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ABSTRACT

In this study, we consider a system of healthcare providers, which face the same

uncertain supply disruptions (e.g., regional, nationwide, or worldwide drug shortages).

Each hospital observes a stochastic demand and if demanded drug is unavailable,

patients leave and receive care in another hospital system. As these unavailabilities

hurt the brand value, hospital systems look for inventory sharing mechanisms among

hospitals to mitigate the effect of uncertain supply disruptions. We explore reactive

and proactive inventory sharing approaches by investigating how inventory related

parameters affect service levels.
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ÖZETÇE

Bu çalışmada, sağlık hizmeti sağlayan kurumlardan oluşan ve ilaç tedarik süreç-

lerinde bölgesel, ulusal veya global ölçekte kıtlıklar gözlemlenen bir sistem ele alın-

maktadır. Hastanelerdeki tedavi süreçleri kapsamında ortaya çıkan rassal ilaç ta-

lepleri, hastane sistemi dahilinde mevcut değilse, hastalar mevcut sistemden ayrılıp

başka bir hastane zincirinde taleplerini karşılamaktadırlar. İlaçların talep edildiği

anda elde bulunmama durumu hastane zincirlerinin marka değerlerine zarar verdiğin-

den dolayı, hastaneler ilaç kıtlıklarının etkilerini hafifleştirmek maksadıyla hastane

zinciri içerisinde stok paylaşımı mekanizmalarını etkin kullanmayı arzulamaktadırlar.

Bu çalışma dahilinde önetkin ve tepkisel stok paylaşımı politikaları altında envanter

yönetimine dair parametrelerin sistemin servis seviyesi üzerindeki etkileri incelenmek-

tedir.
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Chapter I

INTRODUCTION

Healthcare sector aims to improve society’s well-being, in contrast to the commercial

supply chains that aim to maximize profits. Impacts being significant, health expen-

ditures constitute around 10% of countries’ GDPs on average, with a market value

of $8.7 trillion [1]. Ranging from 26% to 53%, hospitals have the largest share in

healthcare expenditures [2]. It is estimated that hospitals spend between 10% and

18% of their budgets on inventory related investments [3], which makes it one of the

most important cost components for hospitals.

On the other hand, number of customers served, i.e., service level, is another mea-

sure that is at least as critical as the cost metric mentioned above for hospitals. A

high level of service is crucial in a healthcare system, because it represents the pro-

portion of people who is able to receive timely treatment. Moreover, drug shortages

are one of the obvious issues for healthcare systems, crippling the services provided to

incoming patients, and hospitals need to learn living with this fact. As of April 2018,

there are about 100 reported drug shortages in the U.S. [4]. These shortages plague

the hospital system in various procedures such as antibiotic treatments, chemother-

apy, pain medications in surgeries, etc. Some of the shortages have lasted from a few

weeks to several months and some have stocks completely depleted whereas others

brought inventories to critically low levels. Clearly, patients are able to receive drugs

one way or the other, but being unable to provide drugs in a timely manner within

a system has a negative impact on a healthcare system in terms of hospital chain’s

brand value. Stock transfers are the way to maintain a required service level while

lowering the inventory level, or increasing the number of customers served with the
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same amount of items kept in the inventory of a system [5]. Therefore, hospitals in

a healthcare system desiring to maintain at least a certain service level can achieve

their target service level by allowing transshipments.

However, hospitals’ inventory management practices are not in line with the stated

goals. It is known that hospitals manage their inventories not using sophisticated

methodical approaches, but simple procedures based on mostly intuition instead.

Our motivation for this study comes from the fact that any improvement in efficiency

within this area will have a direct effect on a human’s life in terms of improved

services, and on the healthcare system with the increase in number of people treated

and a better image in the public eye.
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Chapter II

LITERATURE REVIEW

We conducted an extensive literature review on inventory management in humanitar-

ian operations. A total of 45 studies in the literature are classified into pre-disaster

and post-disaster categories according to the time horizon considered in proposed

studies. Our main findings are summarized in Tables 1, 2, 3, 4, 5, and 6. Interested

readers can find further information on this study in [6].
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Balcik and Beamon [7] Global, Case Study (Earthquake) Stochastic > 1 - + - HO, beneficiaries 2
Bozkurt and Duran [8] Global, Case study (Sudden onset disasters) Stochastic > 1 - - - HO, suppliers, beneficiaries 3
Bozorgi-Amiri et al. [9] Regional, Case Study (Earthquake) Stochastic > 1 - + + HO, suppliers, beneficiaries 3
Campbell and Jones [10] Hypothetical Stochastic 1 - - + suppliers, beneficiaries 2

Chakravarty [11] Hypothetical Stochastic 1 - - - HO, suppliers, beneficiaries 3
Döyen et al. [12] Hypothetical (Earthquake) Stochastic > 1 - + - HO, beneficiaries 3
Duran et al. [13] Global, Case study (Sudden onset disasters) Stochastic > 1 - + - HO, suppliers, beneficiaries 3

Galindo and Batta [14] Case Study (Hurricane) Stochastic 1 - + + HO, beneficiaries 3
Garrido et al. [15] Hypothetical, Case Study (Flood) Stochastic > 1 - + - HO, supplier, beneficiaries 3
Hong et al. [16] Case Study (Hurricane) Stochastic 1 - + - HO, beneficiaries 2
Klibi et al. [17] Regional, Case Study (Natural disasters) Stochastic > 1 - + - HO, suppliers, beneficiaries 3

Lodree and Taskin [18] Hypothetical (Sudden onset disasters) Stochastic 1 - - - HO, beneficiaries 2
Manopiniwes et al. [19] Country, Case Study (Flood) Deterministic > 1 - + - HO, beneficiaries 2
Mete and Zabinsky [20] City, Case Study (Earthquake) Stochastic > 1 - + - HO, beneficiaries 2
Mohammadi et al. [21] City, Case Study (Earthquake) Stochastic > 1 - + - HO, beneficiaries 2

Noyan [22] Regional, Case Study (Hurricane) Stochastic > 1 - + + HO, beneficiaries 2
Paul and MacDonald [23] City, Case Study (Earthquake) Stochastic 1 - + + HO, beneficiaries 2

Rabbani et al. [24] Country, Case Study (Earthquake) Stochastic > 1 + + - HO, beneficiaries 2
Rawls and Turnquist [25] Regional, Case Study (Hurricane) Stochastic > 1 - + + HO, beneficiaries 2
Rawls and Turnquist [26] Regional, Case Study (Hurricane) Stochastic > 1 - + + HO, beneficiaries 2
Renkli and Duran [27] City, Case Study (Earthquake) Deterministic > 1 - + - HO, beneficiaries 2

Tofighi et al. [28] City, Case Study (Earthquake) Stochastic > 1 - + + HO, beneficiaries 3
Van Hentenryck et al. [29] Hypothetical (Hurricane) Stochastic 1 - + - HO, beneficiaries 2

Table 1: Problem aspects in pre-disaster inventory management.

With this literature review, we establish that there does not exist a study which

considers transshipment in a service level based approach in humanitarian operations,

which is a similar field to healthcare in terms of supply and demand characteristics.

There exist a number of studies in the area of inventory management for systems

considering transshipments. A review of these studies are presented in [5] and [52].
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Article Metrics/Objectives

Balcik and Beamon [7] [Max] Total expected demand covered
Cost of transporting supplies and locating facilities

Bozkurt and Duran [8] [Min] Expected average response time

Bozorgi-Amiri et al. [9]
[Min] Expected total costs (facility, ordering, transportation, transshipment, holding, shortage)
[Min] variability of the total cost
[Min] Sum of maximum shortage across items

Campbell and Jones [10] [Min] Expected total costs (ordering, restocking/disposal, transportation, shortage)

Chakravarty [11]
[Max] Buyer’s expected surplus
[Min] Expected ordering, holding, and transportation costs
[Min] Expected response time

Döyen et al. [12] [Min] Expected total costs (facility, holding, transportation, shortage)
Response time

Duran et al. [13] [Min] Expected average response time
Galindo and Batta [14] [Min] Expected total costs (facility, transportation, destroyed supplies)

Garrido et al. [15] [Min] Expected total costs (holding, transportation)
Probability of demand satisfaction

Hong et al. [16]
[Min] Expected total costs (facility, ordering)
Probability of satisfying demand within a target response time
Equity in demand satisfaction (in terms of fraction of demand satisifed)

Klibi et al. [17] [Min] Total shortage cost
Cost of locating facilities and holding inventory

Lodree and Taskin [18] [Min] Expected total cost (ordering, holding, shortage)

Manopiniwes et al. [19] [Min] Expected total costs (facility, holding, transportation)
Response time

Mete and Zabinsky [20] [Min] Expected total costs (facility, ordering, transportation, shortage)

Mohammadi et al. [21]
[Max] Total expected demand coverage
[Min] Expected total costs (facility, supply, transportation)
[Min] Maximum difference between demand nodes’ satisfaction rates (equity)

Noyan [22] [Min] Expected total costs (facility, holding, transportation, shortage)
Paul and MacDonald [23] [Min] Expected total costs (facility, ordering, fatalities)
Rabbani et al. [24] [Min] Expected total costs (facility, ordering, transportation, shortage, spoilage)
Rawls and Turnquist [25] [Min] Expected total costs (facility, holding, transportation, shortage)

Rawls and Turnquist [26] [Min] Expected total costs (facility, holding, transportation, shortage)
Probability of satisfying demand within a target response time

Renkli and Duran [27] [Min] Total weighted response time
Probability of satisfying demand

Tofighi et al. [28]

[Min] Expected total costs (facility, ordering, holding, transportation)
[Min] Total weighted response time
[Min] Maximum weighted response time (equity)
[Min] Shortage and surplus

Van Hentenryck et al. [29] [Min] Expected total costs (facility, inventory, transportation, shortage)

Table 2: Performance measures in pre-disaster inventory management studies.

Article Model Type Solution Approach
Balcik and Beamon [7] Two-stage stochastic programming Exact; Optimization solver
Bozkurt and Duran [8] Two-stage stochastic programming Exact; Optimization solver
Bozorgi-Amiri et al. [9] Robust optimization, two-stage stochas-

tic programming; Multi-objective opti-
mization

Exact; Optimization solver

Campbell and Jones [10] Stochastic programming Exact; Numerical techniques; Heuristic
Chakravarty [11] Stochastic optimization Exact; Numerical techniques
Döyen et al. [12] Two-stage stochastic programming Exact; Optimization solver; Heuristic; Lagrangean relaxation
Duran et al. [13] Two-stage stochastic programming Exact; Optimization solver
Galindo and Batta [14] Stochastic optimization Exact; Optimization solver
Garrido et al. [15] Stochastic programming; Chance-

constraints
Heuristic; Sample Average Approximation; Optimization solver

Hong et al. [16] Two-stage stochastic programming;
Chance-constraints

Exact; Optimization solver; Gale-Hoffman inequalities; Combinatorial
pattern-based method

Klibi et al. [17] Two-stage stochastic programming Exact; Optimization solver; Sample average approximation
Lodree and Taskin [18] Newsvendor model Exact; Numerical techniques; Mathematical computing software
Manopiniwes et al. [19] Mixed integer programming Exact; Optimization solver
Mete and Zabinsky [20] Two-stage stochastic programming Exact; Optimization solver
Mohammadi et al. [21] Two-stage stochastic programming;

Multi-objective optimization
Heuristic; Particle Swarm Optimization

Noyan [22] Two-stage stochastic programming; Con-
ditional Value-at-Risk

Exact; Optimization solver; Benders-decomposition algorithm

Paul and MacDonald [23] Stochastic optimization Heuristic; Evolutionary Algorithm; Newsvendor approach
Rabbani et al. [24] Two-stage stochastic programming Exact; Optimization solver
Rawls and Turnquist [25] Two-stage stochastic programming Exact; Optimization solver; Lagrangian L-shaped method
Rawls and Turnquist [26] Two-stage stochastic programming;

Chance-constraints
Exact; Optimization solver

Renkli and Duran [27] Mixed integer programming; Chance-
constraints

Exact; Optimization solver

Tofighi et al. [28] Two-stage possibilistic-stochastic pro-
gramming; Multi-objective optimization

Exact; Optimization solver; Heuristic; Tailored Differential Algorithm

Van Hentenryck et al. [29] Two-stage stochastic programming Exact; Optimization solver

Table 3: Methodological approaches in pre-disaster inventory management studies.
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Beamon and Kotleba [30] Case Study (Complex
emergency)

Stochastic backorder 1 - - - - HO, supplier, benefi-
ciaries

2

Beamon and Kotleba [31] Case Study (Complex
emergency)

Stochastic backorder 1 - - - - HO, supplier, benefi-
ciaries

2

Das and Hanaoka [32] Case Study (Earthquake) Stochastic lost > 1 - - - - HO, beneficiaries 2
McCoy and Brandeau [33] Case Study (Complex

emergency)
Stochastic lost 1 - - - - HO, supplier, benefi-

ciaries
2

Natarajan and Swaminathan [34] Hypothetical Stochastic backorder 1 - - - - HO, beneficiaries 2
Noyan et al. [35] City, Case Study (Earth-

quake)
Stochastic lost 1 - - + - HO, beneficiaries 3

Ozbay and Ozguven [36] Hypothetical Stochastic lost 1 - - + HO, supplier, benefi-
ciaries

2

Ozguven and Ozbay [37] Case Study (Hurricane) Stochastic lost > 1 + - + - HO, supplier, benefi-
ciaries

2

Rabbani et al. [24] Case Study (Earthquake) Stochastic backorder > 1 + - + - HO, beneficiaries 2
Roni et al. [38] Hypothetical Stochastic lost 1 - + - - HO, supplier, benefi-

ciaries
2

Roni et al. [39] Hypothetical Stochastic lost 1 - + - - HO, supplier, benefi-
ciaries

2

Rottkemper et al. [40] Country, Case Study
(Earthquake)

Stochastic backorder 1 - - - - HO, beneficiaries 2

Shen et al. [41] Case Study (Anthrax at-
tack)

Deterministic lost 1 + - - - Government, manu-
facturer

2

Yadavalli et al. [42] Hypothetical Stochastic lost > 1 + - + - HO, supplier, benefi-
ciaries

2

P
o
st

-

W
a
rn

in
g

Davis et al. [43] Regional, Case Study
(Hurricane)

Stochastic lost 1 - - + + Multiple HOs, benefi-
ciaries

2

Lodree and Taskin [44] Case Study (Hurricane) Stochastic lost 1 - + - - Manufacturer or re-
tailer, supplier

2

Lodree [45] Case Study (Hurricane) Deterministic lost 1 - + - - Retailer, supplier 2
Lodree et al. [46] Regional, Case Study

(Hurricane)
Stochastic lost 1 - - - - Manufacturer, retailer 2

Pacheco and Batta [47] Hypothetical (Hurricane) Stochastic lost 1 - - + + HO, beneficiaries 3
Rawls and Turnquist [48] Regional, Case Study

(Hurricane)
Stochastic lost > 1 - - + - HO, beneficiaries 2

Salas et al. [49] Case Study (Hurricane) Stochastic lost 1 + - - - HO, beneficiaries 2
Taskin and Lodree [50] Case Study (Hurricane) Stochastic lost 1 - + - - Manufacturer or re-

tailer, supplier
2

Taskin and Lodree [51] Case Study (Hurricane) Stochastic lost 1 - + - - Retailer, supplier 2

Table 4: Problem aspects in post-disaster/post-warning inventory management.

The literature can be classified into two categories according to timing of transship-

ments. Proactive transshipments allow the redistribution of stocks between retailers,

whereas reactive stock transfers occur only when a stockout is observed. We catego-

rize the studies similar to ours according to these streams of literature.

Managing transshipments proactively is a widely employed mechanism of handling

stock transfers within a system. Nasr et al. [53] consider a production environment

consisting of two locations, and random supply disruptions may be observed. Trans-

shipments are used in a way that when a shortage occurs in supplier, retailers adjust

their safety stock levels instantaneously once per shortage period by inventory shar-

ing to hedge against the risk of stockout, and they aim to determine these safety

stock levels. van Wijk et al. [54] analyze fractions of demand satisfied directly from a

retailers own stock, using transshipments, and emergency ordering, for a spare part

inventory system adopting continuous review policies and transshipment thresholds,

5



Article Metrics/Objectives
Beamon and Kotleba [30] [Min] Expected total costs (ordering, holding, backorder)

Beamon and Kotleba [31]
[Min] Expected total costs (ordering, holding, backorder)
Maximum proportion of emergency order cycles
Response time

Das and Hanaoka [32]
[Min] Expected total cost (fixed and variable ordering, inventory, shortage)
Expected relief shortage

Davis et al. [43]
[Min] Expected total costs (transportation, shortage, supply loss)
Equity in demand satisfaction (in terms of fraction satisifed)
Response time

Lodree and Taskin [44] [Min] Expected total costs (ordering, holding, shortage)
Lodree [45] [Min] Maximum total costs (ordering, holding)
Lodree et al. [46] [Min] Expected total costs (production, pre- and post- hurricane transportation, holding, shortage)

McCoy and Brandeau [33] [Min] Expected total response penalty (based on units of unsatisfied demand)
Inventory and shipment costs

Natarajan and Swaminathan [34] [Min] Expected total costs (ordering, holding, backorder)

Noyan et al. [35]
[Max] Expected total accessibility
Maximum response time (equity)
Equity in demand satisfaction (in terms of fraction of demand satisifed)

Ozbay and Ozguven [36] [Min] Expected total cost (inventory, shortage, surplus)
Probability of meeting demand

Ozguven and Ozbay [37] [Min] Expected total cost (inventory, shortage, surplus)
Probability of meeting demand

Pacheco and Batta [47] [Min] Expected total costs (facility, transportation, shortage, acquisition, destroyed supplies)
Rabbani et al. [24] [Min] Expected total costs (ordering, holding, backorder, shortage)

Rawls and Turnquist [48] [Min] Expected total costs (facility, holding, transportation, shortage)
Probability of demand satisfaction within a target response time

Roni et al. [38] [Min] Expected total costs (ordering, holding, shortage)
Roni et al. [39] [Min] Expected total costs (ordering, holding, shortage)
Rottkemper et al. [40] [Min] Expected total costs (facility, ordering, transportation, shortage)
Salas et al. [49] [Min] Expected total costs (ordering, variable, holding, shortage, disposal)
Shen et al. [41] [Min] Expected total costs (ordering, holding, variable, salvage)
Taskin and Lodree [50] [Min] Expected total costs (variable, holding, shortage)
Taskin and Lodree [51] [Min] Expected total costs (variable, holding, shortage)

Yadavalli et al. [42]

Average number of satisfied demands
Average number of lost demands
Average inventory level
Average number of substituted demands

Table 5: Performance measures in post-disaster/post-warning inventory management
studies.

Article Model Type / Policy Solution Approach
Beamon and Kotleba [30] Multi-supplier (Q, r) policy Exact; Numerical techniques
Beamon and Kotleba [31] Multi-supplier (Q, r) policy Exact; Numerical techniques; Heuristic; Silver Meal;

Simulation
Das and Hanaoka [32] (Q, r) policy Exact; Numerical techniques
Davis et al. [43] Two-stage stochastic programming Exact; Optimization solver
Lodree and Taskin [44] Newsvendor policy; Optimal stoping with Bayesian up-

dates
Exact; Dynamic programming algorithm; Mathematical
computing software & postwarning

Lodree [45] EOQ policy Exact; Numerical techniques & postwarning
Lodree et al. [46] Two-stage stochastic programming Exact; Optimization solver
McCoy and Brandeau [33] Base stock policy Exact; Dynamic programming; Numerical techniques;

Simulation
Natarajan and Swaminathan [34] Base stock policy Exact; Numerical techniques
Noyan et al. [35] Two-stage stochastic programming Exact; Optimization solver; Benders decomposition
Ozbay and Ozguven [36] Hungarian Inventory Control Model; Stochastic Pro-

gramming
Heuristic; pLEPs algorithm

Ozguven and Ozbay [37] Hungarian Inventory Control Model; Stochastic Pro-
gramming

Heuristic; pLEPs algorithm; Mathematical computing
software

Pacheco and Batta [47] Stochastic programming Exact; Optimization solver
Rabbani et al. [24] (Q, r) policy Exact; Numerical techniques; Fuzzy ranking method
Rawls and Turnquist [48] Two-stage stochastic programming Exact; Optimization solver
Roni et al. [38] (Q, r) policy Exact; Optimization solver; Mixed Integer Program-

ming; Level crossing method
Roni et al. [39] (Q, r) policy Heuristic; Tabu Search; Level crossing method
Rottkemper et al. [40] Mixed Integer Programming Exact; Optimization solver
Salas et al. [49] Newsvendor policy; Stochastic programming Exact; Optimization solver & postwarning
Shen et al. [41] Modified Economic Manufacturing Quantity policy Exact; Unconstrained optimization; Numerical tech-

niques
Taskin and Lodree [50] Multi-stage stochastic programming Exact; Optimization solver; Heuristic (scenario reduc-

tion)
Taskin and Lodree [51] Newsvendor policy with Bayesian updates Exact; Mathematical computing software & postwarning
Yadavalli et al. [42] Multi-item joint (s, S) replenishment policy Exact; Numerical techniques; Steady state analyses

Table 6: Methodological approaches in post-disaster/post-warning inventory man-
agement studies.

also considering the recovery rate for failed parts. Cheong [55] introduce a newsven-

dor model for multiple demand locations where proactive transshipments may occur
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immediately, and perishability of products is included. Feng et al. [56] develop a

periodic review base stock policy for a multi-location problem that considers perisha-

bility, where proactive transshipments are also permitted, and model it as a Markov

decision process. Hochmuth and Köchel [57] consider a similar setting, where retailers

adopt periodic review (s, S) policies for ordering, and continuous review policies for

transshipment decisions. They aim to find optimal variables for policies using simu-

lation. Zhao et al. [58] propose a queueing theory approach for a system consisting of

multiple retailers. Inventory level can both increase due to production and decrease

because of demand occurrence, both with Poisson rates, and retailers can request

transshipments even when they have a positive inventory. They aim to find optimal

maximum inventory levels and thresholds for requesting transshipments and accept-

ing transshipment requests. Tagaras and Vlachos [59] evaluates the performance of a

system with two locations, which replenish their inventories periodically, with respect

to redistribution of stock between the two locations, which may happen only once in

each of the replenishment periods.

There also exist studies that consider transshipments with a reactive approach.

Archibald et al. [60] introduce a periodic review policy using discrete time Markov

decision process for two retailers and one supplier, where they allow transshipments

and emergency orders at any time in a period. They extend this study to a multi-

location setting in [61]. Axsäter [62] defines a decision rule for transshipments between

retailers considering future costs and outstanding orders, of which arrival times are

known, within a system consisting of multiple retailers which utilize continuous review

policies. Minner and Silver [63] study a continuous review (R,Q) inventory system

with two identical retailers subject to Poisson demands, which can use transshipments

in case of a stockout until replenishments arrive. Ramakrishna et al. [64] develop a

Markov decision process to decide on periodic review policy parameters and whether

to accept a transshipment request according to time remaining for the replenishment.
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Herer and Rashit [65] evaluate a two-location single-period newsvendor model with

joint and fixed replenishment costs, and transshipments when required. Later in

[66], this study is extended by modeling it as a network flow problem. Paterson

et al. [67] adopt the policy presented in [62] to derive a transshipment rule that

behaves every reactive transshipment as a chance for proactive reallocation of current

inventory in the system. Glazebrook et al. [68] also consider the hybrid transshipment

policy in a periodically replenished system. In Grahovac and Chakravarty [69], a base

stock policy with a transshipment threshold is proposed, but transshipments are only

allowed when an emergency order cannot be received in time to meet the observed

demand. Olsson [70] propose a (Q,R) policy with reactive transshipments for a two

location system under exponentially distributed lead times.

The closest studies in the literature to our approach are papers proposing models

which consider service level in a system. Axsäter [71] proposes a continuous review

replenishment policy for a network consisting of multiple retailers, and transship-

ments between retailers is allowed only in one direction. Under normally distributed

demand, a non-linear approximation technique based on different fill rates for the

sources of demand satisfaction is developed for the problem, and their models results

are compared with a simulation study. Olsson [72] model the observed demand in

[71] as a Poisson process, and propose two models based on (S − 1, S) and (Q,R)

policies. Kukreja and Schmidt [73] investigate a system with multiple retailers at

demand locations and single supplier. Each of the retailers use continuous review

(s, S) policies, and complete inventory pooling between retailers is allowed. Under

stochastic demand parameters for retailers, they aim to measure the performance of

the system using simulation when inventory sharing is allowed while order quantities

are set as EOQ and reorder levels are adjusted iteratively.

It can be observed from aforementioned articles that among transshipment studies,

the most dominant metric is the cost incurred by considered systems, which consists
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of different components such as holding, transshipment, backordering, emergency

ordering, and lost sales costs. However, due to unique nature of healthcare systems,

the achieved service level is at least as much important as the operating cost of the

system. Therefore, with this study, we address this gap in the literature, and aim to

make meaningful observations regarding the service level of the system while keeping

the total cost incurred at a reasonable level.

To the best of our knowledge, there is no study that conducts service level based

analyses of proactive and reactive transshipment policies for continuous review base

stock inventory systems. There are a number of studies with uncertain lead times,

however, their results cannot be adapted for a system that observes shortages lead-

ing back-and-forth. Our objective in this study is to investigate the effect of different

partial pooling approaches on the service level for a healthcare system observing short-

ages, while deciding on optimal transshipment threshold levels of each hospital.

The rest of this chapter is organized as follows: The considered system is described

in further detail in Chapter 3. Proactive and reactive transshipment policies are

introduced in Chapter 4 and Chapter 5, respectively. A numerical study is presented

in Chapter 6 to measure the performance of our proposed methodology and to provide

managerial insights. We make our concluding remarks in Chapter 7.
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Chapter III

SYSTEM PROPERTIES AND KEY PERFORMANCE

INDICATORS

We consider the inventory of a healthcare system with multiple hospitals and a sin-

gle supplier. Hospitals’ inventories are replenished from the supplier according to a

continuous review (S, S − 1) base stock policy. We assume zero lead time for replen-

ishments, a commonly made assumption due to healthcare systems’ frequent replen-

ishment cycles (see e.g., [3], [74]). In general, hospitals are visited at least once a day

by suppliers for replenishments, if necessary. In other words, when a hospital places

an order, the delivery is usually made the same day (or next day in the worst case),

if the supplier has drugs in stock. However, the supplier is open to disruptions that

are stochastic in both duration and frequency, and hospitals need to hedge against

the risk of stock-out while a shortage for the supplier exists. Zero lead time helps

us ensure that at the beginning of a shortage period, hospitals’ inventory levels are

exactly equal to their order-up-to levels. Moreover, we assume that transshipments

occur instantaneously, which is widely accepted in the literature (see e.g., [75], [53]).

In practice, hospitals in a healthcare network do not determine their base stock

levels by utilizing complex mathematical inventory policies. Since a higher service

level is more desirable than operating with a lower holding cost in healthcare networks,

hospitals neglect the amount of holding cost they pay, and they stock as much drugs

as their inventory capacities can handle. Therefore, throughout this study, we do not

consider holding cost in our analyses, and we do not aim to make any observations or

conclusions regarding base stock policies. Neglecting holding cost helps us to establish

decision rules that consider the trade-off between movement of inventory on hand and
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hedging against the risk of potential lost sales.

In the literature, there are different approaches for inventory pooling, i.e., retailers’

allowed way of making stock transfers, namely complete and partial pooling policies.

As it can be understood from the names of these policies, these policies are defined

whether retailers share all or a part of their stocks. Complete pooling is a more

adequate policy for systems where holding and backordering costs are significantly

effective than transshipment costs [5], which would actually be very similar to the

case for the considered system if replenishments could be made regularly. However,

when shortages that are unknown in length and frequency are present in the system,

there is a trade-off for hospitals between assisting the hospital requesting the stock

transfer to satisfy its current demand and keeping inventory for its own potential

demand occurrences.

What hospitals actually desire is to keep infinitely many items in stock, so that

they never transship and never lose a customer, but this is virtually impossible.

In terms of service level, sharing inventory at its fullest is optimal, yet there are

costs associated with inventory pooling, and hospitals aim to keep related costs or

amount of stock transfers at least at a certain level. Therefore, for healthcare systems

observing shortages, it becomes a strategic decision to define the levels until which

transshipments are efficient for ensuring a certain service level within the system, and

this is the reason why we do not consider complete pooling in our study.

3.1 Sharing Mechanism

From this point on, we refer the levels that hospitals reject the transshipment requests

and keep their remaining inventories for their own potential demand occurrences as

transshipment thresholds. In addition, we assume that hospitals’ inventory levels are

totally visible to each other, so they exactly know which ones can make transshipments

when requesting a stock transfer. In line with our zero lead time replenishments, we
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assume transshipments can also be performed instantaneously as these times are

usually negligible in reality.

Within the scope of this study, we investigate two different partial pooling as-

sumptions:

• A proactive approach where hospitals request a stock transfer when they hit

their transshipment threshold. The request is granted by another hospital that

is above its transshipment threshold. That means, individual inventories above

transshipment thresholds are pooled, acting as a single entity. For prolonged

shortages, this ensures there exists a point in time where all hospitals are at

their thresholds. From that point on hospitals do not share inventory.

• A reactive approach in which hospitals request a stock transfer only when they

are out of stock. The request is granted by another hospital that is above its

transshipment threshold.

In the literature, studies considering supply unavailability and demand uncertainty

mostly utilize Markov chains, due to their interest in steady-state behavior of the

systems. However, in this study, we are interested in the service levels during shortage

periods that are non-recursive. Therefore, we use properties of Poisson processes and

exponential distributions to derive these probabilities.

3.2 Service Levels for Hospitals

In this study, we assume each patient arrival implies a demand. There is no arrival

placing a batch order as in a commercial supply chain. Therefore, the term service

level in this study indicates fill (service) rate. We focus on the following two types of

service levels in the sequel.
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3.2.1 Type I Service Level

For a hospital system, we define the Type I service level as the fill rate of the entire

system during shortage. That can be translated as the probability of satisfying a

patient demand during shortage. Formally, Type I service level during shortage is

defined as

αS = P (demand during shortage ≤ inventory on hand at the beginning of shortage period)

(1)

3.2.2 Type II Service Level

For a hospital system, we aim to describe the proportion of total demand that is

delivered without delay from stock on hand during shortage. As there is no lead time

for transshipments, we formally define the Type II service level during shortage as

βS = αS −
E[transshipments during shortage]

E[demand during shortage]
(2)

It should be noted that Type I and II service levels during shortage can be gener-

alized in a fairly straightforward way for the system in general. Fraction of shortage

durations can be computed depending on shortage and recovery rates. As both ser-

vice levels are 100% during a non-shortage period, general Type I (α) and Type II

(β) service levels can be computed using conditioning as follows:

α =
αS × shortage rate + recovery rate

shortage rate + recovery rate
(3)

β =
βS × shortage rate + recovery rate

shortage rate + recovery rate
(4)
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Chapter IV

PROACTIVE SHARING POLICY

For this part of the study, we concentrate on the proactive approach that allows

hospitals to make stock adjustments when they hit their individual transshipment

thresholds. Occurrence of a transshipment depends on two factors:

• The hospital requesting a transfer has an inventory level of exactly its transship-

ment threshold. In other words, a hospital makes a transfer request to ensure

a predetermined amount of safety stock on hand.

• There exists a hospital in the system with an inventory level above its threshold

to serve the hospital requesting the transfer.

In other words, hospitals in the network make transshipments to consume the

partially pooled inventory together at the beginning. When all of their inventory levels

become equal to their transshipment thresholds, they begin satisfying the observed

demand from their own inventories, if possible. Any unsatisfied demand becomes lost,

that is backordering is not allowed.

Let us introduce the following notation:

B: total base stock,

Bi: base stock level at hospital i,

N : number of hospitals in the system,

Ω: total safety stock,

γi: proportion of total safety stock for hospital i,
∑
γi = 1
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ωi: transshipment threshold for hospital i, ωi = γiΩ

Φ: total amount of pooled inventory,

φi: amount of inventory reserved for pooling at hospital i,

λi: demand rate for hospital i,

µ: recovery rate for shortage occurrences.

Hospital N

...

Safety Stock: Ω =
∑

i ωi

Pooled Inventory: Φ =
∑

i φi

B2

B1

ω1

ω2

ωN

φ1

φ2

φN
BN

Hospital 1 Hospital 2

Figure 1: Allocation of pooled inventory and safety stocks.

4.1 Inventory Parameters that Maximize Type I Service Level

We consider a system of N hospitals, each observing a Poisson distributed demand

with rate λi, and shortage durations are exponentially distributed with rate µ. Hos-

pitals regularly stock a total of B items, and their inventories are continuously re-

plenished according to a base stock policy. When a shortage is present, they reserve
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a total of Ω items, and 0 ≤ γi ≤ 1 is the proportion of safety stock held by hospital

i, where
∑

i γi = 1. During shortages, they consume the system’s inventory together

by making transshipments when needed, until all of their inventory levels become

their transshipment threshold, i.e., γiΩ,∀i. When all hospitals’ inventories reaches

respective thresholds, hospitals begin to satisfy any observed demand from their own

inventories. Any unsatisfied patient demand is assumed lost. This happens when

safety stocks are depleted as no more transshipments are allowed.

First, we formally define the equation for Type I service level as a function of

inventory variables.

Theorem 1. For a system of hospitals, given total base stock (B), total threshold

value (Ω), and proportion of each hospital in the total threshold (γi), Type I service

level is

αS = 1−

( ∑
j λj

µ+
∑

j λj

)B−Ω∑
i

(
λi

λi + µ

)γiΩ λi∑
j λj

.

It is easy to see that an increase in B increases the service level achieved. However,

since we aim to keep transshipments between hospitals at a certain level, we require

Ω to be a positive value. Then, the allocation of total threshold between hospitals

can be determined by finding the value for each γi that maximizes the service level

equation.

Corollary 1. As Ω decreases, for fixed B, Type I service level increases.

Proof of Corollary 1 is straightforward, and can be easily observed from Theorem

1. Therefore, it can be stated that optimal Type I service level is achieved when Ω

is zero. However, from Theorem 1, a conclusion on Type II service level cannot be

made.

Corollary 2. For a total base stock level of B, the best possible Type I service level

is attained under complete pooling, where

αmax
S = 1−

( ∑
j λj

µ+
∑

j λj

)B
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.

It should also be noted that for a total base stock level of B, the service level when

no transshipments are allowed is

αNo Transshipment
S = 1−

∑
i

(
λi

λi + µ

)γiB λi∑
j λj

.

Next, we present what optimal threshold levels should be for each individual

hospital.

Theorem 2. For a system of hospitals, given total threshold (Ω), in order to maximize

Type I service level, proportions of transshipment threshold for any two hospitals k

and m must hold the following equality:

γm ln

(
λm

µ+ λm

)
− γk ln

(
λk

µ+ λk

)
=

1

Ω
ln

 λk ln
(

λk
µ+λk

)
λm ln

(
λm

µ+λm

)


.

From Theorem (2), proportions of total threshold for each hospital i, γi, can be

found by solving a set of linear equations including
∑

i γi = 1.

4.2 Amount to Pool at Each Hospital that Maximize Type II
Service Level

After defining the service level for given base stocks and total threshold, the question

comes to how to determine the amount of inventory to be pooled. Knowing the

amounts to stock at each location while pooling inventory, allocation of total threshold

among hospitals can be made using Theorem 2.

In practice, hospitals proactively share their inventories for a predefined time

period from the beginning of a shortage occurrence. They begin to satisfy patient

demand from their own safety stocks if the shortage still continues when the sharing

period is over. Working it backwards, we can determine the number of items required

for a given sharing duration from the properties of Poisson process.
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Next, the allocation of pooled inventory among locations is to be decided in a way

that minimizes the expected number of transshipments in the system to maximize

efficiency. For this purpose, we first determine the expected total amount of demand

satisfied in any system given an inventory level.

Lemma 1. For a system with demand rate λ, recovery rate µ, and current inventory

level of I,

E[demand satisfied by the system] =
λ

µ

(
1−

(
λ

µ+ λ

)I)
Using Lemma 1, given the amount of inventory reserved for sharing, we can find

the total amount of demand satisfied by the system and by each hospital during

sharing period. Assuming that a hospital that transfers an item cannot request a

transshipment, we can calculate the expected total amount of demand satisfied by

the system using transshipments.

Theorem 3. For a system of i hospitals, expected amount of demand satisfied with

transshipments can be calculated as follows:

E[satisfied with transshipment] =
∑
i

λi
µ

( λi
µ+ λi

)φi
−

( ∑
j λj

µ+
∑

j λj

)Φ
 .

Theorem 4. The expected amount of demand satisfied from hospitals’ own invento-

ries, namely Type II service level, is calculated as follows:

β = 1−

( ∑
j λj

µ+
∑

j λj

)B−Ω∑
i

(
λi

λi + µ

)γiΩ λi∑
j λj
−
∑
i

λi∑
j λj

( λi
µ+ λi

)φi
−

( ∑
j λj

µ+
∑

j λj

)Φ
 .

Inventory levels in each location that minimize the expected number of transship-

ments can be found using Theorem (3).

Theorem 5. For a system of hospitals, in order to maximize Type II service level,

allocation of inventory pool at any two locations k and m must satisfy the equality:

φm ln

(
λm

µ+ λm

)
− φk ln

(
λk

µ+ λk

)
= ln

 λk ln
(

λk
µ+λk

)
λm ln

(
λm

µ+λm

)
 .
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Similar to allocation of safety stock among hospitals, inventory pool allocation

can be determined by solving a set of linear equations derived from Theorem (5).
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Chapter V

REACTIVE POLICY: WHAT LEVEL TO STOP

TRANSFERS

In this chapter, our aim is to derive a rule from a reactive perspective that hospitals

use while granting a transshipment request. For this part of the study, we assume that

during shortages, hospitals satisfy their observed demands from their own inventory,

until one of their stock levels becomes zero. After that point, the hospital with zero

inventory follows a reactive approach to fulfill the demand when observed. It can

either request a transshipment from the other hospital by incurring a penalty, or the

demand will be lost with a higher penalty. However, this situation raises the question

for the other hospital to share or not to share its inventory. If the request is granted

and that hospital’s inventory level also becomes zero before the current shortage

period ends, it will also have to incur a penalty cost for any excess demand that is

observed. In other words, the system would incur a higher amount of total penalty

due to the additional penalty for transshipments. On the other hand, if transshipment

request is not accepted and the hospital with stock has remaining inventory at the end

of the shortage period, it means that the system could have operated with a lower

amount of penalty. Therefore, there exist transshipment thresholds for hospitals,

under which one of the hospitals’ inventory sharing would actually increase the total

penalty incurred.

The following notations regarding parameters of the system should be noted:

δL: the amount of penalty incurred by the system when a patient is not served.

This can be considered as dispatching a patient from the hospital chain, and associated

loss of brand value.
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δT : the amount of penalty incurred when a patient demand is satisfied by a

transshipment from another hospital within the chain. This can be the monetary

cost of transshipment, loss of quality-adjusted life years (QALY) for the patient due

to lead time, etc.

It is assumed that δL > δT . Hospital i observes Poisson distributed demand, with

rate λi. In addition, shortage durations are exponentially distributed with rate µ.

Theorem 6. Threshold to transship for hospital i is

ωi = arg min
{x|x>log

δL−δT
δL

/ log
λi

λi+µ
}
x.

One of the most significant results obtained by the above theorem is, the threshold

for a hospital does not depend on the demand rate of the other hospitals. Moreover,

it is not linearly proportional with the demand rate of the considered hospital. We

provide the optimal values for a three hospital case under various δT/δL ratios in

Table 7.

Table 7: Hospitals’ threshold values for reactive policy (λ1 = 500, λ2 = 200, λ3 =
100)

δT/δL ω1 ω2 ω3

0.03 3 1 0
0.1 13 5 2
0.2 28 11 5
0.3 44 18 9
0.4 64 25 13
0.5 86 35 17
0.6 114 46 23
0.7 151 60 30
0.8 201 81 41
0.9 288 116 58
0.97 440 177 89

As it can be observed from Table 7, the thresholds are in favor of the hospital

with a larger demand rate when δT/δL is small. However, as expected, when δT/δL

increases, the system becomes more protective of hospitals with smaller demand rates.
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One other important insight is, when δT << δL, thresholds converge to zero. That

is, hospitals do not keep any safety stock, and apply complete pooling. However, it

can be stated with certainty that hospitals with larger demand rates incorporate a

complete pooling strategy under a smaller δT/δL ratio. This is also intuitive, due to

the fact that hospitals with larger demand rates desire to keep at least a part of their

inventories to their own, since they have a higher probability of observing a demand

occurrence before the shortage period ends.

22



Chapter VI

A CASE STUDY FOR PROACTIVE APPROACH

To measure the effects of system parameters on key performance indicators, αS and

βS, we obtained real life data about an antibacterial drug, Ceftriaxone, from Harris

Health System which is based in Houston. In addition, we aim to make observations

regarding amounts to be allocated as pooled inventories and transshipment thresh-

olds under different scenarios for demand, shortage duration, and total amount of

inventory.

According to the available data, the hospital chain consists of 2 hospitals and a

small clinic, namely Lyndon B. Johnson Hospital, Ben Taub Hospital, and Monroe

Clinic. These locations observe Poisson demand rates of 500, 200, and 100, respec-

tively. Shortage durations are exponentially distributed with mean of three months,

and the system generally carries an inventory level that is equal to the expected de-

mand for one year. To be able to provide extensive analyses for the considered system,

we evaluate the system under different values for each of the parameters related to

demand rates, shortage duration, and total inventory level. We measure Type I and

Type II service levels for different proportions of total amount of pooled inventory

within the total amount of inventory held, from 0 to 1, increasing with an increment

of 0.1. Scenarios for various combinations of parameters are obtained by both in-

creasing and decreasing demand rates for each hospital by 0.1, and changing shortage

duration rate and total amount of inventory held linearly. We present our results

regarding how optimal allocations change with respect to changes in demand rates,

shortage duration rate, and total amount of inventory in Appendix. With this study,

we provide guidelines on determining the allocation of total inventory, allocation of
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pools, and thresholds among hospitals.

We present to our results with respect to various combinations of λ1, λ2, λ3, µ,

years of inventory kept, and changing Φ/(Φ + Ω) combinations in Appendix B. First,

a comment can be made on the behavior of αS and βS. As it can be clearly seen

from the results, Type I service level increases with the amount of pooled inventory.

On the other hand, Type II service level is the highest when complete pooling and

no pooling policies are applied. Therefore, it can be concluded that for healthcare

systems observing shortage the best proactively pooling solution can be observed by

allowing hospitals to share their inventories its fullest in terms of both Type I and

Type II service levels.

Our analyses imply that optimal allocation of total amount of pooled inventory

and total amount reserved for thresholds are not linearly proportional with demand

rates of hospitals. Even though the optimal values become proportional with demand

rates when rounded for practical purposes, it cannot be stated that they are strictly

proportional.

Remark 1. Optimally allocated pooled inventories and safety stocks are not linearly

proportional with demand rates when the system observes supply shortages.

In addition, sensitivity of pool and threshold allocation differ with respect to

changes in proportion of total inventory left for pooling, total amount of inventory

held, and shortage duration parameters.

Remark 2. The allocation of inventory pool between hospitals is more sensitive to

changes in proportion Φ/(Φ + Ω) and the total amount stocked, whereas thresholds

divided between hospitals vary more with changing shortage duration rate.

Moreover, it can be observed that deviations of optimal allocations also vary

according to changes in shortage duration rate, demand rates, and total amount of
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inventory in the system. We first investigate how allocations vary with respect to

shortage duration rates.

Remark 3. An increase in shortage duration rate results in a higher deviation from

linear allocation in terms of both pooled inventory and total safety stock.

Then, we determine the deviations of pooled inventory and safety stocks from

linear proportion with the demand rate according to increasing years of inventory

held.

Remark 4. Increasing the total amount of inventory held in the system results in a

more deviated optimal distribution of total pool and total threshold than linear.

We also analyse the relationship between deviation of pool and threshold from

linear allocation with respect to increasing demand rates in hospitals.

Remark 5. Increasing demand rate linearly with linearly proportional total inven-

tory results in the allocations of both pool and threshold that are closer to a linear

distribution.

Furthermore, according to optimal allocations of inventory pool and total thresh-

old, effects of changes in shortage duration rate, total amount of inventory held, and

demand rates on Type I and Type II service levels can be observed. It can be noticed

from Tables 8, 12, 13, 14, and 15 that a linear increase in µ produces exponential rises

in both αS and βS. Likewise, as shown in Tables 8, 9, 10, and 11, as total amount of

inventory increases linearly, Type I and Type II service levels also grow exponentially.

These insights on µ and total amount of inventory can be observed from Figures 2

and 3, according to the best solution for each case.

Remark 6. Linearly increasing shortage duration rate (µ) increases Type II and Type

II service levels logarithmically.
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Figure 2: Type I and Type II service levels, respectively, with respect to shortage
duration rate (µ)
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Figure 3: Type I and Type II service levels, respectively, with respect to years of
inventory

Remark 7. Linearly increasing total amount of inventory kept at hospitals increase

Type I and Type II service levels logarithmically.

On the other hand, as it can be seen from Tables 8, 16, and 17, increasing demand

rates linearly generates linear increases in both of the service levels. The movements of

Type I and Type II service levels with linearly increasing demand rates are presented

in Figure 3

Remark 8. Linear increases in demand rates together with total amount of inventory

increase Type I and Type II service levels linearly.

We can also explain the relationship between shorter shortage durations with a
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Figure 4: Type I and Type II service levels, respectively, with respect to yearly total
demand rate (λ)

lower amount of total inventory and longer shortage durations with a higher total

inventory from tables (9) and (12).

Remark 9. Under a constant ratio between shortage duration (µ) and total amount

stocked, Type I and Type II service levels increase with higher µ and total inventory

levels.

Then, we focus on how optimal allocations for pool and threshold vary when

hospitals demand rates are far from being linearly proportional. For this purpose,

we compare the case presented in Table 8 with a new case in which λ1 = 1000,

λ2 = 100, λ3 = 10, µ = 4, and the system keeps an inventory that is exactly equal to

expected amount of yearly demand. Optimal allocations for the new case for complete

pooling and no pooling policies are presented in Table 18. As it can be observed from

these results, when the variance between hospitals’ demand rates increases, optimal

allocations for both pool and threshold in the system deviate more from linear. Even

for integer values, hospitals begin not to keep linearly proportional inventory levels,

and the system becomes more protective of hospitals with smaller demand rates.

Finally, we want to present a case that proves all of our remarks above. Therefore,

we extend the newly introduced case by changing µ = 8, the value of shortage duration

rate which is expected to create the maximum deviation from linear allocation. Our
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results in Table 19 show that the highest deviation from linear allocation is achieved

under the proposed case.

Remark 10. An increase in the variance between hospitals’ demand rates results in

higher deviations from linear allocation.
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Chapter VII

CONCLUSION

In this study, we analyze a healthcare system’s inventory allocation with respect

to expected demand satisfaction percentage and expected number of transshipments

during a shortage period that is uncertain in duration. We propose a proactive and

a reactive policy for allowing transshipments within the system.

In the light of our analyses, we are able to prove that inventory level for each

hospital is not directly proportional to the demand rate for a system observing supply

shortages, in contrast to the commonly adopted conjectures. We provide a numerical

study with real life data obtained from a hospital chain. As a result, it can be stated

that completely pooled inventories should be the followed approach when there is a

probability of shortage occurrence in a healthcare system, to maximize the percentage

of satisfied demand and the percentage of demand satisfied from each hospital’s own

inventories. In addition, this case study helps us to provide managerial insights

regarding sensitivity of inventory allocations and service levels obtained with respect

to different demand, shortage occurrence rates and amounts of total inventory held

in the system.

There exists potential research directions that requires further analyses to com-

pletely understand how such healthcare systems behave under shortages that are

uncertain in length and frequency are present. Within the scope of this study, we

assumed that transshipments occur one-by-one, but in reality, systems mostly desire

transshipments in bulk quantities. Therefore, decisions on transshipment quantities

in systems observing shortages is a point that is open to further investigation. An-

other issue that is worth to analyze deeper is the effect of transshipment lead time on
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performance metrics. The zero lead time assumption in this study can be extended

and system behavior under non-zero transshipment lead time can be evaluated.
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Appendix A

PROOFS OF THEOREMS AND LEMMAS

A.1 Proof for Theorem 1

It is known that N hospitals will consume B − Ω items together first. Then, they

will satisfy the observed demand from their own inventory. Any demand occurrence

at each of the hospitals after each of them reaches an inventory level of zero becomes

lost.

Random variable that denotes the time until next patient arrival in hospital i is

denoted by Ti, where Ti ∼ Exponential(λi). Random variable Td denotes the time

until next demand occurrence in the system and Td ∼ Exponential(
∑

j λj). W denotes

the time that it takes until the supplier becomes available and W ∼ Exponential(µ).

We define Ω as the total amount of transshipment thresholds, and the threshold

for hospital i is defined as γiΩ, where
∑

i γi = 1.

The total expected number of lost sales during a shortage can be written using

conditioning as follows:

E[L] = P (Td = min(Td,W ))B−Ω
∑
i

P (Ti = min(Ti,W ))γiΩE[arrivals with rate λi before shortage ends]

=

( ∑
j λj

µ+
∑

j λj

)B−Ω∑
i

(
λi

λi + µ

)γiΩ λi
µ

(5)

31



Service level, denoted by αS, can be calculated as follows:

αS = 1− E[L]

E[total demand during shortage]
= 1−

( ∑
j λj

µ+
∑
j λj

)B−Ω∑
i

(
λi

λi+µ

)γiΩ
λi
µ∑

j λj

µ

(6)

= 1−

( ∑
j λj

µ+
∑

j λj

)B−Ω∑
i

(
λi

λi + µ

)γiΩ λi∑
j λj

(7)

A.2 Proof of Theorem 2

We can get rid of the
∑

i γi = 1 constraint substituting N -th hospital’s threshold

with γN = 1 −
∑N−1

j=1 γi. Keeping in mind 0 ≤ γi ≤ 1 for all i, Type I service level

can be written as

αS = 1−

( ∑
j λj

µ+
∑

j λj

)B−Ω(N−1∑
i=0

(
λi

λi + µ

)γiΩ λi∑
j λj

)
+

(
λN

λN + µ

)(1−
∑N−1
j=1 γi)Ω λN∑

j λj

(8)

To find the optimal γi values, we find the Jacobian, where i-th entry is

∂αS
∂γi

=−

( ∑
j λj

µ+
∑

j λj

)B−Ω [
Ω ln

(
λi

λi + µ

)
λi∑
j λj

(
λi

λi + µ

)γiΩ
− Ω ln

(
λN

λN + µ

)
λN∑
j λj

(
λN

λN + µ

)(1−
∑N−1
j=1 γj)Ω ]

(9)

Equating Jacobian to zero yields the following condition for critical points:

λi ln

(
λi

λi + µ

)(
λi

λi + µ

)γiΩ
= λN ln

(
λN

λN + µ

)(
λN

λN + µ

)(1−
∑N−1
j=1 γj)Ω

∀i (10)

Therefore, for any two hospitals k and m, at the critical point we have

λk ln

(
λk

λk + µ

)(
λk

λk + µ

)γkΩ

= λm ln

(
λm

λm + µ

)(
λm

λm + µ

)γmΩ

(11)

which leads to

γm ln

(
λm

µ+ λm

)
− γk ln

(
λk

µ+ λk

)
=

1

Ω
ln

 λk ln
(

λk
µ+λk

)
λm ln

(
λm

µ+λm

)
 . (12)
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Next we use the Hessian to prove the concavity of the Type I service level function,

where

∂2αS
∂γ2

i

= −

( ∑
j λj

µ+
∑

j λj

)B−Ω Ω2

(
λi ln

2
(

λi
λi+µ

)(
λi

λi+µ

)γiΩ
+ λN ln2

(
λN

λN+µ

)(
λN

λN+µ

)(1−
∑N−1
j=1 γj)Ω

)
∑

j λj

(13)

and

∂2αS
∂γi∂γl

= −

( ∑
j λj

µ+
∑

j λj

)B−Ω Ω2

(
λN ln2

(
λN

λN+µ

)(
λN

λN+µ

)(1−
∑N−1
j=1 γj)Ω

)
∑

j λj
. (14)

It can be shown that at the critical point, all off-diagonal entries of the Hessian is a

negative constant, whereas the each diagonal entry depends on the individual demand

rates, yet definitely less than off-diagonal constants. It can be easily shown that all

eigenvalues of this matrix are negative, guaranteeing Hessian is negative definite and

αS is concave. Thus, the critical point is the global maximizer for αS.

A.3 Proof of Lemma 1

For a system with a demand rate of λ, a recovery rate of µ, and a total inventory

level of φ, expected amount of demand satisfied can be written as:

E[demand satisfied] =

φ−1∑
j=0

j × P (Demand = j) + φ× P (Demand ≥ φ)

=

φ−1∑
j=0

j

(
λ

µ+ λ

)j
µ

µ+ λ
+ φ

(
1−

φ−1∑
j=0

(
λ

µ+ λ

)j
µ

µ+ λ

)

=
µλ

(µ+ λ)2

φ−1∑
j=0

j

(
λ

µ+ λ

)j−1

+ φ− φ

(
1−

(
λ

µ+ λ

)φ)
. (15)

Knowing that

φ−1∑
j=0

jpj−1 =

φ−1∑
j=0

∂pj

∂p
=

∂

∂p

φ−1∑
j=0

pj =
∂

∂p

1− pφ

1− p
=
−φpφ−1(1− p) + 1− pφ

(1− p)2
, (16)
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expected amount of demand satisfied can be written as follows:

E[demand satisfied] =
µλ

(µ+ λ)2

−φ
(

λ
µ+λ

)φ−1 (
µ

µ+λ

)
+ 1−

(
λ

µ+λ

)φ
(

µ
µ+λ

)2 + φ− φ

(
1−

(
λ

µ+ λ

)φ)

=
λ

µ

(
1−

(
λ

µ+ λ

)φ)
(17)

A.4 Proof of Theorem 3

Let us introduce following notation for this part of the study: Let us introduce the

following notation:

D: amount of demand during shortage,

P : amount of demand satisfied from hospitals’ pooled inventories, φi, directly,

T : amount of demand satisfied with transshipments,

S: amount of demand satisfied from each hospital’s safety stock, γiΩ,

L: amount of unsatisfied demand.

For a system of hospitals, demand during shortage can be calculated as

E[D] = E[P ] + E[T ] + E[S] + E[L].

Alternatively, we can use

E[D] = E[P ] + E[T ].

From Lemma (1), since we know that

E[D] =

∑
i λi
µ

(
1−

( ∑
i λi

µ+
∑

i λi

)∑
i φi
)

and

E[P ] =
∑
i

λi
µ

(
1−

(
λi

µ+ λi

)φi)
,
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expected amount of demand satisfied with transshipment can be calculated as follows:

E[T ] =
∑
i

λi
µ

( λi
µ+ λi

)φi
−

( ∑
j λj

µ+
∑

j λj

)∑
j φj
 . (18)

A.5 Proof of Theorem 5

Type II service level can be maximized when expected number of transshipments

(E[T ]) is minimized because demand during shortage is not affected by the allocation

of pooled inventory. Thus, we can find the optimal allocation of inventory pool to

minimize the number of transshipments within the system by taking the derivative

of Equation (18) with respect to φi.

∂E[T ]

∂φi
=
λi
µ

ln

(
λi

µ+ λi

)(
λi

µ+ λi

)φi
−
∑

j λj

µ
ln

( ∑
j λj

µ+
∑

j λj

)( ∑
j λj

µ+
∑

j λj

)∑
j φj

(19)

Using (19), obtained Jacobian can be set to zero, which yields

λi ln

(
λi

µ+ λi

)(
λi

µ+ λi

)φi
=
∑
j

λj ln

( ∑
j λj

µ+
∑

j λj

)( ∑
j λj

µ+
∑

j λj

)∑
j φj

, (20)

where
∑

j φj = Φ. Therefore, for any two hospitals k and m, critical points for

allocated amounts of inventory from the pool to minimize expected number of trans-

shipments must hold the equality below:

λk ln

(
λk

µ+ λk

)(
λk

µ+ λk

)φk
= λm ln

(
λm

µ+ λm

)(
λm

µ+ λm

)φm
φm ln

(
λm

µ+ λm

)
− φk ln

(
λk

µ+ λk

)
= ln

 λk ln
(

λk
µ+λk

)
λm ln

(
λm

µ+λm

)
 (21)

A.6 Proof of Theorem 6

Assume that there are two hospitals in the system. For this part of the study, based

on the assumption regarding holding cost, we assume that both of the hospitals have

high levels of inventory at the beginning of the shortage period, which is stochastic
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in length. At some point during shortage period, one of the hospitals’ inventory is

totally consumed. From that point on, there begins the question of accepting the

transshipment request as demand occurs in the hospital with no inventory on hand.

When one of the hospitals observes a stock-out, the other one currently has X

items in the inventory, and ongoing shortage does not leave the system as the next

event occurrence, then there are two separate states to be analyzed, denoted by

Φ(X, 0) and Φarr(X, 0).

Φ(X, 0): Expected total loss in quality of care for the system (e.g., cost, lead time

etc.) if the next event in the system is demand occurrence for the first hospital, when

there are X items in first hospital’s inventory.

Φarr(X, 0): Expected total loss in quality of care for the system if the next event

in the system is demand occurrence at the second hospital, when there are X items

in first hospital’s inventory.

Random variable that denotes the time until next patient arrival in hospital i is

denoted by Ti, where Ti ∼ Exponential(λi), i = 1, 2. W denotes the time that it takes

until the drug becomes available through regular supplier and W ∼ Exponential(µ).

If the next event in the system is demand occurrence at the first hospital, the

expected total cost from this point until the end of shortage period can be calculated

as follows:

Φ(X, 0) =P (T1 = min(T1, T2,W ))× Φ(X − 1, 0) + P (T2 = min(T1, T2,W ))× Φarr(X, 0)

+ P (W = min(T1, T2,W ))× 0

=
λ1

λ1 + λ2 + µ
× Φ(X − 1, 0) +

λ2

λ1 + λ2 + µ
× Φarr(X, 0) (22)

If the next event in the system is demand occurrence at the second hospital, since

its inventory level is currently zero, the observed demand is either satisfied with

transshipments or lost. Minimum of these two options is selected as the action taken

in this state, and expected total cost from this point until the end of shortage period
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can be written in terms of Φ(X, 0), Φarr(X, 0) can be written as follows:

Φarr(X, 0) = min(δT + Φ(X − 1, 0), δL + Φ(X, 0)) (23)

Therefore, Φ(X, 0) for the states in which transshipment is used to cover the demand

of hospital with no inventory can be written as:

Φ(X, 0) =
λ1

λ1 + λ2 + µ
Φ(X − 1, 0) +

λ2

λ1 + λ2 + µ
(δT + Φ(X − 1, 0))

Φ(X, 0) =
λ1 + λ2

λ1 + λ2 + µ
Φ(X − 1, 0) +

λ2

λ1 + λ2 + µ
δT (24)

On the other hand, Φ(X, 0) for the states in which losing the observed patient demand

in the hospital with zero inventory level can be written as:

Φ(X, 0) =
λ1

λ1 + λ2 + µ
Φ(X − 1, 0) +

λ2

λ1 + λ2 + µ
(δL + Φ(X, 0))

Φ(X, 0) =
λ1

λ1 + µ
Φ(X − 1, 0) +

λ2

λ1 + µ
δL (25)

Expected total cost of the system after both of the hospitals’ inventory levels reach

zero, Φ(0, 0), can be expressed as:

Φ(0, 0) = δL × E[number of arrivals with rate λ1 + λ2 within W ]

= δL
λ1 + λ2

µ
(26)

This is due to memoryless property of Ti, i = 1, 2 and W and the following:

E[number of arrivals with rate λ1+λ2 within W ] =
λ1 + λ2

λ1 + λ2 + µ
(1+E[number of arrivals with rate λ1+λ2 within W ])

Computation of Φarr(0, 0) is fairly easy as there is no decision to be made, but losing

the patient demand, thus

Φarr(0, 0) = δL + Φ(0, 0) = δL
λ1 + λ2 + µ

µ
. (27)

Using equation (27), Φ(0, 0) can be verified as

Φ(0, 0) =
λ1

λ1 + λ2 + µ
× (δL + Φ(0, 0)) +

λ2

λ1 + λ2 + µ
× Φarr(0, 0)
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Φ(0, 0) =
λ1

λ1 + λ2 + µ
× (δL + Φ(0, 0)) +

λ2

λ1 + λ2 + µ
× (δL + Φ(0, 0))

λ1 + λ2

λ1 + λ2 + µ
δL =

µ

λ1 + λ2 + µ
Φ(0, 0)

Φ(0, 0) =
λ1 + λ2

µ
δL

In fact, it can be assumed that if a hospital decides not to make a transshipment

at an inventory level, it also will not accept any transshipment requests below that

inventory level.

Since each of the states include the probability that shortage will be over before

a demand occurs in hospitals one or two, states’ costs can be seen as a decreasing

function with a decreasing rate, when losing the patient demand is the chosen option.

At some point, the cost will start to increase, so hospitals will begin to use transship-

ments from that point. We would like to find the transshipment threshold, Ω, as the

inventory level described above. In order to find the transshipment threshold, we use

equation (24) for states where transshipment is preferred and (25) for states where

lost demand is preferred. To summarize Ω should satisfy:

• The patient demand should be lost when Ω items are on hand

• Transshipment should be preferred when Ω + 1 items are on hand

Therefore, for the transshipment threshold, the inequalities below must hold:

λ1 + λ2

λ1 + λ2 + µ
Φ(Ω− 1, 0) +

λ2

λ1 + λ2 + µ
δT >

λ1

λ1 + µ
Φ(Ω− 1, 0) +

λ2

λ1 + µ
δL (28)

λ1 + λ2

λ1 + λ2 + µ
Φ(Ω, 0) +

λ2

λ1 + λ2 + µ
δT <

λ1

λ1 + µ
Φ(Ω, 0) +

λ2

λ1 + µ
δL. (29)

Using inequalities (28) and (29), lower and upper bounds for Φ(Ω−1, 0) can be found,

respectively. For the lower bound:

λ1 + λ2

λ1 + λ2 + µ
Φ(Ω− 1, 0)− λ1

λ1 + µ
Φ(Ω− 1, 0) >

λ2

λ1 + µ
δL −

λ2

λ1 + λ2 + µ
δT

Φ(Ω− 1, 0) >
λ1 + µ

µ
(δL − δT ) +

λ2

µ
δL (30)
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For the upper bound:

λ2

λ1 + µ
δL −

λ2

λ1 + λ2 + µ
δT >

λ1 + λ2

λ1 + λ2 + µ
Φ(Ω, 0)− λ1

λ1 + µ
Φ(Ω, 0)

λ1 + µ

µ
(δL − δT ) +

λ2

µ
δL > Φ(Ω, 0)

As we know losing patient demands is preferred when Ω items are on hand, we use

(25) and obtain

λ1 + µ

µ
(δL − δT ) +

λ2

µ
δL >

λ1

λ1 + µ
Φ(Ω− 1, 0) +

λ2

λ1 + µ
δL

(λ1 + µ)2

λ1µ
(δL − δT ) +

λ2

µ
δL > Φ(Ω− 1, 0) (31)

Knowing that the hospital with an inventory level of X will not share inventory below

that level, a closed-form equation for Φ(X, 0) can be written:

Φ(X, 0) =
λ1

λ1 + µ
Φ(X − 1, 0) +

λ2

λ1 + µ
δL

=
λ1

λ1 + µ

(
λ1

λ1 + µ
Φ(X − 2, 0) +

λ2

λ1 + µ
δL

)
+

λ2

λ1 + µ
δL

=

(
λ1

λ1 + µ

)X
Φ(0, 0) +

λ2

λ1 + µ
δL

X−1∑
i=0

(
λ1

λ1 + µ

)

=

(
λ1

λ1 + µ

)X
Φ(0, 0) +

λ2

λ1 + µ
δL

1−
(

λ1

λ1+µ

)X
1−

(
λ1

λ1+µ

)
=
λ1 + λ2

µ
δL

(
λ1

λ1 + µ

)X
+
λ2

µ

(
1−

(
λ1

λ1 + µ

)X)
δL

=
λ1

µ
δL

(
λ1

λ1 + µ

)X
+
λ2

µ
δL (32)

Using (30), (31), and (32) the transshipment threshold Ω can be computed as the

smallest integer that satisfies

λ1 + µ

µ
(δL − δT ) +

λ2

µ
δL <

λ1

µ
δL

(
λ1

λ1 + µ

)Ω−1

+
λ2

µ
δL <

(λ1 + µ)2

λ1µ
(δL − δT ) +

λ2

µ
δL
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which, after simple algebra, gives the following condition:

δL − δT
δL

<

(
λ1

λ1 + µ

)Ω

<
λ1 + µ

λ1

× δL − δT
δL

(33)

ω1 = arg min
{x|x>log

δL−δT
δL

/ log
λ1

λ1+µ
}
x (34)

Knowing that only λi and µ effects the threshold value, it can be defined for each of

the hospitals in a multi-hospital setting.
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Appendix B

RESULTS FOR NUMERICAL STUDY

Φ/(Φ + Ω) φ1 φ2 φ3 γ1Ω γ2Ω γ3Ω αS βS Exp. Tr.
0 0 0 0 498.2747402 200.4951257 101.2301341 0.981132857 0.981132857 0
10 50.26309021 19.92533119 9.811578606 448.4473812 180.4455803 91.1070385 0.981169989 0.979856204 0.262757026
20 100.0905098 39.97485928 19.93463095 398.6200372 160.3960307 80.98393208 0.981207047 0.979435961 0.354217276
30 149.9179293 60.02438737 30.0576833 348.7927149 140.3464749 70.86081021 0.981244033 0.979457599 0.357286898
40 199.7453489 80.07391546 40.18073564 298.965425 120.2969098 60.73766517 0.981280946 0.979680189 0.320151381
50 249.5727685 100.1234436 50.30378799 249.138187 100.24733 50.61448304 0.981317786 0.979973374 0.268882491
60 299.400188 120.1729716 60.42684033 199.3110397 80.19772425 40.49123602 0.981354554 0.980270727 0.216765314
70 349.2276076 140.2224997 70.54989268 149.484074 60.14806679 30.36785923 0.98139125 0.980541828 0.169884386
80 399.0550272 160.2720278 80.67294502 99.65756207 40.09827995 20.24415798 0.981427874 0.980775774 0.130419985
90 448.8824467 180.3215559 90.79599737 49.83286545 20.04797563 10.11915892 0.981464428 0.980971647 0.098556064
100 498.7098663 200.371084 100.9190497 0 0 0 0.9815009 0.981133119 0.073556174

Table 8: λ1 = 500, λ2 = 200, λ3 = 100, µ = 4, Inventory=1 year

Φ/(Φ + Ω) φ1 φ2 φ3 γ1Ω γ2Ω γ3Ω αS βS Exp. Tr.
0 0 0 0 124.5707273 50.12319924 25.30607349 0.629382027 0.629382027 0
10 12.89252553 4.888185118 2.219289347 112.1141144 45.11074822 22.77513737 0.629564516 0.629131268 0.086649522
20 25.34938043 9.900567141 4.750052433 99.65756207 40.09827995 20.24415798 0.629746917 0.628951084 0.159166484
30 37.80623532 14.91294916 7.280815519 87.20109617 35.08578704 17.71311679 0.629929229 0.628843383 0.217169369
40 50.26309021 19.92533119 9.811578606 74.74475993 30.07325716 15.1819829 0.630111456 0.62879767 0.262757026
50 62.7199451 24.93771321 12.34234169 62.28863116 25.06066815 12.65070069 0.630293597 0.628804792 0.297760922
60 75.17679999 29.95009523 14.87310478 49.83286545 20.04797563 10.11915892 0.630475657 0.628856772 0.323776967
70 87.63365488 34.96247726 17.40386786 37.37782585 15.03507612 7.58709803 0.630657644 0.628946675 0.342193704
80 100.0905098 39.97485928 19.93463095 24.92460155 10.02165912 5.053739329 0.630839583 0.629068496 0.354217276
90 112.5473647 44.9872413 22.46539404 12.47863842 5.006172178 2.515189399 0.631021595 0.629217128 0.360893517
100 125.0042196 49.99962332 24.99615712 0 0 0 0.631202771 0.629387134 0.363127503

Table 9: λ1 = 500, λ2 = 200, λ3 = 100, µ = 4, Inventory=0.25 year

Φ/(Φ + Ω) φ1 φ2 φ3 γ1Ω γ2Ω γ3Ω αS βS Exp. Tr.
0 0 0 0 249.138187 100.24733 50.61448304 0.86264229 0.86264229 0
10 25.34938043 9.900567141 4.750052433 224.2245982 90.22253142 45.55287035 0.862777521 0.861981688 0.159166484
20 50.26309021 19.92533119 9.811578606 199.3110397 80.19772425 40.49123602 0.862912619 0.861598834 0.262757026
30 75.17679999 29.95009523 14.87310478 174.3975244 70.17290476 35.4295708 0.863047584 0.861428699 0.323776967
40 100.0905098 39.97485928 19.93463095 149.484074 60.14806679 30.36785923 0.863182417 0.861411331 0.354217276
50 125.0042196 49.99962332 24.99615712 124.5707273 50.12319924 25.30607349 0.863317119 0.861501481 0.363127503
60 149.9179293 60.02438737 30.0576833 99.65756207 40.09827995 20.24415798 0.863451689 0.861665255 0.357286898
70 174.8316391 70.04915142 35.11920947 74.74475993 30.07325716 15.1819829 0.86358613 0.861877484 0.341729097
80 199.7453489 80.07391546 40.18073564 49.83286545 20.04797563 10.11915892 0.863720446 0.862119689 0.320151381
90 224.6590587 90.09867951 45.24226181 24.92460155 10.02165912 5.053739329 0.863854661 0.862378496 0.295233064
100 249.5727685 100.1234436 50.30378799 0 0 0 0.863988604 0.862644192 0.268882491

Table 10: λ1 = 500, λ2 = 200, λ3 = 100, µ = 4, Inventory=0.5 year

Φ/(Φ + Ω) φ1 φ2 φ3 γ1Ω γ2Ω γ3Ω αS βS Exp. Tr.
0 0 0 0 373.7063728 150.3712537 75.92237347 0.949092756 0.949092756 0
10 37.80623532 14.91294916 7.280815519 336.3358889 135.3340846 68.33002653 0.949167915 0.948082068 0.217169369
20 75.17679999 29.95009523 14.87310478 298.965425 120.2969098 60.73766517 0.949242964 0.947624079 0.323776967
30 112.5473647 44.9872413 22.46539404 261.59499 105.2597268 53.14528321 0.949317902 0.947513435 0.360893517
40 149.9179293 60.02438737 30.0576833 224.2245982 90.22253142 45.55287035 0.94939273 0.947606295 0.357286898
50 187.288494 75.06153344 37.64997255 186.8542756 75.18531635 37.96040805 0.949467447 0.947809924 0.331504615
60 224.6590587 90.09867951 45.24226181 149.484074 60.14806679 30.36785923 0.949542055 0.948065889 0.295233064
70 262.0296234 105.1358256 52.83455107 112.1141144 45.11074822 22.77513737 0.949616553 0.948338535 0.255603605
80 299.400188 120.1729716 60.42684033 74.74475993 30.07325716 15.1819829 0.949690943 0.948607116 0.216765314
90 336.7707527 135.2101177 68.01912959 37.37782585 15.03507612 7.58709803 0.949765231 0.948860484 0.180949337
100 374.1413174 150.2472638 75.61141885 0 0 0 0.949839374 0.949093462 0.149182495

Table 11: λ1 = 500, λ2 = 200, λ3 = 100, µ = 4, Inventory=0.75 year
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Φ/(Φ + Ω) φ1 φ2 φ3 γ1Ω γ2Ω γ3Ω αS βS Exp. Tr.
0 0 0 499.5645785 200.1245476 100.3108738 0.63143208 0.63143208 0

10 50.39344319 19.88767289 9.718883921 449.608236 180.1120599 90.27970407 0.631477973 0.63136609 0.089506222
20 100.3498464 39.90014325 19.75001034 399.6519087 160.0995679 80.24852344 0.631523861 0.631320634 0.162581192
30 150.3062496 59.91261361 29.78113675 349.695603 140.0870697 70.21732733 0.631569743 0.631293548 0.220956011
40 200.2626529 79.92508397 39.81226317 299.7393298 120.0745622 60.18610799 0.631615619 0.631282163 0.266764976
50 250.2190561 99.93755433 49.84338958 249.7831087 100.0620398 50.15485147 0.631661489 0.631284153 0.301869467
60 300.1754593 119.9500247 59.874516 199.8269786 80.04949145 40.1235299 0.631707354 0.631297491 0.327890538
70 350.1318625 139.9624951 69.90564241 149.8710307 60.03689109 30.09207823 0.631753214 0.631320417 0.346237794
80 400.0882658 159.9749654 79.93676883 99.91553795 40.02416074 20.06030131 0.631799069 0.6313514 0.358134936
90 450.044669 179.9874358 89.96789524 49.96186622 20.01091039 10.02722338 0.63184492 0.631389117 0.364642371
100 500.0010722 199.9999061 99.99902166 0 0 0 0.631890754 0.631432407 0.366677194

Table 12: λ1 = 500, λ2 = 200, λ3 = 100, µ = 1, Inventory=1 year
Φ/(Φ + Ω) φ1 φ2 φ3 γ1Ω γ2Ω γ3Ω αS βS Exp. Tr.

0 0 0 0 499.1316477 200.2486606 100.6196917 0.863651611 0.863651611 0
10 50.34969193 19.90028551 9.750022556 449.2185982 180.2237617 90.55764018 0.863719253 0.863315678 0.161429762
20 100.2628021 39.92516715 19.81203072 399.3055638 160.1988584 80.49557785 0.863786861 0.863123322 0.265415621
30 150.1759123 59.95004878 29.87403889 349.392551 140.1739489 70.43350004 0.863854436 0.863038169 0.326506862
40 200.0890225 79.97493042 39.93604705 299.4795708 120.1490302 60.37139902 0.863921978 0.863029933 0.356817996
50 250.0021327 99.99981205 49.99805522 249.5666425 100.1240967 50.30926086 0.863989486 0.863075774 0.365484557
60 299.9152429 120.0246937 60.06006338 199.6538051 80.09913717 40.24705771 0.86405696 0.863158599 0.359344385
70 349.8283531 140.0495753 70.12207155 149.7411497 60.07412575 30.18472456 0.864124402 0.863265727 0.34346993
80 399.7414633 160.074457 80.18407971 99.82894904 40.04898454 20.12206642 0.864191811 0.863387853 0.32158316
90 449.6545735 180.0993386 90.24608788 49.91856747 20.02332418 10.05810835 0.864259191 0.863518246 0.296378136
100 499.5676837 200.1242202 100.308096 0 0 0 0.86432652 0.863652092 0.269771084

Table 13: λ1 = 500, λ2 = 200, λ3 = 100, µ = 2, Inventory=1 year
Φ/(Φ + Ω) φ1 φ2 φ3 γ1Ω γ2Ω γ3Ω αS βS Exp. Tr.

0 0 0 0 497.4295156 200.7392628 101.8312216 0.997351116 0.997351116 0
10 50.17766393 19.9501395 9.872196568 447.6866788 180.6653038 91.64801738 0.997362744 0.994954527 0.321095659
20 99.92056115 40.02408126 20.0553576 397.9438571 160.5913406 81.46480236 0.997374321 0.994709874 0.355259627
30 149.6634584 60.09802301 30.23851863 348.2010569 140.5173712 71.28157192 0.997385848 0.99518008 0.294102307
40 199.4063556 80.17196476 40.42167966 298.4582891 120.4433926 61.09831834 0.997397323 0.995775118 0.216294091
50 249.1492528 100.2459065 50.60484069 248.715573 100.3693993 50.91502774 0.997408749 0.996290541 0.149094338
60 298.89215 120.3198483 60.78800172 198.9729475 80.29538013 40.73167236 0.997420124 0.996680246 0.098650379
70 348.6350472 140.39379 70.97116275 149.2305032 60.22130942 30.54818741 0.99743145 0.996955529 0.063456129
80 398.3779444 160.4677318 81.15432378 99.48851172 40.14710974 20.36437853 0.997442725 0.997142852 0.039983068
90 448.1208417 180.5416735 91.33748481 49.7483318 20.07239423 10.17927397 0.997453953 0.997267963 0.024798639
100 497.8637389 200.6156153 101.5206458 0 0 0 0.997465127 0.997351197 0.015190664

Table 14: λ1 = 500, λ2 = 200, λ3 = 100, µ = 6, Inventory=1 year
Φ/(Φ + Ω) φ1 φ2 φ3 γ1Ω γ2Ω γ3Ω αS βS Exp. Tr.

0 0 0 0 496.5956778 200.9810962 102.423226 0.99962276 0.99962276 0
10 50.09338344 19.974713 9.931903563 446.9362245 180.882954 92.18082146 0.999625677 0.996134241 0.349143631
20 99.75289699 40.07283804 20.17426497 397.2767863 160.7848076 81.93840615 0.999628572 0.996455133 0.317343879
30 149.4124105 60.17096309 30.41662637 347.6173696 140.686655 71.69597545 0.999631444 0.997473167 0.21582771
40 199.0719241 80.26908814 40.65898778 297.9579852 120.5884932 61.45352164 0.999634295 0.998330283 0.130401176
50 248.7314376 100.3672132 50.90134918 248.2986524 100.4903167 51.21103088 0.999637123 0.998898661 0.073846243
60 298.3909512 120.4653382 61.14371059 198.63941 80.39211453 40.96847544 0.999639929 0.99923851 0.040141936
70 348.0504647 140.5634633 71.386072 148.9803484 60.29386093 30.72579064 0.999642714 0.999430582 0.021213247
80 397.7099783 160.6615883 81.6284334 99.32173878 40.19547877 20.48278245 0.999645477 0.999535666 0.010981087
90 447.3694918 180.7597134 91.87079481 49.66493692 20.0965824 10.23848068 0.999648219 0.999592265 0.005595441
100 497.0290054 200.8578384 102.1131562 0 0 0 0.999650939 0.99962278 0.002815931

Table 15: λ1 = 500, λ2 = 200, λ3 = 100, µ = 8, Inventory=1 year
Φ/(Φ + Ω) φ1 φ2 φ3 γ1Ω γ2Ω γ3Ω αS βS Exp. Tr.

0 0 0 0 548.2725261 220.4955661 111.2319078 0.981183161 0.981183161 0
10 55.26303885 21.92530159 10.81165957 493.4453781 198.4459797 100.1086423 0.981216876 0.980020347 0.263236489
20 110.0902419 43.97487232 21.93488575 438.6182438 176.3963894 88.9853669 0.981250531 0.979638318 0.354686892
30 164.917445 66.02444305 33.05811193 383.7911291 154.3467934 77.86207749 0.981284125 0.979658404 0.357658711
40 219.7446481 88.07401379 44.18133812 328.9640439 132.297189 66.73876701 0.981317659 0.979861249 0.320410283
50 274.5718512 110.1235845 55.3045643 274.137006 110.2475712 55.61542281 0.981351133 0.980128209 0.26904326
60 329.3990543 132.1731553 66.42779048 219.3100505 88.1979299 44.4920196 0.981384547 0.980398858 0.216851527
70 384.2262573 154.222726 77.55101666 164.4832601 66.14824148 33.36849837 0.981417901 0.980645542 0.169918968
80 439.0534604 176.2722967 88.67424285 109.6568825 44.09843539 22.2446821 0.981451196 0.980858371 0.1304217
90 493.8806635 198.3218675 99.79746903 54.83215576 22.04815858 11.11968565 0.981484433 0.98103653 0.098538841
100 548.7078666 220.3714382 110.9206952 0 0 0 0.981517604 0.981183378 0.073529625

Table 16: λ1 = 550, λ2 = 220, λ3 = 110, µ = 4, Inventory=1 year
Φ/(Φ + Ω) φ1 φ2 φ3 γ1Ω γ2Ω γ3Ω αS βS Exp. Tr.

0 0 0 0 448.2774371 180.4945881 91.22797485 0.98107133 0.98107133 0
10 45.26315238 17.92536723 8.811480389 403.4498211 162.4450929 82.10508607 0.981112648 0.97965613 0.262173348
20 90.09083561 35.97484328 17.93432112 358.6222218 144.3955929 72.98218528 0.981153876 0.979189181 0.353645232
30 134.9185188 54.02431932 27.05716185 313.7946466 126.3460861 63.85926732 0.981195015 0.979212605 0.356833815
40 179.7462021 72.07379537 36.18000258 268.9671074 108.296569 54.73632363 0.981236064 0.979459198 0.319835793
50 224.5738853 90.12327141 45.3028433 224.1396258 90.24703548 45.61333876 0.981277023 0.97978432 0.268686468
60 269.4015685 108.1727475 54.42568403 179.312245 72.19747325 36.4902818 0.981317893 0.980114225 0.21666017
70 314.2292517 126.2222235 63.54852476 134.4850657 54.14785356 27.3670807 0.981358674 0.980415106 0.1698422
80 359.056935 144.2716995 72.67136549 89.65839054 36.09809022 18.24351923 0.981399366 0.980674823 0.130417891
90 403.8846182 162.3211756 81.79420622 44.83373141 18.04775231 9.11851628 0.981439973 0.980892323 0.098577083
100 448.7123014 180.3706516 90.91704695 0 0 0 0.981480478 0.981071653 0.073588582

Table 17: λ1 = 450, λ2 = 180, λ3 = 90, µ = 4, Inventory=1 year
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Φ/(Φ + Ω) φ1 φ2 φ3 γ1Ω γ2Ω γ3Ω αS βS Exp. Tr.
0 0 0 0 996.7252016 101.4497687 11.82502971 0.981294644 0.981294644 0
10 100.533395 9.781914835 0.684690126 897.0528452 91.3047228 10.64243205 0.981320562 0.980494628 0.229196594
20 200.2058376 19.92692442 1.867237949 797.3805103 81.15966778 9.459821931 0.981346443 0.980167315 0.327208157
30 299.8782802 30.071934 3.049785772 697.7082062 71.01459978 8.277194016 0.981372289 0.980161434 0.336012465
40 399.5507228 40.21694359 4.232333594 598.0359483 60.86951231 7.094539402 0.9813981 0.980303799 0.303668558
50 499.2231654 50.36195317 5.414881417 498.3637642 50.72439369 5.911842073 0.981423875 0.980500349 0.25627851
60 598.895608 60.50696275 6.59742924 398.6917095 40.57922055 4.72906999 0.981449616 0.980702841 0.207229868
70 698.5680506 70.65197234 7.779977063 299.0199132 30.43393838 3.5461484 0.981475322 0.980888892 0.162734298
80 798.2404932 80.79698192 8.962524885 199.3487634 20.28838361 2.362853043 0.981500997 0.981050191 0.125098747
90 897.9129358 90.9419915 10.14507271 99.68019892 10.14173846 1.178062618 0.981526653 0.981185675 0.094621398
100 997.5853784 101.0870011 11.32762053 0 0 0 0.981552198 0.981297557 0.070663064

Table 18: λ1 = 1000, λ2 = 100, λ3 = 10, µ = 4, Inventory=1 year

Φ/(Φ + Ω) φ1 φ2 φ3 γ1Ω γ2Ω γ3Ω αS βS Exp. Tr.
0 0 0 0 993.6527468 102.877537 13.46971618 0.99963572 0.99963572 0
10 100.2326663 9.926195235 0.841138442 894.2876371 92.58971457 12.12264835 0.999637672 0.997456694 0.302610651
20 199.5978628 20.21398152 2.188155635 794.9225491 82.30188305 10.77556786 0.999639613 0.997557732 0.288861088
30 298.9630594 30.5017678 3.535172827 695.5574921 72.0140386 9.428469281 0.999641544 0.998205467 0.199255695
40 398.3282559 40.78955408 4.88219002 596.1924817 61.72617475 8.081343577 0.999643465 0.99877075 0.121089236
50 497.6934524 51.07734036 6.229207212 496.8275456 51.43827989 6.734174469 0.999645375 0.999149909 0.068745899
60 597.058649 61.36512664 7.576224405 397.4627399 41.15033073 5.386929403 0.999647275 0.999377706 0.03740279
70 696.4238455 71.65291292 8.923241597 298.0981946 30.86227298 4.039532422 0.999649165 0.999506715 0.019765054
80 795.789042 81.9406992 10.27025879 198.7343006 20.57394377 2.691755652 0.999651046 0.999577351 0.010225172
90 895.1542385 92.22848548 11.61727598 99.37301157 10.2845287 1.342459726 0.999652917 0.999615403 0.005205075
100 994.5194351 102.5162718 12.96429317 0 0 0 0.999654773 0.999635918 0.002616165

Table 19: λ1 = 1000, λ2 = 100, λ3 = 10, µ = 8, Inventory=1 year
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