
GENERATING
RUNTIME VERIFICATION SPECIFICATIONS
BASED ON STATIC CODE ANALYSIS ALERTS

A Thesis

by

Yunus Kılıç

Submitted to the
Graduate School of Sciences and Engineering
In Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in the
Department of Computer Science

Özyeğin University
December 2017

Copyright c© 2017 by Yunus Kılıç

GENERATING
RUNTIME VERIFICATION SPECIFICATIONS
BASED ON STATIC CODE ANALYSIS ALERTS

Approved by:

Assoc. Prof. Hasan Sözer (Advisor)
Department of Computer Science
Özyeğin University

Asst. Prof. Mehmet Aktaş
Department of Computer Engineering
Yıldız Technical University

Asst. Prof. Barış Aktemur
Department of Computer Science
Özyeğin University

Date Approved: 2017

I dedicate this thesis to my wife Gamze. You provided the inspiration

necessary for me to complete this process.

iii

ABSTRACT

There are various approaches in order to find bugs in a software system. One of

these approaches is static code analysis, which tries to achieve this goal by analyzing

code without executing it. Another complementary approach is runtime verification,

which is employed to verify dynamic system behavior with respect to a set of specifi-

cations at runtime. These specifications are often created manually based on system

requirements and constraints. In this thesis, we propose a novel methodology and

tool support for automatically generating runtime verification specifications based on

alerts that are reported by static code analysis tools. We introduce a domain spe-

cific language for defining a set of rules to be checked for an alert type. Violations

of the rules indicate either the absence or existence of an actual bug designated by

the instances of that alert type. Formal verification specifications are automatically

generated for each reported alert instance based on the defined rules. Then, runtime

monitors are automatically synthesized and integrated into the system. These mon-

itors report detected errors or false positive alerts during software execution. The

set of rules can be reused across different projects. We performed case studies with

two open source software systems to illustrate this. Our tool currently supports the

use of two different static code analysis tools for generating runtime monitors in Java

language. It is designed to be extendible for supporting other tools as well.

iv

ÖZETÇE

Yazılım hatalarının bulunması amacıyla kullanılan birçok yöntem bulunmaktadır. Bu

yöntemlerden biri olan statik kod analizi koddaki hataların, kodun çalıştırılmadan

ortaya çıkarılmasını sağlamaktadır. Bunu tamamlayıcı nitelikte olan çalışma zamanı

doğrulama ise dinamik sistem davranışlarını yazılmış olan kurallara göre kontrol et-

mek için kullanılmaktadır. Bu kural listesi genellikle sistem gereksinimleri ve kısıt-

larına göre manuel olarak oluşturulmaktadır. Bu tezde, statik kod analizi araçlarının

oluşturduğu uyarılardan çalışma zamanı doğrulama kurallarını otomatik olarak oluş-

turan yeni bir yöntem ve araç geliştirilmiştir. Alana özgü bir dil geliştirilerek, uyarı

tiplerine özgü kurallar tanımlanması sağlanmıştır. Oluşturulan bu kuralların ihlal

edilip edilmediğine göre hatanın gerçekleşip gerçekleşmediğine karar verilmektedir.

Çalışma zamanı doğrulama kuralları her bir uyarı için daha önceden tanımlanmış ku-

rallara göre otomatik oluşturulmaktadır. Daha sonra ise, oluşan bu kurallara ilişkin

çalışma izleyiciler otomatik sentezlenerek, sisteme entegre edilmektedir. Bu izleyi-

ciler yazılımla birlikte çalışarak tespit edilen hataları ve yanlış üretilmiş uyarıları

raporlamaktadır. Bir kere oluşturulan kurallar farklı projelerde kullanılabilmektedir.

Bu durumu gösterebilmek için iki farklı açık kaynak kod üzerinde vaka çalışmaları

gerçekleştirilmiştir. Aracımız şu anda Java programlama dili için uyarı üreten iki

farklı statik kod analiz aracını desteklemektedir. Ayrıca bu araç, yeni statik kod

araçlarını destekleyebilecek şekilde tasarlanmıştır.

v

ACKNOWLEDGMENTS

Firstly, I would like to thank my advisor, Dr. Hasan Sözer for all his help and guidance

he has provided over the past two years. I would also like to thank Dr. Tankut Barış

Aktemur and Dr. Mehmet Aktaş for accepting to be part of the evaluation committee

for this thesis.

Secondly, I deeply thank my wife, Gamze Kılıç, my mother, Hanife Kılıç and my

father, Yalçın Kılıç for their unconditional trust, timely encouragement, and endless

patience. It was their love that raised me up again when I got weary.

This work is supported by The Scientific and Research Council of Turkey

(TUBITAK), grant number 113E548.

vi

TABLE OF CONTENTS

DEDICATION . iii

ABSTRACT . iv

ÖZETÇE . v

ACKNOWLEDGMENTS . vi

LIST OF TABLES . ix

LIST OF FIGURES . x

I INTRODUCTION . 1

II BACKGROUND . 4

2.1 Static Code Analysis . 4

2.2 Runtime Verification . 10

III RELATED WORK . 16

IV OVERALL APPROACH . 18

4.1 Rule Specification for Alerts . 19

4.2 Generation of Runtime Verification Specifications 22

4.3 Generation of Runtime Monitors . 24

V EVALUATION . 25

5.1 Subject Systems and Tools . 25

5.2 Rule Specification . 27

5.3 Runtime Verification Specification Generation 28

5.4 Runtime Verification Monitor Generation 29

5.5 Reuse of Rules Across Projects . 29

5.6 Reuse of Rules Across Tools . 32

VI RESULTS AND DISCUSSION . 33

VII CONCLUSIONS AND FUTURE WORK 36

vii

APPENDIX A — JAVALTL SYNTAX 37

APPENDIX B — SCAT2RV TOOL PLUGIN INTERFACE 39

APPENDIX C — SCAT2RV TOOL USER MANUAL 41

REFERENCES . 43

viii

LIST OF TABLES

1 Common types of static code analysis alerts. 4

2 Supported platforms, languages and formalisms by MOP (NA: Not
Available). 11

3 A sample list of alert types supported by FindBugs and PMD together
with the corresponding rule specifications. 23

4 Subject software systems. 25

5 Ratio of alerts for which RV specifications can be automatically gen-
erated. 34

6 The list of SCAT2RV command line arguments. 42

ix

LIST OF FIGURES

1 Taxonomy of static code analysis tools [14]. 6

2 A snapshot of the FindBugs GUI [15]. 7

3 A snapshot of the PMD XPath GUI [17]. 9

4 The overall approach. 18

x

CHAPTER I

INTRODUCTION

Static code analysis is a type of technique that involves the process of analyzing

source code without executing it [1]. This technique is mainly used to find potential

issues like bugs and bad programming practices in programs [2]. The detected issues

are reported in the form of a list of alerts. These alerts can point to, for instance,

uninitialized variables, unreachable code, resource leaks, unused variables and secu-

rity vulnerabilities [3]. Static analysis tools [4] can generate alerts by checking the

violation of predefined patterns throughout control flow and data flow paths in the

program. Although these tools have been successfully utilized and used in the soft-

ware industry [5, 6, 7], they have limitations as well. One of the major challenges is to

filter out false positive alerts. These are the alerts that do not actually point to any

real problem with the software. They are also called as unactionable alerts [8] since

no action has to be taken concerning these alerts. It takes a significant amount of

time to manually review each reported alert and obtain the list of actionable alerts [5].

It was empirically shown that existing static code analysis tools (SCATs) have false

positive rates ranging from 30% up to 100% [9].

Runtime verification (RV) is a complementary approach to static code analysis.

RV [10] is the process of checking if the software behavior at runtime satisfies or vi-

olates a given correctness property. Unlike other formal verification techniques such

as model checking, the verification scope is narrowed down to a single execution trace

of the software during its actual execution at the operational phase. As a result,

the verification does not necessarily cover all possible execution traces; however, the

verification is performed with a higher precision. The correctness property that is

1

checked at runtime can be specified with different formalisms such as finite state ma-

chines, regular expressions and temporal logic [11, 12]. There exist techniques and

tools [11, 13], which can take such formal specifications as input and automatically

synthesize monitors for the target system. However, the creation of formal verifica-

tion specifications is often performed manually based on system requirements and

constraints. This process requires effort and expertise. Moreover, system require-

ments and constraints are often not documented explicitly or formally. As a result,

the focus of RV (what should be checked at runtime?) is not always clear.

In this thesis, we present a novel approach and a tool, named SCAT2RV, to gener-

ate runtime verification monitors automatically from static code analysis alerts. We

introduce a simple domain specific language (DSL) for defining one or more rules to

be checked for an alert type. There are two types of rules: i) a rule for falsifying an

alert. The violation of this rule represents a counter-example that falsifies the alert.

For example, the alert can indicate that a variable is never initialized. In fact, the

variable might be initialized via some mechanism that can not be detected by static

analysis. If a rule is defined as the corresponding variable must never be initialized,

its violation at runtime represents a counter-example that falsifies the alert. ii) a

rule for detecting the error designated by an alert. For example, the alert can indi-

cate that an object can be left null and its value is not checked before use. One can

specify that the corresponding object must not be subject to a null pointer excep-

tion. The violation of this rule detects the error pointed out by the alert, which can

be reported together with the associated alert explanation as diagnostic information.

SCAT2RV automatically generates formal verification specifications for each reported

alert instance based on the defined rules for the corresponding alert type. Then, run-

time monitors are automatically synthesized and integrated into the system. These

monitors report detected errors or falsified alerts during software execution.

We illustrate our approach for the RV of two open source software systems. We

2

define a rule for a particular alert type for one of these systems. RV monitors are

automatically generated for each instance of the alert type based on the defined rule.

Then, we apply the approach to the other system. We reuse the same rule defined

before. RV monitors are automatically generated from alerts regarding the second

system without any manual effort. Hence, we show that rules can be used for various

instances of an alert type as well as various instances across projects.

SCAT2RV currently supports the use of two different SCATs for generating runtime

monitors in Java language. It is designed to be extendible for supporting other tools

as well. A new tool can be integrated by only providing a plugin module in order to

parse the particular alert format used by the SCAT.

The remainder of this thesis is organized as follows. In the following chapter,

we provide background information on static code analysis in general and particular

SCATs that are employed in our case studies. We summarize the related studies in

Chapter 3. We present the overall approach in Chapter 4. The approach is illustrated

and evaluated in Chapter 5, in the context of two case studies. We present and discuss

the results in Chapter 6. Finally, in Chapter 7, we provide the conclusions and discuss

possible future directions.

3

CHAPTER II

BACKGROUND

In this chapter, we provide brief background information on static code analysis and

runtime verification. We also explain the set of tools used in our case studies.

2.1 Static Code Analysis

A Static Code Analysis Tool (SCAT) creates a list of possibly hundreds of alerts

without executing code [3]. The analysis is usually performed by analyzing the source

code of the program only. There exists a static code analysis tool for almost all of

the modern programming languages. Some of these tools can be integrated with

Integrated Development Environments (IDEs) to make them an integral part of the

software development lifecycle. As a result, developers can use SCATs across different

projects. The alert list basically points out potential errors and it is very useful

in order to identify problems early. Common list of alert types and sample alert

descriptions are listed in Table 1.

Table 1: Common types of static code analysis alerts.
Alert Category Example Alert Description

Bad practice Confusing method names

Correctness Impossible cast, instanceof will always return false

Malicious code Field should be both final and package protected

Multithreaded Possible double check of field

Performance Boxed value is unboxed and then immediately reboxed

Security Empty database password

4

SCATS have some drawbacks as well. One of the major drawbacks is the existence

of false positive alerts. The term false positive means that the existence of some

property or situation is pointed as positive but actually it does not exist. In our

case, false positive means that a generated alert does not really point to a bug. This

circumstance might sound insignificant. However, false positive alerts lead to a huge

problem for large-scale systems, where a SCAT might report thousands of alerts.

Developers have to scrutinize every alert and check each of them if it points to a real

bug or not. So false positive alerts cause a significant loss of time and effort.

A taxonomy of SCATs is provided [14] as depicted in Figure 1. Hereby, SCATs

are categorized with respect to 10 properties. Input defines what types of files can be

loaded into the tool. Releases mean how many releases take place per year. Supported

languages are defined to clarify the programming languages supported. Technology

is related to particular technologies are used for searching errors in code. Rules

define the types of rules that are checked on the source code. Configurability is

regarding the ability and mechanisms to customize tool. Extensibility is a boolean

property that defined if the tool can be extended with custom rules or not. Availability

differentiates among free, commercial and open source tools. User Experience lists

categories relevant for usability of the tool. Output defines the possible output formats

supported by the tool.

In the scope of this thesis, we used two SCATs, which are named FindBugs1 and

PMD2. In the following, we explain these tools in more detail from the viewpoint of

the SCAT taxonomy [14] depicted in Figure 1.

1http://findbugs.sourceforge.net/
2https://pmd.github.io/

5

F
ig
ur
e
1:

Ta
xo

no
m
y
of

st
at
ic

co
de

an
al
ys
is

to
ol
s
[1
4]
.

6

2.1.1 FindBugs

FindBugs takes bytecode as input. It is released occasionally, which means less fre-

quent than 3 releases in a year. It supports only the Java language. It employs syntax

rules and data flow to search for errors. General, style, concurrency, and performance

rules can be checked with FindBugs. It is a configurable tool, where the user can

configure rulesets. Extensibility with custom rules is supported. It is an open source

software, distributed under the terms of the Lesser GNU Public License [15]. Find-

Bugs can be used stand-alone also it supports integration with lots of various IDEs

such as Eclipse3, Intellij4, NetBeans5, etc. FindBugs has a Graphical User Interface

(GUI) for stand-alone use. Figure 2 depicts a snapshot of this GUI.

Figure 2: A snapshot of the FindBugs GUI [15].

3https://www.eclipse.org/
4https://www.jetbrains.com/idea/
5https://netbeans.org/

7

The top left part of the GUI is used for providing source code information. Hereby,

you can find package and class names with matched alert types. You can see the

corresponding line of code highlighted at the top right part of the panel. The bottom

part is used for presenting the definition and description of the selected alert. The

list of alerts can be exported in the form of an XML file. The spectrum of types of

alert is very wide in Findbugs, ranging from security issues to bad style [15]. Some

of the bug categories are listed below:

• Single-threaded correctness issues

• Thread/synchronization correctness issues

• Performance issues

• Security and vulnerability issues in malicious, untrusted code

In the background, FindBug employs BCEL6, which is an open source tool used

for manipulating and analyzing Java bytecode. FindBugs checkers are designed to

use the Visitor design pattern [16]. Each class in the source code is visited by a

checker. These checkers traverse the control flow graph derived from the source code

for analysis.

2.1.2 PMD

PMD is another SCAT. It takes source code instead of bytecode as input. It is released

frequently, i.e., more than 3 releases in a year. It supports various languages including

Java, JavaScript, Apex, PLSQL, Apache Velocity, XML, and XSL [17]. PMD employs

syntax rules and data flow information to detect errors. It is a configurable and

extendable tool like Findbugs. PMD finds common programming flaws like unused

variables, empty catch blocks, and unnecessary object creation. It mainly focuses on

6https://commons.apache.org/proper/commons-bcel/

8

code quality and security issues [18]. PMD can be used as a stand-alone application

as well as part of various IDEs.

In this thesis work, we used PMD Java because SCAT2RV supports the generation

of runtime monitors for Java programs. PMD uses JavaCC7 to parse Java source

code and generate its Abstract Syntax Tree (AST). It provides an API to traverse

this AST and define specialized checkers for custom rules. These checkers can be

implemented in the form of either Java code or XPath expressions. Checkers in

Java are implemented as Java classes that extend net.sourceforge.pmd.AbstractRule.

Checkers in the form of XPath queries can be defined via the PMD XPath GUI as

depicted in Figure 3.

Figure 3: A snapshot of the PMD XPath GUI [17].

7https://javacc.org/

9

As it can be seen in the snapshot of the PMD XPath GUI (Figure 3), the source

code is listed at the top left part of the panel. The corresponding AST is presented in

the left bottom. The right part of the panel is used for specifying the XPath query.

XPath8 is a language for addressing parts of an XML document, designed to be used

by both XSLT and XPointer. One needs to write an XPath expression that matches

the violation of the custom rule to be introduced.

2.2 Runtime Verification

In this section, we provide background information on Runtime Verification (RV), for

which we adopt the following definition.

Definition: "RV is the discipline of computer science that deals with the study, de-

velopment, and application of those verification techniques that allow checking whether

a run of a system under scrutiny satisfies or violates a given correctness property" [19].

The correctness property can be considered as the expected behavior. The dif-

ference between the expected behavior and the observed behavior is interpreted as a

software failure. RV monitors system with respect to written specifications in order

to be sure that actual and expected behaviors are the same. However, RV can only

check given specifications that define the correctness property or expected behavior.

These specifications have to be written manually.

Monitoring-Oriented Programming, abbreviated as MOP9, is a framework for RV,

where runtime monitors are automatically synthesized from formal specifications.

Then monitors are integrated into source code in order to track dynamic behavior

during execution. A specification is either violated or validated at runtime. Then

a user-defined action will be triggered automatically. By using this action, for in-

stance, runtime recovery can be provided. On the other hand, if specification is

8https://www.w3.org/TR/xpath/
9http://fsl.cs.illinois.edu/index.php/MOP

10

T
ab

le
2:

Su
pp

or
te
d
pl
at
fo
rm

s,
la
ng

ua
ge
s
an

d
fo
rm

al
ism

s
by

M
O
P

(N
A
:N

ot
Av

ai
la
bl
e)
.

Fo
rm

al
is
m
/L

an
g.

F
SM

E
R
E

C
FG

P
T
LT

L
LT

L
P
T
C
aR

et
SR

S

Ja
va
M
O
P

Ja
va
FS

M
Ja
va
ER

E
Ja
va
C
FG

Ja
va
PT

LT
L

Ja
va
LT

L
Ja
va
PT

C
aR

et
Ja
va
SR

S

B
us
M
O
P

Bu
sF

SM
Bu

sE
R
E

N
A

Bu
sL
T
L

N
A

N
A

N
A

R
O
SM

O
P

RO
SF

SM
N
A

RO
SC

FG
N
A

N
A

N
A

N
A

11

validated, logging can be done. Basically, MOP can be taught as an extension of pro-

gramming languages with logic, whose benefits are improving safety, reliability, and

dependability of a system by monitoring its requirements against its implementation

at runtime [20]. MOP is generic both with respect to the underlying programming

language and the requirements specification formalism in which properties are ex-

pressed. The list of platforms and formalisms currently supported by MOP10 is listed

in Table 2. Hereby, Y-axis lists the supported platforms. JavaMOP is a MOP tool

for Java. BusMOP is a MOP tool for monitoring consumer off-the-shelf components

over the PCI bus. ROSMOP is a MOP tool for the Robot Operating System (ROS).

X axis represents Logic Plugins, each of which support a formalism as listed below.

• FSM: Finite State Machines

• ERE: Extended Regular Expressions

• CFG: Context Free Grammars

• PTLTL: Past Time Linear Temporal Logic

• LTL: Linear Temporal Logic

• PTCaRet: Past Time LTL with Calls and Returns

• SRS: String Rewriting Systems

In our approach, we used JavaLTL for rule specification. Linear Temporal Logic,

abbreviated as LTL, is used for defining a proposition on "an infinite sequence of

states where each point in time has a unique successor, based on a linear-time per-

spective" [21]. LTL plugin for MOP allows one to synthesize monitors for properties

that are defined in the form of linear temporal logic (LTL) descriptions. The LTL

10http://fsl.cs.illinois.edu/index.php/MOP

12

plugin supports both past and future time LTL operators. LTL syntax can be found

in Appendix A.

1 import java.util .*;

2 public class HasNext {

3 public static void main(String [] args){

4 Vector <Integer > v = new Vector <Integer >();

5 v.add (1);

6 v.add (2);

7 v.add (4);

8 v.add (8);

9

10 Iterator i = v. iterator ();

11 int sum = 0;

12

13 if(i. hasNext ()){

14 sum += (Integer)i.next ();

15 sum += (Integer)i.next ();

16 sum += (Integer)i.next ();

17 sum += (Integer)i.next ();

18 }

19

20 System .out. println (" sum: " + sum);

21 }

22 }

Listing 2.1: Example source code that is monitored with JavaLTL.

13

In the following, we present an example to illustrate and clarify the use of MOP.

The program to be monitored is provided in Listing 2.1. This program works correctly

without any errors. This is because 4 elements are added to a vector after which

the next method is called 4 times. Existence of elements is checked with the hasNext

method but this check is performed only once. What if 3 elements were added instead

of 4? Then, there would be an error. So, this check should have been performed

before every access to the data structure. One should ensure that an iterator has

further elements before retrieving these. To validate this rule/property, one can write

a JavaLTL specification as listed in Listing 2.2. The specification is called HasNext

and it takes an Iterator object for which the property is checked. There are 3 events

(Lines 6, 9 and 12) in the specification to be monitored at runtime. AspectJ [22, 23]

the syntax is used for specifying these events. The first event (Line 9) captures all

the calls to the hasNext method of the Iterator object that returns true. The second

event (Line 9) captures all the calls to the hasNext method of the Iterator object that

returns false. The last event (Line 12) captures all the calls to the next method of

the Iterator object. A property specification follows these event specifications (Line

16), which starts with the ltl keyword. It defines a temporal property among the

predefined set of events. In this example, a property is defined regarding the first and

last events. Square brackets mean always and next =⇒ (*) hasnexttrue means that

a hasnexttrue event must precede the next event. The last part of the specification

(Line 18) defines the set of actions when this property is violated. In this example,

just a simple message is printed on the console.

14

1 import java.io .*;

2 import java.util .*;

3

4 HasNext (Iterator i) {

5

6 event hasnexttrue after(Iterator i) returning (boolean b) :

7 call (* Iterator . hasNext ())

8 && target (i) && condition (b) { }

9 event hasnextfalse after(Iterator i) returning (boolean b) :

10 call (* Iterator . hasNext ())

11 && target (i) && condition (!b) { }

12 event next before (Iterator i) :

13 call (* Iterator .next ())

14 && target (i) { }

15

16 ltl: [](next => (*) hasnexttrue)

17

18 @violation { System .out. println (" ltl violated !") ;}

19

20 }

Listing 2.2: A sample JavaLTL Specification.

15

CHAPTER III

RELATED WORK

There exist several studies in the literature on automated generation of RV specifica-

tions [24, 25, 26, 27]. These studies utilize different types of artifacts as information

sources for deriving and specifying system properties to be checked at runtime. In one

of these studies [24], RV specifications are generated by analyzing software reposito-

ries. First, the use of coupled function calls is identified by mining these repositories.

These functions, for example, can be related to the allocation and deallocation of

system resources. Then, RV specifications are automatically generated to check the

rules regarding the use of such functions. Our approach is not based on repository

mining. We only use the latest version of the source code to apply static analysis.

In a recent study, UML models have been utilized to generate RV specifications

in the form of finite state machines [25]. We do not rely on design models to generate

RV specifications. We only make use of alerts that are generated by a SCAT and a

library of predefined rules for alert types. Unlike UML models which are application

specific, these rules are generic and they can be reused across different projects.

In another recent study, RV specifications were generated to complement theorem

provers [26]. First, a deductive verification tool is used for analyzing the system.

Then, RV specifications are automatically generated for cases that cannot be verified

statically. Theorem provers are out of the scope of this thesis. We also do not aim

at complementing static analysis. On the contrary, we especially focus on potential

faults that are designated by SCAT alerts. Our goal is to either detect errors caused

by these faults or prove the absence of them by RV.

JNUKE VM [28] is a special virtual machine that enables the application of the

16

same analysis algorithms both statically and dynamically. The only difference be-

tween algorithms is that static analysis relies on abstract states instead of concrete

states, which are available only at runtime. This enables the verification of static

analysis results and elimination of false positives. In that sense, we share the same

goal with JNUKE VM. However, we are not introducing a specialized environment to

reach this goal. Our approach relies on automated transformations of input/output

artifacts of existing tools. Essentially, we introduce a toolchain without changing

these tools.

We have previously introduced a toolchain for generating RV specifications based

on SCAT [2]. In that approach, a template specification for each alert type is de-

fined once. Then, concrete specifications can be instantiated from this template for

different instances of the same alert type [29]. In this work, we introduce a simple

DSL for defining rules to be checked for an alert type. This contribution brings in

two advantages. First, multiple rules can be defined for each alert type. Second,

rule specification hides the underlying formalisms from the user, whereas template

specification requires expertise on Linear Temporal Logic (LTL) [30] and the AspectJ

language [23].

17

CHAPTER IV

OVERALL APPROACH

Static Code
Analysis

Tool

SCAT2RV

Monitor
Generator

Tool

External Tool

KEY:

Artifact

RV
Specs

RV Monitors
+ Source

Code

Source
Code

Alerts

Rule
Spec

1

3

1

2
2

2

3

3

Static Code
Analysis

 Tool Alert
Parser

2
Automatically

Generated
Artifact

Data Flow
Order

Figure 4: The overall approach.

The overall approach is depicted in Figure 4, which involves 3 main steps [31]. First,

Static Code Analysis Tool takes the source code of a program as input, analyzes the

source code and generates an alert list as output (1). Then, this alert list is provided

to regarding SCAT2RV as input. SCAT2RV employs two more inputs. First, it uses a

Static Code Tool Alert Parser to parse the alert list. This input is actually a plugin for

SCAT2RV to be able to utilize alerts generated in various formats by various SCATs

(See Appendix B for details.). The second input is Rule Specifications. This input

18

defines a set of rules to be checked for each alert type. SCAT2RV generates Runtime

Verification Specifications according to these rules and the provided list o alerts (2).

Finally, Monitor Generator tool takes these specifications and creates Runtime Mon-

itors which are injected into the source code to track the runtime behavior of software

system (3).

As depicted in Figure 4, the approach is fully automated. However, our approach

relies on a set of predefined rule specifications, which is used for creating RV specifi-

cations. We introduced a simple DSL for this purpose, which will be explained in the

next subsection. Our approach is extendable to support various SCATs. However,

one needs to write a dedicated Static Code Tool Alert Parser as plugin to SCAT2RV

in order to utilize a particular SCAT. Currently, we provide two such parser plugins,

which are used for parsing alerts provided by FindBugs and PMD tools. We use

JavaMOP as Monitor Generator.

In the following subsections, we explain each step of our approach in more detail.

After that, in Chapter 5, we demonstrate the application of the approach in the

context of two case studies. We developed the necessary tools in Java in order to

integrate each step. However, our approach could also be implemented with different

programming languages and environments.

4.1 Rule Specification for Alerts

The first step of our approach involves the definition of rule specifications for alerts.

We developed a DSL for this purpose. The grammar of this DSL is provided in

Listing 4.1.

19

1 Rule ::= <ViolationResult >.< TemporalOp >.<Event >;

2 ViolationResult ::= Error | FalsePositive

3 TemporalOp ::= Never | Always | Eventually

4 Event ::= <BasicEvent >

5 | <BasicEvent >.< TemporalOrder >.< BasicEvent >

6 BasicEvent ::= FieldGet | FieldSet | MethodCall | <Exception >

7 TemporalOrder ::= Before | After

8 Exception ::= NullPointerException | SecurityException

Listing 4.1: Grammar of the DSL for rule specification.
Our DSL basically supports LTL to define one or more rules per alert type in

the form of a temporal order among events. Hereby, a rule is composed of 3 parts

separated by dots and finalized with a semi-colon. The first part identifies the type of

rule depending on the result of its violation. There are two possible results reflected

by the corresponding terminals (Line 2). The Error means the violation of the rule

will indicate that an error is detected and this error is triggered by a fault reported

on the particular alert. FalsePositive means the violation of the rule will indicate

that a counter-example case is encountered at runtime, proving the particular alert

to be false positive. For example, we can confirm the validity of a null pointer alert

if a null pointer access occurs at runtime. If such a case does not take place, we can

not claim that it will never happen. We can only confirm the existence of an error

associated with this alert type, not the lack of it. On the other hand, field never set

alerts can only be falsified. If the related field is ever set, the monitor can mark this

alert as a false positive. If not, this time we can not conclude that alert points out

an error. The field can be set during another execution of the program.

The second part of the rule specifies a temporal operator (i.e., TemporalOp),

which can be the either one of Never, Always, or Eventually (Line 3). As implied

20

by their names, these terminals specify when an event is expected to occur. This

event is specified as the last part of the rule. There are two kinds of events in

our approach. First one is the basic event which is demonstrated with BasicEvent

(Line 7). Another type of event is the composition of two basic events separated by

dots and a TemporalOrder, which specifies a particular order between them (Line 6).

Temporal Order is defined by terminals Before or After (Line 8). Temporal Order is

used to establish temporal relativism between events. The set of possible basic events

is defined as FieldGet, FieldSet, MethodCall, and Exception (Lines 6-7). FieldGet

and FieldSet events take place when the field designated by the alert is accessed or

modified, respectively. MethodCall event occurs when the method designated by the

alert is called. Finally, an Exception event takes place when an exception occurs

at runtime. The corresponding non-terminal can be replaced with the name of any

subclass of the java.lang.RuntimeException class as the terminal value. Only two

examples are shown in Listing 3 (Line 9), not to clutter the specification. Based on

this grammar, for instance, one can specify a rule for the alert type UwF: Unwritten

field as

FalsePositive.Never.FieldSet;

This alert type basically indicates that this field is never written. An instance of

this alert type can be falsified if the corresponding field is ever set during execution.

For this reason, we use FalsePositive as ViolationResult. Setting a field is a basic event

because it does not have any dependency with respect to other events. Therefore, a

basic event is used for this case. The event is setting a field. Overall, this rule will

lead to a RV specification, which indicates that the corresponding field must never

be set. In case a counterexample is observed at runtime, where the field is set, the

alert is deemed to be false positive.

SCAT2RV generates RV specifications based on such rules as explained in the

following section.

21

4.2 Generation of Runtime Verification Specifications

Once the list of rules is defined, it can be used by SCAT2RV1 to automatically generate

RV specifications for a given list of SCAT alerts. Our approach is agnostic to the

SCAT that generates alerts. We developed a plugin interface for SCAT2RV, which

includes basic operations to parse the alert output (See Appendix B for details).

We already developed parsers for FindBugs and PMD tools. Developers can further

extend this scope by writing new parsers, which implement our interface. The set

of defined rules must be associated with types of alerts for various SCATs. Table 3

lists the rules that we defined for some of the alert types generated by FindBugs and

PMD.

In the background, SCAT2RV employs templates for possible events, which are

composed and instantiated to generate a RV specification based on an alert instance.

For instance, field get and call events are predefined in the following format for event

specification.

get(@FIELDINFO); call(@METHODINFO);

Hereby, parameters such as @FIELDINFO and @METHODINFO are replaced

with actual field and method names, which are obtained by parsing the given alert

instance. The part of the RV specification that defines a temporal ordering among

the events is generated according to the rule definition that is associated with the

type of the given alert. SCAT2RV outputs an error message in case the type of the

alert cannot be associated with a rule specification. In the following, we explain the

generation of runtime monitors based on the generated RV specifications.

1The source code of the tool is available at https://github.com/yunuskilicdev/Saida

22

T
ab

le
3:

A
sa
m
pl
e
lis
t
of

al
er
t
ty
pe

s
su
pp

or
te
d
by

Fi
nd

Bu
gs

an
d
PM

D
to
ge
th
er

w
ith

th
e
co
rr
es
po

nd
in
g
ru
le

sp
ec
ifi
ca
tio

ns
.

T
oo

l
A
le
rt

R
ul
e
Sp

ec
ifi
ca
ti
on

Fi
nd

Bu
gs

BC
:I
m
po

ss
ib
le

ca
st

Er
ro
r.A

lw
ay
s.C

la
ss
C
as
tE

xc
ep
tio

n

Fi
nd

Bu
gs

BC
:I
m
po

ss
ib
le

do
w
nc
as
t

Er
ro
r.A

lw
ay
s.C

la
ss
C
as
tE

xc
ep
tio

n

Fi
nd

Bu
gs

N
P:

N
ul
lp

oi
nt
er

de
re
fe
re
nc
e

Er
ro
r.A

lw
ay
s.F

ie
ld
G
et
.B
ef
or
e.
Fi
el
dS

et

Fi
nd

Bu
gs

U
w
F:

U
nw

rit
te
n
pu

bl
ic

or
pr
ot
ec
te
d
fie
ld

Fa
lse

Po
sit

iv
e.
N
ev
er
.F
ie
ld
Se
t

Fi
nd

Bu
gs

N
P:

M
et
ho

d
do

es
no

t
ch
ec
k
fo
r
nu

ll
ar
gu

m
en
t

Er
ro
r.A

lw
ay
s.N

ul
lP
oi
nt
er
Ex

ce
pt
io
n

PM
D

Im
m
ut
ab

le
Fi
el
d

Fa
lse

Po
sit

iv
e.
N
ev
er
.F
ie
ld
Se
t.A

fte
r.M

et
ho

dC
al
l

PM
D

U
nu

se
dP

riv
at
eF

ie
ld

Er
ro
r.N

ev
er
.F
ie
ld
G
et

PM
D

U
nu

se
dL

oc
al
Va

ria
bl
e

Er
ro
r.N

ev
er
.F
ie
ld
G
et

PM
D

U
nu

se
dP

riv
at
eM

et
ho

d
Er

ro
r.N

ev
er
.M

et
ho

dC
al
l

23

4.3 Generation of Runtime Monitors

SCAT2RV generates RV specifications that conform to JavaLTL as explained in Chap-

ter 2. Then, it employs the JavaMOP tool in the background for converting this

specification to AspectJ code. The final step is to introduce the generated AspectJ

code on top of the base code of the subject system. Then, aspects will start the moni-

toring tasks when the system is executed and they will output notifications regarding

detected errors or identified false positive alerts.

24

CHAPTER V

EVALUATION

In this chapter, we present an evaluation of our approach on two subject systems,

which are introduced in the next section. Then, a sample SCAT alert for one of these

systems will be used for illustrating the end-to-end application of the whole approach.

After that, the same rule will be used for applying RV on the other subject system

to illustrate the reuse of rules across various projects. Finally, another SCAT will be

used on the same subject system to illustrate the reuse of rules across various tools.

5.1 Subject Systems and Tools

An overview of the subject systems is provided in Table 4. The first subject system

is JBook1, which is an open source project developed with Java. JBook lets users

retrieve, read, and bookmark electronic texts. We used version 1.4 of this tool,

which has 1.2K lines of code. The second subject system is JDom2, which is used

for accessing, manipulating, and outputting XML data from Java code. It contains

around 8.4K lines of Java code. Both of these systems are part of a benchmark suite

that is used for evaluating SCATs [8]. In our evaluation, we used FindBugs and PMD

as SCATs that are explained in Section 2.1.

1http://jbook.sourceforge.net/
2http://www.jdom.org/

Table 4: Subject software systems.
Version License Lines of Code

JBook 1.4 GNU GPL 1276

Jdom 1.1 Apache-style 8422

25

1 public class Display extends ... {

2 ...

3 String strFontName ;

4 public Display (...) {

5 this.state = state;

6 // this. strFontName = ...;

7 ...

8 }

9 }

10

11 public class JBook extends JFrame {

12 ...

13 public JBook () {

14 ...

15 initialize (display);

16 }

17

18 private static initialize (Display display) {

19 ...

20 Field strFontNameField = display . getClass (). getDeclaredField

(" strFontName ");

21 strFontNameField .set(display , "False Positive ");

22 }

23 }

Listing 5.1: A code snippet from the Display class in JBook.

26

5.2 Rule Specification

In this section, the application of the rule specification step is explained. Consider

a code snippet from the JBook source code as shown in Listing 5.1. Hereby, there

is a member variable, strFontName of the Display class, of type String. This mem-

ber variable is normally initialized in the constructor (Line 6). We commented out

this line and initialized the variable externally, within the JBook class (Lines 20-21)

by means of reflection. Findbugs currently cannot detect such indirect dependencies

although there have been recently proposed approaches [32, 33] to address this prob-

lem. It reports an alert for the strFontName variable. The type of the alert is UwF:

Unwritten field, which is described as “This field is never written. All reads of it will

return the default value”3. Such alerts can be exported from Findbugs in an XML

format as shown in Listing 5.2.

1 <BugInstance type =" UWF_UNWRITTEN_FIELD " priority ="2" category

=" CORRECTNESS " ...>

2 ...

3 <Field classname =" org.jbook. source . Display "

4 name =" strFontName " signature =" Ljava/lang/ String ;"

5 isStatic =" false">

6 ...

7 </Field >

8 </ BugInstance >

Listing 5.2: The exported alert information for the example case.

In the previous chapter, we introduced a rule for this alert type as “FalsePosi-

tive.Never.FieldSet;”. If the program execution is monitored at runtime according to

this rule, a violation of the rule can be detected. This violation would indicate that

3http://findbugs.sourceforge.net/bugDescriptions.html

27

the field is indeed written and the alert is a false positive. In the following, we discuss

the generation of RV specifications based on such rule definitions.

5.3 Runtime Verification Specification Generation

SCAT2RV converts SCAT alerts to RV specifications according to the rule definitions

for the corresponding alert type. Listing 5.3 shows the RV specification that is gener-

ated for the alert in Listing 5.2 according to the rule introduced as an example. The

specification is composed of 3 parts. The first part (Lines 4-5) specifies the set of

events that should be monitored. The specification is generated according to the As-

pectJ pointcut syntax [23] and it captures points of execution after a field is modified.

The name and the location of the particular field to be monitored is obtained from

the reported alert. The second part (Line 6) specifies the temporal rule in JavaMop

LTL Syntax [13]. This rule indicates that the event defined in the first part of the

specification must never take place. The last part (Line 7) specifies what to perform

when a violation of the rule is detected at runtime. Hereby, the corresponding alert

is reported as a false positive.

1 UWF_UNWRITTEN_FIELD_R1_A1 (){

2 event UWF_UNWRITTEN_FIELD after () :

3 set(String org.jbook. source . Display . strFontName){}

4 ltl: []! UWF_UNWRITTEN_FIELD

5 @violation { System .out. println (" UWF_UNWRITTEN_FIELD bug

reported for org.jbook. source . Display . strFontName is

false positive !") ;}

6 }

Listing 5.3: Automatically generated JavaMOP specification based on the example

rule specification for falsifying an alert of type UwF: Unwritten field.

28

In the following, we discuss the synthesis and execution of runtime monitors based

on the generated RV specification.

5.4 Runtime Verification Monitor Generation

We rely on the JavaMOP tool [13] for the synthesis of runtime monitors and the

integration of these monitors with the system. JavaMOP automatically creates the

AspectJ code based on an RV specification that SCAT2RV generated as listed in

Listing 5.3.

The generated AspectJ code facilitates the weaving of online monitoring code into

the system at compile time. For example, we have included the generated code as

part of the JBook project files, recompiled the system and run it. The monitored

variable was initialized and this event was captured by the monitor. As a result, we

observed the console output as specified in Line 5 of Listing 5.3.

Our approach enables a transparent integration of SCATs and RV tools. One can

specify just a line of a simple rule regarding an alert type to enable the generation

and execution of monitors for all the alerts of this type. One can also specify multiple

rules per alert type. Moreover, these rules are generic and they can be reused across

projects. In the following section, we show the reuse of the rule defined in this section

for another software system to generate RV monitors.

5.5 Reuse of Rules Across Projects

In this section, we replicate our study for the second subject system, JDom. We focus

on the same case, where a variable is claimed to be never written. A runtime monitor

is generated by reusing the same rule defined in the previous section. Hence, we show

that rules can be used across projects and monitors for the corresponding alert types

can be generated without any manual effort.

29

1 public class ProcessingInstruction extends Content ... {

2 ...

3 public ProcessingInstruction setData (String data) {

4 String reason = Verifier . checkProcessingInstructionData (

data);

5 if (reason != null) {

6 throw new IllegalDataException (data , reason);

7 }

8 // this. rawData = data;

9 this. mapData = parseData (data);

10 return this;

11 }

12 ...

13 Field pInsField = processingInstruction . getClass ().

getDeclaredField (" rawData ");

14 pInsField .set(processingInstruction , " Setted ");

15 ...

16 }

Listing 5.4: A code snippet from the ProcessingInstruction class in JDom.

A code snippet from the JDom source code is shown in Listing 5.4. Hereby, there

is a member variable, rawData of the ProcessingInstruction class, of type String. This

variable is initialized by means of reflection. However, this can not be detected with

static code analysis. Hence, Findbugs reports an alert of type UwF: Unwritten field

for the variable. The reported alert is shown in Listing 5.5. We did not specify any

rule for this case study. We utilized the same rule that was defined for the alert type

UwF: Unwritten field as “FalsePositive.Never.FieldSet;”.

30

1 <BugInstance type =" UWF_UNWRITTEN_FIELD " priority ="2" category

=" CORRECTNESS " ...>

2 ...

3 <Field classname =" org.jdom. ProcessingInstruction "

4 name =" rawData " signature =" Ljava/lang/ String ;"

5 isStatic =" false">

6 ...

7 </Field >

8 </ BugInstance >

Listing 5.5: The exported alert information for the rawData variable.

Although the rule is the same for the alert type, the generated monitors are

specific to the subject system and the particular instances of the alert type. SCAT2RV

derives the relevant context of the reported alert (See Listing 5.5) and generates a RV

specification accordingly. Listing 5.6 shows the specification generated for the alert

reported for the JDom system. We can see that the structure of the specification

is the same as the one generated for JBook system (See Listing 5.3). However, the

monitored objects and variables are different.

1 UWF_UNWRITTEN_FIELD_R1_A1 (){

2 event UWF_UNWRITTEN_FIELD after () :

3 set(String org.jdom. ProcessingInstruction . rawData){}

4 ltl: []! UWF_UNWRITTEN_FIELD

5 @violation { System .out. println (" UWF_UNWRITTEN_FIELD bug

reported for org.jdom. ProcessingInstruction . rawData is

false positive !") ;}

6 }

Listing 5.6: Automatically generated JavaMOP specification for the JDom system.

31

We have included the generated AspectJ code by JavaMOP as part of the JDom

project files, recompiled the system and run it. As a result, we have observed the

console output as specified in Line 5 of Listing 5.6.

5.6 Reuse of Rules Across Tools

In this section, we discuss the use of our approach with PMD, as an alternative

SCAT for FindBugs. Some of the alert types in these SCATs are representatives of

the same bug types. We used the alert type UwF: Unwritten field to demonstrate our

approach with FindBugs. The alert type named UnusedLocalVariable is concerned

with the same issue in PMD. An instance of this alert type is shown in Listing 5.7 as

reported by PMD for the JBook system. A list of such alerts can be obtained in the

form of an XML document, which can be parsed with the parser plugin we developed

for PMD.

1 <?xml version ="1.0"? >

2 <pmd >

3 <file name ="c:\ data\pmd\pmd\org\jbook\ source \ Display .

java">

4 <violation line ="5" rule =" UnusedLocalVariable ">

5 Avoid unused local variables such as ’strFontName ’

6 </violation >

7 </file >

8 </pmd >

Listing 5.7: A sample alert generated by PMD.

We only needed to associate the same rule with the alert type in PMD to replicate

the approach with this SCAT. We observed the same results.

32

CHAPTER VI

RESULTS AND DISCUSSION

Not all the static code analysis alerts are relevant for RV. For instance, many types

of alerts that are reported by FindBugs are categorized as bad practice. There is

nothing to check at runtime for these alert types, which might be related to styling

issues. However, there also exist alert types that are highly relevant for RV. For

instance, concurrency bugs lead to failures depending on the runtime context and the

scheduling performed by the operating system. Hence, alerts that are categorized as

multithreaded correctness point at potential errors that can be monitored at runtime.

On the other hand, instances of some of the alert types can be deemed false positive

by RV. The list of relevant alert types that are processed by SCAT2RV can be seen

at Table 3.

The subject systems JBook and JDom that we used in our evaluation are part of

a benchmark suite [34], which contains 6 software systems in total. We collected and

analyzed all the alerts reported for these systems. We selected those that are pointing

at potential faults rather than styling issues or violations of coding conventions. Then,

we checked which of those are relevant for RV and can be processed by SCAT2RV to

automatically generate runtime monitors. The overall results are listed in Table 5.

For example, JBook has 52 alerts. 19 of them are pointing at potential faults. For

53% of these 19 alerts, that is, for 10 alerts SCAT2RV can generate runtime monitors

automatically.

One may utilize exception handling to detect and tolerate some of the reported bug

instances. For instance, a specific check or exception handler can be simply added to

the source code for eliminating accesses to null references as pointed out by an alert.

33

T
ab

le
5:

R
at
io

of
al
er
ts

fo
r
w
hi
ch

RV
sp
ec
ifi
ca
tio

ns
ca
n
be

au
to
m
at
ic
al
ly

ge
ne
ra
te
d.

#
of

re
le
va
nt

al
er
ts

#
of

al
er
ts

R
at
io

of
re
le
va
nt

T
ot
al

po
in
ti
ng

at
ap

pl
ic
ab

le
al
er
ts

ap
pl
ic
ab

le

#
of

al
er
ts

po
te
nt
ia
l
fa
ul
ts

fo
r

SC
AT

2R
V

fo
r

SC
AT

2R
V

JB
oo

k
52

19
10

53
%

JD
om

55
18

8
44
%

C
sv
O
bj
ec
t

7
0

N
ot

D
efi
ne
d

N
ot

D
efi
ne
d

Im
po

rt
Sc
ru
bb

er
35

12
3

25
%

iT
ru
st

11
0

29
1

3%

or
g.
ec
lip

se
.c
or
e.
ru
nt
im

e
98

28
7

25
%

O
ve
ra
ll

35
7

10
6

29
27
%

34

This approach has 3 drawbacks. First, the types of checks are limited by the set of

defined exception types. Second, it requires time and effort to manually analyze all

the alerts and modify the corresponding parts of the source code. Third, some of the

bug types cannot be localized in a single module of the program. The corresponding

erroneous scenario can involve a series of events that are related to multiple classes.

Our approach addresses all of these drawbacks. A set of reusable rules can be utilized

for automatically generating RV monitors, regardless of the location/distribution of

the corresponding modules.

Our study is subject to a set of validity threats [35]. To mitigate external validity

threats we performed a case study with two subject systems and analyzed 6 subject

systems in total. We showed that the approach is feasible and viable for utilizing static

analysis to focus RV and automatically generate RV specifications. We mitigated

the construct validity threat by implementing an instance of the approach. This

instance represents a proof-of-concept implementation for showing the viability of our

approach. There exist a reliability threat due to the variations of runtime behavior of

the subject system based on usage scenarios. The full replication of the study requires

the application of the same scenarios. Considering our case studies, any scenario

that leads to the modification of the monitored variables is enough for replication.

Internal validity threats are mitigated since we created a toolchain without changing

the implementation or any parameters of the externally utilized tools. However, not

all the runtime factors can be controlled, in case they have an impact on the results.

35

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

In this thesis, we introduced a new approach and a tool for automatically generating

runtime monitors based on a list of alerts which are reported by different static code

analysis tools. In order to achieve this aim, we introduced a simple domain specific

language for defining rules to be checked for each alert type. Formal verification spec-

ifications are automatically generated for each reported alert instance based on the

set of predefined rules for the corresponding alert type. Then runtime monitors are

automatically synthesized and integrated into the system. These integrated monitors

continuously report false positive alerts during software execution or they report de-

tected errors together with the diagnosis information obtained from the corresponding

alert. The approach was applied to two different open source software systems. We

observed that static code analysis alerts can be proved to be false positives and/or

identified errors can be checked at runtime by means of automatically generated run-

time monitors. We also showed that the defined rules can be reused across projects.

Furthermore, two different static code analysis tools alerts were used to demonstrate

how our system works with multiple tools.

As future work, additional rules can be defined regarding various SCAT alert types

that are relevant for RV. The rule specification language might also be improved if

its expressiveness turns out to be insufficient for defining new rules.

36

APPENDIX A

JAVALTL SYNTAX

The MOP LTL plugin syntax instantiates the generic <Logic Name>, <Logic Syn-

tax>, and <Logic State> from the Logic Repository Syntax. It is used in conjunction

with the <Logic Repository I/O> syntax and defined using Backus Normal Form

(BNF) [36]. LTL syntax is the base element of language. Multiple LTL syntax ele-

ments can be connected with various operators like and, or, xor. Another important

element is the event. You can define events like below.

<Event>::=["creation"] "event"<Id><AspectJ advice>

"{"[<Java Statements>]"}"

An event is basically defined by a name and the corresponding AspectJ advice. A

set of defined Java Statements will be executed when the defined event is triggered.

The violation term is used to indicate that they will be committed in case of violation

of the defined rules.

37

1 // BNF below is extended with {p} for zero or more and [p] for

zero or one repetitions of p

2 // The mandatory MOP logic syntax

3 <LTL Name > ::= "ltl"

4 <LTL Syntax > ::= "true" | "false"

5 | <Event Name >

6 | <Not > <LTL Syntax >

7 | <LTL Syntax > "and" <LTL Syntax >

8 | <LTL Syntax > "or" <LTL Syntax >

9 | <LTL Syntax > "xor" <LTL Syntax >

10 | <LTL Syntax > "=>" <LTL Syntax >

11 | <LTL Syntax > "<=>" <LTL Syntax >

12 | "[]" <LTL Syntax >

13 | "<>" <LTL Syntax >

14 | "o" <LTL Syntax >

15 | <LTL Syntax > "U" <LTL Syntax >

16 | <LTL Syntax > "~U" <LTL Syntax >

17 | <LTL Syntax > "R" <LTL Syntax >

18 | "<*>" <LTL Syntax >

19 | "(*)" <LTL Syntax >

20 | <LTL Syntax > "S" <LTL Syntax >

21 | <LTL Syntax > "~S" <LTL Syntax >

22 <LTL State > ::= " violation "

Listing A.1: JavaLTL Syntax.

38

APPENDIX B

SCAT2RV TOOL PLUGIN INTERFACE

SCAT2RV is developed with Java. An interface mechanism (See Listing B.1) was

used to handle various SCATs with various output formats. A parser that conforms

to this interface must be developed to parse output of a particular SCAT. The set of

variables and/or methods that are related to the reported alerts must be extracted

from SCAT output. A parser must return a list of BugInstance object. The parser

might need to perform additional code analysis to populate these objects with the

necessary information. For instance, output of PMD does not include name of the

class/package and signature of the method that is related to the reported alert. It

provides the path of the related class instead. So, our PMD parser performs an

additional analysis to retrieve the necessary information based on this path.

39

1 public abstract class ToolBase {

2 private String inputPath ;

3

4 public ToolBase (String inputPath){

5 setInputPath (inputPath);

6 }

7 public void Create () throws IOException {

8 List < BugInstance > alerts = ParseAlerts ();

9 ...

10 }

11

12 private String FindMopPath (String alertType) {

13 String path = String . format ("%s\\%s.mop", OutputFolder ,

alertType);

14 File file = new File(path);

15 if (file. exists ())

16 return path;

17 return StringUtils .EMPTY;

18 }

19

20 // Main method to parse alerts

21 protected abstract List < BugInstance > ParseAlerts ();

22

23

24 ...

25 }

Listing B.1: SCAT parser interface.

40

APPENDIX C

SCAT2RV TOOL USER MANUAL

SCAT2RV is a command line tool, lacking a graphical user interface. Input speci-

fications must be provided to be able to use the tool. First of all, each rule must

be specified within a text file, whose name is exactly the same as the corresponding

alert type. For example, a file name can be UWF_UNWRITTEN_FIELD.txt. The

content of this file can be as follows.

FalsePositive.Never.FieldSet;

These files should be saved into a folder in the file system. The user needs to provide

the full path of this folder to SCAT2RV because it will search for all the rule specifi-

cations here and find the relevant specification whose name matches with alert type

of a given alert output.

SCAT2RV is executed with several command line arguments. These arguments

are explained in Table 6. A sample run of the tool with these arguments set is shown

below.

java −j a r SCAT2RV. j a r −r u l e s C:\ r u l e s \ −t o o l FindBugs

−a l e r t s C:\ exampleSCAToutput . xml −s r c C:\ JBook\ s r c

The above command generates an AspectJ file as output. This file can be accompa-

nied with the base source code of the system to enable monitoring.

41

Table 6: The list of SCAT2RV command line arguments.
Argument Description

-rules Path of the folder that contains rule specifications.

-alerts Path of the SCAT alert list file.

-tool SCAT parser will be used (FindBugs or PMD).

-src Path of the source code of the software.

42

References

[1] B. Chess and G. McGraw, “Static analysis for security,” IEEE Computer Society,
vol. 2, no. 6, pp. 76–79, 2004.

[2] H. Sozer, “Integrated static code analysis and runtime verification,” Software:
Practice and Experience, vol. 45, no. 10, pp. 1359–1373, 2015.

[3] T. Delev and D. Gjorgjevikj, “Static analysis of source code written by
novice programmers,” in 2017 IEEE Global Engineering Education Conference
(EDUCON), pp. 825–830, April 2017.

[4] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t software
developers use static analysis tools to find bugs?,” in Proceedings of the 35th
International Conference on Software Engineering, pp. 672–681, 2013.

[5] U. Yuksel and H. Sozer, “Automated classification of static code analysis alerts:
A case study,” in Proceedings of the 29th IEEE International Conference on
Software Maintenance, (Eindhoven, The Netherlands), pp. 532–535, 2013.

[6] R. Krishnan, M. Nadworny, and N. Bharill, “Static analysis tools for security
checking in code at motorola,” ACM SIG Ada Letters, vol. 28, no. 1, pp. 76–82,
2008.

[7] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. Hudepohl, and M. Vouk, “On
the value of static analysis for fault detection in software,” IEEE Transactions
on Software Engineering, vol. 32, no. 4, pp. 240–253, 2006.

[8] S. Heckman and L. Williams, “A systematic literature review of actionable alert
identification techniques for automated static code analysis,” Information and
Software Technology, vol. 53, no. 4, pp. 363–387, 2011.

[9] T. Kremenek and D. Engler, Z-Ranking: Using Statistical Analysis to Counter
the Impact of Static Analysis Approximations, pp. 295–315. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003.

[10] N. Delgado, A. Q. Gates, and S. Roach, “A taxonomy and catalog of runtime
software-fault monitoring tools,” IEEE Transactions on Software Engineering,
vol. 30, pp. 859–872, Dec 2004.

[11] M. Leucker and C. Schallhart, “A brief account of runtime verification,” Journal
of Logic and Algebraic Programming, vol. 78, pp. 293–303, 2008.

[12] D. Jin, P. O. Meredith, C. Lee, and G. RoÅ§u, “Javamop: Efficient paramet-
ric runtime monitoring framework,” in 2012 34th International Conference on
Software Engineering (ICSE), pp. 1427–1430, June 2012.

43

[13] D. Jin, P. Meredith, C. Lee, and G. Rosu, “JavaMOP: Efficient parametric run-
time monitoring framework,” in Proceedings of the 34th International Conference
on Software Engineering, (Zurich, Switzerland), pp. 1427–1430, 2012.

[14] J. Novak, A. Krajnc, and R. Å¡ontar, “Taxonomy of static code analysis tools,”
in The 33rd International Convention MIPRO, pp. 418–422, May 2010.

[15] “FindBugs official website,” 2017. [online] http://findbugs.sourceforge.net.

[16] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” SIGPLAN Not., vol. 39,
pp. 92–106, Dec. 2004.

[17] “PMD official website,” 2017. [online] https://pmd.github.io/.

[18] “PMD official rulesets,” 2017. [online] https://pmd.github.io/pmd-5.8.0/pmd-
java/rules/index.html.

[19] M. Leucker and C. Schallhart, “A brief account of runtime verification,” 2008.

[20] “Monitoring-oriented programming,” 2017. [online]
http://fsl.cs.illinois.edu/index.php/MOP.

[21] “Linear temporal logic,” 2017. [online] http://www.cs.colostate.edu/ france/
CS614/Slides/Ch5-Summary.pdf.

[22] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier,
and J. Irwin, “Aspect-oriented programming,” in Proceedings of the European
Conference on Object-Oriented Programming, (Paris, France), pp. 220–242, 1987.

[23] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold,
“An overview of AspectJ,” in Proceedings of the European Conference on Object-
Oriented Programming, pp. 327–353, 2001.

[24] B. Livshits and T. Zimmerman, “Dynamine: Finding common error patterns
by mining software revision histories,” SIGSOFT Software Engineering Notes,
vol. 30, pp. 296–305, 2005.

[25] S. Ciraci, H. Sozer, and B. Tekinerdogan, “An approach for detecting inconsis-
tencies between behavioral models of the software architecture and the code,”
in Proceedings of the 36th International Conference on Computer Software and
Applications, (Izmir, Turkey), pp. 257–266, 2012.

[26] W. Ahrendt, G. Pace, and G. Schneider, “A unified approach for static and
runtime verification: Framework and applications,” in Proceedings of the Inter-
national Symposium on Leveraging Applications of Formal Methods, pp. 312–326,
2012.

44

[27] S. Ciraci, H. Sozer, and B. Tekinerdogan, “A runtime verification framework for
smart grid applications implemented on simulation frameworks,” in Proceedings
of the Workshop on Software Engineering Challenges for the Smart Grid, (San
Francisco, CA, USA), pp. 1–8, 2013.

[28] C. Artho and A. Bierel, “Combined static and dynamic analysis,” in Proceed-
ings of the International Workshop on Abstract Interpretation of Object-Oriented
Languages, (Paris, France), pp. 98–115, 2005.

[29] K. Czarnecki and S. Helsen, “Feature-based survey of model transformation ap-
proaches,” IBM Systems Journal, vol. 45, pp. 621–645, 2006.

[30] D. Gabbay, I. Hodkinson, and M. Reynolds, Temporal Logic. Oxford, UK: Oxford
University Press, 1997.

[31] Y. Kiliç and H. Sözer, “Generating runtime verification specifications based on
static code analysis alerts,” in Proceedings of the Symposium on Applied Com-
puting, SAC ’17, (New York, NY, USA), pp. 1342–1347, ACM, 2017.

[32] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and M. Mezini, “Taming reflection:
Aiding static analysis in the presence of reflection and custom class loaders,”
in Proceedings of the 33rd International Conference on Software Engineering,
pp. 241–250, 2011.

[33] Y. Li, T. Tan, Y. Sui, and J. Xue, “Self-inferencing reflection resolution for
java,” in Proceedings of the 28th European Conference on Object-Oriented Pro-
gramming, pp. 27–53, 2014.

[34] S. Heckman and L. Williams, “On establishing a benchmark for evaluating static
analysis alert prioritization and classification techniques,” in Proceedings of the
Second ACM-IEEE International Symposium on Empirical Software Engineering
and Measurement, ESEM ’08, (New York, NY, USA), pp. 41–50, ACM, 2008.

[35] C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell, and A. Wesslen, Exper-
imentation in Software Engineering. Berlin, Heidelberg: Springer-Verlag, 2012.

[36] J. W. Backus, “The syntax and semantics of the proposed international algebraic
language of the zurich acm-gamm conference,” in Proceedings of the International
Conference on Information Processing, 1959.

45

