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ABSTRACT

Operating rooms are the resources that generate the most part of the revenue of

hospitals. On the other hand, they generate the most part of the expenses, as well.

Because of the uncertainty of surgery durations, scheduling operating rooms are very

difficult. But their impact on the finances of a hospital makes it vital for the planners

to carry out scheduling as best as they can. Another problem that lies in the way of

fine operating room scheduling is limited surgery data available for use. Uncertainty

and diversity of surgeries that may take place in a given operating room makes it

difficult to obtain sufficient amount of surgery duration data. In this study we describe

a stochastic optimization model for computing OR schedules that are effected by the

uncertainty in surgery durations. We focus on scheduling start times. We show that

our model can be used to generate substantial reductions in OR team waiting, OR

idling, overtime costs. The model in this study is studied with 3 solution approaches:

(i) parametric approach, (ii) non parametric approach, (iii) a simple but practical

heuristic. Considering all scenarios in this study, parametric approach manages to

perform 6,18% close to optimal solution, whereas non parametric approach performs

7,66% and heuristic approach performs 78,17% close to optimal solution. When

compared to non parametric approach, parametric approach performs better when

number of historical surgery duration sample size is small. In contrast, when the

number of historical surgery duration sample size is large, non parametric approach

starts performing better. All three solution approaches provide meaningful results,

where parametric approach performs better in most cases when compared to other

solution approaches.
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ÖZETÇE

Hastanelerin karlarının büyük kısmını ameliyathaneler oluştumaktadır. Diğer yan-

dan, hastanelerin harcamalarının büyük bir kısmı da ameliyathanelerde gerçekleşmek-

tedir. Ameliyat sürelerindeki belirsizlik sebebiyle, ameliyathane planlaması zor bir

süreçtir. Fakat, ameliyathanelerin hastanelerin kar ve zararları üzerindeki etkisi,

ameliyathane planlamasını gerçekleştiren personelin bu işlemi en etkin şekilde uygula-

malarına neden olmaktadır. İyi bir ameliyathane planlamasının önündeki diğer bir en-

gel ise kullanılmaya müsait verinin sınırlı olmasıdır. Bir ameliyathanede gerçekleşecek

ameliyatlarn belirsizliği ve çeşitliliği gerekli miktarda ameliyat süresi verisi elde et-

meyi zorlaştırmaktadır. Bu çalışmada, ameliyat sürelerindeki belirsizlikten fazlaca

etkilenen ameliyathane programlamalarını inceleyen rassal bir optimizasyon modeli

sunmaktayız. Modelimizde planlama başlangıç zamanlarına odaklanıyoruz. Mod-

elimizin, ameliyathane boş kalma zamanı, ameliyathane ekip bekleme zamanı, fazla

mesai zamanı ve bir ameliyathane gününün beklenenden erken bitme sürelerini önemli

ölçüde azalttığını gösteriyoruz. Modelimizi üç farklı çözüm yöntemiyle incelemek-

teyiz: (i) parametrik yaklaşım, (ii) non parametrik yaklaşım, (iii) yalın ama pratik bir

heuristic. Bu çalışmadaki bütün senaryolar değerlendirildiğinde, parametrik yaklaşım

optimal çözüme 6,18% yakın performans göstermektedir. Bu oran non parametrik

yaklaşımda 7,66%, heuristic yaklaşımda 78,17% olmuştur. Geçmiş ameliyat süreleri

örnek sayıları düşük olduğunda, parametrik yaklaşım non parametrik yaklaşıma göre

daha iyi sonuçlar vermektedir. Tam tersi olarak, non parametrik yaklaşım geçmiş

ameliyat süreleri örnek sayıları yüksek olduğunda daha iyi sonuçlar vermeye başlamak-

tadır. Her üç çözüm yöntemi anlamlı sonuçlar vermektedir, fakat parametrik yaklaşım

diğer çözüm yöntemleri ile karşılaştırıldığında daha iyi sonuçlar vermektedir.
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CHAPTER I

INTRODUCTION

Operating rooms (ORs) generate the most part of a hospital’s expenses. However,

they also generate more than 40% of a hospital’s total revenues [1]. Use of well

managed ORs would yield good results for the hospital administration and provide

a good experience in rather unpleasant stays for the patients that seek to get well.

On the other hand, obstacles that generally show in the way to a well managed ORs

would cause hospitals to lose revenue and cause patients to experience discomfort

along with their health problems. The role of an operating room makes it a very

interesting and productive field for researchers.

An effective guide for scheduling ORs have the capability to make the work-life

of OR planners and hospital board members easier. Hospitals are able to generate

more revenue using an effective OR planning policy, and in addition have satisfied

patients. An effective OR scheduling also helps improve OR teams’ (surgeons, nurses,

anesthesiologists) working conditions. A small example would be overtimes that OR

teams must face because of ineffective OR scheduling policies.

Operating room scheduling can be executed in several ways. It can be strategic

planning. An example of strategic planning would be assigning specialties to specific

operating rooms. Another example is staffing problems such as nurse staffing or

anesthesiologist staffing problems. In this article we study an extremely operational

stochastic OR scheduling problem. The sequence of the surgeries is known in advance.

We want to determine surgery durations of these surgeries and solve the problem in

a data driven manner. We assume we have limited historical surgery durations data

at hand. We try to find out if estimation is enough for a good solution or if we need
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further tools of optimization to make good use of limited data we have. We aim to

increase the OR efficiency and present managerial insights.

The current status of operating rooms paves the way for studies for the purpose

of overcoming the difficulties regarding both the revenue and expense factors of ORs.

However, these efforts are still far from being very effective. The purpose of this

article is to present results from a study of a stochastic optimization model for daily

scheduling of a single OR in the hope to contribute to these efforts.

It is difficult to manage operating rooms mainly because they involve expensive

resources such as human and technical resources. These two resources should be at the

same place and time, and at the correct time. Any mistake in the planning prevents

these expensive resources from being used effectively, resulting with challenges for

the hospital administration. The main factors that effect OR efficiency are variable

surgery durations and the limited data. What we would like to present in this paper

is an efficient operating room model. We define efficiency by waiting time, idle time

and overtime. Waiting time is the time that a patient waits because the length of

the operation that is scheduled before, exceeds its scheduled length. Idle time defines

the lost time for an OR which is incurred by the early finish of scheduled surgery.

Overtime incurs when the actual total OR time extending beyond the planned length.

We consider an additional idle time caused by the early finish of the last surgery of

a given OR day. An efficient OR schedule is expected to decrease waiting time, idle

time and overtime.

Variable surgery durations stem from uncertain surgery durations. Uncertain

surgery durations effect OR performance measures. For example, uncertainty would

contain a longer sample surgery duration than the planned duration, resulting in

waiting time and overtime. Similarly, uncertainty would cause shorter sample surgery

durations that results in idle time for operating rooms. Uncertain surgery duration

distributions are also hard to obtain. Generally, OR planers have limited surgery
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duration data that is not sufficient to obtain such distributions. Since the sample

size is small, making very good surgery duration and distribution estimations is quite

challenging.

There are different solution approaches for OR scheduling problems. In this paper,

we use three different methods. First one is the parametric method. In parametric

method we fit probability distributions to sample data then we compute associated

costs. In this method, we implement sample average approximation. Parametric

approach is a two step approach; estimation and optimization. In the estimation step,

we carry out estimation processes for the parameters of fitted distribution to generate

samples. In the optimization step, we compute related costs that are used to evaluate

the performance of the parametric method. The second method is the non parametric

method. In this method we are not interested with any probability distribution

information. Without distribution information, we carry out optimization in a single

step. We compute the cost for non parametric approach to measure how a particular

case performs. There are advantages and disadvantages for both methods. If the

distribution is fitted correctly and we feed this information to the parametric method,

parametric method makes a head start. This is when parametric method is expected

to perform better. On the other hand, non parametric method is rather a free method,

because it does not execute any estimation. Since there is no possibility to make

wrong estimations regarding probability distributions, non parametric method is not

effected by such inaccuracy. However, since non parametric method lacks this possible

advantage, it can perform worse. The last method in this study is a simple heuristic

called the expectation heuristic. This method is simple but practical. It does not

entail long probability distribution estimation and sample generation processes, yet

provides average results among the three solution methods.

In this paper, similar to the cited literature in the next section, we investigate the

performance of our three different solution approaches. In addition, after evaluation
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of the numerical results, we would like to find out which one of the three solution

methods is best for use in different planning environments. We want to deliver man-

agerial insights for OR planners in a way that they could follow according to the

capabilities they have present at their command. The OR planner may not have a

fine optimization tool to optimize the planned surgery durations for a given OR day.

Using our model, OR planners will be able to find out how well they are going to per-

form. In addition, in the process of setting up a new planning structure for hospitals,

hospital administrations may use our model to adapt their OR scheduling. Using

our model they can decide whether they need optimization tools for their planning

environment, or implementing good statistics is sufficed for their institution.

The remainder of the thesis is organized as follows. In the next section we provide

a brief review of the literature relating to OR scheduling. Next, in Section 3, we

present and describe the structural properties of our model. In Section 4, we present

our solution methods to the problem. In Section 5, we present the numerical study

of our model. Finally, in Section 6, we conclude our findings and point out future

research directions.
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CHAPTER II

LITERATURE REVIEW

The costs of ORs represent the area with the highest potential for cost minimization.

Even small improvements in the efficiency means significant cost savings to hospital

administration and benefits to the patients. The gains of well structured OR opti-

mization systems offer promising research topics to the researchers. This has been

the reason why literature on OR optimization problems are growing extensively over

the past decades.

General studies regarding operating room scheduling can be found in Cayirli and

Veral [2], Gupta [3] and Cardoen et al. [4].Our paper is related to two streams of

literature. Papers in the first stream are related to next day OR scheduling, includ-

ing with limited data. Papers in the second stream are related to surgery duration

estimations using parametric and non parametric approaches.

In the first stream of literature, several authors propose stochastic optimization

models for determining OR scheduling models. It is known that surgeries that are

to be planned in a operating room involves uncertainty. And stochastic problems are

harder to solve with regard to their deterministic counterparts and it is not always

possible to obtain exact solutions. Weiss [5] studies the problem where the sequence

of the surgeries are known by the OR manager and the manager should decide on the

estimated start times of the surgeries. Lamiri et al. [6] proposes a model of elective

and emergency surgeries in an identical multiple OR setup, where only emergency

surgery durations are stochastic. Gerchak et al. [7] study the OR environment that

includes uncertain elective procedures, as well as uncertain emergency surgeries.

Since stochastic optimization is very challenging in OR scheduling problems, the
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sample average approximation is often used. The basic idea of the method is that a

random sample is generated and the expected value function is approximated by the

corresponding sample average function (SAA). Given the fact that random samples

are obtained using SAA, there is no uncertainty left in the problem. After generation

of a set of random samples, a cost is computed. This process is repeated for a nec-

essary amount of cases. After generation and cost computation processes are carried

out, it is possible to evaluate the different cases of a given problem. By comput-

ing the average of a desired number of cases, minimization of the costs in objective

function is executed. Jebali et al. [8] highlights the the robustness of stochastic OR

scheduling and uses SAA to solve their problem. Min et al. [9] studies a stochastic

optimization problem that includes elective surgery scheduling while considering ca-

pacity constraints. They implement SAA to minimize the total costs. Begen et al. [10]

also studies SAA. They focus on the number of necessary samples if SAA is desired

to be executed. Difference from the literature of their paper is that their approach is

not standard stochastic programming methodology. They implement discrete convex-

ity to solve the SAA in polynomial time for potentially correlated surgery durations

under very mild conditions. They also develop distribution-free bounds on necessary

number of samples to make sure that the optimal SAA solution is arbitrarily close to

the optimal solution that could be obtained if the duration distributions are known.

Since the bounds are distribution-free, required samples are relatively high. For 2

jobs, 0,95 accuracy level and 0.90 confidence level, their model suggests using more

than one million samples.

Mancilla et al. [11] address a finite set of jobs with stochastic processing times.

They used sample average approximation to approach the problem, which the authors

call the scheduling problem. The authors develop algorithms for a single-resource

stochastic appointment scheduling problem with waiting time, idle time, and overtime

costs. In Denton et al. [12] and Mancilla et al [11], problems have been modeled as
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a two-stage stochastic programs, whereas in this study our model is an one-stage

stochastic program.

One challenge in OR scheduling is how to carry out planning with limited data. To

make use of distribution fitting, which is often used in OR scheduling, planners need

large amount of data [13]. As an alternative for the need for large data sets, Delage

and Ye [14] present a model that studies uncertainty in the distribution form and

moments information of the durations. In the case of limited information of the data,

they propose making use of mean and covariance matrix of the random vector. In

addition to the supporting results of limited data performance in [14], Mak, Rong and

Zhang [15] assume only moments information of durations to study models without

distributions.

Papers in the second stream of literature are related to surgery duration estima-

tion. OR scheduling problems involve uncertainties due to series of factors such as in-

terruptions, communication failures, team familiarity and unplanned operations [16].

The decision is to try and find a suitable probability distribution and fit this dis-

tribution to a given set of surgeries. The literature to this day, mostly considers

continuous processing durations with full probability characterization, meaning that

the probability distribution of a problem is given as an input to the problem. Strum,

Vargas, and May [17] describe an application of a news-vendor model as a heuristic

for determining the planned OR schedule duration to allocate for surgical sub spe-

cialties. They fit probability distributions to historical patterns of surgical demand

and combine them with the news vendor model to minimize costs associated with

underutilization and over utilization of OR time.

Dexter and Ledolter [18] use weighted average of mean duration of past cases and

scheduled durations where weights are calculated based on all cases, which Dexter et

al. [19] improved further. Kayis et al. [20] provided another approach, that adjusts

the scheduled duration using operational, temporal and surgical team effects.
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Papers that examine the goodness fit of known distributions for estimating pro-

cedure durations, generally focus on the normal distribution and log normal distri-

bution [21], [22], [23]. In May et al. [24] and Strum et al. [25] a comparison is made

between log normal and normal distributions and log normal distribution is deter-

mined to represent the highly uncertain surgery durations.

In our paper, we fit the suitable distributions, log-normal and normal distribution,

to generate samples using the parameters that we obtain by maximum likelihood

estimation. In addition we exploit the structure of the problem and implement 3

solution methods that will be studied in section 4 of this paper. First method is a

parametric method, second method is a non parametric method and the last one is

a simple heuristic. After implementing the mentioned methods we will evaluate and

compare each method with the other methods in means of cost minimization in our

OR optimization problem. Introduction of our non parametric approach is our main

contribution to the cited literature. In addition, our comparison between parametric,

non parametric, heuristic approaches provide meaningful managerial insights for OR

managers to be used especially in data-poor OR settings.
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CHAPTER III

MODEL

Next-day OR scheduling starts with a given list of surgeries to be performed tomorrow,

which is determined earlier. The OR manager, along with relevant hospital staff,

decides on the assignment of surgeries to available ORs, the sequence of the surgeries

to be completed and the OR time assigned to each surgery. During this decision

making process the team aims to meet certain criteria: minimize the idle time of

the OR, keep the amount of time OR has to stay beyond planned open time (i.e.,

overtime) as small as possible, start as many cases as possible on-time, and hold the

time between planned and realized time of a surgery as low as possible.

In our model we assume that the quality of a schedule can be measured as a

weighted sum of the expectation of four variables: waiting time, idling time, overtime.

We let N denote the number of surgeries to be scheduled in a given day. Random

surgery durations are denoted by ti, where the subscript i indexes the N surgeries

in a given day. We assume that the first surgery start at time zero. Di denotes the

scheduled duration for surgery i, in other words the start time of the next surgery in

line. Hs
i denotes the historical surgery duration of a surgery i, where superscript s

(s = 1, 2, .., Si) indexes each historical duration for this surgery type. In our model

we assume stochastic surgery durations, one operating room and a fixed sequence of

the surgeries.

In this section we present a stochastic programming model for determining the

optimal surgery durations and minimizing the cost incurred by several penalty costs.

These penalty costs incur by (i) idle time, (ii) waiting time, (iii) overtime. Idle

time (si) represents the time that an operating room becomes idle, meaning that the
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surgery i finished before the planned finish time. As a result of this additional idle

time, an idling cost (α1) incurs. This idle time occurs when the last surgery of a given

OR day finishes early such that there is an idle time at the end of an entire OR day.

Waiting time (wi) represents the time that the actual finish time of a given surgery

exceeds the planned surgery time, so that the next surgery can not begin, in other

words next surgery runs late. As a result of waiting time, waiting cost (α2) incurs.

We assume that the first surgery starts on time, in other words w1 = 0. Overtime (oj)

represents the actual finish time of the last surgery of a given OR day, that exceeds

the total planned time of an operating room. As a result of overtime, overtime cost

(α3) incurs. As a result of earliness, an idling cost (α1) incurs. In Figure 1, we present

the formation of idle time, waiting time and overtime for a 3 surgery case. To provide

an example; we assume 3 surgeries for the next day with scheduled surgery durations,

3, 2.5 and 4 hours, respectively. We assume that in the next day, first sample surgery

duration lasts for 4 hours, resulting with 1 hour of patient waiting time for the second

surgery. Second sample surgery duration lasts for 1 hour, resulting with half hour idle

time for second surgery. Third sample surgery duration lasts for 5 hours, resulting

with 1 hour overtime for the given OR day.
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Figure 1: Formation of Idle Time, Waiting Time and Overtime

Given these definitions of our model, the stochastic optimization problem can be

written as minimization of the weighted sum of the expectation of waiting, idling and

overtime, as follows:

Z = min
Di

{( N∑
i=1

(
α1E[si] + α2E[wi]

)
+
(
α3E[o]

))}
(1)

The fact that expectations in Equation 1 are over multiple random variables makes

it challenging to evaluate the objective function in the scope of computation. The

challenge of obtaining the optimal values is even greater. Since this is a hard problem

to obtain an exact solution, we are going to use sample average approximation,

hence we are going to solve the LP version of this stochastic problem.

In this paper we assume a discrete finite set of scenarios, (j = 1, ..., K) and these

scenarios represent the realizations of surgery durations. Given these discrete set

of scenarios, we can write the deterministic equivalent of the equation (1) as the

following.
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Z = min

{
1

K

( N∑
i=1

K∑
j=1

(
α1sij + α2wij

)
+

K∑
j=1

(
α3oj

))}
(2)

s.t.

−wij + wi+1j − sij +Di = tij, ∀j, i ∈ 1, .., (N − 1) (3)

−wNj + oj − sNj +DN = tNj, ∀j (4)

ti ≥ 0, ∀i (5)

wij ≥ 0 ∀(i, j) (6)

sij ≥ 0, ∀(i, j) (7)

oj,≥ 0, ∀j (8)

V ariables

� wij: waiting time for surgery i in scenario j.

� sij: idle time for surgery i in scenario j.

� Oj: overtime for scenario j

� Di: scheduled duration for surgery i, start time of the next surgery in line.

Parameters

� tij: sample surgery duration of surgery i in scenario j.

� HS
i : historical surgery duration for surgery i.

� α1: idling cost.

� α2: waiting cost.
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� α3: overtime cost.

Indices and sets

� i: surgery to be scheduled i = 1, ..., N ,

� j: scenario in a given day j = 1, ..., K,

� s: each historical duration for surgery i. (s = 1, 2, ... , Si),

� Si: total number of historical surgery duration sample for surgery i,

� N : number of surgeries to be scheduled in a given day.

� K: total number of scenarios in a day.

Constraints

Equation (3) represents the relationship between waiting and idling times with

respect to the actual and scheduled duration for a given surgery in a given scenario.

Equation (4) represents the relationship between overtime and earliness based on the

completion time of the last surgery and the scheduled duration, D for a given scenario.

Equations (5,6,7,8) are constraints that provide non negativity for the model.

The important part in our model is to generate samples, specifically sample surgery

durations. In the beginning we do not have the sample surgery durations, tij, however

we have historical surgery durations, HS
i . The question is how to make the connection

between these durations. In parametric approach, we generate a derived distribution

by using historical surgery durations. After obtaining derived distribution, we gen-

erate sample surgery durations from this derived distribution. In non parametric

approach, we do not carry out an estimation process. Instead, we combine histori-

cal surgery durations and have sample surgery durations. In our model, using the
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historical data at hand, we obtain solution by (i)the parametric approach, (ii) non

parametric approach, and (iii) a simple but practical heuristic. All three approaches

have the same model. Parametric approach is dependent on a probability distribu-

tion, however, nonparametric approach does not depend any probability distribution

information. These three methods will be studied in detail in the next section.
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CHAPTER IV

SOLUTION METHODS

For the solution methods, we offer 3 approaches; (i) Parametric approach, (ii) Non

parametric approach and (iii) a simple but practical heuristic. Results from these

three approaches are compared with sample distribution cost which is studied in the

following benchmark section.

4.1 Benchmark

Most of the cases in this study assumes log normal distribution for sample distribu-

tion. We present one additional 6 surgery case with normal distribution. We assume

that sample surgery durations, tij, form a distribution that we refer as the sample

distribution. We generate samples using this sample distribution. After generation

of samples, we solve our model with sample average approximation and obtain sched-

uled surgery durations. After obtaining sample durations, we use these samples in

our model, and obtain scheduled surgery durations and associated idle time, waiting

time and overtime with corresponding sample distribution cost. We call different ver-

sions of created samples as scenarios. Since it is challenging to carry out stochastic

optimization and obtain exact solutions, we incorporate the average value of the cost

of each scenario to approximate the stochastic optimization results.

For instance, for a specific 2 surgery example, let us assume parameters with

ln(3, 1) and ln(2, 0.5). Let us have resulting sample surgery durations 2, 2.5 and 4

hours for the first surgery and 1.5, 2, 2.25 hours for the second surgery. A pair of

(2, 2.25) or combination of these sample durations represent one scenario. A total of

8 scenarios from 2 surgeries with 3 sample durations are used in the model. A sample

distribution cost is obtained from each scenario. Then, an average of cost of these 8
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scenarios is computed as the sample average cost. In addition to sample distribution

cost, we obtain scheduled surgery durations for two surgeries based on each scenario,

e.g. 3 hour for the first surgery and 2.5 hours for the second surgery. Moreover, idle

times and waiting times for surgeries and overtime for a given OR day are obtained

from the model.

Sample distribution cost makes it possible to know the associated cost if we knew

the sample distribution. We use sample distribution as our benchmark, which we

implement to compare the associated costs resulting from each solution method. The

following represents the sample distribution cost:

O(Di(F
T
i ), F T

i ) (9)

Scheduled surgery durations that are obtained from three solution approaches

studied in the following sections are implemented in sample distribution to find out

how each solution approach performs.

4.2 Parametric Approach

In parametric approach we assume that we know the family of the probability distri-

bution of surgery durations, which is assumed to be log-normal or normal distribution

based on the literature review.

In parametric approach, we have historical surgery duration samples, HS
i . We

derive a distribution in order to generate samples that are to be used in sample

average approximation. We carry out a distribution fitting to the historical surgery

duration samples. After distribution fitting, we use the parameters of this distribution

to generate samples. The question is how to obtain the parameters of the distribution

fitted samples. Assuming we know the family of the distribution, we use maximum

likelihood approach to estimate the parameters of the fitted distribution. Maximum

likelihood parameter estimators µ̂ and σ̂2 are obtained using the following:

µ̂ =

∑
ln(HS

i )

Si

(10)

16



σ̂2 =

∑
(ln(HS

i )− µ̂)2

Si

(11)

After executing maximum likelihood estimation, we obtain sample surgery durations,

tij. Having the sample cost from the benchmark, we need to find parametric approach

scheduled surgery duration, DP
i , in order to compute the cost of parametric approach.

Parametric approach cost is represented as the following:

O(DP
i (FD

i ), F T
i ) (12)

After computing the parametric approach scheduled surgery durations and costs, we

are able to find out how this approach performs. Performance analyzation will be

done using GAPP values, which will be studied in the next chapter of this study.

4.3 Non Parametric Approach

In this approach we would like to find out how well an OR manager may perform

OR scheduling with the absence of probability distribution information. In other

words, we assume that we do not know the family of the probability distribution

of the historical surgery duration samples nor we do not desire to carry out such

estimation process. There are m surgery duration samples for each surgery. In the

non parametric approach, we use the combination of historical surgery durations as

sample surgery durations tij. We treat historical surgery duration samples as non

parametric empirical distribution samples.

Having the sample cost from the benchmark, we need to find parametric approach

scheduled surgery duration, DNP
i , in order to compute the cost of non parametric

approach. Non parametric approach cost is represented as the following:

O(DNP
i (FD

i ), F T
i ) (13)

Having computed the non parametric cost, we are able to observe how non parametric

approach performs using GAPNP values which will be studied in the next chapter.
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The difference between parametric and non parametric approach is how to combine

sample surgery duration with historical surgery durations.

4.4 A Simple Heuristic

As the third and the last approach we implement a simple heuristic, called expectation

heuristic which is common in literature. In the heuristic approach, the sample surgery

durations are the expected value of the historical surgery durations. Actual surgery

duration are computed as follows:

tij =

∑m
J=1(H

S
i )

Si

(14)

After computing sample surgery durations, we need to find simple heuristic ap-

proach scheduled surgery duration, DH
i , in order to compute the heuristic cost. The

following represents the cost of our simple heuristic:

O(DH
i (FD

i ), F T
i ) (15)

Having computed the cost of our simple heuristic we compute GAPH value to evaluate

the performance of our simple heuristic. Computation and evaluation of GAPH values

are studied in the next chapter.
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CHAPTER V

NUMERICAL STUDY

In this section we present numerical study to analyze and compare our three solution

approaches. There are computations that three solution approaches have in common.

These computations include the sample distribution related sample surgery durations

and sample distribution costs.

There are 2 to 6 surgeries, inclusive, to be planned in a given OR day. Idling cost

is either 0.1, 0.3, 0.5, 0.7 or 0.9, and:

α2 = α3 = 1− α1 (16)

We have 80 instances that are studied for each number of surgeries. In our model,

we form our instances such that, scenarios from the same instance have the same

surgery duration parameters and penalty costs (α1, α2, α1). For each number of surg-

eries, we have different number of historical surgery duration samples (5, 10, 25, 50

and 100 samples). Our 80 instances are replicated for different number of times. A

replication is the process of solving a given case with different parameters which are

random. For 2 surgeries we replicate our instances 30 times and for 3, 4, 5 and 6

surgeries we replicate the solution process 10 times. The resulting number of scenar-

ios will be 12000 for 2 surgery scenarios and 4000 for 3, 4, 5 and 6 surgery scenarios.

After each surgery model is studied with associated number of replications, we com-

pute the expectation of a given case. The reason behind these replications is to limit

the effect of the high standard deviations. Different results with different mean and

standard deviation values are stemmed from the random parameters such as sample

surgery duration that are generated randomly in each replication. If we do not use

replications, we may have results with low mean values, but high standard deviations
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which may be misleading for analysis. We refer to the samples in sample average

approximation as scenarios to provide clarity against the possible confusion with his-

torical surgery duration samples. We use 50000 scenarios for parametric and heuristic

approach. For non parametric approach number scenarios change according to the

following:

K = (Si)
N (17)

For cases in which the number of scenarios are smaller than 50000, we use the combina-

tion of historical surgery durations. The number of scenarios increase with increasing

number of historical surgery duration samples and surgeries to be planned. For this

reason, if the number of scenarios are larger than 50000, we put an upper bound

of 50000 scenarios for the sake of computation time. This means for a given case,

if the number of scenarios are larger than 50000, we limit this number of scenarios

to 50000. We carry out this limitation by using sampling without replacement. In

such cases where number of scenarios are larger than 50000, we generate all sample

surgery durations from sample distribution. However, we randomly select 50000 of

these durations for each surgery to form a matrix of size 50000 x N .

In the beginning of our computation process, we find sample distribution cost. In

order to find the sample cost, we need to implement sample average approximation.

Sample average approximation is known to approximate better with more samples

available for use. After implementing sample average approximation, we obtain the

sample surgery durations and sample cost. As stated in the previous chapter, sample

distribution cost is our benchmark. It is important to note that the sample surgery

durations that are computed in our benchmark is different from the sample surgery

durations that are to be computed within each solution method. In fact, sample

surgery durations obtained in the sample distribution in benchmark is only used to

compute the sample distribution cost.

When the process of parameter estimation and generation is next in solution
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process, the type of assumed distribution becomes important. As stated earlier, major

part of this study focuses on log normal distribution with one exception of a 6 surgery

case with normal distribution. In log normal distribution sample, our model assumes

log normal distribution for parameter generation, when sample distribution has log

normal distribution. However in the normal distribution case, our model assumes

normal distribution for parameter generation when in fact sample distribution has

log normal distribution.

After computation of sample distribution cost is complete, we begin our work on

our solution methods. Largest difference in three solution methods is how to obtain

the actual duration. Actual surgery durations are obtained differently in each solution

approach. In parametric approach, we implement distribution fitting to generate the

parameters of the probability distribution. Using this fitted distribution, we generate

sample surgery durations. In non parametric approach, we combine historical surgery

duration sample in order to generate an empirical non parametric samples, which

are to be used as sample surgery durations. In heuristic approach, we carry out

an expectation heuristic to obtain sample surgery durations. After obtaining the

actual durations, we continue with the computation of approach costs. In this study,

we define a performance measure GAP value to find out how a particular solution

method performs. GAP values represent the level of performance when compared

to sample costs. GAPP represents the performance level of parametric approach.

GAPNP represents the performance level of non parametric approach. And finally,

GAPH represents the the performance level of heuristic approach. The smaller the

gap value, the closer we get to the sample distribution cost. For the optimization

tool, we use IBM ILOG CPLEX Optimization Studio version 12.5 on a computer

with a i7 processor, 8 gigabytes of physical memory.

In the following three subsections, we present the numerical results of the solution

methods with respect to the selected parameters of our model, which are idling cost,
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number of historical samples and the number of surgeries. After presenting the nu-

merical results for each method, we provide when each method should be used when

compared to other solution methods. In the last subsection of this chapter, we present

the comparison of the methods which includes the interpretations of numerical results

presented in previous subsections.

5.1 Parametric Approach

To examine the results of parametric approach and find out how well it performs, we

use the following gap value;

GAPNP =
O(DP

i (FD
i ), F T

i )−O(DP
i (F T

i ), F T
i )

O(DP
i (F T

i ), F T
i )

(18)

As stated in the previous chapter, to find out how well the parametric approach

performs when compared to sample distribution, we need to find the performance

level of this solution approach, GAPP . In order to do so, we first find the sample

distribution cost. Then we calculate parametric approach cost, in order to find out

how our model would perform if implemented in the sample distribution. Computing

the formulation above, we obtain GAPP , which is a percentage of performance dif-

ference to sample distribution cost of scheduled surgery durations that are obtained

from parametric approach if utilized in sample distribution. We present the average

GAPP values in Table 1 that includes the numerical results of GAPP with respect

to α1. For each number of surgery column, the average percentage represents the

expected value for all results with a fixed idle cost.

From Table 1, it is possible to say that the parametric approach does not perform

the best when the idling cost is lower. This worsened performance is also valid for

higher idling costs. At average values of α1 (0.3, 0.5 and 0.7), parametric approach

yields better results.

The reason behind presenting numerical results with respect to only α1 is that

we can conclude other results from α1. α2 and α3 can be evaluated by studying the
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Table 1: The Effect of α1 on GAPP (In %)

N
α1 2 3 4 5 6
0.1 11,07 11,55 11,34 12,92 12,80
0.3 5,11 5,75 6,29 6,67 6,74
0.5 3,90 4,06 4,40 4,63 5,20
0.7 3,91 3,81 3,79 3,67 3,98
0.9 6,37 4,91 4,57 4,21 4,68

results of α1 since they α1 yields just the opposite results as α2 and α3. We present

the average GAPP values in Table 2 that includes the relationship between parametric

approach and number of historical samples.

Table 2: The Effect of Si on GAPP (In %)

N
Si 2 3 4 5 6
5 17.14 16.37 17.06 18.35 19.081
10 7.82 8.47 7.82 8.31 8.77
25 3.04 2.81 3.23 3.09 3.19
50 1.48 1.56 1.45 1.49 1.67
100 0.73 0.798 0.799 0.78 0.85

When we look at Table 2, we see that the gap values do not radically change with

the increasing number of surgeries. What we can clearly see is that as the number

of historical surgery duration samples increase, gap values decrease. In Table 2 we

can note that GAPP values are highest when the number of surgeries are largest.

Average values may change within replications due to randomness in our model.

We desire to find out the significance of these changes. Since the average values

may be misleading, we present the standard deviation of GAPP values in Table 3. In

Table 3, each standard deviation percentage represents the expected value of standard

deviations for a given number of surgery, including all replications.
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Table 3: The Standard Deviation of GAPP With Respect to Si (In %)

N
Si 2 3 4 5 6
5 20,21 15,83 14,68 14,69 14,56
10 9,19 7,81 6,43 6,71 6,60
25 3,48 2,43 2,82 2,35 2,64
50 1,64 1,37 1,17 1,09 1,22
100 0,81 0,70 0,62 0,59 0,55

In Table 3, we note that with increasing number or samples, slope of standard de-

viations of performance levels decrease dramatically. Apart from consistent decrease

in standard deviations, decrease in transitions to higher sample sizes are greater when

sample sizes are smaller such as 5 samples. In fact, improvement of performance in

standard deviation from 5 samples to 10 samples are 5 time greater than the tran-

sition from 50 samples to 100 samples. When sample size reaches a level, such as

25 samples, scheduled durations are adjusted close to each other due to low variance

of generated samples. Decrease in standard deviations support the validity of per-

formance level average values in Table 2. Implementing parametric approach with

larger sample sizes the sample sizes would not be beneficial because of computation

times. This implicates that it would be wiser to execute parametric approach when

the sample sizes are low.

5.2 Non Parametric Approach

To examine the results of non parametric approach and find out how well it performs,

we use the following gap value;

GAPNP =
O(DNP

i (FD
i ), F T

i )−O(DNP
i (F T

i ), F T
i )

O(DNP
i (F T

i ), F T
i )

(19)

To find out how well the parametric approach performs when compared to sample

distribution, we need to find the performance level of this solution approach, GAPNP .

In order to do so, we first find the sample distribution cost. Then we calculate

non parametric approach cost, in order to find out how our model would perform if
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implemented in the sample distribution. Computing the formulation above, we obtain

GAPNP , which is a percentage of performance difference to sample distribution cost

of scheduled surgery durations that are obtained from non parametric approach if

utilized in sample distribution. We present the average GAPNP values in Table 4

that includes the numerical results of GAPNP with respect to α1. For each number of

surgery column, the average percentage represents the expected value for all results

with a fixed idle cost. From Table 4, it is possible to comment that non parametric

Table 4: The Effect of α1 on GAPNP (In %)

N
α1 2 3 4 5 6
0.1 13,71 14,34 16,35 16,34 17,87
0.3 6,68 6,96 7,38 8,23 8,23
0.5 5,12 5,28 5,04 5,52 6,35
0.7 5,09 4,76 4,71 4,72 4,70
0.9 6,62 5,36 5,15 4,75 5,23

approach behaves similar to parametric approach when idle cost changes. Similarly,

GAPNP values are maximum when idle cost is lowest. The GAPNP values decrease

when idle cost is average (0.3, 0.5, 0.7). We present the average GAP values of non

parametric approach in Table 5 that includes the numerical results between GAP

values and number of historical samples.

Table 5: The Effect of Si on GAPNP (In %)

N
Si 2 3 4 5 6
5 20.02 19.21 20.97 21.35 23.15
10 9.86 10.22 10.05 10.91 11.66
25 4.19 3.86 4.44 4.12 4.54
50 1.97 2.23 1.99 1.97 2.18
100 1.018 1.040 1.045 1.029 1.092
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When we look at Table 5, a increase is observed in the performance, as the histori-

cal surgery duration sample size is increased. Main pillar of non parametric approach

is the number of historical samples. Since there is no interest in probability distribu-

tion, improvement in performance relies solely on larger number of historical samples.

With increased number of samples, non parametric approach is able to create more

sample surgery durations, resulting with less variance of sample surgery durations.

In addition, with more historical samples at hand, non parametric approach provides

scheduled surgery durations that are close to those of sample distribution, resulting

with smaller GAPNP and increased performance. Average values may change within

replications due to randomness in our model. We desire to find out the significance of

these changes. Since the average values may be misleading, we present the standard

deviation of GAPNP values in Table 6. In Table 6, each standard deviation percentage

represents the expected value of standard deviations for a given number of surgery,

including all replications.

Table 6: The Standard Deviation of GAPNP With Respect to Si (In %)

N
Si 2 3 4 5 6
5 22,70 17,45 17,16 17,00 16,79
10 10,97 8,61 7,84 8,47 8,07
25 4,53 3,21 3,43 3,07 3,26
50 2,16 1,97 1,57 1,42 1,46
100 1,11 0,88 0,81 0,76 0,74

With supporting results from Table 6, it is possible to comment that when the

number of surgeries to planned in a given OR day is minimum or maximum, the

performance of non parametric approach decreases in a similar fashion to parametric

approach.

26



5.3 Heuristic Approach

To find out how well the heuristic approach performs when compared to sample

distribution, we need to find the performance level value of this solution approach,

GAPH using the following:

GAPH =
O(DH

i (FD
i ), F T

i )−O(DH
i (F T

i ), F T
i )

O(DH
i (F T

i ), F T
i )

(20)

Computation of sample distribution cost and heuristic cost is introduced in the pre-

vious chapter. Similar to all gap values, the smaller GAPH , the better performance

for our heuristic approach. It is important to note that the results of heuristic ap-

proach yield average results as expected. The characteristics of this approach are easy

implementation, less computation times, however average results when compared to

other two solution approaches. We present the average performance of parametric

approach in Table 7 that includes the numerical results of GAPH with respect to α1.

For each number of surgery column, the average percentage represents the expected

value for all results with a fixed idle cost.

Table 7: The Effect of α1 on GAPH (In %)

N
α1 2 3 4 5 6
0.1 168,10 238,74 263,97 302,55 366,81
0.3 30,25 51,40 62,98 72,42 94,73
0.5 5,81 12,12 17,30 20,89 31,19
0.7 11,78 6,43 6,44 5,80 7,86
0.9 107,43 66,37 56,49 47,04 34,72

From Table 7, we are not able to provide managerial insights about our heuristic

approach, since it reflects the main characteristic of this approach, which is insen-

sitivity to changes in α1. Since the number of sample surgery duration samples are

smaller when compared to other approaches, we are not able to observe the effect of

α1 very well. However, number of historical samples and number of surgeries have

direct effects on GAPH . We present the average GAP values of heuristic in Table
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8 that includes the numerical results between GAP values and number of historical

samples.

Table 8: The Effect of Si on GAPH (In %)

N
Si 2 3 4 5 6
5 75,38 82,61 89,46 103,12 120,46
10 66,51 77,33 81,90 93,30 109,57
25 62,13 73,67 80,30 85,82 104,56
50 59,65 72,10 78,17 83,23 102,30
100 59,33 69,13 76,73 83,12 100,31

When we look at Table 8, a negative slope is observed in the performance, as the

historical surgery duration sample size is increased as expected. Another interpreta-

tion of Table 8 is decreased performance of heuristic approach with increasing number

of surgeries. For any number of historical surgery duration sample, heuristic approach

performs better for 2 surgery cases when compared to 6 surgery cases. In heuristic

approach, it is challenging to reach high performance values, when the complexity of

model increases with increasing number of surgeries to be planned in a given OR day.

Average values may change within replications due to randomness in our model.

We desire to find out the significance of these changes. Since the average values

may be misleading, we present the standard deviation of GAPH values in Table 9. In

Table 9, each standard deviation percentage represents the expected value of standard

deviations for a given number of surgery, including all replications.

Table 9: The Standard Deviation of GAPH With Respect to Si (In %)

N
Si 2 3 4 5 6
5 48,74 43,73 44,97 47,38 49,86
10 32,59 30,47 31,31 31,52 33,28
25 20,71 19,00 19,72 18,78 21,74
50 14,22 14,63 13,56 12,58 15,07
100 9,77 9,88 10,01 9,14 10,39
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After carrying out analysis for heuristic approach, we can conclude that the num-

ber of historical samples and number of surgeries to be planned are the parameters

that have direct effects on the performance of heuristic approach. This validates the

fact that for OR environments that have more historical surgery duration samples

and less number of surgeries, executing heuristic approach means better results, in

contrast with OR environments with less historical surgery duration samples and

more surgeries.

5.4 Comparison of Three Solution Methods

In this section we combine our findings in numerical study to compare our three

solution methods. Before beginning to analyze the numerical results of our three

solution approaches, we should state that for comparison, the sample distribution

cost for all three approaches are the same. The difference between each solution costs

will stem from the planned surgery duration under each approach and the associated

costs when each approach is implemented in sample distributions. At this point, we

divide this section into two subsections in order to compare our solution methods

under two probability distributions used in this study.

5.4.1 Log normal Distribution

Without taking a look in the numerical results of each three solution methods, one

could argue that the parametric approach would yield the best results. The main ad-

vantage of parametric approach is the information of probability distribution. With

this information parametric approach could perform better, provided that the proba-

bility distribution information is correct. When the information regarding the prob-

ability distribution is not correct, then other two approaches stand a chance of per-

forming better than the parametric approach. In Figures 2 and 3 we present the com-

parison of performance levels of parametric and non parametric approach. In Figures

4 and 5 we present the comparison of performance levels of heuristic approach.
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Figure 2: Performance of Parametric and Non Parametric Approach with Respect to
Sample Sizes

Figure 3: Performance of Parametric and Non Parametric Approach with Respect to
Number of Surgeries
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Figure 4: Performance of Heuristic Approach with Respect to Sample Sizes

Figure 5: Performance of Heuristic Approach with Respect to Number of Surgeries
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When we compare the numerical results, we can see that the parametric approach

performed the best among other two solution approaches. The interesting point is not

exactly parametric approach performing as the best, but non parametric approach

performing almost as good as parametric approach when the number of historical

surgery duration samples increase. In the non parametric approach, OR planner does

not hold any information about the probability distribution of the surgeries. This may

seem as a disadvantage at first glance, however, it also is a advantage, because non

parametric approach does not make errors on estimating the probability distribution.

With small sample sizes such as 5 historical surgery duration samples, parametric

approach performs 3 percent better than the non parametric approach. This better

performance drops to 0.3 percent when the sample size is increased to 100. This

implies that, with small numbers of historical data, parametric approach is advanta-

geous. However, with large sample sizes, using parametric approach would not yield

such great results. Implementing non parametric approach, an OR planner should

conclude very good results and avoid all the necessary distribution estimation step of

parametric approach.

We can clearly state that the parametric approach performs better than other

approaches when: i) Correct assumption of probability distribution is carried out and,

ii) Historical surgery duration sample size is small. Parametric approach performs

better when sample size is small, because regardless of the sample sizes, parametric

method could use many scenarios. Regarding a case where the sample size is 5 and

the number of surgeries is 2, non parametric approach will have a scenario size of

52 = 25, whereas the parametric approach will have 50000 generated scenarios. This

advantage will hold for all cases, because for the sake of computation time, we assume

that the scenario sizes can reach a maximum value of 50000. However, as the historical

surgery duration sample size becomes larger,e.g. at least 25 samples, non parametric

approach starts to perform almost as good as the parametric approach. And with an
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addition of wrong probability distribution assumption made by parametric approach,

non parametric approach may even perform better. The probability of such case is

small yet it exists. One of the main conclusions of our work states that the use of non

parametric approach where there are at least 25 samples is more logical, whereas in

cases of small sample sizes, use of non parametric approach is more beneficial since

we can generate as much sample up to 50000 as we need.

The other solution approach that we presented in our model, expectation heuris-

tic, may be taken for granted for average computations. Our proposed heuristic may

seem to perform worse that other two methods, however, this heuristic is a simple

but practical one. It does not entail long computation times, nor expensive opti-

mization tools. Our heuristic is a very good alternative to the other two solution

approaches. It may be implemented in the beginning of structuring new operating

room environments. It may also serve as a buffer between transitions from one OR

planning approach to an another. Our heuristic approach may be used to full extent

by small hospitals, where very meticulous planning is not very required. The plan-

ners implementing the heuristic approach should note that this approach is robust to

sample size. One advantage of implementing this approach is that the planner will

know what the hospital loses in the absence of such fine optimization techniques.

After evaluating standard deviations of performance levels of each solution method,

we note that the standard deviation of optimization gaps gets smaller values as the

number of historical surgery duration samples increase. One conclusion that supports

the previous results presented in this section is that the variance of optimization gap

for the parametric method is the smaller when compared with the other two solution

methods. Similarly, variance of optimization gap is largest in heuristic approach. We

also note that, in contrast with other two methods, variance for heuristic method gets

larger values as the number of surgeries increase.
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5.4.1.1 Study on the Parameters of Model

In order to compare our solution aproaches, we study the effect of parameters in

our model. This study allows us to make interpretations that help us comment on

the advantages and disadvantages of our solution approaches, specifically parametric

and non parametric approach. After such study, we are able to provide managerial

insights regarding when and why to use parametric and nonparametric approach. In

the following 3 subsections, we will study i) Idle time cost ii) Number of Historical

Samples and iii) Number of Surgeries.

Idle Time Cost Idling cost may occur when a surgery finishes before its planned

duration, and in addition it may occur for each scenario when total sample surgery

time is less than total planned surgery duration for a given day. For this reason, as

idling cost increases, we generally observe decreases in the GAP values, because our

model forces to decrease the idling time while increasing waiting time and overtime

accordingly.

When we examine the relationship between idle time cost and the performance of

solution approaches, it is possible to state that the heuristic approach performs the

worst (see Table 7). When it comes to the comparison between the parametric and the

non parametric method, such statement is not so easy to make. What we may clearly

see is that as idling cost increases from 0,1 to 0,9, GAP values for both approaches

decrease. In addition, judging by the GAP values themselves, parametric approach

perform better when compared to the non parametric approach. When the idling cost

reaches the value 0.9, high idling cost becomes more effective such that we observe

higher GAP values. However, these results are average values 28000 replications

in total (12000 for 2 surgeries plus 4000 for 3-6 surgeries each), and they may be

misleading. When the parametric approach outperforms non parametric approach,

this happens more and with a big difference in the associated performance levels.
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Whereas, when the non parametric approach outperforms parametric approach, this

happens with slight differences in the performance levels. To support this intuition,

we present the percentage of cases that the nonparametric approach outperforms the

parametric approach in Table 10:

Table 10: Percentage of Cases Nonparametric Approach Outperforms Parametric
Approach with Respect to α1

N
α1 2 3 4 5 6
0.1 18,60 18,21 16,52 18,56 15,99
0.3 19,95 20,60 19,90 19,14 20,28
0.5 19,37 18,21 21,08 20,58 21,27
0.7 19,97 19,90 20,80 19,93 20,28
0.9 22,11 23,07 21,70 21,80 22,19

The number of cases that the parametric approach outperforms non parametric

approach is bigger than the opposite case. However, when we examine Table 10, we

see that the non parametric approach performs better as idling cost increases such

that it handles the rise in GAP values better when the idling cost is maximum at 0,9.

So it may be recommended to use non parametric approach when both GAP values

for parametric and non parametric approach increase at maximum idling cost, which

is 0,9.

Similarly low idling costs favor the use of parametric approach, resulting in in-

crease of difference in GAP values between parametric and non parametric approach.

For any number of surgery scenarios, the parametric approach yields better results

when the idling cost is minimum rather than it is maximum. These findings suggest

that if the idling cost is low, using parametric approach may give better results.

When idling cost is low, model tends to allocate more time to surgeries, because

allocating more time does not effect total planned surgery duration and GAP values

that much as it would when the idling cost is high, in other words model tends

to have less restriction and more freedom. This fact results in high variability of
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OR day when the idling cost is low. In contrast, when the idling cost is average

(α1 = 0.3,0.5,0.7), model performs more strictly by decreasing the derived surgery

durations and total planned surgery time, resulting in less cost and lower GAP values

in all our three approaches. We observe the same high variability of GAP values

with maximum idling cost (α1 = 0,9) scenarios, with the outcomes of increased GAP

values. For these reasons, OR planners should be aware of the impact of low idling

and high waiting and overtime costs. It is safe to say that average idling costs yield

less variable OR days resulting in less OR time, OR costs and GAP values. When we

examine the cases where non parametric approach outperforms parametric approach,

we find supporting results. As the idling cost increases, the chances increase for

non parametric approach to perform close or even better than parametric approach.

Using nonparametric approach for OR environments that contains high idling costs

would be the better option. On the contrary, when idling cost is low, difference in

performance measures between parametric and non parametric is high, making the

use of parametric approach more appropriate.

Number of Surgeries When examining the performance levels with respect to

number of surgeries, there is no clear trend between the GAPP , GAPNP and the

number of surgeries. The results of parametric and non parametric approach are

within margin of error (see Table 2).Randomness of these two approaches is also a

factor of the absence of such trend. Variance of a specific scenario may be too high

or too low depending on the different random samples. This is why results for some

cases may be higher or lower than anticipated.

For the heuristic approach, as the number of surgeries increase GAPH increase.

Complexity of the model increases due to additional parameters and variables fed to

our model (e.g. scheduled duration of the additional surgery for variable and sample

surgery duration parameters of the additional surgery for parameters). In Table 11,
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we present the number of times and associated percentage of the performance our

two approaches when;

1) They perform close to each other within %1,

2) Parametric approach performs better by at least %1,

3) Non parametric approach performs better by at least %1.

We do not include 2 surgery cases in summations as 2 surgery cases have 30

replications whereas all other cases have 10 replications.

Table 11: Performance Comparison of Parametric and Non Parametric Approach

N
Equal Performance GAPP is better GAPNP is better

# % # % # %
2 5674 47,28 4201 35,0083 2125 17,708
3 1968 49,2 1411 35,28 621 15,53
4 2010 50,25 1400 35 590 14,75
5 2091 52,28 1350 33,75 559 13,98
6 2113 52,83 1404 35,1 483 12,075

total 8182 51,14 5565 34,78 2253 14,08

From Table 11, our previous conclusion about the performance decrease of non

parametric approach may be seen. As the number of surgeries increase the number

of cases in which the non parametric approach outperforms parametric approach

decreases. However, there is no such conclusion about the performance of parametric

approach when the number of surgeries is increased. One interesting result is that

even tough non parametric approach starts to perform worse with increasing number

of surgeries, the number of cases in which two approaches perform close to each other

increase as number of surgeries increase. Given the fact that non parametric approach

performs worse with increased amount of surgeries, using parametric approach when

there are high number of surgeries to be planned would be the safe choice for OR

planners.

Number of Historical Samples Through our work, we noted that for all scenarios

of all number of surgeries, our solution methods performed better as the sample
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size increased in terms of GAP values and associated costs (see Tables 2, 5 and

8). With increased number of samples, non parametric and heuristic approaches

are able to create more sample surgery durations, resulting with less variance of

sample surgery durations. In addition, with more historical samples at hand, non

parametric approach provides scheduled surgery durations that are close to those of

sample distribution, resulting with smaller GAPNP and increased performance. On

the other hand, during maximum likelihood estimation of parameters, parametric

approach is able to generate parameters more accurately due to increased number of

historical samples. Since parameters are more accurate, scheduled surgery durations

are close to sample surgery durations, and the resulting cost of parametric approach

is closer to the sample distribution cost.

Although standard deviation of our results may not be as conclusive as the average

values, it still holds important information to help analyze the results with the average

values. One example would include the cases with small number of historical samples.

The averages of our three solution approaches may be close to each other, however

without looking into the effect of standard deviation, these results may be misleading.

The average of a given scenario may be low, while the standard deviation is high,

resulting in undesired cases.

In this study, we are interested in how much effect the number of historical sam-

ples holds in cases when non parametric approach outperforms or performs close to

parametric approach. To carry out such analysis, we filtered our results such that the

difference between GAPNP and GAPP is less than or equal to 0,01. For 2 surgery

scenarios, %65 of the cases, the difference in GAP values (GAPNP - GAPP ) is less

than 0,01. This percentage is lowest at %49 with 5 sample scenarios, and highest at

%87 with 100 historical surgery sample scenarios. For 6 surgery scenarios, %65 of

the cases, the difference is less than or equal to 0,01. This percentage is lowest at

%46 with 5 sample scenarios, and highest at %91 with 100 historical surgery sample

38



scenarios. In addition, in Table 12, when we examine the cases where the parametric

approach outperforms non parametric approach by at least %5, we note that total

of %82 of all 3372 cases have 5 or 10 samples and only 20 of 3372 cases have 100

historical samples.

Table 12: Parametric Approach Performing Better Than Non Parametric Approach
by at least %5 With Respect to Number of Historical Samples

Number of Number of Percentage of
Samples Cases Cases (in 28000 reps)

5 1608 47,69
10 1163 34,49
25 457 13,55
50 124 3,68
100 20 0,59

total 3372 12,04

To support the notion of non parametric approach performing better as the num-

ber of historical samples increase, we carry out an additional study. In this study we

examine three cases: 1) Parametric and non parametric approach performs close to

each other. 2) Parametric approach performs better by at least 0,01. 3)Non para-

metric approach performs better by at least 0,01. We present these results in Table

13 and in Figure 6. Note that for 2 surgery scenarios, total number of scenarios is

12000, whereas for all other number of surgery scenarios, total number of scenarios

are 4000 each.

39



Table 13: Effect of Number of Historical Samples on Relationship Between Parametric
and Non Parametric Approach

N Si

Equal Performance P Performs Better NP Performs Better
# % # % # %

2

5 395 16,458 1225 51,0416 780 32,5
10 567 23,625 1165 48,5416 668 27,833
25 1089 45,375 937 39,0416 374 15,583
50 1605 66,875 565 23,5416 230 9,583
100 2018 84,083 309 12,875 73 3,0416

Total 5674 47,283 4201 35,008 2125 17,708

3

5 114 14,25 439 54,875 247 30,875
10 224 28 373 46,625 203 25,375
25 379 47,375 314 39,25 107 13,375
50 551 68,875 203 25,375 46 5,75
100 700 87,5 82 10,25 18 2,25

Total 1968 49,2 1411 35,275 621 15,525

4

5 131 16,375 428 53,5 241 30,125
10 217 27,125 395 49,375 188 23,5
25 390 48,75 315 39,375 95 11,875
50 566 70,75 187 23,375 47 5,875
100 706 88,25 75 9,375 19 2,375

Total 2010 50,25 1400 35 590 14,75

5

5 155 19,375 411 51,375 234 29,25
10 178 22,25 430 53,75 192 24
25 422 52,75 300 37,5 78 9,75
50 614 76,75 146 18,25 40 5
100 722 90,25 63 7,875 15 1,875

Total 2091 52,275 1350 33,75 559 13,975

6

5 163 20,375 421 52,625 216 27
10 174 21,75 463 57,875 163 20,375
25 451 56,375 291 36,375 58 7,25
50 603 75,375 163 20,375 34 4,25
100 722 90,25 66 8,25 12 1,5

Total 2113 52,825 1404 35,1 483 12,075
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Figure 6: Effect of Number of Surgeries on the Performance of Parametric and Non
Parametric Approach

After examining the results, it is possible to note that as the number of historical

samples increase the number of cases in which both approaches perform close to each

other increase in large quantities. The reason for such conclusion is that the non

parametric approach performs better as the number of historical samples increase.

From Figure 6, it is safe to say that increasing number of surgeries does not effect

the performance of parametric approach. On the other hand, increases in the num-

ber of surgeries weaken the performance of non parametric approach. For all three

approaches, as the number of historical samples increase, the variability of OR days

decreases due to smaller variance of the increased sample sizes. Provided with smaller

variance of our samples, the costs and associated GAP values decrease.

After presenting these informations, we believe it is safe to say that as the number

of historical surgery samples increases, performance difference between non paramet-

ric approach and parametric approach declines.
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5.4.2 Normal Distribution

All the computation and comparison to this point involves samples with log-normal

distribution. In Table 14 and 15, we present the numerical results for a 6 surgery

sample with a truncated normal distribution. We use truncated normal distribution

with a lower bound, which represents the lowest possible surgery duration in hours.

By selecting such duration, we prevent durations to take negative values. We apply

this notion to the generations of both sample distribution samples and the historical

surgery sample durations to assure the consistency of our model. In truncated nor-

mal distributed model, parametric approach assumes the probability distribution to

be log-normal distribution whereas in reality, the model has truncated normal distri-

bution. In Table 14, we present the performance levels of three solution approaches.

Performance levels are expectations of particular GAP value with respect to a specific

α1 value.

Table 14: Optimality Gaps in Normal Distributed Cases with Respect to α1 (In %)

α1 GAPP GAPH GAPNP

0,1 16,72 448,29 16,27
0,3 7,48 114,02 7,21
0,5 5,54 38,64 5,57
0,7 4,44 9,57 4,80
0,9 5,45 27,90 5,29

From Table 14, we can observe high GAP values for all three solution approaches

when the idling cost is low. For average values of α1 (e.g. 0.3, 0.5, 0.7), GAP values

are low. However for maximum value of α1 (e.g. 0.9), all GAP values increase,

which is similar to the behavior of cases with log normal distribution. In Table 15

we present performance levels of our solution approaches with respect to historical

surgery duration sample sizes.

When we look at Table 15, we can see that the parametric approach performs
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Table 15: Optimality Gaps in Normal Distributed Cases with respect to Si (In %)

Si GAPP GAPH GAPNP

5 19,29 139,65 22,20
10 8,76 130,93 10,19
25 5,00 127,76 3,97
50 3,56 124,13 1,97
100 3,21 123,66 0,96

better than non parametric approach when the historical sample size is small (e.g. 5

or 10 samples). However, after 25 samples we note that the non parametric approach

outperforms parametric approach. We previously stated in this work that paramet-

ric approach has two advantages: i) correct distribution assumption and ii) superior

number of scenarios, especially for cases with small amount of historical samples.

In our model with normal distribution, parametric approach assumes the probability

distribution to be log normal distribution, whereas in reality it is normal distribution.

Parametric approach loses its first advantage, which is correct distribution assump-

tion making. And for cases that have more than or equal to 25 historical samples,

parametric approach loses its second advantage, which is superior number of scenar-

ios. Despite the fact that parametric approach may still have more scenarios than

non parametric approach for some cases, non parametric approach performs better

because it does not make errors in estimation and generation of scenarios since there

is no such process in non parametric approach.

5.4.3 When Each Method Should Be Used?

After carrying out the numerical study of our model, we are able to present when each

of our three solution approaches may be used. First of all, our third solution method,

heuristic approach performs at undesired levels. However, if the OR environment is

not a complex one, and it is not required to carry out detailed planning then heuristic

approach emerges as simple but practical solution method. Our first solution method,

parametric approach performs better than other two approaches. This happens with
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i) lower and higher idling costs, ii) limited data at hand (historical surgery duration

samples) and iii) larger number of surgeries in an OR day.

When the idling cost is lower, e.g. α1 = 0.1, one may suggest to adjust the

derived surgery durations by allocating more time to the planned surgery durations

to limit the waiting times and overtimes. On the contrary, when the idling cost is

higher, e.g. α1= 0.9, one may suggest to adjust the derived surgery durations by

allocating less time to the planned surgery durations to limit the idle times. When

idling cost is average, e.g. α1 = 0.1, 0.3 or 0.5, this to-the-limits understanding

of allocating times to planned surgery durations diminishes and the difference in

GAPP and GAPNP values decrease. At the lower and higher idling costs, parametric

approach performs better because estimation and generation of surgery scenarios

enable parametric approach to generate derived surgery durations that are close to the

surgery parameters. Derived surgery durations that are close to the historical surgery

duration samples results in less GAPP values, thus better results in performance.

When the idling cost is average, parametric approach no longer has an advantage

that effect the performance difference very much, because surgery duration allocation

is not as hard as they are when the idling cost is lower or higher.

Parametric approach performs better than non parametric approach when the

number of historical surgery duration samples are lower, e.g. 5 or 10 samples. When

the historical samples size lower, parametric approach takes advantage of scenario

generation. In other words, there may be just 5 historical surgery sample at hand,

but with the help of scenario generation and correct probability distribution assump-

tion, parametric approach makes good use of this relatively small amount of data.

When sample sizes increase, then non parametric approach starts to perform better

to the point where advantages of parametric approach do not effect the results very

much. Difference in performance, e.g. GAP values, decrease, and in some cases non
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parametric approach outperforms the parametric approach. This happens when avail-

able historical surgery duration sample size is rather large, e.g. 50 or 100 samples. In

cases with large historical sample sizes, non parametric approach have enough data to

enable it to allocate non parametric scheduled surgery durations that are close to the

sample distribution sample surgery durations. And this results in decreased values of

GAPNP .

Parametric approach performs better when the number of surgeries in a OR day

increase. As the number of surgeries increase, the complexity of the problem increase

accordingly. Parametric approach uses its two distinctive advantage, estimation and

generation of surgery scenarios for each individual surgery in an OR day. In other

words, parametric approach has 50000 scenarios for each surgery that is to be planned.

The variance of derived surgery durations and GAPP values are generally lower due to

available data generated from 50000 scenarios. When the number of surgeries increase,

non parametric approach may not yield GAP values close to the sample distribution

cost, because non parametric derived surgery durations may not be close to the sample

surgery duration when compared to cases with less surgery cases. When the non

parametric derived surgery durations are not close to sample durations, the result is

increased idle, waiting, overtime and earliness causing increased non parametric costs

and increased GAPNP values. When the number of surgeries in a given OR day is

lower, non parametric approach performs closer to the parametric approach because

non parametric approach is able to provide non parametric derived durations that

are close to the sample durations.
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CHAPTER VI

CONCLUSIONS

In this paper, we present three solution approaches to a highly stochastic operating

room model. Our goal is to investigate the three methods and according to the

numerical results from each three solution approaches, present managerial insights,

provided with comparisons.

From our numerical results, we find that for complex operating room environ-

ments with more than a few surgeries to be planned, parametric and non parametric

approach yield better results. Considering all cases in this study, parametric ap-

proach manages to perform 6,18% close to optimal solution, whereas non parametric

approach performs 7,66% close to optimal solution. The difference between these

two approaches concentrate also on the capabilities of an OR planner and the hospi-

tal. If the hospital is a very large complex institution, with OR planners possessing

fine optimization tools, we suggest using parametric approach and non parametric ap-

proach for such OR planning purposes. Implementing parametric and non parametric

approach would cost more than other heuristic approach. In addition parametric ap-

proach may be time consuming in some cases due to the estimation and generation of

scenarios. This is the reason why we suggest using non parametric approach, provided

with large historical surgery duration samples. At this point, the difference of the

performance between parametric and non parametric approaches begin to diminish.

And lastly, if the planning environment is small or the hospital does not require very

good planning outcome, then we suggest using our simple but practical heuristic. Our

simple but practical heuristic yields average results, but it does not require employ-

ing complex statistics nor any expensive optimization tools. All scenarios considered,
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heuristic approach performs 78,17% close to optimal solution.

We believe that OR planners may use our model to incorporate planning tech-

niques. Knowing the strengths and the weaknesses of each solution approach we

presented in this paper, OR planners may obtain fine results without handling very

big data sets.

In this study, we assume fixed sequence of surgeries in a single operating room

environment with unlimited total surgery duration. In addition, we assume equal

idle time cost for all surgeries for a given OR day. For future work, our study may

be extended for multiple operating rooms with/without surgery specialty constraints.

In other words, any surgery specialty may be assigned to any operating room or

operating rooms belong to certain surgery specialties. Moreover, fixed idle time costs

may be changed such that each surgery in sequence has different idle costs. In addition

to time costs, costs that may be caused by the formation or experience of surgical

teams may be considered as an extension to our work. For instance, such a cost may

incur if a very experienced surgeon or a team of surgeons are assigned to a surgery

that has lower idle time cost.
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[20] E. Kayış, T. T. Khaniyev, J. Suermondt, and K. Sylvester, “A robust estima-

tion model for surgery durations with temporal, operational, and surgery team

effects,” Health care management science, vol. 18, no. 3, pp. 222–233, 2015.

[21] P. S. Stepaniak, C. Heij, G. H. Mannaerts, M. de Quelerij, and G. de Vries, “Mod-

eling procedure and surgical times for current procedural terminology-anesthesia-

surgeon combinations and evaluation in terms of case-duration prediction and op-

erating room efficiency: a multicenter study,” Anesthesia & Analgesia, vol. 109,

no. 4, pp. 1232–1245, 2009.

[22] D. P. Strum, J. H. May, A. R. Sampson, L. G. Vargas, and W. E. Spangler,

“Estimating times of surgeries with two component procedurescomparison of the

lognormal and normal models,” Anesthesiology: The Journal of the American

Society of Anesthesiologists, vol. 98, no. 1, pp. 232–240, 2003.

[23] W. E. Spangler, D. P. Strum, L. G. Vargas, and J. H. May, “Estimating procedure

times for surgeries by determining location parameters for the lognormal model,”

Health care management science, vol. 7, no. 2, pp. 97–104, 2004.

50



[24] J. H. May, D. P. Strum, and L. G. Vargas, “Fitting the lognormal distribution to

surgical procedure times,” Decision Sciences, vol. 31, no. 1, pp. 129–148, 2000.

[25] D. P. Strum, J. H. May, and L. G. Vargas, “Modeling the uncertainty of surgical

procedure timescomparison of log-normal and normal models,” The Journal of

the American Society of Anesthesiologists, vol. 92, no. 4, pp. 1160–1167, 2000.

51



VITA
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