier as a detector to discriminate the object and
background. Michael et al. [45] proposed a multi-object tracking algorithm based on
PF and detection score, introducing detection score into the calculation formula of
the matching score in data association. Gall et al. [22] introduced Hough Forests by

using confidence as observation for particle filter.

13

CHAPTER II1

PROPOSED METHOD

3.1 QOverview

Random Decision Forest (RDF) [14] have been used extensively in the literature. In
computer vision they have been used for tasks like hand pose estimation [46] and
pedestrian detection. Methods similar to the algorithm proposed in this thesis are
Hough Forests [22], RDFs that train local experts (SVMs) in each node [47], and RDFs
that are trained as joint classification-regression model [48]. These methods use high
level features for training which makes them computationally expansive. In this thesis
we introduce RDF's that uses Haar-like features, which are very fast to compute. Due
to the binary nature of RDF and fast computation time of Haar-like features, proposed
method is fast and easily deployable to GPU for even faster computation speed. To
the best of our knowledge, Haar-like feature has not been used in combination with
RDFs in the literature. Moreover, the application of proposed method on vehicle
tracking is also introduced. The application utilizes proposed Haar-RDF and Particle
Filter (PF) [44] for detecting and tracking vehicles (Figure 11). Each particle has
observation weight that has to be set. The accuracy of tracking heavily depends on
these observations. Haar-RDF produces likelihood of the region containing tracked
object. These likelihoods are used as observation values for particles. In the following
subsection we, are going to elaborate on Haar-RDF, PF, and on how we perform
training and updating particles in detail. In addition to that, algorithm verification
methods are also explained. In the end, proposed framework for data extraction,
training, detection and tracking is introduced. We are going to thoroughly explain

each module in the framework.

14

Trainer Module Particle Filter Tracker Module

v

Training Data Particle Filter
External Modules

+ Video Reader

I

Annotations

RDF ‘

RDF-C

Figure 11: General Structure of the Proposed System

3.2 Random Decision Forest

Random Decision Forest (RDF) is an ensemble learning method which has been stud-
ied extensively in the literature [14][49]. They are extremely fast classifiers due to
their binary structure. Tim Kam Ho was first to develop an RDF algorithm using ran-
dom subspace method [49]. The RDF model proposed in this thesis uses the distance
between pixel intensities and Haar [15] features to classify objects. These features
are weak classifiers but when combined, similar to the AdaBoost [50] algorithm, they
become strong. The implementation of the proposed RDF methodology is inspired by
the RDF structure used in [46]. In this approach, each pixel will vote for object class
label with a likelihood and vote with a higher average likelihood is used to determine

the object label. RDFs are a method that uses multiple deep decision trees, trained

15

on randomly sampled parts of the same training set, to reduce the variance of the
model [51].

Each tree in the forest is composed of two parts: decision nodes and leaf nodes
[46]. Decision nodes are used to analyze the data and propagate the incoming input
to one of its children according to the split criterion. Leaf nodes are nodes in the
last level of the tree and based on the statistics collected from training data, they are
used to infer the posterior probability of the class label. Splitting in a decision node

is performed based on the following function:

fa(Fo) < T, (1)

where F,, is input features, f,,(F,) is a function that produces a comparable value
from input features and T, is a threshold, combined together they produce a split
criterion function (Eq. 1). Parameters for the decision node are learned after per-
forming the non-improving epoch iteration procedure. f,(F,) = T, is a hyperplane
in the feature space. The test decides which side of hyperplane the feature belongs
to. Therefore, training involves determining test parameters and collecting statistics
from a training set in a supervised manner [46]. Proposed RDF training algorithm is

described in Algorithm 1.
3.2.1 Random Decision Trees

Random Decision Trees are highly non-linear predictors that hierarchically partitions
feature space in to subsets .S, to obtain pure partitions at leaf nodes. Where, S,
represents the subset at n* node. One of the most common ways to represent pureness
mathematically is the Shannon entropy(Eq. 2). Where, p(c) is the probability of class
¢ in the subset S. Minimum entropy means that the partition is pure indicating that

only one type of sample exists in that partition.

16

Algorithm 1 RDF Training
1: procedure TRAIN_TREES

2: for all tree in forest do

3: set data and parameters
4 procedure TRAIN

5 initializes parameters

6: initializes nodes

7 Generates sub samples from each frame so that positive
8 and negative pizel counts are equal

9 procedure CONSTRUCT_TREE

10: construct root node

11: construct decision nodes

L7 compute leaf node histograms

13: procedure COMPRESS_TREE

14: travers tree preorderly starting at root
15: set node values to compressed tree

16: procedure SAVE FOREST

H(S) == p(c)log(p(c)) (2)

ceC

In the binary case, partitioning is done via binary boundaries in the feature space
as defined in Eq. 3. Where, f,(x) refers to a feature function, 7, is the split threshold

, SE and SE are defined as subsets of S; at left and right child respectively.

St Zf fn(‘r) < Ty
V(p) = (3)
SEif falz) >

During training, f,(z) and 7, are selected in a way that the entropy is minimized
at each partition. This is achieved by randomly searching f,(x) and 7, such that
maximum gain(Eq. 4) is obtained. Feature function f,(z) can be designed due to
the problem at hand. Ensemble of independently trained RDT’s are called a forest
(RDF) where posterior distributions are accumulated during test time providing more

robust data.

17

Figure 12: Sample pixel clasiffication on decision tree node

T proposed

bounding box E
|7
\

single
pixel

v

Figure 13: An example of complex Haar-RDF process during testing. Leaves are
represented as square nodes in the tree. On left, each vector and haar feature is the
fn(z) for each node with the same color.

15)=- Y Blags) (@)

i€{L,R} ‘ ‘

Tree Node parameters are I D, 7, Oy, 010, Feature ID, isLeaf and leaf histogram.
In each iteration, random 6 and 7 values are generated and using all available Haar-like
features (Figure 14) the best one that partitions subset in a way that the information
gain is maximized at the given node is selected. These iterations are continued until
iteration count reaches its maximum value. If new values with better entropy division
are detected, the iteration count is reset to zero. This is called a non-improving epoch

iteration procedure. After the tree training is complete, something similar to (Figure

18

15) is generated. While testing, each pixel (Figure 12) goes through each node (Figure

13) and after reaching the leaf node, uses the obtained histogram to vote for the pixel

label.

I = » | B B - =
m o " " = By
o T = = = | I =
- Yy N % ~ = = 1
B R B S
- =+ X J L = = T
2 X m w =
T AL v S N

| = »" | B R - =
I R T = RSy e
L T == =« |1 I =
- Yy N % ~ = = 1
N m e Iy 8y i
m = X F L = =
S X m w0 =
T L v 2 0

Figure 14: Haar-like Features

3.2.2 Compressed Random Decision Forest (Compressed-RDF)

After the tree is constructed, it is compressed in order to get rid of unnecessary
training details. The compressed tree is a single matrix composed of K columns
(K = maz(seven,label_count)) (Figure 16). The compression is done by traversing

the tree using preorder traversal algorithm. It starts with the root node. In each

19

id 0
I 1 300

B1 1 (13,30)
82 1 (15,34)

0
I :-500
1 (17,32)

1 (10,40)

I‘l-l- Il-l. Il-l. I‘l-l- I‘l—l—l‘l—l—

Figure 15: Sample tree and its leaves that stores object label likelihoods

given node we check whether the node is a decision node or a leaf node. If it is a
leaf node, we put a sentinel value (—1) in the first column of the node and all other
columns are used to store this leafs histogram. If it is the decision node we put left
childs ID in the first column, feature ID in the second column, 7 value in the third
column, 6,,. and 6,,. values in the rest of the columns.

Consequently, the trained and compressed forest is ready for exploitation. The
compressed forest is used which is much lighter than the regular RDF class, for detec-
tion purpose. Compressed-RDF contains compressed trees and uses CUDA kernel for
the pixel classification if CUDA compatible GPU is present. The Compressed-RDF
with GPU kernel is eight times faster that the Compressed-RDF with CPU classifier,
in a conventional laptop GPU (GeForce GTX 860M /PCle/SSE2).

20

30 0 90 10 40 -10 -40

5 2 150 -13 12 -34 -25

Figure 16: Sample compressed Tree

3.3 Particle Filter

Particle Filter (PF) [44], also known as the Sequential Monte Carlo (SMC), is well-
known filtering algorithm used for solving Hidden Markov Chain (HMM) and non-
linear filtering problems [23][24][44][52]. PF is used to estimate the internal state
of the dynamic system based on partial observations. The idea is to calculate the
posterior distributions of the states of some Markov process. Given some noisy obser-
vation, using a set of particles, it attempts at representing the posterior distribution
of some stochastic process by applying a generic type mutation-selection sampling
approach. The mutation-selection sampling algorithm is used for implementation of
prediction-updating transition process [52].

The set of particles in PF represent samples from the distribution. Each particle
has a likelihood weight assigned to it. This weight represents the probability of that
particle being sampled from the probability density function. After undergoing re-
sampling step, particles with higher weights replace particles with negligible weights
[44].

Particle filtering is a powerful algorithm used for non-linear,multi-modal, and non-
Gaussian processes. It is used in a variety of different fields. They are widely used in

target tracking [23], economics [53][54], neuroscience [55] and biochemical networks

21

Figure 17: Random Decision Forest pixel clasification: (left) input image, (right)
RDF pixel classification result

[56] to name a few.
The proposed implementation of PF in this thesis is similar to the original imple-

mentation explained in [44]. We have sample set S :

S ={(s")|n = 1..N} (5)

and we are trying to approximate the probability distribution by this weighted

sample set S, where s" is n'®

sample, and N is the number of samples. Each sample s
represents one hypothetical state of the object, with a corresponding discrete sampling

probability 7, where

" = p(z| Xy = s7) (6)
d =1 (7)

In our model, each particle has a rectangle shape with 2D position (z,y), width

h

and height (w, h), velocity (dx,dy) and on video frame parameters. So, n'" sample

22

at time t would be:

T
st = |ap yp dap dyp wp hp oy (8)
Let vector X; be the state of tracked objects and vector Z; all observations up
to time t. Then, based on the observations of each particle, the probability 7 is

calculated using Equation 6.

Particle Filter

Outside Modules

o -

Figure 18: Particle-Filter block diagram

Proposed PF tracking model is composed of searcher particles and tracker par-
ticles. Searcher particles are used to detect the new vehicle in each step. They are
randomly reinitialized when new frame is received. Tracker particles are used to track
the detected object by searcher particles. When the new frame received, they are re-
sampled M times based on their weights computed in the previous stage. The value
of M depends on the number of clusters in the previous stage and a total number

of trackers initialized per object (M = nClusters * nTrackersPerObj). This is an

23

important procedure which ensures that after objects disappear, trackers that are
moved to other clusters after re-sampling are removed. If this step is skipped the
number of trackers can grow to infinity and algorithm will stop functioning. The

general steps in this particle filter tracker are as shown in the Algorithm 2.

Browse Start Pause Save Target

Figure 19: Sample output of searcher particles and their clustering

The model is initialized with an average width and height. The assumption for
our model is that the size of tracked object change according to Gaussian distribu-
tion N(u,0) and velocity is constant. In each stage, we calculate object clusters by

clustering our particles and collect statistics for the model update stage according to

(Eq. 9) (Eq. 10).

24

Algorithm 2 Particle Filter Tracking

1: procedure EXEC() IS FIRED
2: new frame is received
3: procedure COLOR SPACE CONVERSION
4: if frame color space # RDF color space then
5: convert frame color space to RDF color space
6: procedure LIKELIHOOD MATRIX CALCULATION
7 likelthoodMat < RDF
8: procedure NOISE REDUCTION
9: median filtering is performed on the matrix produced by RDF to reduce noise
10: procedure INTEGRAL IMAGE CALCULATION
11: integral image is calculated for faster computation of future particle weights
12: procedure UPDATE TRACKER PARTICLES
13: resample tracker particles
14: compute weights
15: tracked clusters < DBSCAN
16: procedure CALCULATE NOISE STATISTICS
17: based on cluster distribution, standard deviation of particle positions
18: and standard deviation of width and heights are calculated and set for
19: each particle
20: procedure OBJECT DETECTION (FIGURE 19)
21: randomly inilialize N searcher particles
22: for + in K do
23: compute weights
24: resample searcher particles
25: compute weights
26: sort tracker particles
27: select top M particles - DBSCAN
28: detected clusters < DBSCAN
29: procedure ADD NEW TRACKERS
30: for cluster : detected clusters do
31 if tracked clusters contain cluster then continue
32 if cluster.weight < minWeight then continue
33: wiatialize L tracker particles around new detected object
34: procedure UPDATE TRACKER PARTICLES
35 compute weights for tracker particles
36: procedure DETECTED REGIONS ARE DRAWN ON THE OUTPUT FRAME

25

St41 = St + U (9)

i Ty + dzy] _xt_ [dxy]
ye + dy, Yt dys
dx + N(piz, 0z) dx N(ptz, 02)
dy + N(py,0y) | = |dy| + | N(py, 0y) (10)
we + N(p,0) w; N(p, o)
he + N(p, 0) hy N(u, o)
| M- T | T

N is a normal distribution where (f,,p,) is the center of the particle cluster
to which given particle belongs and (o,,0,) is a standard deviation of the particles

belonging to the same cluster.

3.4 Framework

We have developed a framework with a friendly graphical user interface for recognition
and tracking tasks. Here we are going to provide a detailed explanation on each

module. It is composed of:

1. HOG Extractor Module: used to extract HOG features from input images

2. Data Extractor Module: used to extract training images from input video

stream

3. RDF Trainer Module: used to train, test and save RDF for later usage in

detection

4. PF Tracking Module: used to track car (object) using pre-trained detectors

26

3.4.1 Histogram of Gaussian Extractor Module

Histogram of Gaussian (HOG) [28] extractor module just asks for the dataset folder
and extracts HOG features for the given folder. After extraction is complete, it saves
data to the specified folder. To activate you press "Hog Feature Extraction” last

button in (Figure 20)

file

RDF Annotation Extractor »

RDF
Annotation Extractor
Resizer
Browse Images
PF Tracker
Data Extractor

Hog Feature Extraction

Figure 20: Histogram of Gaussian Extractor User Interface

This module is used for extracting HOG features to train a Support Vector Ma-
chine (SVM) [35]. This trained SVM was used for the validation of implemented
particle filter algorithm. More detailed explanation is presented in Experiments sec-

tion.
3.4.2 Data Extractor Module

This module is used to collect data for training both Random Decision Forests
(RDFs). It uses the pre-trained SVN Classifier, the Background Subtracter, and the
Blob Detector to detect all moving objects and save cropped detections Algorithm 3.
The first thing we do for each frame is obtaining foreground pixels using Mixture of
Gaussian (MOG2) [57], a Gaussian Mixture-based Background/Foreground Segmen-

tation Algorithm which is robust to scenes due to illumination changes. Next, we

27

feed obtained binary foreground/background image and send it to a Blob Detector
by providing minimum area and shape of the objects. Obtained blobs are put to test
based on their size and prior trained SVM detection results. If a positive response is
received, then we crop and save given blobs ROI. The position of the object in the

scene is also registered for single frame detection RDF training.

Algorithm 3 Data Extraction

: MOG2 < Frame

: BlobDetector < MOG?2

: blobs <+— BlobDetector

: for all blob in blobs do

if the blob is not valid then continue
SV N <« blob

if the result is positive then save detection

3.4.3 Random Decision Forest Trainer module

We are using Random Decision Forest (RDF) trainer module for training random
decision forests and testing them. It facilitates parameter tuning to train optimal
RDF. We are able to save trained RDFs. They can, then, be used for testing with
provided input data. Our RDF Module is composed of two main sections: Train
(Figure 22), Test (Figure 23).

These two sections share 4 subsections:

1. Data Loader. It is used to select dataset type, set the maximum allowed data,
set skip count, set a color, set L*A*B* conversion and display ground truth

data.

- Since for our experiments we are using different datasets, we need to specify
which data we want to load. Each dataset is stored differently and therefore
should be handled accordingly while loading. This section supports this feature

to facilitate user with a better experience.

28

Classification Methed :
svm_trained?2
Save Directory :

Aspect Ratio Settings (width/ height)

Min 0,30

A4b| (4

Max 1,30

BBox Settings

Min 700 s
Max 10000 s
Sawve Dir
Show player

Predictor

load SVM train
Extract HOG save
load RDF

Browse Play Pause

Figure 21: Data Extractor User Interface

- For some computers, RAM is limited and thus you are not able to use hole
dataset for some cases. For these kind of situations, we added an option to load

a fraction of the given data.

- To test implemented algorithms, we might be using the data from the different
section of the same dataset. For these cases, we need to be able to skip some
portion of data. By setting the number of images to skip, this module will skip

from the start of the dataset while loading.

- Set color option allows you to set how images are loaded. It supports grayscale

image loading and color image loading.

- Since we are using L*A*B* colorspace for our RDF training, we support

L*A* B* color conversion.

29

Train Test

Parameters

Number of Trees 5 |- Pixels per Image 50 |2
Max Depth 5|2/ Min Leaf Pixels 5%
Probe Distance X| 60 |2 Max Iteration 200 |2
Probe Distance Y| 60 |- Label Count 2s
Max Px for Entropy Calc 1000 |5 Tau Range 127 |3
Positive Tau
Training
PreProcess
IE=raGTas /home/neko/Desktop/DesktopFoldersf
9 * trackingData/DATA_CAR1/RDFData
Label File :
Dataset Type : |STD One Frame = Load Load Labels
Max Imgs: | 10 +| Skip |0 | COLOR ~ | |¥| Rects LAB
Pre Processes :
Sobel Gaussian Blur
Inverse Image
Pixel size is not consistent at the leaves!
Tree 5 Constructed.
Forest Size : 5 Label

Forest Trained ! =] ¥

Figure 22: Random Decision Forest Training User Interface

- To see how the ground truth looks for debugging purposes we introduced an

option to display ground truth on each frame.

2. Data Preprocessor. It is used to inverse image, do Sobel (Schar) [58] operators,

and Gaussian Blur.

- While loading MNIST dataset [59], we get images with white background and
gray foreground colors. To make algorithm implementation easier we needed
the colors be the other way around. Therefore, we introduced a processor that

produces an inverse image.

- To be able to do testing on edges in the images, we provided this Sobel
processor that produces the image with all edges detected by Sobel (Schar)

operator.

- Gaussian Blur processor is provided to perform Gaussian blur on images with

30

@ ©® Dbpialog

Train Test

Test

Test

Number of Trees 1|5

| Fill . /home/neko/Desktop/DesktopFolders/
mage File : rackingData/DATA_CAR1/RDFData

Label File :

Dataset Type : | STD One Frame ~ Load Load Labels
Max Imgs: | 10 2 skip [0 *||coLor - Rects |v|LAB
Pre Processes :

Sobel Gaussian Blur

Inverse Image

FOREST LOADED
Testing time: 1 sec 0 min

Label

Figure 23: Random Decision Forest Testing User Interface

different kernel sizes.

3. Data Visualizer. It is composed of a label panel to display frames and a slider

to go through each frame faster

4. Terminal. It is used to display training and test output for monitoring and
debugging
3.4.4 Particle Filter Tracking Module
Particle Filter (PF) module is composed of three main parts that we use for tracking:

Video Player, Predictor loader, and PF Settings

1. The video player is used for loading and playing videos. It contains VideoReader
class which creates frame buffer from a video file, and a PF which is a video-

processor. PF processes each frame and sends the result to the video player for

31

) M6 Motorway Traffic.mp4

PF Settings

Particles 1000 %
Iterations 2 E
Particle Width 30 B
Particle Height 45 B
Trackers/obj 70 =
DBSCAN EPS 27,00 |2

DBSCAN MIN PTS 35
Top N particles

ROI Confidence:
ROI Class:

Predictor
load SVM train
Extract HOG save

load RDF

Step size (conf map) 1o =
compute conf map

Targets :

Setup Particle Filter

Browse Start Pause | Save Target

Figure 24: Particle Filter Tracking User Interface

displaying.

2. Predictor loader is used to load different predictors. We have:

e SVM

e HOG Extractor

e RDF
- SVM and HOG Extractor are used together. HOG Extractor is used to load
training data and create HOG features. Pressing train, we train an SVM and
save it. Later we can load trained SVM for prediction. However, these functions

are not used for tracking purpose. It is used for data extraction, which is

explained in the next section.

32

- RDF is our main concern in this section. It is used to load pre-trained RDF

for PF.

3. PF Settings are used to set PF parameters which are shown in Table 1.

Table 1: Particle Filter Settings

’ Settings ‘

of searchers
of search iterations
particle width
particle height
of trackers
DBSCAN epsilon
DBSCAN minimum points
"Top N particles” slider

- As explained in previous sections proposed PF is composed of fixed number
of searcher particles and a varying number of tracking particles based on the
number of vehicles being tracked. The number of searchers parameter sets fixed

searcher particle count.

- For searching, randomly initialized particles are updated K time which is set

by using the number of search iteration setter spin box.

- By setting particle width and particle height we are providing PF a prior
knowledge about average with and height of particles (both searcher and tracker

particles).

- Proposed method initializes M tracker particles per detected object and it can

be set through setting the number of trackers parameter.

- DBSCAN [60] is a clustering algorithm that we use for clustering particles.
To use this class epsilon value and minimum particle count should be set. To

set these variables we have provided a specific parameter setter interface.

33

- For debugging purpose we provide a slider which sets a parameter N, which

is used to display the top N searcher particles video stream.

34

CHAPTER IV

EXPERIMENTS

4.1 Setup

For the validation and parameter tuning of the random decision forest (RDF) we used
RDF Trainer /Tester Module that we have implemented for this purpose. For particle
filter (PF) validation we used PF Tracking Module. The details of their usage can be
accessed in the Framework Section.

In order to validate the functionality and accuracy of the implemented Random
Decision Forest (RDF), we tested the implementation on a toy problem. For this
purpose, we decided to pick a well known MNIST [59] dataset of handwritten digits.
It is composed of ten thousand test image samples and sixty thousand training image
samples. For validation of our RDF implementation, we used pixel intensity difference
of two randomly selected pixels as a feature for RDF decision node. Our input features
(F,) are 07, 0 and image intensities. Thus our split function f,, became (Eq. 11).
As shown in the results section (Figure 31), we were able to achieve image label
accuracy of 98.24% for training data, and 99.41% for test data, by using (Figure 25)
parameters for training. For this dataset pixel accuracy rate is relatively high, 86.80%
for training data and 89.08% for test data. Since MNIST images are twenty eight by
twenty eight we used thirty for both probe distances X and Y so that any given pixel
will have a chance to be compared to all possible pixels in the image. We used tree
depth of twenty four because of the RAM limitations of the laptop being used for
testing. Since we used only foreground pixels for training, most of the pixels in any
given image are background we computed that hundred pixels per image are enough

sampling. After testing for various values of 7 we found that hundred twenty seven

35

was a good choice, which makes sense given the fact that the difference between two

pixels generally lays between ranges of plus and minus hundred twenty seven.

fn(Fn) = (@ + 01,y + 07,) — I(x + 65,y + 03,

—~
—_
—_

~—

Parameters
Number of Trees 1. Pixels per Image oo :|
Max Depth 24 |5 Min Leaf Pixels 55
Probe Distance X 30 2 Max Iteration 100 |2
Probe Distance Y 30 2 Label Count 10 2
Max Px for Entropy Calc 1000 |5 Tau Range 127 |5

Positive Tau

Figure 25: Random Decision Forest Training Params for MNIST

After we have validated that our RDF implementation is working perfectly, we
tried to introduce new features. We decided to use Haar-like features for our split
function. So, our new input features F), became 07, H (H is the Haar-like feature)
and image intensities and split function became (12).

hoow
Iz + 07, + i,y + 07, 4 j) = Hu(i,) (12)
i=0 j=0
We used point, horizontal edges, vertical edges, horizontal lines, vertical lines and
rectangle Haar-like features. The usage of these features increased detection accuracy.
Same accuracy rates were achievable in a shorter tree depth, which can be seen from
the results of the experiments in Table 2.
Next, as we validated our RDF implementation and saw an increase for MNIST
dataset we decided to test the same algorithm and set-up for a different dataset. Thus,

we used INRIA [61] person dataset. The test parameters are as shown in (Figure 26).

As a result we obtained higher accuracy while using only Haar-like features with

36

respect to two pixel intensity difference and the mixture method. The test results are

shown in (Table 3).

Parameters
Number of Trees 1. Pixels per Image 3000 .
Max Depth 10 |5 Min Leaf Pixels 5.
Probe Distance X 70 5 Max Iteration 200
Probe Distance Y 70 |, Label Count 2|5
Max Px for Entropy Calc 1000 |, Tau Range 127 |,

Positive Tau

Figure 26: Random Decision Forest Training Params for INRIA

To test the implementation of particle filters we tested it using SVM trained on
INRIA [61] person dataset. We used our HOG data extractor to extract HOG features
from INRIA dataset. SVM was trained on extracted HOG features and used for
weight assignment for particles. Later, using PF Tracking Module of our framework
we tested the implemented PF algorithm. The verification of the algorithm was done

based on how close single person on video frame was tracked visually.

Parameters
Number of Trees 52 Pixels per Image 1000 |,
Max Depth 25 |5 Min Leaf Pixels 5|2
Probe Distance X 60 - Max Iteration 400 2
Probe Distance Y 60 o Label Count 22
Max Px for Entropy Calc 1000 |5 Tau Range 400 |5

Positive Tau

Figure 27: Random Decision Forest Training Params for Vehicle Detection

37

For the verification of the proposed system, we needed some car surveillance bench-
mark. However, since there is no annotated benchmark for multi-object vehicle de-
tection on surveillance camera, we collected annotations using " YOLO darknet” [62]
framework. The video stream that we have used is from ”M6 motorway traffic” in the
United Kingdom, which is thirty minutes in duration. The video stream is twenty-
four frames per second. The data was sampled with a two frames per second sampling
rate. Therefore, we were able to annotate five thousand frames. Half of the frames
were used for RDF training. We would like to point that, the given data contains
lots of noise and is not fully accurate since darknet framework does not give fully
accurate annotations for the given video stream. We trained forest using parameters
in (Figure 27). Since we are comparing our results with YOLO, all frames were re-
sized to 416x416 which is the size YOLO uses for detection. Tests were conducted
on Grayscale, RGB and L*A*B* color spaces. We trained RDF using five trees with
a depth of twenty five and since we did not get any further improvements with our
training and the test speed is being affected by the depth of each tree since we need
more time to traverse each tree. After conducting numerous experiments, we found
that probe distance sixty for both X and Y direction is a perfect. More than sixty
was affecting training because the presence of neighboring vehicle was leading to con-
fusion while learning. When less than sixty, randomly generated vectors are not long
enough to use all vehicle pixels for training. Moreover, since trailer trucks and lorries
are not detected properly, they impose big noise to the training of the forests.

Finally, as we completed validation of our Haar-RDF implementation on these
toy problems, we decided to increase the number of Haar-like features and add some
extra information to the leaf node. While tree structure is learned and pixels for each
leaf node are calculated we used K-Means algorithm to cluster the displacement of
each pixel from center of the object. By storing this information we convert our Haar-

RDF to a Regression Forest. Therefore, modified Haar-RDF allows us to obtain both

38

detection and classification in one pass over the forest due to the new information
stored in the leafs (posterior distribution and bounding box estimation).

The proposed method was tested on PETS09 pedestrian dataset. For the testing
purpose we used five trees with depth of fifteen. Due to the average pedestrian
dimensions we estimated probe distance X to be sixty and probe distance Y to be
hundred. From each pedestrian we obtained six hundred random pixels for each tree.
Due to the reasons explained in the previous experiments we set tau range to be
between plus and minus hundred twenty seven. As for Haar-like features we used
hundred fifteen features shown in Figure 14 and difference of two regions #; and 6,
away from pixel of interest are used. In order to have more precise description we used
three different sizes of the given features: six by six, twelve by twelve, and twenty four
by twenty four. This way we obtained three hundred forty eight different features.

For testing, we had ground truth only for PETS09 training dataset, which is
composed of seven hundred ninety five frames. Therefore, we used six hundred of
these images for training and hundred ninety five for testing. To test obtained results
we used development-kit provided by multi object tracking challenge [63]. We were
able to obtain 96.4% precision rate on detection, which is comparably higher relative
to the similar RDF algorithms. Sample regression output is shown in Figure 28. On
the left image we displayed pixel voting results and on the right image we show

computed bounding boxes after Mean-Shift is done on the voting results.

4.2 Result

In this section results for the experiments section are provided. Table 2 and Table 3
show the detection label accuracy for MNIST and INRIA datasets. Table 4 and Table
5 show the detection pixel accuracy for MNIST and INRIA datasets. These results
are used for the illustration of added information for the detection by the Haar-like

features. Average feature selection rates for MNIST and INRIA are displayed in

39

Figure 28: Regression Random Decision Forest voting result and computed bonding
boxes after Mean-Shift clustering

Table 29 and Table 30 respectively. It can be observed that RDF mostly tends to

pick single pixel difference feature more often.

Table 2: Detection accuracy for MNIST dataset obtained from a toy problem evalu-
ating Haar-like feature contribution

’ \ single_pixel \ Haar — like \ combined ‘

run_1 76.59 % 76.23 % 79.49 %
run_2 74.85 % 78.22 % 79.43 %
run_3 78.07 % 78.12 % 80.84 %

| average | 76.50 % | 77.52% [79.92 % |

The result for the complete label and pixel accuracy for the MNIST dataset is
shown in Table 6. To display sample run output on the terminal while training, a
screen shot is shown in Figure 32 and sample pixel voting is visualized in Figure 31.
In the given image each color stands for a label. As we can see most of the pixels

have voted for label being seven for this particular case.

40

Table 3: Detection accuracy for INRIA Person dataset obtained from a toy problem
evaluating Haar-like feature contribution

‘ single_pixel ‘ Haar — like ‘ combined ‘

run_1 76.23 % 80.64% | 7544 %

run_2 76.46 % 82.14 % 74.48 %

run-3 76.28 % 81.37 % 77.74 %
average | 76.32% | 81.38% [75.89% |

Table 4: Detection pixel accuracy for MNIST dataset obtained from a toy problem
evaluating Haar-like feature contribution

’ \ single_pixel \ Haar — like \ combined ‘

run_1 34.62 % 2414 % | 29.36 %

run_2 31.16 % 27.22 % 34.43 %

run_3 32.86 % 2643 % | 29.86 %
average | 32.887% | 28.93% [31.22% |

Table 5: Detection pixel accuracy for INRIA Person dataset obtained from a toy
problem evaluating Haar-like feature contribution

’ ‘ single_pixel ‘ Haar — like ‘ combined ‘

run_1 65.07 % 44.31 % 64.75 %
run_2 64.51 % 59.14 % 63.81 %
run_3 65.15 % 58.15 % 49.62 %
| average | 64.91% | 53.87% [59.39% |
Table 6: MNIST Accuracy
’ ‘ label _accuracy ‘ pixel_accuracy ‘
[testdata | 9824% [86.80% |
[training_data | 99.41% | 89.08% |

41

MNIST

120
100
80)
W pixel
W harizontal edges
60 vettical edges
® horizontal lines
m verticd lines
40 rectangle
20
0 h N
single pixel Haar-like combined
Figure 29: Average feature selection rate for MNIST
120
100
80
W pixel
® horizontal edges
60 vertical edges
W harizontal lines
W vertical lines
40 rectangle
) I ‘
0 will

single pixel Haar-like combined

Figure 30: Average feature selection rate for INRIA

42

Train Test

Parameters
Number of Trees 15 Pixels per Irnage\ Ol
Max Depth 24 5 Min Leaf Pixels 5%
Probe Distance X 30 o Max Iteration 100 o
Probe Distance Y 30 o Label Count 10 =
Max Px for Entropy Calc 1000 |5 Tau Range 127 |3

Positive Tau
Training
Load Train Save

PreProcess

Image File : /home/neko/Desktop/DesktopFolders/trackingData/MNIST/t10k-labels.idx1-ubyte
Label File : /home/neko/Desktop/DesktopFolders/trackingData/MNIST/t10k-labels.idx1-ubyte

Dataset Type : | MNIST - Load
Max Imgs: | O + | skip 0 “| GRAYSCALE ~ Rects LAB
Pre Processes :
Sobel v/ Gaussian Blur

Kernel X: 3 |2
¥ Inverse Image

Kernel Y: |13 |2
Sigma: 1 =
FOREST LOADED

Testing time: 12 sec 0 min
Accuracy: 97.46%

Label

Figure 31: Random Decision Forest MNIST test result

<<<< DataSet ==>>
images: 60000
Images per Label:
0 == 5923
== 6742
=>» 5958
=> 6131
=> 5842
=> 5421
=>» 5918
=> 6265
=» 5851
=> 5949

V0N R W N
|
A

Tree number 1 is being trained
Depth Pixels PxRatio LCount Impurity ImpRat
0 3380547 100% © 7783978 100%

1 3380547 100% O 7783794 99.9976%

2 3380547 100% O 7731513 99.326%

3 3380547 100% O 7631278 98.0383%

4 3380547 100% O 7514264 96.535%

5 3380547 100% O 7383821 94.9 %
Training Time : 391 sec / 6.52 min

Figure 32: Sample training output

43

Table 7: Average detection ratio in Vehicle Tracking

	Accuracy
YOLO	100%
Proposed_Method	92%

Table 8: Average number of frames processed per second for CPU and GPU in
conventional computer

	FPS
GPU	303
CPU	38

44

CHAPTER V

CONCLUSION

There are lots of algorithms that have been developed for multi-object detection
and tracking; particularly deep learning based algorithms that produce solid results,
which, however, do not take into account the real-time processing time of the al-
gorithms. As the number of cameras in the automated vehicle surveillance systems
increases, the effective low computational cost algorithms become essential. For this
reason, many researchers have developed alternative algorithms that are computa-
tionally cheaper. One of these techniques used in the literature is using Random
Decision Forests (RDF), which is known for its balanced test-time performance both
for speed and quality. Different variations include regression forests, Hough forests,
cascaded random forest and etc.. Our work presented in this thesis, introduces a novel
Haar-like Random Decision Forest. Haar-like features are introduced in the RDF split
function which is a few orders of magnitude faster to evaluate. This new feature al-
lows us to reach higher accuracy rates in shallower forest trees, which consequently
make algorithms using RDF even faster. In order to test the usage of this new RDF,
we implemented a vehicle tracking system that uses RDF and Particle Filters (PF).
The nature of PF and RDF allows for fast computation. We use RDF to set parti-
cle probabilities for the future re-sampling stage of particles. Implementing them on
GPU, facilitated us with a speed up of eight times faster than the implementation on
CPU of a conventional computer. The proposed system is modular and any number of
Haar-like features can be supported. It has been shown that as the diversity of Haar-
like features increases, our system performs better for vehicle surveillance. With the

proposed algorithm we were able to reach high precision rate (96.4%5) for detection

45

on PETS9 pedestrian dataset. Moreover, we showed that compared to YOLO, one
of the fastest state of the art deep-learning detection algorithms, in the conventional
computer set up, our system generates comparable vehicle detection accuracy and
real-time detection speed. The other contribution of this work is the introduction of
a framework that facilitates algorithm training and testing. Additionally, it provides
various modules for data extraction and data generation.

As future work, we are planning to extend our training for more Haar-like features
with randomly generated dimensions and some other features. We are planning to
implement RDF using different color spaces as well. Next step will be optimizing
PF implementation and run particles on GPU and compare its performance with the

state of the art tracking algorithms.

46

1]

[10]

[11]

[12]

Bibliography

R. B. Girshick, P. F. Felzenszwalb, and D. McAllester, “Discriminatively trained
deformable part models, release 5.” http://people.cs.uchicago.edu/ rbg/latent-
releaseb/.

J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders, “Selective
search for object recognition,” International journal of computer vision, vol. 104,
no. 2, pp. 154-171, 2013.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks,” in Advances in neural information
processing systems, pp. 91-99, 2015.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,
“Ssd: Single shot multibox detector,” in Furopean Conference on Computer
Vision, pp. 21-37, Springer, 2016.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Uni-
fied, real-time object detection,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 779-788, 2016.

J. Berclaz, F. Fleuret, E. Turetken, and P. Fua, “Multiple object tracking using k-
shortest paths optimization,” IEEFE transactions on pattern analysis and machine
intelligence, vol. 33, no. 9, pp. 1806-1819, 2011.

F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua, “Multicamera people tracking
with a probabilistic occupancy map,” IEEFE transactions on pattern analysis and
machine intelligence, vol. 30, no. 2, pp. 267-282, 2008.

E. Yang, J. Gwak, and M. Jeon, “Conditional random field (crf)-boosting: Con-
structing a robust online hybrid boosting multiple object tracker facilitated by
crf learning,” Sensors, vol. 17, no. 3, p. 617, 2017.

G. Pulford, “Taxonomy of multiple target tracking methods,” IEE Proceedings-
Radar, Sonar and Navigation, vol. 152, no. 5, pp. 291-304, 2005.

B. Coifman, D. Beymer, P. McLauchlan, and J. Malik, “A real-time computer
vision system for vehicle tracking and traffic surveillance,” Transportation Re-
search Part C: Emerging Technologies, vol. 6, no. 4, pp. 271-288, 1998.

S. Tian, F. Yuan, and G.-S. Xia, “Multi-object tracking with inter-feedback
between detection and tracking,” Neurocomputing, vol. 171, pp. 768-780, 2016.

A. Milan, S. H. Rezatofighi, A. Dick, I. Reid, and K. Schindler, “On-
line multi-target tracking using recurrent neural networks,” arXiv preprint
arXiw:1604.03635, 2016.

47

[13]

[14]

[16]

[17]

[18]

[19]

[20]

[21]

22]

L. Wen, Z. Lei, S. Lyu, S. Z. Li, and M.-H. Yang, “Exploiting hierarchical dense
structures on hypergraphs for multi-object tracking,” IEEE transactions on pat-
tern analysis and machine intelligence, vol. 38, no. 10, pp. 1983-1996, 2016.

T. K. Ho, “Random decision forests,” in Document Analysis and Recognition,
1995., Proceedings of the Third International Conference on, vol. 1, pp. 278-282,
IEEE, 1995.

P. Viola and M. Jones, “Rapid object detection using a boosted cascade of sim-
ple features,” in Computer Vision and Pattern Recognition, 2001. CVPR 2001.
Proceedings of the 2001 IEEE Computer Society Conference on, vol. 1, pp. I-1,
IEEE, 2001.

S. Sivaraman and M. M. Trivedi, “A general active-learning framework for on-
road vehicle recognition and tracking,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 11, no. 2, pp. 267-276, 2010.

P. Viola, M. J. Jones, and D. Snow, “Detecting pedestrians using patterns of
motion and appearance,” in null, p. 734, IEEE, 2003.

P. Negri, X. Clady, S. M. Hanif, and L. Prevost, “A cascade of boosted gener-
ative and discriminative classifiers for vehicle detection,” FURASIP Journal on
Advances in Signal Processing, vol. 2008, p. 136, 2008.

A. Barczak, F. Dadgostar, and C. Messom, “Real-time hand tracking based on
non-invariant features,” in Instrumentation and Measurement Technology Con-
ference, 2005. IMTC 2005. Proceedings of the IEEE, vol. 3, pp. 2192-2197, IEEE,
2005.

J. Barreto, P. Menezes, and J. Dias, “Human-robot interaction based on haar-

like features and eigenfaces,” in Robotics and Automation, 2004. Proceedings.
ICRA’04. 2004 IEEE International Conference on, vol. 2, pp. 1888-1893, IEEE,
2004.

K. Okuma, A. Taleghani, N. d. Freitas, J. J. Little, and D. G. Lowe, “A boosted
particle filter: Multitarget detection and tracking,” Computer Vision-ECCV
2004, pp. 28-39, 2004.

J. Gall, A. Yao, N. Razavi, L. Van Gool, and V. Lempitsky, “Hough forests for
object detection, tracking, and action recognition,” IFEFE transactions on pattern
analysis and machine intelligence, vol. 33, no. 11, pp. 2188-2202, 2011.

N. Gordon, B. Ristic, and S. Arulampalam, “Beyond the kalman filter: Particle
filters for tracking applications,” Artech House, London, vol. 830, 2004.

M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle
filters for online nonlinear /non-gaussian bayesian tracking,” IEEE Transactions
on signal processing, vol. 50, no. 2, pp. 174188, 2002.

48

[25]

[26]

[27]

28]

[29]

[33]

[34]

[35]

[36]

C. Choi and H. I. Christensen, “Robust 3d visual tracking using particle filtering
on the special euclidean group: A combined approach of keypoint and edge
features,” The International Journal of Robotics Research, vol. 31, no. 4, pp. 498—
519, 2012.

D. G. Lowe, “Object recognition from local scale-invariant features,” in Computer
vision, 1999. The proceedings of the seventh IEEFE international conference on,
vol. 2, pp. 1150-1157, Ieee, 1999.

F. Baumann, A. Ehlers, K. Vogt, and B. Rosenhahn, “Cascaded random forest for
fast object detection,” in Scandinavian Conference on Image Analysis, pp. 131—
142, Springer, 2013.

N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”
in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Com-
puter Society Conference on, vol. 1, pp. 886-893, IEEE, 2005.

J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell,
“Decaf: A deep convolutional activation feature for generic visual recognition.,”
in Ieml, vol. 32, pp. 647-655, 2014.

P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection and hierar-
chical image segmentation,” IEEFE transactions on pattern analysis and machine
intelligence, vol. 33, no. 5, pp. 898916, 2011.

P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image seg-
mentation,” International journal of computer vision, vol. 59, no. 2, pp. 167-181,
2004.

J. Yan, Z. Lei, L. Wen, and S. Z. Li, “The fastest deformable part model for
object detection,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2497-2504, 2014.

P. F. Felzenszwalb, R. B. Girshick, and D. McAllester, “Cascade object detec-
tion with deformable part models,” in Computer vision and pattern recognition
(CVPR), 2010 IEEE conference on, pp. 2241-2248, IEEE, 2010.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell, “Caffe: Convolutional architecture for fast feature embed-

ding,” in Proceedings of the 22nd ACM international conference on Multimedia,
pp. 675-678, ACM, 2014.

C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20,
no. 3, pp. 273-297, 1995.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database,” in Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pp. 248-255, IEEE, 2009.

49

[37]

[41]

[42]

[43]

[44]

[45]

Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap
to human-level performance in face verification,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2014.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar,
and C. L. Zitnick, “Microsoft coco: Common objects in context,” in Furopean
Conference on Computer Vision, pp. 740-755, Springer, 2014.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies
for accurate object detection and semantic segmentation,” in Proceedings of the
IEEFE conference on computer vision and pattern recognition, pp. 580-587, 2014.

M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The
pascal visual object classes (voc) challenge,” International journal of computer
vision, vol. 88, no. 2, pp. 303-338, 2010.

H. Jiang, S. Fels, and J. J. Little, “A linear programming approach for multiple
object tracking,” in Computer Vision and Pattern Recognition, 2007. CVPR’07.
IEEE Conference on, pp. 1-8, IEEE, 2007.

L. Zhang, Y. Li, and R. Nevatia, “Global data association for multi-object track-
ing using network flows,” in Computer Vision and Pattern Recognition, 2008.
CVPR 2008. IEEE Conference on, pp. 1-8, IEEE, 2008.

A. A. Perera, C. Srinivas, A. Hoogs, G. Brooksby, and W. Hu, “Multi-object
tracking through simultaneous long occlusions and split-merge conditions,” in
Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Con-
ference on, vol. 1, pp. 666—673, IEEE, 2006.

A. Doucet, S. Godsill, and C. Andrieu, “On sequential monte carlo sampling
methods for bayesian filtering,” Statistics and computing, vol. 10, no. 3, pp. 197—
208, 2000.

M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. Van Gool,
“Robust tracking-by-detection using a detector confidence particle filter,” in
Computer Vision, 2009 IEEE 12th International Conference on, pp. 15151522,
[EEE, 20009.

C. Keskin, F. Kirag, Y. E. Kara, and L. Akarun, “Real time hand pose estima-
tion using depth sensors,” in Consumer Depth Cameras for Computer Vision,
pp. 119-137, Springer, 2013.

J. Marin, D. Vazquez, A. M. Lépez, J. Amores, and B. Leibe, “Random forests of
local experts for pedestrian detection,” in Proceedings of the IEEE International
Conference on Computer Vision, pp. 2592-2599, 2013.

S. Schulter, C. Leistner, P. Wohlhart, P. M. Roth, and H. Bischof, “Accurate
object detection with joint classification-regression random forests,” in The IEFEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2014.

20

[49]

[50]

[51]

[52]

[53]

[59]

[60]

[61]

T. K. Ho, “The random subspace method for constructing decision forests,”
IEEFE transactions on pattern analysis and machine intelligence, vol. 20, no. 8,
pp. 832-844, 1998.

H. Chouaib, O. R. Terrades, S. Tabbone, F. Cloppet, and N. Vincent, “Fea-
ture selection combining genetic algorithm and adaboost classifiers,” in Pattern
Recognition, 2008. ICPR 2008. 19th International Conference on, pp. 1-4, IEEE,
2008.

J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning,
vol. 1. Springer series in statistics Springer, Berlin, 2001.

M. Pollock, “Algorithms & computationally intensive inference reading group
introduction to particle filtering discussion-notes,” Journal of the American Sta-
tistical Association, 2010.

S. Kim, N. Shephard, and S. Chib, “Stochastic volatility: likelihood inference
and comparison with arch models,” The review of economic studies, vol. 65, no. 3,
pp. 361-393, 1998.

M. Johannes and N. Polson, “Particle filtering,” Handbook of Financial Time
Series, pp. 1015-1029, 2009.

Y. Salimpour and H. Soltanian-Zadeh, “Particle filtering of point processes ob-
servation with application on the modeling of visual cortex neural spiking ac-
tivity,” in Neural Engineering, 2009. NER’09. jth International IEEE/EMBS
Conference on, pp. 718-721, IEEE, 2009.

P. M. Djuric and M. F. Bugallo, “Estimation of stochastic rate constants and
tracking of species in biochemical networks with second-order reactions,” in Sig-
nal Processing Conference, 2009 17th European, pp. 2308-2311, IEEE, 2009.

Z. Zivkovic, “Improved adaptive gaussian mixture model for background sub-
traction,” in Pattern Recognition, 2004. ICPR 200/. Proceedings of the 17th
International Conference on, vol. 2, pp. 28-31, IEEE, 2004.

N. Kanopoulos, N. Vasanthavada, and R. L. Baker, “Design of an image edge
detection filter using the sobel operator,” IEEE Journal of solid-state circuits,
vol. 23, no. 2, pp. 358-367, 1988.

Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

D. Birant and A. Kut, “St-dbscan: An algorithm for clustering spatial-temporal
data,” Data & Knowledge Engineering, vol. 60, no. 1, pp. 208-221, 2007.

N. Dalal and B. Triggs, “Inria person dataset,” Online: hitp://pascal. inrialpes.
fr/data/human, 2005.

o1

[62]

[63]

[64]

J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” arXiv preprint
arXiw:1612.08242, 2016.

L. Leal-Taixé, A. Milan, I. D. Reid, S. Roth, and K. Schindler, “Motchal-
lenge 2015: Towards a benchmark for multi-target tracking,” CoRR,
vol. abs/1504.01942, 2015.

Y. Xiang, A. Alahi, and S. Savarese, “Learning to track: Online multi-object
tracking by decision making,” in Proceedings of the IEEE International Confer-
ence on Computer Vision, pp. 4705-4713, 2015.

I. Szottka and M. Butenuth, “Advanced particle filtering for airborne vehicle
tracking in urban areas,” IEFE Geoscience and Remote Sensing Letters, vol. 11,
no. 3, pp. 686-690, 2014.

T. Gao, G. Li, S. Lian, and J. Zhang, “Tracking video objects with feature points
based particle filtering,” Multimedia Tools and Applications, vol. 58, no. 1, pp. 1—
21, 2012.

A. Criminisi, J. Shotton, E. Konukoglu, et al., “Decision forests: A unified
framework for classification, regression, density estimation, manifold learning
and semi-supervised learning,” Foundations and Trends®) in Computer Graph-
ics and Vision, vol. 7, no. 2-3, pp. 81-227, 2012.

52

VITA

Nekruzjon Maxudov completed his Bachelor of Science degree in Electrical-Electronics
Engineering department at Ozyegin University, Istanbul, in 2014. His specialization
was Multimedia and Signal Processing. He is pursuing his Master of Science in
Computer Science department at Ozyegin University and his studies are concentrated
on "Object Detection and Tracking”. His masters thesis work was supported by the

"TUBITAK 2215 - Graduate Scholarship Programme for International Students”.

93

