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ABSTRACT

The Monte Carlo ray tracing (MCRT) is a semi-analytical stochastic method for the
solution of radiative transfer equation (RTE). However, its high computation cost
prevents its extensive use. In this study, an accelerated MCRT based radiation heat
transfer solver has been developed that is capable of handling scenarios with complex
geometries in presence of absorbingemitting (but not scattering) gray medium and
non-participating media. Additionally, the solver is augmented with the capability
of simultaneous 3d visualization of the results. Hardware-wise the use of the graphic
processors resulted in about 40x speed-up as compared to the modern high-end CPU’s.
Moreover, an additional 10x speed-up is also achieved with the use of efficient data
structures.

In the developed solver, the RTE is coupled with the energy equation in a way that
the solver treats predefined critical regions very precisely while the remaining regions
are solved with mediocre accuracy. Using this adaptive technique in the coupling of
the equations, the error in the calculations has dropped by 4x compared to the stan-
dard MCRT method. The proposed method requires 1.5x more memory compared to

the standard MCRT and does not have any penalty in terms of computational time.
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OZETCE

Monte Carlo n izleme metodu(MCI), radyasyon transfer denkleminin (RTD) zm
iin yar analitik bir stokastik yntemdir. Bununla birlikte, metodun yksek hesaplama
maliyeti yaygn kullanmn engellemitir. Bu almada, hzlandrlm MC tabanl radyasyon
s transferi zcs gelitirilmitir. Yazlm, karmak geometrileri barndran ve radyasyonun
iinden getii ortam tarafndan sourulduu ve salnd gri ortamlar iin gelitirilmitir. Ayn
zamanda yazlm, hesaplama ile e zamanl olarak 3B grselletirme yeteneine sahiptir.
Hesaplamalarda grafik ilemcilerin kullanlmas modern st dzey CPU’lara kyasla 40 kat
daha yksek hesaplama hzlar salamtr. Ayrca, kullanlan veri yaplar sayesinde ek olarak
bir 10 kat hesaplama hz elde edilmitir.

Gelitirilmi olan yazlm, nceden tanmlanm baz kritik noktalarn daha hassas ve dier
tm noktalarn ortalama bir hassasiyet derecesinde zlebilmesini salayacak bir ekilde
dizayn edilmitir. Enerji ve RTD denklemlerini birbirine balamada kullanlan adaptif
yntem sayesinde hesaplamalardaki hata standart MC yntemine kyasla 4 kat dmtr.
nerilen yntem, standart MC’ye kyasla 1.5 kat fazla bellek gerektirir; ama hesaplama

sresi asndan herhangi bir arta yol amamaktadr.
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CHAPTER 1

INTRODUCTION

Thermal radiation is a significant mode of heat transfer in many modern engineering
problems especially in high temperature applications. Some specific areas include
the design and analysis of energy conversion systems such as furnaces, combustors,
solar energy conversion devices, and the engines where high temperatures are present
to ensure the thermodynamic efficiency of the processes. Thermal radiation can
propagate in the absence of any medium and the change in its intensity is governed
by the Radiative Transfer Equation (RTE), an integro-differential equation with six
independent parameters. A detailed derivation of the radiative transfer equation has
been discussed in a book by Howell et al. [1]. In differential form the RTE can be

expressed as:

A1, (S, Q)

85 = /i)\[)\b(S, Q)—/QAI)\<S, Q)—O’S’,\[)\(S, Q)—Fi/ O's’)\I)\(S, Q) (I))\(QZ,Q)dQZ
Qi:4ﬂ'

47
(1)

where the term on the left hand side of the equation expresses the time rate of change
in the spectral intensity per unit projected area and the terms on the right hand side
dictate the effects of emission, absorption and scattering onto the intensity of the

light.

1.1 Thermal Radiation and Its Numerical Modeling

Except some simplified scenarios, RTE can only be solved numerically. Over the
years, different type of numerical methods have been developed and used depending

on the type of the problem. Radiation heat transfer problems can be divided into



two main categories depending on the way the medium that the thermal radiation is
passing through is interacting with it. In conditions where the medium is participating
with the thermal radiation transfer, the most frequently used numerical methods are
discrete ordinates [2], the spherical harmonics (P-N) [3], the zonal method [4], the
finite volume method [5] and Monte Carlo method [6] [7] [8]. On the other hand,
for the problems where the medium like air is not participating in the transfer of
thermal radiation, it can be modeled as the interactions between the surfaces only.
Under these conditions, the calculation is restricted on finding the so called view
factors between the surfaces. Calculating view factors can be conducted analytically
but only for problems involving regular geometries. Detailed solutions for different
view factor scenarios have been provided by Howell and Menguc [9]. For most of the
practical scenarios involving complex geometries however, the view factors can only
be calculated numerically. Optical projection method by Farrell [10], Cross-string
method by Hottel [11], unit sphere method by Nusselt [12], Hemi-cube method by
Cohen [13] and Monte Carlo ray tracing method [14] are the most popular ones.

In general, one expects a numerical method to be both accurate and computation-
ally fast. Even though these two requirements seem to be contradicting, depending
on the type of the problem even a computationally much faster method can give a
more accurate solution compared to the computationally very expensive methods.
For example, in problems involving absorbing and highly scattering media even the
most simplistic version of spherical harmonics method P, can give a very accurate
result at a fraction of the computation cost of the Monte Carlo method. Similarly,
using the discrete ordinate method for a scenario involving non-participating medium
will be both waste of computational resources and as well as accuracy is also deteri-
orated due to the systematic errors present in the method as discussed by Chai, Lee,
Patankar [15].

Among all the methods mentioned, Monte Carlo method is known to be the most



accurate one in the complicated scenarios as discussed in a study by Howell [14].
Its solution is considered to be semi-analytical for the thermal radiation problems.
Regarding the view factor studies, Emery et al. [16] compared Nusselts unit sphere
method, Farrells optical projection method, Hottels Cross-string method and Monte-
Carlo ray tracing method in diffuse view factors calculations. The result showed the
superiority of the Monte Carlo method in terms of accuracyof the calculations. The
study by Mirhosseini and Saboonchi [17] for the calculation of view factor between
strip elements and the cylinder highlighted the accuracy of the MCRT method. In a
similar study, Hajji et al. [18] pointed out the accuracy of the MCRT method over
the cross string method in a scenario consisting of fins and a semi-cylinder. Prob-
lems involving participating medium have also been studied with different numerical
techniques. Demirkaya [19] evaluated the Monte Carlo ray tracing method and dis-
crete ordinate method in terms of accuracy in a problem involving three-dimensional,
absorbing, emitting and scattering media. The study showed that the Monte Carlo
method provides more accurate solution for the given problem. In a similar study
conducted by Henson et al. [20], also showed in a similar way the advantage of the
Monte Carlo method in accuracy ove the discrete ordinate method.

Due to its stochastic nature, a Monte Carlo method may have random errors
resulting uncertainty in the numerical results. This is a major advantage over the
conventional mesh based methods such as discrete ordinate or finite volume based nu-
merical techniques. Moreover, in mesh based methods the numerical solution heavily
depends on the type and size of the mesh. Even though grid refinement studies tries
to reduce the sensitivity of the solution on the mesh, still the solutions include mesh
dependent features. This problem becomes even more severe when the geometry
becomes more complicated. On the other hand, in Monte Carlo type methods the
accuracy depends only to the number of trials. The higher the number of trials, the

higher the accuracy gets irrespective of the grid size of the mesh. In this regard, one



can say that the Monte Carlo method is insensitive to the type and size of the mesh.

In spite of the advantages of the Monte Carlo method regarding the accuracy,
the prohibitively high computation cost of the Monte Carlo method prevents its
widespread use. However, the required computational cost can be substantially de-
creased with the use of the modern multi-core processors and many-core graphic
accelerators. Graphic processor units (GPU’s) have mainly been developed to assist
the computationally expensive rendering tasks which is explained in a study by loop
et al. [21]. In recent years, with the dramatic rise in their computation power and
emergence of code libraries GPU’s started also to be heavily used as accelerators
in scientific computing including radiative heat transfer problems. Halverson [22]
presents the solar radiation modeling of an urban area using GPU and Nvidia’s Op-
tix engine, He et al. [23] solved radiation in combustion and propulsion applications
utilizing graphic processors. Siddiqui et al. [24] used GPU for solving surface to sur-
face radiative heat transfer problems involving complex three-dimensional geometries.
Takizawa et al. [25] have implemented the radiosity method on graphic processors.
All these studies exploits the computing power of graphics processing units (GPUs)
to accelerate the calculation. Moreover, Efremenko et al. [26] compared the perfor-
mance of multi-core CPUs and GPUs by solving one dimensional RTE using discrete
ordinate method. The speed up of 50x has been achieved with the efficient use of

graphical processors.
1.1.1 Monte Carlo Ray Tracing (MCRT) Method

The Monte Carlo method is a stochastic method which uses random sampling for the
mathematical modeling of a problem. The accuracy of the solution obtained depends
on the sample size. Generally speaking, the higher the sample size gets, the more
accurate the result becomes. The Monte Carlo technique started to become popular

with the emergence of modern computers which provided the necessary computation



power for the method. Today, Monte Carlo method is used in different fields of science
and engineering.

In the field of heat transfer, Monte Carlo ray tracing method (MCRT) is used
in solving different type of complex problems involving thermal radiation and even
conduction. The application of MCRT method for the solution of the RTE was first
discussed by John Howell and Perlmutter [27]. They solved the RTE in participating
medium between two parallel plates. The validation of the developed method was
made by the analytical solution of Usiskin and Sparrow [28]. They concluded that
the Monte Carlo method could easily be applied to the solution of complex radiation
transfer problems. In a study by Howell [6], it was concluded that the Monte Carlo
method has a huge advantage over the other numerical techniques in terms of accuracy
as it allows the accurate treatment of inhomogeneous media, spectral properties and
complex geometries . The problems could be treated with simplicity and with greater
flexibility with the use of the Monte Carlo method. He also highlighted the importance
of speed up achieved by implementing Monte Carlo method on massively parallel
machines. Several modifications have also been made to the standard Monte Carlo
method. In recent years, Haji-Sheikh [29] applied this method to solve for radiation,
conduction and convection problems.

Monte Carlo ray tracing technique is particularly suited for the solution of RTE
since the method reflects the physics of the light propagation very accurately. Accord-
ing to the general principle of ray tracing, each ray travels in an independent straight
path until it interacts with other objects. The method is based on tracing several
numbers of rays, which are acting as photon bundles, carrying the finite amount of
radiative energy. The path of the bundle is determined by random numbers according
to the radiative properties of the medium. Physical events such as absorption, emis-
sion, reflection, and scattering can happen in the life of the photon bundle. These

events are very well explained by Modest [7].



1.1.2 Ray tracing method

Ray tracing is a technique developed to render images in computer graphics. Today,
it is heavily used to generate the so called photo-realistic images from CAD drawings.
It is capable of calculating the light effects on the objects very realistically. In this
technique, in order to generate the image of a three-dimensional object, a virtual
camera is placed at the viewing point. The rays are emitted from the pixels of
the view plane and traced throughout the domain until they hit the objects in the
scene. This ray-object intersection event determines the color to be represented on

the screen. The basic principle of the ray tracing method is shown in Figure 1.
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Figure 1: Ray tracing Algorithm

The concept of ray tracing was first introduced to the field of computer graphics
by Appell [30] back in 1980 when he rendered a three dimensional image including
the effects of reflection and refraction. Kajiya [31] later on combined ray tracing with
the Monte Carlo method where he introduced randomness in the path the rays are
following to study the effect of the indirect lighting onto the scene.

Even though the ray tracing technique can generate very realistic images, it also is
computationally more expensive as compared to other rendering techniques. However,

with the dramatic rise in the computation power of the modern graphic processors,



the ray tracing technique started to be used even in real-time applications. And in the
near feature, it might be the dominant rendering technique in the computer graphics

field.
1.1.3 Data Structure Techniques used for Acceleration

The main part of the ray tracing technique is the calculation of the ray-object inter-
section points. To calculate the complicated light effects, one has to consider the rays
transferred between all the triangular surface elements in the scene. This is a com-
putationally intensive task and the complexity increases even quadratically with the
number of triangles present in the domain. To reduce the complexity of the problem,
sophisticated data structure techniques have been developed and a dramatic decrease
in the computation cost of the problem is achieved especially for scenarios containing
large number of surface elements. The two popular data structure techniques, called
also acceleration structures, are KD-tree [32] and bounding volume hierarchy [33]. A
detailed study has been conducted by Vinkler et al. [34] on the performance compar-
ison of KD-tree and Bounding volume hierarchy on many core architectures (GPU).
As discussed, the Bounding Volume Hierarchy showed a superior performance over

the KD-tree.

AA

Figure 2: Bounding Volume Hierarchy acceleration technique

Figure 2 explains the basic principle of Bounding Volume Hierarchy (BVH) accel-

eration technique. In BVH, the basic triangular elements of the geometry are enclosed



inside a virtual bounding volume. The basic elements are shown by the triangular
shape while its corresponding bounding volume is represented by a rectangle. These
bounding volumes enclose each other to form a tree structure in which each node
contains a bounding box of all the objects below it. When the ray hits any of the
triangular element, as shown by black arrow, the ray object intersection has to be
checked just on its corresponding bounding volumes eliminating the others which re-
sults in the massive reduction of computational expense. The speed up achieved by

using this acceleration technique is explained in the results section.
1.1.4 Graphical Processing unit (GPU)

Graphical processing unit (GPU) is a specialized processor entirely developed for the
rendering applications in the computer. [35]. The term GPU was popularized by
Nvidia in 1999, who marketed the GeForce 256 as ”the world’s first GPU” [36]. Due
to the completely data parallel nature of the rendering task, GPU’s are designed by
hardware to deal with data parallel computations. The main difference between the
CPU and GPU processing is that the former is optimized for latency whereas the
latter is optimized for throughput. Today, CPU’s consist of tens of processing cores
whereas GPU’s have thousands of them on a single chip. The requirements in the
computer graphics field made the GPU develop much differently compared to CPU.

While GPU was actually developed for graphics applications,the parallel process-
ing capability can also be used to speed-up other computationally intensive tasks
which are not related with the computer graphics. Its sophisticated parallel architec-
ture and extreme computational efficiency made it applicable in the field of scientific
computing, called general purpose GPU-accelerated computing. GPU-accelerated
computing is the efficient use of GPUs together with the CPU to accelerate the appli-
cation. GPU-accelerated computing offloads the computationally expensive portion

of the code to the GPU, while the remaining portion of the code still processed on



the CPU. The first scientific problem to be successfully processed faster than CPU
was the implementation of LU factorization [37]. Today, GPUs are widely used in
different fields of applications ranging from computer vision [38], video processing
[39], physical simulations involving fluid dynamics [40] [41] to molecular modeling

[42] astrophysics [43] and bioinformatics [44]
1.1.5 Introduction to CUDA and OptiX

Due to the inherent hardware architecture of GPU, their performance heavily depends
on the way it is programmed. Nowadays, these GPU’s can be found in every personal
computer and mobile phones and the efficiency and computation power of GPUs
is increasing day by day. Many applications, software, and libraries, like CUDA,
OpenCL, Optix, are developed to allow users to use a graphic processor for general
purpose computing. The application of these developed frameworks helps to optimize
and utilize the computation power of GPU for other massively parallel applications
rather than rendering.

CUDA is a framework, developed by NVIDIA, for the programming of the graphics
processing unit for general purpose computing. CUDA framework allows the user to
develop any general purpose applications which can be processed on GPU [45]. This
breakthrough development helps the researchers in accelerating their applications
using the parallel processing capabilities of GPU.

OptiX is a ray tracing engine developed over CUDA to provide additional opti-
mization technique specifically for ray tracing problems [46]. It provides several func-
tions to the user to populate the scene with complex objects and different lighting
methods. It also provides different acceleration method for the ray-object intersec-
tion to further improve the performance. The main purpose of this framework is
the optimized utilization of graphical processing unit. Although it was developed to

accelerate the graphical operations in gaming industry, it can be used to develop any



general purpose ray tracing application.
1.1.6 Visualization of the results

Solving and post-processing are generally considered to be isolated stages of a nu-
merical study. Integration of post-processing and visualization stages into the solver
is a recent concept and offers some certain advantages. Visualization of the results
alongside the computation gives the user the ability to control and check the results
while the simulations are running. Following this recent approach, the present soft-
ware is also designed to conduct both the calculations and the visualization of the
results simultaneously. This way the user can monitor the status of the simulation in
a rich 3D environment.

In this regards, the same ray tracing library used in the solution of the RTE is
also used for the visualization of the simulation data. Figure 3 and 4 shows the color

coded and visualized view factor values on the surfaces.

Figure 3: Heat transfer in annealing Figure 4: heat transfer involving complex

furnace geometries

1.2 Thesis Contribution

The Monte Carlo ray tracing method is known for its superior accuracy and suitability
for complex geometries but its extreme computational cost prevents its use in most
realistic scenarios. The present work focuses on the techniques to accelerate the

Monte Carlo ray tracing method and thereby increase its applicability in the next
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generation radiation heat transfer solvers. The acceleration techniques cover the use
of graphic processors on the hardware level and data structures on the programming
level. Additionally, MCRT method has been modified algorithm-wise in the way the
RTE is coupled with the energy equation. The new method enables to solve some
user-defined critical regions very accurately and everywhere else at some mediocre
accuracy and thereby optimizes the memory usage of the hardware, computational

speed of the calculation and the accuracy of the solution.

1.3 Thesis Outline

This thesis is organized as follows. Chapter I is the introduction of the study with the
relevant literature review. Chapter II talks about the numerical methods and their
implementation in the solver with validation cases. Chapter III is about the results
and test cases with proposed numerical methods. Finally, Chapter IV discusses the

conclusion.
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CHAPTER 11

NUMERICAL METHODS

2.1 Surface to surface radiative heat transfer

Thermal radiation can not penetrate into opaque surfaces. It is absorbed and emitted
entirely on the surface. Under these conditions the transfer of heat by thermal radi-
ation heavily depends on how the objects are positioned with respect to each other.
The so-called view factor defines the fraction of radiant energy leaving any given sur-
face that is incident upon another surface. It entirely depends on the geometry of the
objects and their relative positions.

The view factor between two differential areas, as shown in Fig. 5,was studied by

Sparrow [47]. This view factor can be calculated by using the equation 2

cos(b)cos(0z)

Ve dA 2)

dFga1—qas =

And specifically, the view factor F between a differential area dA; and the surface

A, is expressed as:

cos(01)cos (0
Faar—as = / wdfb (3)
A2 7TS

This equation illustrates how the view factors depend on the shape and orientation
of the surfaces as well as the distance between them. If area A; is not differential

then another integral over that area has to be considered, then equation 3 becomes:

cos(f s(6
FAIAQZ/ / MdAQdAl (4)
Al J A2 7S
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Figure 5. Geometric configuration for radiative heat exchange between two finite
surfaces

2.1.1 Calculation of Radiative Heat Flux to the Surface

The net radiative energy exchange between the differential surfaces d4; and das is

given by the Equation 5

Qa1-n2 = A1 Fay_aoea (T} — T3 (5)

Where Q is the net heat flux, A; is the area of the first surface, Fx1_ 49 is the
view factor from 1 to 2 , o is the Stefan-Boltzmann constant , € is the emissivity of

the surface and T and T, are the temperatures of the surfaces 1 and 2.
2.1.2 Numerical calculation of view factor

The developed tool is able to solve surface to surface radiative heat exchange between
the surfaces for complex three-dimensional geometries using Monte Carlo ray tracing
(MCRT) method. The flow chart for the calculation of view factor is given in Figure
6.

13



Randomly select
Triangular surface
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Emission point
Select R1 and R2 for ray
emission direction

Trace ray until
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Count number of
rays intersected

View factor = hitting
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Figure 6: Flow chart for the calculation of view factor

As a first step, the solver needs a CAD geometry as an input and after the cal-
culations it provides the user with the visual map of view factor. The step by step
procedure for the calculation of the view factor between the surfaces is explained in

the Figure 6
2.1.2.1 Random Number Generation

The most critical issue in the implementation of MCRT method is the generation of
random numbers. The accuracy of the methods heavily depends on them. In the
present work, uniform random numbers are generated. In uniform distributions all
the numbers are equally probable to be selected. The probability density function

(U) of the continuous uniform distribution between interval a and b is:

14



fora<ax<b (6)

U(a,b) =0 forz<a
U(a,b) =0 for x>0

Different algorithms are present in the literature for the generation of uniformly
distributed random numbers. In this study, Tiny encryption algorithm (TEA) is used
for that purpose. TEA is actually a deterministic algorithm that generates pseudo-
random numbers by introducing a seed through the cryptographic function. Zafar

[48] has used the Tiny Encryption Algorithm on graphic processors successfully.
2.1.2.2 Determination of the point of emission:

The determination of the positions of the emission points plays an important role in
the accuracy of the Monte Carlo method. In this regard, the geometry is divided
into several triangular surface elements and several methods are tested to pick the
emission points from every region of the surface at equal probability. In this work,
the position of the emission point is determined with the use of two different random
numbers. First, any point on the edge AB of the triangle shown in Figure 7 is
selected randomly. Then using a second random number any position on the line
CR1 is chosen. In this way, the coordinates of the emission points on the triangular

surface elements are determined.
2.1.2.8 Initial Launch Angles:

After calculating the emission point, the direction of the ray is determined by defining
the azimuthal ¢ and zenith angle 6.[1] The zenith angle § can be calculated using

Equation 7, where R, is selected randomly between 0 and 1:

15



R1

R2

Figure 7: Selecting Emission point from the triangular primitive

0 = sin~'\/R, (7)

The azimuthal angle ¢ can be calculated using Equation 8, where R, is selected

randomly between 0 and 1

¢ = 27TR2 (8)

Finally, the direction vector p can be determined using zenith and azimuth angles

as given in the Equation 9.

sinfcos¢
P = sinfsing (9)

cost
2.1.2.4  Determination of the ray-object Intersection:

After the ray is launched from its emission point in the determined direction, it
travels throughout the domain until it hits another surface whose coordinates has
to be calculated. Calculation of ray-object intersections is computationally a very
expensive task. This requires a lot of vector computations between the ray and the

objects as explained by Glassner[49]. The Optix library [46] library is specifically
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optimized to deal with this computationally expensive task. Several acceleration
techniques such as KD-tree, Bounding volume hierarchy etc are used to accelerate

this expensive task.
2.1.2.5 Computing View Factors:

In order to calculate the view factor between the surfaces, a counter program is
implemented to count the number of rays emitted from the source which are absorbed

by the target body. Finally the view factor can be determined by using equation 10.

Fi,=1I/J (10)

Where I is the number of rays intercepted by the object and J is the total number

of rays emitted from the source.
2.1.2.6 Accuracy analysis

As mentioned before, the accuracy of the Monte Carlo method heavily depends upon
the distribution of random numbers. The accuracy of this method can be calculated
statistically. Let the result obtained from the Monte Carlo method, after tracing N
energy bundles, be X. Several independent trials is conducted, each with the unique
set of random numbers. The calculated value ¥ is the arithmetic mean of n number of
trials . The standard error of the calculation, can be calculated by using the Equation

11

7) — S”<x) — R
Sn(#) = = = — > (@i - ) (11)

where, s,(x) is the standard deviation. According to the central limit theorem,
the standard deviation of the solution decreases by the factor of 1/4/N . The Central
limit theorem states that the error of each independent simulation follows a Gaussian

distribution. This implies that 68.3% confidence can be claimed that actual answer
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lies within the limits of & + s(n). 95.5% confidence withinz + 2s(n), or with 99%

confidence within z + 2.58s(n).

2.1.3 Validation case

To validate the developed method the numerically calculated view factor results are
compared with the analytical solutions. In this regard, the view factor calculation
scenario between a sphere and a plate is selected from the catalog by Howell [50].
The analytical solution for the problem was derived by Feingold and Gupta [51] and

expressed by the equation 12

| N 2B? — (1 — B?)(B? + B2)

2B2 — (1 — B2)(B2 + B)
Fr o= —gin~] 2 2)\ D1 2
o2 = g I BB 1 B

]+ sin™

]
(12)

(1+ BY)(Bf + B3)

Figure 8: Validation case for calculating

view factor Figure 9: Validation case for calculating

view factor as seen in the solver

The numerical calculation of the view factor has been conducted with varying
distances between the sphere and the plate.The test case has been shown in Figure
8 and 9. For each case, 0.275 million rays were used for the calculation. Figure 10
shows the calculated view factors with respect to the spacing between the objects.

As shown, the numerical results agree well with the analytical solution.
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Figure 10: View Factor vs Distance between plate and sphere

Since Monte Carlo method is a stochastic technique, where the outcome of every
view factor calculation even with the same number of rays would be different. Re-
peating the view factor calculation thousand time for the scenario, shown in Figure
8, using exactly 0.275 million rays, one can obtain the histogram of the relative errors
in the calculated view factor values with respect to the analytical one. As shown in
the Figure 11, the distribution of the relative errors agree with the Gaussian distri-
bution around its mean. This observation also validates the stochastic nature of the
implemented method.

Figure 12 shows the calculated view factors for a fixed distance between the sphere
and the plate vs. the number of rays used in the calculation. The calculated view
factors on the plot are the mean of hundred different calculations carried outwith the
same number of rays. The analytical solution is represented by a continuous line on
the plot. As shown, the higher the number of rays traced ,the closer is the calculated
result gets to the analytical solution. The vertical bars on the plot represent the

standard deviations in the view factor values. The height of the bar is equal to the
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twice of the standard deviation, which means 95% of the result lies within that range.
As shown, the height of the vertical bars also reduce with the increase in the number
of rays. More precisely, the relation is matching with the inverse square root function
added on top of the plot. Central limit theorem dictates the relationship between
the standard deviation and number of trials or samples in Monte Carlo methods. As
shown in this validation case, the drop in the standard deviation is completely in
line with the Central limit theorem. This also validates the implementation of the

developed tool.

2.2 Radiation heat transfer in absorbing medium

Thermal radiation can penetrate into the medium if the surfaces are not opaque.
Similarly, thermal radiation emitted from the interior of the objects can also leak
out from the object. The medium that the thermal radiation is interacting with can
absorb the incident radiation or emit as well. In presence of non-scattering medium

the RTE is simplified into the form given in Equation 13:

a])\(Sa Q)

88 == Ii)\l)\b(s, Q)dS - /i)\]>\(57 Q)dS (13)

This section discusses the implementation of the MCRT method for the solution

of RTE in presence of absorbing and emitting medium.
2.2.1 Mathematical relation for the divergence of heat flux

In problems involving absorbing and emitting medium one is interested in the net
amount thermal radiation emitted per unit time from any particular region expressed

by the term V . gz and calculated using Equation 14.

J K
Vqp dV =4kpoTVi =Y 0T Fin =Y 4ipoTyi Vil 1=1,2,3..K
Vi k=1

Jj=1

(14)
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Where
V- qgr = Divergence of the radiative heat flux
k = Plank’s mean absorption coef ficient
o = Stefan — Boltzmann constant
F;_; = FExchange factor matrixz from surface j to volume [

Fy_,; = Exchange factor matrixz from volume k to volume [

The first term on the right hand side of the Equation 14 expresses the rate of
outgoing heat transfer by emission and the other terms stand for the rate of incoming
heat transfer by absorption of the radiation emitted from surface and volume elements

inside the domain.
2.2.2 Numerical solution for emitting and absorbing medium

MCRT method is adapted for the numerical solution of the particular problem. Steps

of the algorithm are explained in the flowchart given in Figure 13.
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Determine the volume for
ray emission
Determine the Emission point
Select R1 and R2 for ray
emission direction
Emit Ray

Trace the ray until next
intersection

Determine path length ‘ds’
Calculate the divergence
Continue tracing [ 0 Count number of rays absorbed

Figure 13: Flow chart for the calculation divergence of radiative heat flux

2.2.2.1 Calculation of Rate of Heat Transfer by Emission

Rate of heat transferred by the volume element K via emission is calculated with
E) = / 4rpoT*dV (15)
Vie

Since dV = dxdydz , Equation 15 becomes:

X Yy z X ,
E, = / (/ / 4k poT*dzdy)dr = / E.(x)dx (16)
o Jo Jo 0

This emitted thermal radiation is transferred to the surrounding by the rays re-
leased from the same volume element. The coordinates of the starting positions of

the rays are calculated using three random numbers R, R, andR, :

1 z T Y z X Y z
R,=— [ E,dr= / / / kpoTdz dyda:// / / kpoT*dz dy dv (17)
B Jo o Jo Jo o Jo Jo
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Y z Y Z
R, :/ / /<;p0T4dzdy// / kpoT dzdy (18)
o Jo o Jo

z Z
RZ—/ HPO'T4CZZ// kpoTtdz (19)
0 0

or

r=z(R,), y = x(Ry, ), z=2z(R,,x,y) (20)
2.2.2.2 Directions for the emission within the medium

After calculating the coordinates of the points the rays are released, the direction
of the rays are next determined. The solid angle of 47 = 0% foﬁ stnfdbysinfdfdiy,
contains all the possible direction of the emission within the medium. Since integrand

is separable,

Y
Ry = 9 or Y =21R, (21)
1[0 1
Ry = —/ sinfdf = —(1 — cosb), (22)
2/, 2
0 = cos (1 — 2Ry) (23)

Finally, the direction vector p can be determined using zenith and azimuth angles

as given below.

sinfcos¢p
P =14 sinfsing (24)

cosf
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2.2.2.8  Absorption within medium

When the ray travels through the absorbing medium, the energy carried with each ray
is reduced. This reduction of energy carried by a ray, traveling through a thickness

lg, is given by the Equation 25:

R, = exp(— /0 ) Kds) (25)

From Equation 25 ; it can be implied that the fraction of energy Ry will travel
over a distance [,. Thus, the distance any one bundle can travel before the absorption
can be determined by inverting the Equation 25

If the absorption coefficient  is constant throughout the medium, the bundle
travels a distance of [, , given in Equation 26, before it gets absorbed.

1, 1

l, = —In— 20
/-inR,{ (26)

If k is not constant , the allowed distance to be travelled can be determined by
breaking the volume in K sub volumes, such that s is constant within the cell. The

integral in Eq 25 can be converted into summation.

/ kds ~ Z RS, (27)
0 k

The summation in Equation 27 is over all the cells through which the bundle
has passed and s; is the total distance the bundle has travelled. The bundle is not

absorbed as long as the Equation 28 satisfies:

s g 1
/ rds < / kds = In— (28)
0 0 Ry,

Equation 28 is used to determine the distance that the ray has to travel until it

gets absorbed.A counter is used to count the number of rays absorbed in a volume,
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which later on used for the evaluation of the exchange factor. Finally, the divergence

of radiative heat flux is calculated by using Equation 14.
2.2.3 Validation case

The test case developed by Hsu and Farmer [52] is used to validate the developed
tool. It has previously been studied in the literature. Henson [20] has used the same
test case to compare the discrete transfer and Monte Carlo methods. Also, Guo
and Maruyama [53] discussed a new numerical method for the solution of RTE in
participating medium using the same test scenario.

The test problem consists of a unit cube enclosing an isothermal, absorbing, emit-
ting medium. All the surfaces of the enclosure are cold and black such that there is
no emission or reflection from the boundaries. The extinction coefficient inside the

cube is defined by the relation :

Blx,y,z) =0.9(1 —2|z|)(1 — 2]y[)(1 — 2|z|) + 0.1 (29)

The coordinate origin lies at the center of the cube extending by 0.5 in length
in every directions. The participating medium has unity black body emissive power.
First, the domain is sub-divided into 9 uniform and cartesian cells in every direction.
The centers of the cells are located at (x, y, z) = (0,1/9, 2/9, 3/9, 4/9). For every cell
the extinction coefficient is evaluated from equation 29 and assumed to be constant
within the cell. Following the explained collision based Monte Carlo method, the
divergence of radiative fluxes for every cell in the cube is calculated.

Table 1 shows the divergence of the radiative flux of the cells at the centerline of
the cube calculated with the present method along with the other studies from the
literature.

As shown in Table 1 the results of the present tool is in agreement with the results

from the literature. In total 5 million rays are used in the calculation.
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Table 1: Divergence of the radiative heat flux at (x,0,0)

X MCRT [present] Uncertainty MCRT[52] MCRT [20] DT YIX
+4/9 0.723284 0.000257 0.72910 0.72336 0.72860 0.72219
+ 3/9 1.376448 0.000515 1.38739 1.37701 1.38099 1.37208
+2/9 1.969357 0.000851 1.98360 1.96893 1.96458 1.95658
+1/9 2.519262 0.001158 2.53635 2.51700 2.52182  2.49628

0 3.07424 0.001449 3.09813 3.07462 3.08144 3.03664

The uncertainty in the results are also listed in Tables 1.

They are obtained

by hundred independent Monte Carlo simulations performed. The variation in the

standard deviation with respect to the number of rays is shown in Figure 14.

uncertainty
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0.00E+00
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4

Number of Rays
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Figure 14: Uncertainty with the number of rays

2.3 Coupling radiative transport and heat transfer equation

Solution of RTE only is rarely of any practical use if it is not coupled with the energy

equation to solve for the change in the temperature. Accordingly, the divergence of

the radiative flux obtained from the RTE is fed into the energy equation as a source

term. Solving for the energy equation, the change in the temperature due to the

thermal radiation can be calculated. However, this requires the divergence of the

radiative flux term to be re-calculated with the updated temperature level in the
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cells. This iterative process continues until the required time level is reached.

The ordinary differential equation for the solution of the change in temperature
only due to radiation, neglecting the effect of conduction and convection, is given in
the Equation 30.

ar

pe s = -V - qg (30)

For the numerical time integration of the problem the 1st order Forward Euler

method is used given in Equation 31

At

T T, — (E)V *4r (31)

Equation 31 is used for the calculation of the temperature at each time step. This

updated temperature is then used for the re-calculation of the divergence. The whole

iterative process for the solution of the temperature is shown in Figure 15.

Calculate
divergence of
the heat flux

Use energy

equation for the
temperature

Update
temperatures

Figure 15: Process flow for the calculation of the temperature
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CHAPTER II1

RESULTS AND DISCUSSION

This section first discusses the effectiveness of acceleration techniques both hardware-
and programming-wise on reducing the computational cost of the MCRT method.
The speed-up tests are conducted on a standard view factor calculation scenario.
The selected test case has already been studied in the literature, so the computation
time for the number of rays traced can be compared.

Another purpose of this study is the coupling of RTE with the energy equation for
solving the heat transferred by radiation. In this regard, a new method is proposed
that balances the memory usage of the GPU, computational time of the problem and

as well as the accuracy of the solution.

3.1 Acceleration of Ray Tracing

As discussed in the numerical method section, Monte Carlo ray tracing method re-
quires tracing of millions of rays to get a solution with acceptable accuracy. The
computation cost associated with that can be dealt with the computational power of
modern graphic processors and as well as with the use of efficient data structures.
In this study the effectiveness of each of these acceleration techniques will be sep-
arately discussed. The speed-up due to the running the ray tracing calculation on
GPU is evaluated by running the scenario studied by Mirhosseini and Saboonchi [17]
and Cosson et al. [54] with the present tool and comparing their run times with the
present one. The test case consist of a cylinder and rectangular plate as shown in the

Figure 16.
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Figure 16: Test case for the comparison of computation time

3.1.1 Acceleration due to the GPU Hardware only

The fact that the ray tracing calculations are completely independent from each
other makes the MCRT method ideal for the GPU hardware. Table 2 shows the
number of rays traced per second on the indicated hardware and as well as the year of
publication. The past studies mentioned in the table are conducted on CPU whereas
the present work is carried out on two different GPUs; one being a low-end laptop
GPU while other one being a high-end GPU. As shown in Table 2 even with a low-
end GPU the number of rays being traced could be increased by 15x. Moreover, the
high end GPU is able to trace 30 million rays in a second which means about 1500x
increase in the number of rays being traced compared with the recent studies shown
in the table.

However, it is important to indicate that the modern CPU hardware is much more
powerful than the ones used in the past studies shown in the Table 2. Using a modern
high end CPU, it is estimated that the studies mentioned in the table would result
in a 15-20x increase in the number of rays traced. However, one should also consider
that the computations on the CPU probably were conducted using double precision

accuracy whereas in the current study on the GPUs single precision accuracy was
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Table 2: Comparison of the number of rays traced per second

Number of rays

Compared cases Hardware used traced per second (million)
Cosson et al.[54] Intel Centrino CPU (2.6 GHz) 0.02
Mirhosseini and
Saboonchi [17], 2011 Not specified / CPU 0.07
Present work Nvidia Geforce 610M GPU 0.28
Present work Nvidia TitanX 30

used. Conducting the same computations on CPU using single precision accuracy
would mean a further 2x increase in the number of rays traced. So, taking all into
account it is estimated that the implementation of Cosson et. al. [21] would run
about 40-50x on todays high end multi-core CPUs using single precision accuracy.
This would mean that the current implementation still be better by factor of 50x
in terms of the number of rays being traced. It is noteworthy to indicate that this
achieved speed up is due to the computational power of GPU only. The performance
of the ray tracing method can be further improved by using the so called acceleration

data structures.
3.1.2 Acceleration due to the efficient data structures

The computational cost of the ray tracing calculations depends both on the number
of rays being traced and on the number of the triangles present in the domain. In
the naive implementation the ray-triangle intersection calculations are carried out
for each ray and for each triangle present in the domain regardless whether the ray
will intersect or not. However, organizing the geometry data composed of triangles
in a tree-like data structure can accelerate the intersection calculation massively.
Different types of acceleration data structures exist but in this study the Bounding
Volume Hierarchy (BVH), one of the most efficient acceleration data structures as

discussed by Vinkler et al. [15], is considered. In order to investigate the effect of
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Figure 18: Speed up due to the accelera-
tion structure vs number of triangles

the BVH data structure on the performance, a view factor calculation study has been
conducted. For this study the view factor test case shown in Figure 16 is considered
where the number of triangles the plate is made of has been progressively increased
without altering its dimensions. The computation time to trace 100 million ray has
been recorded for each case.

As shown in Figure 17 there is an almost 8x increase in the computation time as the
number of triangles was raised by 8x. On the other hand, the calculation carried out
with the BVH acceleration data structures seems to be almost completely unaffected
by the number of triangles present in the domain. Figure 18 shows the gained speed up
entirely due to the usage of the BVH. As shown, the speed-up increases dramatically
with the number of the triangles in the domain which highlights the importance of

the acceleration data structures especially for large view factor calculations.
3.1.3 Combined speed up

Combining the computational power of GPU and the acceleration data structure
mentioned above very impressive speed-up values are achieved even with very low-end

graphic cards. Table 2 shows the number of rays traced per second on the indicated
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hardware compared. As compared to the studies on CPU, the current one is able to
trace around 300 and 700 times more rays within the same time frame compared to
the studies in [54] and in [17] respectively with low end GPU. Moreover, the results
become even more dramatic with the high end GPU showing a speed-up in excess of

10,000x.

Table 3: Comparison of the number of rays traced per second rays with acceleration
structure

Number of rays

Compared cases Hardware used traced per second (million)
Cosson et al.[54] Intel Centrino CPU (2.6 GHz) 0.02
Mirhosseini and
Saboonchi [17], 2011 Not specified / CPU 0.007
Present work Nvidia Geforce 610M GPU 5.2
Present work Nvidia TitanX 250

3.2 Solution of radiative heat transfer problems involving
complex geometries

3.2.1 Surface to surface radiative heat exchange

The numerical method is next tested for a scenario involving a complex three-dimensional
geometry. In this regard, the view factor calculations is conducted between two glasses
shown in Figure 19. The dimensions of the glasses are 6.5 x 13.7 cms. The surfaces
are represented by 7056 surface triangles. Rays are emitted continuously over the ran-
domly chosen surface elements and the obtained results are plotted after indicated

ray numbers given in Figure 19.
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Figure 19: Map of view factor over the glass surface for different number of rays used

(in millions left to right: 0.5 - 2.5 - 6.4 - 9.6 16). The hot points are becoming more

clear and sharper with the increasing number of rays.

3.2.2 Radiative heat exchange in absorbing medium

After the evaluation of view factor, the numerical method is then tested for the
more complicated case of participating medium consisting of a glass and a heater. A
glass geometry is divided into 13343 tetrahedral elements. Figure 20 shows the cross
sectional view of the mesh. The glass is made up of homogeneous pure absorbing
medium. The temperature of the heater is fixed at 600 K and the initial temperature
of glass is 400 K. Divergence for each sub-volume of a glass is first calculated using
MCRT method. This divergence is then used to calculate the temperature of each
cell using Equation 31 with At of 1 second. The map of the temperature of the glass

after one second is shown in Figure 21 .
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Figure 20: Volume mesh of the geometry.

Figure 21: The temperature profile on the glass.

3.2.3 Radiative heating in presence of moving geometries

Continuous furnaces are widely used in a wide variety of manufacturing processes
where the objects are moved through the furnace via a conveyor belt. They are
especially suited for large scale production. Continuous furnaces are also used in
glass annealing where the glass objects are fed into the furnace after they are taken
out from the mold. After the glass object moves into the furnace, it is first heated to
around 800 K and then kept at this temperature for a while and finally started to be
cooled down initially very slowly and then at a faster rate. This is a critical stage in
the glass manufacturing process. Therefore, modeling the process and calculating the
glass temperatures are of vital importance for finding the right operating conditions

of the furnace. The main challenging part in modeling of continuous furnaces is the
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change in the geometry due to the relative movement between the glasses and the
furnace walls.

The developed tool is tested using a simplified annealing furnace scenario as shown
in Figure 22. The case consist of nine glasses moving. Initially, the temperatures of
the glasses are set to 400K. The temperature of the heaters, placed on either side of
the furnace, are set to 800K. Conveyor speed is adjusted to 0.03 m/s. Here, the glasses
are treated as semi-transparent medium where the thermal radiation is penetrating
into the object. Both the heaters and as well as the glass objects themselves are
considered as sources. The time integration of the energy equation is done using first
order Forward Euler method. A distinctive feature of the tool is the integration of
the calculation and visualization stages. While the simulation is running the glasses
are also simultaneously color coded with respect to their instantaneous temperature
levels as shown in Figure 22. As shown, depending on the orientation of the glasses,

the heating rate considerably varies.
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Figure 22: Simulation of the heat transfer of annealing process in glass manufacturing
industry
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3.3 Adaptive Monte Carlo ray tracing method

The iterative nature of the heat transfer problem might require solving the com-
putationally costly RTE equation over and over again. FEven though acceleration
techniques are of great use, running MCRT multiple times can still be prohibitive.
The main computational cost in solving the RTE lies in the calculation of the ex-
change factor matrix by the MCRT methods. Once the matrix is calculated, there
is no more need to re-calculate it unless there is a change in the geometry or change
in the radiative properties of the regions with temperature. So, once the matrix is
calculated it can be stored in the memory and used in evaluating the divergence of
radiative fluxes over and over again. At the end, one has to pay the computational
price of the MCRT only once. However, for most realistic problems the exchange
factor matrix ends up being very large in size. Problems involving only 1000 surface
cells, leads to a matrix with 1000x1000 elements. Even though graphic cards have
very high computational power, their memory space is rather limited. So, one does
not have the memory resources to fit the exchange factor matrix into the memory of
the graphic card even for small problems. The limitation in the memory requires the
matrix to be re-calculated multiple times even though it might not be needed.

This section discusses a new MCRT based algorithm that balances the computa-
tional time and the memory usage of the hardware and the accuracy of the solution.
By specifying the most critical regions of the domain before running the simulation,
one can dedicate the computational resources on solving these particular regions very
accurately and everywhere else at some mediocre accuracy. This is proposed as an
engineered solution for the computational cost and accuracy problem.

The steps of the algorithm are :

1) Specify the critical regions within the domain that needs to be resolved at high
accuracy

2) Calculate and store the exchange factors involving these critical regions only
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3) Calculate and store divergence of the radiative fluxes for every cell within the do-
main

4) Update the temperature by solving the energy equation

5) Re-calculate the exchange factors involving the critical regions only and use them

to correct the previous exchange factor values.

To test the effectiveness of the method, the proposed method is applied on a test
scenario which consists of a stationary wine glass inside a hot furnace. The glass
is considered as a pure absorbing and emitting medium with constant coefficients.
Initially, the temperature of the glass is set to 573 K uniformly. The heaters at the
walls of the furnace are taken as 800 K. The scenario is shown in the Figure 23. The
heating of the glass in time is calculated using Monte Carlo based three different
numerical methods:

1) Standard Monte Carlo ray tracing method

2) Adaptive Monte Carlo method (the proposed method in this section)

3) Standard Monte Carlo method with hundred times more number of rays, which
serves as a reference solution.

Methods 1 and 2 use the same number of rays and method 3 uses an excessive
number of rays and its solution will be taken as the reference solution to compare the
accuracy of the order methods with. Figure 24 shows the time variation of the tem-
perature of a single point of the glass object calculated with the methods mentioned
above.

The results of the standard Monte Carlo ray tracing method (Method 1) fluctuates
around the reference solution due to the relatively low number of rays used in the
calculation. Method 3 does not exhibit the nonphysical fluctuations in temperature
due to the large number of rays used in the calculation. But it also has a much higher

computational cost. The Method 2 agrees quite well with the reference solution and
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Figure 23: Test case for the Adaptive method

does not exhibit the oscillations of the Method 1 either. The rise in the accuracy
of the Method 2 over the accuracy level of the Method 1 is achieved by targeting

the computational resources on solving particular regions very accurately and solving

everywhere else at the same level of accuracy of the Method 1.
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Figure 24: Increase in temperature of the glass with time
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The additional accuracy that the Method 2 provides is due to the extra memory
usage. The exchange factor values for a particular point are corrected over time as
the simulation proceeds. Figure 26 shows the comparison of the memory usage for
Method 1 and 2. As shown, Method 2 has a minor rise in memory usage as compared
to the Method 1. This is due to saving of the exchange factor values for one particular
point in the memory. Figure 27 shows the comparison of the computation time of each
iteration for all the methods. As opposed to the difference in the memory usage, in
terms of computation time, method 1 and method 2 behave the same due to the same
number of rays utilized in both calculations, while method 3 takes more computation
time due to the usage of high number of rays. The accuracy of the developed method
is determined by using Equation 32. Figure 28 shows the comparison of the mean

errors of adaptive MCRT and standard MCRT method.

Tcalc - Tref
time steps

(32)

MeanError =

In summary, this method manages the computational resources to solve some
critical regions of the problem more accurately. In a way one can compare this
approach with the mesh refinement done in the critical regions of the domain in the
discrete ordinate and finite volume based methods. As shown in Figure 25, designing
a solver the interrelations between the computational resources and the accuracy
should always be kept in mind. In this particular numerical method, high accuracy
and less computation time can be achieved at the expense of huge memory usage. On
the other hand, high accuracy and less memory consumption can be achieved with an
expense of huge computation time. Considering these limiting conditions, the solvers
has to be designed in a way all the interrelated aspects i.e computation power and
memory usage and accuracy of the solution are balanced according to the needs and

availability of the resources.
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CHAPTER IV

CONCLUSION

The main conclusion of the study are listed below:

e A Monte Carlo ray tracing based radiation heat transfer solver has been devel-
oped. The tool has been validated and its capability on solving heat transfer
problems with absorbingemitting (but not scattering) gray and non-participating

media involving complex geometries has been demonstrated.

e With the use of graphic processors (GPU) the computational cost of the method
is substantially reduced. It is calculated that a high-end GPU offers a perfor-
mance benefit of approximately 40x in comparison to todays high-end multi-core
CPU’s. The developed tool takes advantage of the graphical processing capa-
bility of the GPU and is able to display the results simultaneously with the

calculation.

e An additional 10x speed-up is achieved with the implementation of the acceler-

ation data structure in ray tracing calculations.

e A new method is proposed that solves user defined critical regions with high
accuracy and the remaining regions with mediocre accuracy. The method does
not lead to any further increase in the computation time but it only requires 1.5x
more memory for the storage of the exchange factors. The solver is developed
in a way that the computational resources and the accuracy of the solution are

balanced.

e Results of the present study reveal the potential of GPU computing in expanding
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the applicability of the ray tracing based numerical methods for the solution of

the radiative transfer equation.
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