
AUTOMATED REFINEMENT OF MODELS
FOR MODEL-BASED TESTING

A Dissertation

by
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Özyeğin University

Date Approved: 14 July 2017



ABSTRACT

Model-Based Testing (MBT) enables automatic generation of test cases based on

models of a system. It has been successfully applied in various application domains,

each of which might introduce specific challenges. In this dissertation, we introduce

methods and tools for addressing some of these challenges for the consumer electronics

domain. In particular, we focus on the testing of Digital TV systems as our case

study. We identified the following 3 problems in this context: i) Models of the

system are created based on requirement specifications, which are often incomplete

and imprecise. Therefore, these models are subject to accidental omissions of certain

system behavior. As a result, critical faults can be left undetected by the generated

test cases. ii) Resources are extremely limited in the consumer electronics domain.

It is not feasible to attain an extensive coverage of test models. iii) A product family

in consumer electronics often includes hundreds of systems. The set of features can

highly differ among these systems. Therefore, the MBT process and modeling must

be flexible to systematically manage variability and increase the amount of reuse for

test models.

To tackle the first problem, we introduce an approach and tool for automatically

extending test models based on a set of collected execution traces. These traces

are collected during Exploratory Testing (ET) activities. Several critical faults were

detected in 3 case studies after generating test cases based on extended models. These

faults were not detected by the initial set of test cases. They were also missed during

the ET activities. As a solution for the second problem, we iteratively update test

models in 3 steps to focus the test case generation process only on execution paths

that are liable to highly severe failures. We use Markov Chains as test models,
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in which transitions among states are annotated with probability values. First, we

update these values based on usage profile. Second, we perform an update based

on fault likelihood that is estimated with static code analysis. Our third update

is based on error likelihood that is estimated with dynamic analysis. We generate

and execute test cases according the updated values after each iteration of updates.

New faults can be detected after each iteration. To address the variability problem,

we document variations among tested systems explicitly with a feature model. We

map optional and alternative features in the feature model to a set of states in the

test model. Transition probabilities in the test model are updated according to the

selected features so that the generated test cases focus only on these features. This

approach facilitates the reuse of a test model for many systems.
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ÖZETÇE

Model-bazlı test (MBT), test edilen sistemin modelleri ile otomatik olarak test

senaryoları oluşturulmasını sağlamaktadır. MBT, her biri kendine has zorlukları

beraberinde getiren çeşitli uygulama alanlarında kullanılmaktadır. Biz bu tezde,

tüketici elektroniği alanındaki zorlukları adreslemek için metot ve araçlar öneriyoruz.

Özellikle vaka çalışması olarak Dijital TV sistemlerinin testine odaklanmaktayız. Bu

bağlamda 3 problem belirledik; i) sistem modelleri gereksinim analizleri baz alınarak

oluşturulmuştur ve bu gereksinimler genellikle tam ve açık değildir. Bu sebeple,

bu modellerde bazı sistem davranışlarının eksik olma ihtimali vardır. Sonuç olarak

da oluşturulan test adımları ile kiritik hatalar bulunamayabilir. ii) tüketici elek-

troniği alanında kaynaklar çok kısıtlıdır. Test modellerinin kapsamını ve böylece

oluşturulan test adımlarının sayısını sürekli arttırmak elverişli değildir. iii) tüketici

elektroniği alanındaki bir ürün ailesi genellikle yüzlerce sistem içerir. Bu sistem-

lerin barındırdıkları özellikler birbirlerinden farklıdır. Bu sebeple, MBT süreci ve

test modelleri, çeşitliliğin sistematik olarak yönetimini ve test modellerinin tekrar

kullanılabilirliğini sağlayacak şekilde esnek olmalıdır. İlk problemin üstesinden

gelebilmek için, test modellerini, toplanan çalıştırma izlerini baz alarak, otomatik

olarak güncelleyecek bir yaklaşım ve araç öneriyoruz. Bu izler araştırmaya yönetilik

test aktiviteleri sırasında toplanmaktadır. Yapılan 3 vaka çalışması ile, güncellenen

modeller üzerinden üretilen test adımları ile birçok kritik hata bulunmuştur. Bu hata-

lar daha önce araştırmaya yönetilik test aktiviteleri sırasında bulunamamıştı. İkinci

hataya çözüm olarak, test modellerini, hataya neden olabilecek yollara odaklanarak
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test adımı üretilebilecek şekilde, 3 adımda iteratif olarak güncelliyoruz. Test model-

leri olarak, durumlar arası geçişlere olasılık bilgilerini işleyebileceğimiz Markov Zincir-

lerini kullanıyoruz. İlk olarak, modeldeki bu olasılık bilgilerini kullanıcı profiline göre

güncelliyoruz. İkinci olarak, statik kod analizlerinden çıkartılan hata ihtimaline göre

modeldeki olasılık bilgilerini güncelliyoruz. Üçüncü güncelleme işlemimizi ise dinamik

analizlerinden çıkartılan hata ihtimallerine göre gerçekleştiriyoruz. Her bir güncelleme

iterasyonu sonrası, güncellenen olasılık bilgilerine göre, test adımlarını tekrar üretip

çalıştırıyoruz. Vaka çalışmalarında, bu yaklaşım ile her bir iterasyon sonrası yeni

hatalar bulunmuştur. Çeşitlilik problemini adreslemek için ise, test edilen sistemdeki

varyasyonları açıkça özellik modelleri ile kayıt altına alıyoruz. Test modelindeki du-

rumların tümünü, özellik modellerinde opsiyonel ve alternatif olarak işaretliyoruz.

Üretilen test adımlarının bu özelliklere odaklanabilmesi için, test modellerindeki geçiş

olasılıklarını seçilen özelliklere göre güncelliyoruz. Bu yaklaşım sayesinde birçok sis-

tem için test modellerinin tekrar kullanılabilmesi sağlanmıştır.
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CHAPTER I

INTRODUCTION

Products in consumer electronics domain have been transformed from electromechan-

ical systems to complicated software systems. This trend has two main causes. First,

the implementation of the provided features is shifting from hardware to software.

Second, the number of these features and their variety are increasing. For instance,

current Digital TV (DTV) systems include web browsing, on-demand streaming,

home networking and many other features in addition to traditional TV function-

alities [2]. As a result, the size and complexity of software systems adopted in these

products are continuously increasing. This makes it harder to ensure software relia-

bility due to an amplified number of potential faults1. Unlike safety-critical systems,

these faults might not have catastrophic consequences in consumer electronics do-

main. However, their impact on user perception is very critical [4] due to tough

competition. Moreover, systems being developed for such a high-volume market are

highly cost sensitive. Especially, time and human resources are very limited. This

constraint makes it prohibitive to exhaustively test systems. Available resources are

often not even sufficient to remove all the detected faults from the system [5]. Only

those faults that have the highest impact on user-perceived reliability [4] can be re-

moved before the release, if they are detected. Hence, testing of software-intensive

consumer electronics products have to be effective and efficient. Effectiveness is re-

quired to capture the most critical faults in terms of their impact on user perception.

Efficiency is required for the optimal use of available resources.

1Throughout this dissertation, we adopt the terminology introduced by Avizienis et al. [3]. We
use the term fault (synonymous with defect or bug) as the cause of an error, which can lead to a
failure. We consider error as an internal system state, whereas failure as an event that can possibly
be observed by the user in the form of an unexpected output or system behavior.
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Traditional testing processes, which by and large involve manually performed ac-

tivities, fall short in terms of efficiency and effectiveness. Therefore, there have been

several techniques proposed to improve these activities and automate them if possible.

Model-based Testing (MBT) is one of such techniques [6, 7, 8, 9]. It enables auto-

matic generation of test cases by using the models of the system under test [9, 10, 11].

MBT has been successfully applied in various application domains [12, 13]. Each ap-

plication domain introduces specific challenges and opportunities for the utilization

of MBT. In this dissertation, we introduce methods and tools for addressing some of

these challenges for the consumer electronics domain. In particular, we focus on the

testing of DTV systems as our case study.

We applied the so-called industry-as-laboratory approach [1] for conducting our

research. This approach focuses on industry-relevant problems and evolutionary im-

provement of research results by exploiting continuous feedback from real-life appli-

cations (See Appendix A for details). In the following, we clarify the scope of our

studies and provide motivation for the identified challenges regarding the adoption

of MBT. Then, we introduce our research questions. We conclude the chapter by

summarizing our contributions and providing an overview regarding the organization

of the dissertation.

1.1 Thesis Scope and Motivation

The work presented in this dissertation has been carried out as part of a project that

is co-funded by the Turkish Ministry of Science, Industry and Technology and Vestel

Electronics. The goal of the project is to develop methods and tools for increasing

the effectiveness and efficiency of MBT as applied for testing DTV systems. Vestel2

is one of the largest DTV manufacturers in Europe. It produces DTV systems for 157

different brands from 145 different countries. There are hundreds of test suites being

2www.vestel.com.tr
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used in the company for testing these systems. These test suites are used for testing

various features and they are created for different types of tests such as performance

tests, certification tests, connectivity tests and functional tests. In our project, we

focus on functional tests only.

An independent software test group within the company performs all the tests

for all the projects. The group has 4 weeks to complete all the tests per product

development project. Then, additional tests are performed for about 2 weeks by

experienced testers. These testers perform Exploratory Testing (ET) [14] to reveal

the possibly missed faults. It has been observed that critical faults are mostly detected

during ET (See Appendix B for details).

The amount of resources is extremely limited for the test group, considering hun-

dreds of different products being subject to regular regression tests. As a solution

approach, test execution is automated as much as possible. Vestel uses an in-house

developed tool, namely Vestel Test Automation (VesTA) [15, 16], for this purpose,

which also captures and evaluates snapshots of the DTV screen for verifying the

system behavior (See Appendix A and [17] for further details regarding test oracle

automation in our environment). The tool automatically sends a sequence of remote

controller key signals to DTV systems based on a predefined set of test scripts. Some

of the functional tests are automated by defining them in the form of these scripts.

There are also test cases that involve test steps to be manually followed and executed

by testers. These are mainly defined in the form of check-lists.

The manual preparation of test scripts and check-lists is error-prone and time

consuming. Moreover, requirements specifications continuously change. As a result,

maintenance becomes costly for ensuring consistency and coverage of scripts and

check-lists with respect to these specifications. More often than not, manually defined

test steps soon turn out to be outdated due to updated requirements. MBT is adopted

3



by the company to address these problems. A commercial tool called MaTeLo3 has

been used as the MBT tool. The usage behavior for some of the developed DTV

systems are modeled with this tool in the form of Markov chains [18]. Transitions

among states are annotated with executable scripts or manual actions (i.e., checks)

that define the corresponding test steps. MaTeLo can take these models as input and

generate various sequences of test steps by a variety of test case generation algorithms.

At first sight, MBT has been proven to be beneficial from several aspects:

• models of system behavior have served as documentation and they have helped

to detect internal inconsistencies in requirements specifications.

• it has enabled the automated generation of test scripts.

• maintenance costs have been reduced since changes in requirements can be re-

flected to models instead of dozens of various scripts and check-lists.

However, there have also been several problems observed. We identified the fol-

lowing 3 problems to be addressed in the scope of this dissertation:

i) ET has continued to be the phase, where the most of the critical faults were

detected. There are many features to test for every product and ET is manually

performed by a limited number of testers. Hence, limited resources prohibit the

extension of the ET phase to find critical faults. We investigated why these faults

are missed even when MBT is applied. It was observed that some of the execution

paths were omitted in test models (i.e., missing some of the transitions and states).

As a result, generated test cases did not exercise the corresponding usage scenarios.

There are two main reasons for such omissions. The first reason is human error since

model creation is a manual process. Secondly, requirement specifications are used

as the main information source for model creation. These specifications are often

3http://www.all4tec.net

4



incomplete and imprecise. As a result, created test models can be incomplete as well.

Experienced testers explore the behavior of the system during ET without following

any specification but just their domain knowledge and insights. The experience gained

during ET is not documented to be exploited later on. Testers do not usually have

time and the necessary expertise to document their knowledge/insight in the form of

formal models.

ii) The second problem is regarding the size of the models, which include thou-

sands of states and transitions. This size is also reflected to the number of generated

test cases. Test execution can not be completely automated for all of these test cases.

Hence, the available resources are usually not sufficient to apply all of them to the

system. This is especially the case if test case generation aims at exhaustively cov-

ering the test model for each regression test. Hence, the generated test cases have

to focus only on execution paths that are liable to highly severe failures that can be

directly observed by users.

iii) The third problem is variability among hundreds of different DTV systems.

The set of features, broadcast specifications and user interfaces can differ among these

systems. MBT is actually better than manual test case specification with respect

to handling this variability. Variations can be better managed at the abstraction

level of test models. However, MBT still falls short to address systematic variability

for large scale product families with high number of variations that cross-cut test

models [19, 20]. Software Product Line Engineering (SPLE) approach is required for

facilitating systematic and scalable reuse [21].

In the following section, we define our research questions aligned with these ob-

servations.
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1.2 Research Questions

We performed research activities to address the problems that are listed in the previ-

ous section. During these research activities, we have addressed several sub-problems

and evaluated alternative and/or complementary solutions. We defined 3 main re-

search questions that focus our research.

RQ1: Is it possible to automatically extend test models and as such,

increase the effectiveness of MBT by exploiting feedback from ET?

RQ2: Is it possible to employ random-stochastic test case genera-

tion based on risk of failure to increase the efficiency of MBT?

RQ3: Is it possible to automatically adapt and reuse test models for

large product families with high number of variations?

Our first goal was to increase the effectiveness of the MBT process, which is

measured in terms of the number of detected faults. During the initial attempts in

applying MBT to a set of pilot projects, fault detection rate turned out to be low

due to omitted execution paths in test models. On the contrary, ET was observed to

be highly effective in practice to detect critical faults. ET activities were performed

manually by experienced test engineers. However, the experience gained during these

activities were not documented and exploited. We defined RQ1 based on this obser-

vation.

Our second goal was to increase efficiency such that new faults can be detected

while the number of test steps and the test duration is reduced. To achieve this goal,

we needed a non-uniform test case generation method that focus on failure-prone

usage scenarios rather than covering the whole model. This also requires additional

refinements of test models for augmenting them with information regarding estimated

failure risks. RQ2 is defined to employ such a method and evaluate its impact on
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MBT efficiency.

RQ3 is defined to investigate the re-usability of test models for a large family of

products by adopting principles from SPLE.

In the following section, we briefly explain solution approaches that we propose

to address these questions. We summarize our contributions and provide an outline

of the remainder of this dissertation.

1.3 Thesis Contributions and Overview

To answer RQ1, we introduced an approach and a tool called Automated Refinement

of Models for Model-Based Testing Using Exploratory Testing (ARME) for automatically

extending test models based on a set of execution traces. These traces are collected

during ET activities performed by experienced testers. ARME compares the recorded

execution traces with respect to the possible execution paths in test models. Then,

test models are automatically extended to incorporate any omitted system behavior.

The extended models can be used for generating various test cases to capture new

faults. We performed 3 case studies to evaluate the effectiveness of ARME . Several

critical faults were detected after generating test cases based on extended models.

These faults were not detected by the initial set of test cases. They were also missed

during the ET activities.

We were inspired from the principles of Risk-based Testing (RBT) [22] for address-

ing RQ2. Our test models comprise a set of states and a set of state transitions that

are annotated with probability values. These values can steer the test case generation

process, which aims at covering the most probable paths. We developed an approach

and a tool called Risk-based Model Adapter (RIMA) to update these values in 3 steps

for augmenting information regarding the risk of failure. A failure occurs if a faulty

program location is reached (i.e., the corresponding feature is used by an end user)
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and if the fault infects the program state propagating to an incorrect output/behav-

ior [23]. Hence, we first update transition probabilities based on a collected usage

profile to focus on the mostly used DTV features. Secondly, we update the resulting

models based on fault likelihood at each state, which is estimated based on static

code analysis. Finally, we perform updates based on error likelihood at each state,

which is estimated with dynamic analysis. We generate and execute test cases after

each refinement step. In our case study on DTV systems, we were able to detect

several new faults after each refinement step of our approach. These faults mainly

lead to stability issues in the platform such as crashes and lack of response for remote

controller commands. We performed a second case study on smart phones, where we

were able to detect new faults as well. These faults lead to failures such as missing

contacts in contact list and lack of response for the stop call button.

To address RQ3, we introduced a product line testing approach and a tool called

Feature Oriented Model Adaptation Tool (FORMAT) for systematic reuse of test mod-

els for testing a large family of products. Hereby, we document variations among

tested systems explicitly and separately with a feature model. We map optional and

alternative features in the feature model to a set of states in the test model. Transi-

tion probabilities in the test model are updated according to the selected features so

that the generated test cases focus only on these features. This approach facilitates

the reuse of a test model for many systems. We performed a controlled experiment

with 10 participants to evaluate the effectiveness of our approach and tool. Results

show that the investment for SPLE pays off already if the test model is reused for 13

products.

This dissertation is organized as follows.

Chapter 2 provides background information on MBT, ET, RBT, and SPLE.

Chapter 3 focuses on extending test models for MBT by exploiting feedback

from ET. It introduces the ARME tool and its evaluation. This chapter is a revised
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version of the work described in [24, 25].

Chapter 4 introduces the three-step model refinement approach for applying

RBT and presents its evaluation. This chapter is a revised version of the work de-

scribed in [26, 27].

Chapter 5 explains the adopted SPLE approach and FORMAT to facilitate the

reuse of test models for a family of products. This chapter is a revised version of the

work described in [28].

Chapter 6 provides the conclusions. The evaluations, discussions, and related

work for the particular contributions are provided in the corresponding chapters.

Appendix A explains the industry-as-laboratory approach [1] and our experi-

ences in the application of this approach, which is proven to be highly effective for

industry-academia collaboration and technology transfer. This section is a revised

version of the work described in [25].

Appendix B provides details and results regarding an industrial case study that

we conducted to evaluate the impact of education and experience level on the effec-

tiveness of ET. This section is a revised version of the work described in [29].
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CHAPTER II

BACKGROUND

In this chapter, we provide background information regarding MBT, ET, RBT, and

SPLE.

2.1 Model-Based Testing

MBT relies on test models to automatically generate test cases [10, 11, 30]. This

technique involves processes and techniques for the automatic derivation of abstract

test cases from abstract models, the generation of concrete test cases from abstract

test cases, and execution of concrete test cases [9].

It has been employed in the industry for more than a decade to increase the

efficiency of the testing process and for improving the software quality [7]. It relies

on a model of the System Under Test (SUT) and/or its environment that is created

mainly by analyzing system requirements.

The content and the structure of the employed models can differ. Regarding

terminology, a distinction is made between system models and test models in the

literature [31, 32]. System models describe internal behavior of the system [31] and

they are used for system creation [32], whereas test models define the interaction of

the system with the user/environment [31] and they are used for test case descrip-

tion/generation [32]. From this perspective, models that we employ for MBT can be

considered as test models. These models define user-observable system behavior with

respect to a set of inputs and actions of the user. The test model is provided as an

input to MBT tool, which automatically generates a set of test cases by traversing

the possible behavioral scenarios on the model. Hereby, tool configuration parame-

ters may include the selected test case generation algorithm, coverage criteria, and
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the maximum number/length of test cases. Figure 1 provides a simplistic overview

of MBT.

A

B

C

D
E

A,E,B,A,E
A,E,B,C,D
C,D,E,B,A
...

Test Model Test Cases

Tool
Configuration
Parameters

MBT Tool

Figure 1: The overall MBT approach.

There are several types of formalisms that are used for expressing the test model.

These include Unified Modeling Language (UML) models [33], Finite State Automata

(FSA) [34], Event Sequence Graph (ESG) [35], state charts [36], Markov chains [18]

and Labeled Transition Systems (LTS) [37].

The use of UML models for MBT focuses in particular on the utilization of use

case diagrams, sequence diagrams, collaboration diagrams, and class diagrams [33].

Hereby, test scenarios are mainly specified by sequence and collaboration diagrams.

Use case diagrams are used for organizing these scenarios. There are one or more

sequence or collaboration diagrams for each use case. Class diagrams are used for

documenting the set of classes, methods, and attributes that are involved in the

scenarios.

FSA is a commonly utilized formalism for MBT, especially to represent state-

based behaviors of a system. Informally, it involves a set of inputs, a set of states,

and a transition function that maps pairs of inputs and states to next states. A

FSA model is scanned by a MBT tool for executable paths to generate test cases.

Each possible sequence of states defines an execution path that can be specified as

a test case. There exist several methods for generating such sequences including the
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Transition Tour (T) method [38], the Distinguishing Sequence (D) method [39] and

the Characterizing Set (W) method [34]. In this work, we did not focus on test case

generation; we focus on the refinement of test models instead. Test case generation

is performed by the employed MBT tool using two different algorithms. One of these

algorithms generates test cases in a stochastic manner. The other one satisfies full

transition coverage.

ESG [35, 40] constitutes a more abstract representation compared to FSA. Hereby,

inputs and states are represented together as events, each of which corresponds to

a user-observable action. Informally, ESG involves a set of events and a transition

function that maps events to next events.

State charts [36] are similar to FSA models, but they can be hierarchically com-

posed. In addition, states and transitions can be accompanied with boolean guards

and a set of actions.

A Markov chain is also basically a FSA, in which probabilities are defined for

state transitions [18]. The system may change its state from the current state to

another state, or remain in the same state, according to a probability distribution. In

our approach, we employ a form of extended Markov chains to represent test models

(See Section 3.1.1). We exploit state transition probabilities to focus the scope of the

generated test cases.

LTS models also comprise a set of states and transitions between different pairs of

these states. In addition, they include a countable set of input labels and a countable

set of output labels [37]. These two sets are disjoint. Each transition can be annotated

with input and output labels. These labels are used for synchronization [37] and

modeling the input/output behavior of reactive systems.

MBT approaches were previously categorized with a taxonomy [9]. In the follow-

ing, we position the MBT approach adopted in this work according to this taxonomy.
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Our model specification scope is input-output. We employ two different types of mod-

els. The first one is untimed, deterministic, and discrete. The second one is untimed,

stochastic, and discrete. We employ two different test case generation algorithms.

The first one uses structural model coverage as test selection criterion. The second

algorithm is random & stochastic. Test execution is offline. Concrete test steps are

embedded in the test models in the form of test scripts. Hence, we directly generate

concrete test cases from the model that can be executed on the system, rather than

generating abstract test cases first.

Intended benefits of MBT was previously listed [41] as:

• Explicit specification, modeling, and review of system behavior, which helps in

the detection of inconsistencies and faults in requirement specifications [42].

• Use of test models as a means of documentation [43], which enhances commu-

nication between developers and testers.

• Automated generation of test cases, while being able to measure and optimize

test coverage.

• Use of test models for evaluation and selection of regression test suites.

• Improved maintainability due to the easier management of requirements changes

at the model level.

• Increased test quality through model-based quality analysis.
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• Lowered costs by shortening test cycles [44].

We observed all these benefits during our studies. In particular, the first and the

last benefits were the main driving forces leading to an increased adoption of MBT

in the company, where we performed the case studies.

In terms of industrial applications, MBT has been mainly utilized for mission-

critical and/or safety-critical systems [13]. For these systems, any failure that can pose

a threat to the mission or cause harm to people and environment must be prevented.

In that context, the additional cost due to the required hardware/software and human

resources is a minor issue. In our work, we focus on the consumer electronics domain,

in particular, DTV systems. For these systems, which are supposedly not subject to

catastrophic failures, the cost, time-to-market and the perception of the user become

the primary concerns, instead. These systems are very cost-sensitive and failures that

are not directly perceived by the user can be accepted to some extent, whereas failures

that can be directly observed by the user require a special attention. On the other

hand, resources are restricted and faults must be detected in a very limited amount

of time.

2.2 Exploratory Testing

ET [45, 46] is characterized by a continuous learning and adaptation process, where

the tester iteratively learns about the product and its failures, plans the testing ac-

tivities, designs, and executes the tests, and reports the results [14]. As the main

difference from traditional software testing, ET is not based on a set of predesigned

test cases. Instead, testers use their creativity and experiences to steer the process

dynamically. Test design, execution and learning are all concurrent activities in ET,

which aims at using human effort efficiently by utilizing human intuition and experi-

ence such as domain knowledge, system knowledge or software engineering knowledge.
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There exist various definitions of ET [47, 48, 49]. Bach briefly defines ET as simulta-

neous learning, test design and test execution [47].

There are no formal descriptions or detailed methodologies defined for ET yet.

Neither there exist strictly described procedures that should be followed by testers

during test execution. That is why, ET has been mainly considered to be an ad-hoc

approach. Nevertheless, it is one of the mostly applied and one of the most successful

approaches [50], also based on our observations in the industry1. ET activities are

performed manually and their success depends on the experience and skills of test

engineers. Therefore, observations regarding ET cannot be generalized and ET cannot

be considered as an alternative for formal and automated techniques such as MBT.

However, it was previously showed that ET can be highly effective in practice to

detect critical faults [51]. Hence, it can be considered as a promising complementary

approach for other testing techniques. This fact also provided the motivation for the

first problem addressed in our work (See Chapter 3).

We also reported a case study on ET that is performed in an industrial context.

The goal of the study was to evaluate the impact of educational background and

experience of testers on the effectiveness of ET. 19 practitioners, who have different

education and experience levels, were involved in applying ET for testing a DTV

system. The details of this case study is provided in Appendix B.

2.3 Risk-Based Testing

RBT is a testing approach which uses risk evaluations to help on optimizing the

testing efforts [22]. With RBT, most important features are focused within limited

time by considering the highest priority tests [52].

The main role of RBT is to reduce testing time without affecting the quality of

the product. In RBT, critical requirements are evaluated before the creation of test

1We discuss our observations based on the industrial case studies in Chapter 3 and Appendix B.
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cases. The generated test cases are supposed to increase test efficiency by focusing

the critical paths.

RBT can involve test prioritization and test selection activities [53]. Test selection

is performed to select a subset of the test cases to be executed. On the other hand,

test prioritization is performed to change the execution order of the selected test

cases. The selection and ordering of test cases should be optimized because of lack

of time and cost during test activities [53]. Test case selection is especially useful for

regression tests for identifying the test cases that are relevant to some set of recent

changes. For example, a design-based approach for test selection [54] is previously

proposed for RBT.

RBT can be used as complementary for other testing approaches. In our studies

we combined RBT and MBT. We incorporated information regarding failure risks as

part of test models. This information is used for steering test case generation to focus

on critical paths.

2.4 Software Product Line Engineering

SPLE [55] is a commonly used approach for managing commonalities and variabilities

in a product family. This approach facilitates systematic reuse of software develop-

ment artifacts, including test artifacts [21]. A key property of this approach is the

explicit management of variability among these artifacts. There have been various

types of models introduced for modeling variability such Orthogonal Variability Model

(OVM) [55] and feature model [56, 57]. In our studies, we used feature models to

document variability among products.

Feature models are created by using a standard notation to show mandatory

and optional features regarding a product and inter-dependencies among these fea-

tures [56]. Selection of various features on the model brings various feature combi-

nations. Each combination is considered as valid product that can be derived from a
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product family.

Feature models have a tree structure, with features forming nodes of the tree.

Feature variability is represented by the arcs and groupings of features. In Fig-

ure 2, Hybrid Broadcast Broadband TV (HBBTV), Digital Live Networking Alliance

(DLNA), FOLLOW TV, SMART TV, PORTAL MODE, WIRELESS DISPLAY, and

INTERNET LOCK features are the base features. Each feature may have more than

one child feature. The relation between a parent feature and its child feature can

be: mandatory, optional, inclusive-or, and exclusive-or [58]. These reation types are

defied as follows:

mandatory: These features have to be selected when their parent is selected.

(e.g., SMART TV ).

optional: These features may be selected if their parent is selected. (e.g.,

HBBTV, DLNA, FOLLOW TV, PORTAL MODE, WIRELESS DISPLAY, and

INTERNET LOCK ).

inclusive-or: At least one feature of this group needs to be selected if their

parent is selected. (e.g., Digital Media Renderer (DMR) and Mirror).

exclusive-or: Exactly one feature of this group needs to be selected if their

parent is selected.(e.g., Vestel, Toshiba, and Foxum).

MBT by itself is helpful in managing variability. Variations can be better man-

aged at the abstraction level of test models rather than test scripts and check-lists.

However, the use of MBT falls short to address systematic variability for large scale

product families. These families are subject to a high number of variations that cross-

cut test models that might be developed for various products [19, 20]. MBT process

and test models must be flexible to systematically manage variability and increase

the amount of reuse for testing artifacts. SPLE is required for facilitating such a
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Figure 2: A sample feature model for DTV systems.

systematic and scalable reuse [21, 59].

In the following chapters, we explain our studies in detail and discuss the results.
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CHAPTER III

FEEDBACK-DRIVEN MODEL BASED TESTING

In this chapter, we introduce an approach and a toolset, ARME1 for automatically

refining test models based on recorded activities of test engineers.

ARME analyzes the execution traces that are recorded during ET activities. These

traces are compared with respect to the possible execution paths in test models to

identify omissions. Then, these models are automatically extended to incorporate

any omitted system behavior. The models are used for (re)generating test cases that

cover the extended parts of these models as well. The recorded traces are also used for

updating model parameters. Test models are represented as Markov chains [18], in

which transition probabilities are defined for switching among system states. These

probability values are updated according to the frequency of visits to system states

during ET activities. As a result, the generated test cases focus on the most frequently

visited system states. Model refinement continues in an iterative manner as long as

ET activities continue.

In all of these case studies, several critical faults were detected after generating

test cases based on the refined models. These faults were not detected by the initial

set of test cases. They were also missed during the exploratory testing activities.

The chapter is organized as follows. In the following section we present the overall

process and methods. The evaluation of the approach is discussed in Section 3.2 in

the context of 3 industrial case studies. We conclude the chapter after Section 3.3,

where we position our approach with respect to related work.

1https://github.com/csgebizli/ARMETool
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3.1 Overall Approach

The overall approach is depicted in Figure 3. It consists of an iteration cycle among

3 basic processes: Exploratory Testing, Model Refinement, and Model-Based Testing.

The iteration starts with an initial model developed for MBT. This model is

created based on requirements specifications, independent of the ET activities. MBT

is followed by ET. We do not interfere with the ET activities, where a test engineer

interacts with the system. A built-in tool logs the sequences of events within the SUT

throughout ET.

The collected event sequences are provided as input for the Model Refinement

process, which is performed by the ARME toolset. ARME updates the existing test

model that is used for MBT in the previous iteration cycle. The model involves states

and transitions that represent possible user actions. Transitions represent possible

user actions. On the other hand, execution traces are collected as a sequence of

low level events (function calls) that take place in the SUT. Hence, ARME takes a

third input, namely the event mapping specification, which defines a mapping between

the abstract states in the model and the events taking part in the collected traces.

This mapping is specified in the form of regular expressions. ARME analyzes the

execution traces based on the provided mapping and compares them with respect

to the possible execution paths in the model of the SUT. Then, the test model is

automatically extended to incorporate any omitted system behavior. In the mean

time, state transition probabilities are also updated according to the frequency of

visited states calculated based on the collected event sequences.

After Model Refinement, the Model-Based Testing process is repeated. The up-

dated test model is provided to the MBT tool for re-generating test cases. These

test cases are executed on the SUT. This iteration cycle can be repeated as long as

ET activities continue and new execution traces are obtained. Hence, the number of

cycles depends on the reserved test budget and available resources.
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Figure 3: The overall approach.

In the following, we explain our modeling and event mapping approach first. Then,

we describe the two types of refinements performed by ARME i) adding missing states

and transitions to test models, and ii) updating state transition probability values.

3.1.1 Modeling Approach and Event Mapping

In this work, we are focusing on event-based, reactive systems in particular. This is

mostly the case with MBT approaches in general [30]. In our case, we totally ignore

input (value) dependent faults; inputs are basically abstracted away as a sequence of

remote controller key press events for a TV system. In principle, our overall approach

is agnostic to the type of tool and formalism that is used for creating test models for

such a system. In fact, we previously applied our approach on test models that are

expressed in ESG formalism as well [24]. However, the application of the approach

was manual. In this work, we used MaTeLo2 as the MBT tool. The ARME tool set

2http://www.all4tec.net
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is compatible with this tool for automated model refinement. The first reason for

employing MaTeLo is to comply with the tools used for industrial case studies. The

second reason is that this tool supports the use of Markov chain formalism. Markov

chains provided us the ability to perform test case generation in a random-stochastic

manner by utilizing transition probabilities. Otherwise, there is no particular reason

for choosing this formalism or MaTeLo as the MBT tool. These were already employed

by the software test department within the company. All the models that we used

for case studies were also already developed with MaTeLo.

In fact, we do not use standard Markov chains but so called Extended Markov

chains [60] that are developed with and utilized by the MaTeLo tool. In this formal-

ism, transitions can be labeled with input and output vectors. Hereby, inputs and

outputs are observable actions exchanged with the system and they are described

with typed variables. Multiple input vectors can be associated with a transition.

Each of these input vectors is associated with a probability value such that the sum

of these probability values is equal to the transition probability. As such, this mod-

eling formalism includes two levels of probabilities; i) the probability to select the

transition and ii) the probability to select an input vector given that the transition

occurs [60]. In our modeling approach, we defined only a single input vector for

each transition. This vector includes the sequence of events (i.e., remote controller

key presses) necessary to perform the corresponding transition. The sum of all the

probability values for all outgoing transitions of a state has to be equal to 1. If there is

only one outgoing transition for a state, then the probability value for that transition

is 1 by default.

A sample test model is depicted in Figure 4. The legend provided for this figure

is also valid for other test models presented in the rest of the dissertation. Hereby,

we can distinguish a start state and a terminal state on the top and the bottom of

the figure, respectively. Test models have an hierarchical structure and this one is
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Figure 4: A sample top-level model.

a top level model. States Channel List, Installation, Browser, and Record include

sub-models corresponding to these states. Each sub-model includes a set of states

and transitions just like the top level model. There can also be other sub-sub-models

under the sub-models depending on the depth of the hierarchy.

During the ET activities, Execution Trace Logger collects execution traces in the

form of sequences of function calls. For a DTV, for instance, these function calls

usually correspond to the calls that are triggered when the user presses a key on the

remote controller. On the other hand, test models include states and transitions that

are represented at a higher level of abstraction. Sequences of events trigger transitions

and they are specified as inputs for the corresponding transitions. In our approach, a

sequence of events that are specified as input for a transition is mapped to the target

state of that transition. As such, an event mapping specification is created manually

to map a sequence of low-level events to states in the model. The relevant sequences

of low-level events are defined in the form of regular expressions.

There are three basic assumptions regarding the event mapping specification.

First, we assume that this specification is correct and complete. It maps each state

of the model to a sequence of events (function calls).
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Second, we assume that sequences of events that map to states are disjoint. That

is, a sequence that is mapped to a state cannot be a sub-sequence taking place in

another mapping. In fact, all sequences start with a different event in our case. This

makes it scalable to check if a sequence matches to a mapping definition.

Third, we assume that a whole sequence of events that cannot be mapped refers to

a new (omitted) state. It might be the case that such sequences represent more than

one state. However, it is not possible to decompose such unrecognized sequences

of events to multiple states without the domain knowledge. A domain expert can

possibly control new states added by the tool and modify/decompose them manually,

if deemed necessary.

3.1.2 Extending Test Models

In this sub-section, we describe the model extension procedure in detail. The proce-

dure is outlined in Algorithm 1, which takes different cases into account. We explain

the conditions and refinement operations for each of these cases. We also illustrate

these cases based on the sample model that was provided in Figure 4. Note that

Algorithm 1 refers to a single model refinement step that is iteratively executed as

part of the overall approach.

As a running example for describing the model refinement on sample model in

Figure 4, consider an event mapping specification listed in Listing 3.1. Assume that

a sequence of events is recorded during ET as: “..., a, b, x, y, c, d, ...”, “..., e, f, c,

d, ...”, “..., h, l, i, ...”, “..., kl, lm, n, pr, ...” where “x” and “y” are not defined in

the specification.

The refined model with sample extensions regarding the different cases is depicted

in Figure 5. We refer to the corresponding parts of this model, while explaining

different cases considered by the algorithm.
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Listing 3.1: An example event mapping specification.

1 // <Event Sequence >: <States >

2 <a><b> : Navigation;

3 <c><d> : Mute;

4 <e><f> : Source;

5 ...

6 <h><l> : Playing Record under "Record ";

7 <i> : Youtube under "Browser ";

8 ...

9 <kl><lm> : Antenna Settings under "Installation ";

10 <n><pr> : Advanced Channel List under "Ch. List"

11 ...

12 //

Figure 5: Sample model view after refinements.

The procedure (Algorithm 1) has one main loop (Line 4-35). In this loop, the

recorded event sequence is consumed until the end and transitions from one state

(SP ) to another (SF ) is traced on the model one at a time. SP is initialized as the

start state before the loop (Line 3). In each step, the next sequence of events is

mapped to SF (Line 5). If such a state can be mapped, and if there is a transition

defined between SP and SF , then SF becomes the new SP (Line 34) and the process
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Algorithm 1 Model Extension Procedure

1: Input: event sequence, test models
2: procedure ExtendModel
3: SP ← start-state
4: while sequence is not consumed do
5: SF ← get next mapped state
6: if SF is not defined then
7: create event sequence E
8: while SF is not defined do
9: e← skipped event from sequence

10: append e to E
11: SF ← get next mapped state
12: end while
13: create new state SN

14: define mapping SN : E
15: define transitions SP to SN and SN to SF

16: else
17: if transition is not defined from SP to SF then
18: if SP and SF are in the same model then
19: S1 ← SP

20: S2 ← SF

21: else
22: S1 ← upper level state of SP

23: S2 ← upper level state of SF

24: end if
25: if direct transition between S1 and S2 is not allowed then
26: SPre ← common predecessor state for S1and S2

27: SSuc ← common successor state for S1and S2

28: define transition SSuc to SPre

29: else
30: define transition S1 to S2

31: end if
32: end if
33: end if
34: SP ← SF

35: end while
36: end procedure
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continues with the next sequence of events. A model extension is considered for the

following cases.

1. If an event sequence cannot be mapped to a state after SP , a state is deemed

missing in the model (Lines 6-16). This state should take place between SP

and the next state SF that can be mapped in the event sequence. In this case,

a new event sequence, E is created first (Line 7). Events are skipped one by

one (Line 9) as long as the remaining sequence cannot be mapped to a state

(Line 8). In the mean time, E is appended with all the skipped events (Line

10). Once SF is found, a new state, SN is defined and a new mapping is added

for this state to be associated with the event sequence E (Line 14). Then, two

new transitions are defined from SP to SN and from SN to SF (Line 15).

Based on the running example, ARME recognizes that “x” and “y” are not

defined, so it builds a regular expression from these traces and maps them to a

state called “newly added (1)” and connects the transitions to this new state to

complete the model. This case is illustrated with the set of extensions marked

with orange color and labeled as newly added (1) in Figure 5.

2. If SF is mapped (Line 16) but there exists no transition from SP to SF (Line

17), then a transition is missing. We consider two sub-cases for this case:

(a) If SP and SF are part of the same model, then we can directly add a tran-

sition from SP to SF . As such, they are recorded as S1 and S2, respectively

(Lines 19-20).

Based on the running example, there is a path from states Source to Mute,

so ARME adds a new transition (newly added (2.a)) between these states.

This case is illustrated with the extension marked with orange color and

labeled as newly added (2.a) in Figure 5.
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(b) If not, we find their upper-level states. A state SU is an upper-level state

of S if SU is associated with a sub-model and S takes place in that sub-

model. If a state S takes place in the top-level model, then the upper-level

state of S is itself. Let’s say the top level model includes states A and B

such that SP takes place in the sub-model of A and SF takes place in the

sub-model of B. We cannot directly add a transition from SP to SF in

this case. They reside in two different sub-models. Instead, we can add a

transition from state A to B, which are defined as part of the same model

(i.e., the top level model). As such, states A and B are recorded as S1 and

S2, respectively (Lines 22-23).

Based on the running example, ARME recognizes the execution traces “...,

hl, i, ...” which are mapped to two states: Playing Record and Youtube.

Since these states are not part of the models at the same level, it cannot

directly add a transition between them. Therefore, it finds their upper-

level states; Record is upper level state of Playing Record and Browser is

upper level state of Youtube. Then it adds a new transition (newly added

(2.b)) from Record to Browser. This case is illustrated with the extension

marked with orange color and labeled as newly added (2.b) in Figure 5.

3. It might not be possible to make a direct transition from S1 and S2 for the 2.b

case above. In this case (Line 25), we create a cycle by adding a transition from

the common successor back to the common predecessor of these states (Line

28). Then, it becomes possible to first visit S1, then follow the cycle to visit the

common predecessor of S1 and S2 again, and then visit S2.

Based on the running example, ARME recognizes execution traces “..., kl, lm,

lm, m, n, pr, ... ”, which are mapped to two states: Antenna Settings and

Advanced Channel List. These states are not at the same level. Therefore it
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finds their upper-level states. A direct transition between these states are not

allowed. So, ARME adds a new transition (newly added (3)) from the common

successor back to the common predecessor. This case is illustrated with the

extension marked with orange color and labeled as newly added (3) in Figure 5.

We directly add a transition from S1 and S2 as determined in the second case

(2.a or 2.b) if this constraint does not apply (Line 30).

Items 1 and 2 above are generic, whereas item 3 is related to a (possible) constraint

regarding the application domain. A direct transition might not be allowed among a

group of states due to a domain-specific or application-specific constraint. In our case

studies, for instance, we employed test models that are designed for DTV systems.

These models are designed such that direct transitions among the sub-menu items

are not possible. The user has to go back to the main menu first. This can happen

automatically after a timeout period; as such, this change might not be visible in

the sequence of user events. There exists a timeout state for each menu group and

one should go through this state and the state that represents the main menu before

switching to another menu. If such constraints exist, one must explicitly specify (tag)

groups of states, among which there can be no direct transitions. In our case, we can

automatically identify and tag states that represent TV sub-menu items since they

follow a pattern: a group of states represent sub-menu items if these states have in-

degree and out-degree values equal to 1, if they have the same predecessor and if they

have the same successor, which is not the terminal node. In the running example, for

instance, the upper-level states of Antenna Settings and Advanced Channel List have

in-degree and out-degree values equal to 1. They have also the same predecessor and

the same successor, which is not the terminal state.

In the following sub-section, we describe refinements that are performed regarding

state transition probability values in the model.
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3.1.3 Updating State Transition Probability Values

In our approach, we not only extend models for missing paths, but we also refine

probability values according to the usage profiles collected during ET. These profiles

do not reflect real user behavior; however, they have helped us to cover error prone

scenarios. We assume that ET activities focus on such scenarios. The numbers of

visits to different system states are counted for subsequent iterations of ET activities.

For each iteration i, a probability value, Pcalc(t)
i is calculated for each transition t,

according to Equation 1.

Pcalc(t)
i =

# of visits for target(t)∑
∀t′,source(t)=source(t

′
)
# of visits for target(t′)

(1)

Hereby, the number of visits to the target state of the transition is calculated as

the nominator. The denominator is calculated as the sum of the numbers of visits for

all the alternative transitions. These are the transitions, which have the same source

states as t. The calculated Pcalc(t)
i values in each iteration are not directly assigned

as the probability values on transitions. Instead, they are reflected to the calculations

in subsequent iterations according to Equation 2.

P (t)i =


1

# of alternative transitions
i = 0∣∣∣P (t)i−1 − P (t)i−1−Pcalc(t)

i−1

k

∣∣∣ i ≥ 1

(2)

Initially, default probability values are assigned by the MaTeLo tool for the first

iteration. Let’s assume for a state s that there exist n outgoing transitions to n differ-

ent states. Then, for each of these transitions, the probability value is calculated as

P (t) = 1/n when i = 0. In subsequent iterations, this value is updated according to

the Pcalc(t) calculated in the previous iteration. Hereby, k is a coefficient (k > 0) that

allows us to adjust the weight of the Pcalc(t) value on calculating P (t). If k = 1, the
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calculation of P (t) does not depend on the previous P (t) value but is completely de-

termined by Pcalc(t) that is calculated in the previous iteration. Previously calculated

P (t) value has more influence on the calculation as k increases.

In our case studies, we fixed the value of k as 2.

We also proposed another approach about updating the state transition probabil-

ities. The details about that study is in Chapter 4.

In the following section, we explain these studies with research questions and we

will present the experimental setups.

3.2 Industrial Case Study

In this section, we introduce three industrial case studies for the application of our

approach to DTV systems developed by Vestel. There are hundreds of test suites

being used for testing these systems. Some of these test suites are manually created.

Some others are automatically generated by employing MBT. Many models have been

created for this purpose. They are represented as extended Markov chains, some of

which include thousands of states and transitions. MaTeLo is used for model creation

and test case generation. All the test cases are automatically executed with VesTA

(See Chapter 1). In parallel, manual exploratory tests are performed by experienced

test engineers.

We performed case studies with 3 different models. The same software version was

used throughout the studies and no faults were fixed to keep the results consistent.

The first model is related to the channel installation, named as Digital Video Broad-

casting - Terrestrial Channel Installation (DVB-TCI). The second one is for testing

the Media Browser (MB) module, which allows the users to open video, music, or

picture files on TV via external devices. The third one is created for Random Torture

Test (RTT). RTT is actually stress testing, which aims at discovering how the sys-

tem behaves under sustained use. The term torture is adopted within the company
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instead of stress testing and it was reflected to the naming of test models. The RTT

test model involves the use of several features that are expected to be mostly used by

the end users.

3.2.1 Research Questions

Our goal is to refine test models iteratively and to be able to generate more effective

test cases/steps by using the refined models for detecting more faults. As such, we

defined the following 4 research questions:

RQ1: To what extent models are refined by ARME in terms of updated or

newly added states and transitions?

RQ2: To what extent successive iterations of the approach contribute to finding

new faults?

RQ3: To what extent ARME contributes to finding new faults compared to

MBT and ET?

RQ4: How does ARME affect test suite size in terms of the number of test

steps?

In the following, we explain the experimental setup we used for evaluation. Then,

we present and discuss the obtained results for addressing the research questions. We

also illustrate steps of our approach using the case studies as a running example.

3.2.2 Experimental Setup

Test Models: We used 3 different test models that were previously created for

DVB-TCI, MB, and RTT based on requirement specifications documents. All the

3 models were already being used in production. They were developed by the soft-

ware test department within the company prior to our studies. We learned that the

test models regarding DVB-TCI and MB were developed by manually analyzing the
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corresponding requirements specification documents. In addition, usage profiles that

are collected from real users were analyzed for the development of the RTT model.

Mostly used DTV features were identified from these profiles and the model was de-

veloped to define the behavior just for these features. Figure 6 depicts the top level

RTT model.

Figure 6: A snapshot of the initial test model for RTT.

Mapping Specifications: We created a mapping specification for each of the test

models. As an example, Listing 3.2 shows a part of the mapping specification created

for the MB model3. Hereby, each state is represented by a regular expression. For

instance, we can see at Line 5 of Listing 3.2 that a function call named p, followed

by zero or more function calls named v maps to the state Playing Video. These

expressions are defined manually to map a sequence of low-level events to states in

the model. There is usually a specific function call that handles a remote controller

command. For this reason, a single function call is mapped to a state in most cases.

3Due to confidentiality, we do not disclose the real function names used in the implementation.
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Listing 3.2: Part of the event mapping specification for the MB model.

1 // <Event Sequence > : <States >

2 <mansr ><f>*<snd > : Tune to DVB -S channel;

3 <mb><mn > : MB menu;

4 <v><mn> : Video option of MB menu;

5 <p><v>* : Playing Video;

6 <sub > : Press Subtitle;

7 //

Test Case Generation: Based on the developed models, test cases are generated

automatically with two different test case generation algorithms that are provided

by the MaTeLo tool. For the first two case studies, test models were designed to

cover all the features as documented in requirement specifications. We employed the

so called Minimum Arc Coverage algorithm [61]. This algorithm is also known as

Chinese Postman [61]. We used this algorithm with default parameters, in which the

coverage criterion is basically transition coverage. Test case generation stops when

all the transitions in the model are visited at least once.

For the third case study, where updated transition probability values are utilized,

test models were designed for stress testing. Hereby, the goal was not to cover all

the features; on the contrary, testers were focusing on a set of specific features, while

ignoring some other features. Hence, we exploited execution traces to obtain a usage

profile and refine transition probabilities accordingly. We employed the so called

User Oriented algorithm [61] to generate test cases based on these refinements. This

algorithm has two parameters: i) the maximum number of test steps within a test

case and ii) the maximum number of test cases. We set the maximum number of test

steps to 5000 (a limit that we never reached). We set the maximum number of test

cases to 1. As a result, this algorithm starts from the start state and traverses the

model by choosing a transition at each state non-deterministically based on transition
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probabilities. It does not guarantee transition coverage. It generates test cases by

using the probability values annotated on the transitions of the model. If a probability

value of a transition which is going out of a state is higher than other transitions going

out of the same state, then the algorithm will chose that transition stochastically. The

algorithm terminates when the final state is reached. The generated test cases for all

the 3 case studies are used in production.

ET Activities: ET activities are performed by three test engineers by focusing on

the features in the scope of these case studies. The number of engineers and test

durations were not deliberate choices made by us. ET activities were already being

performed regularly in the company. We just collected data without interfering with

the process. During the ET activities, all the execution traces are logged. We asked

test engineers to save the records that were logged during tests. We also asked them

to record each failure they found.

Faults Found by Test Cases Generated from the Initial Test Models and

Faults Discovered during the Initial ET Activities: For the DVB-TCI case,

with the initial model, 22 test cases were generated, which include 261 test steps in

total. After executing the generated test cases, 3 faults were found. During the ET

activities, in total 5 faults were found including the 3 faults which were found with

the test cases from the initial model.

For the MB case, with the initial model, 107 test cases were generated, which

include 809 test steps in total. After executing these test cases, 36 faults were found.

During the ET activities, in total 44 faults were found including the 36 faults which

were found with the test cases from the initial model.

For the RTT case, with the initial model, 1 test case was generated which includes

950 test steps in total. After executing the test case, 1 fault was found. During the

ET activities, in total 2 faults were found including the 1 fault which was found with
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the test case from the initial model.

These results show that ET activities are highly effective in detecting faults. In

all the case studies, ET found all the faults revealed by MBT. Besides, test engineers

found some additional faults which had not been found with MBT before. These

results support the motivation for our approach.

In the following section, we show that these results can be further improved by

refining existing test models with ARME based on ET. We can detect further new

faults, which were missed by both ET and MBT before refinements of ARME.

3.2.3 Results and Discussions

In this section, we evaluate the results obtained for the 3 different case studies and

discuss our experiences from the perspective of the 4 research questions.

Refinement of Models by ARME (RQ1) ARME has introduced many exten-

sions to test models based on the collected execution traces during ET activities.

For instance, Figure 7 depicts the top level DVB-TCI model previously created with

the MaTeLo tool. The original model did not consider the fact that after going into

one of the sub-menu items, the user can go back to the main menu directly. There

was no such a transition defined. ARME added this missing transition to the model.

The corresponding transition introduced by ARME is marked by painting it in orange

color. For this model, there was a missing transition between the states of two differ-

ent sub-models. These sub-models were representing sub-menu alternative options.

Therefore, a direct transition between them was not allowed. As a result, a transition

was added from the common successor state back to the common predecessor state

in the top level model.

For the MB model, ARME added several new states and transitions. Some of the

refined models are depicted in Figure 8, Figure 9, and Figure 10, where modifications

are marked with orange color. The first two rows of Table 1 show the overall updates
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Figure 7: The refined top level DVB-TCI model.

performed on test models after all the refinement iterations for the DVB-TCI and MB

case studies. For the DVB-TCI case study, the number of added states is 3 and the

number of added transitions is 6. For the MB case study, the number of added states

is 15 and the number of added transitions is 23. We did not update the transition

probabilities for these two case studies. On the other hand, we can see that there

are no new states or transitions added to the test models for the RTT case study.

However, all the transition probabilities in the top level model are updated.

Figure 8: The refined Enter/Exit MB top level model.
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Figure 9: The refined Playing Audio sub-model.

# of # of # of

Case Study Added Added Updated

States Trans. Trans.

1. DVB-TCI 3 6 0

2. MB 15 23 0

3. RTT 0 0 11

Table 1: Refinement of test models throughout iterations.

Updates of probability values on state transitions are performed iteratively as

explained in Section 3.1.3. For instance, Table 2 shows the updates performed on

the top level RTT model after the first iteration. Hereby, the first column lists the

alternative state transitions from the start state. The second column shows the initial

probability values before the update. They are all equal to each other by default. The

third column lists the number of visits to the corresponding states during manual

testing activities. The fourth column shows the calculated probability values (i.e.,

Pcalc) according to the number of visits. Finally, the last column lists the updated

probability values calculated based on Equation 2. Hereby, the states that are listed

in the first column are those states that are directly reachable from the start state in

the top level model. Hence, the updated probability values as listed in the last column

are assigned to transitions, where the source of the transition is the start state and
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Figure 10: The refined Playing Video sub-model.

the target of the transition is the state that is listed in the first column of the same

row. These values are re-calculated and replaced throughout iterations. The number

of iteration cycles depends on the reserved test budget and available resources. In

our case studies, we did not have any control over these. We repeated the cycle until

new faults are not detected by model refinement. That is, we used the absence of

new faults as the stopping criterion.

New Faults Detected by ARME in Successive Iterations of Model Refine-

ment (RQ2) To address RQ2, for each case study, we first recall the initial results

that were obtained before any model refinement was performed. Then, we list the

results obtained after each successive iteration of model refinement performed by

ARME.

For the DVB-TCI case, 22 test cases were generated from the initial model which

was created based on requirement specifications. After executing these test cases, 3

faults were found. Independent from this, ET activities were performed on DVB-TCI,

and 5 faults were found. These 5 faults include the 3 faults which were found with the
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State-Module Init. Prob. # of Visits Calculated Prob. Updated Prob.

EPG 0.091 7 0.093 0.092

Portal 0.091 4 0.053 0.072

Youtube 0.091 12 0.16 0.125

HBBTV 0.091 0 0 0.045

Media Browser 0.091 3 0.04 0.066

PVR 0.091 6 0.08 0.086

HDMI 0.091 1 0.013 0.052

SCART 0.091 3 0.04 0.066

Teletext 0.091 2 0.026 0.059

Edit Channel List 0.091 3 0.04 0.066

Navigation 0.091 34 0.45 0.27

Table 2: Calculated probability values for the RTT case study.

test cases generated from the initial model before. That is, 2 new faults were found

with ET activities. Then we refined the initial model by taking the execution traces

from ET activities. We regenerated the test cases from the refined model and we

executed this new set of test cases. This time, 8 faults were found in total. 5 of them

were found before. However, 3 new faults were found. These faults have not been

found before either with MBT using the initial model or with ET activities. Moreover,

these 3 faults were highly critical; one of them caused the DTV to reset itself after

a channel search was performed; another one was the reason for duplicate channels

added at the end of channel search; the activation of the third fault resulted in a

crash of the system. We continued to take execution traces from new ET activities

that focused on the DVB-TCI feature. Each time, we refined test models with ARME

based on new traces obtained. Then, we applied MBT based on the refined model.

We performed these steps iteratively until there was no new fault detected. The

results of the DVB-TCI case study are summarized in Table 3. The first row lists the

initial results obtained with the original model. The following rows show the results

after successive iterations. We can see that new faults were discovered after every
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# of New # of New

# of # of # of Total # of Faults Faults Total

Model States Trans. Test Cases Test Steps Detected Detected # of

by ET by ARME Faults

Initial 85 106 22 261 - - 3

Iter. 1 86 109 1 252 2 3 8

Iter. 2 86 110 1 265 1 1 10

Iter. 3 88 112 1 267 0 1 11

Iter. 4 88 112 1 267 0 0 11

Table 3: Properties of the DVB-TCI model and the number of faults found throughout
successive iterations of model refinement.

iteration of model refinement. We can also notice that the number of test cases was

decreased to 1 after the first iteration. This is due to the loop introduced by ARME

(See Figure 7), which makes it possible to cover many execution paths in a single test

case.

Initially, 107 test cases were generated for the MB case, which include 809 test

steps in total. After executing the generated test cases, 36 faults were found. However,

8 more faults were discovered during the ET activities. After the refinement of the

test models based on these activities, 853 test steps were generated. 48 faults were

found when these test cases were executed. 36 of these faults had been already

detected before with the initial model. 12 new faults were discovered, 8 of which had

been discovered during the ET activities. 4 of the new faults had not been detected

before neither with the initial model nor with the ET activities. These 4 faults

were highly critical as well; the first one made the audio/video output disappear;

the second one corrupted remote controller key buffers; the third one made user

commands undetectable; the last one caused the TV to reset itself. These faults

were detected after the first model refinement only. Overall results of this study

are summarized in Table 4. The first row lists the initial results obtained with the

original model. The remaining rows list the results obtained after successive iterations

of model refinement. We can see that new faults were discovered after every iteration

41



# of New # of New

# of # of # of Total # of Faults Faults Total

Model States Trans. Test Cases Test Steps Detected Detected # of

by ET by ARME Faults

Initial 171 298 107 809 - - 36

Iter. 1 181 314 113 853 8 4 48

Iter. 2 183 316 113 861 1 2 51

Iter. 3 186 321 115 873 0 1 52

Iter. 4 186 321 115 873 0 0 52

Table 4: Properties of the MB model and the number of faults found throughout
successive iterations of model refinement.

of model refinement. We can also observe that the number of test cases increases by

6 after the first iteration. However, 12 new faults were discovered. This is because,

more than one fault can be found with one test case.

For the RTT case, initially, 1 test case which includes 950 test steps was generated.

After executing the generated test case, 1 fault was found. However, 1 more fault

was discovered during the ET activities. After the first model refinement based on

these activities, 940 test steps were generated. 4 faults were found when the new

test case was executed. 1 of these faults had been already detected before with the

initial model. 3 new faults were discovered, one of which had been discovered during

the ET activities. 2 of the new faults had not been detected before neither with the

first model nor with the ET activities. These 2 faults were highly critical as well; the

first one caused a crash of an application; the second one corrupted remote controller

key buffers after HBBTV4 operation. We can see these results in the second row of

Table 5 (Iteration 1). In Table 5, we can also see the results obtained with the initial

model in the first row (Initial) and results that are obtained after successive model

refinements. These refinements are continued until the fifth iteration after which no

new faults were detected. We can see that new faults were discovered after each

4HBBTV (http://www.hbbtv.org/). It is an initiative for harmonizing the broadcast/broadband
delivery of entertainment services for TVs and set-top boxes.
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# of New # of New

# of # of # of Total # of Faults Faults Total

Model States Trans. Test Cases Test Steps Detected Detected # of

by ET by ARME Faults

Initial 87 116 1 950 - - 1

Iter. 1 87 116 1 940 1 2 4

Iter. 2 87 116 1 929 1 2 7

Iter. 3 87 116 1 923 0 1 8

Iter. 4 87 116 1 936 0 1 9

Iter. 5 87 116 1 927 0 0 9

Table 5: Properties of the RTT model and the number of faults found throughout
successive iterations of model refinement.

of the first four iterations of model refinement. Note that the number of test steps

decreases while the number of test cases remains same. At the same time, the number

of detected faults increases. This is because, at each iteration, test case generation

focuses on different execution paths according to the updated probability values on

state transitions.

Overall Contribution of ARME in Finding New Faults Compared to MBT

and ET (RQ3) Results of the case studies show that we can identify critical faults

by refining test models based on ET with the help of ARME. Our approach and the

tool support enabled the transfer of knowledge from manual ET activities to MBT.

Table 6 shows the comparison of the number of faults found with the initial test

models, with ET activities and with ARME after all the successive iterations for each

of the 3 case studies.

For the DVB-TCI case study, 3 faults were found with the initial test model.

Then, 3 additional faults were revealed during the ET activities. In addition to these

6 faults in total, 5 more new faults were detected with ARME. Hence, 45.45% of the

overall faults were detected only by ARME. Likewise, 7 and 6 new faults were detected

only by ARME in the second and the third case studies, respectively. These faults
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# of Found # of Found # of Found Ratio of

Case Study Faults New Faults New Faults New Faults

with Initial MBT with ET with ARME Found by ARME

1. DVB-TCI 3 3 5 45.45%

2. MB 36 9 7 13.46%

3. RTT 1 2 6 66.66%

Table 6: Comparison of the number of faults found with the initial test models, with
ET activities and with ARME.

represent 13.46% of the overall faults for the second case study, whereas the ratio is

66.66% for the third case study.

We observed that the effectiveness of the models used for MBT can be significantly

increased by exploiting feedback from ET. Integration of the two testing techniques

is highly effective in detecting faults and reusing domain knowledge. We showed that

our approach helps to detect critical faults and increases the efficiency of the testing

process. As an initial investment, the approach requires additional effort for defining

the mappings of events to states. However, this is a one-time effort. Without ARME

we would only detect the faults that are revealed with the initial MBT and the ET

activities only. We could still refine test models manually, at least whenever a new

fault is discovered during ET activities; however, for each such case, we would have

to debug the model and the execution traces to reveal why the fault was not detected

and we would have to manually identify missing edges and states.

Effects of ARME on Test Suite Size (RQ4) We compared the test suit sizes that

are obtained with the initial test models and those that are obtained after successive

iterations of model refinement with ARME. Table 7 shows the difference in terms of

the total number of test steps. In the first case study for the DVB-TCI model, the

number of test steps was increased by 2.3%. In the second case study for the MB

model, the number of test steps was increased by 7.91%. In the third case study

for the RTT model, the number of test steps was decreased by 2.42%. Results show
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Total # of Total # of Difference

Case Study Test Steps Test Steps in the Size of

with Initial MBT after ARME Test Steps

1. DVB-TCI 261 267 +2.3%

2. MB 809 873 +7.91%

3. RTT 950 927 -2.42%

Table 7: The difference of test suite sizes in terms of the total number of test steps
after successive iterations of model refinement with ARME.

that ARME does not always lead to significantly larger test suites compared to those

obtained with the initial test models. On the contrary, refinements of ARME can

even decrease the number of test steps although the execution of these steps enables

the detection of new faults. Hence, test suites become more effective in terms of the

number of detected new faults per executed test step.

3.2.4 Threats to Validity and Limitations

We have two basic assumptions regarding our approach. First, we assume that the

collected traces always reflect correct, possible user behavior. Second, we assume the

availability of test engineers who regularly perform ET activities. The general appli-

cability of our approach is constrained by our assumptions regarding the application

domain and availability of experienced test engineers for performing ET activities in

the working context.

The second assumption is a crucial one since the main purpose of our approach is

to exploit feedback received from ET activities to refine testing models. Our approach

is not usable without the availability of such feedback.

The first assumption limits the set of possible subject systems since they have to be

event-based systems in which all user allowed actions are correct. That is, the system

should not crash or lock due to an unexpected sequence of user actions. Although

this assumption brings in a limitation, most of the consumer electronics products
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such as smart phones, refrigerators, washing machines, dishwashers, air conditioners,

and cookers can be considered as candidate subject systems that conform to our

assumption. In fact, we performed another preliminary study for a camera application

of smart phones produced by the same company. We detected a new fault after we

refine its test model based on execution traces obtained from ET activities.

Our model refinement algorithm considers multiple cases for deciding on how to

extend the given test models (Recall Section 3.1.2). One of these cases considers an

application-specific constraint, in which a direct transition is not allowed among a

group of states in the test model. If such a constraint exists, one must explicitly

specify (tag) the corresponding groups of states. In our case, we could automatically

identify and tag such states since they conform to a pattern in the test models. This

might not be possible for all types of systems. In principle, one can remove this

case from the algorithm or add other types of constraints to make it more effective

for other systems. The assumptions regarding the event mapping specification (See

Section 3.1.1) can also be altered. We observed that incorporation of more domain

knowledge leads to possibly less generic but more efficient model refinement processes.

Our approach requires multiple iterations. Model update cost is negligible (takes

couple of minutes), however, we need to generate test cases and execute them after

each iteration. We ignored this additional cost, because these tasks are automated.

3.3 Related Work and Our Contributions

There exist a large body of work on MBT techniques [62], tools [44] and different

types of models employed like finite state machines [63], [64], and Markov chains [18].

There also exist surveys on MBT [62] and several case studies [44, 65] where the effec-

tiveness of MBT is evaluated. The surveyed studies and the applied MBT techniques

are mainly focusing on the modeling approach and test case generation methods.

The evaluation is performed by comparing the number of faults detected by MBT
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with respect to the number of faults exposed by traditional testing approaches. How-

ever, iterative refinement of the developed models and the incorporation of domain

knowledge have not taken much attention in the literature.

Recent advances in automatic black-box testing were summarized by [66]. In their

literature review, existing approaches are grouped into four categories as random

testing, MBT, testing with complex inputs, and combinatorial interaction testing. In

the area of MBT, it is confirmed that the effectiveness of this approach is limited

by the cost of producing high quality models [66]. Hence, automatically inferring

these models is considered to be a promising research direction, which has taken the

attention of researchers recently. The other alternative is to apply MBT on specified

models [66]. Inferred models are further grouped into two categories: ripped models

and learning-based models [66]. Ripped models are automatically extracted from the

system and used for MBT. On the other hand, learning-based models are created

iteratively in two phases. First, a model is inferred to generate a set of test cases.

Second, observations regarding system behavior during the execution of these test

cases are used for augmenting the existing model. The process iterates between these

two phases. There are several recently proposed approaches [67, 68, 69] that can be

considered within this category. Our approach also relies on learning-based models.

However, it is distinguished from the existing approaches in two ways. First, these

approaches do not exploit ET activities to refine the model. They exploit test cases

that are generated from the previous version of the model. Second, model refinement

is limited to the augmentation of missing edges and transitions. In our work, we

employed Markov chains as the modeling formalism and we also updated probability

values associated with transitions.

A detailed literature review regarding specification mining is provided in the Ph.D.

thesis of [70]. The common approach among the reviewed studies is summarized as the

application of data mining or machine learning techniques on source code or execution
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traces to generate specifications in various formats [70]. Collected execution traces

and mined specifications are defined at different levels of abstraction. For instance,

component interactions are analyzed in [71], whereas object behavior models are

mined by TAUTOKO [72] in the form of FSA. In terms of the model abstraction

level, our approach is more aligned with the Observe-Model-Exercise* [69] approach,

which derives a model of the Graphical User Interface (GUI) in the form of Event

Flow Graph (EFG). TAUTOKO [72] and Observe-Model-Exercise* [69] are similar

to our approach in the sense that they both employ an iterative model refinement

approach. They start with a possibly incomplete model of the application. Test cases

are generated and executed while new events or states are identified by monitoring

the execution. Then, the model is extended with these events/states. However, these

approaches do not exploit ET activities to refine the model. In addition, the adopted

formalisms do not involve transition probabilities to focus test case generation on

error-prone execution paths.

MBT and capture-replay testing techniques were previously integrated [73]. This

integration effort focuses on refining and adapting a capture-replay testing tool based

on changes in the user interface due to evolution. In our work, we focus on refining test

models based on the captured execution traces instead. We did not consider evolution

explicitly; however, it is possible to address changes in the system by updating the

event mapping specification.

There exists another approach [74] that proposes the automated refinement of

models for testing. The approach employs an EFG [74] to represent test models for

testing applications through their GUI. Cause-effect relationships among the GUI

elements are observed at run-time, while the generated test cases are executed. The

model is iteratively refined based on the inferred relationships. This approach does not

rely on execution traces that are collected during ET activities to refine the model.

Instead, the system is executed with a seed test suite that is generated using an
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existing model of the GUI. The assumption is that this model represents all possible

sequences of events that may be executed on the GUI [74].

There exist other so-called automated feedback-based techniques introduced previ-

ously to refine the models of SUT or input data for testing [75, 76, 77, 78]. Some of

these techniques aim at increasing the code coverage [75, 76], whereas some others aim

at generating more test cases to increase the coverage of system behaviors [77, 78].

Regardless of their goals, however, all these techniques rely only on the execution of

a previously created test suite to obtain feedback. Hence, the feedback that can be

obtained is limited by the coverage of the system behavior achieved with this test

suite. In our work, we addressed this limitation by coupling MBT and ET processes.

Besides the reported studies on MBT, ET has also been evaluated in the context

of industrial case studies [79]. These studies investigate the impact of human person-

ality [80], learning styles [81] and the way that different types of knowledge [82] are

utilized like domain knowledge, system knowledge and general software engineering

knowledge. Their conclusions are mainly drawn from interviews that are performed

at different companies [79].

Exploratory modeling [83] has been introduced as an approach for model develop-

ment based on the principles of ET. Hereby, a state diagram of the expected behavior

of the SUT is developed first. Then, this model is refined by observing the different

states and behaviors while interacting with the SUT. However, this approach has no

tool support and it was not evaluated in the context of an industrial case study.

In practice, ET is usually performed manually and MBT is applied as a comple-

mentary, rather than an integrated approach. To the best of our knowledge, there

has been no method supported by a toolset to couple these approaches and utilize

the knowledge gained in ET as a feedback for MBT. In this work, we showed that

such an approach is effective for detecting faults.
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CHAPTER IV

RISK-DRIVEN MODEL BASED TESTING

In this chapter, we introduce a risk-driven three-step model refinement approach

and a toolset, RIMA 1 for automatically updating probability values in 3 steps for

augmenting information regarding the risk of failure.

We represent test models in the form of Markov chains. These models comprise a

set of states and a set of state transitions that are annotated with probability values.

These values steer the test case generation process, which aims at covering the most

probable paths. RIMA refines these models in three steps:

• updates transition probabilities based on a collected usage profile.

• updates the resulting models based on fault likelihood at each state, which is

estimated based on static code analysis.

• performs updates based on error likelihood at each state, which is estimated with

dynamic analysis.

We generate and execute test cases after each refinement step. We applied our

approach in the context of two industrial case studies for MBT of a DTV system. We

observed promising results, in which new faults were revealed after each refinement.

The chapter is organized as follows. In the following section we introduce our

approach. In Section 4.2 we explain the application of our approach in the context

of two industrial case studies and present the results. We discuss related work in

Section 4.3 and conclude the chapter.

1https://github.com/csgebizli/RIMA
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4.1 Overall Approach

The overall approach is depicted in Figure 11. We assume that a model of the

system exists in the form of a Markov chain. First, we generate test cases based on

this model by using the MaTeLo tool. The test case generation process focuses on

covering the most probable paths on the model according to transition probabilities.

Next, the generated test cases are executed on the system. We collect a memory

usage profile during test case execution. After test case execution, RIMA updates

the model. This cycle of model update, test case generation and test execution is

repeated three times. Each time, the model is updated based on a different source

of information. In the first update cycle (5.1), usage profile is used for assigning a

probability value to each transition. As a result, the generated test cases after this

update will focus on execution paths that are mostly visited by the users of the system.

In the second update (5.2), we exploit static analysis alerts generated for the source

code. We use Klocwork2 as the static analysis tool and we use alerts generated by

this tool to estimate the relative risk of faults [84] being present for different software

modules. These modules are associated with different states in the model based on

the represented feature and utilization of modules for that feature. As such, RIMA

updates the model based on estimated risks. In the third update (5.3), we exploit the

memory usage profile that is collected during the previous test cycles. This profile

reveals test execution paths that lead to memory leaks, and it is used for estimating

the relative risk of errors. RIMA performs a further update on the model based on this

estimation. Hereby, we update the transition probabilities for only top level states

each of which can be mapped to a particular DTV feature.

In the following sections, we explain how the model updates are performed in each

iteration.

2http://www.klocwork.com/

51



KEY: flow order artifact

3

4

5.3

6
Update 

Transition 
Probabilities

A
B

C

D
E

System Model

Generate 
Test 

Cases

A, E, B, A
C, D, E, B
...

Test Cases

Execute 
Test Cases

1

2

Memory 
Profile

Usage 
Profile

Static Analysis 
Alerts

process

5.1

5.2

Figure 11: The overall approach.

4.1.1 Model Refinement based on Usage Profile

Initially, we assume that all the probability values for outgoing transitions of a state

are equal to each other, adding up to 1. Hence, if there are n transitions going out

from a state, the probability value for each of these transitions is 1/n. In the first

update cycle, we utilize a previously collected usage profile (See Section 4.2). Since,

the test model represents the usage behavior, we can calculate the number of visits

made to each state of this model. Then, RIMA updates the probability values to each

outgoing transition based on the ratio of visits made to its target state. Assuming

that there are n transitions going out from a state to n different states, we calculate

the number of visits made to each of these states i, as vi. Then, the probability value
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assigned for each transition targeting at state i is vi/
∑n−1

i=0 vi.

4.1.2 Model Refinement based on Static Analysis

In the second update cycle, we utilize alerts generated by a static code analysis tool

working on the system source code. We map source code modules to different system

states in the model. Then, for each state, we calculate the ratio of alerts that are

associated with this state each of which represents a TV feature implemented by these

modules. We consider this ratio as a relative risk of fault, which can lead to an error

if the corresponding alerts are not false positives and if the identified potential faults

are triggered during the visit to the state. RIMA updates the test model according

to this calculated risk as follows. It introduces a new state to the model, namely an

error state, E. Then it introduces transitions from each of the existing system states

to E. If there were previously n outgoing transitions from a state s, the number of

outgoing transitions becomes n + 1. It assigns the probability value, p to this new

transition according to the risk for s, calculated as the ratio of alerts associated with

s to the total number of alerts. For each of the other outgoing transitions from s, the

probability value is multiplied by (1 − p). Figure 12 illustrates such an update with

a simple example. On the left hand side of the figure, we see a part of the model

before the update. Hereby, we see a source state s and 3 target states t0, t1 and t2,

with transition probabilities 0.2, 0.3 and 0.5, respectively. On the right hand side

of the figure, we see the updated model, where a new state E is introduced. The

probability value for the transition targeting at E is calculated as 0.2. Hence, all the

other transitions are multiplied by 0.8. This update guarantees that the probability

values for all the outgoing transitions add up to 1.

4.1.3 Model Refinement based on Dynamic Analysis

In the third update cycle, we utilize a memory profile to calculate another risk [85].

This profile is collected during the previous test cycles. We use a previously developed
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Figure 12: The updated transition probabilities for outgoing transitions of state s
after introducing a risk of error with probability 0.2.

tool [85], which measures memory utilization before and after the usage of each feature

in the system. The difference between the two measurements reveals memory leakage.

Features are mapped to the states of the model and a memory error probability is

calculated for each state, which is proportional to the amount of memory leak caused

by each feature. Then, the model is updated just like the previous update cycle by

RIMA tool. An additional error state is introduced. Transitions from all the states

to this state are annotated with the calculated error probabilities. Error probability

for each state s, is calculated as the ratio of memory leak associated with s to the

total amount of memory leak. Finally, all the other transitions are updated to keep

probability values for outgoing transitions sum up to 1.

In the following section, we introduce two case studies and illustrate each step of

the approach.

4.2 Industrial Case Studies

In this section, we introduce two case studies from the consumer electronics domain.

In particular, we illustrate the applications of our approach for MBT of DTV systems

and Smart Phone (SP) which are developed by Vestel.
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Figure 13: An initial test model used for MBT with default probabilities (DTV).

Figure 13 and Figure 14 depict the models that are used in our case studies. These

models were previously developed by the software test group in the company. The

models are defined in the forms of a Markov chain with the MaTeLo tool. They

constitute a hierarchical structure, in which states can further comprise sub-models.

In Figure 13, we see the top level model, where states mainly represent various

features of the system. The list of main features for DTV include Electronic Program

Guide (EPG), MB Video, MB Audio, MB Picture, Portal, Youtube, HBBTV, Per-

sonel Video Recorder (PVR), Source Switch (HDMI-SCART), Teletext, and Channel

List.

In Figure 14, there are states which represent the main features in the form of

applications deployed on a SP. In our case study, we focused on those applications

that are developed by Vestel only. The list of main features for SP include VCloud,

VCam, Photos, Alarm, VMarket, Contacts, Phone Call, Themes, and SMS-MMS.

We used two of the test case generation algorithms that are provided by the

MaTeLo tool. We employed the so called Minimum Arc Coverage algorithm [61]
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Figure 14: An initial test model used for MBT with default probabilities (SP).

with default parameters before model refinements (Iteration 0 ). This algorithm ter-

minates when all the transitions in the model are visited at least once. After each

model refinement step, we employed the so called User Oriented algorithm [61]. This

algorithm has two parameters: i) the maximum number of test steps within a test

case, and ii) the maximum number of test cases. We set the maximum number of

test steps to 5000. We set the maximum number of test cases to 1. As a result, this

algorithm starts from the start state and traverses the model by choosing a transition

at each state non-deterministically based on transition probabilities. The algorithm

terminates when the finish state is reached.

For DTV case study; in total 847 test steps were generated from the initial model

before refinements. Execution of these test steps took 4 hours. 7 faults were detected

during test execution. 5 of these faults were previously found during manual test

activities. Therefore, 2 new faults were identified with MBT.

For SP case study; in total 1416 test steps were generated from the initial model

before refinements. Execution of these test steps took 6.5 hours. 3 faults were detected

during test execution. 2 of these faults were previously found during manual test
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activities. Therefore, 1 new fault was identified with MBT.

In the following subsections, we describe research questions and the experimental

setup.

4.2.1 Research Questions

The time is extremely limited compared to the amount of functionality to be tested

in the consumer electronics domain. Test models that we use in our case studies have

hundreds of states and transitions. Our goal is to update transition probabilities of

test models based on usage profile analysis, static code analysis and dynamic analysis

results respectively to be able to generate more effective test steps for detecting more

faults. As such, we defined the following 3 research questions:

RQ1: Is it possible to update transition probabilities in the test models based

on usage profile to detect new faults that are more likely to be exposed to the

users without compromising from their effectiveness?

RQ2: Is it possible to update transition probabilities in the test models based

on static code analysis to detect new faults by decreasing the total test steps

and total time?

RQ3: Is it possible to update transition probabilities in the test models based

on dynamic analysis to detect new faults by decreasing the total test steps and

total time?

The generated test cases from test models have to focus only on execution paths

that are liable to highly severe failures that can be directly observed by users. Our

first goal was cover different parts of a test model to find the faults which are most

likely to be seen by the end-users and are not seen with the previous approaches

before. User perceived failure severity is important, which is defined as the level of

irritation experienced by the user caused by a product failure. Therefore, the testing
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process must be optimized to detect faults that lead to user-perceived failures. We

defined RQ1 based on this observation.

The second goal was to refine the test model to find more faults with fewer test

steps by considering warnings of modules in the source code with risk analysis per-

formed by a static analysis tool. Therefore, we defined RQ2 to evaluate static code

analysis impact on MBT efficiency.

RQ3 is defined to see the dynamic analysis impact on MBT efficiency by increasing

the number of found new faults while reducing the test steps and total time for test

execution. We observed that there existed memory-related faults that could not be

detected by the generated test cases.

In the following, we explain the experimental setup we used for evaluation. Then,

we present and discuss the obtained results for addressing the research questions. We

also illustrate steps of our approach using the case studies as a running example.

4.2.2 Experimental Setup

Experimental Setup for DTV

- Model Refinement based on Usage Profile

The first model update is performed based on usage profile. To collect this profile,

30 products were sent to 30 field testers. As soon as they connect their TVs to the

Internet, log files are created and sent to record which modules are visited by users.

After 30 days, we collected the log files and analyzed them. Then RIMA calculated

the probability values for each module as listed in the first part of Table 8. After

updating the transition probabilities, 809 test steps were generated. Execution of

these test steps took 4 hours. 9 faults were detected during test execution. 7 of them

were previously found. Therefore, 2 new faults were identified after the first iteration.

- Model Refinement based on Static Analysis
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Software Iteration 1 Iteration 2 Iteration 3

Module # of Visits Calculated Prob. # of Warnings Calculated Prob. Memory leak (MB) Calculated Prob.

Portal 1900 0.146 18 0.322 40.855 0.218

Youtube 2250 0.173 18 0.322 89.380 0.477

HBBTV 500 0.038 6 0.108 8.846 0.047

MBR Video 1750 0.134 2 0.036 22.375 0.119

MBR Audio 400 0.03 1 0.017 4.167 0.022

MBR Picture 100 0.007 1 0.017 3.980 0.021

PVR 1000 0.076 3 0.054 9.351 0.05

Channel List 1750 0.134 3 0.054 2.516 0.013

EPG 2000 0.153 2 0.036 3.094 0.017

Teletext 1250 0.096 1 0.017 1.675 0.009

HDMI-SCART 100 0.007 1 0.017 1.002 0.005

Table 8: Collected data and the corresponding probability values used for updating
the test model in successive iterations (DTV).

In the second iteration, we utilized static code analysis alerts. The second part

of Table 8 lists the number of alerts reported for each module and the calculated

probability values accordingly. RIMA updated the model as depicted in Figure 15.

136 test steps were generated based on this model. Execution of these test steps took

1.5 hours. 3 faults were detected during test execution. 2 of them were previously

found. Therefore, one new fault was identified after the second iteration.

Figure 15: The test model updated based on static analysis after the second iteration
(DTV).
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- Refinement based on Dynamic Analysis

In the third iteration, we utilized memory profiles that are collected in the previous

iterations. The third part of Table 8 lists the amount of memory leak associated with

each module and the calculated probability values accordingly. The updated model

can be seen in Figure 16. 117 test steps were generated based on this model. Execution

of these test steps took 1.5 hours. 3 faults were detected during test execution. 1 of

them were previously found. Therefore, 2 new faults were identified after the third

iteration.

Figure 16: The test model updated based on memory profile after the third iteration
(DTV).

Experimental Setup for SP

- Model Refinement based on Usage Profile

The first model update is performed based on usage profile. To collect this profile,

50 products were sent to 50 field testers. There was an application which collected

the usage counts for each application on the phone. After 30 days, we analyzed the

usage of every users. Then RIMA calculated the probability values for each module

as listed in the first part of Table 9. After updating the transition probabilities, 1205
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test steps were generated. Execution of these test steps took 5.5 hours. 6 faults were

detected during test execution. 3 of them were previously found. Therefore, 3 new

major faults were identified after the first iteration.

Software Iteration 1 Iteration 2 Iteration 3

Module # of Visits Calculated Prob. # of Warnings Calculated Prob. Memory leak (MB) Calculated Prob.

VCloud 250 0.009 9 0.095 0.268 0.005

VCam 6000 0.222 11 0.116 1.9 0.038

Photos-Videos 4000 0.148 11 0.116 28.55 0.571

Alarm 3500 0.130 7 0.074 2.5 0.05

VMarket 1500 0.056 9 0.095 7.38 0.148

Contacts 2750 0.102 8 0.084 0.601 0.012

Dialer Phone Call 5000 0.185 16 0.168 1.2 0.024

Themes 1000 0.111 7 0.074 6.88 0.016

SMS-MMS 3000 0.037 17 0.179 0.811 0.136

Table 9: Collected data and the corresponding probability values used for updating
the test model in successive iterations (SP).

- Model Refinement based on Static Analysis

In the second iteration, we utilized static code analysis alerts. The second part

of Table 9 lists the number of alerts reported for each module and the calculated

probability values accordingly. RIMA updated the model as depicted in Figure 17.

1014 test steps were generated based on this model. Execution of these test steps

took 5 hours. 4 faults were detected during test execution. 3 of them was previously

found. Therefore, one new major fault was identified after the second iteration.

- Refinement based on Dynamic Analysis

In the third iteration, we utilized memory profiles that are collected in the previous

iterations. The third part of Table 9 lists the amount of memory leak associated with

each module and the calculated probability values accordingly. The updated model

can be seen in Figure 18. 857 test steps were generated based on this model. Execution

of these test steps took 4 hours. 3 faults were detected during test execution. 2 of
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Figure 17: The test model updated based on static analysis after the second iteration
(SP).

them were previously found. Therefore, 1 new minor fault was identified after the

third iteration.

4.2.3 Results and Discussion

Iteration # # of Test Steps Test Execution Time (hr) # of Faults Detected # of New Faults Detected

0 847 4 7 2

1 809 4 9 2

2 136 1.5 3 1

3 117 1.5 3 2

Table 10: Test results after each iteration (DTV).

The overall results for DTV case study are summarized in Table 10. We were able

to detect 9 faults with the original model, out of which only 2 were actually detected

with MBT for the first time. In successive iterations, we were able to detect 5 more

new faults. All these faults were critical. They mainly lead to stability issues in the

platform such as crashes and lack of response for remote controller commands.

The overall results for SP case study are summarized in Table 11. We were able to
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Figure 18: The test model updated based on memory profile after the third iteration
(SP).

Iteration # # of Test Steps Test Execution Time (hr) # of Faults Detected # of New Faults Detected

0 1416 6.5 3 1

1 1205 5.5 6 3

2 1014 5 4 1

3 857 4 3 1

Table 11: Test results after each iteration (SP).

detect 3 faults with the original model, out of which only 1 was actually detected with

MBT for the first time. In successive iterations, we were able to detect 4 more major

new faults and 1 minor new fault. These faults are mostly related with functionality

breakdowns problems such as missing contacts in contact list, dis-functionality of stop

call button after some time, wrong timing for the alarm function.

In our approach, RIMA introduces two new error states to the test model through-

out the refinement iterations. In principle, different types of error states can be added

each of which represents a different type of error. The probability (risk) of causing

each of these types of errors can be calculated for system states with static and/or

dynamic analysis.

Another alternative approach would be to combine all the analysis results and
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perform an update once, instead of performing updates in several iterations. The

advantage of this approach would be the decreased completion time of tests. However,

as a drawback, one can be able to detect less number of faults. This is because, test

steps generated in each iteration mainly focuses on different paths on the model

although there can be occasional overlaps. Systematic avoidance of these overlaps

can help to reduce overall test duration.

For DTV case, the total test execution time, including all the refinement steps

took 11 hours. This duration can be reduced by skipping Iteration 0, which does

not contribute much for detecting user-perceived failures. We can observe that the

durations for the second and third iterations are reduced dramatically (more than

50%). The total time spent for successive test executions is 3 hours. Yet, 3 new

faults were detected. Hereby, we should note that the number of test steps is not

directly proportional to test duration. The execution of some of the test steps can

not be fully automated and as such these steps take more time than others to execute.

In these steps, a test engineer has to manually control a set of properties regarding

audio and video. Therefore, elimination of such steps can further decrease the overall

test duration.

4.2.4 Threats to Validity and Limitations

We assume that the first versions of the test models exist in the form of a Markov

chain. States are determined with the help of software engineers in the company.

One of the limitations is regarding the manual effort that has to be invested to

identify risks. For instance, in our first case study, 2 domain experts analyzed the

source code of a DTV for 1 week to detect resource (memory and processing time)

consuming modules. After detecting such 11 modules, 1 test engineer completed test

modeling with MaTeLo in 2 days. Similarly, 1 domain expert analyzed the source code

of SP for 3 days to detect resource consuming modules. 1 test engineer completed
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test modeling of 9 modules with test scripting in the model in 2 days.

Antoher limitation is the dependency on tools for static code analyzes and collec-

tion of memory profiles. We assume that these tools provide reliable feedback.

We performed two case studies focusing on two products, DTV systems and SPs.

In principle, our approach can be also applied for other consumer electronics products

such as refrigerators, washing machines, dishwashers, air conditioners, and cookers.

4.3 Related Work and Our Contributions

MBT techniques are extensively studied in the literature [62]. There exist tools

applied in practice [44] and various formalisms for model specification like finite state

machines [63] [64] and Markov chains [18]. There also exist case studies [44, 65] for

evaluating the effectiveness of MBT. In this paper, we evaluate the effectiveness of

MBT in consumer electronics domain. In particular, we evaluate the effectiveness of

a successively refined model.

Recent studies on MBT [86, 87] take the timing behavior and concurrency into

account. Petri nets are used for specifying test models [87] and test oracles are

automatically generated to enforce timing requirements [86]. The generated test cases

reflect the timed and concurrent nature of inputs for the system. In our approach, we

did not take the timing behavior and concurrency into account. However, we make

the failure behavior explicit in test models.

There exist recent studies [69, 74, 88] on refinement of test models for MBT. These

studies aim at extending existing models by adding missing states and transitions.

Missing model elements are discovered by analyzing run-time states and events col-

lected from the executing system. In our approach, we assume that the model is

complete; however, we update transition probabilities to focus the generated test

cases on different parts of the model. These updates are performed not only based

on dynamic analysis, but also usage profile and static code analysis.
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This approach is also inspired from the principles of RBT [22]. However, we

complement dynamic analysis with usage profile and static analysis for estimating

risks.
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CHAPTER V

MODEL-BASED SOFTWARE PRODUCT LINE TESTING

In this chapter, we introduce an approach and a toolset, FORMAT that is integrated

this tool with a set of existing tools for adopting SPLE together with MBT.

A reference test model is developed for capturing all possible usage scenarios for a

family of systems rather than a single system. This model is represented in the form

of hierarchical Markov chains. Variations among tested systems are documented in

the form of a feature model. A separate specification maps optional and alternative

features in the feature model to a set of states in the test model. Transition proba-

bilities for these states are modified according to (selected) system features such that

test cases focus only on these features. This approach facilitates the reuse of a test

model for many systems.

We developed a tool called FORMAT and integrated this tool with a set of existing

tools to automate our SPLE approach for MBT. The whole process is automated

except the initial (one-time) development of the feature model, mapping specification

and the reference test model. Once this initial investment is made, the reference

test model can be reused for different systems by just selecting the relevant features.

Feature selections are performed on the feature tree via a graphical user interface.

Then, transition probabilities are automatically updated on the test model.

We performed a controlled experiment in an industrial context to evaluate the

effectiveness of our approach and tool. 10 participants were involved in testing 10

different DTV systems. A reference test model has to be adapted for each of these

systems based on their features. The effort spent by each participant was measured

both when FORMAT is used and when it is not. Results indicate that FORMAT
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reduces the effort significantly. The use of FORMAT and the adoption of the SPLE

approach requires an initial investment. However, results show that this investment

pays off already if the reference test model is reused for 13 products.

In the following section, we explain our approach and tool. In section 5.2, we

present the controlled experiment for evaluating our approach in an industrial setting.

5.1 Overall Approach

The overall SPLE approach for MBT [8] is depicted in Figure 19. 3 input models

are necessary to apply the approach: i) a reference test model that captures the

possible behavior for a family of products, ii) a feature model that documents the

commonalities and variations among these products, and iii) a mapping specification

that maps feature model elements to states of the test model.

5.1.1 Developing Feature Diagrams

The creation of feature diagrams requires one-time effort if features are not subject to

change. The feature diagram is developed with the online SPLOT tool1. An example

feature diagram of a product is shown in Figure 20(a). One can select or deselect

optional features on a feature diagram to specify a particular product configuration.

This is the first step of the approach and it is also performed via the user interface of

the SPLOT tool. Figure 20(b) shows an example product configuration, where the

first optional feature named Connectivity is not selected as part of the product. As

a result, its sub-features including Netflix and Wifi are also deselected. Hence, the

generated test cases are not supposed to cover these features.

1http://www.splot-research.org/
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Figure 19: The overall approach.

SPLOT can export feature selections in XML format as shown in Listing 5.1.
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(a) A partial feature dia-

gram of a family of DTV

products.

(b) A set of sample fea-

ture selections for one of

the DTV products.

Figure 20: A snippet from a sample feature diagram for a DTV product family and

a set of feature selections on this model for a sample product.

5.1.2 Updating Models

In the second step, selected feature configuration is used for updating the reference

test model based on its mapping to the feature model. Mapping specification relates

feature names to top-level states of the test models. The creation of this specification
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requires one-time effort if feature model and test model elements are not subject to

change. However, it can also be generated automatically in principle, if both models

follow certain naming conventions.

Listing 5.1: A snippet from the specification exported by SPLOT.

<f ea ture mode l name=”SmartTV”><meta> . . .</meta>

< f e a t u r e t r e e>

: r Smart TV( r )

: o Connect iv i ty ( r 2 )

: o DLNA( r 2 9 )

: g ( r 2 9 3 1 ) [ 1 , 1 ]

: Audio Video Sharing ( r 2 9 3 1 3 2 )

: DLNA( r 2 9 3 1 3 3 )

:m Wifi ( r 2 1 0 )

. . .

: o Wire l e s s Display ( r 2 1 2 )

: o Inte lWid i ( r 2 1 2 9 9 )

: o Miracast ( r 2 1 2 100 )

: o Ne t f l i x ( r 2 2 9 )

. . .

:m EPG( r 7 )

: g ( r 7 2 4 ) [ 1 , ∗ ]

: Timel ine Schedule ( r 7 2 4 2 5 )

: L i s t Schedule ( r 7 2 4 2 6 )

: Now and Next ( r 7 2 4 2 7 )

</ f e a t u r e t r e e><con s t r a i n t s>

</con s t r a i n t s></feature mode l>

Our tool, FORMAT2 automates the second step of the approach, where the model

is updated. Initially, the model includes default transition probability assigned by

the MaTeLo tool. Algorithm 2 outlines the update procedure followed by the tool.

Hereby, probability values for transitions to states that represent unselected features

are set as 0 (Line 7). These values are summed up (p) for the source state (Line

6). Then, probability values of all the transitions originating from this state are

multiplied by 1/(1 − p) (Lines 10-14). As such, their relative priority remains the

2https://github.com/csgebizli/FORMATTool

71



same and the sum of probabilities of these transitions becomes equal to 1.

Algorithm 2 Model Update Procedure.

1: S ← set of states in the test model
2: for all s ∈ S do
3: p← 0
4: for all t ∈ S|∃ transition (s, t) do
5: if t maps to a deselected feature then
6: p← p + p(s, t)
7: p(s, t)← 0
8: end if
9: end for

10: for all t ∈ S|∃ transition (s, t) do
11: p(s, t)← p(s, t)× 1/(1− p)
12: end for
13: end for

For instance, Figure 21 depicts a test model, where probability values for tran-

sitions targeting at Netflix and Wifi states are updated to be 0. These updates are

consistent with the feature selections shown in Figure 20(b). The probabilities of all

the other transitions outgoing from the Settings state add up to 1 after the update.

We should note that Figure 21 shows the top-level model only. Many of the states in

this model hierarchically include further sub-models.

In the third step, the updated test model is used for generating a set of test

cases and executing them on the product. Test execution is automated with VesTA,

whereas test case generation is automated with the MaTeLo tool. This tool-chain

implements a variety of test case generation algorithms.

In our approach, we employed the so called “Most Probable” algorithm [61]. This

algorithm traverses the model by selecting the most probable transition at each state

and it terminates after a limited number of steps. As a result, Netflix and Wifi states

in the example test model will never be visited for instance.

In the following section, we present a controlled experiment in an industrial setting

to evaluate our approach and tool.
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Figure 21: The updated test model.

5.2 Industrial Case Study

We conducted a controlled experiment in an industrial setting to evaluate our ap-

proach. Hereby, our goal is to measure the effort reduction provided by FORMAT.

We also aim at evaluating the effort reduction with respect to the effort necessary to

adopt our approach. In traditional approach, one must update a test model manually

for each different product by considering its features. FORMAT performs these up-

dates automatically by taking the corresponding feature selections as input. However,

there is a need for initial investment to specify the feature diagram and a mapping

of its elements to the states in the test model. Hence, we want to know to what

extent FORMAT pays off this investment. First, we introduce our research questions

in the following. Second, we describe the experimental setup. Third, we present and

elaborate on the results. Finally, we discuss validity threats and limitations.

5.2.1 Research Questions

We defined the following research questions:

73



RQ1: How much effort is required for manually updating test models for each

product?

RQ2: How much effort is required for using FORMAT to update test models?

RQ3: How much effort is required for developing a feature diagram and a

mapping specification between a feature diagram and a test model?

The first research question, RQ1 is defined for understanding the cost of the

traditional method for updating test models. RQ2 aims at understanding the cost

of using FORMAT for the same purpose. RQ3 is defined for understanding the cost

of initial investment that has to be paid to be able to use FORMAT. We also would

like to test the significance of difference in effort reduction when FORMAT is used.

Hence, we formulated our null hypothesis as follows:

• Ho FORMAT does not have any effect on the amount of effort spent by test

engineers/technicians to adapt test models for different products.

We choose 0.01 as the significance level for rejecting the hypothesis.

5.2.2 Experimental Setup

Hereby, we explain the experimental setup we used for addressing the research ques-

tions and testing our hypothesis.

Factors: Tool support is the only factor of our experiment, i.e., whether FORMAT

is used for updating test models or not. Hence, this factor is measured in nominal

scale, at two levels: with FORMAT, without FORMAT.

Independent Variables: There is one independent variable that we kept at fixed

levels in the experiment. That is the product family used. Each participant was

treated with the same set of randomly selected 10 products from a DTV product

74



family. Participants were provided with a reference test model that captures all

possible usage scenarios for this family of systems. They were also provided with a

feature diagram, mapping of features in this diagram to states of the test model, and

the set of features included in each of the 10 products. Table 12 lists the number of

selected and deselected features for the products. There exist 96 features in total.

The number of deselected features is associated with the number of updates that has

to be performed on the test models. Hence, these numbers are directly associated

with the expected effort.

Table 12: The number of (de)selected features for 10 products that are used in the
experiment.

Product # of Selected # of Deselected

ID Features Features

P1 47 49

P2 43 53

P3 34 62

P4 24 72

P5 54 42

P6 53 43

P7 63 33

P8 44 52

P9 44 52

P10 44 52

Dependent Variables: Effort is the only dependent variable in the experiment.

It is measured in ratio scale in terms of seconds.

Participant Selection: There is a dedicated software testing group in the com-

pany who is performing tests of various consumer electronics products. The testing

group is composed of either test engineers who studied at a college/university or test
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technicians who completed two-year educational programs. We selected 10 partici-

pants for our experiment randomly from this group. Table 13 provides information

regarding the participant profile. Participants are enumerated as S1, S2, ... S10 in

the first column. The second column shows their job title in the company. We see

that 8 of the participants are test engineers and two of them are test technicians. The

third column lists their testing experience in terms of the number of months.

Table 13: Participant information and provided training during experiment prepara-
tion.

Participant Job Testing FORMAT MaTeLo SPLOT

ID Title Experience (months) Training (hours) Training (hours) Training (hours)

S1 Test Engineer 60 1 1 0.5

S2 Test Engineer 12 1 1 0.5

S3 Test Engineer 36 1 1 0.5

S4 Test Technician 144 1 2 0.5

S5 Test Technician 180 1 2 0.5

S6 Test Engineer 12 1 1 0.5

S7 Test Engineer 24 1 1 0.5

S8 Test Engineer 6 1 4 0.5

S9 Test Engineer 6 1 4 0.5

S10 Test Engineer 6 1 4 0.5

Experiment Design: Our design has one factor and two treatments as shown in

Table 14. All the participants were assigned to both of the treatments. First, they

update the test model for each of the products manually. Then, they used FORMAT

to perform the same task. They have to work directly on the test models for manual

updates. On the other hand, they have to only work on the feature diagram when

using FORMAT. Therefore, the order of applying the treatments does not affect the

effort.
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Table 14: The experiment design with one factor that has two levels. The same set
of (all of the) participants are assigned to each of the two treatments.

Factor: Tool Support

Level: with FORMAT Level: without FORMAT

Experiment 1 10 participants 10 participants

Preparation: An experienced test engineer prepared the reference test model, the

feature diagram and the mapping specification, which are provided to the participants

before the experiment. The reference test model was already available and being used

in the company and it was being manually adapted for different products. It took 5

hours to create the feature diagram for the product family. It took 3 hours to create

the mapping specification that maps features to states of the test model.

We also provided training regarding 3 tools to all the participants. These tools

are FORMAT, MaTeLo and SPLOT. We can see the training durations for these tools

in the third, fourth and fifth columns of Table 13, respectively.

FORMAT takes 3 inputs from the user via its user interface. The first one is the

selected product configuration, which is exported by SPLOT. The second one is the

reference test model. The third input is the mapping specification. The user should

provide the full path of the directories, where each of these 3 input files are located.

Then the model update can be performed by pressing a single button. The tool first

checks the consistency of the feature list and the states of the test model based on

the mapping specification. Then, it automatically updates the relevant transition

probabilities on the test model. The updated model can be saved as a separate model

dedicated for a particular product. We explained the user interface and these steps

to all the participants.

MaTeLo is the tool that is being used in the company for test case generation.

Test models can be created and edited with this tool. Models are specified in the

form of Markov chain formalism.
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The training for MaTeLo takes the longest time (4 hours at maximum) since the

tool has a complicated user interface. Moreover, participants should also be knowl-

edgeable on MBT and the Markov chain formalism. In fact, some of the participants

have already had knowledge and experience regarding the usage of MaTeLo.

However, some of them used the tool for the first time. Therefore, durations vary

a lot for the training regarding this tool.

We provided a training on SPLOT so that participants can open the provided

feature diagram with this tool, they can select or deselect features on the diagram,

and finally export these selections as a feature configuration of a particular product.

We provided participants with the relevant documentation and performed an exercise

that involves creating a product configuration based on a given feature diagram.

Execution: During the experiment, each participant was provided with the test

reference model, feature diagram and mapping specification. They were also provided

with the feature list regarding the 10 products listed in Table 12. Then two tasks

were assigned one after the other.

The first task involved using MaTeLo for updating the reference test model for

each of the 10 products based on their features. Hereby, they had to locate states in

the model that are associated with the deselected features. Then, they had to update

the probability values for transitions targeting at these states with 0 values. MaTeLo

automatically updates the probability values for the remaining transitions to keep the

model consistent.

The second task involved using SPLOT to deselect features on the feature diagram

for each of the 10 products and supplying the resulting diagrams to FORMAT, which

automatically updates the reference test model. This task is basically the implemen-

tation of the process depicted in Figure 19. We measured the effort for 3 activities

during the completion of the tasks:
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F: Effort required for (de)selecting features of a product on a feature diagram

with SPLOT.

M: Effort required for updating the test model manually with MaTeLo.

T: Effort required for updating the test model with FORMAT by supplying the

feature configuration created with SPLOT.

The effort required for the first task (without FORMAT) is basically equal to M .

The effort required for the second task (with FORMAT) is equal to F + T . In the

following, we present and discuss the results.

5.2.3 Results and Discussion

The overall results can be seen in Table 15. Hereby, F , M , and T values are listed

for each participant (S1 through S10 ) and for each product (P1 through P10 ). For

instance, the first participant (S1 ) spent 2977 seconds for (de)selecting features to

define 10 products in total. The time required for the same participant to update test

models for all the products manually is 18240 seconds. The feature configuration of

the seventh product (P7 ) took the longest time (420 seconds). On the other hand,

updating the test model required the longest time (1950 seconds) for P9.

We can see from Table 15 that T values are negligible compared to F and M

values. As such, the effort required for using FORMAT is dominated by the effort

necessary for performing feature configurations. Obviously, effort varies for different

products and different subjects. However, the amount of variation is not high. This

can be observed with box plots of F values and M values in Figures 22 and 23,

respectively. Hereby, the x-axis lists the 10 participants involved in the experiment.

We take the average effort required per product to compare the effort spent by

the participants. The average of M values for a participant indicates the mean effort

per product without FORMAT. On the other hand, The average of (F +T ) values for
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Table 15: Participant ID (S#) Effort for manually updating test models (M) perform-
ing feature selections on a feature model (F) and effort for automatically updating
test models(T). All measures are provided with the units of seconds.

S1 S2 S3 S4 S5

Product F M T F M T F M T F M T F M T

P1 290 1800 10 390 2810 12 235 2160 11 307 3340 10 435 2750 11

P2 310 1750 7 270 2770 13 376 1850 11 350 3150 11 370 2360 1211

P3 270 1780 9 310 2120 11 275 2890 9 410 2780 9 398 2270 11

P4 298 1900 8 370 2340 12 337 2160 8 315 2450 8 417 2900 10

P5 268 1860 8 280 1860 12 417 3550 13 320 2850 8 328 2550 8

P6 223 1650 9 307 2650 13 265 2160 12 415 2430 9 385 2470 9

P7 420 1800 9 310 1970 11 287 1850 11 385 2130 9 390 1850 11

P8 300 1860 10 340 2660 9 374 2890 10 370 2660 10 428 2290 10

P9 350 1950 6 290 2950 12 457 2160 11 420 2950 11 360 2580 12

P10 248 1890 10 405 2330 13 378 2550 9 335 2330 10 417 2860 11

Total 2977 18240 86 3272 24460 118 3401 24220 105 3627 27070 95 3928 24880 105

S6 S7 S8 S9 S10

Product F M T F M T F M T F M T F M T

P1 369 3180 14 280 1920 9 420 2890 10 510 3480 15 390 3160 10

P2 357 3270 11 310 2150 11 380 2730 11 505 3570 13 420 3340 11

P3 448 3150 12 295 2280 10 390 2290 9 410 3290 17 380 2730 13

P4 435 2670 9 325 1840 10 320 2370 12 460 3470 14 375 3370 8

P5 425 3120 13 265 1970 8 425 2670 11 380 3680 15 460 2950 10

P6 375 3480 12 320 2050 9 410 2830 15 420 3550 11 525 2760 9

P7 427 3450 11 285 1930 8 380 2250 13 445 2950 16 420 2950 9

P8 268 2370 10 290 1980 10 370 3170 10 460 3280 17 395 2970 8

P9 345 2870 13 385 2250 8 440 2940 11 390 3190 16 450 3180 11

P10 463 2920 10 340 1950 10 360 3180 13 430 3360 13 490 2980 10

Total 3912 30480 115 3095 20320 93 3895 27320 115 4410 33820 147 4305 30390 99
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Figure 22: Variation of F values for the 10 products.

Figure 23: Variation of M values for the 10 products.

a participant indicates the mean effort per product with FORMAT. These values are

listed in Table 16. We can see that the effort is significantly reduced when FORMAT is

used. We performed a t-test to validate this observation. In particular, we performed

a paired t-test since the same group of participants was assigned to both of the

treatments. Results3 are listed in Table 18. We can see that t Stat is much smaller

than (- t Critical) values. We can also see that P(T¡=t) one-tail and P(T¡=t) two-tail

values are very low. They are well below the threshold (0.01), which means that the

3We used Microsoft Excel (2010) to obtain the results.
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Table 16: Average effort per product with and without FORMAT.

Participant ID with FORMAT without FORMAT

S1 306.3 1824

S2 339 2446

S3 350.9 2422

S4 372.2 2707

S5 403.3 2488

S6 402.7 3048

S7 318.8 2032

S8 411 2732

S9 455.7 3382

S10 440.4 3019

Average: 380.03 2610

difference is significant. That also means that the null hypothesis Ho can be rejected

and the effort reduction achieved with FORMAT can be confirmed.

We also performed Wilcoxon test [89, 90]. Like the paired t-test, the Wilcoxon

test also includes comparisons of differences between measurements. However, it is a

non-parametric test that can be used when the data are not normally distributed.

Results4 are listed in Table 17. We obtained the value of Wilcoxon’s test statistic

as −55. Critical value is set as 8 according to critical values table which is based on

the number of subjects. We compared these two values and saw that our obtained

value is statistically significant since it is much smaller than the critical value.

Therefore, the null hypothesis Ho can be rejected and again the effort reduction

achieved with FORMAT can be confirmed.

The variation of effort can be observed in the box-plot depicted in Figure 24.

The plot shows that the variation of effort for a particular treatment is very low;

however, there is a significant difference when we compare the required effort for the

4We used Microsoft Excel (2010) to calculate the results.
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Table 17: Wilcoxon test results. (S#); Participant ID , (M); effort for manually
updating test models, (F); for performing feature selections on a feature model and
(T); effort for automatically updating test models.

Participant ID F+T M Difference Positive |Difference| Rank Signed Rank

S1 306.3 1824 -1517.7 -1 1517.7 1 -1

S2 339 2446 -2107 -1 2107 5 5

S3 350.9 2422 -2071.1 -1 2071.1 3 -3

S4 372.2 2707 -2334.8 -1 2334.8 7 -7

S5 403.3 2488 -2084.7 -1 2084.7 4 -4

S6 402.7 3048 -2645.3 -1 2645.3 9 -9

S7 318.8 2032 -1713.2 -1 1713.2 2 -2

S8 411 2732 -2321 -1 2321 6 -6

S9 455.7 3382 -2926.3 -1 2926.3 10 -10

S10 440.4 3019 -2578.6 -1 2578.6 8 -8

Positive Sum: 0

Negative Sum: -55

Test Statistic: -55

two treatments.

In the following, we provide answers for the research questions based on the ob-

tained results. We also evaluate the trade-off between the effort reduction achieved

with FORMAT and the initial investment required for using FORMAT.

Effort for manually updating test models for each product We observed

that this effort might vary depending on the product and the participant. The box-

plot in Figure 23 depicts the distribution of this effort for the 10 participants. The

minimum effort recorded is the effort spent by S1 on P6, which is 1650 seconds. The

maximum effort recorded is the effort spent by S9 on P5, which is 3680 seconds. The

average effort spent by each participant per product is listed in the third column of

Table 16.

Effort for using FORMAT to update test models The variation in effort is

not very high concerning this activity. The average effort spent by each participant
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Table 18: t-Test: paired two-samples for means.

Variable (1) Variable (2)

Mean 380.0300000 2610

Variance 2573.7334444 223156.2222

Observations 10.0000000 10

Pearson Correlation 0.9215381

Hypothesized Mean Difference 0.0000000

df 9.0000000

t Stat -16.5496667

P(T ≤ t) one-tail 0.0000000239

t Critical one-tail 1.8331129

P(T ≤ t) two-tail 0.0000000479

t Critical two-tail 2.2621572

per product is listed in the second column of Table 16. This effort is dominated by

the effort required for defining product configurations on the feature diagram (i.e., F

values). The box-plot in Figure 22 depicts the distribution of this effort for the 10

participants. The minimum effort recorded is the effort spent by S1 on P6, which is

223 seconds. The maximum effort recorded is the effort spent by S10 on P6, which

is 525 seconds.

Effort for developing a feature diagram and a mapping specification be-

tween a feature diagram and a test model The feature diagram and mapping

specification were prepared before the experiment. Participants were not involved in

this activity since the models have to be defined only once and they can be reused for

all the products of the product family. It took 5 hours to create the feature diagram.

This activity is performed by an experienced engineer based on functional require-

ment specifications. The feature diagram is not modified as long as the set of possible

features in the product family do not change. It took 3 hours to map the features in
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Figure 24: Variation of effort with and without FORMAT.

the feature model to a set of states in the test model. This activity is also performed

by the same engineer, who developed the feature diagram. The created specification

remains the same as long as the set of features and the system usage behavior (as

such, the test model) do not change.

In total, the initial investment, which involves the development of the feature

diagram and the mapping specification, required 8 hours (480 minutes) in total. On

the other hand, the effort required for the adaptation of a test model is decreased

from 2610 seconds to 380.03 seconds on average (See Table 16). That leads to 2229,97

seconds gain per product, which is equal to 37 minutes. Since, 480/37 = 12.915 < 13,

the initial investment can be amortized after the creation of test models for 13 different

products. The total number of products that can be defined based on the feature

diagram is 90. Hence, the investment can be paid off if it is utilized for 15% of the

product family. Based on these results, we conclude that the SPLE approach and

FORMAT lead to significant reduction of effort for developing/adapting test models

for MBT.
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5.2.4 Threats to Validity and Limitations

Our evaluation is subject to external validity threats [91] since it is based on a single

experiment. Especially the set of participants has been selected randomly from the

test group within a company. The experiment can be replicated in various contexts to

be able to generalize the results. Internal validity threats are mitigated by using real

systems and involving real engineers/technicians from the industry. Conclusion and

construct validity threats are mitigated by observing the activities of participants

without interfering with them. We also performed statistical tests to evaluate the

significance of the results.

We should note that our conclusions are based on the assumption that the initially

developed feature diagram and the mapping specification can be reused without being

subject to frequent changes.

5.3 Related Work and Our Contributions

The use of SPLE approach for MBT has been studied before [59]. Existing studies

utilize test models that define possible use cases for a family of products. Then,

product-specific test models (and test cases) can be obtained based on this specifi-

cation. From this perspective, our approach and existing studies are alike. However,

each study uses different formalisms and methods. For instance, ScenTED [92] and

CADeT [93] use UML activity diagrams for specifying use case descriptions. UML

sequence diagrams are used for defining test cases. Hereby, variability information is

embedded in the UML models and binding variants for specific applications requires

manual effort. We use Markov chain formalism to define usage behavior as the test

model. A separate specification is used for documenting the variability in the form of

a feature model. This approach requires a third specification to define the mapping

between the test model and the feature model. However, this requires one-time ef-

fort and test model can be transformed automatically. In addition, test model is not
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tangled with variability information.

MPLM [94] is an extension of the MaTeLo tool-chain for supporting SPLE together

with MBT. This tool also uses hierarchical Markov chains for capturing all possible

use cases for a family of products. However, variability is specified in the form of

an OVM [55]. This graphical model defines variation points, the set of variants for

each variation point and selection constraints for each variant. MPLM removes a set

of states and transitions from the usage model based on the selected variants in the

OVM. In our approach, we employ feature models instead of OVM for documenting

variability. This choice has 3 benefits. First, test model elements inherently represent

features of the system and as such, defining a mapping between these elements and

the feature model becomes straightforward. OVM defines both external and internal

variability. Internal variability concerns with platform related or implementation level

variations that are not visible to users [55]. Hence, its scope is unnecessarily broad

for our purpose. Second, feature models can be better mapped to our test models due

to their hierarchical structure. Third, the use of feature models are more common.

This fact is recognized by the established theoretical work [57] and tool support [95].

There also exist other approaches [96, 97] that use feature models for documenting

variability. However, they use test models in the form of state machines that cover

all the features that can be included in any product. Transitions and states in the

models are removed if the corresponding features are not selected for the product to

be tested. In our approach, we keep the elements of the model and we do not change

the structure of the model. We obtain different test cases by just modifying transition

probabilities based on feature selections.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

Consumer electronics devices that are traditionally electromechanical systems has

become software-intensive embedded systems. Increasing size and complexity of soft-

ware systems makes it harder to ensure software reliability. This trend is a major

issue for the consumer electronics domain, where the time-to-market is very short

and systems are very cost sensitive. Traditional testing processes fall short being

effective in detecting critical faults. They also lack efficiency regarding the use of

limited resources. Therefore, there have been several techniques proposed to improve

the testing process and automate testing activities. MBT is one of such techniques,

which enables automatic generation of test cases based on models of a system. MBT

has been successfully applied in different application domains. In this dissertation,

we introduced methods and tools for effective application of MBT for the consumer

electronics domain. In particular, we focused on the testing of DTV systems as our

case study. We had identified the following 3 problems in this context: i) models have

to be updated manually based on incomplete and imprecise information. ii) resources

are extremely limited for the whole testing process. iii) test models are subject to

high variability for large family of products.

To address the first problem, we introduced an approach and a toolset for incorpo-

rating information from manual ET activities into MBT to increase the effectiveness

of models that are used for test case generation. In our approach, the execution

traces that are recorded during ET activities are utilized as a feedback for refining

test models. We applied our approach in the context of 3 industrial case studies to

improve the models for model-based testing of a DTV system. We could detect real
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and critical faults. These faults were not detected by MBT based on existing models

and they were also missed during the ET activities.

To address the second problem, we introduced an iterative model refinement ap-

proach that utilizes usage profiles, static analysis and dynamic analysis. The overall

goal was to cover different parts of a test model to effectively detect faults that are

more likely to be exposed to the users. We applied our approach in the context of an

industrial case study for MBT of a DTV system. We were able to detect new faults

in each iteration, which shows that successive refinements of test models from differ-

ent perspectives is a viable approach for increasing MBT efficiency. We performed a

second case study with SP systems and likewise, we were able to detect new faults as

well.

To address the third problem, we proposed an approach for using a reference test

model for different products by adopting SPLE principles. This model captures all

possible usage scenarios for a family of systems. In addition, we document variability

explicitly with a feature model and define a mapping between this model and the

test model. The preparation of these input models required an initial investment.

However, testing effort per product was dramatically reduced since the reference test

model can be automatically adapted for various products. We conducted a controlled

experiment in an industrial setting to evaluate the effectiveness of the approach.

Our experiment yielded significant results regarding the reduction of effort per tested

product. We also evaluated the trade-off between the additional effort necessary for

applying the approach and the effort reduction that is achieved after this one-time

investment. We observed that the initial investment can be already amortized by

reusing the reference test model for 13 different products in a product family.

Our future work has two dimensions. The first dimension is concerned with the

improvement of solution approaches that we introduced. The second dimension is
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regarding the improvement and extension of evaluation methods used for these ap-

proaches.

The first dimension is related to the improvement of both the underlying tech-

niques and the implementation of tools. Currently, the tools that we have developed

are mainly unmature research prototypes and they are in fact composed of a set of

tools each of which performs a complementary task. For instance, ARME is composed

of 3 complementary sub-modules: one of these determines new states and transitions

to be added based on a given execution trace and event mapping specification; an-

other one takes this information as input and applies the determined extensions on a

given model; the third one takes the extended model and execution traces as input to

calculate probability values for each transition of the model. In the future, we aim at

providing a seamless integration of such complementary tools as part of an integrated

development environment.

The improvement of underlying techniques can further reduce effort and risk of

error. For instance, we utilize an event mapping specification for updating existing

test models with ARME. One can consider the automated generation of a test model

from scratch by just using this specification and recorded event sequences. A more

effective approach would involve automated learning of usage behavior without using

any specification that is created manually [68, 98]. That is, a test model can be

directly inferred from low level sequence of events.

We have several assumptions for using ARME. These assumptions mainly lead to a

more efficient but less generic approach. For instance, it is assumed that a sequence of

events uniquely represents a state in an event mapping specification. This assumption

might not hold for all types of systems but it simplifies the employed algorithm, which

performs a single pass over the recorded event sequence. One can tackle any of such

assumptions to trade-off efficiency for genericity. For example, mapping rules can

be relaxed to allow intersecting sequences represent various states, in which case the
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employed algorithm has to resolve resulting ambiguities.

As part of the second dimension of our future work, we plan to apply our solution

approaches, the developed methods and tools for other types of systems, in particular

home appliances products other than DTV systems. Concerning the evaluation of

RIMA in particular, we would like to perform tests with randomly generated test

cases to form a baseline for comparison. Such a comparison would reveal if new faults

are detected as a result of the application of RIMA or if they can also be detected by

just a naive, randomized test strategy. Also, we plan to conduct another controlled

experiment with a crossed design regarding our third study with FORMAT. This time,

we will study with a different group of subjects and randomize the order of treatments

for participants.

91



Appendices

92



APPENDIX A

INDUSTRY AS LABORATORY APPROACH

Industry-as-laboratory was introduced as a promising approach for software engineer-

ing research [1]. It was proposed to address the drawbacks of the so-called research-

then-transfer approach, which is more common in state-of-the-practice. Three main

issues were observed concerning this conventional approach [1]. First, the research

problem is usually identified and formulated according to the solution technology that

is of interest to the researcher, not according to the needs of the industry. Second,

there is a lack of feedback on interim results while these results are refined in suc-

cessive research efforts built on top of each other. Third, the evaluation is delayed

until the research is deemed mature enough at which point it becomes more difficult

to find relevant case studies and apply the results.

Industry Academia

Research 
Topic

Problem

Case Study
Methods, 

Techniques, 
Tools

apply

evaluate

derive

research

identify
Application

Figure 25: Feedback cycle employed in the industry-as-laboratory approach.

The overall process employed in an industry-as-laboratory approach is presented

in Figure 25. Hereby, the research problem is identified based on an evaluation
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of the application environment in the industry. Research and technology-transfer

activities are not performed in separate, sequential phases. They are interleaved

in the form of a continuous feedback cycle, in which interim results are applied in

practice. Identification of further problems and research topics are steered by the

feedback received from industrial case studies. Successive research efforts become

more and more problem-focused (See Figure 26).

Application / Problem Domain Research / Solution Domain

Problem
(version 1)

Research
(version 1)

Problem
(version 2)

Research
(version 2)

Problem
(version 3)

Research
(version 3)

Problem
(version 4)

Research
(version 4)

Figure 26: An illustration of the industry-as-laboratory approach [1].

We applied the industry-as-laboratory approach [1] for conducting research in

the scope of this dissertation. In this section, we discuss our experiences in the

application of this approach, which is proven to be highly effective for industry-

academia collaboration and technology transfer. In the following, we introduce the

observed challenges regarding the adoption of MBT in consumer electronics domain,

for testing DTV systems in particular.

A.1 Research Challenges

In the scope of this dissertation, we focus on functional tests and in particular the

adoption of MBT for automating these tests. We observed several practical issues in

our research context, as listed in the following.
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• Error-prone Modeling : We observed that critical faults were being detected

during the manual ET activities. These faults were missed by the generated

test cases using MBT. These test cases did not exercise the corresponding usage

scenarios simply because test models were missing some of the transitions and

states. For instance, it was possible to directly go back to a menu screen from a

sub-menu after a timeout duration, while this transition was not included in the

model at all. There are two main reasons for such omissions. The first reason

is human error since model creation is a manual process. Second, requirement

specifications are used as the main information source for model creation. These

specifications are often incomplete and imprecise. As a result, created test mod-

els can be incomplete as well. In fact, the use MBT revealed the missing parts

in the specification; however, this happened only after manually investigating

the reason for inconsistencies between the set of faults detected by MBT and

those detected during ET. Test engineers explore the usage behavior of the sys-

tem independently and their explorations are generally not documented and

systematically compared with respect to requirement specifications.

• Limited Time: The time is extremely limited compared to the amount of func-

tionality to be tested in the consumer electronics domain. Test models that

we use in our case studies have hundreds of states and transitions. However,

some of the existing test models for DTV systems that were developed in Vestel

for MBT already included thousands of states and transitions. These models

are created from the user perspective. They have a hierarchical structure. The

level of abstraction and different levels of hierarchy are aligned with the user

interface. At the top level, each node represents a usage mode of the system.

For each usage mode, there exist further sub-models. In these models, each

node represents a state that the user can be in while using the system. For
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instance, for the video mode, the user can be in states such as playing, paused,

and stopped. In addition, the video can be fast forwarded, rewined, a previ-

ously recorded video can be retrieved, and the recording can be made regular

in certain time intervals. Each relevant action in the context of various features

(playing on Youtube, playing on MB, etc.) is represented as a state and as a

result, there can be thousands of states due to the increasing number of features

with complicated usage scenarios adopted in new generation DTV systems. Hi-

erarchical modeling helps to manage such large-scale models by focusing on a

particular usage mode at a time.

In principle, it is possible to generate infinitely many test cases from test mod-

els. Execution time for each test case depends on the number of test steps and

the type of test steps involved. It can range from 1 minute to 1.5 hours. Even

a single test step can take 10 minutes to execute (e.g., playing video for 10

minutes). In practice, trade-offs have to be made due to limited time. The gen-

erated test cases have to focus only on execution paths that are liable to highly

severe failures that can be directly observed by users. Time limitation is mainly

related to the level of test automation, which is discussed in the following.

• Test Automation: Test case generation is automated with an MBT tool1. How-

ever, automated execution of the generated test cases is not straight-forward.

These test cases are defined at an abstract level and they cannot be directly

executed. Vestel uses an in-house developed tool, namely VesTA, to automate

test execution on DTVs with scripts. The implementation of these scripts re-

quires one-time effort and they are embedded in test models. Such models were

already available prior to our case studies. Hence, test execution is automated.

1Vestel currently employs MaTeLo (http://www.all4tec.net) for developing test models and gen-
erating test cases from these models.
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However, test automation also requires the differentiation of correct and incor-

rect system behavior to evaluate test results. In general, this problem is referred

to as the test oracle problem [99]. VesTA can automate test case evaluation by

comparing the current DTV screen with respect to a set of previously captured

images of the screen. For some of the test cases, this approach is applicable and

sufficient, provided that the expected results are defined in the test scripts. For

some other test cases, a test engineer has to manually check certain properties

on the screen and audio as well. An example for this case could be the test of

subtitle mode for people that have hearing impairment. The color of subtitles

in this mode should change according to different people speaking in the dis-

played picture at different times. It is very hard to automate test oracles for

such cases due to synchronization issues. We do not consider such issues as a

MBT problem in general, but rather practical impediments of the application

domain that should be taken into consideration while using MBT.

• Model Variability : In addition to the products of its own, Vestel is producing

DTV systems for 157 different brands from 145 different countries. The set of

features, broadcast specifications and user interfaces can differ from system to

system. MBT is actually better than manual testing with respect to handling

this variability. Variations can be better managed at the abstraction level of

test models. However, MBT still falls short to address systematic variability

for large scale product families with high number of variations that cross-cut

test models [19, 20]. The problem gets amplified when we utilize embedded

test scripts in models to facilitate test execution automation. Although test

models are defined at an abstract level, test scripts are not. They comprise

low level input events that are subject to more variation for various products.

Therefore, the MBT process and test models must be flexible to systematically
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manage variability and increase the amount of reuse for testing artifacts. This

need can be fulfilled to some extent by parameterizing the lower level scripts

in the test model. However, when the number of parameters increases as well

as interactions (possible conflicts) among them, a systematic approach and tool

support are required to manage them. Otherwise, manual traceability and

maintainability becomes infeasible. A SPLE approach is required for facilitating

systematic and scalable reuse [21].

There are currently hundreds of mapping definitions in the database. The manage-

ment of this database becomes a challenge due to high variation among the various

types of DTV systems. The model is kept generic by utilizing high level scripts

and mapping them to platform-dependent low level scripts. However, this approach

shifted the problem of management of Model Variability to the management of map-

ping definitions.

A.2 Application of the Industry-as-Laboratory Approach

In this section, we provide an overview of the problems listed in the previous subsec-

tion and the research activities performed to address these problems. We illustrate the

application of the industry-as-laboratory approach, where the emergence of research

problems and identification of research topics are interleaved.

The process is depicted in Figure 27, which is an instance of the approach shown

in Figure 26. There are two problems initially identified: error-prone modeling and

limited time. Limited time is also related to the lack of test automation. Utilization

of ET for automated extension of models is considered as a solution approach for

error-prone modeling and this approach was introduced in Chapter 3. However,

extension of models increases the testing time and as such amplifies the problem

of limited time. Limited time prohibits the exhaustive coverage of the test model;

hence, we investigated the utilization of usage profile to focus test cases. However,
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fault detection effectiveness had to be improved by focusing test cases also on scenarios

that are likely to expose failures. Failure likelihood had to be estimated for this

purpose. The first attempt was the utilization of static analysis for failure likelihood

estimation. The observation of negligible reduction in test duration and undetected

memory-related failures led to the utilization of dynamic analysis for memory-related

failure likelihood estimation. These problems and the solution approach were defined

in Chapter 4. Test automation problem has two dimensions: test oracle automation

and automation of test execution. Test oracle automation is not in the scope of the

dissertation. Automation of test execution is addressed with embedded test scripts

in models, which is also not in the scope of the dissertation. Embedded scripts

are subject to variations for different products. This amplifies the model variability

problem, which is addressed by explicitly coupling of test models with feature models

and this approach was introduced in Chapter 5.

A.3 Discussion

The success of the industry-as-laboratory approach depends on its implementation,

considering many alternatives of realization [100]. Variation points in the implemen-

tation of this approach were previously identified by [100] as follows:

• Kind of researchers, e.g., academic PhD student, industrial PhD student, aca-

demic Post-Docs, or industrial researchers; and their amount of academic and

industrial experience.

• Kind of research, e.g., explorative or applied, and problem- or solution-driven.

• Kind of company involvement, from strongly pulling to resisting change, and

from only a single manager to all employees.
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Figure 27: The application of the industry-as-laboratory approach (See Figure 26).

• The knowledge, skills, and abilities of the researchers.

In our implementation, an industrial Ph.D. student is involved as the main re-

searcher, who is supported by her manager and an academic supervisor. The re-

searcher has a M.Sc. degree focusing on MBT and she is a full time employee of the

company with around 6 years of experience. There is an overlap between her job defi-

nitions as a software test engineer and the set of tasks she need to carry out as part of

her Ph.D. studies. For example, she is responsible for maintaining and improving test
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models created for MBT. She also manages a group of other test engineers and tech-

nicians for performing regular tests on products. So, performing experiments turns

out to be part of daily activities. She spends 2 days per week for pure research work

(not directly related to product development) on average. This work includes research

meetings (at least 1 hour every week), literature study, research tool development,

paper writing, presentations, and project proposal preparation.

The performed research is applied and problem-driven, which is based on prob-

lems directly observed during the first-hand experience on the adoption of MBT. We

consider this as a major factor for the success of the approach. Due to obligations

in the company, the researcher also have to be involved in problem-solving activities

with a short-term focus. These activities should be separated from research activities

that aim at generic results with a long-term focus. The main drawback of our imple-

mentation of the approach is the switching overhead caused by this conflict. On the

other hand, it has also advantages. Research results can be very quickly validated

since the researcher has the necessary background, expertise and full control of the

industrial setting, i.e., the laboratory.

A.4 Related Work and Our Contributions

There exists a large body of work on MBT techniques [62] and tools [44]. There

also exist several case studies [13, 65] where the effectiveness of MBT is evaluated

with a special focus on embedded, safety-critical systems. Some of the proposed

MBT techniques are extensively evaluated also for other application domains with

large case studies [69]. However, these case studies are mainly based on open-source

software systems.

Unfortunately, many academical methods never reach industrial application [1].

Industry-as-laboratory was introduced as a research approach to address this prob-

lem. This approach was previously applied in the Trader project [101] by bringing a
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set of academic and industrial partners together to increase the dependability of con-

sumer electronic devices. In that project, DTV systems were used as case studies as

well. These studies took place in their industrial context to promote the applicability

and scalability of solutions under relevant practical constraints [101]. The project

involved research efforts in several different areas like run-time verification [102], er-

ror recovery [103], fault diagnosis [104], software architecture analysis [105, 106] and

source code analysis [107]. However, MBT was not in the focus of the project.

There also exist other applications of the industry-as-laboratory approach reported

in the literature [100, 108, 109, 110, 111, 112]. However, they focus on different

application domains and different research areas in software engineering and systems

engineering.
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APPENDIX B

CASE STUDY ON EXPLORATORY TESTING

ET [45, 46, 113] adopts a continuous learning and adaptation process for testing.

Hereby, the tester iteratively learns about the product and its faults, plans the test-

ing activities, designs, and executes the tests [14]. Unlike traditional test case based

testing, ET is not based on a set of predesigned test cases. Instead, tests are dynami-

cally designed, executed, and modified by testers. Hence, test design, execution, and

learning are all concurrent activities.

ET does not utilize formal descriptions or detailed methodologies. Testing activi-

ties are performed manually and testers do not strictly follow any procedures during

these activities. As a result of these facts, one might consider ET as an ad-hoc ap-

proach. Nevertheless, it is known to be one of the mostly applied and one of the most

effective approaches [50, 51, 114, 115] in terms of revealing failures. This recognition

is also aligned with our own observations in the industry [25, 116]. We have seen that

test models that are refined based on ET activities were more effective in terms of

finding failures.

ET aims at exploiting human effort efficiently by utilizing intuition, experience,

and knowledge. This experience and knowledge can be related to the application do-

main, system (i.e., specific to the tested product) or background (e.g., general software

engineering and testing knowledge) [82]. In particular, ET activities are supposed to

be performed by testers who have both technical knowledge and accumulated unwrit-

ten knowledge on where failures most likely exist [14]. Therefore, it is believed that

ET is largely dependent on the skills and experience of the tester [115]. However,

to the best of our knowledge, the impact of education and experience level on the
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effectiveness of ET has not been formally evaluated before.

B.1 Industrial Case Study and Discussion

We report a case study that is performed in an industrial context. 19 practitioners,

who have different education and experience levels, were involved in applying ET for

testing a DTV system. We measured the number of detected failures and categorized

these failures based on their severity. We also measured the time spent by each

subject for performing the tests. Then, we compared different groups of subjects.

These groups are formed based on experience and education levels. Comparisons are

performed with respect to two criteria: i) the number of detected failures that are

critical, and ii) efficiency measured as the number of failures detected per unit of

testing time.

Results show that the efficiency of ET is significantly affected by both the edu-

cational background and experience levels. Experience level has a significant impact

on the number of detected critical failures as well. However, we can not observe an

impact of education on the number of critical failures detected.

Our case study is performed for testing DTV systems developed by Vestel. DTV

systems are highly cost sensitive and they are subject to short development time peri-

ods. The market is highly competitive and end users are less tolerant to failures [117].

Hence, effective testing methods are essential. ET is known to be one of the methods

that has been applied for years [25, 116]. It has been applied by different employees

in the company over time.

In this study we aimed at evaluating the impact of the educational backgrounds

and experience levels of these employees on the effectiveness of ET. Hereby, we differ-

entiate experience regarding the domain or the system under test from the experience

in testing activities in general. In terms of educational background, we differentiate
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between those who have higher education (college or university) on a relevant sub-

ject (Computer Science/Engineering or Software Engineering) and those who do not

have (high school graduates or graduates of two-year educational programs). Testers

who have higher education and do not have higher education participated in software

testing training which was given internally in the company for 2 days.

B.2 Research Questions

We evaluate the effectiveness of ET from two aspects. First, we consider test effi-

ciency based on the effort and the number of detected failures. Second, we consider

how critical the detected failures are. Therefore, we defined the following research

questions.

RQ1: How domain and testing experiences are affecting the test efficiency in

terms of number of failures detected per unit of time?

RQ2: How domain and testing experiences are affecting the number of critical

failures detected?

RQ3: How educational background is affecting the test efficiency in terms of

number of failures detected per unit of time?

RQ4: How educational background is affecting the number of critical failures

detected?

Accordingly, we defined the following 4 hypothesis:

• H1
o The level of domain experience and testing experience do not have any effect

on the ET efficiency.

• H2
o The level of domain experience and testing experience do not have any effect

on the the criticality of detected failures during ET.
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• H3
o The level of education does not have any effect on the ET efficiency.

• H4
o The level of education does not have any effect on the the criticality of

detected failures during ET.

. In the following, we explain the experimental setup we used for addressing the

research questions.

B.3 Experimental Setup

There is a dedicated software testing group in the company who is performing tests of

various consumer electronics products such as DTVs, refrigerators, washing machines,

dishwashers, air conditioners, cookers, and smart phones. Most of the tests are auto-

mated but there are also manual tests being performed and we focused on such tests

in this study. The testing group is composed of either test engineers who studied at a

college/university or test technicians who completed two-year educational programs.

We refer to both test engineers and test technicians as practitioners in the rest of the

paper.

In total, 19 practitioners were involved in the case study as subjects. These

practitioners were instructed to apply ET for a particular feature of a real DTV

system. This feature was explained to all the subjects for 15 minutes before the case

study. Some of the subjects have already had domain knowledge, i.e., they have been

previously working on testing DTVs. Some other subjects lacked this knowledge, i.e.,

they were involved in the testing of products other than DTVs.

The list of all the subjects are provided in Table 19. For each subject, 3 properties

are listed in the 2nd, 3rd and 4th columns, respectively. These properties also define

the factors we consider in the case study:

• Domain Experience: measured in ratio scale in terms of the number of years.

• Testing Experience: measured in ratio scale in terms of the number of years.
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• Higher Education: measured in nominal scale, at two levels: exists, not exists.

In Table 19, it can be seen that, some practitioners have more domain experiences

than testing experiences. These practitioners are testers who do not have higher

education and they had worked for various products other than DTVs.

Domain Testing Higher

Practitioner Experience Experience Education

ID (PId) (# of years) (# of years) (Yes/No)

1 11 11 No

2 8 8 No

3 16 14 No

4 7 5 No

5 7 7 No

6 11 10 No

7 8 10 No

8 1 1 Yes

9 6 6 Yes

10 1 8 Yes

11 1 1 Yes

12 1 1 Yes

13 1 1 Yes

14 1 1 Yes

15 4 4 Yes

16 4 4 Yes

17 12 12 Yes

18 0 3 Yes

19 0 2 Yes

Table 19: The whole list of subjects.

We asked all the participants to perform ET on the same system. They were just

observed without interference throughout this process. The system under test was

also not altered (no bug fixes) throughout the study. We measured/calculated the

following variables:

• Test duration: measured for each subject in ratio scale in terms of the number

of days.
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• Number of failures detected : measured for each subject in absolute scale for

each of the failure categories listed as Critical, Major, Minor, and Trivial.

• Efficiency : calculated for each subject as the ratio of the total number of failures

detected and test duration.

In the following, we present and discuss the results.

Test

Practitioner Duration # of Failures Detected

ID (PId) (# of days) Critical Major Minor Trivial

1 10 2 2 5 1

2 10 2 2 6 2

3 9 2 2 5 0

4 9 2 2 5 0

5 10 2 2 4 0

6 10 2 2 5 0

7 10 2 2 5 0

8 15 2 2 5 2

9 6 2 2 6 0

10 10 1 2 2 0

11 15 1 2 5 1

12 14 1 2 5 0

13 15 1 2 5 1

14 12 0 2 5 1

15 8 2 2 6 0

16 9 2 2 6 0

17 6 2 2 6 0

18 16 1 2 4 2

19 16 1 2 4 2

Table 20: The list of overall results.

B.4 Results and Discussion

The overall results are summarized in Table 20. The first column lists the ID of each

subject just like in Table 19. The second column lists the test duration. For instance,

we can observe that PId− 18 and PId− 19 (Practitioner ID 18 and 19) completed

the test in 16 days, where PId− 9 and PId− 17 completed the test in 6 days. The

last column lists the number of failures detected. This list is provided separately for

the 4 different failure categories; Critical, Major, Minor, and Trivial. For instance,
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we can see that PId−2 detected the maximum total number of failures (12); however

PId− 10 could only find 5 failures.

We compared different groups of subjects with respect to efficiency and the number

of detected failures that are of type Critical. These groups are formed based on

experience and education levels. Education level is already provided in nominal scale

and as such it is trivial to separate the two groups. To be able to separate subjects

with respect to experience, we set a threshold for the number of years of experience

as 2. Subjects, who have at least 2 years of (both domain and testing) experience are

considered experienced, while the others are considered inexperienced.

In the following, we list the results for different groupings to answer the 4 research

questions.

Impact of domain and testing experience on test efficiency To be able to

evaluate the impact of experience, we have separated the results into two; i) those

for subjects who do not have higher education, and ii) those for subjects who have

higher education. These results are listed in Table 21 and 22, respectively.

Practitioner Domain Testing #Critical

ID (PId) Experience Experience Failures Efficiency

1 11 11 2 1.00

2 8 8 2 1.20

3 16 14 2 1.00

4 7 5 2 1.00

5 7 7 2 0.80

6 11 10 2 0.90

7 8 10 2 0.90

Table 21: Results for subjects who do not have higher education.

When we look at the subjects that do not have higher education (Table 21), we

see that they all have high experience levels. Therefore, we could not evaluate the

impact of experience for this group. However, experience levels vary for the subjects

who have higher education (See Table 22). We can also observe that the efficiency is
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Practitioner Domain Testing #Critical

ID (PId) Experience Experience Failures Efficiency

8 1 1 2 0.73

9 6 6 2 1.67

10 1 8 1 0.50

11 1 1 1 0.60

12 1 1 1 0.57

13 1 1 1 0.60

14 1 1 0 0.67

15 4 4 2 1.25

16 4 4 2 1.11

17 12 12 2 1.67

18 0 3 1 0.56

19 0 2 1 0.56

Table 22: Results for subjects who have higher education.

higher for those subjects that have experience. We performed a t-test to validate this

observation. We formed two groups, Group A and Group B from the list of subjects

in Table 22. Group A consists of experienced subjects (who have 2 or more years of

experience), whereas Group B consists of inexperienced subjects (who have less than

2 years of experience). We compared the efficiency for these groups.

Results1 are listed in Table 23.

We can see that P(T¡=t) one-tail and P(T¡=t) two-tail values are very low. They

are well below the commonly accepted threshold (0.05) [118], which means that the

difference is significant. That also means that the null hypothesis H1
o can be rejected

and the impact of experience on ET efficiency can be confirmed. We also evaluated

the impact of experience on the criticality of the detected failures. This is discussed

in the following.

Impact of domain and testing experience on the criticality of the detected

failures We can observe in Table 22 that experienced subjects detected more fail-

ures of type Critical. We performed a separate t-test to evaluate the significance of

1We used Microsoft Excel (2010) to obtain the results.
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Group A Group B

Mean 1.423 0.599

Variance 0.081 0.005

Observations 4 8

Hypothesized Mean Difference 0

df 3

t Stat 5.668

P(T ≤ t) one-tail 0.005

t Critical one-tail 2.353

P(T ≤ t) two-tail 0.01

t Critical two-tail 3.182

Table 23: T-test results regarding the comparison of experienced (Group A) and
inexperienced (Group B) groups by means of test efficiency.

this difference. We performed the comparison between the same groups, Group A

and Group B as formed in the previous test.

The results are listed in Table 24. Again, the P values turn out to be well below

0.05, which points out the significance of the difference. Hence, we conclude that the

null hypothesis H2
o can be rejected. The level of experience has a significant impact

on the criticality of failures detected during ET.

In fact, we can observe from Table 21 that all the subjects detected all the 2

critical failures. Recall that all of these subjects have high experience though they

do not have higher education. Their efficiency (0.97) is also higher than those listed

in Table 22 (0.87) on average. We evaluate the impact of education in more detail in

the following.

Impact of higher education on test efficiency To be able to evaluate the impact

of higher education, we have separated the results into two; i) those for subjects who

have 2 or more years of domain and testing experience, and ii) those who have less

than 2 years of experience. These results are listed in Table 25 and 26, respectively.

When we look at the inexperienced subjects (Table 26), we see that they all have
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Group A Group B

Mean 2 1

Variance 0 0.285

Observations 4 8

Hypothesized Mean Difference 0

df 7

t Stat 5.291

P(T ≤ t) one-tail 0.0005

t Critical one-tail 1.894

P(T ≤ t) two-tail 0.0011

t Critical two-tail 2.364

Table 24: T-test results regarding the comparison of experienced (Group A) and
inexperienced (Group B) groups by means of number of detected critical failures.

higher education. Therefore, we could not evaluate the impact of education for this

group. However, education level varies for the subjects who are experienced (See

Table 25). On average, the efficiency of those who have higher education (1.42) is

more than the efficiency of others (0.97). We also performed a t-test to evaluate the

significance of this difference. We formed two groups, Group C and Group D from

the list of subjects in Table 25. Group C consists of subjects with higher education,

whereas Group D consists of subjects without higher education. We compared the

efficiency for these groups. Results are listed in Table 27.

We can see that P(T¡=t) one-tail and P(T¡=t) two-tail values are 0.019 and 0.039,

respectively. These values are below 0.05, suggesting that education has a significant

impact on efficiency among the experienced subjects. Hence, the null hypothesis

H3
o can also be rejected although, P values are closer to the threshold in this case.

However, we can not conclude the same for the criticality of the detected failures as

discussed in the following.

Impact of higher education on the criticality of detected failures We can

see in Table 25 that all the subjects detected 2 critical failures. Hence, we can not
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Practitioner Higher # of Critical

ID (PId) Education Failures Efficiency

1 No 2 1.00

2 No 2 1.20

3 No 2 1.00

4 No 2 1.00

5 No 2 0.80

6 No 2 0.90

7 No 2 0.90

9 Yes 2 1.67

15 Yes 2 1.25

16 Yes 2 1.11

17 Yes 2 1.67

Table 25: Results for subjects who have at least 2 years of experience.

Practitioner Higher # of Critical

ID (PId) Education Failures Efficiency

8 Yes 2 0.73

10 Yes 1 0.50

11 Yes 1 0.60

12 Yes 1 0.57

13 Yes 1 0.60

14 Yes 0 0.67

18 Yes 1 0.56

19 Yes 1 0.56

Table 26: Results for subjects who have less than 2 years of experience.

observe any impact of higher education in that respect. There is no difference at all.

So, we conclude that higher education does not have an impact on the criticality of

detected failures. As such, we have to accept the null hypothesis H4
o .

In fact, we can also observe from Table 21 that all the subjects who do not have

higher education could find all the critical failures. On the other hand, subjects who

do have higher education could not (See Table 22). However, we can not compare

these directly since the level of experience is different between the groups.
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Group C Group D

Mean 0.971 1.423

Variance 0.015 0.081

Observations 7 4

Hypothesized Mean Difference 0

df 4

t Stat -2.998

P(T ≤ t) one-tail 0.019

t Critical one-tail 2.131

P(T ≤ t) two-tail 0.039

t Critical two-tail 2.776

Table 27: T-test results regarding the comparison of groups who have higher education
(Group C) and who do not have higher education (Group D) by means of efficiency.

In the following, we discuss validity threats for our case study.

B.5 Threats to Validity and Limitations

Our study is subject to an external validity threat [91] since it is based on a single case

study. Internal validity threats are mitigated by using a real system and involving

real participants from the industry to our study. Conclusion and construct validity

threats are mitigated by observing the activities of participants without interfering

with them. The number of participants (19) can also lead to conclusion and construct

validity threats. However, we performed statistical tests to evaluate the significance

of the results.

We also performed Anova analysis [119] to test the significance of differences

among different groups of participants. 4 different groups can be considered based on

the 2 factors we evaluate in this study. These groups are shown in Table 28.

Hereby, we are missing one of the groups as highlighted in the table since we

do not have any subjects in that category. We performed one-way (single factor)

Anova analysis on the remaining 3 groups in terms of test efficiency. Table 29 lists

sum, average and variance values for each group, whereas Table 30 lists the analysis
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Higher No Higher

Factors Education Education

Members of both Members of both

Experience Group A and C Group A and D

No Members of both Members of both

Experience Group B and C Group B and D

Table 28: 4 different groups of subjects based on 2 factors: experience and education
level.

results.

Group A & D Group A & C Group B & C

Count 7 4 8

Sum 6.8 5.69 4.79

Average 0.97 1.42 0.59

Variance 0.015 0.081 0.005

Table 29: Descriptive statistics regarding the test efficiency of groups listed in Ta-
ble 28.

We can see that the F value is much greater than F-critical value. We can also

see that the P-value is much smaller than 0.05. These results also indicate significant

difference among the groups of subjects.

Between Group Within Group Total

SS 1.852 0.376 2.228

df 2 16 18

MS 0.926 0.023 0.59

F 39.4

P-value 0.0000007

F crit 3.63

Table 30: Anova analysis results regarding the comparison of groups listed in Table 28
in terms of test efficiency.

The significance of the results can also be observed with the box plot depicted in

Figure 28. Hereby, we compare the distributions of test efficiency values for the 3
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groups on which we applied Anova analysis. We can see that error bars (i.e., whiskers)

are short and variance within each group is small. This also increases our confidence

regarding the significance of the results.

Figure 28: Box plots regarding the test efficiency of the 3 groups listed in Table 28;
Exp. & no H. Edu (Group A & D), Exp. & H. Edu. (Group A & C), no Exp. & H.
Edu. (Group B & C)

B.6 Related Work and Our Contributions

Although ET is commonly applied in practice, scientific research and empirical stud-

ies on ET are scarce, especially when we consider those that are conducted in an

industrial context [79, 115]. In the following, we summarize existing publications on

related experimental studies.

There have been experimental studies on testing techniques in general [120]. An

evaluation of these techniques [115] suggests that skills and experience of the tester

turn out to be an important factor for testing effectiveness even in test case based

testing. Similarly, the importance of both testing knowledge and domain knowledge

was confirmed by industrial case studies before [121]. In another study [122], the

impact of experience was evaluated for the effectiveness of test case design. Hereby,

results show that neither the experienced nor the inexperienced testers performed

better with respect to each other in all aspects. The two groups had both relative

strengths and weaknesses with respect to different aspects.
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An experimental study [123] for comparing ET and test case based testing revealed

that these two approaches do not differ in terms of failure detection effectiveness.

However, they have both pros and cons with respect to efficiency, the number of false

positives and management overhead.

A controlled experiment [124] was conducted to compare the failure detection

effectiveness of MBT and model-based ET. Results show that the overall test effec-

tiveness was improved though the two approaches detect different types of failures.

We have also conducted case studies before for evaluating the effectiveness of MBT,

when it is supported by ET [25]. Results show that the test effectiveness can be

significantly improved when the test models are refined based on execution traces

collected during ET activities.

An empirical study [80] that focuses particularly on the effectiveness of ET studied

the impact of personality traits as a factor. Results show that testers having extrovert

personality might be more likely to be good at ET. In this study, we evaluate the

impact of education and experience level on the failure detection effectiveness of ET.
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