
ZEROABILITY PATTERNS OF MONOMIALS IN THE

SIGN-REPRESENTATION OF BOOLEAN FUNCTIONS

A Thesis

by

Oytun Yapar

Submitted to the

Graduate School of Sciences and Engineering

In Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in the

Department of Computer Science

Özyeğin University

June 2017

Copyright © 2017 by Oytun Yapar

ZEROABILITY PATTERNS OF MONOMIALS IN THE

SIGN-REPRESENTATION OF BOOLEAN FUNCTIONS

Approved by:

Associate Professor Erhan Öztop, Advi-

sor,

Department of Computer Science

Özyeğin University

Assistant Professor Melih Kandemir,

Department of Computer Science

Özyeğin University

Associate Professor Ali Fuat Alkaya,

Department of Computer Science and

Engineering

Marmara University

 Date Approved: 24 May 2017

iii

To my beloved family and friends

iv

ABSTRACT

Boolean functions (BF) are one of the fundamental concepts in discrete mathematics. It

is possible to represent any BF by a unique polynomial when one takes -1 as True and 1

as False. Coefficients of the polynomial representing the given BF can be found with

Lagrange interpolation. When the exact interpolation criterion is replaced with the sign-

match criterion, one can find infinitely many sign representing polynomials for a given

truth table. The problem of finding a minimum number of monomial set that is suffi-

cient to represent a BF is a difficult mathematical problem. This thesis aims to contrib-

ute to its solution by investigating the zeroability patterns of monomials. To this end,

we asked which monomials must be in a minimum sign representing polynomial. This

question drove us to make numerical investigations on the BFs in lower dimensions. For

all 3- and 4-variable BFs, we found all the monomial subsets, whose elements can be

zeroed and we introduced a graph representation indicating whether particular pairs of

monomials could be absent from any sign representation. In addition to the numerical

investigations, we have also proved that if a three-element monomial set S, could not

be absent altogether from the sign representation of a BF, then there must be at least a

two element subset of S which could not be absent in any sign representation of that BF.

We expect these results will give support to the development of heuristic algorithms to

construct close-to-minimum number of monomial sign representing polynomials for

BFs.

v

ÖZETÇE

Boolean fonksiyonlar (BF) ayrık matematik alanındaki temel konulardan biridir. 1’i

Yanlış ve -1’i Doğru olarak kabul edersek, bir BF’i tek bir polinomla ifade edebiliriz.

Verilen BF’in katsayıları Lagrange interpolasyonu ile bulunabilir. Ne zaman tam

interpolasyon işaret eşleşme kriteri ile değiştirilirse, verilen bir gerçeklik tablosu için

sonsuz tane işaret temsili polinomu bulunabilir. Bir BF’i temsil etmek için yeterli,

minimum sayıda terim içeren bir küme bulmak zor bir matematik problemidir. Bu tez

bu problemin çözümüne, terimlerin BF’i temsil ederken sıfırlanabilme düzenlerini

araştırarak katkı sunmayı hedeflemektedir. Bu amaçla, hangi terimler minimum işaret

temsili polinomda olmak zorundadır sorusunu sorduk. Bu soru bizi küçük boyutlarda

numerik araştırmalar yapmaya itti. Tüm üç ve dört değişkenli BF’ler için, elemanları

bir arada sıfırlanabilen tüm alt kümeleri bulduk ve hangi monomial çiftlerinin birlikte

herhangi bir işaret temsilinden eksik olup olamayacağını belirten, bir graf tanımı yaptık.

Numerik araştırmalara ek olarak, üç elemanlı bir terim kümesi S, tüm elemanları bir

arada bir BF’in işaret temsilinden çıkarılamıyorsa, S’in iki elemanlı alt kümelerinden en

az bir tanesinin bu BF’in işaret temsilinden çıkarılamaz olduğunu ispatladık. Bu

sonuçların bize, minimum terim sayısına yakın sayıda terim bulunduran, BF’lerin işaret

temsili polinomlarını bulmamızı sağlayacak buluşsal bir algoritma bulma konusunda

destek olmasını bekliyoruz.

vi

ACKNOWLEDGMENTS

Special thanks to my advisor Professor Erhan Öztop for his guidance, patience and

knowledge. He was always constructive and positive to me. Thanks to his comments

and remarks. Thanks to my family, they always supported me for finishing my thesis.

Thanks to my friends, especially Ekin Yağmur Gönen for reviewing my thesis. Addi-

tionally subject of this thesis was really interesting and I would like to continue re-

searching on this topic.

vii

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZETÇE ... v

ACKNOWLEDGMENTS .. vi

LIST OF TABLES ... x

LIST OF FIGURES .. ix

I INTRODUCTION ... 1

1.1 Boolean Functions .. 1

1.1.1 Higher Order Neuron Representations of Boolean Functions ... 6

1.2 Minimum Number of Monomials Problem of Polynomial

Boolean Functions .. 7

1.2.1 Equivalency of Boolean Functions .. 8

II PREVIOUS WORK .. 10

III ZEROABILITY PATTERNS OF MONOMIALS IN THE HIGHER

ORDER NEURON REPRESENTATIONS OF BOOLEAN

FUNCTIONS .. 13

3.1 Numerical Investigations on Monomial Zeroability 13

3.2 Pairwise Zeroability of Monomials From Sign Representations 18

3.3 Pairwise Zeroability and Incompatibility Graph 24

IV CONCLUSION .. 29

APPENDIX A .. 32

BIBLIOGRAPHY .. 34

viii

LIST OF TABLES

1 Truth table of given f3 in both Boolean domain and real numbers domain 1

2 Two dimensions Sylvester type Hadamard matrix ... 3

3 The function output vector [-1 1 -1 1 -1 1 -1 1] can be mapped (with t(b)=(1- b)/2)

to the binary number 10101010 that is 0xaa in hexadecimal notation. 9

4 Number of zeroable subsets for each function class is given for each subset

cardinality (3 dimensions) .. 16

5 Number of zeroable subsets for each function class is given for each subset

cardinality (4 dimensions) .. 16

6 Number of first time introduced non-zeroable subsets for each function class is

given for each subset cardinality (3 dimensions) .. 17

7 Number of first time introduced non-zeroable subsets for each function class is

given for each subset cardinality (4 dimensions) .. 18

ix

LIST OF FIGURES

1 Higher-order neuron that represents Boolean function given in Table-1 and a

biological neuron .. 6

2 Incompatibility graph of Class 0xaaff .. 26

3 Incompatibility graph of Class 0xaba5 ... 26

4 Incompatibility graph of Class 0xaa55 ... 27

5 Incompatibility graph of Class 0xab55 ... 27

6 Incompatibility graph of Class 0xab12 ... 28

7 Incompatibility graph of Class 0xac90 ... 28

8 Incompatibility graph of Class 0xaa ... 32

9 Incompatibility graph of Class 0xab ... 32

10 Incompatibility graph of Class 0xac ... 33

11 Incompatibility graph of Class 0xbb55 ... 33

12 Incompatibility graph of Class 0xaba4 ... 33

1

CHAPTER I

INTRODUCTION

1.1 Boolean Functions

When -1 and +1 are used to represent True and False respectively, a Boolean

function is identified by a real valued vector function { } { } A motivat-

ing example will ease comprehension of this definition. Table 1 shows truth table of

example function { }
 { } .

Table 1: Truth table of given f3 in both Boolean domain and real numbers domain

Decimal

Value

Binary notation Bipolar notation

 () ()

0 0 0 0 1 +1 +1 +1 -1

1 0 0 1 0 +1 +1 -1 +1

2 0 1 0 0 +1 -1 +1 +1

3 0 1 1 1 +1 -1 -1 -1

4 1 0 0 0 -1 +1 +1 +1

5 1 0 1 0 -1 +1 -1 +1

6 1 1 0 1 -1 -1 +1 -1

7 1 1 1 0 -1 -1 -1 +1

2

Unique polynomial outputs this function could be obtained by polynomial inter-

polation. There could be at most terms in this polynomial (multiplication of all pos-

sible combinations of variables in the input vector e.g.).

Proposition 1: A Boolean function is represented by a unique polynomial, terms of

which are combinations of input variables multiplied with a coefficient.

 () ∑ ∏

where { } (1)

Proof: Application of Lagrange interpolation for a given output and dimension con-

structs function form defined in (1).

 () () ()
∏ ()

 ()

∏ () ()

 (2)

where represents vector of input variables, { }
 represents the assigned in-

put vector(assignment vector) and { }
 represents all possible assignment

vectors other than . Since () and () () the polynomial ()

 ∑ ()

 interpolates () at the assignment vectors. Noting that
 , expanding

 () results in given form (1) (Oztop 2009).

Lagrange interpolation calculated that polynomial

 () () ⁄ represents

function given in the Table 1.

Remark 1: Lagrange interpolation also proves that polynomial functions could be in

 { } form.

3

Terms (monomials) of this polynomial form could be written as vectors and val-

ues of the vector elements depend on assignment vectors. For example if and

 , must be equal to . If monomial vectors and assigned values to these

vectors are ordered properly, so called Sylvester type Hadamard matrix (Siu,

Roychowdhury et al. 1995) will be obtained, (Monomial order:

(), Assignment order:

 () : (11…11, 11…1-1, 11…-11, …, -1-1…-1-1)), where n is di-

mension. Simply represents all monomial values changing with binary counting in-

put. Table-2 shows an example matrix for two dimensions ().

Table 2: Two dimensions Sylvester type Hadamard matrix

1 1 1 1

1 -1 1 -1

1 1 -1 -1

1 -1 -1 1

 has properties described below.

Lemma 1: is in the recursive form.

 [

] [

] (3)

Lemma 2: is symmetric (()
).

Lemma 3: is orthogonal when scaled.
 . This means inverse of is

()
 .

4

With proposition 1 and the definition of , polynomial could be defined as

 (4)

where is vector representation of and is vector of monomial coefficients (weights

of monomials). Each element of corresponds a specific monomial. So, if elements of

 vector are found, automatically polynomial represents is found. Equation that calcu-

lates can be constructed easily by using properties of , which is

 (5)

Definition 1 (Spectrum): Here ()
 and given equation (1) is called

spectrum of .

Remark 2: Spectrum represents given function since it is coefficients of monomi-

als. Noting () (() ()
 ())

 () , so scaled by equals row sum of () . Let’s say scaled

spectrum is .

Remark 3: Scaled spectrum value of a monomial is
 and

Remark 4: indicates similarity between and vector of this monomial which is

 column in . Let’s say element of () and (
) agrees if

and disagrees if
 . Then for instance, if

 all elements of

disagree and if (
), elements of agree.

 Function form { } defined in remark 1 could be converted into

basic Boolean function form { } { } Noticed easily, only output parts

5

are different, if there is such a function { }, then conversion is done. Exam-

ine () function:

 () {

 (6)

Intended output conversion could be made by function if () remains unused.

This operation turns function definition (1) to:

 () (∑ ∏

)where { } (7)

Definition 2 (Sign representation): A polynomial function sign-represents n-variable

Boolean function iff () (()). This definition

could be written in vector domain as () where is the vector of mono-

mial coefficients of .

Definition 3 (Standard form): () notation is simply equivalent to

 () where () vector notation of sign representing polynomial

output. []
 and as a result () > 0. This inequality sys-

tem is defined as standard form.

 Equation (8) determines all the solutions of for a given .

 () (8)

Equation (8) indicates that there are infinitely many solutions of as there are

infinitely many positive . In prior definition of Boolean functions (1), there is only one

solution for a given .

6

1.1.1 Higher Order Neuron Representation of Boolean Functions

Function form in equation (7) is so called sigma-pi unit model of biological neu-

rons or higher-order neurons. Biological neurons are simply composed of a number of

dendrites, an axon and neuron body. Axons of neurons are connected to other neurons’

dendrites in brain. Neuron fires (sends a signal with a specific voltage level) or does not

fire upon reaching the cell body. Resemblances can be noticed immediately, if a neuron

and sigma-pi unit are examined. Monomials are dendrites of a neuron, function is

the policy that determines whether the neuron will fire or not (it is also called activation

function) and the output is the action potential carried by the axon of the neuron to other

neurons. Here coefficients of monomials correspond to the connection strengths

(weights) of the dendrites. Figure-1 illustrates an example of a higher-order neuron that

represents example Boolean function described in Table-1 and a biological neuron.

Figure 1: Higher-order neuron that represents Boolean function given in Table-1 and a

biological neuron

7

1.2 Minimum Number of Monomials Problem of Polynomial Bool-

ean Functions

There exists only one solution for the monomial coefficients vector of equation

form (1); however, there could be many solutions for equation form (7). Then a tempt-

ing question arises: What is the minimum number of monomials that sign represents a

given Boolean function (i.e. what is the maximum number of zeros in a monomial coef-

ficients vector for a given Boolean function). Main subject of this dissertation is analyz-

ing this problem and extracting results.

Briefly, we focus our attention on the infeasibility of the simultaneous absence

of the set of monomials from any sign representation given a BF to represent. It is

thought that the regularities observed then can be used to derive efficient algorithms for

representing all or particular class of Boolean functions compactly with higher order

neurons. There have been several studies for developing algorithms to find minimum

monomial (low fan-in) solutions to given BFs (Ghosh and Shin 1992, Guler 2001,

Oztop 2009). Mathematical results indicate that it is always possible to represent an n-

variable BF with a higher order neuron that has at most input lines. In other

words, at least 25% of the weights of higher order neuron can be zeroed; however, this

bound is not tight, and thus algorithmic and theoretical improvements are needed

(Oztop 2006).

Scrutiny is conducted on equivalent classes of Boolean functions. This way pro-

vides immense time efficiency without disturbing process of finding minimum mono-

mial polynomial. Equivalent class concept is explained below.

8

1.2.1 Equivalency of Boolean Functions

The minimum number of monomials that will suffice to sign represent a Boolean

function is not changed if the transformations 1 to 5(given below) are applied to a BF

(Sezener and Oztop 2015).

1. Negation of input variables (e.g., f (x1, x2, x3) → f (x1, x2, -x3))

2. Permutation of input variables (e.g., f (x1, x2, x3) → f (x2, x1, x3))

3. Negation of the output (e.g., f (x1, x2, x3) → -f (x1, x2, x3))

4. XORing an input variable with other variables (e.g., f (x1, x2, x3) →f (x1, x2⊕

x3⊕ x1, x3))

5. XORing the function with input variables (e.g., f (x1, x2, x3) → x1⊕x2⊕f (x1,

x2, x3))

These transformations were used in the spectral classification of BFs introduced by

Edwards (1975). The first three of these transformations are usually known as NPN

(negation-permutation-negation) transformations and their usage is more common.

Equivalence classes over BFs could be created by applying any combination of these

transformations. This means we could obtain any Boolean function from corresponding

equivalence class of a BF by applying transformations 1-5. So a group of equivalent

BFs could be represented by only one of them and if properties of the representing func-

tion are examined, we have idea about properties of all members in equivalent group. A

natural labeling system for functions is used as illustrated in Table-3 by adopting a fixed

ordering over the function arguments.

9

Table 3: The function output vector [-1 1 -1 1 -1 1 -1 1] can be mapped (with t(b)=(1-

b)/2) to the binary number 10101010 that is 0xaa in hexadecimal notation.

Arguments Function

x3 x2 x1 value

1 1 1 -1

1 1 -1 1

1 -1 1 -1

1 -1 -1 1

-1 1 1 -1

-1 1 -1 1

-1 -1 1 -1

-1 -1 -1 1

10

CHAPTER II

PREVIOUS WORK

There are many studies and researches on the minimum monomial sign represen-

tation problem. It has been investigated for years and important results are achieved.

Studies depict boundaries on the problem and showed the possibility of a time efficient

solution. However, even if the outcomes are milestones, still more research is required

for finding the minimum monomial sign representation for a BF.

Guler (2001) introduces a new neural network model which is an expansion of

higher order neuron representation. It is proposed that this model could learn higher

order correlations and bypasses combinational explosion problem. Simulations were

conducted on given training sets with this neural network model, and results are con-

sistent with the proposal. This paper provides an algorithm for finding a sign representa-

tion of a given BF; however, it does not guarantee that the resulting sign representation

has minimum number of monomials.

Oztop (2006) derived 3-quarters theorem which asserts any Boolean function

could be represented with or less monomials where is dimension. In other

words a quarter of monomials could be absent from a sign representation. This theorem

is remarkable, because it improved the upper bound for number of monomials that sign

represents a given Boolean function for dimensions. Also previous studies found up-

per bounds like √ (Gotsman 1989) and ()⁄ (O’Donnell and

11

Servedio 2003), but Oztop (2006) found a deterministic upper bound which is inde-

pendent from .

 Oztop (2009) designed several algorithms which guarantee finding a sign repre-

sentation of a given BF which has or less monomials. Constructed algo-

rithms based on 3-quarters theorem. Instead of targeting time and space efficiency, this

study provided a starting point for more efficient algorithms and improved theoretical

results. Also this paper gives results about applications of 3-quarters theorem.

 Amano (2010) found an approximate upper bound for number of

sign representing monomials. However, provided upper bound is not valid for every BF,

it is valid for almost every BF (a major group of BFs). This upper bound is found by

iterating 3-quarters theorem.

Cazé, Humphries and Gutkin (2012) use monomials (dendrites) in CNF and

DNF forms separately. Moreover they define two different transfer (activation) func-

tions: spiking and saturation transfer functions. Linearly non-separable Boolean func-

tions (lnBFs, a group of BFs) are tried to be implemented with these monomial forms

and transfer functions. They found, lnBFs could be realized with monomials in DNF

form by spiking transfer functions. However, this is not possible with monomials in

DNF form by saturating transfer functions. CNF form monomials could be used with

both spiking and saturating transfer functions for implementing lnBFs. Results indicate

that if CNF architecture is used with saturating transfer functions, implemented lnBFs

can require exponential number of monomials. However if CNF or DNF architectures

are used with spiking transfer functions always require a linear number of monomials.

12

 Sezener and Oztop (2015) researched lower dimensions for finding the exact

upper bounds in these dimensions. Results found in this research improved the results

found in Oztop (2006) for lower dimensions. Research proved the upper bound in one

dimension is 1, in two dimensions 3, in three dimensions 4, in four dimensions (for the

first time) 9 and in five dimensions (for the first time) 11. The paper proved that in six

dimensions, upper bound must be smaller than 26. Paper introduced a heuristic algo-

rithm for reaching these exact results. Also in research equivalent classes of Boolean

functions are used. Thanks to equivalent classes, the space that must be researched re-

duces significantly and research time decreases dramatically.

 All these outcomes of these researches are significant and give insight about the

state and the structure of the problem. However, all approaches are required to be im-

proved. Because still, there is not any algorithm that finds sharp upper bounds for all

dimensions. Even Oztop (2006) provides a general upper bound for all dimensions,

Sezener and Oztop (2015) proposes that the sharper upper bounds could be found if we

examine different dimensions separately. Then for comprehending the problem com-

pletely, we decided to find out what limits the minimum number of monomials that suf-

fice to sign represent a BF.

13

CHAPTER III

ZEROABILITY PATTERNS OF MONOMIALS IN THE

HIGHER ORDER NEURON REPRESENTATION OF

BOOLEAN FUNCTIONS

In this chapter we are interested in this type of questions: given a Boolean func-

tion , can there be a sign-representation which does not include any of the

als(). Because our goal is minimizing number of terms, eliminating as

much as possible monomials, this drives us constructing which include maximum

number of zeros when complying with []
 . As every single

element of is a coefficient of a specific monomial and we are trying to maximize zeros

in coefficient vector, actually we are talking about ‘zeroability’ of monomials.

Definition 4 (Zeroability): We know () is the coefficients of

a sign-representing polynomial for and let’s say a subset of () are

coefficients of a set of monomials (). If there is a positive vector

which results in , then corresponding monomials of these coeffi-

cients are designated as zeroable.

3.1 Numerical Investigations on Monomial Zeroability

The zeroability of monomials depends on solvability of a set of linear equations

with a positivity constraint. There are infinitely many solutions for as mentioned

before, since ()
 and for any []

 there

14

is a solution. If monomials () will be eliminated, must be

satisfied, where is composed of which are corresponding columns of

monomials in , simply is super-matrix of . So there are r equations with 2
n

positive

unknowns. If is not satisfied by any positive , then we concluded that sign

representation of without monomials does not exist. Otherwise (if

there exists a positive) will be the coefficient vector of the sign represent-

ing polynomial (weights of the higher order neuron that represents). Here we are try-

ing to find maximum r that satisfies . Exhaustive search over all column sub-

sets of (i.e. subsets of system of linear equations) could be performed easi-

ly on a given BF for achieving this task, however it is costly. This cost limits applicabil-

ity of this exhaustive search to lower dimension, due to the combinatorial explosion of

the number of subsets. Total time of process is decreased dramatically when only

equivalence classes of BFs are used; however this way also becomes insufficient for

dimensions higher than 6 when exhaustive search method is used. If results found by

exercising the smaller subsets of the linear equation system in lower dimen-

sions could be inferred with potential behavior of overall linear equation system (for all

dimensions), then we could have ideas about behavior of this problem. Hence all sub-

sets of linear equations of all equivalent classes in three and four dimensions were ex-

amined and zeroability behaviors of monomials for all functions are obtained in these

dimensions. For this we used the following exhaustive search algorithm.

15

Algorithm 1.

1. Input: :function (vector)

2. Output:

 a. zeroable_counter

 b. zeroable_index_list (number of zeroable subsets, and the list of index sets

that achieve this)

3. Initialization:

 a. Dimension of the problem: (())

 b. Compute (
 Slyvester-type Hadamard matrix)

 c. Potential coeffients of the system of linear equations: ()

 d. zeroable_counter[]=0; for all

 e. zeroable_index_list[] ={} for all

4. for

 a. for all -column subset of ([() () ()] for

{ }
{ }

i. if feasible (check with Linear Programming)

ii. zeroable_counter() = zeroable_counter() + 1

iii. add { } to the zeroable_index_list() list

iv. endif

 b. endfor

 5. if zeroable_counter() == 0

 break, since there cannot be anymore zeroable solution

 6. end

7. endfor

8. return zeroable_counter, zeroable_index_list

16

This algorithm is run on all equivalent classes in only 3 and 4 dimensions since its

complexity is (

) where is dimension. Results are given in Table-4 and Table-5.

3-variable Boolean functions: There are 3 equivalent classes of Boolean functions in

three dimensions. Algorithm 1 is run on these equivalent classes and the number of

zeroable subsets is found and shown in Table-4. Since equivalent classes represent all

BFs, this table covers all the information about zeroability patterns in this dimension.

Table 4: Number of zeroable subsets for each function class is given for each subset

cardinality (3 dimensions)

Function

Label

1-sized

subsets

2-sized

subsets

3-sized

subsets

4-sized

subsets

5-sized

subsets

6-sized

subsets

7-sized

subsets

8-sized

subsets

0xaa 7 21 35 35 21 7 1 0

0xab 8 21 35 28 0 0 0 0

0xac 8 22 28 17 4 0 0 0

Total 8 28 56 70 56 28 8 1

4-variable Boolean functions: There are 8 equivalent classes of Boolean functions in

four dimensions. Again Algorithm 1 is run on each of these classes for finding the num-

ber of zeroable subsets which is shown in Table-5. Again, this table covers all the in-

formation about zeroability patterns for all 4-variable BFs.

Table 5: Number of zeroable subsets for each function class is given for each subset

cardinality (4 dimensions)

Function

Label

1-sized

subsets

2-sized

subsets

3-sized

subsets

4-sized

subsets

5-sized

subsets

6-sized

subsets

7-sized

subsets

8-sized

subsets

0xaa55 15 105 455 1365 3003 5005 6435 6435

0xab55 16 105 455 1365 3003 5005 6435 6420

0xbb55 16 113 483 1414 2996 4690 5426 4573

0xaba5 16 117 521 1551 3156 4356 4236 3084

0xaaff 16 114 484 1375 2772 4092 4488 3663

0xaba4 16 119 546 1675 3388 4113 3490 2124

0xab12 16 120 560 1740 3492 4077 2910 1425

0xac90 16 120 560 1760 3648 4096 1600 0

Total 16 120 560 1820 4368 8008 11440 12870

17

Function

Label

9-sized

subsets

10-

sized

subsets

11-

sized

subsets

12-

sized

subsets

13-

sized

subsets

14-

sized

subsets

15-

sized

subsets

16-

sized

subsets

0xaa55 5005 3003 1365 455 105 15 1 0

0xab55 4900 2688 840 0 0 0 0 0

0xbb55 2724 1085 259 28 0 0 0 0

0xaba5 1684 672 144 0 0 0 0 0

0xaaff 2200 946 276 49 4 0 0 0

0xaba4 928 256 32 0 0 0 0 0

0xab12 400 61 6 0 0 0 0 0

0xac90 0 0 0 0 0 0 0 0

Total 11440 8008 4368 1820 560 120 16 1

Zeroable subsets of linear equations (elements of which are zeroable all together

otherwise it is a non-zeroable subset) are exhausted after a subset size as seen in the

Table-4 and Table-5. Ratio of non-zeroable subsets to all subsets grows with increasing

subset size and it becomes %100 after a subset cardinality. Non-zeroability could be

inherited from lower dimensions. This means, if a subset is non-zeroable it could in-

clude a smaller size non-zeroable subset. Otherwise non-zeroability is introduced first

time. This means, elements of it become non-zeroable when they are tried to be solved

all together only. This brings the question: How many new non-zeroable subsets are

introduced for each subset size? Result of analysis (obtained by computer search) is

given in Table 6 and Table 7 for 3 and 4 dimensions respectively.

Table 6: Number of first time introduced non-zeroable subsets for each function class is

given for each subset cardinality (3 dimensions)

Function

Label

1-sized

subsets

2-sized

subsets

3-sized

subsets

4-sized

subsets

5-sized

subsets

6-sized

subsets

7-sized

subsets

8-sized

subsets

0xaa 1 0 0 0 0 0 0 0

0xab 0 7 0 7 0 0 0 0

0xac 0 6 0 0 0 0 0 0

Total 8 28 56 70 56 28 8 1

18

Table 7: Number of first time introduced non-zeroable subsets for each function class is

given for each subset cardinality (4 dimensions)

Function

Label

1-sized

subsets

2-sized

subsets

3-sized

subsets

4-sized

subsets

5-sized

subsets

6-sized

subsets

7-sized

subsets

8-sized

subsets

0xaa55 1 0 0 0 0 0 0 0

0xab55 0 15 0 0 0 0 0 15

0xbb55 0 7 0 7 0 0 0 0

0xaba5 0 3 0 34 0 16 0 3

0xaaff 0 6 0 0 0 0 0 0

0xaba4 0 1 0 54 16 96 0 0

0xab12 0 0 0 80 0 120 0 0

0xac90 0 0 0 60 0 192 0 0

Total 16 120 560 1820 4368 8008 11440 12870

Function

Label

9-sized

subsets

10-

sized

subsets

11-

sized

subsets

12-

sized

subsets

13-

sized

subsets

14-

sized

subsets

15-

sized

subsets

16-

sized

subsets

0xaa55 0 0 0 0 0 0 0 0

0xab55 0 0 0 0 0 0 0 0

0xbb55 0 0 0 0 0 0 0 0

0xaba5 0 0 0 0 0 0 0 0

0xaaff 0 0 0 0 0 0 0 0

0xaba4 0 0 0 0 0 0 0 0

0xab12 0 0 0 0 0 0 0 0

0xac90 0 0 0 0 0 0 0 0

Total 11440 8008 4368 1820 560 120 16 1

If we comment on these tables, new non-zeroable subsets do not emerge for all subset

cardinalities, only in some of them they appear.

3.2 Pairwise Zeroability of Monomials From Sign Representations

Sign representing polynomial or higher order neuron representation of a given

BF could be found by selecting a all elements of which is positive (), since

 () where is the coefficients of the sign representing polynomial (or

the weights of the higher order neuron). Fourier-Motzkin elimination is a procedure for

19

eliminating the variables of a given inequality system. If a set of monomials could not

be eliminated together by applying FM elimination method, sign representing polyno-

mial of a given BF does not exist without these monomials. Hence we could under-

stand system feasibility by checking result of FM elimination method(Chandru 1993).

Here our inequality system is ()
 ()

 . Simply

 includes the variables that we trying to eliminate (if a variable is eliminated inside of

this vector corresponding monomial will be automatically eliminated) and rows of

 () matrix includes coefficients of each inequality (There are inequalities

where n is dimension). Let () . FM elimination method could be applied to

the a selected columns of which could be shown as { }. If a column

is eliminable, it must include at least one positive and one negative number together.

After elimination, all elements of this column become zero. Since elements of eliminat-

ed column are coefficients of corresponding variable in in the system of inequalities,

this variable is deleted from all inequalities, which means this variable becomes ineffec-

tive. After selected set of columns is eliminated from , let’s say is converted to the

 . can be easily converted to a sign-representation where are

zero by taking the row sum of (
) (Oztop 2006). One way of finding

the minimal sign representation of a given BF is finding a , includes maximum number

of columns and all of these columns are eliminable by FM elimination. However

searching over for finding such have a high time complexity which is O(

)

where n is dimension (number of variables). If this computational complexity could be

overcome, it will be quite helpful for solving minimal term sign representation problem.

Then we asked the question: Could s with smaller number of columns be used to con-

struct s with larger number of columns? After this approach this result is obtained:

20

Theorem 1: Let () for a given n-variable BF f and let’s say we are trying

to eliminate any three monomials by applying FM elimination method to corresponding

three columns from . If these three columns cannot be zeroed with FM elimination, a

pair of columns in these three columns, which could not be zeroed with FM elimination,

must exist.

Proof: An exhaustive search is conducted on all possible unique matrices

with to prove Theorem 1. The number of sized matrices, with elements

only , is which is a quite large number. However, when duplicate rows are

removed and the row order is ignored, there can be only 255 possible unique matrices.

There are 3-bit patterns (sized vectors with elements only) and

this number is the amount of non-empty subsets of all possible 3-bit patterns ().

Assume now, we try to eliminate any 3 columns from () by using

FM elimination. Let’s say these 3 columns construct which is a sub-matrix of

 . Eliminability of these three columns and feasibility of are equivalent (i.e. if

these three columns are eliminable, is feasible). Matrix will be obtained if

we take only one row from duplicate rows in (taking unique rows from , appar-

ently is sub-matrix of) and the infeasibility of is equivalent to the infea-

sibility of . has at most 8 unique rows, so there is only 255 many such ma-

trices mentioned earlier. Therefore only a small number of possible matrices must be

checked, regardless of problem dimension . Hence the given theorem will be proved

completely, if the claim of the theorem is verified with all possible matrices. We do

this by doing the search on a computer with the following algorithm:

21

Algorithm 2.

1. claim = true;

2. for all possible unique made up of (of size where)

do

 a. Apply FM elimination to the columns of

 b. if FM cannot eliminate all 3-columns

i. For each pair of columns from , apply FM elimination

ii. If any pair can be eliminated, a counterexample is found so set

claim= false

 c. endif

3. endfor

4. return claim

The execution of the code indeed does not find any counterexample (i.e. the claim is

returned as true). Thus, the theorem is proven.

Corollary 1: Let’s say there is a subset of monomials N with three elements for any n-

variable BF. If all two elements subsets of N are zeroable, then N is zeraoble.

Proof: Assume the contrary. N is not zeroable, Theorem 1 asserts there must be at least

one, two elements subset which is not zeroable, a contradiction.

Corollary 2: If sign representation of a BF does not exist without a group of monomi-

als { }, it means sign representation of this function could not be con-

structed without at least one of { } { } { }.

Proof: Assume the contrary. Let’s say sign representation of this BF could be con-

strued with absence of either { } { } { }. This means all two

22

elements subsets of M could be zeroed. If so, M is zeroable according to Corollary 1.

Hence sign representation exists without M. A contradiction.

Whether this kind of relation exists for greater number of monomials is a ques-

tion worth asking. For instance: If any 5 monomials could not be zeroed together for

any BF, all the time are there any 4 monomials which could not be zeroed together al-

ready in this 5 monomials (5 monomials sets never introduce a new infeasibility)?

However this is not true, there are counterexamples for infeasibility of 4 and 5 monomi-

als. For example, the 4-variable Boolean function defined by ()

 () (), which is a bent function and labeled as 0x111e in

hexadecimal and (0001000100011110 in binary). This function could not be sign repre-

sented without monomials { }. However, it is possible to con-

struct sign representation of this function without any 3 elements subset of (Zeroing 4

monomials creates a new infeasibility). Such sign representations are:

Sign representation 1(are absent):

 – + + – + + + –

 – – – +

Sign representation 2(are absent):

 – + + – + + + –

 – – – +

Sign representation 3(are absent):

 + – + – + + + –

 – – – +

23

Sign representation 4(are absent):

 + – + – + + + –

 – – – +

Another example is a 4-variable BF labeled as 0xda2a in hexadecimal

(1101101000101010 in binary). This function could not be sign represented without

monomials { }.But it is possible to construct sign repre-

sentation of this function without any 4 elements subset of (Zeroing 5 monomials cre-

ates a new infeasibility). Such sign representations are:

Sign representation 1(are absent):

 + – + + – – –

 – + – –

Sign representation 2(are absent):

 – + + + – – –

 – + – –

Sign representation 3(are absent):

– – – + + – –

+ – + – –

24

Sign representation 4(are absent):

– + + + + + +

 – – + – –

Sign representation 5(are absent):

– – + + – + –

 –

3.3 Pairwise Zeroability and Incompatibility Graph

Finding sign representation (higher order neuron representation) of a BF with

possible minimum number monomials requires searching over all possible monomial

subsets. If a method that uses pairwise zeroability of monomials, could be developed, it

could be possible to decrease the steps to obtain a sign representation. So, a formal

graph concept based on the notion of non-zeroability is defined.

Definition 5 (Incompatibility Graph): A graph is defined as () where V

stands for vertices and E stands for edges. In an incompatibility graph of an n-variable

BF f, each vertex is identified by a monomial of the form ∏
where

{ }, and there is an edge between two vertices if only if

 is not zeroable together.

With this definition we can give this simple Lemma.

Lemma 4: Given an n-variable Boolean function f, 3-vertex independent sets of Gf are

always zeroable.

25

Proof: Incompatibility graph is give information about pairwise zeroability. In a 3-

vertex independent set, all elements are pairwise zeroable. So these three elements are

zeroable together. Corollary 1 verifies this result.

The lemma above proposes that beginning search from independent sets will

prevent complexity of searching process for zeroable monomials. Moreover this lemma

suggests that dense subsets like cliques should be avoided when searching for zeroable

monomial subsets. The problems of finding maximum independent set and maximum

clique problems are computationally equivalent. Let’s say S is a maximum independent

set in graph G, in complementary graph of G, S is a maximum clique. There several

efficient heuristic algorithms(e.g. Busygin, Butenko et al. 2002) for solving the problem

of finding maximum independent sets (and so is finding maximum cliques) even it is

np-hard. Briefly we suggest: Find the maximum independent set in an incompatibility

graph and begin searching for zeroable monomial subsets from it. There are example

graphs below. Consider the graph Gf given in Figure-2 which is incompatibility graph

of 0xaaff. Gf has 16 elements, 12 of them constructs the maximum independent set in

the graph, then 4 of them constructs a 4-clique, the monomials which construct this

clique are { } and this means these monomials cannot be eliminated togeth-

er. All elements in the independent set could be zeroed and we could add only one of

the elements in the clique to this zeroable subset to construct the largest zeroable mo-

nomial subset. This means the minimum sign representation of this class BFs could be

constructed with any three element subset of unzeroable monomials subset (shown by

the computer search).

26

Figure 2: Incompatibility graph of Class 0xaaff

When the incompatibility graph of class 0xaba5 (in the Figure 3) is examined, it

could be seen that the monomial cannot be zeroed with three others which are

{ } and they do not form a clique. It is found that all minimum sign rep-

resentation of this class must include and two other monomials from

{ }.

Figure 3: Incompatibility graph of Class 0xaba5

The incompatibility graphs of class 0xaa55 given in Figure 4 and 0xab55 given

in Figure 5 are same. It is interesting since they are different classes of Boolean func-

tions. 0xaa55 could be sign represented with one monomial only (monomial’s itself);

however minimum number of monomials that is required to sign represent of class

0xab55 is five.

27

Figure 4: Incompatibility graph of Class 0xaa55

Figure 5: Incompatibility graph of Class 0xab55

There are also incompatibility graphs all elements of which are independent (i.e.

there is not any edge between vertices). These graphs indicates all monomials of these

functions are three-wise zeroable (from Corollary 1). Examples are graphs of class

0xab12 (Figure 6) and 0xac90 (Figure 7).

28

Figure 6: Incompatibility graph of Class 0xab12

Figure 7: Incompatibility graph of Class 0xac90

These observations give clues about importance of incompatibility graphs. In-

compatibility graphs could give patterns and hints about minimal sign representation of

a BF. A final note on the incompatibility graph is that all the Boolean functions from a

single equivalence class as defined via the transformations 1-5 of Section 1.2.1 have

isomorphic incompatibility graphs. However, the reverse of this remark is not true.

29

CHAPTER IV

CONCLUSION

Boolean functions (BFs) have usages in neuroscience, cryptography, computer

science and circuit design. For example sign representation of BFs could be used as a

neuron model, BFs are essential in ALU (arithmetic logic unit) design and programming

basics. Higher order neuron representations or sign representing polynomials with less

number of monomials can have superiorities over the ones with more monomials. For

instance sign representations with less number of monomials, may facilitate faster learn-

ing. However efforts spent for finding optimal polynomials could be too much time

consuming, therefore using any sign representing polynomial for this purpose may be

more beneficial (Guler 2001). The reason of this is the exponential explosion while

solving minimum monomial polynomial problem since there is not any polynomial time

algorithm for the solution. Considering this, the problem of representing BFs with pos-

sible minimum monomials is still waiting for an efficient heuristic algorithm to be

found, which may widen the use of higher order neurons in neural networks and learn-

ing applications.

To this end we focused on this topic and tried to understand the structure of

problem to make a contribution towards the development of a heuristic algorithm for

finding compact sign-representations. First we examined which monomials could not be

zeroable together for all equivalent classes in three and four dimensions. It is concluded

that zeroable subsets vanish after a subset size and this determines minimum number of

30

monomials that is sufficient to represent a BF (If we zeroed maximum number of mo-

nomials possible the rest is the minimum number of monomials that suffice for writing

sign representing polynomial). Let’s say a subset of monomials is non-zeroable togeth-

er. It means in this group there is a smaller group of monomials which are already non-

zeroable (non-zeroability could be inherited) or this group of monomials are non-

zeroable if and only if they are tried to be zeroed (new zeroable-subsets) together. In

this sense, we searched for new non-zeroable monomial subsets and classified them

with their subset sizes for each equivalent class. The purpose was to find patterns of

zeroability or non-zeroability of monomials in lower dimensions and extracting general

results from these. Then, it is noticed that three monomial subsets do not introduce new

non-zeroabilities in three and four dimensions. After a research we proved that if three

monomials could not be zeroed together, then it exists the case that at least one pair of

monomials that cannot be zeroable together already in these three monomials, for any n-

variable Boolean function. Same observation could not be made for bigger subset sizes

and counter examples are given for subset size of four and five. Also pairwise non-

zeroability is visualized with incompatibility graphs. All the functions from a single

equivalence class must have isomorphic incompatibility graphs; however, the reverse is

not true. We examined incompatibility graphs of equivalent classes and realized that

some of them give important clues about minimum monomial sign representing poly-

nomial. Incompatibility graphs should be extended to provide more clues on zeroability

patterns. This way, they can be used to construct heuristic algorithms for obtaining

close-to-minimum monomial sign representations.

In particular, the non-zeroability and zeroability relations of monomial subsets

with cardinality larger than 2, should be investigated. Methods applied to BFs in three

31

and four dimensions could also be tried in higher dimensions if it is possible. However,

these methods will take unaffordably long time after a dimension or subset size. For

example, there are 601080390 16-monomials subsets for a 5-variable Boolean function,

which means this many linear equations should be tested for zeroability. Each test takes

6 milliseconds on average with a 2.7 GHz CPU and 8 GB RAM PC, and the required

overall time for all tests is 1000 hours for a 5-variable BF and subset size 16. Consider-

ing there are 48 equivalent classes in 5 dimensions (Sezener and Oztop 2015), it takes

2000 days to complete all zeroability tests. So, our brute-force algorithm must be im-

proved for providing time affordability. As another option, cloud computing concept

could be used to run our algorithm for higher dimensions. There are public providers for

cloud computing services and cloud computing will dramatically decrease required time

to run our algorithm. But after a dimension, even this method will become ineffective.

Moreover, we already observed that new non-zeroable subsets do not emerge for all

subset cardinalities, only in some of them they appear. This result could be used to im-

prove our algorithm. For example if we don’t check zeroability of subsets that include a

smaller non-zeroable subset already (then obviously including subset is non-zeroable),

there could be time improvements. The time spent for finding such subsets must be

measured to verify this proposal, because this time could exceed the time spent for

checking zeroability. However, if certain results and improvements are desired, the rea-

sons behind zeroability of some monomials and non-zeroability of some of them should

be investigated. While doing this, we should keep in mind that the values of monomial

coefficients are dependent to linear equations which are not constructed randomly, but

depend on the standard form (Equation (8)).

32

APPENDIX A

INCOMPATIBILITY GRAPHS OF REMAINING

CLASSES

Figure 8: Incompatibility graph of Class 0xaa

Figure 9: Incompatibility graph of Class 0xab

33

Figure 10: Incompatibility graph of Class 0xac

Figure 11: Incompatibility graph of Class 0xbb55

Figure 12: Incompatibility graph of Class 0xaba4

34

BIBLIOGRAPHY

[1] Busygin, S., S. Butenko and P. M. Pardalos (2002). "A Heuristic for the Maximum

Independent Set Problem Based on Optimization of a Quadratic Over a Sphere."

Journal of Combinatorial Optimization 6(3): 287-297.

[2] Chandru, V. (1993). "Variable Elimination in Linear Constraints." The

Computer Journal 36(5): 463-470.

[3] Ghosh, J. and Y. Shin (1992). "Efficient Higher Order Neural Networks for

Classification and Function Approximation." International Journal of Neural Systems

3(4): 323-350.

[4] Guler, M. (2001). "A model with an intrinsic property of learning higher order

correlations." Neural Networks 14(4-5): 495-504.

[5] Oztop, E. (2006). "An Upper Bound on the Minimum Number of Monomials

Required to Separate Dichotomies of {-1, 1}
n
." Neural Computation 18(12):

3119-3138.

[6] Oztop, E. (2009). "Sign-representation of Boolean functions using a small

number of monomials." Neural Networks 22(7): 938-948.

[7] Sezener, C. E. and E. Oztop (2015). "Minimal Sign Representation of Boolean

Functions: Algorithms and Exact Results for Low Dimensions." Neural Comput

27(8): 1796-1823.

[8] Siu, K. Y., V. Roychowdhury and T. Kailath (1995). Discrete Neural

Computation. Englewood Cliffs, NJ, Prentice Hall.

[9] Gotsman, C. (1989). On Boolean functions, polynomials and algebraic threshold

functions. (Tech. Rep. TR-89-18). Tal Aviv: Department of Computer Science,

Hebrew University.

[10] O’Donnell, R., & Servedio, R. (2003). Extremal properties of polynomial thresh-

old functions. In Eighteenth Annual Conference on Computational Complexity

(pp. 3–12). Piscataway, NJ: IEEE Computer Society.

[11] Amano, K. (2010). New upper bounds on the average PTF density of Boolean

functions. In O. Cheong, K.-Y. Chwa, & K. Park (Eds.), Algorithms and computa-

tion (pp. 304–315). New York: Springer.

[12] Cazé RD, Humphries M, Gutkin BS (2012) Spiking and saturating dendrites dif-

ferentially expand single neuron computation capacity. Advances in neural infor-

mation processing systems 25: 1079–1087.

