
TOOL SUPPORT FOR
MODEL BASED SOFTWARE PRODUCT LINE TESTING

A Thesis

by

Burcu Ergun

Submitted to the
Graduate School of Sciences and Engineering
In Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in the
Department of Computer Science

Özyeğin University
January 2018

Copyright c© 2018 by Burcu Ergun

TOOL SUPPORT FOR
MODEL BASED SOFTWARE PRODUCT LINE TESTING

Approved by:

Assoc. Prof. Hasan Sözer (Advisor)
Department of Computer Science
Özyeğin University

Asst. Prof. Barış Aktemur
Department of Computer Science
Özyeğin University

Assoc. Prof. Ali Fuat Alkaya
Computer Science and Engineering
Department
Marmara University

Date Approved: January 4, 2018

To my parents who always encourage me for doing hard works...

To my husband who always supported me for graduate studies and

master of science challange...

iii

ABSTRACT

We introduce a tool for automated adaptation of test models to be reused for a prod-

uct family. Test models are specified in the form of hierarchical Markov chains. They

represent possible usage behavior regarding the features of systems as part of the

product family. A feature model documents the variability among these features.

Optional and alternative features in this model are mapped to a set of states in

test models. These features are selected or deselected for each product to be tested.

Transition probabilities on the test model are updated by our tool according to these

(de)selections. As a result, the test case generation process focuses only on the se-

lected features. We conducted two controlled experiments, both in industrial settings,

to evaluate the effectiveness of the tool. We used systems as part of digital TV and

wireless access point(WAP) systems. For DTV systems 10 and for wireless access

points 5 participants were involved in testing these systems, respectively. We mea-

sured the effort spent by each participant for the same set of tasks when our tool is

used and when it is not. We observed that the tool reduces costs significantly. We

also observed that the initial cost for adopting product line testing is amortized even

for small product families with 13 DTV and 11 WAP products, respectively.

iv

ÖZETÇE

Bu tezde bir sistem ailesi için test modellerinin yeniden kullanılmasını kolaylaştıran

bir araç tanıtılmaktadır. Test modelleri, bu sistemlerin özelliklerinin kullanım olasılık-

larını belirlemek için hiyerarşik Markov zincirleri olarak tanımlanmaktadır. Bu özellik-

ler arasındaki değişkenlik bir ürün özellik modeliyle belgelenmektedtir. Ürün özellik

modelinde isteğe bağlı ve alternatif özellikler test modellerinde bir dizi duruma eş-

lenmektedir. Bu durumlar için geçiş olasılıkları seçilen özelliklere göre değiştirilmekte,

böylece oluşturulan test durumları yalnızca bu özelliklere odaklanmaktadır. Aracın

etkinliğini değerlendirmek için endüstriyel ortamlarda iki kontrollü deney yapılmıştır.

Deneyler için dijital TV (DTV) ve kablosuz erişim noktası (WAP) sistemleri kul-

lanılmıştır. Bu sistemler için sırasıyla 10 ve 5 katılımcı, sistem testlerinde ve dolayısıyla

deneylerde rol almışlardır. Her katılımcının harcadığı çaba, sistemlerin test model-

lerini güncellerken araç kullanıldığı ve kullanılmadığı durumlarda ölçülmüştür. Aracın

maliyetleri önemli ölçüde düşürdüğünü ve sırasıyla 13 DTV ve 11 WAP ürününe

sahip küçük ürün ailelerinde bile, araç kullanılarak ürün hattı mühendisliği uygu-

lamasının adapte edilme maliyetinin karşılanarak, toplamda harcanan çabada düşüş

olduğu gözlemlenmiştir.

v

ACKNOWLEDGMENTS

Firstly, I would like to thank my advisor, Assoc. Prof. Dr. Hasan Sözer for all his

help and guidance that he has given me over the past two years. Secondly, I would

like to thank Dr. Ceren Şahin for providing me support during this period. I would

also like to thank software developers and software test engineers at Airties Wireless

Networks and Vestel Electronics for sharing their code base and experiences with me

and such supporting my experiments.

vi

TABLE OF CONTENTS

DEDICATION . iii

ABSTRACT . iv

ÖZETÇE . v

ACKNOWLEDGMENTS . vi

LIST OF TABLES . ix

LIST OF FIGURES . x

I INTRODUCTION . 1

II BACKGROUND . 4

2.1 Model Based Testing . 4

2.2 Software Product Line Engineering 6

III RELATED WORK . 8

IV APPROACH . 11

V EXPERIMENTAL EVALUATION 17

5.1 Research Questions . 17

5.2 Experimental Setup . 18

VI RESULTS AND DISCUSSION . 25

6.1 Effort for Test Model Update without Tool Support 27

6.2 Effort for Test Model Update with Tool Support 27

6.3 Effort for Tool Setup . 28

6.4 Threats to Validity and Limitations 30

VII CONCLUSIONS AND FUTURE WORK 31

APPENDIX A — DTV FEATURE AND TEST MODELS 32

APPENDIX B — WAP TEST MODEL 36

vii

APPENDIX C — COLLECTED MEASUREMENTS DURING THE
EXPERIMENTS . 38

REFERENCES . 41

viii

LIST OF TABLES

1 The list of DTV products and the number of feature selections for the
first experiment [37]. 19

2 The list of WAP products and the number of feature selections for the
second experiment. 19

3 Participant information and the amount of provided training (hours)
for the first company [37]. 21

4 Participant information and the amount of provided training (hours)
for the second company. 21

5 The design of experiments. 22

6 Average effort required for model updates per DTV product with and
without tool support [37]. 26

7 Average effort required for model updates per WAP product with and
without tool support. 26

8 T-test results for the two experiments (paired two-samples for means). 26

9 Measurements collected during the first experiment. 39

10 Measurements collected during the second experiment. 40

ix

LIST OF FIGURES

1 A sample feature model. 7

2 The overall process for using tool support. 11

3 A part of the feature model created for the WAP product family and
some of the feature selections regarding a product of this family. . . . 12

4 The updated test model of WAP. 15

5 Variation of effort for MBT of DTV systems with and without FORMAT. 27

6 Variation of effort for MBT of WAP systems with and without FORMAT. 28

7 A part of the feature model created for the DTV product family and
some of the feature selections regarding a product of this family [1]. . 33

8 The top-level test model regarding the DTV product family [37]. . . . 34

9 An updated test (sub)model regarding the DTV GUI states [1]. . . . 35

10 The top-level test model regarding the WAP product family. 37

x

CHAPTER I

INTRODUCTION

We interact with many products in our daily lives such as Digital TV (DTV) systems

and Wireless Access Point (WAP) systems. These systems are developed as embedded

systems that are mainly controlled by software. They are produced with a high variety

and increasing number of features. This leads to a continuously increasing size and

complexity of software adopted in these products. For instance, current DTV systems

include many features such as web browsing and on-demand streaming in addition to

traditional TV functionalities [2]. As another example, current WAP systems employ

a large code base for implementing a large variety of communication protocols as

well as for providing several features regarding security, trouble shooting and system

recovery. This trend necessitates to adopt efficient and effective testing techniques.

The most critical faults must be detected with limited resources in a continuously

increasing scope. Model-based testing (MBT) [3] has been employed as a solution for

increasing test effectiveness and efficiency.

MBT is used for automatically generating test cases by systematically exploring

test models that define the usage behaviour of the System Under Test (SUT). There

are two main advantages of this approach. The first advantage is regarding test qual-

ity. The quality can be measured based on the coverage of the test model and this

coverage can be improved by exploring the model in a systematic manner. The second

advantage is regarding maintainability. Changes can be applied to the abstract model

rather than going though each and every individual test case. As a drawback of MBT,

one needs to develop and maintain test models, which can be a costly process that re-

quires expertise. This cost is amplified in the scope of testing product families, which

1

can include a large number of products with systematic variations. These variations

change the set of relevant features. Hence, scenarios to be tested for various products

differ from each other. Software Product Line Engineering (SPLE) [4] was introduced

as an approach for the systematic management of variability in product families. This

approach aims at maximizing the amount of reuse for all the artifacts created during

software development lifecycle, including those related to testing activities [5].

An application of SPLE approach together with MBT [1] involves the develop-

ment of 3 separate models. First, a reference test model is specified in the form of

hierarchical Markov chains and it represents all possible usage scenarios for a fam-

ily of systems rather than a single system. Second, a feature model is created for

documenting variations among products of the tested product family. Third, a spec-

ification defines a mapping between the other two models. Hereby, every alternative

or optional feature is associated with a state in the reference test model. Probability

values for performing a transition to these states are updated based on the available

features of the SUT. As a result, the generated test cases focus only on these fea-

tures. This approach makes it possible to reuse a test model for multiple systems.

As a drawback, one needs to update the model manually for each SUT. In this thesis

work, we developed a tool, namely FORMAT (Feature Oriented Model Adaptation

Tool) to automate this SPLE approach for MBT. This tool automates the test model

update process. The usage of the tool requires an initial (one-time) development of

the 3 models required by the approach. Then, the reference test model can be reused

for a family of systems by selecting features of the SUT via a graphical user interface.

We performed two controlled experiments, both in industrial settings, to evaluate

the effort reduction achieved by FORMAT. The first of these experiments is conducted

in a consumer electronics company, where 10 participants were involved in testing 10

DTV systems. The second experiment is conducted in a wireless home network system

company, where 5 participants were involved in testing 5 WAP systems. Reference

2

test models that represent families of products had to be adapted for various member

products based on their features. The amount of effort for each participant was

measured both with and without the existence of tool support. Results show that

FORMAT significantly reduces the overall effort and the cost of initial investment

can be amortized after the reuse of the reference test model for a small number of

products. We observed in the first experiment that this cost is amortized after the

reuse of the reference test model for 13 DTV products. Similarly, we can conclude

based on the results of the second experiment that the investment pays off after

testing 11 WAP products.

The remainder of this thesis is organized as follows. In the following section, we

provide background information on MBT and SPLE. In Section 3, we summarize

the related work. In Section 4, we explain our approach and tool. In Section 5, we

present the two controlled experiments for evaluating these in industrial settings. We

present and discuss the obtained results in Section 6. Finally, we conclude the thesis

in Section 7.

3

CHAPTER II

BACKGROUND

2.1 Model Based Testing

MBT adopts a systematic exploration of test models [6, 7] to automatically generate

test cases [8, 9, 10]. It relies on a test model that defines the user-observable SUT

behavior with respect to a set of inputs and actions of the user. This model is

usually created manually by analyzing system requirements. A MBT tool takes such a

model as input and generates test cases automatically by exploring possible behavioral

scenarios. This tool can support various test case generation algorithms and it can

be configured to achieve various coverage criteria.

Benefits of MBT was previously outlined as follows [12]: i) Early detection of

inconsistencies in requirement specifications; ii) Improved communication (test mod-

els serve as documentation); iii) Automated generation of test cases; vi) Informed

selection and prioritization of test suites; v) Improved maintainability of tests at

the abstraction level of test models; vi) Increased test quality due to measured and

optimized test coverage; vii) Lower costs.

Both the content and the structure of the test model can differ among MBT

approaches and tools. It can be expressed with several types of formalisms such as

Unified Modeling Language (UML) models [13], Finite State Automaton (FSA) [14],

Event Sequence Graph (ESG) [15], state charts [16], Markov chains [17] and Labelled

Transition System (LTS) [18]. MBT that is based on UML models mainly employ

sequence and collaboration diagrams to specify test scenarios [13]. In addition, use

case diagrams are associated with sequence or collaboration diagrams to organize

these.

4

FSA is commonly used for representing state-based behaviors of SUT. It includes

a set of inputs, a set of states, and a transition function that maps (input, state) pairs

to next states. Test cases are specified as possible sequence of states on the model

(i.e., an execution path).

ESG [19, 15] models have a more abstract representation relative to FSA models.

In these models, inputs and states are represented together as events. Events corre-

spond to user-observable actions. They are mapped to next events by a transition

function.

State charts [16] are very similar to FSA models. As a difference, they can be

hierarchically composed. In addition, states and transitions can be labeled with

guards and actions.

LTS models are also based on FSA models and they are used for modeling reactive

systems. As a difference from FSA models, transitions can be annotated with input

and output labels [18]. These labels are used for synchronization [18].

A Markov chain conforms to another formalism that is based on FSA. As a dif-

ference, state transitions are labeled with probability values [17]. The system may

change its state from the current state to another state, or remain in the same state,

according to these values. In our approach, we employ this formalism to represent

test models. We use state transition probabilities to eliminate some execution paths

and as such focus the scope of the generated test cases.

In the following, we position the MBT approach adopted in this work with re-

spect to a previously introduced taxonomy of MBT approaches [20]. Our model

specification scope is input-output. The test model is untimed, stochastic, and dis-

crete. The test case generation algorithm is stochastic. Test execution is performed

offline. Concrete test steps are defined as test scripts. These scripts are associated

with transitions of the test model.

5

2.2 Software Product Line Engineering

Software Product Line Engineering (SPLE) [4] is an approach for the systematic

management of variability in product families. This approach aims at maximizing

the amount of reuse for all the artifacts created during software development life

cycle, including those related to testing activities [5]. The key principle of SPLE is

the separate and explicit documentation as well as management of variability among

the products of a product family. Variability can be documented with various types

of models, where Orthogonal Variability Model (OVM) [4] and feature model [21, 22]

are currently the most prominent types. In this work, we used feature models for this

purpose.

Feature models [21] are defined in the form of tree structures. There is a standard

visual notation for depicting the elements of the model. These elements basically

represent features of products of a product family. These features can be mandatory

or optional. There might also be inter-dependencies among the features. That is, in-

cluding/excluding a feature for the product might necessitate the inclusion/exclusion

of another related feature. Each combination of selected features defines a product

of the product family.

A sample feature model is depicted in Figure 1. We can see that the model depicts

features with parent-child relationships. These relations can be one of the 4 types [23]:

• mandatory: features are always selected if their parent is selected. (e.g.,

Wireless feature in Figure 1).

• optional: features may or may not be selected if their parent is selected. (e.g.,

Anti DOS feature in Figure 1).

• inclusive-or: features are grouped such that at least one of them is selected

if their parent is selected. (e.g., Multi PVC, Ethernet and AP features in

6

Wireless

WAP

Anti DOS
DSL

Router

Multi
PVC

Ethernet AP

Recovery

Local Internet DHCP

Figure 1: A sample feature model.

Figure 1).

• exclusive-or: features are grouped such that exactly one of them is selected

if their parent is selected.(e.g., Local, Internet and DHCP features in Figure 1).

Although MBT helps in managing variability and improving maintainability, it

cannot scale for large scale product families. These families are characterized by a

large number of products with high number of variations. These variations tend to

cross-cut test models [24, 25]. Hence, the adopted MBT approach and test models

enable systematic management of variability. Ideally, test models should be reusable

across a family of products and the cost of this reuse must be amortized. That is, the

effort spent for adapting the test models and using them for various products should

not exceed the cost of using a separate test model for each product. In this work, we

introduced tool support for facilitating such a reuse of test models in MBT.

7

CHAPTER III

RELATED WORK

An analysis of the literature reveals that studies related to product line testing [5]

mainly focus on system testing. There also exist studies among these, which are

concerned with the adoption of MBT for software product line testing [26]. A common

property among all of these studies is that they explicitly specify variability. Another

common property is regarding the specification of test models. These models reflect

the usage behavior for a family of products rather than a single product. They are

modified to end up with a test model that is specific to a product. These properties are

also valid for our approach. However, there are variations with respect to formalisms

used for modelling and the level of automation.

There exist a subset of studies that combine MBT and SPLE make use of UML

models. CADeT [28] and ScenTED [27] can be provided as example representatives

of this subset. In particular, these approaches utilize UML sequence diagrams to

define test cases. All the variations are specified as part of these diagrams. In our

approach, we do not utilize UML diagrams. We develop a test model in the form

of Markov chains. Variability is not documented as part of this diagram but it is

documented separately instead. We utilize a feature model for this purpose. Our

approach necessitate a third specification to relate elements of this feature model with

those of the test model. As an advantage of this separate specification, variability

information is not scattered throughout the test model and the model is not tangled

with two different information: usage behavior and variability. As a disadvantage, an

additional specification has to be created manually; however, this is only a one-time

effort if the other models are not subject to subtle changes.

8

There are also differences with respect to the goals of existing studies. For exam-

ple, unlike CADeT [28], our goal is not to obtain coverage measures, which is already

provided by the employed MBT tool. Our main goal is to reuse the same model for

a variety of products by systematically updating it with minimal effort.

We can find MPLM [29] in the literature, when we focus on approaches that

integrate SPLE and MBT by using Markov chains as the formalism to express test

models. In fact, this tool has been introduced as an extension of MaTeLo, the MBT

tool that we employed in the implementation of our approach. As a difference from our

approach, MPLM uses OVM [4] to specify variability information, instead of feature

models. As the second difference, MPLM removes states and transitions from the

test model to obtain a test model that is specific to a product. These modifications

are applied based on the selected variants in the OVM model. In our approach, we

only modify probability values associated with state transitions. We do not modify

the overall structure of the model by adding or removing elements from it.

When we focus on the main difference between our approach and MPLM, we have

3 reasons for employing feature models instead of OVM for documenting variability.

First, it is more intuitive to map elements of a feature model to elements of a test

model. This is because, elements of the model directly represent features of the sys-

tem as we apply system-level testing. The system is modeled completely from the

user perspective. This is not the case behavior with OVM models, which aim at

defining both external and internal variability. Hereby, external variability represents

user-observable variability [4] whereas internal variability is related to platform and

implementation level variations in products. So, the scope o an OVM model is un-

necessarily broad for representing features. The second reason is that both feature

models and our test models have a hierarchical structure. So, not only their content,

but also their structure lead to a more compatible and straight-forward mapping.

The third reason is that feature models are more prominent at the time of writing

9

this thesis. There are more resources available for feature diagrams both in terms of

theoretical work [22] and tool support [31].

We can also find approaches [32, 33] in the literature, when we focus on approaches

that integrate SPLE and MBT by using feature models for documenting variability.

However, state machines are used for specifying test models in this case. Moreover,

these approaches are alike MPLM in the sense that they remove states and transitions

from the test model to obtain a test model that is specific to a product. In our

approach, we do not modify the overall structure of the model but modify probability

values associated with state transitions instead.

10

CHAPTER IV

APPROACH

Our approach, modify probability values associated with state transitions instead. We

do not modify the overall structure of the model. Figure 2 depicts the overall process

for using tool support to adopt SPLE in the context of MBT [1]. The set of input

artifacts are shown with gray color in the figure. One of these artifacts is the reference

test model, which specifies the system usage behavior for a family of products. The

second one is the feature model, which captures the variability information regarding

these products The last one is the mapping specification, which is basically a store

keeping mapping of elements of the feature model to those of the test model.

KEY: process flow automatically
generated artifact

FORMAT
A

B

C
D E

Reference
Test Model

MBT
Tool

A, E, B, A
C, D, E, B
...

Test Cases

Mapping
Specification

manual
process

Feature Model

Select
Features

Feature
Selections

A
B

C

D
E

Updated
Test Model

1

2

1

2

2

2

3 3

automated
process

input
artifact

Figure 2: The overall process for using tool support.

11

(a) A part of the feature model of the WAP product
family.

(b) Feature selections for a sample WAP
product.

Figure 3: A part of the feature model created for the WAP product family and some
of the feature selections regarding a product of this family.

12

We used an online, free tool, namely SPLOT tool1 to create feature diagrams.

This tool also provides a user interface where one can (de)select features on the

diagram and specify various product configurations. Hence, although the first step

of the approach is performed manually, there exist tool support for this part of the

process as well. As an example, we can see a part of the feature diagram created

for the WAP product family and an example product configuration regarding this

family in Figure 3(a) and Figure 3(b), respectively. In this example configuration, we

can see that the optional feature AntiDOS is not selected for instance. This choice

automatically leads to the deselection of all of its descendent features as well. The

generated test cases for this product configuration should not cover such deselected

features.

Each product configuration that is created via the SPLOT user interface can be

exported in the form of an XML file. This file is used as an input for the second step.

We implemented the tool, FORMAT2 for automating this step of the approach. This

tool takes two more inputs in addition to the product configuration that includes

feature selections. One of these is the reference test model. The other one is the

mapping specification which maps selected features to states of the reference test

model. In principle, this specification can be automatically generated, if both the

names of features and names of states in the test model follow a naming convention.

FORMAT updates the transition probability values in the test model based on

feature selections in the product configuration. Algorithm 1 [37] outlines the update

procedure implemented by the tool. Hereby, for each state s, all the transitions are

processed, where s is the source state of the transition (Line 4). Probability values

for transitions to states that represent unselected features are set as 0 (Line 7). Prior

to this update, the original value is summed up (p) for all such transitions where the

1http://www.splot-research.org/
2The source code of FORMAT is available at https://github.com/brcoztn/AgileSWRepo

13

Algorithm 1 Model Update Procedure [37].

1: S ← set of states in the test model
2: for all s ∈ S do
3: p← 0
4: for all t ∈ S|∃ transition (s, t) do
5: if t maps to a deselected feature then
6: p← p + p(s, t)
7: p(s, t)← 0
8: end if
9: end for

10: for all t ∈ S|∃ transition (s, t) do
11: p(s, t)← p(s, t)× 1/(1− p)
12: end for
13: end for

source state is s (Line 6). Then, probability values of all the transitions outgoing

from this state are multiplied by 1/(1− p) (Lines 10-14). This step of the algorithm

ensures that two properties hold. First, the relative weight of the transitions remains

the same excluding those that are set as 0. Second, the sum of all the probability

values for transitions outgoing from the same state is kept as 1.

For example, let’s consider a state with 3 outgoing transitions, t1, t2 and t3, with

probability values 0.3, 0.6 and 0.1, respectively. Assume that the probability value for

t2 is set to be 0 because the feature represented by its target state is deselected. Then,

the probability values for t1 and t3 are multiplied by 1/(1 − 0.6), which is 10/4. As

a result, t1 and t3 are associated with probability values 0.75 and 0.25, respectively.

The overall sum of the values add up to 1 and the relative priority between t1 and t3

remains the same.

Figure 4 shows an example test model3 for the WAP product family that is up-

dated with FORMAT. Hereby, probability values for 3 transitions are set as 0. These

transitions are all originating from the Product Information state. They are targeting

3Please note that this figure depicts the top-level model only. 3 of the states in this model actually
represent other test models. States represented in these models might hierarchically include further
sub-models.

14

Figure 4: The updated test model of WAP.

at UPCCode, UI and Signature states. All the other transitions that are originating

from the Product Information state are also updated. We can see that they have

equal weights and they add up to 1. The probability values regarding the 3 transi-

tions are set as 0 due to the corresponding features that are deselected as shown in

Figure 3(b).

The third and the last step of the approach involves test case generation and

test execution activities performed based on the updated model. These activities are

performed with two external tools. MaTeLo4 is used for test case generation with

the so-called “Most Probable” test case generation algorithm [34]. This algorithm

explores the paths on the test model until the lengths of these paths reach to a

threshold point. It selects alternative transitions based on their probability values

during this process. As a result of the update performed on the WAP test model, for

instance, UPC Code, Signature and UI states will never be visited in the explored

4http://www.all4tec.net

15

paths. Test execution is automated with VESTA, which is an in-house developed

tool.

In the following chapter, we present two controlled experiments that are conducted

in industrial settings to evaluate the effort reduction achieved by the use of FORMAT.

16

CHAPTER V

EXPERIMENTAL EVALUATION

We conducted two controlled experiments, both in industrial settings. These exper-

iments provide us to evaluate our tool’s efficiency in terms of effort reduction. Our

aim is comparing manual effort of test model update and automatic test model up-

date with FORMAT tool. The traditional approach adopted by companies is updating

reference test model manually for each product configuration with selecting and de-

selecting features. FORMAT tool enable automated updates of reference test models

based on the configured product model as input. But firstly we need prepare the

product feature diagram and feature mapping which is used for associating product

features and reference model states. This is additional effort needs to be paid for

updating test model automatically. Hence, we also wanted to measure how/when one

can amortize this additional effort.

This chapter is organized to provide the following information in order: i) Defining

to our research questions for our approach; ii) Explanation of experimental setup for

the both companies for different product domains; iii) Presentation and interpretation

of results; iv) Discussion on experiment design validity and known limitations.

5.1 Research Questions

Our evaluation goals explained above led us to the following research questions:

RQ1: What is the effort for updating test models manually?

RQ2: What is the effort for updating test models with FORMAT?

RQ3: What is the effort for creating the input models for FORMAT?

17

RQ1 is formulated to learn the cost of the effort of the traditional approach for

updating reference test model for each product. RQ2 lets us understand the cost of

effort with for updating reference test model for each product using FORMAT. RQ3

is necessary to measure the cost of additional effort for creating a feature diagram

and mapping specification. Hence, we defined our null hypothesis like the following

to test the significance of effort reduction achieved with FORMAT:

• Ho The use of FORMAT tool does not have any impact on the effort necessary

to adapt test models for various products of a product family.

Our hypothesis significance level is 0.01 for rejecting the hypothesis [35].

5.2 Experimental Setup

In this section, we explain the setup of our experiment that is designed to find answers

for the 3 research questions and test Ho.

5.2.1 Factors

In our experiments, our unique factor is tool support. Hereby, we are interested in

the support provided by FORMAT as the tool for updating test models. So we can

measure our factor at two levels in nominal scale: with tool support, without tool

support.

5.2.2 Independent Variables

In each of our experiments, we have only one independent variable and this is product

family. We randomly selected 10 DTV products for the first experiment. On

the other hand 5 products from the WAP product family is selected for the second

experiment. The 3 input models are prepared for both DTV and WAP product

families; a reference test model, a feature model and a mapping specification. These

models are provided to all the participants. We can see selected and deselected

18

features for DTV products in Table 1 with a total number of 96 features. We can see

selected and deselected features for WAP products in Table 2 with a total number of

144 features. The effort required for updating test models is related to the number

of features deselected in the feature model.

Table 1: The list of DTV products and the number of feature selections for the first
experiment [37].

Product ID # of Selected Features # of Deselected Features

P1 47 49

P2 43 53

P3 34 62

P4 24 72

P5 54 42

P6 53 43

P7 63 33

P8 44 52

P9 44 52

P10 44 52

Table 2: The list of WAP products and the number of feature selections for the
second experiment.

Product ID # of Selected Features # of Deselected Features

P1 75 69

P2 55 89

P3 42 102

P4 117 27

P5 96 48

5.2.3 Dependent Variables

We measure the Effort with ratio scale in seconds, as the single dependent variable

in both experiments.

19

5.2.4 Participant Selection

Both companies have their own dedicated software testing groups. The test group in

the first company tests various consumer electronics products including DTV systems.

In the second company, WAP products are being tested. Both companies have similar

employee profiles. Their test groups consist of both test engineers who graduated from

an university and test technicians who graduated from two years educational program.

For the first experiment 10 random participants are selected from first companies

test group and 5 random participants are selected from second companies test

group to run the second experiment. We can see the participant profile information

at Table 3 and Table 4 for the first and the second experiments. We can see the

participants as enumerated as S1, S2, etc. in the first columns of these tables and

job titles of each participants shown in second columns. As shown in Table 3 , eight

participants are test engineers and 2 participants are test technicians. And also shown

in Table 4 , three participants chosen for experiment 2 are test engineers and 2 of

them are test technicians. We can see also experience of each participants from the

third column.

5.2.5 Experiment Design

As it is shown in Table 5, we have only one factor which is tool (FORMAT) support and

two methods which are with tool support and without tool support. Both methods are

tried by each participants. For the first experiment, firstly, each participants updated

the model manually and then they repeated the process by using FORMAT. During

manual updating the test models, each participant had to work on the test model

but during using FORMAT they had to work only on the feature diagram. Because

of this, we do not expect to affect the effort with the sequence of the methods. To

validate this assumption in the second experiment, two participants (S2, S4) used

FORMAT firstly and then they tried the next method by updating the test model

20

Table 3: Participant information and the amount of provided training (hours) for
the first company [37].

Participant Job Experience

ID Title (months) FORMAT MaTeLo SPLOT

S1 Test Engineer 60 1 1 0.5

S2 Test Engineer 12 1 1 0.5

S3 Test Engineer 36 1 1 0.5

S4 Test Technician 144 1 2 0.5

S5 Test Technician 180 1 2 0.5

S6 Test Engineer 12 1 1 0.5

S7 Test Engineer 24 1 1 0.5

S8 Test Engineer 6 1 4 0.5

S9 Test Engineer 6 1 4 0.5

S10 Test Engineer 6 1 4 0.5

Table 4: Participant information and the amount of provided training (hours) for
the second company.

Participant Job Experience

ID Title (months) FORMAT MaTeLo SPLOT

S1 Test Engineer 61 2 4 1

S2 Test Engineer 40 2 4 1

S3 Test Engineer 154 2 4 1

S4 Test Technician 120 2 4 1

S5 Test Technician 50 2 4 1

21

manually.

Table 5: The design of experiments.

Factor: Tool Support

Level: with tool support Level: without tool support

Experiment 1 10 participants 10 participants

Experiment 2 5 participants 5 participants

5.2.6 Preparation

Reference test model, product feature diagram and mapping specifications are all

prepared by a senior test engineer who has a test experience more than five years and

has exetnsive product domain knowledge in the company. This is the case for both

companies and experiments although different engineers took this role.

We give these experiment material to participants before experiment. In the first

company, they have already a reference test model for DTV product family. They

are using reference model for test DTV products and they update reference model

manually for different product configuration. Creating a feature diagram for DTV

product family has taken 5 hours. And also creating a mapping that maps product

features to reference model states has taken 3 hours.

In the second company, there was no available reference model being used. So, a

reference model is created from scratch to be able to conduct the experiment.Creating

feature diagram has taken 6 hours and creating a mapping which maps product fea-

tures to reference test model states has taken 4 hours. There must be an experienced

test engineer in the company, who has experience on MBT in particular; otherwise,

the application of the approach would not be feasible. It took 15 hours to create this

reference test model.

The participants have had a training about tools before the experiment, which are

22

FORMAT, MaTeLo and SPLOT. We recorded the training hours for each participant.

We can see the hours of training in Table 3 and Table 4. Some of the participants from

the first company have already had experience with MaTeLo. So, training durations

vary according to the participant. (Table 3). In the second company, none of the

participants had prior experience on MBT and SPLE. It was the first time they use

MaTeLo, SPLOT and FORMAT.

5.2.7 Execution

For the first experiment we provided the reference test model, product feature dia-

gram and mapping to every participant. In addition, we provided the product feature

list, which has a ten products listed in Table 1. Then we assign the tasks. Partic-

ipant’s first task is updating reference test model manually with using MaTeLo for

each product each of which has various features available. Thus, participant must

find the reference model states which are deselected in the product feature model.

Then, they need to update the probability values of transitions for these states as 0.

Participant’s second task is selecting and de-selecting product features from product

feature diagram as for product configuration. Then the exported configuration is

used for updating the reference test model with FORMAT. This task is defined in the

Figure 2.

The second experiment was basically a replication of the first one with 5 partic-

ipants and 5 products (Table 2) as part of a different product family. The set of

tasks was the same. As a difference with respect to the first experiment, the order

of the task assignments were varied as explained in Section 5.2.5. This change of

experiment design was performed to check the validity of the assumption that the

order of treatments does not have a significant impact on the results.

23

The tasks invovled in our experiment have three main steps. We measured the

effort for each of these steps as listed in the following:

F: Deselecting product features by using SPLOT.

M: Manually updating the reference test model with MaTeLo.

T: Automatically updating the reference test model by using the FORMAT tool.

For the first task, updating reference test model manually is defined by M . The

second task, which is updating the test model automatically by using the FORMAT

tool requires two steps; i) deselection of features and exporting the obtained configu-

ration and ii) using this configuration as input for FORMAT to update the test model.

Hence, the overall cost is defined by F +T . We explain and interpret the experiment

results to address our research questions in the following chapter.

24

CHAPTER VI

RESULTS AND DISCUSSION

We evaluate the results based on the average effort required per product. The overall

list of all the collected measurements are listed in Appendix C. We can calculate

average effort with tool support and without tool support by average values of (F +T)

and M , respectively. We can see these values in Table 6 and Table 7. As we can see

from both experiments, when participants use FORMAT, the required effort reduces

significantly.

The conducted t-tests1 prove the significance of results as listed in Table 8. The

set of participants was altogether assigned to two tasks. Hence, we used paired t-

tests. P (T <= t) one-tail and P (T <= t) two-tail values turned out to be 2.39 ×

10−8 and 4.79 × 10−8, respectively for the first experiment. These values are 0.0005

and 0.001, respectively for the second experiment. Relatively smaller values for the

second experiment can be explained by the involvement of a smaller group of subjects.

However, P values are well below the threshold (0.01) for both experiments. We can

reject the null hypothesis based on these results. That is, the use of FORMAT does

indeed have a significant impact on the effort necessary to adapt test models for

various products of a product family. We can see from Figure 5 and Figure 6 that the

variation of effort for a chosen method is low but it is also shown that the required

effort for two different method is significant.

In the next section, we try to find answers for the research questions with our

findings. We can compare the initial investment with the effort gain by using the

FORMAT tool.

1We used Microsoft Excel (2016) to obtain the results.

25

Table 6: Average effort required for model updates per DTV product with and
without tool support [37].

Participant ID with tool support without tool support

S1 306.3 1824

S2 339.0 2446

S3 350.9 2422

S4 372.2 2707

S5 403.3 2488

S6 402.7 3048

S7 318.8 2032

S8 411.0 2732

S9 455.7 3382

S10 440.4 3019

Average: 380.03 2610

Table 7: Average effort required for model updates per WAP product with and
without tool support.

Participant ID with tool support without tool support

S1 304 2520

S2 487 4620

S3 363 3180

S4 425 4140

S5 662 4980

Average: 448.2 3888

Table 8: T-test results for the two experiments (paired two-samples for means).

Experiment 1 Experiment 2
Mean 380.03 448.2

Variance 2573.73 18951.7

Observations 10 5

Pearson Correlation 0.92 0.91

Hypothesized Mean Difference 0 0

df 9 4

t Stat -16.55 -8.58

P(T¡=t) one-tail 2.39× 10−8 0.0005

t Critical one-tail 1.83 2.13

P(T¡=t) two-tail 4.79× 10−8 0.001

t Critical two-tail 2.26 2.78

26

Figure 5: Variation of effort for MBT of DTV systems with and without FORMAT.

6.1 Effort for Test Model Update without Tool Support

We saw that results regarding the measured effort is inherintly dependent on the

types of participants and products involved in the experiments. In Figure 5, the box

plot shows us 10 participants sampling distribution. Effort is saved in order of 1650

as minimum value and 3680 as maximum. Additionally, effort for 5 participants are

showed in Figure 6 box-plot showed the sample distribution.Effort is saved in order

of 2100 as minimum value and 5810 as maximum. Each participant’s average effort

cost is listed in the third columns of Table 6 and Table 7.

6.2 Effort for Test Model Update with Tool Support

We observed the automatic tasks are not subject to high variation of effort. The aver-

age effort is shown in the second columns of Table 6 and Table 7 for each participant

per product. Creation of product configurations on SPLOT is the part that has to

be performed manually. Hence, this part is responsible for the majortiy of the effort.

For the first experiment, the minimum and maximum cost effort are recorded as 223

and 525 seconds. These values are 275 and 698 seconds for the second experiment.

27

Figure 6: Variation of effort for MBT of WAP systems with and without FORMAT.

6.3 Effort for Tool Setup

For both experiments the product feature diagram and mapping were created at first.

Product feature diagram and mappings are created for one time only. We can use

them for all the products in the same the product family. They remain unchanged

if the system usage behavior (as such, the test model) does not change. Hence,

participants of the experiments were not involved in creating product feature diagram

and the corresponding mappings. These are prepared by a senior test engineer based

on product requirement specifications. DTV product feature diagram preparation has

taken 5 hours for the first experiment. And also mapping the features in the feature

diagram to reference test model states have taken 3 hours. Thus, for preparation of

product feature diagram and mappings, we calculated the overall cost of the initial

effort as 8 hours (480 minutes).

We repeated the same tasks for the second experiment with the WAP product

family. The preparation of the product feature diagram and the mapping has taken,

6 and 4 hours, respectively. So, the initial investment required 10 hours (600 minutes)

in total for the WAP product family. In fact, MBT had not been applied for WAP

products prior to our experiment. So, a test engineer prepared a reference test model

for the WAP product family from scratch. This process took 15 hours; however, we

28

did not include this duration as part of the initial investment. This is because, our

goal is to evaluate the cost of introducing SPLE approach to MBT with FORMAT.

We assume that MBT is already in place and a test model is already in use before

the application of our approach. Of course, this test model should be applicable to a

family of products, possibly being adapted manually.

The overall effort is decreased from 2610 seconds to 380.03 which is the phase

test model in DTV products. (See Table 6). This means to 2229.97 seconds we have

gained for per product, it is also equal to 37 minutes. Since 480/37 = 12.915 < 13, we

can amortize cost of effort for 13 different products for DTV products. There exist 90

products in total in the DTV product family. So, the initial cost can be redemptory

if we use feature diagram for at most 15% of the DTV product family.

Similarly, the cost of effort required for WAP products is decreased from 3888

seconds to 448.2 seconds on average (See Table 7). This means that we have gained

3439.8 seconds per product, which is equal to 57 minutes. Since 600/57 = 10.53 < 11,

we can amortize cost of effort for 11 different products for WAP products. There

exist 140 products in total in the WAP product family. So, the initial cost can be

redemptory if we use feature diagram for at most 7% of the WAP product family. If

we include the effort of creating the test model (15 hours) as part of the of initial

investment, the overall cost becomes 25 hours, which is equal to 1500 minutes. In

this case, 1500/57 = 26.32 < 27. So, we can amortize cost of effort for 27 different

products, which is only 30% for the WAP products.

According to the these results, we have reach a decision that our SPLE approach

supported by FORMAT provides significant effort reduction for adaptation of test

models for MBT.

29

6.4 Threats to Validity and Limitations

To mitigate external validity threats [36], we performed two experiments in the set-

tings of two different companies with two different product families. These experi-

ments might be further replicated; however, the cost of conducting these experiments

with real engineers and technicians is highly costly. We use real systems in our exper-

iments so we mitigated the internal validity threats. We also involved real engineers

and technicians from the industry as participants. Conclusion validity threats are de-

creasing by monitoring the activities of participants without intervening with them.

Statistical hypothesis tests are used for evaluating the experiments results. The major

assumption behind our approach that makes the tool support beneficial is regarding

the stability of the product family. We assume that the created feature diagram and

mappings can be reused for the same product family, which changes rarely.

30

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

We developed a tool for supporting model based product line testing. The usage of

the tool requires an initial (one-time) development of the 3 models required by our

approach. First, a reference test model is specified to represent all possible usage sce-

narios for a family of systems rather than a single system. Second, a feature model is

created for documenting variations among products of this family. Third, a specifica-

tion defines a mapping between the other two models. Although the development of

these tools incur a cost, the testing effort per product gets significantly reduced, which

reduces the overall cost of testing a product family. This cost reduction is achieved by

reusing the reference test model by automatically adapting it for different products.

We conducted two controlled experiments in industrial settings to evaluate the

effort reduction achieved with the use of our tool and approach. These experiments

confirmed with significant measurements that the overall cost is reduced. We observed

that the cost of initial investment can be amortized after the reuse of the reference

test model for a small number of products. The number of products for amortizing

costs turned out to be 13 and 11, as a result of the first and second experiments,

respectively.

As future work, more experiments can be performed in various contexts to be able

to further generalize the results. However, we should note that the cost of conducting

such experiments with real engineers/technicians is high.

31

APPENDIX A

DTV FEATURE AND TEST MODELS

32

(a) A part of the feature model
of the DTV product family.

(b) Feature selections for a sam-
ple DTV product.

Figure 7: A part of the feature model created for the DTV product family and some
of the feature selections regarding a product of this family [1].

33

F
ig

u
re

8
:

T
h
e

to
p
-l

ev
el

te
st

m
o
d
el

re
ga

rd
in

g
th

e
D

T
V

p
ro

d
u
ct

fa
m

il
y

[3
7]

.

34

F
ig

u
re

9
:

A
n

u
p

d
at

ed
te

st
(s

u
b
)m

o
d
el

re
ga

rd
in

g
th

e
D

T
V

G
U

I
st

at
es

[1
].

35

APPENDIX B

WAP TEST MODEL

36

F
ig

u
re

1
0
:

T
h
e

to
p
-l

ev
el

te
st

m
o
d
el

re
ga

rd
in

g
th

e
W

A
P

p
ro

d
u
ct

fa
m

il
y.

37

APPENDIX C

COLLECTED MEASUREMENTS DURING THE

EXPERIMENTS

38

Table 9: Measurements collected during the first experiment with DTV systems
as the experimental objects [37]; Subject ID (S#), effort for Manual updates (M),
Feature selection effort (F) and effort for automated updates performed with the Tool
(T), all in seconds.

Subject S1 S2 S3 S4 S5

Product F M T F M T F M T F M T F M T

P1 290 1800 10 390 2810 12 235 2160 11 307 3340 10 435 2750 11

P2 310 1750 7 270 2770 13 376 1850 11 350 3150 11 370 2360 12

P3 270 1780 9 310 2120 11 275 2890 9 410 2780 9 398 2270 11

P4 298 1900 8 370 2340 12 337 2160 8 315 2450 8 417 2900 10

P5 268 1860 8 280 1860 12 417 3550 13 320 2850 8 328 2550 8

P6 223 1650 9 307 2650 13 265 2160 12 415 2430 9 385 2470 9

P7 420 1800 9 310 1970 11 287 1850 11 385 2130 9 390 1850 11

P8 300 1860 10 340 2660 9 374 2890 10 370 2660 10 428 2290 10

P9 350 1950 6 290 2950 12 457 2160 11 420 2950 11 360 2580 12

P10 248 1890 10 405 2330 13 378 2550 9 335 2330 10 417 2860 11

Total 2977 18240 86 3272 24460 118 3401 24220 105 3627 27070 95 3928 24880 105

Subject S6 S7 S8 S9 S10

Product F M T F M T F M T F M T F M T

P1 369 3180 14 280 1920 9 420 2890 10 510 3480 15 390 3160 10

P2 357 3270 11 310 2150 11 380 2730 11 505 3570 13 420 3340 11

P3 448 3150 12 295 2280 10 390 2290 9 410 3290 17 380 2730 13

P4 435 2670 9 325 1840 10 320 2370 12 460 3470 14 375 3370 8

P5 425 3120 13 265 1970 8 425 2670 11 380 3680 15 460 2950 10

P6 375 3480 12 320 2050 9 410 2830 15 420 3550 11 525 2760 9

P7 427 3450 11 285 1930 8 380 2250 13 445 2950 16 420 2950 9

P8 268 2370 10 290 1980 10 370 3170 10 460 3280 17 395 2970 8

P9 345 2870 13 385 2250 8 440 2940 11 390 3190 16 450 3180 11

P10 463 2920 10 340 1950 10 360 3180 13 430 3360 13 490 2980 10

Total 3912 30480 115 3095 20320 93 3895 27320 115 4410 33820 147 4305 30390 99

39

T
a
b
le

1
0
:

M
ea

su
re

m
en

ts
co

ll
ec

te
d

d
u
ri

n
g

th
e

se
co

n
d

ex
p

er
im

en
t

w
it

h
W

A
P

sy
st

em
s

as
th

e
ex

p
er

im
en

ta
l

ob
je

ct
s;

S
u
b

je
ct

ID
(S

#
),

eff
or

t
fo

r
M

an
u
al

u
p

d
at

es
(M

),
F

ea
tu

re
se

le
ct

io
n

eff
or

t
(F

)
an

d
eff

or
t

fo
r

au
to

m
at

ed
u
p

d
at

es
p

er
fo

rm
ed

w
it

h
th

e
T

o
ol

(T
),

al
l

in
se

co
n
d
s. S
u
b

je
ct

S
1

S
2

S
3

S
4

S
5

P
ro

d
u
ct

F
M

T
F

M
T

F
M

T
F

M
T

F
M

T

P
1

27
5

21
00

10
39

4
36

50
12

32
4

31
10

13
30

7
38

70
13

63
8

47
50

14

P
2

28
1

25
70

11
53

0
37

70
13

37
6

28
60

15
44

0
35

50
14

57
6

43
20

16

P
3

27
6

29
10

13
41

2
47

40
14

31
3

36
90

11
45

8
37

40
12

69
8

49
70

16

P
4

34
8

21
60

12
51

3
52

00
12

33
9

26
70

14
33

5
46

10
12

68
7

58
10

15

P
5

27
9

28
60

15
51

9
57

40
16

39
7

35
70

13
52

1
49

30
13

62
9

50
50

21

T
ot

al
14

59
12

60
0

61
23

68
23

10
0

67
17

49
15

90
0

66
20

61
20

70
0

64
32

28
24

90
0

82

40

References

[1] C. S. Gebizli and H. Sozer, “Model-based software product line testing by cou-
pling feature models with hierarchical markov chain usage models,” in Proceed-
ings of the 6th IEEE International Workshop on Model-Based Verification and
Validation, (Vienna, Austria), pp. 278–283, 2016.

[2] G. Sivaraman, P. Csar, and P. Vuorimaa, “System software for digital televi-
sion applications,” in IEEE International Conference on Multimedia and Expo,
pp. 784–787, 2001.

[3] J. Boberg, “Early fault detection with model-based testing,” in Proc. of the 7th
ACM SIGPLAN workshop on ERLANG, pp. 9–20, 2008.

[4] K. Pohl, G. Bockle, and F. van der Linden, Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag, 2005.

[5] E. Engstrm and P. Runeson, “Software product line testing a systematic map-
ping study,” Information and Software Technology, vol. 53, no. 1, pp. 2 – 13,
2011.

[6] Q. A. Malik, A. Jskelinen, H. Virtanen, M. Katara, F. Abbors, D. Truscan, and
J. Lilius, “Model-based testing using system vs. test models - what is the differ-
ence?,” in Proceedings of the 17th IEEE International Conference and Workshops
on Engineering of Computer Based Systems, pp. 291–299, 2010.

[7] S. Weißleder and H. Lackner, “System models vs. test models -distinguishing the
undistinguishable?,” in Informatik 2010: Service Science - Neue Perspektiven für
die Informatik, Beiträge der 40. Jahrestagung der Gesellschaft für Informatik
e.V. (GI), Band 2, 27.09. - 1.10.2010, Leipzig, pp. 321–326, 2010.

[8] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based testing
approaches,” Softw. Test. Verif. Reliab., vol. 22, no. 5, pp. 297–312, 2012.

[9] A.Pretschner, Proceedings of the International Symposium of Formal Methods
Europe, ch. Model-Based Testing in Practice, pp. 537–541. Springer Berlin Hei-
delberg, 2005.

[10] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools Approach.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007.

[11] E. Dustin, J. Rashka, and J. Paul, Automated Software Testing: Introduction,
Management, and Performance. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1999.

[12] I. Schieferdecker, “Model-based testing,” IEEE Software, vol. 29, no. 1, pp. 14–
18, 2012.

41

[13] L. Briand and Y. Labiche, “A uml-based approach to system testing,” Software
and Systems Modeling, vol. 1, no. 1, pp. 10–42, 2002.

[14] T. Chow, “Testing software design modeled by finite-state machines,” IEEE
Transactions on Software Engineering 4, vol. 4, no. 3, pp. 178–187, 1978.

[15] F. Belli, A. T. Endo, M. Linschulte, and A. Simao, “A holistic approach to model-
based testing of web service compositions,” Software: Practice and Experience,
vol. 44, no. 2, pp. 201–234, 2014.

[16] D. Harel, “Statecharts: A visual formalism for complex systems,” Science of
Computer Programming, vol. 8, no. 3, pp. 231–274, 1987.

[17] J. Whittaker and M. Thomason, “A markov chain model for statistical software
testing,” IEEE Transactions on Software Engineering, vol. 20, no. 10, pp. 812–
824, 1994.

[18] J. Tretmans, Formal Methods for Eternal Networked Software Systems: 11th
International School on Formal Methods for the Design of Computer, Commu-
nication and Software Systems, SFM 2011, Bertinoro, Italy, June 13-18, 2011.
Advanced Lectures, ch. Model-Based Testing and Some Steps towards Test-Based
Modelling, pp. 297–326. Springer Berlin Heidelberg, 2011.

[19] F. Belli, “Finite state testing and analysis of graphical user interfaces,” in Pro-
ceedings of 12th International Symposium on Software Reliability Engineering,
ISSRE2001, pp. 34–43, 2001.

[20] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based testing
approaches,” Software Testing Verification and Reliability, vol. 22, no. 5, pp. 297–
312, 2012.

[21] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson, “Feature-
oriented domain analysis (foda) feasibility study,” tech. rep., Carnegie-Mellon
University Software Engineering Institute, 1990.

[22] D. Batory, “Feature models, grammars, and propositional formulas,” in Proc. of
the 9th International Conference on Software Product Lines, pp. 7–20, 2005.

[23] K. Czarnecki and A. Wasowski, “Feature diagrams and logics: There and back
again,” in 11th International Software Product Line Conference (SPLC 2007),
pp. 23–34, 2007.

[24] H. Lackner, M. Thomas, F. Wartenberg, and S. Weißleder, “Model-based test
design of product lines: Raising test design to the product line level,” in Proceed-
ings of the 7th IEEE International Conference on Software Testing, Verification
and Validation, pp. 51–60, 2014.

42

[25] H. Samih and R. Bogusch, “MPLM - matelo product line manager: [relating
variability modelling and model-based testing],” in Proceedings of the 18th Inter-
national Software Product Line Conference: Companion Volume for Workshops,
Demonstrations and Tools - Volume 2, pp. 138–142, 2014.

[26] S. Oster, A. Wbbeke, G. Engels, and A. Schrr, “A survey of model-based software
product lines testing,” in Model-Based Testing for Embedded Systems (J. Zander,
I. Schieferdecker, and P. Mosterman, eds.), pp. 339–383, CRC Press, 2012.

[27] A. Reuys, E. Kamsties, K. Pohl, and S. Reis, “Model-based system testing of
software product families,” in Proc. of the 17th International Conference on
Advanced Information Systems Engineering, pp. 519–534, 2005.

[28] E. Olimpiew and H. Gomaa, “Model-based test design for software product
lines,” in Proc. of the 12th Int. Conference on Software Product Lines, pp. 173–
178, 2008.

[29] H. Samih and R. Bogusch, “MPLM - MaTeLo product line manager: [relating
variability modelling and model-based testing],” in Proc. of the 18th Interna-
tional Software Product Line Conference: Companion Volume for Workshops,
Demonstrations and Tools - Volume 2, pp. 138–142, 2014.

[30] H. Samih, H. L. Guen, R. Bogusch, M. Acher, and B. Baudry, “Deriving usage
model variants for model-based testing: An industrial case study,” in Proc. of
the 19th International Conference on Engineering of Complex Computer Systems,
pp. 77–80, 2014.

[31] M. E. Dammagh and O. D. Troyer, “Feature modeling tools: Evaluation and
lessons learned,” in Advances in Conceptual Modeling. Recent Developments and
New Directions (O. De Troyer et al., ed.), vol. 6999 of Lecture Notes in Computer
Science, pp. 120–129, Springer Berlin Heidelberg, 2011.

[32] S. Oster, I. Zorcic, F. Markert, and M. Lochau, “MoSo-PoLiTe: tool support
for pairwise and model-based software product line testing,” in Proc. of the
5th Workshop on Variability Modeling of Software-Intensive Systems, pp. 79–82,
2011.

[33] H. Lackner, M. Thomas, F. Wartenberg, and S. Weissleder, “Model-based test
design of product lines: Raising test design to the product line level,” in Proc.
of the 7th IEEE International Conference on Software Testing, Verification and
Validation, pp. 51–60, 2014.

[34] C. Joye, “Matelo test case generation algorithms: Explanation on available al-
gorithms for test case generation,” 2014. http://www.all4tec.net/MaTeLo-How-
To/understanding-of-test-cases-generation-algorithms.html.

[35] T. Dyba, V. Kampenes, and D. Sjoberg, “A systematic review of statistical
power in software engineering experiments,” Information and Software Technol-
ogy, vol. 48, no. 8, pp. 745 – 755, 2006.

43

[36] C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell, and A. Wesslen, Ex-
perimentation in Software Engineering. Springer-Verlag, 2012.

[37] C. S. Gebizli, Automated Refinemet of Models for Model-Based Testing. PhD
thesis, Ozyegin University, 2017.

44

