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ABSTRACT

There is great potential for human and robot to work together as a team, since this

collaboration can take advantage of both human and robot capabilities, cover their

weakness and yield a higher performance. We propose and implement a human-robot

collaboration framework where, while the human tries to perform a task, the robot

infers the human intention and assists the human in achieving the inferred goal. We

explore how the human is influenced when (s)he interact with machine autonomy,

and whether there is any advantage in task performance when human shares control

with an autonomous agent. In particular, we investigate whether interacting with

autonomy can aid humans to improve their performance in shorter time. We realized

this collaboration system by designing a ball balancing task in which the goal is to

move and balance the ball on a target position on a tray held by a robotic arm.

The human performs the task by controlling the robotic arm with an interface which

tilts the tray and moves the ball while the robot infers the target ball position by

observing the trajectory of the ball, and augments the human control commands for

assisting in task execution. The length of ball movement trajectory, completion time

and positional error were chosen as the measures to evaluate the task performance.

To assess the impact of our system on human learning and task execution a set of

experiments were conducted under two conditions, human control condition where

human performs the task alone and share control condition where both human and

robot are involved in performing the task. 20 naive subjects were volunteered to

perform the experiment in four continuous days. The result of these experiments

suggests that not only the task execution can be improved in collaboration with

robot compare to when the humans perform the task alone but also this collaboration

system can make the human learning to progress faster.
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ÖZETÇE

İnsan ve robotun takım olarak çalışması ve etkileşimde bulunması büyük bir potan-

siyeldir, çünkü bu işbirliği hem insan hem de robot yeteneklerinden yararlanabilir, iki

tarafın zayıf noktalarını giderir ve daha yüksek bir performans verir. Bu tezde insanın

görevi yerine getirmeye çalışırken, robotun onun niyetini bularak hedefe ulaşmasına

yardımcı olan, bir insan-robot işbirliği çerçevesi önerilmiş ve uygulamısı gösterilmiştir.

İnsanın, makine özerkliği ile etkileşime girmesi durumunda nasıl etkilendiği ve in-

sanın özerk bir ajanla olan paylaşımlı kontrolünün performansa herhangi bir avan-

taj sağlayıp sağlamadığı konuları çalışılmıştır. Özellikle, özerklik ile etkileşimin in-

sanlara daha kısa sürede performanslarını artırmalarına yardımcı olup olamayacağı

araştırılmıştır. Bu işbirliği sistemini, robot kolunun tuttuğu bir tepsi üzerinde topu

hareket ettirerek istenilen konumda dengelemeye çalışan top dengeleme görevi tasar-

layarak gerçekleştirdik. İnsan robot kolunu, tepsiyi eğen ve topu hareket ettiren bir

arayüzle kontrol ederek görevi yerine getirirken, robot topun yörüngesini izleyerek in-

sanın niyet ettiği top pozisyonunu öngörür ve görev icrasında yardımcı olmak için in-

san kontrol çıktısına ekleme yapar. Bu çalışmada görev performansını değerlendirmek

için topun hareket yörüngesi uzunluğu, görevin tamamlanma süresi ve topun konum-

sal hatası seçildi. Sistemimizin insan öğrenimi ve görev icrası üzerindeki etkisini

değerlendirmek için, insanların görevleri tek başına yerine getirdiği ve paylaşımlı kon-

trol koşullarıyla hem insan hem de robotun görevi yerine getirdiği iki koşul altında

bir dizi deney gerçekleştirildi. Dört devamlı gün içinde deneyi gerçekleştirmek için

20 kişi gönüllü oldu. Bu deneylerin sonucu, yalnızca insanların, görevi tek başına

gerçekleştirdiği zamana kıyasla, robot işbirliği içinde daha iyi yürütülebileceğini ve

aynı zamanda bu işbirliği sisteminin insan görev öğrenimini hızlandırdığını göstermiştir.
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Chapter I

INTRODUCTION

1.1 Motivation

Some tasks might be out of human physical capabilities due to environmental risks

and constraints or extreme accuracy requirements, and even though robots are ex-

pected to used in our daily life substantially in the coming decades, it is still hard

or sometimes impossible to make some tasks completely and perfectly automated.

Hence, there is a great potential for humans and robots to work together in a team

as partners to contribute to given task objective based on their own individual capa-

bilities rather than humans treating robots only as tools.

A robot used to be viewed as a device which performs physical tasks on command

with human supervision, however, now we envision robots that can cooperate with hu-

mans as capable partners. Examples of such tasks include fly-by-wire aircraft control

systems [1], automobiles with driver assistance systems [2] and medical devices [3].

Such interactive control systems can be referred as the human-in-the-loop control

systems. While completion of such tasks in a totally autonomous fashion is desir-

able, it is not yet due to the dynamic operating situations and conditions, where it

requires human administration or supervision. For example a robot is able to work

autonomously under normal situations, however in unexpected or abnormal situations

the robot may fail to operate and the human may need to interfere to make decisions

on behalf of the robot, which can provide the system with the ability to deal with

unexpected events. Even though self-driving vehicles are becoming a reality there

are problems when unexpected things- the near misses, the bad weather, the fog, the

rain, the snow, the dirty windshields, all of these things, may happen. For example
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consider the situation in which a mobile robot is driving outside, when it detects

tall grass as a new surface to drive on, the robot itself may be unable to proceed

and decide. However, if the robot is able to discuss the situation with a human and

get a prompt response, a better solution can be found. Therefor a realistic solution

involves a semi-autonomous control that works with the assistance of one or more

human operators [4]. For example in [5] a system is developed that enables a team

of robots to autonomously perform assembly manufacturing tasks, asking a human

worker for help only when needed. This system enables robots to make requests in-

telligently and in a way that allows a human to easily comply with these requests.

This uses concept of human-in-the-loop control to achieve greater robot capabilities

than would be possible with a pure autonomous system. By adapting autonomy and

human-robot interaction to the situation and the user, we can create systems which

are easier to use and better performing. There are certain features in which humans

are better and probably always will be superior to robots, such as flexibility, dexter-

ity, perception, intuitive control, and high-level decision making, on the other hand,

robots are resistant to hazards, robust to fatigue and good at precise low-level motion

planning and repetitive tasks. Therefor interaction and combining human and robot

skills seems very appealing, and the investigation of new shared control methods that

can effectively blend the control between the human and the robot will make it pos-

sible to take advantage of these features and enables human-robot systems to surpass

both robot and human performance.

1.2 Previous Works

A simple way to interact with robot is so called direct control [6–8], where the human

controls the robot by physically holding and moving it through desired postures.

Direct control is limited and not suitable for dynamic control tasks [9], and thus might
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be difficult to be widely adopted for shared control applications. In human-in-the-

loop control [10–12], the human takes share in real-time control of the robot in order

to make the robot perform a given task. However, no physical contact with the robot

is needed. This paradigm has been successfully used to obtain robot skills such as ball

manipulation [9] with a five fingered robotic hand, balanced inverse kinematics on a

humanoid robot [11], and tasks involving force based policies [11,12]. In these studies

human-in-the-loop control framework was used to obtain an autonomous controller

for the robot and eventually remove the human from the control loop. However, in

assistive and shared control, both parties are envisioned to stay engaged in the task.

For the former, the robot takes share in control and helps the human accomplish

the desired task by making it easier and more seamless [13,14], whereas in the latter

a synergistic coupled system is formed by the human and the robot to perform the

desired task [15]. Humans and robots can have a common goal and work cooperatively

through perception, recognition and intention inference [16]. Collaboration hinges on

coordination and the ability of partners to infer each other’s intentions and also

adapt [17, 18]. Coordination error and miscommunication between the human and

autonomous agent will result in system failure [19–21]. Hence, ensuring that they

have the ability to properly anticipate the needs and goals of each other from behavior

during collaborative work is critical to achieving good team performance [22]. In prior

work in human robot interaction and assistive teleoperation, it is usually assumed that

the robot knows the human intention [23–31]. In some other works it is assumed that

the human is following one of a set of predefined goals or paths, and then it trains a

classifier for prediction [32–38]. Some frameworks assume certain behavior patterns

of the human, a formalism for the robot assistance as an arbitration of two policies,

namely, the user input and the robot prediction of the user intent, known as policy

blending; has been shown to be effective [13, 14], this policy blending with accurate

prediction has a strong corrective effect on the user input, the robot observes the
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human actions and finds the targeted goal among a set of potential ones from the

human movement directions as both human and robot move towards their respective

goals.

Our approach differs from these works in a way that it incorporates intention

inference capability for the robot without the existence of any pre-defined goal or path

to the goal. In addition to that we are also exploring how the human is influenced

when interacts with machine autonomy. We explore if there is any advantage in task

performance when human shares control with machine and how they progress and

adapt to the system. We are also questioning if autonomy can aid humans to improve

their performance higher and faster.

1.3 Thesis Outline

Chapter II defines our general framework and methodology. First we propose a

shared control framework. Then we design a task to implement and examine our

proposed framework on. Then we explain the methods and robotic setup in detail,

and finally we show how we implemented the proposed shared control framework on

the physical designed task.

Chapter III presents our experiments and the results, and includes statistical anal-

ysis on the collected data to verify the efficiency of our proposed shared control

framework.

Chapter IV concludes this thesis and discusses the possible directions for future

work.
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Chapter II

METHODOLOGY

2.1 Shared Control Framework

In our proposed framework the robot assists the human to accomplish a given task by

inferring the human intention. The human starts performing the task, and simultane-

ously the robot starts estimating the human goal, taking share in control generating

control commands and augmenting the human control commands based on its es-

timated goal. The control command that drives the robot is a combination of the

robot and human command. In this work, we adopted the convex combination of the

human and the robot generated commands to obtain the net motor command sent

to the robot. To be concrete, the net command is given by Cnet = ωCH + (1−ω)CR)

where ω is a parameter for sharing the control command weights, CH is the human

command, CR is the robot command. Other control sharing schemes are clearly pos-

sible, including for example adaptive control sharing [39]. Our proposed framework is

illustrated in Figure 1 where the plus sign in the control blending is used figuratively.
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Figure 1: In this framework human operator controls the robot in real-time to achieve

the desired goal. Simultaneously, the robot infers the human intention and generates

commands based on its predicted goal to assist the human in achieving the task.

2.2 Designed Task

We realized the proposed framework by using a ball balancing task. In this designed

task a tray is held by a robotic arm and a ball will be placed in the center of the tray

in the beginning of the task. A desired target position is marked on the tray and the

goal is to move and balance the ball on the desired target position by tilting the tray

and teleoperating the robotic arm by using a computer mouse. This teleoperation is

explained more in section 2.3.1. For combining the human and motor command, the

convex combination is used with equal human and robot share (i.e. ω is chosen as

0.5 in Cnet = ωCH + (1 − ω)CR) .

2.3 Robotic setup

We used an anthropomorphic robotic arm (6DOF Kuka Agilus R6000) to hold the

tray for this task. The tray which is used in this setup is a 70 cm by 70 cm square,

and is attached to the end effector of the robotic arm. Two joints of the robotic arm
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were used as wrist joint and elbow joint to tilt the tray in two axes. A ball with a

radius of 3cm is placed on the tray and an infrared camera system (OptiTrack) is

deployed above the robotic arm which oversees the tray. The robotic setup is shown

in Figure 2. The infrared camera output is used to capture and track the position

and velocity of the ball in real-time with frequency of 250 Hz. The edges and the

center of the tray were detected by the camera and scaled to the real dimensions of

the tray in order to find the position of the ball on the tray.

7



Figure 2: Robotic setup, The tray (70 cm by 70 cm) is held by the robotic arm, and

the camera is placed on the top of the tray

2.3.1 Robot Teleoperation

In order for the human to teleoperate the Robotic arm to tilt the tray and perform

the task, a standard computer mouse is used as a feed-forward interface. The human

teleoperation commands are obtained with the movements of the computer mouse.

The horizontal and vertical displacements of the mouse are linearly mapped as the

desired angular movements of the wrist joint and elbow joint, respectively. This tilts

8



the tray in two axes and moves the ball to the corresponding direction. The control

frequency was 250Hz. The linear scale used to map mouse movements to robot move-

ments was tuned experimentally to provide an intuitive teleoperation.

θwrist−desired = θwrist−current + k∆x

θelbow−desired = θelbow−current + k∆y

Here θwrist and θelbow denote joint angles of the robot, k (k = 1) is mouse scale

constant and ∆x and ∆y are captured horizontal and vertical displacements of the

mouse.

2.3.2 Human-Robot Shared Control

In the shared control condition both human and robot are involved in generating

the control commands to accomplish the given task. The human starts performing

the task, simultaneously the robot assists the human by inferring the human inten-

tion (see Section 2.3.3.1), taking share in control and augmenting the human control

commands.

2.3.3 Autonomous Controller

The robot generates its commands by using an autonomous controller that moves and

balances the ball on the predicted target position (obtained by a human intention

inference method which is explained in the next Section 2.3.3.1). This autonomous

controller is obtained by imitation learning. We defined the states of the task as

follow:

S = [x, y, Vx, Vy, Jwrist, Jelbow, ωwrist, ωelbow]

Where (x, y) and (V x, V y) indicate ball position and ball velocity in x and y axis,

respectively, and (Jwrist, Jelbow) are robot’s joints angles, and (ωwrist, ωelbow) are the

joint’s angular velocities.

We assumed that control commands issued at the states experienced by the system

9



are sufficient for successful task execution. For the ball balancing task, if we assume

that the relation between the control commands and the state is linear, then the

control policy can be approximated by linear regression. To obtain data for linear

regression, an expert subject performed the task multiple times to balance the ball

on the center of the tray, while task states and corresponding commands were being

recorded. The recorded states and commands were collected in the rows of S (state

matrix), C (commands matrix) respectively. With the linear relation assumption that

SW = C, the weight matrix W that maps the states to the corresponding commands,

can be found by:

W = S+C (Where S+ is the pseudo inverse of S)

Once W is found, having the current state(s), autonomous controller command(c),

can be obtained by: c = sW The predicted commands and actual commands of the

expert subject are shown in Figure 3. 200 seconds of expert demonstration was used

to obtain the policy for balancing the ball on the center of the tray with random

starting positions. This was then used to construct a controller that can balance

the ball anywhere on the tray by mapping the desired target point on the tray to

the center of the tray which was the target position when the expert data was being

collected.

10



Figure 3: Linear regression error, actual commands and predicted commands ob-

tained by linear regression for robot wrist joint and elbow joint. Only 500 data

points (collected in 2 seconds) are shown for clarity, with MSE = 0.0298 for wrist and

MSE = 0.0555 for elbow joint.

2.3.3.1 Human Intention Inference

Human intention in this experiment refers to the goal target position that the human

tries to move and balance the ball on it. This Inference starts when 1000 data points

(in 4 seconds) are collected after the human operator starts the ball balancing task.

The ball positions in a moving window is used to estimate the goal of the human

operator. This window includes 1000 data points which are collected in the past 4

seconds. The ball position distribution over the window is modeled as a Gaussian

distribution, although other alternatives are possible.
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P

x
y

 ∼ N(µ,Σ)

Where X and Y indicate the ball position in x and y axes. µ is the mean matrix

defined as:

µ =

µx

µy


Where µx and µy are the mean value of the ball position in x and y axes, Σ is

covariance matrix defined as:

Σ =

Σxx Σxy

Σyx Σyy.


where Σxx = var(x),Σyy = var(y) and Σxy = Σyx

T = cov(x, y)

Consequently, the mean of the Gaussian function indicates the estimated goal position

and the variance of that Gaussian function indicates the confidence of the estimate. It

updates the inferred goal position based on the changes on the mean of the Gaussian

function and this process continuous until the end of session (see Figure 4).
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Figure 4: Human intention inference, the ball position distribution on the tray.

In phase 1 of the experiments a histogram based intention inference method was

used in which the human goal position is set to the ball position histogram maximum

point (see Figure 5). The goal position is updated with histogram changes, by using

a time-windowed indicator. This method also sets the predicted goal position after a

certain period of time passes (4 seconds) and enough data is recorded.
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Figure 5: Human intention inference, the ball position histogram on the tray.
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Chapter III

EXPERIMENTS AND RESULTS

3.1 Experiments - Phase 1

In this phase we aimed to examine the efficiency of the proposed shared control

frame work by comparing it to the performance of the robot and the human, for

this purpose, experiments were conducted under three different conditions. ‘Robot

Control’, ‘Human Control’ and ‘Shared Control’ for a set of target points selected on

the tray.

Robot Control Condition: In autonomous robot control, only the autonomous

controller generates the control commands.

Human Control Condition: In the human control condition only human

teleoperation commands will drive the robot as it was explained in Section 2.3.1.

Shared Control Condition: In the shared control condition both human and

robot are involved in generating the control commands to accomplish the given task.

The human starts performing the task, simultaneously the robot assists the human

by inferring the human intention, taking share in control and augmenting the human

control commands. The final control command that drives the robot is a convex

combination of the human and robot generated commands.

3.1.1 Participants

20 naive subjects (16 males and 4 females) were divided into 2 groups to perform the

task in shared control condition and human control control to provide the first trial

result.
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3.1.2 Experiment Design

In this experiment ball was placed on the center of the tray in the beginning and

each of the subjects had maximum two minutes to move and balance the ball on the

target position to finish the task. In order an attempt to be successful the final ball

position distance to the target position should not be more than 3 cm. This value is

chosen because the ball radius is 3 cm.

3.1.3 Performance Measure

Two performance measures were defined for this experiment.

Task completion time: The time that the operator takes to balance the ball

on the target position on the tray.

Positional Error: The distance of the final ball position to the target position.

3.1.4 Results

The result of this experiment showed that in the human control condition, five out

of ten subjects failed to finish the task. In the autonomous robot control out of ten

trials, two were unsuccessful, since the distance of the final position to the target

position was out of acceptable range, due to surface irregularities. In shared control

group, out of ten subjects only one subject failed to achieve the goal in the given

time. We found five target points which could be achieved successfully in all the

three conditions. We analyzed the performance for these five points, by using the

defined performance measures.
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deviation.
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Figure 7: Shared Control vs Human Control vs Robot Control, completion time,

mean of completion for the 3 conditions, vertical error bars indicate standard devia-

tion.

According to completion time in Figure 7 and positional error in Figure 6, we

can say that the robot control and shared control did not have significant difference

in completion time according to T-Test analysis and both were better than human

control (see Table 1) , however, shared control was significantly better than robot in

positional accuracy (see Table 2). Considering both performance measures, shared

control presents higher performance in comparison to the other two conditions, which

is almost as fast as the robot and more accurate than both the robot and the human.
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Table 1: Shared Control vs Human Control vs Robot Control, completion time P-

Value

Table 2: Shared Control vs Human Control vs Robot Control, positional error P-

Value

3.2 Experiments - Phase 2

To investigate if this framework can help the humans to learn faster and improve their

skills more in comparison to the condition, where they perform the task alone, a set

of experiments were conducted under two conditions, ‘Human Control’ and ‘Shared

Control’.

Human Control Condition: In the human control condition only human

teleoperation commands will drive the robot as it was explained in Section 2.3.1.

Shared Control Condition: In the shared control condition both human and

robot are involved in generating the control commands to accomplish the given task.

The human starts performing the task, simultaneously the robot assists the human

by inferring the human intention, taking share in control and augmenting the human

control commands. The final control command that drives the robot is a convex

combination of the human and robot generated commands. In this condition subject

were not instructed about the role of the robot in control.
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3.2.1 Participants

20 (12 males and 8 females) naive human subjects were volunteered to do the ex-

periment. They were students of engineering and psychology faculties at Özyegin

University in Turkey. They were chosen in pairs according to age and gender and

divided into two groups to perform the task under human control and shared control

conditions. In the human control condition 6 male and 4 female students with the

mean age of 25.80 ranging 22 and 28 years participated. In the shared control con-

dition 6 male and 4 female students with the mean age of 25.90 ranging 23 and 31

years participated.

3.2.2 Experiment Design

Four target positions with equal distance to the tray center were marked on the

tray which served as possible targets for the subjects but the robot is not given the

knowledge of these four targets. At the beginning of one experimental trial, the ball

is positioned at the center of the tray with zero velocity and the subject tries to move

and balance the ball on one of the four marked target positions on the tray. Each

experimental session includes four sub-sessions (Blocks) and a sub-session is made

of four experimental trials, thus one experimental session includes 16 trials. To not

to tire the subjects, after each sub-session they could take a short break. For each

subject, four experimental sessions were conducted in separate but consecutive days

which makes 64 trials in total for each subject. The purpose of this was to keep

track of their learning progress. At the beginning of the first experimental session the

instructions including the task description, how to use the interface, when to start

and when the task finishes were given to subjects. The subjects were not aware that

which condition (human control or shared control) they are performing the task in,

and the subjects in the shared control group did not know that the robot is also

involved in the task. At the end of the last experimental session the subjects were

20



asked to fill a questionnaire about demographic information.

3.2.3 Performance Measure

Three performance measures were defined for this experiment.

Length of trajectory:Length of trajectory is defined as the length of the path

that the ball travels on the tray in one trial, starting from the tray center to the

desired target point. Smaller length of trajectory presents a higher task performance.

Task completion time: The time that the operator takes to balance the ball

on the target position on the tray.

Positional error: The distance of the final ball position to the target position.

3.2.4 Performance Results

In this section we are reporting and comparing the performance of subjects in human

control and shared control condition.

To answer the research question that if there is any group mean difference in perfor-

mance between shared control condition and human control condition we performed

the following analysis.

3.2.4.1 Trajectory Length Analysis

We ran one-way MANOVA for four days’ performances based on trajectory length.

As can be seen in Table 3, there was no significant difference between shared control

and human control conditions in subjects’ trajectory length performances for the first

and second days. However, there was a group mean difference for these two conditions

in the third and fourth day that in the shared condition group mean of trajectory

length performances was lower than the one on the human control condition ( see

Table 3 and Figure 8).
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Table 3: Shared Control vs Human Control, performance analysis - trajectory length:

means, standard deviations, and MANOVA for day 1, day 2, day 3, and day 4 per-

formance of human control and shared control Conditions.
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Figure 8: Shared Control vs Human Control, daily performance - trajectory length,

means and standard error of the mean for day1, day2, day3, and day4 performance

of human control and shared control conditions.

To find if the performance was the same in shared control and human control in

the first day, we run one-way MANOVA to answer this research question. Results

showed that although MANOVA was significant but follow-up ANOVAs for each block

was not significant (see Table 4). This means that there was no significant difference

between shared control group mean and human control group mean in trajectory

length performances for none of four blocks in the first day.
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Table 4: Shared Control vs Human Control on the first day, trajectory length, per-

formance analysis on the first day: means, standard deviations, and MANOVA for

block1, block 2, block 3, and block 4 performance of human control and shared control

performance for the day 1.

Is there any difference in trajectory length performance between days for shared

control condition and human control condition separately for the four days of exper-

iment? To test this research question Finally to track the progress in days inside

of these two conditions, we ran several paired-samples T-Test for shared control and

human control conditions separately. As can be seen in Table 5 and Figure 9, in the

shared control condition trajectory length performance in each day was significantly

different from each other for four days with getting lower day by day from day1 to

day4.
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Table 5: daily progress in Shared Control condition, trajectory length, means, stan-

dard deviations, and paired-samples T-Test for comparisons of day1 to day2, day1 to

day3, day1 to day4, day2 to day3, day2 to day4 and day3 to day4 performances in

shared control condition.

25



0

1

2

3

4

5

6

7

8

1 2 3 4

A
ve

ra
ge

 o
f 

tr
aj

ec
to

ry
 le

n
gt

h
 in

 a
 d

ay
(m

) 

Shared Control

Significantly  
Different 

Significantly  
Different 

  Significantly  
Different 

Error bars: SEM 

Figure 9: Shared Control daily performance, trajectory length, means and standard

error of the mean for day1, day2, day3, and day4 performance of shared control

condition.

Additionally, as can be seen in Table 6 and Figure 10 in human control condition

trajectory length performance in each day was significantly different from day1 to

day2, day1 to day3, day1 to day4, day2 to day3, day 2 to day4 with getting lower

day by day from day1 to day3, but not from day 3 to day4.
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Table 6: Daily progress in Human Control condition, trajectory length, means, stan-

dard deviations, and paired-samples T-Test for comparisons of day1 to day2, day1 to

day3, day1 to day4, day2 to day3, day2 to day4 and day3 to day4 performances in

human control condition.
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Figure 10: Human Control daily performance, trajectory length, means and standard

error of the mean for day1, day2, day3, and day4 performance of human control

condition.

We can say that the task performance in human control condition, was approxi-

mately the same in day 3 and day 4 and they did not have significant progress from

day 3 to day 4 which suggests that the learning stopped at the day 3, while in shared

control group there was still a significant progress from day 3 to day 4.

3.2.4.2 Ball movement trajectory analysis

Here progress in ball movement trajectory is reported and compared for 5 subjects

in Human control condition and 5 subjects in Shared control condition. We picked

the third trial for one target in 4 consecutive days as a sample to show how did they

perform in two different conditions in Figure 11 and Figure 12 .
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Figure 11: Ball movement trajectory in Human Control condition. The third trial

for one target in 4 consecutive days is picked as a sample.
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Figure 12: Ball movement trajectory in Shared Control condition. The third trial

for one target in 4 consecutive days is picked as a sample

As we can observe in Figure 11 and Figure 12 some subjects in shared control

condition show high exploration in the beginning that could allow them to observe

and learn the robot strategy better and react accordingly as well, which led to a

better collaboration and achieving a more straight forward trajectory to the target

at the end.

3.2.4.3 Completion Time Analysis

Performance of shared control and human control condition based on their task com-

pletion time is shown in Figure 13. We performed T-Test analysis (shown in Table

7) to investigate if there is a significant difference in performance based on their
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completion time.

 Completion Time 

 Days Condition Mean(s) Standard Deviation(s) T.Test 

 Day1 
 Shared Control 66.6131276  26.45366794 

 p= 0.506 

 Human Control 73.2033094  12.25128027 

 Day2 
 Shared Control 50.1727592  20.98163457 

 p=0.267 

 Human Control 60.3783606  16.58844836 

 Day3 
 Shared Control 44.8091715  21.34932033 

 p=0.380 

 Human Control 52.5254526  14.37773842 

 Day4 
 Shared Control 33.4996614  13.79181896 

 p=0.045 

 Human Control 48.8763027  16.51002067 

 T.Test, two tailed, two sample unequal variances 

Table 7: Shared Control vs Human Control, performance analysis, completion time:

Means, standard deviations, and T-Test for day 1, day 2, day 3, and day 4 performance

of human control and shared control conditions.
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Figure 13: Shared Control vs Human Control, daily performance, completion time,

means and standard error of the mean for day1, day2, day3, and day4 performance

of human control and shared control conditions.

As it can be seen in Figure 13 and Table 7, although there was not a significant

difference in day1, day2 and day3 between shared control and human control condi-

tion, shared control performance was better than human control condition with less

completion time in all the days of experiment, while in the fourth day of experiment

the performance of shared control condition becomes significantly better than human

control condition.

3.2.4.4 Positional Error Analysis

Daily means of positional error in shared control and human control conditions are

reported in Figure 14. T-Test analysis was also performed to compare their perfor-

mance between the two conditions based on positional error (shown in Table 8).
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 Positional Error 

 Days Condition Mean(mm) Standard Deviation(mm) T.Test 

 Day1 
 Shared Control  54.373508  29.07634881 

 p= 0.243 

 Human Control  62.56614  18.70366375 

 Day2 
 Shared Control  47.669623  22.2203969 

 p=0.402 

 Human Control  55.793491  17.6928106 

 Day3 
 Shared Control  43.704052  23.10421683 

 p=0.192 

 Human Control  56.888316  17.9212144 

 Day4 
 Shared Control  32.85529  11.13075083 

 p=0.130 

 Human Control  44.565074  19.15738838 

 T.Test, two tailed, two sample unequal variances 

Table 8: Shared Control vs Human Control, performance analysis, positional error:

means, standard deviations, and T-Test for day 1, day 2, day 3, and day 4 performance

of human control and shared control Conditions.

Although we could not find a significant difference in shared control and human

control daily performance based on their positional error, it can be seen in Figure

14, that in shared control condition, positional error decreased day by day and was

always less than human control condition.
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Figure 14: Shared Control vs Human Control, daily performance, positional error,

means and standard error of the mean for day1, day2, day3, and day4 performance

of human control and shared control conditions.

3.2.5 Learning Progress Results

In this section we are exploring the learning progress of individual subjects and com-

pare them between the human control condition and shared control condition, to

understand how fast they adapt to the system and learn the designed task. To track

subjects learning progress during the experiment, we found the trend of their perfor-

mance in the experiment based on trajectory length. To find the fit that explains the

data trend the best, we examined fitting Linear, Exponential, and Power function

over the data in all the 64 trials for each subject and reported the R-Squared value.
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Table 9: R-Squared value of the fitted regression functions.

The fitted Power function resulted in highest R-Squared value for all the subjects

in both human control and shared control on average, see Table 9, thus was chosen

as the trend of the learning progress in this experiment. The fitted power functions

for all the subjects are shown in Figure 15, and Figure 16.
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Figure 15: Fitted power function on the performance of shared control condition
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Figure 16: Fitted power function on the performance of human control condition
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3.2.6 Learning Rate

We defined the additive inverse of power ( when y = axpower ) as the learning rate

parameter for each subject. The learning rate values are reported in the Table 10.

Table 10: Learning rate of the subjects in human control and shared control condition

The subjects in shared control condition had a higher learning rate in compare to

the subject in human control condition as it is shown in Table 10 and Figure 17.
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Figure 17: Mean of learning rate for shared control condition and human control

condition, error bars are the standard error of the mean.

We performed T-Test analysis on the obtained learning rate between shared con-

trol and human control condition to inspect if the two populations are significantly

different, see Table 11.

Table 11: T-Test analysis on the learning rates between shared control condition

and human control condition.

T-test results showed that the learning rates are significantly different in between

39



the two shared control and human control conditions.

3.2.7 Survey Questionnaire

A survey questionnaire was given to subjects at the end of last experimental session

to assess their experience while using the system. It should be mentioned that the

subjects were not instructed about the role of the robot in the shared control condi-

tion. The questionnaire can be seen in Figure 18. The given answers to this questions

by the subjects are attached in the appendix.
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Figure 18: Experiment questionnaire

We converted the verbal answers to question 10 to three classes negative (block-

ing), neutral(no help) and positive(helping) to learn their opinion about robot role

in the task According to this, 9 out of 10 subjects in the shared control group had

realized the robot participation, and 8 of those 9 subjects had found it helpful, and
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only one subject had found it blocking while trying to move fast and doing sudden

actions. In the human control conditions 9 out of 10 subjects reported neutral as

expected.
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Chapter IV

CONCLUSION

4.1 Conclusion

We introduced a synergistic human-robot collaboration system with human intention

inference and investigated its effect on task execution and human learning progress

by implementing it on a designed ‘ball balancing’ task in which a tray is held by an

anthropomorphic robot arm and a ball is placed on the tray. The goal of this task

is to move and balance the ball on a target position on the tray by controlling the

robotic arm joints via an interface.

In the first phase of this study, Three control condition scenarios were considered

for this task: full autonomous controller, where only the robot generates control com-

mands named as ‘Robot Control’; a human-in-the-loop controller named as ‘Human

Control’, where the robot does not interfere with the control and a human-robot

shared controller, named as ‘Shared Control’ in which the human starts performing

the task while the robot attempts to predict the human intention and then take share

in control to assist the human by augmenting the human control commands. For this

purpose, since pursuing a common goal is necessary for a successful collaboration, a

human intention prediction mechanism based on ball position histogram on the tray

was developed to be used by the robot, The effectiveness of the proposed framework

was examined by comparing the performance of shared controller with the other two

control conditions (Human Control and Robot Control) based on two performance

measures, namely task completion time and positional error. 10 naive subjects were

employed for each condition (in total 20 subjects), to measure the task execution

performance of naive solo operators and naive human-robot teams. According to this
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comparison, the human-robot shared control condition appears to be the best. The

result suggests that our proposed shared control system can take advantage of the

individual skills so as to cover their weakness.

In the second phase of experiments, we were interested to know how the human is

influenced when interacts with machine autonomy, whether or not this collaboration

can aid the human to improve and learn the task faster while interacting with a robot

as a teammate. Two control scenarios were considered for the same task: Human

Control condition and Shared Control condition. The intention inference mechanism

was developed to a Gaussian estimation method to be used by the robot to estimate

the human intention. To explore the human learning progress and adaptation to the

system while collaborating with robot and solo, the designed task was performed by

the human subjects in both conditions multiple times in consecutive days. The length

of ball trajectory, completion time and positional error on the tray were chosen as the

performance measure. 20 naive subjects were volunteered for this experiment. Each

subject had 64 trials in four consecutive days to perform the ball balancing task.

To track the subjects learning progress, we found the trend of their performance

and measured their learning rate by fitting a power line on their trajectory length

performance measure of all their 64 trials. The learning rate comparison between

Human Control and Shared Control condition suggests that the human can learn

the task and adapt to the system faster when collaborating with an assistive robot

while granting a higher task performance, which allow us to say, this shared control

framework can yield a higher task execution performance by taking advantage of

human and robot individual capabilities and covering their weaknesses and also give

the opportunity to humans to learn faster and improve themselves more than it was

possible when performing the task alone.
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4.2 Discussion

In a collaboration system for task execution the issue of who should be in control,

when and how much, can be decided based on the task properties and the skills of

shared control parties (humans and robots). For example in some settings where a

human is expert in one part and the robot is specialized in another part of the task

then a continuous weighted shared control may not be suitable, instead a switching

shared control can be used which switches the control fully from the human to robot

and from the robot to human. In other cases human may tune the weight share

parameter manually, get more help from the robot in a specific situation or be him-

self/herself more or fully in control when needed. Adaptive weight sharing between

human and robot where weight share can be changed autonomously based on both

human and robot behavior, should be investigated. We performed some preliminary

experiments in which we tuned the robot’s share in control according to its confidence

in the estimated human intention (see Section 2.3.3.1). We observed that this type

of adaptive weight sharing has high potential for better human-robot collaborative

systems, which should be further investigated.

When mixing, switching or generally sharing the control, the human and robot

both get the opportunity to learn the other party’s behavior and strategy. As in

our experiment the humans could observe and understand the robot behavior by

exploration in the beginning and achieve a higher performance more than they could

achieve without sharing the control with robot. In this work, the robot already knew

how to perform the task and its skills was fixed, however in a more general form of

collaboration both human and robot try to learn the task and progress together, and

their control share shall be combined. This simultaneous learning system is a more

complex collaboration system which needs to be studied.

For this designed ball balancing task, although the Gaussian distribution assump-

tion for inferring human intention was good enough, is probably not the best, other
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distributions might be more informative or accurate for inferring human intention in

this task. More general frameworks such as inverse reinforcement learning that are

applicable to any task can be used for human intention inference.
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Appendix

 

CONSENT TO ACT AS A PARTICIPANT IN A RESEARCH STUDY 
TITLE: Human-robot shared control in the ‘ball balancing task’ 

Researchers:  

 Negin Amirshirzad,  

             Computer Science Department 

Ozyegin University 

Nişantepe District, Orman Street,  

34794 Çekmeköy – İSTANBUL 

negin.amirshirzad@ozu.edu.tr 

Principle Investigator:  

 Dr. Erhan Oztop,  

             Computer Science Department 

Ozyegin University 

Nişantepe District, Orman Street,  

34794 Çekmeköy – İSTANBUL 

erhan.oztop@ozyegin.edu.tr 

CoPI:  Asiye Kumru 

Department of Psychology  

Ozyegin University 

Nisantepe Mh. Orman Sk.  

Cekmekoy, Istanbul, Turkey 

216- 564 9211, asiye.kumru@ozyegin.edu.tr  

SOURCE OF SUPPORT:  Converge (Convergent Human Learning for Robot Skill Generation) Project 

supported by the European Commission FP7 MC-CIG under the grant agreement no 321700 

  

Why is this research being done?  
The objective of our research is to assess the efficacy of our human-robot shared control system in the 

‘ball balancing task’. 

 

Who is being asked to take part in this research study?  
Approximately 20 adults will be invited to participate in this study.  

 

What are the procedures of this study?  
You will be asked to take part in an experiment at the Robotics lab at EF513 Engineering Faculty. You 

will control a robotic arm using a computer mouse to perform a ball balancing task. Your mouse 

movements will be mapped to robot movements in real-time. Robot will be holding a tray which contains 

a ball that needs to be rolled and stopped at desired locations. An experiment session will take about 90 

minutes. There will be 4 experimental sessions which will be conducted in separate but consecutive days. 

Measures relating to behavior and task performance will be collected. Demographic information, 

questionnaires (including personality traits, cultural characteristics, trust attitude in automation, and 

perceived workload) will be collected.  

 

How will my eligibility for the study be determined?  
1. College student or graduate, at least 18 years of age.  

2. Turkish or English speaker 

 

What are the possible risks, side effects, and discomforts of this research study?  
 

Figure 19: The consent form which was given to the participants before they start

the experiment.
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Experiment Questionnaire 

 

1 - How did you find the task involved in the experiment in the first days?   

a) Very Hard    b) Hard   c) Neutral          c) Easy        d) Very Easy 

2 - How did you find the task involved in the experiment in the last days?   

a) Very Hard    b) Hard   c) Neutral          c) Easy        d) Very Easy 

3 – How do you feel about your task performance?   

a) I did not feel improvement     a) Slowly I got better    b) Suddenly I got better    d) I don’t know 

4 – Were you comfortable while doing the task in the first days? 

a) Very uncomfortable    b) Uncomfortable  c) Neutral          c) Comfortable     d) Very comfortable 

5 – Were you comfortable while doing the task in at the last days? 

a) Very uncomfortable    b) Uncomfortable  c) Neutral          c) Comfortable     d) Very comfortable 

 

6 – Did you face any difficulty while doing the task? If yes please explain. 

 a) No  b) Yes, the difficulty was …………………………………………………………………………………. 

…………………………………………………………………………………………………………………………………………………. 

7 – Did you get bored while doing the task? If yes when did it get boring? (Please write free text) 

 

 

8 – Did you get tired while doing the task? If yes when did it get boring? (Please write free text) 

 

 

 

9 – Do you think you have become an expert in this task? (Please write free text) 

 

 

 

10 – Do you think the robot helped you or blocked you doing your task? (Please write free text) 

 

 

Figure 20: The experiment questionnaire which was given to the participants after

they completed the experimental sessions.48



Question1: How did you find the task involved in the experiment in 

the first days?

1) Very Hard     2) Hard      3) Neutral         4) Easy        5) Very Easy  

Control

Condition

Subject 1 Hard

Subject 2 Hard

Subject 3 Neutral

Subject 4 Hard

Subject 5 Neutral

Subject 6 Neutral

Subject 7 Hard

subject 8 Easy

Subject 9 Easy

subject 10 Hard

Subject 11 Easy

subject 12 Hard

subject 13 Neutral

subject 14 Hard

subject 15 Hard

subject 16 Hard

subject 17 Very hard

subject 18 Hard

subject 19 Neutral

subject 20 Hard
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Table 12: Experiment questionnaire - Participants answers to Question 1
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Question2: How did you find the task involved in the experiment in 

the last days?

1) Very Hard     2) Hard      3) Neutral         4) Easy        5) Very Easy  Control

Condition

Subject 1 Easy

Subject 2 Easy

Subject 3 Very Easy

Subject 4 Neutral

Subject 5 Easy

Subject 6 Very Easy

Subject 7 Neutral

subject 8 Very Easy

Subject 9 Very Easy

subject 10 Easy

Subject 11 Easy

subject 12 Easy

subject 13 Very Easy

subject 14 Easy

subject 15 Easy

subject 16 Neutral

subject 17 Very Easy

subject 18 Neutral

subject 19 Easy

subject 20 Easy
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Table 13: Experiment questionnaire - Participants answers to Question 2
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Question3: How do you feel about your task performance?  

1) I did not feel improvement     2) Slowly I got better   

 3) Suddenly I got better    4) I don’t know

Control

Condition

Subject 1 Suddenly I got better

Subject 2 Slowly I got better

Subject 3 Slowly I got better

Subject 4 Slowly I got better

Subject 5 Suddenly I got better

Subject 6 Slowly I got better

Subject 7 Slowly I got better

subject 8 Slowly I got better

Subject 9 Slowly I got better

subject 10 Slowly I got better

Subject 11 Slowly I got better

subject 12 I don't know

subject 13 Suddenly I got better

subject 14 Slowly I got better

subject 15 Slowly I got better

subject 16 Slowly I got better

subject 17 Slowly I got better

subject 18 Slowly I got better

subject 19 Slowly I got better

subject 20 Slowly I got better
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Table 14: Experiment questionnaire - Participants answers to Question 3
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Question4: Were you comfortable while doing the task in the first 

days?

1) Very uncomfortable     2)Uncomfortable      3)Neutral

4) Comfortable    5) Very comfortable

Control

Condition

Subject 1 Neutral

Subject 2 Neutral

Subject 3 Neutral

Subject 4 Neutral

Subject 5 Comfortable

Subject 6 Neutral

Subject 7 Neutral

subject 8 Uncomfortable

Subject 9 Very Uncomfortable

subject 10 Comfortable

Subject 11 Comfortable

subject 12 Neutral

subject 13 Very Comfortable

subject 14 Comfortable

subject 15 Comfortable

subject 16 Uncomfortable

subject 17 Uncomfortable

subject 18 Uncomfortable

subject 19 Neutral

subject 20 Uncomfortable
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Table 15: Experiment questionnaire - Participants answers to Question 4
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Question5: Were you comfortable while doing the task in the last 

days?

1) Very uncomfortable     2)Uncomfortable      3)Neutral

4) Comfortable    5) Very comfortable

Control

Condition

Subject 1 Comfortable

Subject 2 Comfortable

Subject 3 Very Comfortable

Subject 4 Comfortable

Subject 5 Very Comfortable

Subject 6 Comfortable

Subject 7 Comfortable

subject 8 Comfortable

Subject 9 Very Comfortable

subject 10 Comfortable

Subject 11 Comfortable

subject 12 Comfortable

subject 13 Very Comfortable

subject 14 Comfortable

subject 15 Comfortable

subject 16 Neutral

subject 17 Very Comfortable

subject 18 Comfortable

subject 19 Comfortable

subject 20 Neutral
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Table 16: Experiment questionnaire - Participants answers to Question 5

53



Question6: Did you face any difficulty or problem while doing the task? If 

yes please explain.

Control

Condition

Subject 1 NO

Subject 2 NO

Subject 3
Sometimes ball would not stop, although 

I was sure that that the position of the tray

Subject 4 NO

Subject 5
Mouse collection or maybe another 

one that sometimes it was not working

Subject 6 NO

Subject 7 NO

subject 8

In the first day because of my position to the robot and my height. I 

coult not see points clearly so I stand on the tip of my shoes which made 

me tired.

Subject 9 NO

subject 10 NO

Subject 11
The surface of the ball and the noise and sound of other people working 

lab but not such a big difference

subject 12
To move the ball when very close to goal because it would not respond 

to small inputs

subject 13
That point 4 was a bit harder to reach to maybe because of a small 

deflection

subject 14 NO

subject 15 Point 4

subject 16 NO

subject 17 NO

subject 18 NO

subject 19 NO

subject 20 I had to stand on the chair too see the ball
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Table 17: Experiment questionnaire - Participants answers to Question 6
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Question7: Did you get bored while doing the task? If yes when did it get 

boring? (Please write free text)

Control

Condition

Subject 1 NO

Subject 2 No I didn't

Subject 3 NO

Subject 4 NO

Subject 5
3 rd day, I was bored a little because 

I cannot control it. Otherwise it was good

Subject 6 NO

Subject 7 A little bit

subject 8 NO

Subject 9 NO

subject 10 NO

Subject 11 No it is not boring. Actually I enjoyed it

subject 12 It did not felt boring

subject 13
No just sometimes when it was taking more than normal to reach a 

point I was angry than bored

subject 14 Yes.This started after the being ties  in the 4th point

subject 15
Point 4 made me bore. After several attempt to get the ball on 

point 4 got a bit more bored

subject 16 When it was getting so long

subject 17
First day when it was so hard for me it

was bored, but day by day its was funny

subject 18 No

subject 19 sometimes, when I was unable to stop the ball

subject 20 NO
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Table 18: Experiment questionnaire - Participants answers to Question 7
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Question8: Did you get tired while doing the task? If yes when did you 

get tired? (Please write free text)

Control

Condition

Subject 1 NO

Subject 2
Not tired per se but frustrated because

 a single  task would take much time

Subject 3 NO

Subject 4 NO

Subject 5 NO

Subject 6 NO

Subject 7 NO

subject 8 NO

Subject 9 NO

subject 10 NO

Subject 11 No, for me this task was like a game and I had fun

subject 12 After around 10 tries

subject 13 I didn't 

subject 14 Yes, and I guess the reason was due to  the uneven ball

subject 15 NO

subject 16 When it was getting so long

subject 17 NO

subject 18 NO

subject 19 sometimes, when I was unable to stop the ball

subject 20 Sometimes.
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Table 19: Experiment questionnaire - Participants answers to Question 8
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Question9: Do you think you have become an expert in this task? (Please 

write free text)

Control

Condition

Subject 1 Maybe

Subject 2

Maybe I can say that with further practice I will become an 

expert with the help of the robot. The more I could learn it's

 behaviour and my own shortcoming, the better I could cover 

my weakness with robots behaviour.

Subject 3 Yes. I can do it much easier

Subject 4 No its still difficult for me

Subject 5
Yes. I like the control objects before the universities.

 I was clothes -designer.

Subject 6 Maybe

Subject 7 No but maybe with time I get better in this task

subject 8 Yes I think so. I did the experiment better than before

Subject 9 Kind of

subject 10
Not an expert but I got better. I mean it is iterative learning. 

Every new trial is better in terms of performance

Subject 11
I don’t know. Maybe my results should be compared to other 

participants then I should have an opinion about that

subject 12 NO

subject 13
yes I have tested several tacticts at he first day and 

focused on the one I was good at.

subject 14 Not expert but somehow I felt improvement

subject 15 I need some time

subject 16 NO

subject 17 Still I am not sure

subject 18 No

subject 19 not expert but improved

subject 20 I don't know
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Table 20: Experiment questionnaire - Participants answers to Question 9
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Question10: Do you think the robot helped you or blocked you doing 

your task? (Please write free text)

Control

Condition

Subject 1 It helped after second time

Subject 2

It's absolutely helping. I just needed to learn it's behaviour then

 I could act in a way to help robot understand my goal and 

help me achieve it.

Subject 3
I think yes, although sometimes it would 

block me

Subject 4 Robot was helping! It was totally obvious

Subject 5
Robot blocked me many times.

 Especially when I move fast

Subject 6 Yes it helped

Subject 7 Yes it helps me

subject 8
In the 3rd day of the experiment I feel extra vibration while I was doing 

the task

Subject 9 It helped

subject 10 It did not helped me

Subject 11 No I don’t think so. The robot does not have any role I think

subject 12 Robot did not help

subject 13

The test day I felt some vibrations that are not due to my command, 

there I had the impression the the robot was actualy helping me but it 

did not bother me

subject 14 The robot, the interaction and the interface ( mouse control) was

perfect The problem was the uneven ball

subject 15
I think robot played against me. It took 

control over the task

subject 16 I don't know

subject 17
First day it blocked me because it was look like and feel like too sensitive 

after it helped to me

subject 18 It did not help me! At all!!!

subject 19 I didn't have such feelings

subject 20 It didn't help
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Table 21: Experiment questionnaire - Participants answers to Question 10
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with humans in dynamic manipulation tasks based on multi-modal human-in-
the-loop approach,” Autonomous robots, vol. 36, no. 1-2, pp. 123–136, 2014.
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