GENERATING

RUNTIME VERIFICATION SPECIFICATIONS
BASED ON STATIC CODE ANALYSIS ALERTS

A Thesis
by

Yunus Kilig

Submitted to the
Graduate School of Sciences and Engineering
In Partial Fulfillment of the Requirements for
the Degree of

Master of Science

in the
Department of Computer Science

Ozyegin University
December 2017

Copyright (© 2017 by Yunus Kilig

GENERATING

RUNTIME VERIFICATION SPECIFICATIONS
BASED ON STATIC CODE ANALYSIS ALERTS

Approved by:

Assoc. Prof. Hasan Sézer (Advisor)
Department of Computer Science
Ozyegin University

Asst. Prof. Mehmet Aktas

Department of Computer Engineering
Yildvz Technical University

Asst. Prof. Barig Aktemur
Department of Computer Science
Ozyegin University

Date Approved: 2017

I dedicate this thesis to my wife Gamze. You provided the inspiration

necessary for me to complete this process.

il

ABSTRACT

There are various approaches in order to find bugs in a software system. One of
these approaches is static code analysis, which tries to achieve this goal by analyzing
code without executing it. Another complementary approach is runtime verification,
which is employed to verify dynamic system behavior with respect to a set of specifi-
cations at runtime. These specifications are often created manually based on system
requirements and constraints. In this thesis, we propose a novel methodology and
tool support for automatically generating runtime verification specifications based on
alerts that are reported by static code analysis tools. We introduce a domain spe-
cific language for defining a set of rules to be checked for an alert type. Violations
of the rules indicate either the absence or existence of an actual bug designated by
the instances of that alert type. Formal verification specifications are automatically
generated for each reported alert instance based on the defined rules. Then, runtime
monitors are automatically synthesized and integrated into the system. These mon-
itors report detected errors or false positive alerts during software execution. The
set of rules can be reused across different projects. We performed case studies with
two open source software systems to illustrate this. Our tool currently supports the
use of two different static code analysis tools for generating runtime monitors in Java

language. It is designed to be extendible for supporting other tools as well.

v

OZETCE

Yazilim hatalarinin bulunmasi amaciyla kullamilan bir¢ok yontem bulunmaktadir. Bu
yontemlerden biri olan statik kod analizi koddaki hatalarin, kodun caligtirilmadan
ortaya c¢ikarilmasini saglamaktadir. Bunu tamamlayici nitelikte olan ¢aligma zamani
dogrulama ise dinamik sistem davraniglarini yazilmig olan kurallara gore kontrol et-
mek i¢in kullanilmaktadir. Bu kural listesi genellikle sistem gereksinimleri ve kisit-
larina goére manuel olarak olusturulmaktadir. Bu tezde, statik kod analizi araglarinin
olusturdugu uyarilardan ¢alisma zamani dogrulama kurallarini otomatik olarak olus-
turan yeni bir yontem ve arag gelistirilmistir. Alana 6zgu bir dil gelistirilerek, uyar:
tiplerine 6zgi kurallar tanimlanmasi saglanmigtir. Olusturulan bu kurallarim ihlal
edilip edilmedigine gore hatanin gergeklegip gergeklesmedigine karar verilmektedir.
Caligma zamani dogrulama kurallar1 her bir uyar i¢in daha 6énceden tanimlanmig ku-
rallara gore otomatik olugturulmaktadir. Daha sonra ise, olugsan bu kurallara iligkin
calisma izleyiciler otomatik sentezlenerek, sisteme entegre edilmektedir. Bu izleyi-
ciler yazilimla birlikte caligarak tespit edilen hatalari ve yanlig iiretilmis uyarilari
raporlamaktadir. Bir kere olusturulan kurallar farkli projelerde kullanilabilmektedir.
Bu durumu gosterebilmek icin iki farkl agik kaynak kod tizerinde vaka caligmalar:
gerceklegtirilmistir. Aracimiz su anda Java programlama dili i¢in uyar: ireten iki
farkl statik kod analiz aracimi desteklemektedir. Ayrica bu arag, yeni statik kod

araclarini destekleyebilecek sekilde tasarlanmistir.

ACKNOWLEDGMENTS

Firstly, I would like to thank my advisor, Dr. Hasan Sozer for all his help and guidance
he has provided over the past two years. I would also like to thank Dr. Tankut Baris
Aktemur and Dr. Mehmet Aktag for accepting to be part of the evaluation committee
for this thesis.

Secondly, I deeply thank my wife, Gamze Kilic, my mother, Hanife Kili¢ and my
father, Yal¢in Kili¢ for their unconditional trust, timely encouragement, and endless
patience. It was their love that raised me up again when I got weary.

This work is supported by The Scientific and Research Council of Turkey
(TUBITAK), grant number 113E548.

vi

TABLE OF CONTENTS

DEDICATION e iii
ABSTRACT iv
OZETCE v
ACKNOWLEDGMENTS vi
LIST OF TABLES e ix
LIST OF FIGURES o . x
I INTRODUCTION e, 1
I BACKGROUND s 4
2.1 Static Code Analysis 4
2.2 Runtime Verificationo 10
IIT RELATED WORK 16
IV OVERALL APPROACH 18
4.1 Rule Specification for Alerts 19
4.2 Generation of Runtime Verification Specifications 22
4.3 Generation of Runtime Monitors 24
V. EVALUATION e 25
5.1 Subject Systems and Tools 25
5.2 Rule Specification L 27
5.3 Runtime Verification Specification Generation 28
5.4 Runtime Verification Monitor Generation 29
5.5 Reuse of Rules Across Projects 29
5.6 Reuse of Rules Across Tools 32
VI RESULTS AND DISCUSSION 33
VII CONCLUSIONS AND FUTURE WORK 36

vii

APPENDIX A — JAVALTL SYNTAX 37
APPENDIX B — SCAT2RV TOOL PLUGIN INTERFACE 39
APPENDIX C — SCAT2RV TOOL USER MANUAL 41

REFERENCES 43

viii

LIST OF TABLES

Common types of static code analysis alerts.

Supported platforms, languages and formalisms by MOP (NA: Not
Available).

A sample list of alert types supported by FindBugs and PMD together
with the corresponding rule specifications.

Subject software systems. L.

Ratio of alerts for which RV specifications can be automatically gen-
erated. L0 LA LLL L

The list of SCAT2RV command line arguments.

X

= OC I \V)

LIST OF FIGURES

Taxonomy of static code analysis tools [14].
A snapshot of the FindBugs GUI [15].
A snapshot of the PMD XPath GUIL [17].

The overall approach

CHAPTER 1

INTRODUCTION

Static code analysis is a type of technique that involves the process of analyzing
source code without executing it [1]. This technique is mainly used to find potential
issues like bugs and bad programming practices in programs [2]. The detected issues
are reported in the form of a list of alerts. These alerts can point to, for instance,
uninitialized variables, unreachable code, resource leaks, unused variables and secu-
rity vulnerabilities [3]. Static analysis tools [4] can generate alerts by checking the
violation of predefined patterns throughout control flow and data flow paths in the
program. Although these tools have been successfully utilized and used in the soft-
ware industry [5, 6, 7], they have limitations as well. One of the major challenges is to
filter out false positive alerts. These are the alerts that do not actually point to any
real problem with the software. They are also called as unactionable alerts [8] since
no action has to be taken concerning these alerts. It takes a significant amount of
time to manually review each reported alert and obtain the list of actionable alerts [5].
It was empirically shown that existing static code analysis tools (SCATSs) have false
positive rates ranging from 30% up to 100% [9].

Runtime verification (RV) is a complementary approach to static code analysis.
RV [10] is the process of checking if the software behavior at runtime satisfies or vi-
olates a given correctness property. Unlike other formal verification techniques such
as model checking, the verification scope is narrowed down to a single execution trace
of the software during its actual execution at the operational phase. As a result,
the verification does not necessarily cover all possible execution traces; however, the

verification is performed with a higher precision. The correctness property that is

checked at runtime can be specified with different formalisms such as finite state ma-
chines, regular expressions and temporal logic [11, 12]. There exist techniques and
tools [11, 13], which can take such formal specifications as input and automatically
synthesize monitors for the target system. However, the creation of formal verifica-
tion specifications is often performed manually based on system requirements and
constraints. This process requires effort and expertise. Moreover, system require-
ments and constraints are often not documented explicitly or formally. As a result,
the focus of RV (what should be checked at runtime?) is not always clear.

In this thesis, we present a novel approach and a tool, named SCAT2RV, to gener-
ate runtime verification monitors automatically from static code analysis alerts. We
introduce a simple domain specific language (DSL) for defining one or more rules to
be checked for an alert type. There are two types of rules: i) a rule for falsifying an
alert. The violation of this rule represents a counter-example that falsifies the alert.
For example, the alert can indicate that a variable is never initialized. In fact, the
variable might be initialized via some mechanism that can not be detected by static
analysis. If a rule is defined as the corresponding variable must never be initialized,
its violation at runtime represents a counter-example that falsifies the alert. i) a
rule for detecting the error designated by an alert. For example, the alert can indi-
cate that an object can be left null and its value is not checked before use. One can
specify that the corresponding object must not be subject to a null pointer excep-
tion. The violation of this rule detects the error pointed out by the alert, which can
be reported together with the associated alert explanation as diagnostic information.
SCAT2RV automatically generates formal verification specifications for each reported
alert instance based on the defined rules for the corresponding alert type. Then, run-
time monitors are automatically synthesized and integrated into the system. These
monitors report detected errors or falsified alerts during software execution.

We illustrate our approach for the RV of two open source software systems. We

define a rule for a particular alert type for one of these systems. RV monitors are
automatically generated for each instance of the alert type based on the defined rule.
Then, we apply the approach to the other system. We reuse the same rule defined
before. RV monitors are automatically generated from alerts regarding the second
system without any manual effort. Hence, we show that rules can be used for various
instances of an alert type as well as various instances across projects.

SCAT2RYV currently supports the use of two different SCATSs for generating runtime
monitors in Java language. It is designed to be extendible for supporting other tools
as well. A new tool can be integrated by only providing a plugin module in order to
parse the particular alert format used by the SCAT.

The remainder of this thesis is organized as follows. In the following chapter,
we provide background information on static code analysis in general and particular
SCATs that are employed in our case studies. We summarize the related studies in
Chapter 3. We present the overall approach in Chapter 4. The approach is illustrated
and evaluated in Chapter 5, in the context of two case studies. We present and discuss
the results in Chapter 6. Finally, in Chapter 7, we provide the conclusions and discuss

possible future directions.

CHAPTER 11

BACKGROUND

In this chapter, we provide brief background information on static code analysis and

runtime verification. We also explain the set of tools used in our case studies.

2.1 Static Code Analysis

A Static Code Analysis Tool (SCAT) creates a list of possibly hundreds of alerts
without executing code [3]. The analysis is usually performed by analyzing the source
code of the program only. There exists a static code analysis tool for almost all of
the modern programming languages. Some of these tools can be integrated with
Integrated Development Environments (IDEs) to make them an integral part of the
software development lifecycle. As a result, developers can use SCATSs across different
projects. The alert list basically points out potential errors and it is very useful
in order to identify problems early. Common list of alert types and sample alert

descriptions are listed in Table 1.

Table 1: Common types of static code analysis alerts.

Alert Category | Example Alert Description

Bad practice Confusing method names

Correctness Impossible cast, instanceof will always return false

Malicious code Field should be both final and package protected

Multithreaded Possible double check of field

Performance Boxed value is unboxed and then immediately reboxed

Security Empty database password

SCATS have some drawbacks as well. One of the major drawbacks is the existence
of false positive alerts. The term false positive means that the existence of some
property or situation is pointed as positive but actually it does not exist. In our
case, false positive means that a generated alert does not really point to a bug. This
circumstance might sound insignificant. However, false positive alerts lead to a huge
problem for large-scale systems, where a SCAT might report thousands of alerts.
Developers have to scrutinize every alert and check each of them if it points to a real
bug or not. So false positive alerts cause a significant loss of time and effort.

A taxonomy of SCATSs is provided [14] as depicted in Figure 1. Hereby, SCATSs
are categorized with respect to 10 properties. Input defines what types of files can be
loaded into the tool. Releases mean how many releases take place per year. Supported
languages are defined to clarify the programming languages supported. Technology
is related to particular technologies are used for searching errors in code. Rules
define the types of rules that are checked on the source code. Configurability is
regarding the ability and mechanisms to customize tool. FExtensibility is a boolean
property that defined if the tool can be extended with custom rules or not. Awvailability
differentiates among free, commercial and open source tools. User Ezxperience lists
categories relevant for usability of the tool. Output defines the possible output formats
supported by the tool.

In the scope of this thesis, we used two SCATSs, which are named FindBugs' and
PMD?2. In the following, we explain these tools in more detail from the viewpoint of

the SCAT taxonomy [14] depicted in Figure 1.

thttp://findbugs.sourceforge.net /
Zhttps://pmd.github.io/

‘[71] s1001 sisATeure apoo d13eYs Jo AwWOUOXR], T @IN3Iq

| indino | |eousuadxg sesn || Aungeeay | | Aunaqisuexg| | AunqesnByuod

uonesBajul
JUBLIOIIALT
apoo ul
siolla
Buneso
oljewolny

».

el »

JusWNoOop JX8 »

|elalawwon a|qissod »

NS
TNX s)|ney uo djay
aA|suaIxXg
aoaunos usdQ a|qissod JON

sjess|ny

s|oo] sisAjeuy apoJ aijels T

/

ek & sown o Angeureurep MOHBAC Jayng

aj9|0sq0

++0

22 funoag
Bunjoays japoy
Jeak e souny g >

BABM
AjjeuoisE22Q

spop aihg fiqesadoisyu)

Buiaousd waioey | aoUuBWIOHad

suondeoxy

£ \
Jeak e sawpy ¢ = A 1aN —— = p xejuhg

Apuanbaig an Rouaunosuon

8poo 92In0g >
|eiauan

mopjeieq > Buiwen

alfis »
indu] | | sesesjoy | |seBenBue| pspoddng| [ABojouyse)| | seny

2.1.1 FindBugs

FindBugs takes bytecode as input. It is released occasionally, which means less fre-
quent than 3 releases in a year. It supports only the Java language. It employs syntax
rules and data flow to search for errors. General, style, concurrency, and performance
rules can be checked with FindBugs. It is a configurable tool, where the user can
configure rulesets. Extensibility with custom rules is supported. It is an open source
software, distributed under the terms of the Lesser GNU Public License [15]. Find-
Bugs can be used stand-alone also it supports integration with lots of various IDEs
such as Eclipse?, Intellij*, NetBeans®, etc. FindBugs has a Graphical User Interface

(GUI) for stand-alone use. Figure 2 depicts a snapshot of this GUI.

&% FindBugs:

File Edit Navigation Designation Help

Package | Priority | Category | Bug Kind | Bug Pattern | > :Ulil.iaiv? in edu.umd.cs.findbugs.util :
27 assert true; -
o~ 9 edu.umd.cs findbugs config (3) | ag }]
o= (9 edu.umd cs findbugs filter (13 99)
¢ [edu.umd.cs findbugs.util (1) 100 static final Pattern tag = Pattern.compile("~\\s*<(\\uw+)"
? mMed\um 1) 101 public static String getXMLType (InputStream in) throws IO
¢ (] Bad practice (1) 102 if (!in.markSupported())
¢ (3 Stream not closed on all paths (1) 1\14 throw new IllegalArgumentException(”Input stream
0
¢ 3 Method may fail to close sm.zam.(n Tne in.mark (5000 5
[edu.umd.cs findbugs, util Util geBML 1 106 BuffersdReader ¥ = null:
o [edu.umd.cs findbugs visitclass (1) T 107 try
o (3 edu.umd.cs findbugs workflow (2) 108 r = new BufferedReader (Util.getReader(in), 2000);
o (] java.ufil (2) |~ 109
q Il] ’ 110 String s;
=z 111 int count = 0:
\unclassified M| 112 while {count < 4) { =
113 s = r.readline(); F—
114 if (3 == null)
115 break;
116 Matcher m = tag.matcher(s): <
AT I D |
[~ | | Find || FindNext | | Find Previous

a
edu.umd.cs findbugs.util. Util. geBMLType(nputStream) may fail to close stream

At Util java:[line 108]

In method edu.umd.cs indbugs utilUtil gebMLTypednputStream) [Lines 102 - 123]
Need to close java.io.Reader

ID

Method may fail to close stream

The method creates an |0 siream object, does not assign itto any fields, pass itto other methods that might close it, or return it, and does not appear to
close the stream on all paths out ofthe method. This may resultin a file descriptor leak. Itis generally a good idea to use a finally block to ensure that
streams are closed.

Lol

w UNIVERSITY OF
http:ifindbugs.sourceforge.net/ @ MAR.Y—.LAND

Figure 2: A snapshot of the FindBugs GUI [15].

3https://www.eclipse.org/
4https://www.jetbrains.com/idea,/
Shttps://netbeans.org/

The top left part of the GUI is used for providing source code information. Hereby,
you can find package and class names with matched alert types. You can see the
corresponding line of code highlighted at the top right part of the panel. The bottom
part is used for presenting the definition and description of the selected alert. The
list of alerts can be exported in the form of an XML file. The spectrum of types of
alert is very wide in Findbugs, ranging from security issues to bad style [15]. Some

of the bug categories are listed below:
e Single-threaded correctness issues
e Thread/synchronization correctness issues
e Performance issues
e Security and vulnerability issues in malicious, untrusted code

In the background, FindBug employs BCELS, which is an open source tool used
for manipulating and analyzing Java bytecode. FindBugs checkers are designed to
use the Visitor design pattern [16]. FEach class in the source code is visited by a
checker. These checkers traverse the control flow graph derived from the source code

for analysis.
2.1.2 PMD

PMD is another SCAT. It takes source code instead of bytecode as input. It is released
frequently, i.e., more than 3 releases in a year. It supports various languages including
Java, JavaScript, Apex, PLSQL, Apache Velocity, XML, and XSL [17]. PMD employs
syntax rules and data flow information to detect errors. It is a configurable and
extendable tool like Findbugs. PMD finds common programming flaws like unused

variables, empty catch blocks, and unnecessary object creation. It mainly focuses on

Shttps://commons.apache.org/proper/commons-bcel /

code quality and security issues [18]. PMD can be used as a stand-alone application

as well as part of various IDEs.

In this thesis work, we used PMD Java because SCAT2RV supports the generation
of runtime monitors for Java programs. PMD uses JavaCCT to parse Java source
code and generate its Abstract Syntax Tree (AST). It provides an API to traverse
this AST and define specialized checkers for custom rules. These checkers can be

implemented in the form of either Java code or XPath expressions.

Checkers in
Java are implemented as Java classes that extend net.sourceforge.pmd. AbstractRule.

Checkers in the form of XPath queries can be defined via the PMD XPath GUI as
depicted in Figure 3.

[lhd PMD Rule Designer

class Example {
wioid bar({

while (baz)

buz. doSomething();

XPath Query §f any)

'
'

4 [

Abstract Syntax Tree / XPath r Data Flow Analysis
CampilationUnit

TypeDeclaration

ClassDeclaration:{package private)

UnmuodifiedClassDeclarationiExarmple)
ClassBodhy

ClassBockDeclaration

MethodDeclaration:{package private)
ResultType

MethodDeclarator{bar)
FarmalParameters
Black
BlackStaternent
Statement
WhileStatement
Expression
PrimanyExpression
Prirmanfrefix
MName: baz
Statement

XPath query field is empty

StatementExpression:null
PrimanExpression
PrimaryPrefix

Mame:buz. doSomething

L PrirnarnSuffix

Figure 3: A snapshot of the PMD XPath GUI [17].

Thttps://javacc.org/

As it can be seen in the snapshot of the PMD XPath GUI (Figure 3), the source
code is listed at the top left part of the panel. The corresponding AST is presented in
the left bottom. The right part of the panel is used for specifying the XPath query.
XPath® is a language for addressing parts of an XML document, designed to be used
by both XSLT and XPointer. One needs to write an XPath expression that matches

the violation of the custom rule to be introduced.

2.2 Runtime Verification

In this section, we provide background information on Runtime Verification (RV), for
which we adopt the following definition.

Definition: "RV is the discipline of computer science that deals with the study, de-
velopment, and application of those verification techniques that allow checking whether
a run of a system under scrutiny satisfies or violates a given correctness property” [19].

The correctness property can be considered as the expected behavior. The dif-
ference between the expected behavior and the observed behavior is interpreted as a
software failure. RV monitors system with respect to written specifications in order
to be sure that actual and expected behaviors are the same. However, RV can only
check given specifications that define the correctness property or expected behavior.
These specifications have to be written manually.

Monitoring-Oriented Programming, abbreviated as MOP?, is a framework for RV,
where runtime monitors are automatically synthesized from formal specifications.
Then monitors are integrated into source code in order to track dynamic behavior
during execution. A specification is either violated or validated at runtime. Then
a user-defined action will be triggered automatically. By using this action, for in-

stance, runtime recovery can be provided. On the other hand, if specification is

8https://www.w3.org/TR/xpath/
9http://fsl.cs.illinois.edu/index.php/MOP

10

VN VN VN VN | DdDS0Y VN | INSdS50Y dOINSOHY

VN VN VN LrIsng VN | d4ddsngd | INSAShd dOINSTd
SaseARl | YD Ld®ARl | TTLTRARL | 'TL'LLd®RARL | DADBARL | HdH®AR | INSABAR(dOIN®ART
SHS PUeEDLd TLT TLILd PLIe CR<IC] INSA || ‘Bun/wsyvuiioq

“(e1qerreay 10N :VN) JOIN Aq swsieurioj pue sogendue| ‘suriojje(d perroddng :z o[qel,

11

validated, logging can be done. Basically, MOP can be taught as an extension of pro-
gramming languages with logic, whose benefits are improving safety, reliability, and
dependability of a system by monitoring its requirements against its implementation
at runtime [20]. MOP is generic both with respect to the underlying programming
language and the requirements specification formalism in which properties are ex-
pressed. The list of platforms and formalisms currently supported by MOP¥ is listed
in Table 2. Hereby, Y-axis lists the supported platforms. JavaMOP is a MOP tool
for Java. BusMOP is a MOP tool for monitoring consumer off-the-shelf components
over the PCI bus. ROSMOP is a MOP tool for the Robot Operating System (ROS).

X axis represents Logic Plugins, each of which support a formalism as listed below.

FSM: Finite State Machines

ERE: Extended Regular Expressions

e CFG: Context Free Grammars

PTLTL: Past Time Linear Temporal Logic

e LTL: Linear Temporal Logic

PTCaRet: Past Time LTL with Calls and Returns

SRS: String Rewriting Systems

In our approach, we used JavalLTL for rule specification. Linear Temporal Logic,
abbreviated as LTL, is used for defining a proposition on 'an infinite sequence of
states where each point in time has a unique successor, based on a linear-time per-
spective” [21]. LTL plugin for MOP allows one to synthesize monitors for properties

that are defined in the form of linear temporal logic (LTL) descriptions. The LTL

Ohttp://fsl.cs.illinois.edu/index.php/MOP

12

plugin supports both past and future time LTL operators. LTL syntax can be found

in Appendix A.

10

11

12

13

14

15

16

17

18

19

20

21

22

import java.util.;
public class HasNext {
public static void main(Stringl[] args){
Vector<Integer> v = new Vector<Integer>();
v.add (1) ;
v.add (2);
v.add (4) ;

v.add (8) ;

Iterator i = v.iterator();

int sum = O0;

if (i.hasNext ()){
sum += (Integer)i.next();
sum += (Integer)i.next();

sum += (Integer)i.next();

sum += (Integer)i.next();

System.out.println("sum: " + sum);

Listing 2.1: Example source code that is monitored with JavaLTL.

13

In the following, we present an example to illustrate and clarify the use of MOP.
The program to be monitored is provided in Listing 2.1. This program works correctly
without any errors. This is because 4 elements are added to a vector after which
the next method is called 4 times. Existence of elements is checked with the hasNext
method but this check is performed only once. What if 3 elements were added instead
of 47 Then, there would be an error. So, this check should have been performed
before every access to the data structure. One should ensure that an iterator has
further elements before retrieving these. To validate this rule/property, one can write
a JavaLLTL specification as listed in Listing 2.2. The specification is called HasNext
and it takes an [terator object for which the property is checked. There are 3 events
(Lines 6, 9 and 12) in the specification to be monitored at runtime. AspectJ [22, 23]
the syntax is used for specifying these events. The first event (Line 9) captures all
the calls to the hasNext method of the [terator object that returns true. The second
event (Line 9) captures all the calls to the hasNext method of the Iterator object that
returns false. The last event (Line 12) captures all the calls to the nezt method of
the Iterator object. A property specification follows these event specifications (Line
16), which starts with the [tl keyword. It defines a temporal property among the
predefined set of events. In this example, a property is defined regarding the first and
last events. Square brackets mean always and next = (*) hasnexttrue means that
a hasnexttrue event must precede the next event. The last part of the specification
(Line 18) defines the set of actions when this property is violated. In this example,

just a simple message is printed on the console.

14

1 import java.io.x*;

2 import java.util.x;

4 HasNext (Iterator i) {

10

11

12

13

14

15

16

17

18

19

20

event hasnexttrue after(Iterator i) returning(boolean b)
call(* Iterator.hasNext())
&% target(i) && condition(b) { }

event hasnextfalse after(Iterator i) returning(boolean b)
call(* Iterator.hasNext())
&& target(i) && condition(!b) { }

event next before(Iterator i)
call(x Iterator.next())

&& target(i) { }

1tl: [](next => (*x) hasnexttrue)

@violation { System.out.println("1ltl violated!");}

Listing 2.2: A sample JavalLTL Specification.

15

CHAPTER II1

RELATED WORK

There exist several studies in the literature on automated generation of RV specifica-
tions [24, 25, 26, 27]. These studies utilize different types of artifacts as information
sources for deriving and specifying system properties to be checked at runtime. In one
of these studies [24], RV specifications are generated by analyzing software reposito-
ries. First, the use of coupled function calls is identified by mining these repositories.
These functions, for example, can be related to the allocation and deallocation of
system resources. Then, RV specifications are automatically generated to check the
rules regarding the use of such functions. Our approach is not based on repository
mining. We only use the latest version of the source code to apply static analysis.

In a recent study, UML models have been utilized to generate RV specifications
in the form of finite state machines [25]. We do not rely on design models to generate
RV specifications. We only make use of alerts that are generated by a SCAT and a
library of predefined rules for alert types. Unlike UML models which are application
specific, these rules are generic and they can be reused across different projects.

In another recent study, RV specifications were generated to complement theorem
provers [26]. First, a deductive verification tool is used for analyzing the system.
Then, RV specifications are automatically generated for cases that cannot be verified
statically. Theorem provers are out of the scope of this thesis. We also do not aim
at complementing static analysis. On the contrary, we especially focus on potential
faults that are designated by SCAT alerts. Our goal is to either detect errors caused
by these faults or prove the absence of them by RV.

JNUKE VM [28] is a special virtual machine that enables the application of the

16

same analysis algorithms both statically and dynamically. The only difference be-
tween algorithms is that static analysis relies on abstract states instead of concrete
states, which are available only at runtime. This enables the verification of static
analysis results and elimination of false positives. In that sense, we share the same
goal with JNUKE VM. However, we are not introducing a specialized environment to
reach this goal. Our approach relies on automated transformations of input/output
artifacts of existing tools. Essentially, we introduce a toolchain without changing
these tools.

We have previously introduced a toolchain for generating RV specifications based
on SCAT [2]. In that approach, a template specification for each alert type is de-
fined once. Then, concrete specifications can be instantiated from this template for
different instances of the same alert type [29]. In this work, we introduce a simple
DSL for defining rules to be checked for an alert type. This contribution brings in
two advantages. First, multiple rules can be defined for each alert type. Second,
rule specification hides the underlying formalisms from the user, whereas template
specification requires expertise on Linear Temporal Logic (LTL) [30] and the AspectJ

language [23].

17

CHAPTER IV

OVERALL APPROACH

1 Static Code 1 KEY:
Source Analysis

Code Tool Alerts —

Artifact

2
Automatically
Y Generated
Static Code 2 Artifact

Analysis
Tool Alert
Parser

SCAT2RV RV
Specs Tool

N

External Tool
3 Data Flow
Order
Rule
Spec A 4
3 ‘| Monitor RV Monitors

Generator + Source

Code

Figure 4: The overall approach.

The overall approach is depicted in Figure 4, which involves 3 main steps [31]. First,
Static Code Analysis Tool takes the source code of a program as input, analyzes the
source code and generates an alert list as output (1). Then, this alert list is provided
to regarding SCAT2RV as input. SCAT2RV employs two more inputs. First, it uses a
Static Code Tool Alert Parser to parse the alert list. This input is actually a plugin for
SCAT2RV to be able to utilize alerts generated in various formats by various SCATs

(See Appendix B for details.). The second input is Rule Specifications. This input

18

defines a set of rules to be checked for each alert type. SCAT2RV generates Runtime
Verification Specifications according to these rules and the provided list o alerts (2).
Finally, Monitor Generator tool takes these specifications and creates Runtime Mon-
itors which are injected into the source code to track the runtime behavior of software
system (3).

As depicted in Figure 4, the approach is fully automated. However, our approach
relies on a set of predefined rule specifications, which is used for creating RV specifi-
cations. We introduced a simple DSL for this purpose, which will be explained in the
next subsection. Our approach is extendable to support various SCATs. However,
one needs to write a dedicated Static Code Tool Alert Parser as plugin to SCAT2RV
in order to utilize a particular SCAT. Currently, we provide two such parser plugins,
which are used for parsing alerts provided by FindBugs and PMD tools. We use
JavaMOP as Monitor Generator.

In the following subsections, we explain each step of our approach in more detail.
After that, in Chapter 5, we demonstrate the application of the approach in the
context of two case studies. We developed the necessary tools in Java in order to
integrate each step. However, our approach could also be implemented with different

programming languages and environments.

4.1 Rule Specification for Alerts

The first step of our approach involves the definition of rule specifications for alerts.
We developed a DSL for this purpose. The grammar of this DSL is provided in

Listing 4.1.

19

1 Rule ::= <ViolationResult>.<TemporalOp>.<Event>;

2 ViolationResult ::= Error | FalsePositive

3 TemporalOp ::= Never | Always | Eventually

4 Event ::= <BasicEvent>

5 | <BasicEvent>.<TemporalOrder>.<BasicEvent>

6 BasicEvent ::= FieldGet | FieldSet | MethodCall | <Exception>
7 TemporalOrder ::= Before | After

8 Exception ::= NullPointerException | SecurityException

Listing 4.1: Grammar of the DSL for rule specification.
Our DSL basically supports LTL to define one or more rules per alert type in

the form of a temporal order among events. Hereby, a rule is composed of 3 parts
separated by dots and finalized with a semi-colon. The first part identifies the type of
rule depending on the result of its violation. There are two possible results reflected
by the corresponding terminals (Line 2). The Error means the violation of the rule
will indicate that an error is detected and this error is triggered by a fault reported
on the particular alert. FalsePositive means the violation of the rule will indicate
that a counter-example case is encountered at runtime, proving the particular alert
to be false positive. For example, we can confirm the validity of a null pointer alert
if a null pointer access occurs at runtime. If such a case does not take place, we can
not claim that it will never happen. We can only confirm the existence of an error
associated with this alert type, not the lack of it. On the other hand, field never set
alerts can only be falsified. If the related field is ever set, the monitor can mark this
alert as a false positive. If not, this time we can not conclude that alert points out
an error. The field can be set during another execution of the program.

The second part of the rule specifies a temporal operator (i.e., TemporalOp),

which can be the either one of Never, Always, or Eventually (Line 3). As implied

20

by their names, these terminals specify when an event is expected to occur. This
event is specified as the last part of the rule. There are two kinds of events in
our approach. First one is the basic event which is demonstrated with BasicFEvent
(Line 7). Another type of event is the composition of two basic events separated by
dots and a TemporalOrder, which specifies a particular order between them (Line 6).
Temporal Order is defined by terminals Before or After (Line 8). Temporal Order is
used to establish temporal relativism between events. The set of possible basic events
is defined as FieldGet, FieldSet, MethodCall, and Exzception (Lines 6-7). FieldGet
and FieldSet events take place when the field designated by the alert is accessed or
modified, respectively. MethodCall event occurs when the method designated by the
alert is called. Finally, an Fxception event takes place when an exception occurs
at runtime. The corresponding non-terminal can be replaced with the name of any
subclass of the java.lang. RuntimeFxception class as the terminal value. Only two
examples are shown in Listing 3 (Line 9), not to clutter the specification. Based on

this grammar, for instance, one can specify a rule for the alert type UwF: Unwritten

field as
FalsePositive.Never.FieldSet;

This alert type basically indicates that this field is never written. An instance of
this alert type can be falsified if the corresponding field is ever set during execution.
For this reason, we use FalsePositive as ViolationResult. Setting a field is a basic event
because it does not have any dependency with respect to other events. Therefore, a
basic event is used for this case. The event is setting a field. Overall, this rule will
lead to a RV specification, which indicates that the corresponding field must never
be set. In case a counterexample is observed at runtime, where the field is set, the
alert is deemed to be false positive.

SCAT2RV generates RV specifications based on such rules as explained in the

following section.

21

4.2 Generation of Runtime Verification Specifications

Once the list of rules is defined, it can be used by SCAT2RV! to automatically generate
RV specifications for a given list of SCAT alerts. Our approach is agnostic to the
SCAT that generates alerts. We developed a plugin interface for SCAT2RV, which
includes basic operations to parse the alert output (See Appendix B for details).
We already developed parsers for FindBugs and PMD tools. Developers can further
extend this scope by writing new parsers, which implement our interface. The set
of defined rules must be associated with types of alerts for various SCATs. Table 3
lists the rules that we defined for some of the alert types generated by FindBugs and
PMD.

In the background, SCAT2RV employs templates for possible events, which are
composed and instantiated to generate a RV specification based on an alert instance.
For instance, field get and call events are predefined in the following format for event

specification.
get (QFIELDINFO); call(@METHODINFO);

Hereby, parameters such as QFIELDINFO and QMETHODINFO are replaced
with actual field and method names, which are obtained by parsing the given alert
instance. The part of the RV specification that defines a temporal ordering among
the events is generated according to the rule definition that is associated with the
type of the given alert. SCAT2RV outputs an error message in case the type of the
alert cannot be associated with a rule specification. In the following, we explain the

generation of runtime monitors based on the generated RV specifications.

IThe source code of the tool is available at https://github.com/yunuskilicdev/Saida

22

[TeDPOYIOIN I0AD N " TOIIF] POYISINRYRALI oS} and
}O)PIOI IOADN 10117 S[(RLIBA B0 Pasnu) and

}O)PII] IOADN 10LI7] PlRLPYeALIposnu) and

[[EOPOYIRIN 1OY Y FOSPIOT TOAIN PATISOJ 9S8 pretgorqeinuimy anNd
u01)dodXFIOIUIO NN "SACM[Y I0117H] | JuewndIe [[U I0] Y2910 j0U Se0p POYRN AN | sSngpulg

JOSP[OL] 1oAD N OAINISOJOS R P1eY pajosroad 1o orqnd uejjrimun) :qmn | sSngpuig

19 PIoL] 2I10Jo¢] 10X P[OL] SARM[Y " I011H 9ouaIsjelep 10jutod [N (N | sSngpulg
uo1)deoxr])se)sse[) SARM] Y 10115 pseoumop a[qissodwi] :0H¢ | sSngpurg
uo1)deoxr])se)sse]) SARM[Y 10115 psed a[qrssodw] :H¢ | sSngpulg
uoryeoyroadg o[ny AREI AT [ooT,

‘suoryeoyads o[nr Surpuodsariod oy Im 1930807 ([INd pue ssngpurj Aq pejyroddns sodAy) jio[e jo 3s1] ojdwres y :¢ o[qe],

23

4.3 Generation of Runtime Monitors

SCAT2RYV generates RV specifications that conform to Javal'TL as explained in Chap-
ter 2. Then, it employs the JavaMOP tool in the background for converting this
specification to AspectJ code. The final step is to introduce the generated AspectJ
code on top of the base code of the subject system. Then, aspects will start the moni-
toring tasks when the system is executed and they will output notifications regarding

detected errors or identified false positive alerts.

24

CHAPTER V

EVALUATION

In this chapter, we present an evaluation of our approach on two subject systems,
which are introduced in the next section. Then, a sample SCAT alert for one of these
systems will be used for illustrating the end-to-end application of the whole approach.
After that, the same rule will be used for applying RV on the other subject system
to illustrate the reuse of rules across various projects. Finally, another SCAT will be

used on the same subject system to illustrate the reuse of rules across various tools.

5.1 Subject Systems and Tools

An overview of the subject systems is provided in Table 4. The first subject system
is JBook!, which is an open source project developed with Java. JBook lets users
retrieve, read, and bookmark electronic texts. We used version 1.4 of this tool,
which has 1.2K lines of code. The second subject system is JDom?, which is used
for accessing, manipulating, and outputting XML data from Java code. It contains
around 8.4K lines of Java code. Both of these systems are part of a benchmark suite
that is used for evaluating SCATSs [8]. In our evaluation, we used FindBugs and PMD

as SCATs that are explained in Section 2.1.

thttp://jbook.sourceforge.net /
http://www.jdom.org/

Table 4: Subject software systems.

Version License Lines of Code
JBook 1.4 GNU GPL | 1276
Jdom 1.1 Apache-style | 8422

25

4

(0}

10

11

12

13

14

15

16

17

18

19

20

21

22

23

public class Display extends ... {
String strFontName;
public Display(...) {

this.state = state;

//this.strFontName = ...;

public class JBook extends JFrame {

public JBook () {

initialize (display) ;

private static initialize(Display display) {

Field strFontNameField = display.getClass().getDeclaredField

("strFontName") ;

strFontNameField.set(display, "False Positive");

Listing 5.1: A code snippet from the Display class in JBook.

26

6

7

8

5.2 Rule Specification

In this section, the application of the rule specification step is explained. Consider
a code snippet from the JBook source code as shown in Listing 5.1. Hereby, there
is a member variable, strFontName of the Display class, of type String. This mem-
ber variable is normally initialized in the constructor (Line 6). We commented out
this line and initialized the variable externally, within the JBook class (Lines 20-21)
by means of reflection. Findbugs currently cannot detect such indirect dependencies
although there have been recently proposed approaches [32, 33| to address this prob-
lem. It reports an alert for the strFontName variable. The type of the alert is UwF:
Unwritten field, which is described as “This field is never written. All reads of it will

3

return the default value”™. Such alerts can be exported from Findbugs in an XML

format as shown in Listing 5.2.

<BugInstance type="UWF_UNWRITTEN_FIELD" priority="2" category

="CORRECTNESS" ...>

<Field classname="org.jbook.source.Display"
name="strFontName" signature="Ljava/lang/String;"

isStatic="false">

</Field>

</Buglnstance>
Listing 5.2: The exported alert information for the example case.
In the previous chapter, we introduced a rule for this alert type as “FalsePosi-

tive. Never. FieldSet;”. If the program execution is monitored at runtime according to

this rule, a violation of the rule can be detected. This violation would indicate that

3http://findbugs.sourceforge.net /bugDescriptions.html

27

6

the field is indeed written and the alert is a false positive. In the following, we discuss

the generation of RV specifications based on such rule definitions.

5.3 Runtime Verification Specification Generation

SCAT2RV converts SCAT alerts to RV specifications according to the rule definitions
for the corresponding alert type. Listing 5.3 shows the RV specification that is gener-
ated for the alert in Listing 5.2 according to the rule introduced as an example. The
specification is composed of 3 parts. The first part (Lines 4-5) specifies the set of
events that should be monitored. The specification is generated according to the As-
pectJ pointcut syntax [23] and it captures points of execution after a field is modified.
The name and the location of the particular field to be monitored is obtained from
the reported alert. The second part (Line 6) specifies the temporal rule in JavaMop
LTL Syntax [13]. This rule indicates that the event defined in the first part of the
specification must never take place. The last part (Line 7) specifies what to perform
when a violation of the rule is detected at runtime. Hereby, the corresponding alert

is reported as a false positive.

UWF_UNWRITTEN_FIELD_R1_A1(){
event UWF_UNWRITTEN_FIELD after ()
set (String org.jbook.source.Display.strFontName) {}
1tl: []!'UWF_UNWRITTEN_FIELD
@violation{System.out.println ("UWF_UNWRITTEN_FIELD bug
reported for org.jbook.source.Display.strFontName is
false positive!");}

3

Listing 5.3: Automatically generated JavaMOP specification based on the example

rule specification for falsifying an alert of type UwF': Unwritten field.

28

In the following, we discuss the synthesis and execution of runtime monitors based

on the generated RV specification.

5.4 Runtime Verification Monitor Generation

We rely on the JavaMOP tool [13] for the synthesis of runtime monitors and the
integration of these monitors with the system. JavaMOP automatically creates the
Aspect]J code based on an RV specification that SCAT2RV generated as listed in
Listing 5.3.

The generated AspectJ code facilitates the weaving of online monitoring code into
the system at compile time. For example, we have included the generated code as
part of the JBook project files, recompiled the system and run it. The monitored
variable was initialized and this event was captured by the monitor. As a result, we
observed the console output as specified in Line 5 of Listing 5.3.

Our approach enables a transparent integration of SCATs and RV tools. One can
specify just a line of a simple rule regarding an alert type to enable the generation
and execution of monitors for all the alerts of this type. One can also specify multiple
rules per alert type. Moreover, these rules are generic and they can be reused across
projects. In the following section, we show the reuse of the rule defined in this section

for another software system to generate RV monitors.

5.5 Reuse of Rules Across Projects

In this section, we replicate our study for the second subject system, JDom. We focus
on the same case, where a variable is claimed to be never written. A runtime monitor
is generated by reusing the same rule defined in the previous section. Hence, we show
that rules can be used across projects and monitors for the corresponding alert types

can be generated without any manual effort.

29

10

11

12

13

14

15

16

public class ProcessinglInstruction extends Content ... {

public ProcessingInstruction setData(String data) {

String reason = Verifier.checkProcessingInstructionData/(
data);
if (reason != null) {

throw new IllegalDataException(data, reason);

}
//this.rawData = data;
this.mapData = parseData(data);

return this;

Field pInsField = processingInstruction.getClass ().
getDeclaredField ("rawData") ;

pInsField.set(processingInstruction, "Setted");

Listing 5.4: A code snippet from the ProcessinglInstruction class in JDom.

A code snippet from the JDom source code is shown in Listing 5.4. Hereby, there
is a member variable, rawData of the ProcessingInstruction class, of type String. This
variable is initialized by means of reflection. However, this can not be detected with
static code analysis. Hence, Findbugs reports an alert of type UwF: Unwritten field
for the variable. The reported alert is shown in Listing 5.5. We did not specify any
rule for this case study. We utilized the same rule that was defined for the alert type

UwF: Unwritten field as “FalsePositive. Never. FieldSet;”.

30

<BugInstance type="UWF_UNWRITTEN_FIELD" priority="2" category

="CORRECTNESS" ...>

<Field classname="org. jdom.ProcessingInstruction"
name="rawData" signature="Ljava/lang/String;"

isStatic="false">

</Field>

</Buglnstance>

Listing 5.5: The exported alert information for the rawData variable.

Although the rule is the same for the alert type, the generated monitors are
specific to the subject system and the particular instances of the alert type. SCAT2RV
derives the relevant context of the reported alert (See Listing 5.5) and generates a RV
specification accordingly. Listing 5.6 shows the specification generated for the alert
reported for the JDom system. We can see that the structure of the specification
is the same as the one generated for JBook system (See Listing 5.3). However, the

monitored objects and variables are different.

UWF_UNWRITTEN_FIELD_R1_A1(){
event UWF_UNWRITTEN_FIELD after ()
set (String org.jdom.ProcessingInstruction.rawData){}
1tl: []!'UWF_UNWRITTEN_FIELD
@violation{System.out.println ("UWF_UNWRITTEN_FIELD bug
reported for org.jdom.Processinglnstruction.rawData is
false positive!");}

}

Listing 5.6: Automatically generated JavaMOP specification for the JDom system.

31

We have included the generated AspectJ code by JavaMOP as part of the JDom
project files, recompiled the system and run it. As a result, we have observed the

console output as specified in Line 5 of Listing 5.6.

5.6 Reuse of Rules Across Tools

In this section, we discuss the use of our approach with PMD, as an alternative
SCAT for FindBugs. Some of the alert types in these SCATs are representatives of
the same bug types. We used the alert type UwF': Unwritten field to demonstrate our
approach with FindBugs. The alert type named UnusedLocalVariable is concerned
with the same issue in PMD. An instance of this alert type is shown in Listing 5.7 as
reported by PMD for the JBook system. A list of such alerts can be obtained in the
form of an XML document, which can be parsed with the parser plugin we developed

for PMD.

<?xml version="1.0"7>
<pmd >
<file name="c:\data\pmd\pmd\org\jbook\source\Display.
java">

<violation line="5" rule="UnusedLocalVariable">
Avoid unused local variables such as ’strFontName’
</violation>

</file>

</pmd>

Listing 5.7: A sample alert generated by PMD.

We only needed to associate the same rule with the alert type in PMD to replicate

the approach with this SCAT. We observed the same results.

32

CHAPTER VI

RESULTS AND DISCUSSION

Not all the static code analysis alerts are relevant for RV. For instance, many types
of alerts that are reported by FindBugs are categorized as bad practice. There is
nothing to check at runtime for these alert types, which might be related to styling
issues. However, there also exist alert types that are highly relevant for RV. For
instance, concurrency bugs lead to failures depending on the runtime context and the
scheduling performed by the operating system. Hence, alerts that are categorized as
multithreaded correctness point at potential errors that can be monitored at runtime.
On the other hand, instances of some of the alert types can be deemed false positive
by RV. The list of relevant alert types that are processed by SCAT2RV can be seen
at Table 3.

The subject systems JBook and JDom that we used in our evaluation are part of
a benchmark suite [34], which contains 6 software systems in total. We collected and
analyzed all the alerts reported for these systems. We selected those that are pointing
at potential faults rather than styling issues or violations of coding conventions. Then,
we checked which of those are relevant for RV and can be processed by SCAT2RV to
automatically generate runtime monitors. The overall results are listed in Table 5.
For example, JBook has 52 alerts. 19 of them are pointing at potential faults. For
53% of these 19 alerts, that is, for 10 alerts SCAT2RV can generate runtime monitors
automatically.

One may utilize exception handling to detect and tolerate some of the reported bug
instances. For instance, a specific check or exception handler can be simply added to

the source code for eliminating accesses to null references as pointed out by an alert.

33

%LC 6¢ 90T LG€ [[e1R2AQ
%GT . QT 36 owIIUNI’'a102 9sdI[09 810
%e I 6¢ OTT ISnALL
%S¢ & ¢l ge Iaqqnidgiroduy
pouge(10N pouge(19N 0 L 199fqOAsD
%V 8 8T ag wor
%Eq 0T 61 48] Afoodr
NHZLVDS 10} NHZLVDS 10} synej rerpusajod S1I9[e JO #
a[qeorjdde sjiofe a[qeordde ye Surjyurod 1e10T,
JURAQ[OI JO OIjRY | S)I9[R JO # | S)I9[R JURASI[AI JO #

"PojeIauagd A[[ROIJRUIONE 9(URD SUOIRIYIAAS A UDOIYM IO] S)Io[e JO O13RY :G 9[qe],

34

This approach has 3 drawbacks. First, the types of checks are limited by the set of
defined exception types. Second, it requires time and effort to manually analyze all
the alerts and modify the corresponding parts of the source code. Third, some of the
bug types cannot be localized in a single module of the program. The corresponding
erroneous scenario can involve a series of events that are related to multiple classes.
Our approach addresses all of these drawbacks. A set of reusable rules can be utilized
for automatically generating RV monitors, regardless of the location/distribution of
the corresponding modules.

Our study is subject to a set of validity threats [35]. To mitigate external validity
threats we performed a case study with two subject systems and analyzed 6 subject
systems in total. We showed that the approach is feasible and viable for utilizing static
analysis to focus RV and automatically generate RV specifications. We mitigated
the construct validity threat by implementing an instance of the approach. This
instance represents a proof-of-concept implementation for showing the viability of our
approach. There exist a reliability threat due to the variations of runtime behavior of
the subject system based on usage scenarios. The full replication of the study requires
the application of the same scenarios. Considering our case studies, any scenario
that leads to the modification of the monitored variables is enough for replication.
Internal validity threats are mitigated since we created a toolchain without changing
the implementation or any parameters of the externally utilized tools. However, not

all the runtime factors can be controlled, in case they have an impact on the results.

35

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

In this thesis, we introduced a new approach and a tool for automatically generating
runtime monitors based on a list of alerts which are reported by different static code
analysis tools. In order to achieve this aim, we introduced a simple domain specific
language for defining rules to be checked for each alert type. Formal verification spec-
ifications are automatically generated for each reported alert instance based on the
set of predefined rules for the corresponding alert type. Then runtime monitors are
automatically synthesized and integrated into the system. These integrated monitors
continuously report false positive alerts during software execution or they report de-
tected errors together with the diagnosis information obtained from the corresponding
alert. The approach was applied to two different open source software systems. We
observed that static code analysis alerts can be proved to be false positives and/or
identified errors can be checked at runtime by means of automatically generated run-
time monitors. We also showed that the defined rules can be reused across projects.
Furthermore, two different static code analysis tools alerts were used to demonstrate
how our system works with multiple tools.

As future work, additional rules can be defined regarding various SCAT alert types
that are relevant for RV. The rule specification language might also be improved if

its expressiveness turns out to be insufficient for defining new rules.

36

APPENDIX A

JAVALTL SYNTAX

The MOP LTL plugin syntax instantiates the generic <Logic Name>, <Logic Syn-
tax>, and <Logic State> from the Logic Repository Syntax. It is used in conjunction
with the <Logic Repository I/O> syntax and defined using Backus Normal Form
(BNF) [36]. LTL syntax is the base element of language. Multiple LTL syntax ele-
ments can be connected with various operators like and, or, xor. Another important

element is the event. You can define events like below.

<Event>::=["creation"] "event"<Id><AspectJ advice>

"{"[<Java Statements>]"}"

An event is basically defined by a name and the corresponding AspectJ advice. A
set of defined Java Statements will be executed when the defined event is triggered.
The violation term is used to indicate that they will be committed in case of violation

of the defined rules.

37

1 // BNF below is extended with {p} for zero or more and [p]
zero or one repetitions of p

2 // The mandatory MOP logic syntax

3 <LTL Name> = "1l

4 <LTL Syntax> = "true" | "false"

5 | <Event Name>

6 | <Not> <LTL Syntax>

7 | <LTL Syntax> "and" <LTL Syntax>
8 | <LTL Syntax> "or" <LTL Syntax>
9 | <LTL Syntax> "xor" <LTL Syntax>
10 | <LTL Syntax> "=>" <LTL Syntax>
11 | <LTL Syntax> "<=>" <LTL Syntax>
12 | "[1" <LTL Syntax>

13 | "<>" <LTL Syntax>

14 | "o" <LTL Syntax>

15 | <LTL Syntax> "U" <LTL Syntax>
16 | <LTL Syntax> "~U" <LTL Syntax>
17 | <LTL Syntax> "R" <LTL Syntax>
18 | "<x>" <LTL Syntax>

19 | "(x)" <LTL Syntax>

20 | <LTL Syntax> "S8" <LTL Syntax>
21 | <LTL Syntax> "~S" <LTL Syntax>
22 <LTL State> ::= "violation"

Listing A.1: JavalL'TL Syntax.

38

for

APPENDIX B

SCAT2RV TOOL PLUGIN INTERFACE

SCAT2RYV is developed with Java. An interface mechanism (See Listing B.1) was
used to handle various SCATs with various output formats. A parser that conforms
to this interface must be developed to parse output of a particular SCAT. The set of
variables and/or methods that are related to the reported alerts must be extracted
from SCAT output. A parser must return a list of BuglInstance object. The parser
might need to perform additional code analysis to populate these objects with the
necessary information. For instance, output of PMD does not include name of the
class/package and signature of the method that is related to the reported alert. It
provides the path of the related class instead. So, our PMD parser performs an

additional analysis to retrieve the necessary information based on this path.

39

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

public abstract class ToolBase {

private String inputPath;

public ToolBase (String inputPath){
setInputPath (inputPath) ;

}

public void Create() throws IOException {

List<BugInstance> alerts = ParselAlerts();

private String FindMopPath(String alertType) {
String path = String.format ("%s\\Vs.mop", OutputFolder,
alertType) ;
File file = new File(path);
if (file.exists())
return path;

return StringUtils.EMPTY;

//Main method to parse alerts

protected abstract List<BugInstance> ParseAlerts();

Listing B.1: SCAT parser interface.

40

APPENDIX C

SCAT2RV TOOL USER MANUAL

SCAT2RV is a command line tool, lacking a graphical user interface. Input speci-
fications must be provided to be able to use the tool. First of all, each rule must
be specified within a text file, whose name is exactly the same as the corresponding
alert type. For example, a file name can be UWF_UNWRITTEN _FIELD.txt. The

content of this file can be as follows.
FalsePositive.Never.FieldSet;

These files should be saved into a folder in the file system. The user needs to provide
the full path of this folder to SCAT2RV because it will search for all the rule specifi-
cations here and find the relevant specification whose name matches with alert type
of a given alert output.

SCAT2RYV is executed with several command line arguments. These arguments
are explained in Table 6. A sample run of the tool with these arguments set is shown

below.

java —jar SCAT2RV.jar —rules C:\rules\ —tool FindBugs

—alerts C:\exampleSCAToutput.xml —src C:\JBook\src

The above command generates an AspectJ file as output. This file can be accompa-

nied with the base source code of the system to enable monitoring.

41

Table 6: The list of SCAT2RV command line arguments.
Argument | Description
-rules Path of the folder that contains rule specifications.
-alerts Path of the SCAT alert list file.
-tool SCAT parser will be used (FindBugs or PMD).
-srC Path of the source code of the software.

42

1]

[10]

[11]

[12]

References

B. Chess and G. McGraw, “Static analysis for security,” IEEE Computer Society,
vol. 2, no. 6, pp. 7679, 2004.

H. Sozer, “Integrated static code analysis and runtime verification,” Software:
Practice and Ezxperience, vol. 45, no. 10, pp. 1359-1373, 2015.

T. Delev and D. Gjorgjevikj, “Static analysis of source code written by
novice programmers,” in 2017 IEEE Global Engineering Education Conference
(EDUCON), pp. 825-830, April 2017.

B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t software
developers use static analysis tools to find bugs?,” in Proceedings of the 35th
International Conference on Software Engineering, pp. 672-681, 2013.

U. Yuksel and H. Sozer, “Automated classification of static code analysis alerts:
A case study,” in Proceedings of the 29th IEEE International Conference on
Software Maintenance, (Eindhoven, The Netherlands), pp. 532-535, 2013.

R. Krishnan, M. Nadworny, and N. Bharill, “Static analysis tools for security
checking in code at motorola,” ACM SIG Ada Letters, vol. 28, no. 1, pp. 76-82,
2008.

J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. Hudepohl, and M. Vouk, “On
the value of static analysis for fault detection in software,” IEEE Transactions
on Software Engineering, vol. 32, no. 4, pp. 240-253, 2006.

S. Heckman and L. Williams, “A systematic literature review of actionable alert
identification techniques for automated static code analysis,” Information and
Software Technology, vol. 53, no. 4, pp. 363-387, 2011.

T. Kremenek and D. Engler, Z-Ranking: Using Statistical Analysis to Counter
the Impact of Static Analysis Approximations, pp. 295-315. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003.

N. Delgado, A. Q. Gates, and S. Roach, “A taxonomy and catalog of runtime
software-fault monitoring tools,” IFEE Transactions on Software Engineering,
vol. 30, pp. 859-872, Dec 2004.

M. Leucker and C. Schallhart, “A brief account of runtime verification,” Journal
of Logic and Algebraic Programming, vol. 78, pp. 293-303, 2008.

D. Jin, P. O. Meredith, C. Lee, and G. RoA§u, “Javamop: Efficient paramet-
ric runtime monitoring framework,” in 2012 3jth International Conference on
Software Engineering (ICSE), pp. 14271430, June 2012.

43

[13]

[14]

[17]
[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

D. Jin, P. Meredith, C. Lee, and G. Rosu, “JavaMOP: Efficient parametric run-
time monitoring framework,” in Proceedings of the 34th International Conference
on Software Engineering, (Zurich, Switzerland), pp. 1427-1430, 2012.

J. Novak, A. Krajnc, and R. Ajontar, “Taxonomy of static code analysis tools,”
in The 33rd International Convention MIPRO, pp. 418-422, May 2010.

“FindBugs official website,” 2017. [online] http://findbugs.sourceforge.net.

D. Hovemeyer and W. Pugh, “Finding bugs is easy,” SIGPLAN Not., vol. 39,
pp. 92-106, Dec. 2004.

“PMD official website,” 2017. [online| https://pmd.github.io/.

“PMD official rulesets,” 2017. [online] https://pmd.github.io/pmd-5.8.0/pmd-
java/rules/index.html.

M. Leucker and C. Schallhart, “A brief account of runtime verification,” 2008.

“Monitoring-oriented programming,” 2017. [online]
http://fsl.cs.illinois.edu/index.php/MOP.

“Linear temporal logic,” 2017. [online] http://www.cs.colostate.edu/ france/
CS614/Slides/Chb-Summary.pdf.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier,
and J. Irwin, “Aspect-oriented programming,” in Proceedings of the European
Conference on Object-Oriented Programming, (Paris, France), pp. 220-242, 1987.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold,
“An overview of AspectJ,” in Proceedings of the European Conference on Object-
Oriented Programming, pp. 327-353, 2001.

B. Livshits and T. Zimmerman, “Dynamine: Finding common error patterns
by mining software revision histories,” SIGSOFT Software Engineering Notes,
vol. 30, pp. 296-305, 2005.

S. Ciraci, H. Sozer, and B. Tekinerdogan, “An approach for detecting inconsis-
tencies between behavioral models of the software architecture and the code,”
in Proceedings of the 36th International Conference on Computer Software and
Applications, (Izmir, Turkey), pp. 257-266, 2012.

W. Ahrendt, G. Pace, and G. Schneider, “A unified approach for static and
runtime verification: Framework and applications,” in Proceedings of the Inter-
national Symposium on Leveraging Applications of Formal Methods, pp. 312-326,
2012.

44

[27]

S. Ciraci, H. Sozer, and B. Tekinerdogan, “A runtime verification framework for
smart grid applications implemented on simulation frameworks,” in Proceedings
of the Workshop on Software Engineering Challenges for the Smart Grid, (San
Francisco, CA, USA), pp. 1-8, 2013.

C. Artho and A. Bierel, “Combined static and dynamic analysis,” in Proceed-
ings of the International Workshop on Abstract Interpretation of Object-Oriented
Languages, (Paris, France), pp. 98-115, 2005.

K. Czarnecki and S. Helsen, “Feature-based survey of model transformation ap-
proaches,” IBM Systems Journal, vol. 45, pp. 621-645, 2006.

D. Gabbay, I. Hodkinson, and M. Reynolds, Temporal Logic. Oxford, UK: Oxford
University Press, 1997.

Y. Kili¢ and H. Sozer, “Generating runtime verification specifications based on
static code analysis alerts,” in Proceedings of the Symposium on Applied Com-
puting, SAC ’17, (New York, NY, USA), pp. 1342-1347, ACM, 2017.

E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and M. Mezini, “Taming reflection:
Aiding static analysis in the presence of reflection and custom class loaders,”

in Proceedings of the 33rd International Conference on Software Engineering,
pp. 241-250, 2011.

Y. Li, T. Tan, Y. Sui, and J. Xue, “Self-inferencing reflection resolution for
java,” in Proceedings of the 28th European Conference on Object-Oriented Pro-
gramming, pp. 27-53, 2014.

S. Heckman and L. Williams, “On establishing a benchmark for evaluating static
analysis alert prioritization and classification techniques,” in Proceedings of the
Second ACM-IEEE International Symposium on Empirical Software Engineering
and Measurement, ESEM 08, (New York, NY, USA), pp. 41-50, ACM, 2008.

C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell, and A. Wesslen, Ezper-
imentation in Software Engineering. Berlin, Heidelberg: Springer-Verlag, 2012.

J. W. Backus, “The syntax and semantics of the proposed international algebraic
language of the zurich acm-gamm conference,” in Proceedings of the International
Conference on Information Processing, 1959.

45

