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ABSTRACT

Analysis of surface plasmon resonance of arbitrary shape nano-particles on a substrate

is important for many engineering applications. The strong optical absorption of

noble metal nano-particles is due to the localized surface plasmon, which enables

the development of novel applications such as surface enhanced Raman spectroscopy

based biological sensing, optical transparency based sensors, and uni-directional nano-

antennas. Size, shape, and distance between nano-particles on a surface are the

key factors in the design of these structure. Usually, these systems utilize noble

material such as gold which is deposited on a dielectric surface. Tuning the structures

of the noble metals increases the local absorption efficiency of light within specific

frequency ranges, depending rely on the final design of the system. Understanding

the physics of plasmon phenomena and its relation with these parameters should be

studied in depth. This thesis provides a theoretical study and a numerical validation

of the coupled phenomena that occurs between gold nano-particles on a dielectric

substrate where the nano-particles have different shapes and separation distances.

Numerical study of nano-particles on a substrate is carried out using Discrete Dipole

Approximation with Surface Interaction (DDA-SI) approach. The DDA-SI is based

on the discretization of the nano-particles to dipoles for solving volume integral of

Maxwell's equations and Green's dyadic tensor of electric field within the dipoles to

calculate the optical properties of arbitrarily shaped, non-homogeneous, anisotropic

objects. There are some renowned open sources packages for DDAs. These packages

are mostly used for calculating the interaction of particles in a free space with direct

wave propagating. However, in order to calculate the light scattering from objects

placed on a substrate, the substrate itself also is required to be approximated by the
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dipoles which increase the computational time remarkably. In this study, we used

the Discrete Dipole Approximation with Surface Interaction (DDA-SI) which is an

open source MATLAB based software package for calculation of optical properties

of nano-particles (extinction, absorption and scattering) on a substrate. It can be

used to investigate both the near- and far-field effects and accounts for the coupling

between different particles on the surface.

This study focuses on specific geometries such as cube, spheroid and triangular

geometries, each of varying sizes and separation distances from each other. Apart

from studying the plasmon resonance of individual nano-particle on a dielectric sub-

strate, a system with more nano-particles is scrutinized. It is found out that as the

distance between particles decreases, the plasmon resonance frequency is pushed into

the infrared region due to the inter-particle coupling, and the redshift becomes dom-

inant. Furthermore, we found out that the coupling effect becomes negligible if the

ratio of their distance between nano-particles to the radius, c = d/a, is greater than

three.

During this study, the main DDA-SI toolbox is further developed, vecrorized and

optimized numerically which named DDA-SI-3 in order to calculate the optical prop-

erties of noble metals. The imaginary component of refractive index for noble metals

for larger wavelengths is large and make the calculation challenging. Therefore, we

applied the new numerical method to calculate the linear system of DDA-SI in order

to achieve more precise, faster and stable calculations. The structure of interaction

matrix is studied and for this, specific preconditioning matrices are extracted. It is

also found out that the use of the least square method, with the proper precondition-

ing matrices for iteratively solving the linear system, yields results to achieve more

accurate and relatively faster calculation.
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ÖZETÇE

Alt malzeme üzeri isteğe bağlı yerleştirilmiş nano parçacıkların yüzey plazmonik re-

zonans analizleri çoğu mühendislik uygulamaları için önem arz etmektedir. Soy metal

nano parçacıkların gösterdikleri güçlü soğurma olayı yüzeyde güçlendirilmiş, Ra-

man spektroskopisi esaslı, biyolojik sensörler, optik saydamlık, esaslı sensörler ve tek

yönlü nano antenler gibi birçok özgün uygulamaların geliştirilmesini sağlayan bölgesel

hale getirilmiş yüzey plazmonu sonucunda gerçekleşir. Yüzey üzerine yerleştirilmiş

nano parçacıkların tasarımındaki kilit unsurlar boyut, şekil ve parçacıklar arasındaki

uzaklık parametreleridir. Bu sistemlerde genel olarak dielektrik yüzeye bırakılmış

altın gibi soy metallerden yararlanılır. Soy metal yapılarının ayarlanması belirli

frekans aralıklarında ışığın bölgesel soğurulma verimliliğini arttırır. Bu çalışmada,

her biri farklı boyut ve ayrıklık uzaklığındaki kübik, küremsi ve üçgen biçimli gibi

belirli geometriler üzerine odaklanılmıştır. Dielektrik yüzey üzerindeki tekli nano

parçacığın plazmonik rezonans çalışmasının yanı sıra birden fazla nano parçacıklı sis-

temler de irdelenmiştir. Nano parçacıkların ayrıklık uzaklıkları azaldıkça parçacıklar

arasındaki kuplaj ve kırmızıya kaymanın domine ettiği ve böylece plazmon rezonans

frekans doruğunun kızıl ötesi bölgeye itildiği bulunmuştur. Buna ek olarak, eğer

nano parçacıklar arasındaki uzaklığın yarıçaplarına oranı, c = d/a, 3ten büyük olursa

kuplaj etkisinin ihmal edilebilir olduğunu keşfettik. Bu çalışma boyunca, soy metal-

lerin optik özelliklerinin hesaplanması için asıl kullanılan DDA-SI paketi daha fazla

geliştirilerek vektör haline getirilmiş ve numerik olarak optimize edilerek DDA-SI-3

adını almıştır. Soy metallerin kırılma indisinin sanal kısmının uzun dalga boylarında

büyük olmasıhesaplamaları zorlaştırır. Bu sebeple, DDA-SI'daki lineer sistemlerin

hesaplamalarında daha hassas, hızlı ve stabil sonuçlara ulaşan yeni bir numerik metot
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uyguladık. Bu metot ile etkileşim matrisi üzerine çalışıldı ve özel ön düzenleme matris-

leri ortaya çıkarıldı. Ayrıca, lineer sistemin tekrarlı(iterasyon) çözümünde en küçük

kareler metodunun uygun ön düzenleme matrisleri ile kullanılması sonucunda daha

kesin ve görece daha hızlı hesaplamaya ulaştığı keşfedildi.

Kılavuz/anahtar sözcükler: Yuzey Plazmon Rezonansı, Altın nano parçacıklar,

Yuzey Etkileşimi ile Ayrık Dipol Yaklaşıklama, uzey-parçacık etkileşimi, iterasyon

yöntemleri.
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CHAPTER I

INTRODUCTION

The advent of nanotechnology has allowed scientists to study light-matter interactions

at the nanoscale sizes. A significant amount of fundamental knowledge has accumu-

lated in the past decade and the field of nano-optics may now in fact be on the cusp

of delivering on practical applications in a variety of fields. Nanotechnology can be

understood as the design, characterization, production and application of structures,

devices and systems by manipulating size and shape at the nanoscales [5]. The main

driving force behind all these studies is the desire to fabricate materials that are likely

to impact practically all areas related to different applications, biomedical sciences

and other multidisciplinary fields of science and engineering. Nanoscale size particles

can be considered as a number of atoms or molecules bonded together (these particles

usually include 106 atoms or fewer) and are intermediate in size between single atoms

and aggregates large enough to be called bulk material [6]. Therefore, nanoscale size

materials show behaviors that are intermediate between that of a macroscopic solid

and the atomic or molecular systems. For instance, metal nano-particles (NPs) have

unique optical and electronic properties that are exactly distinguished from those of

the individual atoms as well as their bulk doublet. The optical phenomena related to

the electromagnetic response of metals, led to the improvement of an emerging and

rapid growing research field named plasmonics.

The structure of metals can be assumed as a gas of free electrons in a lattice of

positively charged ions. If the electron gas is in equilibrium; the amount of negative

and positive charges will be equal in the metal lattice space, so the net charge density

is zero. However, when the noble metal structure is disturbed from equilibrium by
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incident electromagnetic (EM) wave, there will be a net non-zero charge density.

Therefore, in order to keep charge neutrality in the system, an internal electric field

is created. Because of the incident EM wave, the conductive electrons start to oscillate

with the same frequency of the EM wave. On the other hand, the mass of the metal

ions is larger than the mass of the conductive electrons, so the electrons move against

a background of stable ion lattice. The conductive electrons cause moment from

the EM wave, and thus oscillate around their equilibrium position. This collective,

longitudinal oscillation of the conductive electron gas in the metal structure is named

a plasma wave [7]. The quantization of these plasma waves is called the plasmon.

The reason of the light absorption by metal NPs is the coherent oscillation of the

conductive electrons resonance by the incident EM wave as shown in Figure 1.

These structures are characterized by the field enhancement at the interface, while

the EM wave vector decays exponentially away from the surface (in the nanometer

range), resulting in a very strong local enhancement electric field [8]. Plasmon res-

onances lead to strong localized near fields at defined wavelengths. The near field

enhancement and absorption bands will be shifted to other wavelengths, depending

on the kind of shape, geometry and distance of the NPs [9]. Near the resonant fre-

quencies, the absorption between the NPs is enhanced dramatically and can enable

designing a tunable structural for photovoltaic applications [10]. The most common

plasmonic particles such as gold (Au) and silver (Ag) NPs have remarkable optical,

electrical, and thermal properties associated with surface plasmons that make them

beneficial in a wide variety of applications [5]. For noble metals, plasmon resonance

occurs in the visible - near ultraviolet (UV) if the size of the particle is smaller than

the electron mean free path [11]. The mean free path is a measurement of the average

distance between sequential collisions of energy carriers. In the case of metals, the

electron mean free path lmfp is an important factor because electrons are the energy

carriers [12].
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Nano-particles have been characterized by a various optical methods, contain-

ing absorption spectroscopy and by structural probes like Atomic Force Microscopy

(AFM) and Scanning tunneling microscope (STM) [13]. The purpose of AFM tech-

nique is to recognize NP between tip to find an optimized location to move the probe

in order to selectively heat AuNPs [4]. Because only the absorption NP are presented,

they can be converted to localized heating rates either using macro-scale radiation

transfer calculations [14] or by adapting near-field calculations similar to those re-

ported by Francoeur and Menguc [15].

Figure 1: Localized surface plasmon resonance (LSPR), resulting from the collective

oscillations of delocalized electrons in response to an external EM wave.

The localized surface plasmon has been utilized in a wide range of applications,

including magneto-optical rotation (Kerr rotation and Faraday rotation) [16], en-

hanced fluorescence [17] and surface enhanced Raman scattering [18]. The develop-

ment of new fabrication technology toward achievement of the optical properties of

the gold nano- dimers and nano-trimers with different shapes on a substrate have

already been studied experimentally and compared with theoretical predictions [19]

and bench marked by numerical methods like DDA [20], finite difference time domain

(FDTD) [21] and Finite Element Method (FEM) [22].
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1.1 Absorption and Scattering of Light

When an EM wave incidents on an object, the conductive electrons can convert the

energy from the incident EM wave into thermal energy. This phenomena is called

the absorption process. In this case the energy is transferred to the form of thermal

energy or stored in local, non-radiative fields near the object (the near field). However,

the conductive electrons can also be accelerated so they can radiate energy in all

directions, so called scattering process. Scattering is a process that does not remove

energy from the radiation field, but may redirect it. Extinction is a process that

decreases the radiant intensity and is due to absorption and scattering.

When an object is placed within a beam of EM wave, a detector that is deviated

from the direction of propagation of the incident wave will only receive the radiation

scattered by the object. A detector placed within the beam ”downstream” from the

object will detect that part of the beam which remains unaffected by the object. This

part of the incident EM wave is called transmitted radiation, and if the transmitted

energy is less than the energy incident on the object, it is said that the object has

caused extinction of the EM wave. The difference between incident energy and the

sum of transmitted and scattered energy is computed for the absorption (Figure 2).
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Figure 2: Illustration of the absorption, scattering and transmitted of the EM wave

by an arbitrary shape particle.

1.2 The Calculation Methods of Light Scattering Problem

Manipulating and governing of light-matter interaction at the nanoscale size is one of

the effective techniques enabled by advances in the nanotechnology fabrication and

improvement of the numerical methods for solving the light scattering problems. Light

scattering by particles is related to many practical applications, including interstellar

dust, ice crystals in atmosphere and plasmonics. In general, interaction of EM wave

with matters is identified by solving Maxwell's equations. However, analytical solu-

tion of Maxwell's equations is limited to some basic geometries like spheres. Because

it is generally impossible to solve Maxwell's equations for light scattering problems

from arbitrarily shape and anisotropic practical analytically, therefore semi-analytical

and numerical methods are needed to be developed. On the other hand, numerical

methods must deal with computational problems for complex shaped particles and

produce reliable results. There are a number of available numerical methods that

have been developed to compute the scattering of EM wave radiation by different
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shape particles. Below some important methods are given and their advantages and

disadvantages are discussed:

1) Discrete Dipole Approximation (DDA)

2) Finite Difference Time Domain (FDTD)

3) Finite Element Method (FEM)

4) T-Matrix Method (TMM)

5) Ray-Tracing Method (RTM)

Discrete Dipole Approximation (DDA): is the most effective method to

compute scattering and absorption of EM waves by arbitrary shape and composition

particles with sizes smaller than or comparable to the wavelength of incident EM

wave. Its concept consists of dividing a particle into polarizable point arrays located

on a cubic lattice. In response to the incident EM wave, each point behaves as a

hertzian dipole so the scattering problem can then be solved as a summation of linear

equations of dipole moments. DDA calculations require choices for the locations

and the polarizabilities of the dipoles that representing the target. Extension of this

method allows calculating light scattering by periodic objects, arbitrarily shaped,

inhomogeneous targets placed on a surfaces [23] [2] [24].

Finite Difference Time Domain (FDTD): is discretization method of time

and space for solving the light scattering problem of particles with complex geometries

and compositions by defined derivatives in the Maxwell curl equations replaced by

finite difference quotients. In this method, the region including a scattering particle

is discretized by using a mesh grid. Furthermore, the existence of the particle is

represented by assigning suitable electromagnetic constants in terms of permittivity

and conductivity applied by a Drude-Lorentz model [25].[26]

Finite-Element Method (FEM): is based on solving the scattering problem

in the frequency domain by modeling of the discretization of the Helmholtz equation

at boundary of the particle surface. This method can be used to calculate the light
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scattering from arbitrarily shaped, inhomogeneous and anisotropic particles for a

single frequency at a time. The particle is embedded in a finite computational domain

that is discretized into many small volume cells with about 10 to 20 elements per

wavelength. A suitable grid element for example, triangular and tetrahedral can be

used to represent the surface or structure, with the continuity conditions required at

adjacent grid cells. This method needs to discretized not only the particle but also

the space around it[25] [27].

The Ray-Tracing Method (RTM): is an approximated method for calculation

of light scattering by the particles much larger than the wavelength of incident EM

wave. The basic assumption of ray-tracing method is combination of ray-tracing and

Monte Carlo techniques in which the incident EM wave can be represent as a collection

of independent parallel rays by using a Monte Carlo model. In the ray tracing method

diffraction theory and the Fresnel reflection and transmission equations are applied

[25] [28].

T-Matrix Method (TMM): is the calculation of optical properties of the parti-

cles with rotationally symmetric shape (such as spheroids, circular cylinders, etc.) In

this method, the incident and scattered EM waves are developed in vector spherical

wave functions. The elements of the T-matrix are dependent only on the size param-

eter, shape and refractive index of the particle and on its orientation. However they

are independent of the incident and scattered fields. The T-Matrix transforms the

expansion coefficients of the incident field into the scattered field which can be used

to calculate any scattering problems of a non-spherical particle. Several T-Matrix

codes for solving the light scattering problem by rotationally symmetric particles in

both stable and random orientations are available on the open source softwares [25]

[29].

The comparisons of the advantages and the disadvantages of the maintained com-

putational techniques to model the scattering of EM wave from metal nano-structures
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are listed in the Table 1. The size parameter is the dimensionless

x = πD/λ (1)

where D is the characteristic size of the particle and λ is the wavelength of incident

EM wave.

Table 1: List of numerical methods
Numerical Methods Abbreviations Advantages Disadvantages

Discrete
Dipole

Approximation
DDA

Any shape
and composition,

possible to
include a

substrate interaction

Convergence criterion:
nkd <1

(There is
restriction to solve

large refractive index)

Finite-Difference
Time-Domain

Method
FDTD

Any shape
and composition

include a substrate
interaction

Limited range
of size parameters
(up to x =15-20),

less accuracy
Finite-Element

Method
FEM

Any shape
& more accurate

computationally slow

Ray-Tracing
Method

RTM
Applied to any
shape (spherical
or non-spherical)

Approximated method
(limited range

of size parameters)

T-Matrix Method TMM

Highly accurate ;
computationally fast;

Possible to
include a

surface interaction;
(multilayered)

spheres.

Limited types
of particle shapes;

Limited range
of size parameters

(x<30); (the matrices
are truncated)

1.3 Selected Method for This Study

In this thesis,the DDA is selected as the methodology to calculate the light scattering

and absorption problem. In principle, the DDA allows for the consequent compu-

tational over-heads, which is capable of treating targets of arbitrary geometry and

optical properties. Due to the flexibility associated with the description of the sys-

tem to be simulated, the DDA has been employed to calculate the optical properties

associated with non-spherical and inhomogeneous particles.
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This thesis is broken down into the following chapters; Chapter II contains the

review of the DDA, briefly discussing the theory and structure of the DDA. In the

Chapter III, we introduce the DDA in the presence of a surface (DDA-SI). Also

this Chapter contains the iterative methods for solving the DDA-SI linear equation.

In the Chapter IV we validated the accuracy of the selected method (DDA-SI) by

computing absorption efficiency of a single 50 nm cube on the BK7 substrate with the

results of the FEM. In the following Chapter, we provide detailed investigation of the

plasmon resonance of kinds of nano-structures such as AuNPs have been investigated,

including nano-spheres, nano-cubes as well as dimers and trimers containing sphere-

cube geometries, to understand their localized surface plasmon resonance (LSPR)

spectrally. Chapter IV discusses in brief what the results entail followed by the

conclusions and proposed future research direction.
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CHAPTER II

DISCRETE DIPOLE APPROXIMATION WITH SURFACE

INTERACTION (DDA-SI)

In this thesis, the DDA-SI is a chosen method as a calculation tool. The main advan-

tage of this method is its development for calculation of scattering of different shape

particles on a surface. Light scattering problem based on DDA-SI method is vali-

dated and bench marked with the other methods [30]. DDA-SI is further optimized,

vectorized and particularly the computational efficiency is improved.

2.1 Introduction

The Discrete Dipole Approximation (DDA) is an accurate numerical method to cal-

culate electric enhanced effect, EM scattering and optical properties of an individual

or multiple scatterers of different shapes. It is also referred as the coupled dipole

method (CDM) [31]. For the first time, DeVoe [32] used the DDA method in study-

ing the optical properties of the accumulation of molecules. However, the retardation

effects were not included in the calculation making his method limited to aggregates

that were small compared with the wavelength. Purcell and Pennypacker [33] imple-

mented the retardation effects in the DDA method in order to study the interstellar

dust grains and aerosols. Later, Draine and Flatau popularized the method by devel-

oping an open source computer code called DDSCAT which was written in FORTRAN

[23] [34]. These methods are widely used for simulating the EM wave and particles

interaction in free space with direct propagating waves and had the capability of ap-

proximating the scattering object by an array of point dipoles (Hertizan dipoles)[33].

These dipoles interact with each other and the incident electric field giving rise to a
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linear system of equations that obtain the polarizations at each dipole. Dipole inter-

actions are approximated based on the volume integral equation for the electric field.

McDonald et al.[35] named Open DDA. In addition, Yurkin et al. [24] [36] developed

open-source DDA packages written in the C language and named Amsterdam DDA

(ADDA). for modeling the interaction of EM wave with objects in free space. In or-

der to model the light scattering from particles on a planar surface, Taube blatt and

Tran [37] added the surface interaction capability in their Fortran implementation of

DDA and lately Schmehl et al.[38] implemented DDSURF also written in FORTRAN

by modeling the light scattering from particles on a semi-infinite surface. Recently

Yurkin added surface interaction to their ADDA toolbox [39]. Loke and Menguc [2].

developed DDA-SI which is an open-source and MATLAB software package based

on the analyses of Schmehl [38] containing DDA with surface interaction and applied

for light propagating from particles on the substrate. The DDA-SI also has the ca-

pability of analyzing and simulating the far-field scattering by objects on a surface

which are illuminated by an evanescent wave and created by total internal reflection

which is quantified by the Mueller matrix elements. Manickavasagam et al [40] calcu-

lated the scattering Muller matrix from soot agglomerates. Furthermore, Short at el.

[41] calculated the muller matrix and implemented it into the DDA-SI toolbox. The

accuracy and results of the DDA-SI toolbox was compared with FEM and FDTD

methods [30]. Recently, Moghaddam et al [3] vectorized the main toolbox of DDA-SI

for making it faster. The history of DDA development is presented in Table 2.

The DDA starts by dividing the scattering object into N polarizable point dipoles

which is denoted in Figure 3. There is no restriction on the localization of the dipoles,

which means that the DDA can represent a particle of arbitrary shape and compo-

sition. However, there are three basic criteria in the discretization of particle to

dipoles:

I. Required number of dipoles for accurately approximation of the NP.
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Table 2: A Historical development of DDA

Name
Reference &

Authors
Language Year Short Description

DDSCAT
B.T. Draine &
P.J. Flatau [23]

FORTRAN

1988

2012

2015

Calculates scattering and
absorption of EM waves
by particles of arbitrary

geometry and periodic particles
-Compute the near field and far field.
No surface interaction. With 2D FFT.

Open-DDA McDonald[42] C 2007
Absorption of EM waves by

arbitrary shape particles.
With FFT. No surface interaction

DDASURF
R. Schmehl,

B. M. Nebeker [43]
FORTRAN 1997

Calculates scattering and absorption of
EM waves by particles of arbitrary

shapes on or in proximity to a surface.
2D-FFT is used. Not released.

ADDA
M.Yurkin,

A. G. Hoekstra [36]
C 2007

Calculates scattering and
absorption of EM waves

by particles of
arbitrary geometry on the

surface with FFT.

DDA-SI
V. L. Y. Loke

M.P. Menguc [2]
MATLAB

2012
2013
2014

Calculates scattering and
absorption of EM waves

by particles of
arbitrary geometry on or in

proximity to a surface.
No FFT acceleration is used.

II. Accuracy of the method for different size, complex refractive index m, and

wavelength λ of incident EM wave.

III. Proper numerical method for solving linear equation of the unknown moment

P .
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Figure 3: Discretization of sphere to point dipoles with number of dipoles( N =

14328).

2.2 Dipole Coordinates

At the first step we assume the scattering object is divided in to point dipoles where

their size are smaller than the incident wavelength (Rayleigh scatterers), numbered

j = 1, ..., N with polarizabilities αj (Due to incident EM wave and interaction with

other dipoles) located at positions rj. The variable r is an N × 3 array matrix, the

standard DDA uses the Cartesian coordinate system and the dipoles are packed in a

cubic lattice.

Figure 4 shows the discretization of cube and sphere to point dipoles Ncube = 13824

and Nsphere = 14328 with the same volumes to represent the scatterer. The dipoles

must be packed in the minimal lattice spacing which is determined by Draine and

Flatau [23]. The relationship of the volume of discretized sphere and lattice spacing

is:

V olume =
4

3
πr3 ≡ N(Latticespacing)3 = Nd3 (2)

The fundamental premise of this method is that the volume of the object is broken

down into a representative array of N dipoles arranged in a cubic lattice, with spacing
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d and the volume of the equivalent sphere with effective radius a :

a = d(
3N

4π
)
1/3

(3)

Figure 4: Sample of cube and sphere with the same volume discretized to dipoles

Ncube = 13824, Nsphere = 14328.

Based on these parameters, the associated suggestion for two essential criteria can

be employed in the DDA calculation in order to achieve a sufficient and reasonable

accuracy as it shown in Figure 5. In general, there are two important requirements

on the application of DDA to solve light scattering problem by Rayleigh particles:

1. The equation d ≤ 1/|m|k (where m is the complex refractive index, k is a wave

vector of the incident wave, and d is the dipole spacing) must be satisfied so that d

must be small enough compared to the wavelength of the incident light.

2. Either d must be small enough or N large enough such that the objects are

accurately depicted with the lattice of dipoles.

Another important restriction of the DDA calculation is for the case of an object

composed of noble material. When applying the DDA to such a noble particle, we

have to be sure that the dipoles forming the scatterer particle remain electric dipoles,
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means that the relative contribution of the dipole moment to the light scattering is

adequately small. Last significant factor of the DDA calculation has had effect on

the speed of calculations as well as on the accuracy of the results.

Figure 5: A single sphere with N = 552 dipoles number (Right); A single sphere

with N = 17256 dipoles number (right) when size parameter is x = 0.25.

2.3 Complex Refractive Index

Second step in the DDA-SI calculation is expressed as a function of the refractive

index m with respect to the surrounding medium. It means that the accuracy of

DDA calculation also does depend on the complex, frequency dependent refractive

index m which describes how strongly the electric dipoles react to the incident field

[44] and could be defined as:

m = n+ iκ (4)

The real part n indicates the refraction of incident light (equals the speed of light

in vacuum divided by the speed of light in the metal n = c0/c), and the complex

part of the refractive index, κ is called the extinction coefficient and determines the

optical absorption of EM wave propagating through the medium(cm−1) by using the

following equation [45]:

Absorption efficiency =
4πκ

λ
(5)
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Figure 6: The real and imaginary part of the refractive index of Au at visible light
range [1].

The value of κ is not exactly zero for any material, but materials with a value

approaching to zero are dielectric materials. As needed for the calculation of the

Rayleigh criteria in the DDA approximation, the magnitude of the refractive index,

m is calculated by:

|m| =
√
n2 − κ2 + 2inκ (6)

The experimentally obtained optical constants of noble metals are given by John-

son and Christy [1]. Figure 6 shows the dispersion of the refractive indices of Au

used in the models is calculated using the Drude-critical [46]. As it is obvious from

Figure 6, the imaginary part of refractive index for Au is increased by increasing the

wavelength. Figure 7 shows the refractive index of BK7 glass using the Sellmeier

equation. [47]. The Sellmeier equation is used to characterize the dispersion of light

with respect to wavelength and is written in the form:

n2(λ)− 1 =
B1λ

2

λ2 − C1

+
B2λ

2

λ2 − C2

+
B3λ

2

λ2 − C3

(7)
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where λ is wavelength in m and B1 , B2 , B3 , C1 , C2 , and C3 are constants

unique to the material being tested.

Figure 7: Refractive index of the BK7 glass calculated using the Sellmeier equation.

2.4 Electric and Magnetic Field Expressions

We assume the scattering particle is non-magnetic.The DDA is thoroughly applicable

to any incident field; however, for simplicity we assume a monochromatic plane wave

with unit amplitude. Each of dipoles is excited by a monochromatic incident plane

wave Einc:

Einc(r, t) = E0 exp(ik.r − iωt) (8)

Where r is the position vector, k is wave vector (k = ω/c = 2π/λ) and E0 is the

amplitude of the incident wave. For simplicity the ω dependence on all quantities

is omitted. Thus the moment of each dipole as a result of the interaction with the

incident electric field Einc and re-radiating from other dipoles will be: Pj = αjEj,

where Ej is the electric field at rj due to the incident wave, plus the contribution of
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each of the other N − 1 dipoles:

Ej = Einc,j + Edip,k = E0e
ik.rj −

∑
j 6=k

Ajk.Pk (9)

where Ajk is the tensor that represents the interaction between the receiving dipole

at rj and the radiating dipole at rk. The electric field from a radiating electric dipole

is defined:

E =
1

4πε0

{
k2(
∧
r×p)× ∧r e

ikr

r
+ [3

∧
r(
∧
r×p)− p]

(
1

r3
− ik

r2

)
eikr
}

(10)

which is derived from Maxwells equations.Using the vector identity (r × p) × r =

p(r.r) − r(r.p), we obtain the block off-diagonal 3 × 3 interaction tensor defined in

Draine and Flatau [48],

Ajk =
exp(ikrjk)

rjk
×

[
k2(r̂jkr̂jk − I3) +

ikr̂jk − 1

r2jk
(3r̂jkr̂jk − I3)

]
; j 6= k (11)

where I3 is the 3 × 3 identity matrix, rjk is the distance from point rj to rk and

r̂jk is the unit vector direction from points rj to rk. The dipole interaction tensor

Ajk = k2Gjk is related to the Green's tensor Gjk of the electric field from the radiating

dipole, defining self-interacting Ajj ≡ αj
−1 reduces the scattering problem to finding

the polarizations that satisfy a system of complex linear equations, by simplified two

matrices[48]:
N∑
k=1

AjkPj = Einc,j (12)

2.5 Polarizability

The fundamental implementation of the DDA is the Clausius-Mossotti relation (CMR)

to define the dipole polarizabilities. In this method, the polarizability α is describing

by the bulk optical properties of the scattering particle meaning that it is a function

of the complex refractive index m define as:

αCMR =
3d3

4π
(
m2

j − 1

m2
j + 2

) =
3d3

4π
(
∈j − 1

∈j + 2
) (13)
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This approach is also correct in the infinite wave length limit of the DDA, kd→

0. Draine showed that for finite wavelengths, the optical theorem requires that the

polarizabilities include a radiative-reaction correction of the form [49]:

α =
α(nr)

1− (2/3)i(α(nr)/d3)(kd)3
(14)

where αnr is the non-radiative polarizability which before any radiative-reaction

correction is applied. [48]. The current most popular form, the lattice dispersion

relation (LDR), was derived by Draine and Goodman[49] which is used in DDA-SI

toolbox:

αj
LDR =

αj
CM

1 +
αj

CM

d3

[
(b1 +m2b2 +m2b3S)(kd)2 − 2

3
i(kd)3

] (15)

b1 = -1.891531, b2 = 0.1648469, b3 = -1.7700004,

S is a function of the propagation direction and polarization of the incident wave.

S ≡
3∑
j=1

(âj êj)
2 (16)

Where â and ê are the unit propagation and polarization vectors, respectively.

Note that Eq.15 gives S = 0 for waves propagating along any of the lattice axes. For

anisotropic particles, the polarizability of each dipole can be different in the x, y and

z directions and also for inhomogeneous materials various from the each other.

The values of polarizability are arranged in the similar sequence as the dipole

coordinates. However, they are transposed from N × 3 to the 3N × 1 array of αx1 ,

αy1 , αz1 , αx2 , αy2 , αz2 , ..., αxN , αyN , αzN , so that the diagonal of interaction

matrix can be fitted into inverse polarizabilities by the matrix when setting Eq.9 into

Eq.12. The field Ej at a particular dipole causes it to be polarized or acquire a dipole

moment Pj:

Pj = αjEj (17)

In the DDA-SI calculation, we chose the LDR approach to obtain a polarizability

prescription that accounts both for finite wavelength and for local field corrections

arising from target geometry [49].
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2.6 Constructing the Interaction Matrix

The interaction matrix is created by chaining from dipoles j = 1...N . The self-

interaction of a dipole is just the reciprocal of its polarizability as shown in Figure

8. Furthermore, the block off-diagonals are the Green's tensors for the interacting

dipoles at rj and the radiating dipoles at rk , k = 1...N , In general, the interaction

matrix (DDA Matrix) is defined as [23]:

Ajk =
k2 exp(ikrjk)

rjk


βjk + γjkr̂

2
jk,x

γjkr̂jk,yr̂jk,x

γjkr̂jk,z r̂jk,x

γjkr̂jk,xr̂jk,y

βjk + γjkr̂
2
jk,y

γjkr̂jk,z r̂jk,y

γjkr̂jk,xr̂jk,z

γjkr̂jk,yr̂jk,z

βjk + γjkr̂
2
jk,z

 ; j 6= k (18)

Ajk = 1
αj
I

Matrix Ajk is complex-symmetric if and only if αj is complex- symmetric for all

j.

Figure 8: Structure of the interaction matrix (A) for an isotropic NP in free space.

To solve the linear system of Eq.17, the properties of the coefficient matrix (to-

tal interaction matrix) plays an important role, so it is required to be investigated

extensively. The interaction matrix for the isotropic particles is symmetric and the
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diagonal elements are equal because they are constructed of self-polazibility. Further-

more, dipoles interact with each other in the array, with the strength of the interaction

depending on the direction and distance. Therefore, each element of matrix in row is

transpose of elements in the column as is depicted in Figure 8.

2.7 Extinction, Scattering and Absorption Cross-sections

Once the dipole moments Pj calculated, the extinction and absorption cross sections

can be obtained. The extinction for particle is calculated using optical theorem and

absorption cross sections can be calculated by summing over the rate of the energy

dissipation by each of the dipoles, as defined by Draine [48]:

Cext =
4πk

|E0|2
N∑
j=1

Im
(
E∗inc,j.P

)
(19)

Cabs =
4πk

|E0|2
N∑
j=1

{
Im
[
Pj.(α

−1
j ) ∗ P ∗j

]
− 2

3
k3|Pj|2

}
(20)

The scattering cross section can be obtained from the difference of extinction and ab-

sorption cross section Csca = Cext−Cabs. These quantities are often expressed in terms

of extinction, absorption and scattering efficiencies, the cross section divided by the

cross sectional area of the scatterer. In the case of a sphere, the extinction efficiency

is defined as Qext = Cext/(πa
2), where a is the radius of the sphere. Similarly, the

absorption and scattering efficiencies are defined, respectively, as: Qabs = Cabs/(πa
2)

and Qsca = Csca/(πa
2).

2.8 DDA with Surface Interaction (DDA-SI)

For the calculation of scattering and absorption of EM waves when the object is on a

substrate, we have to observe three situations. Primly, when the illumination of EM

wave originates from the same medium where the object resides, the incident field

results from the superposition of the direct and reflected incident light (Figure 9). In

addition to the direct dipole-dipole interactions in standard free space DDA, we will
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have to include the surface-reflected interactions in the presence of surface. Finally,

when for the calculation of the scattered field, the reflected component needs to be

included. DDA-SI is also capable of simulating the near and far-field scattering by

objects on a surface illuminated by an evanescent wave and created by total internal

reflection, Loke et el. [2]. Moghaddam et el. calculated the absorption of a sphere

and core shell Au nano-sphere on a dielectric surface under an AFM prob [3][50].

Figure 9: A particle illuminated by the direct plane wave incidents at the angle γ

and the reflected plane wave.

2.9 Interaction Matrix in the Presence of a Substrate

In the presence of a surface, the Green's tensor for a dipole-dipole interaction will

have two components; the system of linear equations for DDA-SI is [2]:

N∑
k=1

ASIjkPk =
N∑
k=1

(Ajk +Rjk)Pk = Einc,j (21)

where the Ajk term indicate the direct dipole-dipole interaction and is explained in

free-space DDA (Eq.9) and Rjk is the contribution from the reflected dipole interac-

tion (Figure 9). The reflected component is solved in terms of Somerfield integrals.

Since the spherical wave from each dipole is partially reflected and not equally in all
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directions, a spherical wave can be decomposed into cylindrical and planar compo-

nents [51] as depicted in Figure 10. The cylindrical wave will be unperturbed because

it expands parallel to the surface. On the other hand, the planar wave propagates

in direction normal to the surface and is partially reflected. The fraction of the re-

flected field strength is calculated using the Fresnel coefficients for the TE (transverse

Electric) and TM (transverse magnetic) incident fields.

Figure 10: The spherical wave decomposed into cylindrical and planar components

[2].

The following Somerfield integral is used to evaluate the Green's function of the

electric field from a reflected dipole [51]:(
eikr

4πr

)
TE,TM

=
i

4π

∫ ∞
0

kρ
kz
J0(kρρ)RTE,TMeik2(zj+j)dkρ (22)

Where J0, is the Bessel function and it represents the cylindrical wave component

of the expansion whereas eik2z(zj+j) is the planar component. By using the variable

substitution, the integral is separated in to components that are evaluated using

numerical integration [2].
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Figure 11: Radiating dipole over a surface, its image and the receiving dipole on the

surface.

2.10 Scattered E-field in the Far-field Zone

As mentioned in the previous section, the scattered EM wave in the upper half-space

is the sum of the EM wave contributions as a result of the dipole moments of every

dipole due to the interaction from the dipole-dipole and image (reflected) dipoles

interactions. In the scenario where the source of EM wave is on the opposite side

of the planar interface, there is no reflected component. However, the case of the

incident plane wave undergoing total internal refraction because an evanescent field

will exist along the media interface the formalism is discussed in Loke and Menguc

[2] as shown in Figure 12 the scattered EM wave is calculated [38] using:

Esca(r) = k20
eik0r

4πr

N∑
j=1

{e−iksca.rj [(pj.ê1)ê1+(pj.ê2)ê2]+e
−iksca.rj [RTM(pj.ê1)ê1+R

TE(pj.ê2)ê2]}

(23)
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Figure 12: Total internal reflection of incident(a) TM and (b) TE plane waves from

below the substrate surface. Evanescent waves exists above the surface.

where ê1 and ê2 are the unit vectors in Cartesian expressions of the êθ and êφ

vectors in spherical coordinates, respectively, in the scattering frame (Figure 12).

The radial component of the scattered field approaches zero in the far field. The

reflected terms in Eq.21 are subject to the Fresnel reflection coefficients, RTM and

RTE.

2.11 Steps of DDA-SI calculations

For clarity, the steps of calculation for the moment of particle on the substrate using

the DDA-SI are summarized below [2].

a) Discretize the object into N polarizable dipoles with effective radius aeff and

create the coordinates for dipoles r.

b) Assign a refractive index m.

c) Calculate the electric field Einc,j at each dipole.

d) Calculate the polarizability αj of each dipole.

e) Calculate the total interaction matrix T .

f) Choose the suitable method to solve the linear equation and calculate the total

moment of the system.
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After applying the solving the linear equation to calculate moment P , other quan-

tities such as the Poynting vector, extinction, absorption and scattered field, scatter-

ing cross sections, phase function, Mueller matrix etc. can be calculated.
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CHAPTER III

ITERATIVE METHODS TO SOLVE THE LINEAR

SYSTEM

The linear system of equations Eq.21 to be used in the solution scheme are given by:

T .P = Einc where T (R+A = T total interaction matrix, R: dipole-reflected matrix,

A: dipole-dipole interaction) is a known complex-symmetric 3N × 3N , E is total

electric field is complex known 3N × 1 vector and P is complex 3N × 1 vector is an

unknown vector.

In general, there are two methods to solve the linear equations T .P = E: direct

and iterative [52]. For the coefficient matrix T which it has dimension of K×K, direct

methods to solve the linear equation require more computational effort proportional

to O(K3) (in the DDA-SI K = 3N ), multiplications and storage of O(K2) numbers

[53]. Furthermore, for the particles with dimensions comparable with the wavelength,

the large numbers of dipoles is required in order to gain a satisfactory approximation.

Accordingly, the direct solution to solve linear equation becomes intractable. The

basics step of the DDA-SI calculations is employing the versatile iterative method to

solve dense matrix rather than direct method because direct inversion of the matrix is

not feasible for most problems due to the huge memory requirements. Hence, through

the DDA history, mostly iterative methods have been employed.

3.1 Iterative Methods

Iterative methods start with an initial guess x0 to calculate the linear system Ax = b

and iteratively improve upon the initial guess, x1, x2,... until some predetermined

criterion have been satisfied. Generally, the iterative operation stop when either the
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related error in Axi = b is below a convergence threshold or when an upper limit on

the number of iterations has been achieved; whichever comes primly.

a11 a12 . . . a1n

a21 a22 . . . a2n
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. . . .

. . . .
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The iterative process is stopped when:

r =
‖Axn − E‖2

‖E‖2
< ε (25)

where xn is the nth estimate of the total EM wave given by the iterative method,

and ε is the desired accuracy. All the iterative solvers require two main steps of

computations: vector inner products and matrix-vector products (MVPs). Since

for a large number of dipoles the most time-consuming operation is the MVP, our

calculation is dependent on the number of MVPs required by each iterative method

to achieve r. In addition, depending on the iterative method, one or two MVPs are

computed per iteration. Draine et al. [23] has used a complex conjugate gradient

(CCG) method to solve the linear system of equations for a free space scattering

features by using the Parallel Iterative Methods (PIM), Flatau et al [54] compared

the efficiency of iterative methods in the DDA for nonmagnetic scatterers. Yurkin et

al [55] investigated the dependency of the iterative solvers on the refractive index of

NPs. Quasi-Minimal Residual Method (QMR) is one of the most efficient iterative

methods have been implemented by Lumme and Rahola [56] for solving the system of

linear equations in the DDA and Rahola claimed that QMR is a best method for DDA

in comparison with BiCG, CGNR, CGS, BiCGSTAB [57]. In contrast, QMR method

does often fail to converge in the calculation for noble metal with high imaginary part
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in the refractive index. In order to find an optimum iterative solver, matrix properties

in the linear system of equations need to be investigated.

In the DDA-SI linear system, the total interaction matrix T is a symmetric, not

positive definite matrix meaning that the real parts of all the eigenvalues are non

positive and well-conditioned matrix. The condition number describes how sensitive

the calculation to small perturbations is. The set of all eigenvalues of the matrix A,

or in other words, the solutions to the characteristic equation:

det(A− λI) = 0 (26)

where λ is the number of eigenvalues and det refers to the determinant and I is the

identity matrix.

An infinite condition number implies that A is singular. The determinant for

singular matrices, which are the matrices with no inverse, is zero, meaning that at least

one of the eigenvalues is zero. Systems with a small condition number are said to be

well-conditioned, whereas for large condition numbers, the descriptor ill-conditioned

is used. The smaller condition number is preferred. Although, for singular matrices,

det(A) = 0, the relation det(A) ≈ 0 is not an appropriate measure of condition.

The interaction matrix for Au nano-sphere is a well-conditioned for the entire

visible light range even for 600-700 nm wavelength in which its refractive index has

high imaginary part and the condition number does not go to infinite numbers by

increasing the wavelength. In this section, we aimed to prove that LSQR is the

appropriate iterative solver in the implementations to the light scattering problem

by a homogeneous sphere for the DDA-SI calculation. Our purpose is finding a

more accurate solution which can be applied for all kind of the NPs with different

shapes and especially for noble metals with high imaginary part in the refractive

index. Strictly, it requires to compare various iterative methods under the same true

residual norm stopping criterion. In order to assess the algorithm, we used LSQR and

the two common iterative solvers GMRES and QMR which are used in the previous
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DDAs calculation in solving the linear system. For explanation, we calculated relative

residual of a single 50 nm diameter Au nano-sphere placed on the BK7 substrate for

the wavelength 632 and 700 nm (is shown at Figure 6 the imaginary part of refractive

index is large for these wavelengths) when illuminated by a plane wave.

Figure 13: Relative residual for the 50 nm Au nano-sphere with dipole numbers

N = 552 for three different iterative solvers when the wavelength is 632 nm.

The initial tolerance for the methods is set to be 10−6. As it is demonstrated in

Figure 13 and 14, the LSQR method converged to the solution and other methods

couldn't converge for the 632 nm and 700 nm wavelengths. Based on this analy-

sis QMR and GMRES fail to achieve to the solution. However, for LSQR method

convergence is achieved in the two mentioned wavelengths.
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Figure 14: Relative residual for the 50 nm Au nano-sphere with dipole numbers

N = 552 for three different iterative solver when the wavelength is 700 nm.

We extended the analysis by calculating the relative residual on the three methods

in the entire visible wavelength. For fair comparison, we use the same setting which

we applied to the maintained iterative methods. It is obvious from Figure 14, GMRES

and QMR fails to achieve convergence; however, LSQR converges to the solution at

the entire spectrum. Furthermore, as wavelength increased and the refractive index of

Au becomes larger (Figure 6), GMRES and QMR methods fail to converge; however,

it dose not have a detrimental effect on the convergence of the LSGR method.
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Figure 15: Comparison of the relative residual of the three iterative methods for

single 50 nm Au nano-sphere on the BK7 substrate and 552 dipole number.

Moreover, based on Figure 15, the number of iteration for three iterative methods

is increased by increasing the wavelength. We also analyzed the effect of size and

dipole number by considering two different size of Au nano-sphere with diameters of

50 nm and 100 nm on the BK7 substrate. Again, for fair comparison, we set the

tolerance to be 10−6 and studied the convergence of the LSQR method for the set of

nano-sphere as dipole number 136, 280, 552 and 1472. It is clear from Figure 16.a

that LSQR achieve to convergence for the 50 nm Au nano-sphere in the different

number of dipoles at the visible light range.
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Figure 16: Iteration number of the GMRES, QMR and LSQR methods in the visible

spectrum.

In addition, Figure 16.b shows that LSQR could converge for the larger diameter

100 nm of Au nano-sphere with different dipole number. On the other hand, based on

the DDA-SI criteria, for noble metals (d ≤ 1/|m|k), a large number of the dipoles is

necessary in order to achieve a satisfactory approximation of the shape. Consequently,

the converging to the solution with the specific tolerance could be achieved. As Figure

16 shows that the LSQR iterative solver converges for two different diameters (50nm

and 100 nm) of a single Au nano-sphere on the BK7 substrate with relative residual

10−7 for different dipole numbers.
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Figure 17: a) Relative residual of the 50 nm diameter Au nano-sphere on the BK7

substrate b) Relative residual of the 100 nm diameter Au nano-sphere on the BK7

substrate with dipole numbers=136, 280, 552 and 1472 in the visible light range

computed by using the LSQR solver.
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In this study, we aimed to decrease the iteration number of the LSQR solver to

optimize the toolbox and make the calculation faster. In general, as mentioned in

the previous section, the convergence of iterative methods in the DDA-SI calculation

depends on the refractive index m and by increasing the refractive index the con-

vergence of iterative methods becomes challenging and most of the iterative solvers

fails to converge in the calculation of the light scattering problem for noble metals.

Furthermore, we demonstrated that the LSQR method converges and is the most

versatile iterative method in the range of the spectrum where the imaginary part of

the refractive index of Au is large. However; as the LSQR converges in relatively high

number of iterations, using the preconditioning is devised.

3.2 Preconditioning

Preconditioning method is a widely accepted method applied to many iterative solvers.

The chosen preconditioner should be closely related to the original coefficient matrix

and it attempts to reduce the condition number of the coefficient matrix T ,improves

the convergence of the associated linear system. However, this requires additional

computational time during both initialization and each iteration. Preconditioning

improves the convergence and speed it up in the linear system of equation Ax = b by

solving a similar system:

M1Ax = M1b (27)

where the condition of M1A is more appropriate than that of the primary matrix

A; the matrix M is the preconditioner matrix. LU-preconditioner (lower and upper

triangle matrices) is one of the common preconditioners. They are produced by

making a standard LU-decomposition of matrix A.

Based on the analysis of the matrix construction and its effect on number of iter-

ation, we applied a Lower Upper (LU)-preconditioning to current DDA-SI coefficient

matrix aiming for improving the convergence speed in the linear system of equations
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[58]. We investigated the effect of using the LU-decomposition of the total interac-

tion matrix T as preconditioners to the iterative solvers.The preconditioning matrix

is multiplied in each required step to finally calculate the estimated moment vector

Pk at the kth iteration step. Based on our results, we conclude that our method can

significantly decrease the iteration numbers, thus making the toolbox faster.

Figure 18: Comparison between convergence of QMR, GMRES and LSQR with

LU-preconditioning.

We implemented and tested three different iterative methods GMRES, QMR and

LSQR with and without LU-preconditioning when the prescribed tolerance is fixed

to 10−6. The convergence of these methods are strongly depends on the refractive

index of the NP. Figure 18 shows a comparison of the convergence rate for the three

mentioned methods with LU-decomposition of the total interaction matrix T as pre-

conditioner. Based on the result, the QMR didn't converge and it is stagnated and
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also the relative residual is stopped on 10−4. Furthermore, the GMRES solver stag-

nated and didn't converge to the solution although its initial tolerance is less than

10−6 the default tolerance value. However, the LSQR solver converged to the solu-

tion within 2 steps with relative residual on the order of 10−8. Therefore, the LSQR

method is chosen to be a sufficient iterative method in the calculation of absorption

efficiency of AuNP in the DDA-SI toolbox.

Figure 19: The calculation of relative residual for the Au nano-sphere with 50 nm

diameter and dipole numbers = 552.

As mentioned before, in the plasmonic calculation using DDA-SI; the imaginary

part of the refractive index for noble metals is large. Therefore, the condition number

of the coefficient matrix for these particles becomes larger but does not go to infinity.

The convergence ratio for 4 different wavelengths is depicted in the Figure 18 for single

50 nm AuNP on the BK7 substrate. It is clear that by increasing the wavelength the

relative error is increased.
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3.3 Calculation of Absorption Efficiency of Single Gold
Nano-sphere

In this section,the absorption efficiency (plasmon resonance) of single Au nano-sphere

on the BK7 substrate where the EM wave is parallel and k vector is perpendicular to

substrate is analyzed by using the LU-LSQR solver. Figure 20 shows the absorption

efficiency of 50 nm nano-sphere as a function of the number of dipoles in the visible

light range spectrum. Based on this figure, the plasmon resonance for the single Au

nano-sphere occurs at 515 nm. Moreover, there is a small artificial peak appeared

between 590-700 nm wavelength associate with the low dipole numbers since by in-

creasing the dipoles number, the peak is vanishing. Based on the results (Figure

20), the minimum dipoles number of N= 912 is required for proper analyzing of the

single spherical NP on the BK7 substrate. It can be also concluded that after N=

912, the absorption efficiency barely changes by increasing the dipole number and the

artificial peak disappears. The previous study of DDA formulations considered that

the particle geometry is illustrated by set of the point dipoles. In order to achieve

correct answer, high number of dipoles for the curvilinear and aspheric geometries is

required.
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Figure 20: Change of absorption efficiency for a single 50 nm Au nano-sphere on the

BK7 substrate.

Figure 21 is further analyzing the effect of the dipoles number on the absorption

efficiency of the single Au nano-sphere on the BK7 substrate for various wavelengths.

It is proving that there is a variation in the absorption efficiency for dipoles number

less than 912 and the solution is barely changing by increasing the dipoles number

for different wavelengths.
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Figure 21: Absorption efficiency of 50 nm Au nano-sphere on the BK7 substrate

versus number of dipoles N for different incident wavelength.

3.4 Calculation of Absorption Efficiency of Single Gold
Oblate Nano-sphere

To obtain good and robust ascertainment about discretization criteria and the effect

of the geometry on the plasmon resonance, we calculated the absorption efficiency of

oblate spheroid AuNP in the BK7 substrate (Figure 22) as the same method in the

case of the nano-sphere in the previous section. The Oblate spheroid particles like the

sphere has a curvature geometry so the convergence happens in the larger number of

dipoles. However; the curvature of the oblate spheroid is more than sphere, therefore,

the correct answer is achieved in the larger number of dipoles than sphere. As it is

shown in Figure 23 in order to adequate approximation, high number of dipoles is

required.
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Figure 22: Schematic configuration of single oblate nano-sphere on the BK7 substrate

Figure 23: Change of absorption efficiency for a single 50 nm oblate spheroid AuNP

on the BK7 substrate

In addition, as it is obvious in Figure 23, the increasing of the number of electrons

per unit volume at the spheroid NP is caused to increase the electric filed enhancement

close to the surface of the metal. Therefore, the plsmon resonance is red shifted to 540

nm in comparing with sphere. It is clear that there is a variation in the absorption

41



efficiency for dipoles number less than N=3096, therefore, the adulate dipole number

for spheroid is N=3096.

Figure 24: Absorption efficiency of 50 nm oblate spheroid AuNP on the BK7 sub-

strate versus number of dipoles N for different incident wavelength.

Figure 24 is further analyzing the effect of the dipoles number on the absorp-

tion efficiency of the single oblate spheroid AuNP on the BK7 substrate for various

wavelengths. It is proving that there is a variation in the absorption efficiency for

dipoles number less than N=3096 and the solution is barely changing by increasing

the dipoles number for different wavelengths. In addition, for 540 nm wavelength

which is the plasmon resonance for oblate spheroid AuNP, there is perturbation if

N < 3000 numbers< N=3000. It is important to highlight that there are two main

reason for this perturbation: large refractive index of AuNP for larger λ > 500 nm

and curvature geometry of oblate nano-sphere.
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3.5 Calculation of Absorption Efficiency of Single Gold
Nano-cube

Moreover, the absorption efficiency of a single 50 nm Au nano-cube placed on a BK7

glass has been shown in Figure 25 and Figure 26. We used the same method as in

the case of nano-sphere to investigate the absorption efficiency of single nano-cube

and the effect of dipoles number on it. In this analysis, effect of number of dipoles

ranging from N = 216 to N = 3375 for 300 to 700 nm wavelength investigated. Fig-

ure 25 shows that the maximum absorption efficiency (plasmon resonance) of single

Au nano-cube occurs at 525 nm. Furthermore,it changes by increasing the number

of dipoles and after N = 512, the absorption efficiency and the plasmon resonance

converge to its solution and further increasing the dipole numbers barely effects them.

Cube unlike the sphere has a regular set of dipoles which well distributed thus, the

proper discretization happens at lower number of dipoles in comparison with the

nano-sphere and oblate spheroid case. This is due to the fact that high numbers of

dipoles for adequately approximation of the curvilinear and spheric geometries are

required in order to compensate for the shape errors. Therefore for our calcula-

tion the absorption efficiency of Au nano-cube, dipole number N = 512 is adequate

approximation to achieve the correct answer.
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Figure 25: Change of absorption efficiency for a single 50 nm Au nano-cube as a

function of wavelength for different number of dipoles.

Figure 26 is analyzing the effect of the dipoles number on the absorption efficiency

of the single nano-cube on the BK7 substrate for different wavelengths. Similar to the

nano-sphere case, the absorption efficiency of oblate nano-sphere for dipoles number

more than 512 is barely changing by increasing the dipoles number.
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Figure 26: Absorption efficiency of 50 nm Au nano-cube on the BK7 substrate versus

number of dipoles N for different incident wavelengths.

3.6 Calculation of Absorption Efficiency of Single Gold
Nano-pyramid

Another important geometry of AuNPs used in the nano technology is pyramid.

Nano-pyramid can be fabricated on different substrates like silicon (Si) or glass (BK7).

They can be fabricated in different sizes and aspect ratios. In order to investigate

the optical properties of these nanostructures, which is important for the mentioned

applications, we calculate the absorption efficiency of single Au nano- pyramid placed

on a BK7 glass (Figure 27). The base of nano-pyramid is square and each side of

base is 100 nm and the apex is directly above the center of the base with the 50 nm

hight.

45



Figure 27: Schematic configuration of single nano-pyramid on the BK7 substrate

illuminated by plane wave

Figure 28: Change of absorption efficiency for a single 50 nm nano-pyramid on the

BK7 substrate

We used the same method as in the case of the previous NPs in order to investigate

the plasmon resonance and the effect of dipoles number on the Au nano-pyramid.

Figure 28 shows the effect of number of dipoles ranging from N = 969 to N = 3654
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for 300 to 700 nm wavelength. As it is clear that the maximum absorption efficiency

(plasmon resonance) of single Au nano-pyramid occurs at 635 nm. Furthermore, it

changes by increasing the number of dipoles and after N = 2925, the absorption

efficiency and the plasmon resonance converge to its solution and further increasing

the dipole numbers barely effects them.

Figure 29: Change of absorption efficiency for a single 50 nm nano-pyramid on the

BK7 substrate

Au nano-pyramid unlike the sphere and oblate spheroid has a regular set of dipoles

which well distributed, however; the sharpness of the apex and high slope of pyramid

could cause the perturbation in convergence for small number of dipoles.(Figure 29)

Therefore, the proper discretization happens at higher number of dipoles in compar-

ison with the previous cases. This is due to the fact that high numbers of dipoles for

adequately approximation of the complex geometries are required in order to compen-

sate for the shape error. We conclude that, for calculation the absorption efficiency
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of Au nano-pyramid, dipole number N = 2925 is adequate approximation to achieve

the correct answer.

3.7 Parallel Memory Allocation

The parallel computing toolbox of MATLAB allows us to solve computationally in-

tensive and data-intensive problems more quickly. It could run on our local multi

core computer or on Shared Computing Cluster. Parallel processing operations such

as parallel for-loops and message-passing functions let us implement task- and data-

parallel algorithms in MATLAB. Converting serial MATLAB applications to parallel

MATLAB applications generally requires few code modifications and no programming

in a low-level language is necessary. We can run our parallel applications interactively

or in batch mode by using parfor function in MATLAB.

3.8 Validation with Previous Toolbox

For confidence, we compare the absorption efficiency of single Au nano-sphere on a

BK7 glass substrate undergoing TE evanescent field illumination (Figure 12) where

comparisons are made between DDA-SI-3 and Moghadam et al [3]. The number of

dipoles used for the DDA-SI simulations was N = 912. It can be observed in Figure

30 that there is an exact agreement between two toolboxes.
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Figure 30: Comparison of absorption efficiency of single Au nano-sphere illuminated

by evanescence wave calculating with two toolbox (Moghaddam et al [3] and this

thesis)

3.9 Vectorized DDA-SI Toolbox

The DDA-SI offers a further improvement integrating the surface interaction by an

analytical formulation. For dimer and trimer investigation on the substrate, due to

the dipole-dipole interaction, surface interaction and the large number of dipoles to be

accurately approximation, computational time demand would be significant. We used

three toolboxes of original one by Loke et al [4]., vectorized toolbox by Moghaddam

et [3], and our optimized toolbox which contains the vectorization and optimazation

the iterative solver of linear equation to calculate the absorption efficiency of a single

Au nano-cube on a BK7 substrate illuminated by a plane wave at 600 nm wavelength.

The properties of DDA-SI toolboxes is shown in the Table 3. We used a computer

with Intel(R) core(TM) i7, 4770 @ 3.40 GHz CPU and 24 GB RAM capacity running
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on 64 bit windows 7 operating system.

Table 3: Three DDA-SI Toolboxes
Name Developted by Solving method Properties Convergence

DDA− SI− [22]
V. Loke &
M.P. Menguc

GMRES & QMR
& MINRES

for loops
Not converged for
AuNPs for large
refractive index

DDA− SI − 2 [32 ]
S. Moghaddam , H. Erturk&
M.P. Menguc

Single vs. Double,Precision
GMRES & BICG & ...

vectorized
Not converged for
AuNPs for large
refractive index

DDA− SI − 3 [55 ]
Z.R. Fathi &
M.P. Menguc

LU-LSQR vectorized Converged for AuNPs for

The iterative solver used in two other toolbox was GMRES and we compared the

performance with the proposed method of using LU-LSQR iterative solver. Figure

31 demonstrate that our proposed method is the best among the two mentioned tool-

boxes in the case of solving time. It is also proved that although the LU-decomposition

is an extra step in the calculation and requires more time to be calculated, using the

LU decomposition of the coefficient matrix as the preconditioner for LSQR solver

speeds up the calculation by decreasing the iteration numbers to two steps; conse-

quently, the overall performance became roughly 4.5 times faster than the previous

version of the toolbox.
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Figure 31: Comparison of three DDA-SI toolboxes, zDDA-SI(this thesis method),

Moghaddam et al(sDDA-SI) [3] and Loke et al(vDDA-SI) [4].

In this thesis and also Moghaddam et al [3] vectorized DDA-SI functions in order

to improve and speed up the performance of the toolbox. The process is done to

revise the loop-based codes by using MATLAB matrix and the vector in the main

DDA-SI toolbox is used. Figure 31 proves the time difference between three types of

problems and it can be seen that vectorization helps in speeding up the calculation.
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CHAPTER IV

COMPARISON DDA-SI AND FEM METHODS

In this Chapter we investigated the plasmonic response of Au nano-cubes on the BK7

substrate is done using DDA-SI and the results are bench marked with results of

finite-element methods (FEM) [59]. We benchmarked the DDA-SI MATLAB toolbox

against the FEM for the accuracy when modeling surface plasmon resonance of one

Au nano-cube on the BK7 substrate, without any volume correction. Errors are elim-

inated in the DDA-SI implementation where the particle sits on a substrate involves

illuminated by a plane wave [30].

The finite-element method (FEM) involves solving the Helmholtz equation where

the spatial derivatives at the surface of the object are solved numerically as a boundary

condition problem. FEM can be used to simulate the light scattering from arbitrarily

shaped, inhomogeneous and anisotropic structures for a single frequency at a time.

An appropriate grid mesh or element (triangular, tetrahedral or hexahedral) is used to

illustrate the surface or structure. The mesh can be denser to represent regions with

fine structure. For heating of noble metals on substrate, Huda et al [59]. investigated

the effect of using Au nano-sphere and Si tapping mode AFM tip with FEM.

The steady spatial distribution of E and H at the node points is the quantities of

interest. In the FEM, the linear system can be solved by using Gaussian elimination

or the conjugate gradient method. The coefficient matrix for the system of equations

represents only the interactions between neighboring grids mesh cells and thus will

be a banded diagonal. The recommended mesh cell size is, though in some cases λ/5

has been proven is sufficient.
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Figure 32: Meshed representation of simulation medium in COMSOL. The PML is

recognized in red and the substrate is in blue color.

The calculation region for the FEM is larger than the object itself. The Helmholtz

equation is an elliptic differential equation that is solved as a boundary value problem

at the surface and at the edge of computational domain (simulating infinity).

4.1 FEM Simulation for Single Nano-cube on the BK7 Sub-
strate

For the simulations, we used RF module of COMSOL Multiphysics R© 5 which calcu-

lates the difference between a volume source field defined in the absence of a scatterer

and the total field in the presence of the scatterer. This difference is referred to as

the scattered field, which still provides access to the details of the near field and

should not be confused with techniques for calculating the scattered far field. We

defined the source field as a plane wave of wavelength between 400 and 700 nm. The

source field was defined analytically, using the Fresnel equations over the entire 3D

simulation domain, excluding the perfectly matched layers (PML), as if the NP was

absent. For TE simulations the source field was specified in terms of Ez, while for

TM simulations the source field was specified by Ex and Ey. Tetrahedral elements
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are used to model the structures. The simulation domain is surrounded by the PML

absorbing boundary.

-

Figure 33: Comparing of DDA-SI and FEM methods for absorption efficiency spectra

of the 50 nm cube on a BK7 glass planar substrate, illuminated by a plane wave

propagating surface NC = 343.

Additionally, scattering boundary conditions are defined at the outer boundaries.

Figure 32 is the mesh representation of simulation medium. The PML is recognized

in red color and the substrate is in blue color. We meshed the cubic NP and substrate

with the Free Tetrahedral method and it has 33601 mesh elements for the NP and

6471 mesh elements for the substrate.
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4.2 COMSOL Implementation for FEM Calculations

There are two ways of implementation of RF scattering problems in FEM [60]; solving

for scattering field or solving for total field. There are some advantages and disad-

vantages in both cases depending on what you want to calculate, how much memory

is available and some FEM issues, one of the approaches could be selected [59].

This thesis uses solving for total field or two steps approach. In this method,

first NP is considered as air and electric field is calculated in the domain. For this,

two ports boundary condition is used. The transmitting port is placed above the

substrate and exciting the plane wave and another port is placed at the bottom of

substrate to absorb all the receiving energy. Also Perfectly Matched Layer (PML) is

needed to collect the reflected waves coming from substrate and not letting it inter

back to the simulation medium. After finding the solution, it is fed back to the

simulator as an excitation or initial value for the case that NP is considered. Note

that in order to get correct results, in material properties of NP and substrate, the

complex refractive index of both NP and the substrate should be used. COMSOL

by itself does not feature this properties and one should import these properties as

a frequency dependent functions which further will be used by simulator. In order

to find the absorption efficiency of scatterer, the volume integral of the dissipated

power should be taken over the NPs. In order to be sure that the result has enough

accuracy, NPs should mesh very fine and dense. Also in order to avoid reflection from

PML, its thickness should be at least twice the biggest wavelength. The mesh size

should be at least ten time smaller than the smallest wavelength in order to calculate

with adequate accuracy.
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Figure 34: Relative difference between FEM and optimized LSQR version of the

DDA-SI for absorption efficiency of one Au cube on the BK7 substrate.

Figure 33 and Figure 34 representing the comparison between DDA-SI results and

COMSOL. From these pictures it is clear that the implemented methods in solving

linear equation in our DDA-SI toolbox is accurate enough in which the relative error

between solutions of DDA-SI and FEM is on the order of 0.01 or 1% over 400 nm-700

nm spectrum.
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CHAPTER V

PLASMON RESONANCE OF DIMER AND TRIMER OF

GOLD NANO-PARTICLES

In this section, we numerically investigated that due to coupling of AuNPs in dimers

and trimers, the large spectral shifts of plasmon resonance modes is created. These

simulations of the plasmon response of Au nano dimers and trimers on BK7 substrate

have been performed by running DDA-SI on an Intel 16 Core 3.48 GHz CPU with

24 GB RAM. In order to find a correlation between the geometry and the plasmonic

resonances, we calculate the absorption efficiency of the number of nano-structures

including dimers (two AuNP), trimers(three AuNP) which formed by cubes, spheroid

(sphere and oblate spheroid ) and pyramid.

5.1 Plasmon Resonance of Spherical Gold Particles

In order to obtain comprehensive knowledge of plasmon modes due to the tuning

the geometry and gap separation between AuNPs, we calculated the interaction of

spherical dimers and trimers of spherical AuNPs.

5.1.1 Dimer of gold nano-sphere in the different distances

In the chapter III, we calculated the absorption efficiency of 50 nm single AU nano-

sphere in the BK7 substrate. Furthermore, we showed the plasmon resonance of

nano-sphere AuNP is around 515 nm. In this section, the absorption efficiency of

50 nm Au nano-dimer formed by two nano-sphere with the same diameters placed

on a BK7 glass for the plane wave is calculated as is depicted in Figure 35. The

electric field is parallel and k vector is perpendicular to substrate. This is similar to

analysis discussed by Ivezic et al. [61], which is related on dependent and independent
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absorption regimes. The purpose is to observe the limits of dependent absorption

exist for two particles when the distance d between them is larger than three times

the radius of a single sphere (d > 3a) where a is the radius of the sphere and d is the

distance between the NPs.

Figure 35: Illustration of the Au spherical nano-trimer on the BK7 substrate with

six different spacing.
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Figure 36: Absorption efficiency of 50 nm Au spherical dimer on BK7 substrate with

different distances.

As it is shown in Figure 36, changing the distance between AuNPs of spherical

dimer will results in changing the absorption efficiency and it has no influence in

resonance frequency.

5.1.2 Trimer of gold nano-sphere

In order to better understand of the inter coupling between nano-spheres, we inves-

tigated the plasmon resonance of three nano-spheres. The schematic graph of the

Au nano-trimer nanostructure is plotted in Figure 37. In this Figure all of the nano-

spheres have the same volume (Diameter=50 nm) and the gap distance is 5 nm.

Figure 38 shows that by increasing the number of nano-spheres when the distance of

nano-spheres is 5 nm in both dimer and trimer, the absorption efficiency increases

and red-shift happens in the resonance frequencies.
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Figure 37: Illustration of the Au spherical trimer NPs on the BK7 substrate with 5

nm spacing.

Figure 38: Absorption efficiency of 50 nm Au spherical dimer and trimer on BK7

substrate with 5 nm distances.
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5.1.3 Dimer of gold spheres with different sizes

After investigating the effect of distance of Au nano-spheres dimer and trimer, the

next step is to investigate what happens when the size of one of the spheres decreases

compared to the other one as depicted in Figure 39. There are two restrictions about

lattice spacing and dipole numbers for dimers and trimers. a) Since the lattice spacing

influences on interaction matrix, the distance of dipoles (lattice spacing) must be equal

for all particles because by varying the distance of dipoles the interaction between

them changes.(interaction matrix is dependent on the distance of dipoles Eq.11) In

this case the lattice spacing of all particles should follow the following relation:

d =

(
V1
N1

)1/3

=

(
V2
N2

)1/3

=

(
V3
N3

)1/3

= ... (28)

b) In the case of analyzing plasmon response of NPs with different sizes, the adequate

dipole number for single NP whose size is the smallest should be chosen first and then

according to the following equation, the dipole number for next bigger NP should be

driven. For instance, the minimum dipole number for spherical NP giving correct

answer is Ns = 912. It is worthwhile to mention that only in this case, the correct

answer for dimer and trimer NP with different sizes is achievable.

N2 = N1

(
V2
V1

)
(29)
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Figure 39: Illustration of the Au spherical dimer with different sizes on the BK7

substrate.

Figure 40: Absorption efficiency of the Au nano sphere dimers with different volumes

with the fraction of 1/2, 1/3 and 1/4 of the first NP.

In this part, we investigated the absorption efficiency of sphere dimer with different

sizes (volume) on BK7 substrate when distances between them is 5 nm, as it has been
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shown in Figure 40, it is clear that, the effect of small sphere becomes negligible as

the volume of it becomes one-forth of the bigger sphere.

5.1.4 Gold oblate nano-sphere with different aspect ratio

In order to investigate the influence of the AuNP geometry on the spectral features

of the plasmon resonance, we considered the oblate spheroid AuNP with the major

axis a = 50 nm (Figure 41) with four different aspect ratios (b = 1/2a, 1/3a, 1/4a

and 1/5a). As it is shown in Figure 42 by decreasing the aspect ratio the significant

plasmon responses happens; however, the magnitude of absorption efficiency is not

changed. It is clear that by increasing the major axis resonance shifted to 580 nm

wavelength. The increasing of the available number of electrons per unit volume at

the oblate spheroid is the main reason of this resonance.

Figure 41: Schematic of the model for a single Au oblate nano-sphere on the BK7

substrate.
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Figure 42: Absorption efficiency of a single Au oblate nano-spheres with different

aspect ratios( 1/2, 1/3, 1/3 and 1/5)

5.1.5 Gold oblate nano-sphere dimers

In the next step, we calculated the absorption efficiency of the oblate spheroid nano-

dimer on the BK7 separated by 5 nm ( Figure 43). The major axis of oblate nano-

sphere is 50 nm with four different aspect ratios (b = 1/2a, 1/3a, 1/4a and 1/5a). In

each calculation, the separation of dimers are kept fixed and just the aspect ratio of

the oblates is changed. It is clear from Figure 44 for oblate spheroids as the aspect

ratio increased redshifts of the plasmon resonance happens.
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Figure 43: Schematic configuration of Au oblate nano-sphere dimer with separation

of is 5 nm on the BK7 substrate.

The Figure 44 reveals the characteristic plasmon resonance of Au oblate nano

sphere dimers. The high absorption efficiency and plasmon resonance of the oblate

nano sphere AuNPs are created due to the increasing the aspect ratio.

Figure 44: Absorption efficiency of Au oblate nano-sphere dimer with 5 nm separa-

tion and different aspect ratios (b = 1/2a, 1/3a, 1/4a and 1/5a)
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5.2 Plasmon Resonance of Cubic Gold Particles

In this section, we investigated the plasmon resonance of Au nano-cube dimers with

different gap separation, different volumes and heights.

5.2.1 Dimers of gold nano-cube with different gap separation

Figure 46 is an evidence to the inter particle coupling effects of dimer nano-cube

when they are close to each other. Furthermore, as the gap between the particles is

increased this effect reduces and thus the absorption spectra approach the spectra of

a single sphere as explained in the case 1. It is clear that mutual interaction of the

cubes is negligible when the ratio of their distance(d) to half of cube side (a is side

of cube) c = 2d/a is greater than 3. For instance, if the side of the cubes is 50 nm

and when the distance becomes 80 nm, the dependent absorption cannot be observed

[61][62].

Figure 45: Schematic configuration of Au nano-cube dimer with separation of is 5

nm on the BK7 substrate.
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Figure 46: Absorption efficiency of Au cubic nano-dimers with different distances

compare with single Au nano-cube.

Based on the results of Figure 46 and 47 increasing the distance between nano-

cubes will decrease the absorption efficiency and also more interestingly, it causes

blue-shift in plasmon resonance frequency and after some point, the response of dimer

converge to response of single nano-cube. Electric Field enhancement increases with

the decreasing gap destination between AuNPs due to the increase of the charge

concentration near the gap.
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Figure 47: Maximum absorption efficiency of the Au nano-cube dimer as a function

of their distance.

5.2.2 Dimers of gold gano-cube with different height

The absorption efficiency of Au nano-cube dimer in the close proximity (5 nm) when

the hight of the second nano-cube is changing is calculated in this part (Figure 48).
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Figure 48: Schematic configuration of Au nano-cube dimer with separation of is 5

nm on the BK7 substrate when the hight of the second nano-cube is changing.

The absorption efficiency is increased and it has no influence in plasmon resonance

when the hight of the second nano-cube is increased as it is obvious in Figure 49.

However, as Figure 49 depicts that when the hight of the second Au nano-cube

becomes five times larger that first Au nano- cube, the response of dimer converge to

the response of the condition where the hight of the second nano-cube is four times

bigger than the first one.
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Figure 49: Comparison between the absorption efficiency of cubic dimer, when the

hight of the second NP is changed.

5.2.3 Gold nano-cube with different size

Figure 51 shows what happens to the absorption efficiency of the nano-cube dimmer

when the size of the neighboring cubes changes and distance between nano-cubes is

5 nm. The results obtained for the case that electric field incident to the larger cube

and then passes to the smaller cube (Figure 50). It is observed that when the volume

of smaller cube becomes smaller than 1/5 volume of the bigger one, the influence size

changing becomes negligible.
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Figure 50: Illustration of the Au nano-cube dimmer with different sizes on the BK7

substrate.

Figure 51: Absorption efficiency of the Au nano-cubic dimmer on the BK7 substrate

with different volumes.
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5.3 Dimers of Gold Nano-pyramid and Nano-prism

To study the effect of the geometry on the value of the plasmon resonance of nano-

dimers, we investigated the absorption efficiency of Au nano-pyramid and Au nano-

prism on the BK7 substrate. Dimer nanoprisms, also called bowtie structures, are

well known from literature [63][64]. The pyramid AuNP base is square and the apex

is directly above the center of the base and the prism with sharp and rounded edges

( Figure 52). As it is obvious from Figure 53, the nanoprism dimer have smaller

plasmon resonance peak than the pyramid dimer. The plasmon resonance for Au

nano-pyramid dimer is shifted to 640 nm meanwhile the resonace for Au bowtie

dimer is around 620 nm. Obviously, the shift of pyramid dimer can be explained by

increased charge separation of square comparing with triangular which causing an

increase in the higher plasmon resonance.

Figure 52: Schematic configuration of (a) Au nano-pyramid dimer (b) Au nano-

bowtie with separation of is 5 nm on the BK7 substrate.
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Figure 53: Comparison of absorption efficiency between pyramid dimer and bowtie

pyramid.

5.4 Nano Dimers Formed with Sphere and Cube

In this thesis, we investigate the response of system for combination of nano-sphere

and nano-cube and compare it with results of cube and sphere dimers. Again, for

fair comparison, the volume of cube and sphere and also the distance between NPs

are kept equal. Figure 55 demonstrates that the absorption efficiency of cube dimer

is the highest with the lowest plasmon resonance frequency.
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Figure 54: Schematic configuration of the Au nano-dimer formed by cube and sphere

on the BK7 substrate.

Figure 55: Comparison between the absorption efficiency of cubic dimer, spherical

dimer and cube-sphere dimer with equal volumes.
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5.5 Gold Nano-trimers Formed with Sphere and Cube

In this part of thesis, we investigated the influence of placing of a nano-sphere on

plasmon resonance of the adjacent nano-cubes when distances between NPs is 5 nm (

Figure 56). From the Figure 57 it is obvious that the absorption efficiency of Au nano-

cube trimer has the maximum absorption efficiency with lowest plasmon resonance

frequency. Also when nano-sphere is in the middle of the two nano-cubes, absorption

efficiency is the lowest in comparison with other cases.

Figure 56: Schematic configuration of Au trimers formed by cube and sphere on the

BK7 substrate. The trimmer is mixture of two nano-cubes sand one nano-sphere.
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Figure 57: Comparison of the absorption efficiency of the Au trimers on the BK7

substrate.

76



CHAPTER VI

DISCUSSION AND CONCULUSIONS

In this work, we calculated optical response of arrays of metallic nano-particles made

of gold on the dielectric substrate. The main focus of this study is plasmonics prop-

erties and near-field enhancement of such a 3D nanostructurs. The calculations are

obtained with DDA-SI toolbox which is an open source MATLAB based software

package. These simulations show that DDA-SI can be used for the calculation of

scattering and absorption of arrays of gold NPs are affected by the near fields of

other particles in their close proximity.

For this purpose, the DDA-SI toolbox is further developed, vectorized for loops

of main vDDA-SI toolbox. The new version of toolbox is named zDDA-SI. Fur-

thermore, the main toolbox optimized numerically to provide more precise answers,

fast and stable calculation. Because the iterative methods which used in the previous

toolboxes(vDDA-SI and sDDA-SI) could not converge to the solution for noble metals.

We investigated the construction of interaction matrix in the presence of a substrate.

We showed that the total interaction matrix is complex symmetric, well conditioned

and it is not a positive definite matrix. Moreover, we find an appropriate iterative

method and applied the preconditioning to the iterative solvers in order to solve the

linear system of DDA-SI for calculating the moment of each dipole. We have applied

three iterative algorithms of GMRES, QMR, and LSQR to solve the linear equations

arising in the DDA-SI and we found that LSQR is a suitable iterative method. As

the iterative methods converged in relatively high number of iterations for particles

with large refractive index, using preconditioning was proposed. We found that LU-

decomposition which is built up by decomposition of the total interaction matrix as
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a preconditioner could speed up the iterative calculation by decreasing the iteration

numbers in the LSQR iterative solver. We proved that LU-LSQR method converges

to the solution within two steps of iteration and has the residual errors on the order

of 10−7-10−10 for AuNPs.

Furthermore, we showed that the numerical errors within DDA-SI can be reduced

by choosing a small dipole size (lattice spacing) for noble metals and appropriate

iterative methods (LSQR) with high tolerance values. We demonstrated that the

performance of iterative solvers largely depends on the refractive index and geometry

of particles. We also prove that our method is stable for light scattering calculation

and it is converging for the noble materials whose imaginary part refractive index is

high in the larger wavelengths in the spectrum.

Moreover, we have presented that there is an artificial plasmon resonance around

(wavelength 620 nm) for spherical particles due to the shape error when number

of dipoles is lower than 280 (dipole size > 0.02 ) due to lack of DDA-SI criteria:

d ≤ 1/|m|k. We concluded that, the minimum number of dipoles required for proper

discretization of spherical geometries. However, for complex geometries such as pyra-

mid in order to simulate them precisely, the large number of dipole is desired. For

summary in the case of the sufficient dipole numbers for different AuNPs geome-

tries, cube comprises the most simple geometry, therefore, accurate calculation could

achieve by lower number of dipoles and also the errors for cube is the minimum

comparing with other maintained geometries.

In addition, We investigated that the plasmon resonance and the absorption ef-

ficiency of the AuNPs arrays on the BK7 substrate depend on the geometry of the

particles and gap distance between them. We found out that as the distance of NPs

decreases, the plasmon resonance frequency is pushed into the infrared region due to

the inter-particle coupling so the red-shift becomes dominant. Small changes in the

geometry of noble metals and distribution of them can have effects on the absorption
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profiles and near field patterns. It is worth to mention that AuNPs with different

shapes in array configurations show the greater promise in the absorption efficiency.

Also, cube are highly tunable than sphere, and can be made to absorb in the vis-

ible light spectrum preferentially. As well as, the oblate spheroid AuNPs are more

tunable than nano-spheres, as the ratio of the axes becomes larger the plasmon reso-

nance band shifted to infrared. Pyramid shaped NPs shows highly tunable near-field

plasmonic behaviors than other geometries.

In summary, we have calculated the resonance modes for different plasmonic

nanostructures of Au dimer(including sphere, oblate nano sphere, cube and pyra-

mid). We conclude that cubes and pyramids due to the inter coupling in the dimers

shows the tunable plasmon resonance behavior than other geometries. Overall, we

investigated the absorption efficiency of trimers which formed with Au nano-sphere

and nano-cubes. We conclude that interaction of Au nano sphere with nano-cubes

in trimer cause to reduce the plasmon mode to ultraviolet bands and blue shifted

become dominant.
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[4] V. L. Y. Loke and M. P. Mengüç, “Surface waves and atomic force microscope
probe-particle near-field coupling: discrete dipole approximation with surface in-
teraction.,” Journal of the Optical Society of America. A, Optics, image science,
and vision, vol. 27, no. 10, pp. 2293–2303, 2010.

[5] Q. Jiang, H. Tong, D. Hsu, K. Okuyama, and F. Shi, “Thermal stability of
crystalline thin films,” Thin Solid Films, vol. 312, no. 1-2, pp. 357–361, 1998.

[6] S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon
resonance of gold nanoparticles: From theory to applications,” Chemical Reviews,
vol. 107, no. 11, pp. 4797–4862, 2007.

[7] S. A. Maier, Plasmonics: fundamentals and applications. Springer Science &
Business Media, 2007.

[8] B. Luk’yanchuk, N. I. Zheludev, S. a. Maier, N. J. Halas, P. Nordlander,
H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures
and metamaterials.,” Nature materials, vol. 9, no. 9, pp. 707–15, 2010.

[9] A. Verma and F. Stellacci, “Effect of surface properties on nanoparticle-cell in-
teractions,” Small, vol. 6, no. 1, pp. 12–21, 2010.

[10] X.-M. Zhang, J.-J. Xiao, and Q. Zhang, “Optical binding forces between plas-
monic nanocubes: A numerical study based on discrete-dipole approximation,”
Chinese Physics B, vol. 23, no. 1, p. 017302, 2014.

[11] M. A. El-Sayed, “Some interesting properties of metals confined in time and
nanometer space of different shapes,” Accounts of Chemical Research, vol. 34,
no. 4, pp. 257–264, 2001.
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