SERVICE LEVEL SATISFACTION DURING SHORTAGES FOR HEALTH NETWORKS: BASE STOCK INVENTORY AND TRANSSHIPMENT POLICIES

A Thesis

by

Cem Deniz Çağlar Bozkır

Submitted to the Graduate School of Sciences and Engineering In Partial Fulfillment of the Requirements for the Degree of

Master of Science

in the Department of Industrial Engineering

> Özyeğin University May 2018

Copyright \odot 2018 by Cem Deniz Çağlar Bozkır

SERVICE LEVEL SATISFACTION DURING SHORTAGES FOR HEALTH NETWORKS: BASE STOCK INVENTORY AND TRANSSHIPMENT POLICIES

Approved by:

Professor Ö. Erhun Kundakcıoğlu, Advisor Department of Industrial Engineering Özyeğin University

Professor E. Lerzan Örmeci Department of Industrial Engineering Koç University

Professor Ali Ekici Department of Industrial Engineering Özyeğin University

Date Approved: 17 May 2018

To my family...

ABSTRACT

In this study, we consider a system of healthcare providers, which face the same uncertain supply disruptions (e.g., regional, nationwide, or worldwide drug shortages). Each hospital observes a stochastic demand and if demanded drug is unavailable, patients leave and receive care in another hospital system. As these unavailabilities hurt the brand value, hospital systems look for inventory sharing mechanisms among hospitals to mitigate the effect of uncertain supply disruptions. We explore reactive and proactive inventory sharing approaches by investigating how inventory related parameters affect service levels.

ÖZETÇE

Bu çalışmada, sağlık hizmeti sağlayan kurumlardan oluşan ve ilaç tedarik süreçlerinde bölgesel, ulusal veya global ölçekte kıtlıklar gözlemlenen bir sistem ele alınmaktadır. Hastanelerdeki tedavi süreçleri kapsamında ortaya çıkan rassal ilaç talepleri, hastane sistemi dahilinde mevcut değilse, hastalar mevcut sistemden ayrılıp başka bir hastane zincirinde taleplerini karşılamaktadırlar. İlaçların talep edildiği anda elde bulunmama durumu hastane zincirlerinin marka değerlerine zarar verdiğinden dolayı, hastaneler ilaç kıtlıklarının etkilerini hafifleştirmek maksadıyla hastane zinciri içerisinde stok paylaşımı mekanizmalarını etkin kullanmayı arzulamaktadırlar. Bu çalışma dahilinde önetkin ve tepkisel stok paylaşımı politikaları altında envanter yönetimine dair parametrelerin sistemin servis seviyesi üzerindeki etkileri incelenmektedir.

ACKNOWLEDGEMENTS

First of all, I am profoundly grateful to Mustafa Kemal Atatürk, the father of our nation, and his companions, without whom I would not be able to provide a scientific contribution by preparing this work in a free and secular country.

I would like to express my sincere thanks to my family for always believing in me and for their continuous and unconditional love and support.

I also want to take this opportunity to state my gratitude to Büşra Üçüncü, Büşra Sevindik, Ömer Hikmet Sevindik, and Kürşat Şık for their invaluable friendships, and for their encouragement that made this whole process a lot easier for me.

I am deeply thankful to my advisor, Dr. Erhun Kundakcıoğlu, for his guidance, patience, and endless support while I was pursuing my M.S. degree. I also thank all of the professors in the Department of Industrial Engineering for their contributions in my academic and personal development.

Last but not least, I would like to express my appreciation to my friends and the members of my research group, especially Tonguç Yavuz, Görkem Emirhüseyinoğlu, Hamed Shourabizadeh, Gizem Atasoy, and Şeyma Gözüyılmaz.

I acknowledge that the work presented in this thesis is supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) grant 115M564.

Contents

List of Tables

List of Figures

Chapter I

INTRODUCTION

Healthcare sector aims to improve society's well-being, in contrast to the commercial supply chains that aim to maximize profits. Impacts being significant, health expenditures constitute around 10% of countries' GDPs on average, with a market value of \$8.7 trillion [1]. Ranging from 26% to 53%, hospitals have the largest share in healthcare expenditures [2]. It is estimated that hospitals spend between 10\% and 18% of their budgets on inventory related investments [3], which makes it one of the most important cost components for hospitals.

On the other hand, number of customers served, i.e., service level, is another measure that is at least as critical as the cost metric mentioned above for hospitals. A high level of service is crucial in a healthcare system, because it represents the proportion of people who is able to receive timely treatment. Moreover, drug shortages are one of the obvious issues for healthcare systems, crippling the services provided to incoming patients, and hospitals need to learn living with this fact. As of April 2018, there are about 100 reported drug shortages in the U.S. [4]. These shortages plague the hospital system in various procedures such as antibiotic treatments, chemotherapy, pain medications in surgeries, etc. Some of the shortages have lasted from a few weeks to several months and some have stocks completely depleted whereas others brought inventories to critically low levels. Clearly, patients are able to receive drugs one way or the other, but being unable to provide drugs in a timely manner within a system has a negative impact on a healthcare system in terms of hospital chain's brand value. Stock transfers are the way to maintain a required service level while lowering the inventory level, or increasing the number of customers served with the same amount of items kept in the inventory of a system [5]. Therefore, hospitals in a healthcare system desiring to maintain at least a certain service level can achieve their target service level by allowing transshipments.

However, hospitals' inventory management practices are not in line with the stated goals. It is known that hospitals manage their inventories not using sophisticated methodical approaches, but simple procedures based on mostly intuition instead. Our motivation for this study comes from the fact that any improvement in efficiency within this area will have a direct effect on a human's life in terms of improved services, and on the healthcare system with the increase in number of people treated and a better image in the public eye.

Chapter II

LITERATURE REVIEW

We conducted an extensive literature review on inventory management in humanitarian operations. A total of 45 studies in the literature are classified into pre-disaster and post-disaster categories according to the time horizon considered in proposed studies. Our main findings are summarized in Tables 1, 2, 3, 4, 5, and 6. Interested readers can find further information on this study in [6].

		Demand				Facilities		
Article	Network, Case Study (Disaster Type)	ā	items ិ៍ umber z	Perishability	apacitated Ο	ossibility Ă, amage ≏	Stakeholders	of tiers Number
Balcik and Beamon [7]	Global, Case Study (Earthquake)	Stochastic	$\overline{>1}$		$\overline{+}$		HO, beneficiaries	$\overline{2}$
Bozkurt and Duran [8]	Global, Case study (Sudden onset disasters)	Stochastic	>1		÷		HO, suppliers, beneficiaries	3
Bozorgi-Amiri et al. [9]	Regional, Case Study (Earthquake)	Stochastic	>1	٠	$^{+}$	$^{+}$	HO, suppliers, beneficiaries	3
Campbell and Jones [10]	Hypothetical	Stochastic	1			$^{+}$	suppliers, beneficiaries	$\overline{2}$
Chakravarty [11]	Hypothetical	Stochastic	1	×.			HO, suppliers, beneficiaries	$\overline{\overline{\overline{3}}}$
Döven et al. [12]	Hypothetical (Earthquake)	Stochastic	>1	٠	$\overline{+}$	٠	HO, beneficiaries	3
Duran et al. [13]	Global, Case study (Sudden onset disasters)	Stochastic	>1		$^{+}$	٠	HO, suppliers, beneficiaries	$\overline{\mathbf{3}}$
Galindo and Batta [14]	Case Study (Hurricane)	Stochastic	$\overline{1}$		$\overline{+}$	$^{+}$	HO, beneficiaries	3
Garrido et al. [15]	Hypothetical, Case Study (Flood)	Stochastic	>1		$^{+}$	\sim	HO, supplier, beneficiaries	3
Hong et al. [16]	Case Study (Hurricane)	Stochastic	$\mathbf{1}$		$\ddot{}$		HO, beneficiaries	$\overline{2}$
Klibi et al. [17]	Regional, Case Study (Natural disasters)	Stochastic	>1		$\overline{+}$		HO, suppliers, beneficiaries	$\overline{3}$
Lodree and Taskin [18]	Hypothetical (Sudden onset disasters)	Stochastic	$\mathbf{1}$	٠			HO, beneficiaries	$\overline{2}$
Manopiniwes et al. [19]	Country, Case Study (Flood)	Deterministic	$\overline{1}$		$^{+}$		HO, beneficiaries	$\overline{2}$
Mete and Zabinsky [20]	City, Case Study (Earthquake)	Stochastic	>1		$^{+}$		HO, beneficiaries	$\overline{2}$
Mohammadi et al. [21]	City, Case Study (Earthquake)	Stochastic	>1		$^{+}$		HO, beneficiaries	$\overline{2}$
Novan [22]	Regional, Case Study (Hurricane)	Stochastic	≥ 1		$\ddot{}$	$^{+}$	HO, beneficiaries	$\overline{2}$
Paul and MacDonald [23]	City, Case Study (Earthquake)	Stochastic	$\overline{1}$	٠	$\overline{+}$	$^{+}$	HO, beneficiaries	$\overline{2}$
Rabbani et al. [24]	Country, Case Study (Earthquake)	Stochastic	>1	$^{+}$	$^{+}$		HO, beneficiaries	$\overline{2}$
Rawls and Turnquist [25]	Regional, Case Study (Hurricane)	Stochastic	>1	×.	$\ddot{}$	$^{+}$	HO, beneficiaries	$\overline{2}$
Rawls and Turnquist [26]	Regional, Case Study (Hurricane)	Stochastic	>1		$\overline{+}$	$^{+}$	HO, beneficiaries	$\overline{2}$
Renkli and Duran [27]	City, Case Study (Earthquake)	Deterministic	>1		$^{+}$		HO, beneficiaries	$\overline{2}$
Tofighi et al. [28]	City, Case Study (Earthquake)	Stochastic	>1		$\ddot{}$	$^{+}$	HO, beneficiaries	3
Van Hentenryck et al. [29]	Hypothetical (Hurricane)	Stochastic	$\overline{1}$		$\overline{+}$		HO, beneficiaries	$\overline{2}$

Table 1: Problem aspects in pre-disaster inventory management.

With this literature review, we establish that there does not exist a study which considers transshipment in a service level based approach in humanitarian operations, which is a similar field to healthcare in terms of supply and demand characteristics.

There exist a number of studies in the area of inventory management for systems considering transshipments. A review of these studies are presented in [5] and [52].

Table 2: Performance measures in pre-disaster inventory management studies.

Table 3: Methodological approaches in pre-disaster inventory management studies.

				Demand					Facilities		
	Article	Network, Case Study (Disaster Type)	Randomness	Backorder/Lost	items ð Number	Perishability	Regular/Emergency	Capacitated	Damage possibility	Stakeholders	Number of tiers
	Beamon and Kotleba [30]	Case Study (Complex ₁) emergency)	Stochastic	backorder	$\mathbf{1}$		$\overline{}$	ä,		HO, supplier, benefi- ciaries	2
	Beamon and Kotleba [31]	Study Case (Complex) emergency)	Stochastic	backorder	1	÷	÷	÷,	٠	HO, supplier, benefi- ciaries	$\overline{2}$
	Das and Hanaoka [32]	Case Study (Earthquake)	Stochastic	$_{\text{lost}}$	$\overline{>1}$	٠	\sim	$\overline{}$	٠	HO, beneficiaries	$\overline{2}$
	McCoy and Brandeau [33]	Study (Complex ₁) $\rm Case$ emergency)	Stochastic	$_{\rm lost}$	T	÷	Ξ	$\overline{}$	$\overline{}$	HO, supplier, benefi- ciaries	$\overline{2}$
	Natarajan and Swaminathan [34]	Hypothetical	Stochastic	backorder	1	\overline{a}	$\overline{}$	$\overline{}$	÷	HO, beneficiaries	$\overline{2}$
	Novan et al. [35]	City, Case Study (Earth- quake)	Stochastic	$_{\text{lost}}$	T	÷	÷	$^{+}$	÷	HO, beneficiaries	$\overline{\mathbf{3}}$
	Ozbay and Ozguven [36]	Hypothetical	Stochastic	$_{\text{lost}}$	$\overline{1}$	$\overline{}$	$\overline{}$	$^{+}$		HO, supplier, benefi- ciaries	$\overline{2}$
$Post-Disaster$	Ozguven and Ozbay [37]	Case Study (Hurricane)	Stochastic	lost	$\overline{>1}$	\pm	$\overline{}$	$^{+}$	÷	HO, supplier, benefi- ciaries	$\overline{2}$
	Rabbani et al. [24]	Case Study (Earthquake)	Stochastic	backorder	$\overline{>1}$	Ŧ	Ξ	Ŧ	Ξ	HO, beneficiaries	$\overline{2}$
	Roni et al. [38]	Hypothetical	Stochastic	$_{\text{lost}}$	-1	÷	$^{+}$	÷	÷	HO, supplier, benefi- ciaries	$\overline{2}$
	Roni et al. [39]	Hypothetical	Stochastic	$_{\text{lost}}$	$\overline{1}$	$\overline{}$	$^{+}$	\sim	٠	HO, supplier, benefi- ciaries	$\overline{2}$
	Rottkemper et al. [40]	Study Country. Case (Earthquake)	Stochastic	backorder	$\overline{1}$	٠	$\overline{}$	\sim	÷	HO, beneficiaries	$\overline{2}$
	Shen et al. [41]	Case Study (Anthrax at- tack)	Deterministic	$_{\text{lost}}$	-1	\pm	$\overline{}$	\overline{a}	÷	Government. manu- facturer	$\overline{2}$
	Yadavalli et al. [42]	Hypothetical	Stochastic	$_{\text{lost}}$	>1	$^{+}$	$\overline{}$	$^{+}$	٠	HO, supplier, benefi- ciaries	$\overline{2}$
	Davis et al. [43]	Study Regional, Case (Hurricane)	Stochastic	lost	$\mathbf{1}$	\overline{a}	$\overline{}$	$^{+}$	$^{+}$	Multiple HOs, benefi- ciaries	$\overline{2}$
	Lodree and Taskin [44]	Case Study (Hurricane)	Stochastic	$_{\text{lost}}$	T	٠	Ŧ	÷,	÷	Manufacturer or re- tailer, supplier	$\overline{2}$
	Lodree [45]	Case Study (Hurricane)	Deterministic	$_{\text{lost}}$	1	$\overline{}$	Ŧ	\sim	\sim	Retailer, supplier	$\overline{2}$
$\it{Warning}$ $Post-$	Lodree et al. [46]	Study Regional. Case (Hurricane)	Stochastic	lost	$\mathbf{1}$	٠	$\overline{}$	÷,	$\overline{}$	Manufacturer, retailer	$\overline{2}$
	Pacheco and Batta [47]	Hypothetical (Hurricane)	Stochastic	$_{\text{lost}}$	$\overline{1}$	\sim	\sim	$^{+}$	$+$	HO, beneficiaries	$\overline{\mathbf{3}}$
	Rawls and Turnquist [48]	Regional, Case Study (Hurricane)	Stochastic	$_{\text{lost}}$	>1		\sim	Ŧ	\sim	HO, beneficiaries	$\overline{2}$
	Salas et al. [49]	Case Study (Hurricane)	Stochastic	lost	1	$^{+}$	$\overline{}$	\sim	\sim	HO, beneficiaries	$\overline{2}$
	Taskin and Lodree [50]	Case Study (Hurricane)	Stochastic	$_{\text{lost}}$		$\overline{}$	$+$	$\overline{}$	$\overline{}$	Manufacturer or re- tailer, supplier	$\overline{2}$
	Taskin and Lodree [51]	Case Study (Hurricane)	Stochastic	$_{\text{lost}}$	1	$\overline{}$	$^{+}$	\sim		Retailer, supplier	$\overline{2}$

Table 4: Problem aspects in post-disaster/post-warning inventory management.

The literature can be classified into two categories according to timing of transshipments. *Proactive* transshipments allow the redistribution of stocks between retailers, whereas *reactive* stock transfers occur only when a stockout is observed. We categorize the studies similar to ours according to these streams of literature.

Managing transshipments proactively is a widely employed mechanism of handling stock transfers within a system. Nasr et al. [53] consider a production environment consisting of two locations, and random supply disruptions may be observed. Transshipments are used in a way that when a shortage occurs in supplier, retailers adjust their safety stock levels instantaneously once per shortage period by inventory sharing to hedge against the risk of stockout, and they aim to determine these safety stock levels. van Wijk et al. [54] analyze fractions of demand satisfied directly from a retailers own stock, using transshipments, and emergency ordering, for a spare part inventory system adopting continuous review policies and transshipment thresholds,

also considering the recovery rate for failed parts. Cheong [55] introduce a newsvendor model for multiple demand locations where proactive transshipments may occur

immediately, and perishability of products is included. Feng et al. [56] develop a periodic review base stock policy for a multi-location problem that considers perishability, where proactive transshipments are also permitted, and model it as a Markov decision process. Hochmuth and Köchel [57] consider a similar setting, where retailers adopt periodic review (s, S) policies for ordering, and continuous review policies for transshipment decisions. They aim to find optimal variables for policies using simulation. Zhao et al. [58] propose a queueing theory approach for a system consisting of multiple retailers. Inventory level can both increase due to production and decrease because of demand occurrence, both with Poisson rates, and retailers can request transshipments even when they have a positive inventory. They aim to find optimal maximum inventory levels and thresholds for requesting transshipments and accepting transshipment requests. Tagaras and Vlachos [59] evaluates the performance of a system with two locations, which replenish their inventories periodically, with respect to redistribution of stock between the two locations, which may happen only once in each of the replenishment periods.

There also exist studies that consider transshipments with a reactive approach. Archibald et al. [60] introduce a periodic review policy using discrete time Markov decision process for two retailers and one supplier, where they allow transshipments and emergency orders at any time in a period. They extend this study to a multilocation setting in [61]. Axsäter [62] defines a decision rule for transshipments between retailers considering future costs and outstanding orders, of which arrival times are known, within a system consisting of multiple retailers which utilize continuous review policies. Minner and Silver $|63|$ study a continuous review (R, Q) inventory system with two identical retailers subject to Poisson demands, which can use transshipments in case of a stockout until replenishments arrive. Ramakrishna et al. [64] develop a Markov decision process to decide on periodic review policy parameters and whether to accept a transshipment request according to time remaining for the replenishment.

Herer and Rashit [65] evaluate a two-location single-period newsvendor model with joint and fixed replenishment costs, and transshipments when required. Later in [66], this study is extended by modeling it as a network flow problem. Paterson et al. [67] adopt the policy presented in [62] to derive a transshipment rule that behaves every reactive transshipment as a chance for proactive reallocation of current inventory in the system. Glazebrook et al. [68] also consider the hybrid transshipment policy in a periodically replenished system. In Grahovac and Chakravarty [69], a base stock policy with a transshipment threshold is proposed, but transshipments are only allowed when an emergency order cannot be received in time to meet the observed demand. Olsson [70] propose a (Q, R) policy with reactive transshipments for a two location system under exponentially distributed lead times.

The closest studies in the literature to our approach are papers proposing models which consider service level in a system. Axsäter [71] proposes a continuous review replenishment policy for a network consisting of multiple retailers, and transshipments between retailers is allowed only in one direction. Under normally distributed demand, a non-linear approximation technique based on different fill rates for the sources of demand satisfaction is developed for the problem, and their models results are compared with a simulation study. Olsson [72] model the observed demand in [71] as a Poisson process, and propose two models based on $(S - 1, S)$ and (Q, R) policies. Kukreja and Schmidt [73] investigate a system with multiple retailers at demand locations and single supplier. Each of the retailers use continuous review (s, S) policies, and complete inventory pooling between retailers is allowed. Under stochastic demand parameters for retailers, they aim to measure the performance of the system using simulation when inventory sharing is allowed while order quantities are set as EOQ and reorder levels are adjusted iteratively.

It can be observed from aforementioned articles that among transshipment studies, the most dominant metric is the cost incurred by considered systems, which consists of different components such as holding, transshipment, backordering, emergency ordering, and lost sales costs. However, due to unique nature of healthcare systems, the achieved service level is at least as much important as the operating cost of the system. Therefore, with this study, we address this gap in the literature, and aim to make meaningful observations regarding the service level of the system while keeping the total cost incurred at a reasonable level.

To the best of our knowledge, there is no study that conducts service level based analyses of proactive and reactive transshipment policies for continuous review base stock inventory systems. There are a number of studies with uncertain lead times, however, their results cannot be adapted for a system that observes shortages leading back-and-forth. Our objective in this study is to investigate the effect of different partial pooling approaches on the service level for a healthcare system observing shortages, while deciding on optimal transshipment threshold levels of each hospital.

The rest of this chapter is organized as follows: The considered system is described in further detail in Chapter 3. Proactive and reactive transshipment policies are introduced in Chapter 4 and Chapter 5, respectively. A numerical study is presented in Chapter 6 to measure the performance of our proposed methodology and to provide managerial insights. We make our concluding remarks in Chapter 7.

Chapter III

SYSTEM PROPERTIES AND KEY PERFORMANCE INDICATORS

We consider the inventory of a healthcare system with multiple hospitals and a single supplier. Hospitals' inventories are replenished from the supplier according to a continuous review $(S, S - 1)$ base stock policy. We assume zero lead time for replenishments, a commonly made assumption due to healthcare systems' frequent replenishment cycles (see e.g., [3], [74]). In general, hospitals are visited at least once a day by suppliers for replenishments, if necessary. In other words, when a hospital places an order, the delivery is usually made the same day (or next day in the worst case), if the supplier has drugs in stock. However, the supplier is open to disruptions that are stochastic in both duration and frequency, and hospitals need to hedge against the risk of stock-out while a shortage for the supplier exists. Zero lead time helps us ensure that at the beginning of a shortage period, hospitals' inventory levels are exactly equal to their order-up-to levels. Moreover, we assume that transshipments occur instantaneously, which is widely accepted in the literature (see e.g., [75], [53]).

In practice, hospitals in a healthcare network do not determine their base stock levels by utilizing complex mathematical inventory policies. Since a higher service level is more desirable than operating with a lower holding cost in healthcare networks, hospitals neglect the amount of holding cost they pay, and they stock as much drugs as their inventory capacities can handle. Therefore, throughout this study, we do not consider holding cost in our analyses, and we do not aim to make any observations or conclusions regarding base stock policies. Neglecting holding cost helps us to establish decision rules that consider the trade-off between movement of inventory on hand and

hedging against the risk of potential lost sales.

In the literature, there are different approaches for inventory pooling, i.e., retailers' allowed way of making stock transfers, namely complete and partial pooling policies. As it can be understood from the names of these policies, these policies are defined whether retailers share all or a part of their stocks. Complete pooling is a more adequate policy for systems where holding and backordering costs are significantly effective than transshipment costs [5], which would actually be very similar to the case for the considered system if replenishments could be made regularly. However, when shortages that are unknown in length and frequency are present in the system, there is a trade-off for hospitals between assisting the hospital requesting the stock transfer to satisfy its current demand and keeping inventory for its own potential demand occurrences.

What hospitals actually desire is to keep infinitely many items in stock, so that they never transship and never lose a customer, but this is virtually impossible. In terms of service level, sharing inventory at its fullest is optimal, yet there are costs associated with inventory pooling, and hospitals aim to keep related costs or amount of stock transfers at least at a certain level. Therefore, for healthcare systems observing shortages, it becomes a strategic decision to define the levels until which transshipments are efficient for ensuring a certain service level within the system, and this is the reason why we do not consider complete pooling in our study.

3.1 Sharing Mechanism

From this point on, we refer the levels that hospitals reject the transshipment requests and keep their remaining inventories for their own potential demand occurrences as transshipment thresholds. In addition, we assume that hospitals' inventory levels are totally visible to each other, so they exactly know which ones can make transshipments when requesting a stock transfer. In line with our zero lead time replenishments, we assume transshipments can also be performed instantaneously as these times are usually negligible in reality.

Within the scope of this study, we investigate two different partial pooling assumptions:

- A proactive approach where hospitals request a stock transfer when they hit their transshipment threshold. The request is granted by another hospital that is above its transshipment threshold. That means, individual inventories above transshipment thresholds are pooled, acting as a single entity. For prolonged shortages, this ensures there exists a point in time where all hospitals are at their thresholds. From that point on hospitals do not share inventory.
- A reactive approach in which hospitals request a stock transfer only when they are out of stock. The request is granted by another hospital that is above its transshipment threshold.

In the literature, studies considering supply unavailability and demand uncertainty mostly utilize Markov chains, due to their interest in steady-state behavior of the systems. However, in this study, we are interested in the service levels during shortage periods that are non-recursive. Therefore, we use properties of Poisson processes and exponential distributions to derive these probabilities.

3.2 Service Levels for Hospitals

In this study, we assume each patient arrival implies a demand. There is no arrival placing a batch order as in a commercial supply chain. Therefore, the term service level in this study indicates fill (service) rate. We focus on the following two types of service levels in the sequel.

For a hospital system, we define the Type I service level as the fill rate of the entire system during shortage. That can be translated as the probability of satisfying a patient demand during shortage. Formally, Type I service level during shortage is defined as

 $\alpha_S = P$ (demand during shortage \leq inventory on hand at the beginning of shortage period)

(1)

3.2.2 Type II Service Level

For a hospital system, we aim to describe the proportion of total demand that is delivered without delay from stock on hand during shortage. As there is no lead time for transshipments, we formally define the Type II service level during shortage as

$$
\beta_S = \alpha_S - \frac{E[\text{transhipments during shortage}]}{E[\text{demand during shortage}]}\tag{2}
$$

It should be noted that Type I and II service levels during shortage can be generalized in a fairly straightforward way for the system in general. Fraction of shortage durations can be computed depending on shortage and recovery rates. As both service levels are 100% during a non-shortage period, general Type I (α) and Type II (β) service levels can be computed using conditioning as follows:

$$
\alpha = \frac{\alpha_S \times \text{shortage rate} + \text{recovery rate}}{\text{shortage rate} + \text{recovery rate}}
$$
(3)

$$
\beta = \frac{\beta_S \times \text{shortage rate} + \text{recovery rate}}{\text{shortage rate} + \text{recovery rate}} \tag{4}
$$

Chapter IV

PROACTIVE SHARING POLICY

For this part of the study, we concentrate on the proactive approach that allows hospitals to make stock adjustments when they hit their individual transshipment thresholds. Occurrence of a transshipment depends on two factors:

- The hospital requesting a transfer has an inventory level of exactly its transshipment threshold. In other words, a hospital makes a transfer request to ensure a predetermined amount of safety stock on hand.
- There exists a hospital in the system with an inventory level above its threshold to serve the hospital requesting the transfer.

In other words, hospitals in the network make transshipments to consume the partially pooled inventory together at the beginning. When all of their inventory levels become equal to their transshipment thresholds, they begin satisfying the observed demand from their own inventories, if possible. Any unsatisfied demand becomes lost, that is backordering is not allowed.

Let us introduce the following notation:

- B: total base stock,
- B_i : base stock level at hospital i,
- N: number of hospitals in the system,
- Ω : total safety stock,
- γ_i : proportion of total safety stock for hospital $i, \sum \gamma_i = 1$

 ω_i : transshipment threshold for hospital i, $\omega_i = \gamma_i \Omega$

Φ: total amount of pooled inventory,

 ϕ_i : amount of inventory reserved for pooling at hospital i,

 λ_i : demand rate for hospital *i*,

 μ : recovery rate for shortage occurrences.

Figure 1: Allocation of pooled inventory and safety stocks.

4.1 Inventory Parameters that Maximize Type I Service Level

We consider a system of N hospitals, each observing a Poisson distributed demand with rate λ_i , and shortage durations are exponentially distributed with rate μ . Hospitals regularly stock a total of β items, and their inventories are continuously replenished according to a base stock policy. When a shortage is present, they reserve

a total of Ω items, and $0 \leq \gamma_i \leq 1$ is the proportion of safety stock held by hospital *i*, where $\sum_i \gamma_i = 1$. During shortages, they consume the system's inventory together by making transshipments when needed, until all of their inventory levels become their transshipment threshold, i.e., $\gamma_i \Omega$, $\forall i$. When all hospitals' inventories reaches respective thresholds, hospitals begin to satisfy any observed demand from their own inventories. Any unsatisfied patient demand is assumed lost. This happens when safety stocks are depleted as no more transshipments are allowed.

First, we formally define the equation for Type I service level as a function of inventory variables.

Theorem 1. For a system of hospitals, given total base stock (\mathcal{B}) , total threshold value (Ω) , and proportion of each hospital in the total threshold (γ_i) , Type I service level is

$$
\alpha_S = 1 - \left(\frac{\sum_j \lambda_j}{\mu + \sum_j \lambda_j}\right)^{\beta - \Omega} \sum_i \left(\frac{\lambda_i}{\lambda_i + \mu}\right)^{\gamma_i \Omega} \frac{\lambda_i}{\sum_j \lambda_j}.
$$

It is easy to see that an increase in β increases the service level achieved. However, since we aim to keep transshipments between hospitals at a certain level, we require Ω to be a positive value. Then, the allocation of total threshold between hospitals can be determined by finding the value for each γ_i that maximizes the service level equation.

Corollary 1. As Ω decreases, for fixed \mathcal{B} , Type I service level increases.

Proof of Corollary 1 is straightforward, and can be easily observed from Theorem 1. Therefore, it can be stated that optimal Type I service level is achieved when Ω is zero. However, from Theorem 1, a conclusion on Type II service level cannot be made.

Corollary 2. For a total base stock level of \mathcal{B} , the best possible Type I service level is attained under complete pooling, where

$$
\alpha_S^{\max} = 1 - \left(\frac{\sum_j \lambda_j}{\mu + \sum_j \lambda_j}\right)^{\mathcal{B}}
$$

It should also be noted that for a total base stock level of \mathcal{B} , the service level when no transshipments are allowed is

.

.

$$
\alpha_S^{\text{No Transshipment}} = 1 - \sum_i \left(\frac{\lambda_i}{\lambda_i + \mu}\right)^{\gamma_i \mathcal{B}} \frac{\lambda_i}{\sum_j \lambda_j}.
$$

Next, we present what optimal threshold levels should be for each individual hospital.

Theorem 2. For a system of hospitals, given total threshold (Ω) , in order to maximize Type I service level, proportions of transshipment threshold for any two hospitals k and m must hold the following equality:

$$
\gamma_m \ln \left(\frac{\lambda_m}{\mu + \lambda_m} \right) - \gamma_k \ln \left(\frac{\lambda_k}{\mu + \lambda_k} \right) = \frac{1}{\Omega} \ln \left(\frac{\lambda_k \ln \left(\frac{\lambda_k}{\mu + \lambda_k} \right)}{\lambda_m \ln \left(\frac{\lambda_m}{\mu + \lambda_m} \right)} \right)
$$

From Theorem (2), proportions of total threshold for each hospital i, γ_i , can be found by solving a set of linear equations including $\sum_i \gamma_i = 1$.

4.2 Amount to Pool at Each Hospital that Maximize Type II Service Level

After defining the service level for given base stocks and total threshold, the question comes to how to determine the amount of inventory to be pooled. Knowing the amounts to stock at each location while pooling inventory, allocation of total threshold among hospitals can be made using Theorem 2.

In practice, hospitals proactively share their inventories for a predefined time period from the beginning of a shortage occurrence. They begin to satisfy patient demand from their own safety stocks if the shortage still continues when the sharing period is over. Working it backwards, we can determine the number of items required for a given sharing duration from the properties of Poisson process.

Next, the allocation of pooled inventory among locations is to be decided in a way that minimizes the expected number of transshipments in the system to maximize efficiency. For this purpose, we first determine the expected total amount of demand satisfied in any system given an inventory level.

Lemma 1. For a system with demand rate λ , recovery rate μ , and current inventory level of I,

$$
E[demand\ satisfied\ by\ the\ system] = \frac{\lambda}{\mu} \left(1 - \left(\frac{\lambda}{\mu + \lambda}\right)^{I}\right)
$$

Using Lemma 1, given the amount of inventory reserved for sharing, we can find the total amount of demand satisfied by the system and by each hospital during sharing period. Assuming that a hospital that transfers an item cannot request a transshipment, we can calculate the expected total amount of demand satisfied by the system using transshipments.

Theorem 3. For a system of i hospitals, expected amount of demand satisfied with transshipments can be calculated as follows:

$$
E[satisfied\ with\ transshipment] = \sum_{i} \frac{\lambda_i}{\mu} \left(\left(\frac{\lambda_i}{\mu + \lambda_i} \right)^{\phi_i} - \left(\frac{\sum_j \lambda_j}{\mu + \sum_j \lambda_j} \right)^{\Phi} \right).
$$

Theorem 4. The expected amount of demand satisfied from hospitals' own inventories, namely Type II service level, is calculated as follows:

$$
\beta = 1 - \left(\frac{\sum_{j} \lambda_{j}}{\mu + \sum_{j} \lambda_{j}}\right)^{\beta - \Omega} \sum_{i} \left(\frac{\lambda_{i}}{\lambda_{i} + \mu}\right)^{\gamma_{i}\Omega} \frac{\lambda_{i}}{\sum_{j} \lambda_{j}} - \sum_{i} \frac{\lambda_{i}}{\sum_{j} \lambda_{j}} \left(\left(\frac{\lambda_{i}}{\mu + \lambda_{i}}\right)^{\phi_{i}} - \left(\frac{\sum_{j} \lambda_{j}}{\mu + \sum_{j} \lambda_{j}}\right)^{\Phi}\right).
$$

Inventory levels in each location that minimize the expected number of transshipments can be found using Theorem (3).

Theorem 5. For a system of hospitals, in order to maximize Type II service level, allocation of inventory pool at any two locations k and m must satisfy the equality:

$$
\phi_m \ln \left(\frac{\lambda_m}{\mu + \lambda_m} \right) - \phi_k \ln \left(\frac{\lambda_k}{\mu + \lambda_k} \right) = \ln \left(\frac{\lambda_k \ln \left(\frac{\lambda_k}{\mu + \lambda_k} \right)}{\lambda_m \ln \left(\frac{\lambda_m}{\mu + \lambda_m} \right)} \right).
$$

Similar to allocation of safety stock among hospitals, inventory pool allocation can be determined by solving a set of linear equations derived from Theorem (5).

$$
\frac{1}{2}\int_{0}^{2\pi} \int_{0}^{2\pi} \int_{0
$$

Chapter V

REACTIVE POLICY: WHAT LEVEL TO STOP TRANSFERS

In this chapter, our aim is to derive a rule from a reactive perspective that hospitals use while granting a transshipment request. For this part of the study, we assume that during shortages, hospitals satisfy their observed demands from their own inventory, until one of their stock levels becomes zero. After that point, the hospital with zero inventory follows a reactive approach to fulfill the demand when observed. It can either request a transshipment from the other hospital by incurring a penalty, or the demand will be lost with a higher penalty. However, this situation raises the question for the other hospital to share or not to share its inventory. If the request is granted and that hospital's inventory level also becomes zero before the current shortage period ends, it will also have to incur a penalty cost for any excess demand that is observed. In other words, the system would incur a higher amount of total penalty due to the additional penalty for transshipments. On the other hand, if transshipment request is not accepted and the hospital with stock has remaining inventory at the end of the shortage period, it means that the system could have operated with a lower amount of penalty. Therefore, there exist transshipment thresholds for hospitals, under which one of the hospitals' inventory sharing would actually increase the total penalty incurred.

The following notations regarding parameters of the system should be noted:

 δ_L : the amount of penalty incurred by the system when a patient is not served. This can be considered as dispatching a patient from the hospital chain, and associated loss of brand value.

 δ_T : the amount of penalty incurred when a patient demand is satisfied by a transshipment from another hospital within the chain. This can be the monetary cost of transshipment, loss of quality-adjusted life years (QALY) for the patient due to lead time, etc.

It is assumed that $\delta_L > \delta_T$. Hospital *i* observes Poisson distributed demand, with rate λ_i . In addition, shortage durations are exponentially distributed with rate μ .

Theorem 6. Threshold to transship for hospital i is

$$
\omega_i = \mathop{\arg\min}_{\{x | x > \log \frac{\delta_L - \delta_T}{\delta_L} / \log \frac{\lambda_i}{\lambda_i + \mu}\}} x.
$$

One of the most significant results obtained by the above theorem is, the threshold for a hospital does not depend on the demand rate of the other hospitals. Moreover, it is not linearly proportional with the demand rate of the considered hospital. We provide the optimal values for a three hospital case under various δ_T/δ_L ratios in Table 7.

Table 7: Hospitals' threshold values for reactive policy ($\lambda_1 = 500$, $\lambda_2 = 200$, $\lambda_3 =$ 100)

δ_T/δ_L	ω_1	ω_2	ω_3
$0.03\,$	3	1	0
$0.1\,$	13	5	$\overline{2}$
$0.2\,$	28	11	5
0.3	44	18	9
0.4	64	25	13
$0.5\,$	86	35	17
0.6	114	46	23
0.7	151	60	30
$0.8\,$	201	81	41
0.9	288	116	58
0.97	440	177	89

As it can be observed from Table 7, the thresholds are in favor of the hospital with a larger demand rate when δ_T/δ_L is small. However, as expected, when δ_T/δ_L increases, the system becomes more protective of hospitals with smaller demand rates.

One other important insight is, when $\delta_T << \delta_L,$ thresholds converge to zero. That is, hospitals do not keep any safety stock, and apply complete pooling. However, it can be stated with certainty that hospitals with larger demand rates incorporate a complete pooling strategy under a smaller δ_T/δ_L ratio. This is also intuitive, due to the fact that hospitals with larger demand rates desire to keep at least a part of their inventories to their own, since they have a higher probability of observing a demand occurrence before the shortage period ends.

Chapter VI

A CASE STUDY FOR PROACTIVE APPROACH

To measure the effects of system parameters on key performance indicators, α_S and β_S , we obtained real life data about an antibacterial drug, Ceftriaxone, from Harris Health System which is based in Houston. In addition, we aim to make observations regarding amounts to be allocated as pooled inventories and transshipment thresholds under different scenarios for demand, shortage duration, and total amount of inventory.

According to the available data, the hospital chain consists of 2 hospitals and a small clinic, namely Lyndon B. Johnson Hospital, Ben Taub Hospital, and Monroe Clinic. These locations observe Poisson demand rates of 500, 200, and 100, respectively. Shortage durations are exponentially distributed with mean of three months, and the system generally carries an inventory level that is equal to the expected demand for one year. To be able to provide extensive analyses for the considered system, we evaluate the system under different values for each of the parameters related to demand rates, shortage duration, and total inventory level. We measure Type I and Type II service levels for different proportions of total amount of pooled inventory within the total amount of inventory held, from 0 to 1, increasing with an increment of 0.1. Scenarios for various combinations of parameters are obtained by both increasing and decreasing demand rates for each hospital by 0.1, and changing shortage duration rate and total amount of inventory held linearly. We present our results regarding how optimal allocations change with respect to changes in demand rates, shortage duration rate, and total amount of inventory in Appendix. With this study, we provide guidelines on determining the allocation of total inventory, allocation of pools, and thresholds among hospitals.

We present to our results with respect to various combinations of λ_1 , λ_2 , λ_3 , μ , years of inventory kept, and changing $\Phi/(\Phi + \Omega)$ combinations in Appendix B. First, a comment can be made on the behavior of α_S and β_S . As it can be clearly seen from the results, Type I service level increases with the amount of pooled inventory. On the other hand, Type II service level is the highest when complete pooling and no pooling policies are applied. Therefore, it can be concluded that for healthcare systems observing shortage the best proactively pooling solution can be observed by allowing hospitals to share their inventories its fullest in terms of both Type I and Type II service levels.

Our analyses imply that optimal allocation of total amount of pooled inventory and total amount reserved for thresholds are not linearly proportional with demand rates of hospitals. Even though the optimal values become proportional with demand rates when rounded for practical purposes, it cannot be stated that they are strictly proportional.

Remark 1. Optimally allocated pooled inventories and safety stocks are not linearly proportional with demand rates when the system observes supply shortages.

In addition, sensitivity of pool and threshold allocation differ with respect to changes in proportion of total inventory left for pooling, total amount of inventory held, and shortage duration parameters.

Remark 2. The allocation of inventory pool between hospitals is more sensitive to changes in proportion $\Phi/(\Phi + \Omega)$ and the total amount stocked, whereas thresholds divided between hospitals vary more with changing shortage duration rate.

Moreover, it can be observed that deviations of optimal allocations also vary according to changes in shortage duration rate, demand rates, and total amount of inventory in the system. We first investigate how allocations vary with respect to shortage duration rates.

Remark 3. An increase in shortage duration rate results in a higher deviation from linear allocation in terms of both pooled inventory and total safety stock.

Then, we determine the deviations of pooled inventory and safety stocks from linear proportion with the demand rate according to increasing years of inventory held.

Remark 4. Increasing the total amount of inventory held in the system results in a more deviated optimal distribution of total pool and total threshold than linear.

We also analyse the relationship between deviation of pool and threshold from linear allocation with respect to increasing demand rates in hospitals.

Remark 5. Increasing demand rate linearly with linearly proportional total inventory results in the allocations of both pool and threshold that are closer to a linear distribution.

Furthermore, according to optimal allocations of inventory pool and total threshold, effects of changes in shortage duration rate, total amount of inventory held, and demand rates on Type I and Type II service levels can be observed. It can be noticed from Tables 8, 12, 13, 14, and 15 that a linear increase in μ produces exponential rises in both α_S and β_S . Likewise, as shown in Tables 8, 9, 10, and 11, as total amount of inventory increases linearly, Type I and Type II service levels also grow exponentially. These insights on μ and total amount of inventory can be observed from Figures 2 and 3, according to the best solution for each case.

Remark 6. Linearly increasing shortage duration rate (μ) increases Type II and Type II service levels logarithmically.

Figure 2: Type I and Type II service levels, respectively, with respect to shortage duration rate (μ)

Figure 3: Type I and Type II service levels, respectively, with respect to years of inventory

Remark 7. Linearly increasing total amount of inventory kept at hospitals increase Type I and Type II service levels logarithmically.

On the other hand, as it can be seen from Tables 8, 16, and 17, increasing demand rates linearly generates linear increases in both of the service levels. The movements of Type I and Type II service levels with linearly increasing demand rates are presented in Figure 3

Remark 8. Linear increases in demand rates together with total amount of inventory increase Type I and Type II service levels linearly.

We can also explain the relationship between shorter shortage durations with a

Figure 4: Type I and Type II service levels, respectively, with respect to yearly total demand rate (λ)

lower amount of total inventory and longer shortage durations with a higher total inventory from tables (9) and (12).

Remark 9. Under a constant ratio between shortage duration (μ) and total amount stocked, Type I and Type II service levels increase with higher μ and total inventory levels.

Then, we focus on how optimal allocations for pool and threshold vary when hospitals demand rates are far from being linearly proportional. For this purpose, we compare the case presented in Table 8 with a new case in which $\lambda_1 = 1000$, $\lambda_2 = 100$, $\lambda_3 = 10$, $\mu = 4$, and the system keeps an inventory that is exactly equal to expected amount of yearly demand. Optimal allocations for the new case for complete pooling and no pooling policies are presented in Table 18. As it can be observed from these results, when the variance between hospitals' demand rates increases, optimal allocations for both pool and threshold in the system deviate more from linear. Even for integer values, hospitals begin not to keep linearly proportional inventory levels, and the system becomes more protective of hospitals with smaller demand rates.

Finally, we want to present a case that proves all of our remarks above. Therefore, we extend the newly introduced case by changing $\mu = 8$, the value of shortage duration rate which is expected to create the maximum deviation from linear allocation. Our results in Table 19 show that the highest deviation from linear allocation is achieved under the proposed case.

Remark 10. An increase in the variance between hospitals' demand rates results in higher deviations from linear allocation.

Chapter VII

CONCLUSION

In this study, we analyze a healthcare system's inventory allocation with respect to expected demand satisfaction percentage and expected number of transshipments during a shortage period that is uncertain in duration. We propose a proactive and a reactive policy for allowing transshipments within the system.

In the light of our analyses, we are able to prove that inventory level for each hospital is not directly proportional to the demand rate for a system observing supply shortages, in contrast to the commonly adopted conjectures. We provide a numerical study with real life data obtained from a hospital chain. As a result, it can be stated that completely pooled inventories should be the followed approach when there is a probability of shortage occurrence in a healthcare system, to maximize the percentage of satisfied demand and the percentage of demand satisfied from each hospital's own inventories. In addition, this case study helps us to provide managerial insights regarding sensitivity of inventory allocations and service levels obtained with respect to different demand, shortage occurrence rates and amounts of total inventory held in the system.

There exists potential research directions that requires further analyses to completely understand how such healthcare systems behave under shortages that are uncertain in length and frequency are present. Within the scope of this study, we assumed that transshipments occur one-by-one, but in reality, systems mostly desire transshipments in bulk quantities. Therefore, decisions on transshipment quantities in systems observing shortages is a point that is open to further investigation. Another issue that is worth to analyze deeper is the effect of transshipment lead time on performance metrics. The zero lead time assumption in this study can be extended and system behavior under non-zero transshipment lead time can be evaluated.

Appendix A

PROOFS OF THEOREMS AND LEMMAS

A.1 Proof for Theorem 1

It is known that N hospitals will consume $\mathcal{B} - \Omega$ items together first. Then, they will satisfy the observed demand from their own inventory. Any demand occurrence at each of the hospitals after each of them reaches an inventory level of zero becomes lost.

Random variable that denotes the time until next patient arrival in hospital i is denoted by T_i , where $T_i \sim$ Exponential(λ_i). Random variable T_d denotes the time until next demand occurrence in the system and $T_d \sim \text{Exponential}(\sum_j \lambda_j)$. W denotes the time that it takes until the supplier becomes available and $W \sim \text{Exponential}(\mu)$.

We define Ω as the total amount of transshipment thresholds, and the threshold for hospital *i* is defined as $\gamma_i \Omega$, where $\sum_i \gamma_i = 1$.

The total expected number of lost sales during a shortage can be written using conditioning as follows:

 $E[L] = P(T_d = \min(T_d, W))^{B-\Omega} \sum$ i $P(T_i = \min(T_i, W))^{\gamma_i \Omega} E[\text{arrivals with rate } \lambda_i \text{ before shortage } \text{e}$

$$
= \left(\frac{\sum_{j} \lambda_{j}}{\mu + \sum_{j} \lambda_{j}}\right)^{\beta - \Omega} \sum_{i} \left(\frac{\lambda_{i}}{\lambda_{i} + \mu}\right)^{\gamma_{i}\Omega} \frac{\lambda_{i}}{\mu}
$$
(5)

Service level, denoted by α_S , can be calculated as follows:

$$
\alpha_S = 1 - \frac{E[L]}{E[total\ demand\ during\ shortage]} = 1 - \frac{\left(\frac{\sum_j \lambda_j}{\mu + \sum_j \lambda_j}\right)^{\beta - \Omega} \sum_i \left(\frac{\lambda_i}{\lambda_i + \mu}\right)^{\gamma_i \Omega} \frac{\lambda_i}{\mu}}{\frac{\sum_j \lambda_j}{\mu}}
$$
\n(6)

$$
=1-\left(\frac{\sum_{j}\lambda_{j}}{\mu+\sum_{j}\lambda_{j}}\right)^{\beta-\Omega}\sum_{i}\left(\frac{\lambda_{i}}{\lambda_{i}+\mu}\right)^{\gamma_{i}\Omega}\frac{\lambda_{i}}{\sum_{j}\lambda_{j}}\tag{7}
$$

A.2 Proof of Theorem 2

We can get rid of the $\sum_i \gamma_i = 1$ constraint substituting N-th hospital's threshold with $\gamma_N = 1 - \sum_{j=1}^{N-1} \gamma_i$. Keeping in mind $0 \leq \gamma_i \leq 1$ for all i, Type I service level can be written as

$$
\alpha_S = 1 - \left(\frac{\sum_j \lambda_j}{\mu + \sum_j \lambda_j}\right)^{\beta - \Omega} \left(\sum_{i=0}^{N-1} \left(\frac{\lambda_i}{\lambda_i + \mu}\right)^{\gamma_i \Omega} \frac{\lambda_i}{\sum_j \lambda_j}\right) + \left(\frac{\lambda_N}{\lambda_N + \mu}\right)^{(1 - \sum_{j=1}^{N-1} \gamma_i)\Omega} \frac{\lambda_N}{\sum_j \lambda_j}
$$
\n(8)

To find the optimal γ_i values, we find the Jacobian, where *i*-th entry is

$$
\frac{\partial \alpha_S}{\partial \gamma_i} = -\left(\frac{\sum_j \lambda_j}{\mu + \sum_j \lambda_j}\right)^{\beta - \Omega} \left[\Omega \ln\left(\frac{\lambda_i}{\lambda_i + \mu}\right) \frac{\lambda_i}{\sum_j \lambda_j} \left(\frac{\lambda_i}{\lambda_i + \mu}\right)^{\gamma_i \Omega} -\Omega \ln\left(\frac{\lambda_N}{\lambda_N + \mu}\right) \frac{\lambda_N}{\sum_j \lambda_j} \left(\frac{\lambda_N}{\lambda_N + \mu}\right)^{(1 - \sum_{j=1}^{N-1} \gamma_j)\Omega} \right]
$$
\n(9)

Equating Jacobian to zero yields the following condition for critical points:

$$
\lambda_i \ln \left(\frac{\lambda_i}{\lambda_i + \mu} \right) \left(\frac{\lambda_i}{\lambda_i + \mu} \right)^{\gamma_i \Omega} = \lambda_N \ln \left(\frac{\lambda_N}{\lambda_N + \mu} \right) \left(\frac{\lambda_N}{\lambda_N + \mu} \right)^{(1 - \sum_{j=1}^{N-1} \gamma_j) \Omega} \forall i \qquad (10)
$$

Therefore, for any two hospitals k and m , at the critical point we have

$$
\lambda_k \ln \left(\frac{\lambda_k}{\lambda_k + \mu} \right) \left(\frac{\lambda_k}{\lambda_k + \mu} \right)^{\gamma_k \Omega} = \lambda_m \ln \left(\frac{\lambda_m}{\lambda_m + \mu} \right) \left(\frac{\lambda_m}{\lambda_m + \mu} \right)^{\gamma_m \Omega} \tag{11}
$$

which leads to

$$
\gamma_m \ln \left(\frac{\lambda_m}{\mu + \lambda_m} \right) - \gamma_k \ln \left(\frac{\lambda_k}{\mu + \lambda_k} \right) = \frac{1}{\Omega} \ln \left(\frac{\lambda_k \ln \left(\frac{\lambda_k}{\mu + \lambda_k} \right)}{\lambda_m \ln \left(\frac{\lambda_m}{\mu + \lambda_m} \right)} \right). \tag{12}
$$

Next we use the Hessian to prove the concavity of the Type I service level function, where

$$
\frac{\partial^2 \alpha_S}{\partial \gamma_i^2} = -\left(\frac{\sum_j \lambda_j}{\mu + \sum_j \lambda_j}\right)^{\mathcal{B}-\Omega} \frac{\Omega^2 \left(\lambda_i \ln^2 \left(\frac{\lambda_i}{\lambda_i + \mu}\right) \left(\frac{\lambda_i}{\lambda_i + \mu}\right)^{\gamma_i \Omega} + \lambda_N \ln^2 \left(\frac{\lambda_N}{\lambda_N + \mu}\right) \left(\frac{\lambda_N}{\lambda_N + \mu}\right)^{(1 - \sum_{j=1}^{N-1} \gamma_j)\Omega}\right)}{\sum_j \lambda_j} \tag{13}
$$

and

$$
\frac{\partial^2 \alpha_S}{\partial \gamma_i \partial \gamma_l} = -\left(\frac{\sum_j \lambda_j}{\mu + \sum_j \lambda_j}\right)^{\mathcal{B}-\Omega} \frac{\Omega^2 \left(\lambda_N \ln^2 \left(\frac{\lambda_N}{\lambda_N + \mu}\right) \left(\frac{\lambda_N}{\lambda_N + \mu}\right)^{(1-\sum_{j=1}^{N-1} \gamma_j)\Omega}\right)}{\sum_j \lambda_j}.
$$
 (14)

It can be shown that at the critical point, all off-diagonal entries of the Hessian is a negative constant, whereas the each diagonal entry depends on the individual demand rates, yet definitely less than off-diagonal constants. It can be easily shown that all eigenvalues of this matrix are negative, guaranteeing Hessian is negative definite and α_S is concave. Thus, the critical point is the global maximizer for α_S .

A.3 Proof of Lemma 1

For a system with a demand rate of λ , a recovery rate of μ , and a total inventory level of ϕ , expected amount of demand satisfied can be written as:

$$
E[\text{demand satisfied}] = \sum_{j=0}^{\phi-1} j \times P(\text{Demand} = j) + \phi \times P(\text{Demand} \ge \phi)
$$

=
$$
\sum_{j=0}^{\phi-1} j \left(\frac{\lambda}{\mu + \lambda}\right)^j \frac{\mu}{\mu + \lambda} + \phi \left(1 - \sum_{j=0}^{\phi-1} \left(\frac{\lambda}{\mu + \lambda}\right)^j \frac{\mu}{\mu + \lambda}\right)
$$

=
$$
\frac{\mu \lambda}{(\mu + \lambda)^2} \sum_{j=0}^{\phi-1} j \left(\frac{\lambda}{\mu + \lambda}\right)^{j-1} + \phi - \phi \left(1 - \left(\frac{\lambda}{\mu + \lambda}\right)^{\phi}\right). (15)
$$

Knowing that

$$
\sum_{j=0}^{\phi-1} j p^{j-1} = \sum_{j=0}^{\phi-1} \frac{\partial p^j}{\partial p} = \frac{\partial}{\partial p} \sum_{j=0}^{\phi-1} p^j = \frac{\partial}{\partial p} \frac{1 - p^{\phi}}{1 - p} = \frac{-\phi p^{\phi-1} (1 - p) + 1 - p^{\phi}}{(1 - p)^2},\tag{16}
$$

expected amount of demand satisfied can be written as follows:

$$
E[\text{demand satisfied}] = \frac{\mu\lambda}{(\mu + \lambda)^2} \frac{-\phi \left(\frac{\lambda}{\mu + \lambda}\right)^{\phi - 1} \left(\frac{\mu}{\mu + \lambda}\right) + 1 - \left(\frac{\lambda}{\mu + \lambda}\right)^{\phi}}{\left(\frac{\mu}{\mu + \lambda}\right)^2} + \phi - \phi \left(1 - \left(\frac{\lambda}{\mu + \lambda}\right)^{\phi}\right)
$$

$$
= \frac{\lambda}{\mu} \left(1 - \left(\frac{\lambda}{\mu + \lambda}\right)^{\phi}\right) \tag{17}
$$

A.4 Proof of Theorem 3

Let us introduce following notation for this part of the study: Let us introduce the following notation:

- D: amount of demand during shortage,
- P: amount of demand satisfied from hospitals' pooled inventories, ϕ_i , directly,
- T: amount of demand satisfied with transshipments,
- S: amount of demand satisfied from each hospital's safety stock, $\gamma_i\Omega$,
- L: amount of unsatisfied demand.

For a system of hospitals, demand during shortage can be calculated as

$$
E[D] = E[P] + E[T] + E[S] + E[L].
$$

Alternatively, we can use

$$
E[D] = E[P] + E[T].
$$

From Lemma (1), since we know that

$$
E[D] = \frac{\sum_{i} \lambda_{i}}{\mu} \left(1 - \left(\frac{\sum_{i} \lambda_{i}}{\mu + \sum_{i} \lambda_{i}} \right)^{\sum_{i} \phi_{i}} \right)
$$

and

$$
E[P] = \sum_{i} \frac{\lambda_i}{\mu} \left(1 - \left(\frac{\lambda_i}{\mu + \lambda_i} \right)^{\phi_i} \right),
$$

expected amount of demand satisfied with transshipment can be calculated as follows:

$$
E[T] = \sum_{i} \frac{\lambda_i}{\mu} \left(\left(\frac{\lambda_i}{\mu + \lambda_i} \right)^{\phi_i} - \left(\frac{\sum_{j} \lambda_j}{\mu + \sum_{j} \lambda_j} \right)^{\sum_{j} \phi_j} \right). \tag{18}
$$

A.5 Proof of Theorem 5

Type II service level can be maximized when expected number of transshipments $(E[T])$ is minimized because demand during shortage is not affected by the allocation of pooled inventory. Thus, we can find the optimal allocation of inventory pool to minimize the number of transshipments within the system by taking the derivative of Equation (18) with respect to ϕ_i .

$$
\frac{\partial E[T]}{\partial \phi_i} = \frac{\lambda_i}{\mu} \ln \left(\frac{\lambda_i}{\mu + \lambda_i} \right) \left(\frac{\lambda_i}{\mu + \lambda_i} \right)^{\phi_i} - \frac{\sum_j \lambda_j}{\mu} \ln \left(\frac{\sum_j \lambda_j}{\mu + \sum_j \lambda_j} \right) \left(\frac{\sum_j \lambda_j}{\mu + \sum_j \lambda_j} \right)^{\sum_j \phi_j}
$$
(19)

Using (19), obtained Jacobian can be set to zero, which yields

$$
\lambda_i \ln \left(\frac{\lambda_i}{\mu + \lambda_i} \right) \left(\frac{\lambda_i}{\mu + \lambda_i} \right)^{\phi_i} = \sum_j \lambda_j \ln \left(\frac{\sum_j \lambda_j}{\mu + \sum_j \lambda_j} \right) \left(\frac{\sum_j \lambda_j}{\mu + \sum_j \lambda_j} \right)^{\sum_j \phi_j}, \quad (20)
$$

where $\sum_j \phi_j = \Phi$. Therefore, for any two hospitals k and m, critical points for allocated amounts of inventory from the pool to minimize expected number of transshipments must hold the equality below:

$$
\lambda_k \ln \left(\frac{\lambda_k}{\mu + \lambda_k} \right) \left(\frac{\lambda_k}{\mu + \lambda_k} \right)^{\phi_k} = \lambda_m \ln \left(\frac{\lambda_m}{\mu + \lambda_m} \right) \left(\frac{\lambda_m}{\mu + \lambda_m} \right)^{\phi_m}
$$

$$
\phi_m \ln \left(\frac{\lambda_m}{\mu + \lambda_m} \right) - \phi_k \ln \left(\frac{\lambda_k}{\mu + \lambda_k} \right) = \ln \left(\frac{\lambda_k \ln \left(\frac{\lambda_k}{\mu + \lambda_k} \right)}{\lambda_m \ln \left(\frac{\lambda_m}{\mu + \lambda_m} \right)} \right) \tag{21}
$$

A.6 Proof of Theorem 6

Assume that there are two hospitals in the system. For this part of the study, based on the assumption regarding holding cost, we assume that both of the hospitals have high levels of inventory at the beginning of the shortage period, which is stochastic in length. At some point during shortage period, one of the hospitals' inventory is totally consumed. From that point on, there begins the question of accepting the transshipment request as demand occurs in the hospital with no inventory on hand.

When one of the hospitals observes a stock-out, the other one currently has X items in the inventory, and ongoing shortage does not leave the system as the next event occurrence, then there are two separate states to be analyzed, denoted by $\Phi(X,0)$ and $\Phi^{\text{arr}}(X,0)$.

 $\Phi(X,0)$: Expected total loss in quality of care for the system (e.g., cost, lead time etc.) if the next event in the system is demand occurrence for the first hospital, when there are X items in first hospital's inventory.

 $\Phi^{\text{arr}}(X,0)$: Expected total loss in quality of care for the system if the next event in the system is demand occurrence at the second hospital, when there are X items in first hospital's inventory.

Random variable that denotes the time until next patient arrival in hospital i is denoted by T_i , where $T_i \sim \text{Exponential}(\lambda_i)$, $i = 1, 2$. W denotes the time that it takes until the drug becomes available through regular supplier and $W \sim \text{Exponential}(\mu)$.

If the next event in the system is demand occurrence at the first hospital, the expected total cost from this point until the end of shortage period can be calculated as follows:

$$
\Phi(X,0) = P(T_1 = \min(T_1, T_2, W)) \times \Phi(X - 1, 0) + P(T_2 = \min(T_1, T_2, W)) \times \Phi^{\text{arr}}(X, 0)
$$

$$
+ P(W = \min(T_1, T_2, W)) \times 0
$$

$$
= \frac{\lambda_1}{\lambda_1 + \lambda_2 + \mu} \times \Phi(X - 1, 0) + \frac{\lambda_2}{\lambda_1 + \lambda_2 + \mu} \times \Phi^{\text{arr}}(X, 0)
$$
(22)

If the next event in the system is demand occurrence at the second hospital, since its inventory level is currently zero, the observed demand is either satisfied with transshipments or lost. Minimum of these two options is selected as the action taken in this state, and expected total cost from this point until the end of shortage period

can be written in terms of $\Phi(X,0)$, $\Phi^{\text{arr}}(X,0)$ can be written as follows:

$$
\Phi^{\rm arr}(X,0) = \min(\delta_T + \Phi(X-1,0), \delta_L + \Phi(X,0))
$$
\n(23)

Therefore, $\Phi(X,0)$ for the states in which transshipment is used to cover the demand of hospital with no inventory can be written as:

$$
\Phi(X,0) = \frac{\lambda_1}{\lambda_1 + \lambda_2 + \mu} \Phi(X-1,0) + \frac{\lambda_2}{\lambda_1 + \lambda_2 + \mu} (\delta_T + \Phi(X-1,0))
$$

$$
\Phi(X,0) = \frac{\lambda_1 + \lambda_2}{\lambda_1 + \lambda_2 + \mu} \Phi(X-1,0) + \frac{\lambda_2}{\lambda_1 + \lambda_2 + \mu} \delta_T
$$
 (24)

On the other hand, $\Phi(X,0)$ for the states in which losing the observed patient demand in the hospital with zero inventory level can be written as:

$$
\Phi(X,0) = \frac{\lambda_1}{\lambda_1 + \lambda_2 + \mu} \Phi(X-1,0) + \frac{\lambda_2}{\lambda_1 + \lambda_2 + \mu} (\delta_L + \Phi(X,0))
$$

$$
\Phi(X,0) = \frac{\lambda_1}{\lambda_1 + \mu} \Phi(X-1,0) + \frac{\lambda_2}{\lambda_1 + \mu} \delta_L
$$
 (25)

Expected total cost of the system after both of the hospitals' inventory levels reach zero, $\Phi(0,0)$, can be expressed as:

$$
\Phi(0,0) = \delta_L \times E[\text{number of arrivals with rate } \lambda_1 + \lambda_2 \text{ within } W]
$$

= $\delta_L \frac{\lambda_1 + \lambda_2}{\mu}$ (26)

This is due to memoryless property of T_i , $i = 1, 2$ and W and the following:

E[number of arrivals with rate $\lambda_1 + \lambda_2$ within $W = \frac{\lambda_1 + \lambda_2}{\lambda_2 + \lambda_1}$ $\lambda_1 + \lambda_2 + \mu$ $(1+E[\text{number of arrivals with rate})]$

Computation of $\Phi^{\text{arr}}(0,0)$ is fairly easy as there is no decision to be made, but losing the patient demand, thus

$$
\Phi^{\text{arr}}(0,0) = \delta_L + \Phi(0,0) = \delta_L \frac{\lambda_1 + \lambda_2 + \mu}{\mu}.
$$
 (27)

Using equation (27), $\Phi(0,0)$ can be verified as

$$
\Phi(0,0) = \frac{\lambda_1}{\lambda_1 + \lambda_2 + \mu} \times (\delta_L + \Phi(0,0)) + \frac{\lambda_2}{\lambda_1 + \lambda_2 + \mu} \times \Phi^{\text{arr}}(0,0)
$$

$$
\Phi(0,0) = \frac{\lambda_1}{\lambda_1 + \lambda_2 + \mu} \times (\delta_L + \Phi(0,0)) + \frac{\lambda_2}{\lambda_1 + \lambda_2 + \mu} \times (\delta_L + \Phi(0,0))
$$

$$
\frac{\lambda_1 + \lambda_2}{\lambda_1 + \lambda_2 + \mu} \delta_L = \frac{\mu}{\lambda_1 + \lambda_2 + \mu} \Phi(0,0)
$$

$$
\Phi(0,0) = \frac{\lambda_1 + \lambda_2}{\mu} \delta_L
$$

In fact, it can be assumed that if a hospital decides not to make a transshipment at an inventory level, it also will not accept any transshipment requests below that inventory level.

Since each of the states include the probability that shortage will be over before a demand occurs in hospitals one or two, states' costs can be seen as a decreasing function with a decreasing rate, when losing the patient demand is the chosen option. At some point, the cost will start to increase, so hospitals will begin to use transshipments from that point. We would like to find the transshipment threshold, Ω , as the inventory level described above. In order to find the transshipment threshold, we use equation (24) for states where transshipment is preferred and (25) for states where lost demand is preferred. To summarize Ω should satisfy:

- The patient demand should be lost when Ω items are on hand
- Transshipment should be preferred when $\Omega + 1$ items are on hand

Therefore, for the transshipment threshold, the inequalities below must hold:

$$
\frac{\lambda_1 + \lambda_2}{\lambda_1 + \lambda_2 + \mu} \Phi(\Omega - 1, 0) + \frac{\lambda_2}{\lambda_1 + \lambda_2 + \mu} \delta_T > \frac{\lambda_1}{\lambda_1 + \mu} \Phi(\Omega - 1, 0) + \frac{\lambda_2}{\lambda_1 + \mu} \delta_L \tag{28}
$$

$$
\frac{\lambda_1 + \lambda_2}{\lambda_1 + \lambda_2 + \mu} \Phi(\Omega, 0) + \frac{\lambda_2}{\lambda_1 + \lambda_2 + \mu} \delta_T < \frac{\lambda_1}{\lambda_1 + \mu} \Phi(\Omega, 0) + \frac{\lambda_2}{\lambda_1 + \mu} \delta_L. \tag{29}
$$

Using inequalities (28) and (29), lower and upper bounds for $\Phi(\Omega-1, 0)$ can be found, respectively. For the lower bound:

$$
\frac{\lambda_1 + \lambda_2}{\lambda_1 + \lambda_2 + \mu} \Phi(\Omega - 1, 0) - \frac{\lambda_1}{\lambda_1 + \mu} \Phi(\Omega - 1, 0) > \frac{\lambda_2}{\lambda_1 + \mu} \delta_L - \frac{\lambda_2}{\lambda_1 + \lambda_2 + \mu} \delta_T
$$
\n
$$
\Phi(\Omega - 1, 0) > \frac{\lambda_1 + \mu}{\mu} (\delta_L - \delta_T) + \frac{\lambda_2}{\mu} \delta_L \tag{30}
$$

For the upper bound:

$$
\frac{\lambda_2}{\lambda_1 + \mu} \delta_L - \frac{\lambda_2}{\lambda_1 + \lambda_2 + \mu} \delta_T > \frac{\lambda_1 + \lambda_2}{\lambda_1 + \lambda_2 + \mu} \Phi(\Omega, 0) - \frac{\lambda_1}{\lambda_1 + \mu} \Phi(\Omega, 0)
$$

$$
\frac{\lambda_1 + \mu}{\mu} (\delta_L - \delta_T) + \frac{\lambda_2}{\mu} \delta_L > \Phi(\Omega, 0)
$$

As we know losing patient demands is preferred when Ω items are on hand, we use (25) and obtain

$$
\frac{\lambda_1 + \mu}{\mu} (\delta_L - \delta_T) + \frac{\lambda_2}{\mu} \delta_L > \frac{\lambda_1}{\lambda_1 + \mu} \Phi(\Omega - 1, 0) + \frac{\lambda_2}{\lambda_1 + \mu} \delta_L
$$
\n
$$
\frac{(\lambda_1 + \mu)^2}{\lambda_1 \mu} (\delta_L - \delta_T) + \frac{\lambda_2}{\mu} \delta_L > \Phi(\Omega - 1, 0)
$$
\n(31)

Knowing that the hospital with an inventory level of X will not share inventory below that level, a closed-form equation for $\Phi(X,0)$ can be written:

$$
\Phi(X,0) = \frac{\lambda_1}{\lambda_1 + \mu} \Phi(X-1,0) + \frac{\lambda_2}{\lambda_1 + \mu} \delta_L
$$

\n
$$
= \frac{\lambda_1}{\lambda_1 + \mu} \left(\frac{\lambda_1}{\lambda_1 + \mu} \Phi(X-2,0) + \frac{\lambda_2}{\lambda_1 + \mu} \delta_L \right) + \frac{\lambda_2}{\lambda_1 + \mu} \delta_L
$$

\n
$$
= \left(\frac{\lambda_1}{\lambda_1 + \mu} \right)^X \Phi(0,0) + \frac{\lambda_2}{\lambda_1 + \mu} \delta_L \sum_{i=0}^{X-1} \left(\frac{\lambda_1}{\lambda_1 + \mu} \right)
$$

\n
$$
= \left(\frac{\lambda_1}{\lambda_1 + \mu} \right)^X \Phi(0,0) + \frac{\lambda_2}{\lambda_1 + \mu} \delta_L \frac{1 - \left(\frac{\lambda_1}{\lambda_1 + \mu} \right)^X}{1 - \left(\frac{\lambda_1}{\lambda_1 + \mu} \right)}
$$

\n
$$
= \frac{\lambda_1 + \lambda_2}{\mu} \delta_L \left(\frac{\lambda_1}{\lambda_1 + \mu} \right)^X + \frac{\lambda_2}{\mu} \left(1 - \left(\frac{\lambda_1}{\lambda_1 + \mu} \right)^X \right) \delta_L
$$

\n
$$
= \frac{\lambda_1}{\mu} \delta_L \left(\frac{\lambda_1}{\lambda_1 + \mu} \right)^X + \frac{\lambda_2}{\mu} \delta_L
$$
 (32)

Using (30), (31), and (32) the transshipment threshold Ω can be computed as the smallest integer that satisfies

$$
\frac{\lambda_1 + \mu}{\mu} (\delta_L - \delta_T) + \frac{\lambda_2}{\mu} \delta_L < \frac{\lambda_1}{\mu} \delta_L \left(\frac{\lambda_1}{\lambda_1 + \mu} \right)^{\Omega - 1} + \frac{\lambda_2}{\mu} \delta_L < \frac{(\lambda_1 + \mu)^2}{\lambda_1 \mu} (\delta_L - \delta_T) + \frac{\lambda_2}{\mu} \delta_L
$$

which, after simple algebra, gives the following condition:

$$
\frac{\delta_L - \delta_T}{\delta_L} < \left(\frac{\lambda_1}{\lambda_1 + \mu}\right)^{\Omega} < \frac{\lambda_1 + \mu}{\lambda_1} \times \frac{\delta_L - \delta_T}{\delta_L} \tag{33}
$$

$$
\omega_1 = \underset{\{x \mid x > \log \frac{\delta_L - \delta_T}{\delta_L}}{\text{arg min}} \quad x \tag{34}
$$

Knowing that only λ_i and μ effects the threshold value, it can be defined for each of the hospitals in a multi-hospital setting.

Appendix B

RESULTS FOR NUMERICAL STUDY

Table 9:
$$
\lambda_1 = 500
$$
, $\lambda_2 = 200$, $\lambda_3 = 100$, $\mu = 4$, **Inventory=0.25** year

$\Phi/(\Phi + \Omega)$	ϕ_1	ϕ_2	ϕ_3	$\gamma_1 \Omega$	$\gamma_2\Omega$	$\gamma_3\Omega$	α_{S}	β_{S}	Exp. Tr.
				249.138187	100.24733	50.61448304	0.86264229	0.86264229	
10	25.34938043	9.900567141	4.750052433	224.2245982	90.22253142	45.55287035	0.862777521	0.861981688	0.159166484
20	50.26309021	19.92533119	9.811578606	199.3110397	80.19772425	40.49123602	0.862912619	0.861598834	0.262757026
30	75.17679999	29.95009523	14.87310478	174.3975244	70.17290476	35.4295708	0.863047584	0.861428699	0.323776967
40	100.0905098	39.97485928	19.93463095	149.484074	60.14806679	30.36785923	0.863182417	0.861411331	0.354217276
50	125.0042196	49.99962332	24.99615712	124.5707273	50.12319924	25.30607349	0.863317119	0.861501481	0.363127503
60	149.9179293	60.02438737	30.0576833	99.65756207	40.09827995	20.24415798	0.863451689	0.861665255	0.357286898
70	174.8316391	70.04915142	35.11920947	74.74475993	30.07325716	15.1819829	0.86358613	0.861877484	0.341729097
80	199.7453489	80.07391546	40.18073564	49.83286545	20.04797563	10.11915892	0.863720446	0.862119689	0.320151381
90	224.6590587	90.09867951	45.24226181	24.92460155	10.02165912	5.053739329	0.863854661	0.862378496	0.295233064
100	249.5727685	100.1234436	50.30378799	Ω			0.863988604	0.862644192	0.268882491

Table 10: $\lambda_1 = 500, \lambda_2 = 200, \lambda_3 = 100, \mu = 4$, Inventory=0.5 year

$\Phi/(\Phi + \Omega)$	Φ1	ϕ_2	ϕ_3	$\gamma_1 \Omega$	$\gamma_2\Omega$	$\gamma_3\Omega$	α_S	β_{S}	Exp. Tr.
				373.7063728	150.3712537	75.92237347	0.949092756	0.949092756	
10	37.80623532	14.91294916	7.280815519	336.3358889	135.3340846	68.33002653	0.949167915	0.948082068	0.217169369
20	75.17679999	29.95009523	14.87310478	298.965425	120.2969098	60.73766517	0.949242964	0.947624079	0.323776967
30	112.5473647	44.9872413	22.46539404	261.59499	105.2597268	53.14528321	0.949317902	0.947513435	0.360893517
40	149.9179293	60.02438737	30.0576833	224.2245982	90.22253142	45.55287035	0.94939273	0.947606295	0.357286898
50	187.288494	75.06153344	37.64997255	186.8542756	75.18531635	37.96040805	0.949467447	0.947809924	0.331504615
60	224.6590587	90.09867951	45.24226181	149.484074	60.14806679	30.36785923	0.949542055	0.948065889	0.295233064
70	262.0296234	105.1358256	52.83455107	112.1141144	45.11074822	22.77513737	0.949616553	0.948338535	0.255603605
80	299.400188	120.1729716	60.42684033	74.74475993	30.07325716	15.1819829	0.949690943	0.948607116	0.216765314
90	336.7707527	135.2101177	68.01912959	37.37782585	15.03507612	7.58709803	0.949765231	0.948860484	0.180949337
100	374.1413174	150.2472638	75.61141885				0.949839374	0.949093462	0.149182495

Table 11: $\lambda_1 = 500, \lambda_2 = 200, \lambda_3 = 100, \mu = 4$, Inventory=0.75 year

$\Phi/(\Phi+\Omega)$	ϕ_1	ϕ_2	ϕ_3	$\gamma_1 \Omega$	$\gamma_2\Omega$	$\gamma_3\Omega$	α_S	β_{S}	Exp. Tr.
				499.5645785	200.1245476	100.3108738	0.63143208	0.63143208	
10	50.39344319	19.88767289	9.718883921	449.608236	180.1120599	90.27970407	0.631477973	0.63136609	0.089506222
20	100.3498464	39.90014325	19.75001034	399.6519087	160.0995679	80.24852344	0.631523861	0.631320634	0.162581192
30	150.3062496	59.91261361	29.78113675	349.695603	140.0870697	70.21732733	0.631569743	0.631293548	0.220956011
40	200.2626529	79.92508397	39.81226317	299.7393298	120.0745622	60.18610799	0.631615619	0.631282163	0.266764976
50	250.2190561	99.93755433	49.84338958	249.7831087	100.0620398	50.15485147	0.631661489	0.631284153	0.301869467
60	300.1754593	119.9500247	59.874516	199.8269786	80.04949145	40.1235299	0.631707354	0.631297491	0.327890538
70	350.1318625	139.9624951	69.90564241	149.8710307	60.03689109	30.09207823	0.631753214	0.631320417	0.346237794
80	400.0882658	159.9749654	79.93676883	99.91553795	40.02416074	20.06030131	0.631799069	0.6313514	0.358134936
90	450.044669	179.9874358	89.96789524	49.96186622	20.01091039	10.02722338	0.63184492	0.631389117	0.364642371
100	500.0010722	199.9999061	99.99902166				0.631890754	0.631432407	0.366677194

Table 12: $\lambda_1 = 500, \lambda_2 = 200, \lambda_3 = 100, \mu = 1$, Inventory=1 year

$\Phi/(\Phi + \Omega)$	ϕ_1	ϕ_2	ϕ_3	$\gamma_1 \Omega$	$\gamma_2\Omega$	$\gamma_3\Omega$	α_{S}	β_S	Exp. Tr.
				499.1316477	200.2486606	100.6196917	0.863651611	0.863651611	
10	50.34969193	19.90028551	9.750022556	449.2185982	180.2237617	90.55764018	0.863719253	0.863315678	0.161429762
20	100.2628021	39.92516715	19.81203072	399.3055638	160.1988584	80.49557785	0.863786861	0.863123322	0.265415621
30	150.1759123	59.95004878	29.87403889	349.392551	140.1739489	70.43350004	0.863854436	0.863038169	0.326506862
40	200.0890225	79.97493042	39.93604705	299.4795708	120.1490302	60.37139902	0.863921978	0.863029933	0.356817996
50	250.0021327	99.99981205	49.99805522	249.5666425	100.1240967	50.30926086	0.863989486	0.863075774	0.365484557
60	299.9152429	120.0246937	60.06006338	199.6538051	80.09913717	40.24705771	0.86405696	0.863158599	0.359344385
70	349.8283531	140.0495753	70.12207155	149.7411497	60.07412575	30.18472456	0.864124402	0.863265727	0.34346993
80	399.7414633	160.074457	80.18407971	99.82894904	40.04898454	20.12206642	0.864191811	0.863387853	0.32158316
90	449.6545735	180.0993386	90.24608788	49.91856747	20.02332418	10.05810835	0.864259191	0.863518246	0.296378136
100	499.5676837	200.1242202	100.308096			0	0.86432652	0.863652092	0.269771084

Table 13: $\lambda_1 = 500, \lambda_2 = 200, \lambda_3 = 100, \mu = 2$, Inventory=1 year

$\Phi/(\Phi + \Omega)$	Ф1	ϕ_2	ϕ_3	$\gamma_1 \Omega$	$\gamma_2 \Omega$	$\gamma_3\Omega$	α s	β_{S}	Exp. Tr.
				497.4295156	200.7392628	101.8312216	0.997351116	0.997351116	
10	50.17766393	19.9501395	9.872196568	447.6866788	180.6653038	91.64801738	0.997362744	0.994954527	0.321095659
20	99.92056115	40.02408126	20.0553576	397.9438571	160.5913406	81.46480236	0.997374321	0.994709874	0.355259627
30	149.6634584	60.09802301	30.23851863	348.2010569	140.5173712	71.28157192	0.997385848	0.99518008	0.294102307
40	199.4063556	80.17196476	40.42167966	298.4582891	120.4433926	61.09831834	0.997397323	0.995775118	0.216294091
50	249.1492528	100.2459065	50.60484069	248.715573	100.3693993	50.91502774	0.997408749	0.996290541	0.149094338
60	298.89215	120.3198483	60.78800172	198.9729475	80.29538013	40.73167236	0.997420124	0.996680246	0.098650379
70	348.6350472	140.39379	70.97116275	149.2305032	60.22130942	30.54818741	0.99743145	0.996955529	0.063456129
80	398.3779444	160.4677318	81.15432378	99.48851172	40.14710974	20.36437853	0.997442725	0.997142852	0.039983068
90	448.1208417	180.5416735	91.33748481	49.7483318	20.07239423	10.17927397	0.997453953	0.997267963	0.024798639
100	497.8637389	200.6156153	101.5206458				0.997465127	0.997351197	0.015190664

Table 14: $\lambda_1 = 500, \lambda_2 = 200, \lambda_3 = 100, \mu = 6$, Inventory=1 year

$\Phi/(\Phi + \Omega)$	ϕ_1	ϕ_2	ϕ_3	$\gamma_1 \Omega$	$\gamma_2 \Omega$	$\gamma_3\Omega$	α_{S}	β_{S}	Exp. Tr.
				496.5956778	200.9810962	102.423226	0.99962276	0.99962276	
10	50.09338344	19.974713	9.931903563	446.9362245	180.882954	92.18082146	0.999625677	0.996134241	0.349143631
20	99.75289699	40.07283804	20.17426497	397.2767863	160.7848076	81.93840615	0.999628572	0.996455133	0.317343879
30	149.4124105	60.17096309	30.41662637	347.6173696	140.686655	71.69597545	0.999631444	0.997473167	0.21582771
40	199.0719241	80.26908814	40.65898778	297.9579852	120.5884932	61.45352164	0.999634295	0.998330283	0.130401176
50	248.7314376	100.3672132	50.90134918	248.2986524	100.4903167	51.21103088	0.999637123	0.998898661	0.073846243
60	298.3909512	120.4653382	61.14371059	198.63941	80.39211453	40.96847544	0.999639929	0.99923851	0.040141936
70	348.0504647	140.5634633	71.386072	148.9803484	60.29386093	30.72579064	0.999642714	0.999430582	0.021213247
80	397.7099783	160.6615883	81.6284334	99.32173878	40.19547877	20.48278245	0.999645477	0.999535666	0.010981087
90	447.3694918	180.7597134	91.87079481	49.66493692	20.0965824	10.23848068	0.999648219	0.999592265	0.005595441
100	497.0290054	200.8578384	102.1131562	Ω	0		0.999650939	0.99962278	0.002815931

Table 15: $\lambda_1 = 500, \lambda_2 = 200, \lambda_3 = 100, \mu = 8$, Inventory=1 year

$\Phi/(\Phi + \Omega)$	ϕ_1	ϕ_2	ϕ_3	$\gamma_1 \Omega$	$\gamma_2\Omega$	$\gamma_3\Omega$	α_S	β_{S}	Exp. Tr.
				548.2725261	220.4955661	111.2319078	0.981183161	0.981183161	
10	55.26303885	21.92530159	10.81165957	493.4453781	198.4459797	100.1086423	0.981216876	0.980020347	0.263236489
20	110.0902419	43.97487232	21.93488575	438.6182438	176.3963894	88.9853669	0.981250531	0.979638318	0.354686892
30	164.917445	66.02444305	33.05811193	383.7911291	154.3467934	77.86207749	0.981284125	0.979658404	0.357658711
40	219.7446481	88.07401379	44.18133812	328.9640439	132.297189	66.73876701	0.981317659	0.979861249	0.320410283
50	274.5718512	110.1235845	55.3045643	274.137006	110.2475712	55.61542281	0.981351133	0.980128209	0.26904326
60	329.3990543	132.1731553	66.42779048	219.3100505	88.1979299	44.4920196	0.981384547	0.980398858	0.216851527
70	384.2262573	154.222726	77.55101666	164.4832601	66.14824148	33.36849837	0.981417901	0.980645542	0.169918968
80	439.0534604	176.2722967	88.67424285	109.6568825	44.09843539	22.2446821	0.981451196	0.980858371	0.1304217
90	493.8806635	198.3218675	99.79746903	54.83215576	22.04815858	11.11968565	0.981484433	0.98103653	0.098538841
100	548.7078666	220.3714382	110.9206952				0.981517604	0.981183378	0.073529625

Table 16: $\lambda_1 = 550, \lambda_2 = 220, \lambda_3 = 110, \mu = 4$, Inventory=1 year

$\Phi/(\Phi + \Omega)$	ϕ_1	ϕ_2	ϕ_3	$\gamma_1 \Omega$	$\gamma_2\Omega$	$\gamma_3\Omega$	α_S	β_S	Exp. Tr.
			0	448.2774371	180.4945881	91.22797485	0.98107133	0.98107133	
10	45.26315238	17.92536723	8.811480389	403.4498211	162.4450929	82.10508607	0.981112648	0.97965613	0.262173348
20	90.09083561	35.97484328	17.93432112	358.6222218	144.3955929	72.98218528	0.981153876	0.979189181	0.353645232
30	134.9185188	54.02431932	27.05716185	313.7946466	126.3460861	63.85926732	0.981195015	0.979212605	0.356833815
40	179.7462021	72.07379537	36.18000258	268.9671074	108.296569	54.73632363	0.981236064	0.979459198	0.319835793
50	224.5738853	90.12327141	45.3028433	224.1396258	90.24703548	45.61333876	0.981277023	0.97978432	0.268686468
60	269.4015685	108.1727475	54.42568403	179.312245	72.19747325	36.4902818	0.981317893	0.980114225	0.21666017
70	314.2292517	126.2222235	63.54852476	134.4850657	54.14785356	27.3670807	0.981358674	0.980415106	0.1698422
80	359.056935	144.2716995	72.67136549	89.65839054	36.09809022	18.24351923	0.981399366	0.980674823	0.130417891
90	403.8846182	162.3211756	81.79420622	44.83373141	18.04775231	9.11851628	0.981439973	0.980892323	0.098577083
100	448.7123014	180.3706516	90.91704695	Ω			0.981480478	0.981071653	0.073588582

Table 17: $\lambda_1 = 450, \lambda_2 = 180, \lambda_3 = 90, \mu = 4$, Inventory=1 year

$\Phi/(\Phi + \Omega)$	ϕ_1	ϕ_2	ϕ_3	$\gamma_1 \Omega$	$\gamma_2\Omega$	$\gamma_3\Omega$	α s	β_{S}	Exp. Tr.
				996.7252016	101.4497687	11.82502971	0.981294644	0.981294644	
10	100.533395	9.781914835	0.684690126	897.0528452	91.3047228	10.64243205	0.981320562	0.980494628	0.229196594
20	200.2058376	19.92692442	1.867237949	797.3805103	81.15966778	9.459821931	0.981346443	0.980167315	0.327208157
30	299.8782802	30.071934	3.049785772	697.7082062	71.01459978	8.277194016	0.981372289	0.980161434	0.336012465
40	399.5507228	40.21694359	4.232333594	598.0359483	60.86951231	7.094539402	0.9813981	0.980303799	0.303668558
50	499.2231654	50.36195317	5.414881417	498.3637642	50.72439369	5.911842073	0.981423875	0.980500349	0.25627851
60	598.895608	60.50696275	6.59742924	398.6917095	40.57922055	4.72906999	0.981449616	0.980702841	0.207229868
70	698.5680506	70.65197234	7.779977063	299.0199132	30.43393838	3.5461484	0.981475322	0.980888892	0.162734298
80	798.2404932	80.79698192	8.962524885	199.3487634	20.28838361	2.362853043	0.981500997	0.981050191	0.125098747
90	897.9129358	90.9419915	10.14507271	99.68019892	10.14173846	1.178062618	0.981526653	0.981185675	0.094621398
100	997.5853784	101.0870011	11.32762053				0.981552198	0.981297557	0.070663064

Table 18: $\lambda_1 = 1000, \lambda_2 = 100, \lambda_3 = 10, \mu = 4$, Inventory=1 year

$\Phi/(\Phi + \Omega)$	ϕ_1	ϕ_2	ϕ_3	$\gamma_1 \Omega$	$\gamma_2\Omega$	$\gamma_3\Omega$	α_S	β_S	Exp. Tr.
0	Ω			993.6527468	102.877537	13.46971618	0.99963572	0.99963572	
10	100.2326663	9.926195235	0.841138442	894.2876371	92.58971457	12.12264835	0.999637672	0.997456694	0.302610651
20	199.5978628	20.21398152	2.188155635	794.9225491	82.30188305	10.77556786	0.999639613	0.997557732	0.288861088
30	298.9630594	30.5017678	3.535172827	695.5574921	72.0140386	9.428469281	0.999641544	0.998205467	0.199255695
40	398.3282559	40.78955408	4.88219002	596.1924817	61.72617475	8.081343577	0.999643465	0.99877075	0.121089236
50	497.6934524	51.07734036	6.229207212	496.8275456	51.43827989	6.734174469	0.999645375	0.999149909	0.068745899
60	597.058649	61.36512664	7.576224405	397.4627399	41.15033073	5.386929403	0.999647275	0.999377706	0.03740279
70	696.4238455	71.65291292	8.923241597	298.0981946	30.86227298	4.039532422	0.999649165	0.999506715	0.019765054
80	795.789042	81.9406992	10.27025879	198.7343006	20.57394377	2.691755652	0.999651046	0.999577351	0.010225172
90	895.1542385	92.22848548	11.61727598	99.37301157	10.2845287	1.342459726	0.999652917	0.999615403	0.005205075
100	994.5194351	102.5162718	12.96429317				0.999654773	0.999635918	0.002616165

Table 19: $\lambda_1 = 1000, \lambda_2 = 100, \lambda_3 = 10, \mu = 8$, Inventory=1 year

Bibliography

- [1] Deloitte, "2017 global health care outlook," 2017.
- [2] OECD, "Health at a glance 2017: Oecd indicators," 2017.
- [3] L. Nicholson, A. J. Vakharia, and S. S. Erenguc, "Outsourcing inventory management decisions in healthcare: Models and application," *European Journal of* Operational Research, vol. 154, no. 1, pp. 271–290, 2004.
- [4] FDA, "Drug Shortages," 2018, retrieved: May 24, 2018. [Online]. Available: https://www.accessdata.fda.gov/scripts/drugshortages/default.cfmB
- [5] C. Paterson, G. Kiesmüller, R. Teunter, and K. Glazebrook, "Inventory models with lateral transshipments: A review," European Journal of Operational Research, vol. 210, no. 2, pp. 125–136, 2011.
- [6] B. Balcik, C. D. C. Bozkir, and O. E. Kundakcioglu, "A literature review on inventory management in humanitarian supply chains," Surveys in Operations Research and Management Science, vol. 21, no. 2, pp. 101–116, 2016.
- [7] B. Balcik and B. M. Beamon, "Facility location in humanitarian relief," International Journal of Logistics, vol. 11, no. 2, pp. 101–121, 2008.
- [8] M. Bozkurt and S. Duran, "Effects of natural disaster trends: A case study for expanding the pre-positioning network of CARE International," *International* Journal of Environmental Research and Public Health, vol. 9, no. 8, pp. 2863– 2874, 2012.
- [9] A. Bozorgi-Amiri, M. S. Jabalameli, and S. M. J. M. Al-e Hashem, "A multiobjective robust stochastic programming model for disaster relief logistics under uncertainty," *OR Spectrum*, vol. 35, no. 4, pp. 905–933, 2013.
- [10] A. M. Campbell and P. C. Jones, "Prepositioning supplies in preparation for disasters," European Journal of Operational Research, vol. 209, no. 2, pp. 156– 165, 2011.
- [11] A. K. Chakravarty, "Humanitarian relief chain: Rapid response under uncertainty," International Journal of Production Economics, vol. 151, pp. 146–157, 2014.
- [12] A. Döyen, N. Aras, and G. Barbarosoğlu, "A two-echelon stochastic facility location model for humanitarian relief logistics," Optimization Letters, vol. 6, no. 6, pp. 1123–1145, 2012.
- [13] S. Duran, M. A. Gutierrez, and P. Keskinocak, "Pre-positioning of emergency items for CARE International," Interfaces, vol. 41, no. 3, pp. 223–237, 2011.
- [14] G. Galindo and R. Batta, "Prepositioning of supplies in preparation for a hurricane under potential destruction of prepositioned supplies," Socio-Economic Planning Sciences, vol. 47, no. 1, pp. 20–37, 2013.
- [15] R. A. Garrido, P. Lamas, and F. J. Pino, "A stochastic programming approach for floods emergency logistics," Transportation Research Part E: Logistics and Transportation Review, vol. 75, pp. 18–31, 2015.
- [16] X. Hong, M. A. Lejeune, and N. Noyan, "Stochastic network design for disaster preparedness," IIE Transactions, vol. 47, no. 4, pp. 329–357, 2015.
- [17] W. Klibi, S. Ichoua, and A. Martel, "Prepositioning emergency supplies to support disaster relief: a stochastic programming approach," Centre Interuniversitaire de Recherche sur les Réseaux d'Entreprise, la Logistique et le Transport, Tech. Rep., 2013.
- [18] E. J. Lodree and S. Taskin, "An insurance risk management framework for disaster relief and supply chain disruption inventory planning," Journal of the Operational Research Society, vol. 59, no. 5, pp. 674–684, 2008.
- [19] W. Manopiniwes, K. Nagasawa, and T. Irohara, "Humanitarian relief logistics with time restriction: Thai flooding case study," Industrial Engineering $\mathcal{C}_{\mathcal{A}}$ Management Systems, vol. 13, no. 4, pp. 398–407, 2014.
- [20] H. O. Mete and Z. B. Zabinsky, "Stochastic optimization of medical supply location and distribution in disaster management," International Journal of Production Economics, vol. 126, no. 1, pp. 76–84, 2010.
- [21] R. Mohammadi, S. M. T. F. Ghomi, and F. Jolai, "Pre-positioning emergency supplies for earthquake response: A new multi-objective particle swarm optimization algorithm," Applied Mathematical Modelling, vol. 40, pp. 5183–5199, 2016.
- [22] N. Noyan, "Risk-averse two-stage stochastic programming with an application to disaster management," Computers $\mathcal B$ Operations Research, vol. 39, no. 3, pp. 541–559, 2012.
- [23] J. A. Paul and L. MacDonald, "Location and capacity allocations decisions to mitigate the impacts of unexpected disasters," European Journal of Operational Research, vol. 251, no. 1, pp. 252–263, 2016.
- [24] M. Rabbani, N. Manavizadeh, M. Samavati, and M. S. Jalali, "Proactive and reactive inventory policies in humanitarian operations," Uncertain Supply Chain Management, vol. 3, no. 3, pp. 253–272, 2015.
- [25] C. G. Rawls and M. A. Turnquist, "Pre-positioning of emergency supplies for disaster response," Transportation Research Part B: Methodological, vol. 44, no. 4, pp. 521–534, 2010.
- [26] ——, "Pre-positioning planning for emergency response with service quality constraints," OR Spectrum, vol. 33, no. 3, pp. 481–498, 2011.
- [27] Ç. Renkli and S. Duran, "Pre-positioning disaster response facilities and relief items," Human and Ecological Risk Assessment: An International Journal, vol. 21, no. 5, pp. 1169–1185, 2015.
- [28] S. Tofighi, S. A. Torabi, and S. A. Mansouri, "Humanitarian logistics network design under mixed uncertainty," European Journal of Operational Research, vol. 250, no. 1, pp. 239–250, 2016.
- [29] P. Van Hentenryck, R. Bent, and C. Coffrin, "Strategic planning for disaster recovery with stochastic last mile distribution," in Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. Springer, 2010, pp. 318–333.
- [30] B. M. Beamon and S. A. Kotleba, "Inventory modelling for complex emergencies in humanitarian relief operations," International Journal of Logistics: Research and Applications, vol. 9, no. 1, pp. 1–18, 2006.
- [31] ——, "Inventory management support systems for emergency humanitarian relief operations in South Sudan," The International Journal of Logistics Management, vol. 17, no. 2, pp. 187–212, 2006.
- [32] R. Das and S. Hanaoka, "Relief inventory modelling with stochastic lead-time and demand," *European Journal of Operational Research*, vol. 235, no. 3, pp. 616–623, 2014.
- [33] J. H. McCoy and M. L. Brandeau, "Efficient stockpiling and shipping policies for humanitarian relief: UNHCR's inventory challenge," OR Spectrum, vol. 33, no. 3, pp. 673–698, 2011.
- [34] K. V. Natarajan and J. M. Swaminathan, "Inventory management in humanitarian operations: Impact of amount, schedule, and uncertainty in funding," Manufacturing $\mathcal C$ Service Operations Management, vol. 16, no. 4, pp. 595–603, 2014.
- [35] N. Noyan, B. Balcik, and S. Atakan, "A stochastic optimization model for designing last mile relief networks," Transportation Science, vol. 50, no. 3, pp. 1092–1113, 2016.
- [36] K. Ozbay and E. E. Ozguven, "Stochastic humanitarian inventory control model for disaster planning," Transportation Research Record: Journal of the Transportation Research Board, vol. 2022, pp. 63–75, 2007.
- [37] E. E. Ozguven and K. Ozbay, "A secure and efficient inventory management system for disasters," Transportation Research Part C: Emerging Technologies, vol. 29, pp. 171–196, 2013.
- [38] M. S. Roni, M. Jin, and S. D. Eksioglu, "A hybrid inventory management system responding to regular demand and surge demand," Omega, vol. 52, pp. 190–200, 2015.
- [39] M. S. Roni, S. D. Eksioglu, M. Jin, and S. Mamun, "A hybrid inventory policy with split delivery under regular and surge demand," International Journal of Production Economics, vol. 172, pp. 126–136, 2016.
- [40] B. Rottkemper, K. Fischer, A. Blecken, and C. Danne, "Inventory relocation for overlapping disaster settings in humanitarian operations," OR Spectrum, vol. 33, no. 3, pp. 721–749, 2011.
- [41] Z. Shen, M. Dessouky, and F. Ordóñez, "Perishable inventory management system with a minimum volume constraint," Journal of the Operational Research Society, vol. 62, no. 12, pp. 2063–2082, 2011.
- [42] V. S. S. Yadavalli, D. K. Sundar, and S. Udayabaskaran, "Two substitutable perishable product disaster inventory systems," Annals of Operations Research, vol. 233, no. 1, pp. 517–534, 2015.
- [43] L. B. Davis, F. Samanlioglu, X. Qu, and S. Root, "Inventory planning and coordination in disaster relief efforts," International Journal of Production Economics, vol. 141, no. 2, pp. 561–573, 2013.
- [44] E. J. Lodree and S. Taskin, "Supply chain planning for hurricane response with wind speed information updates," Computers $\mathcal C$ Operations Research, vol. 36, no. 1, pp. 2–15, 2009.
- [45] E. J. Lodree, "Pre-storm emergency supplies inventory planning," Journal of Humanitarian Logistics and Supply Chain Management, vol. 1, no. 1, pp. 50–77, 2011.
- [46] E. J. Lodree, K. N. Ballard, and C. H. Song, "Pre-positioning hurricane supplies in a commercial supply chain," Socio-Economic Planning Sciences, vol. 46, no. 4, pp. 291–305, 2012.
- [47] G. G. Pacheco and R. Batta, "Forecast-driven model for prepositioning supplies in preparation for a foreseen hurricane," Journal of the Operational Research Society, vol. 67, no. 1, pp. 98–113, 2016.
- [48] C. G. Rawls and M. A. Turnquist, "Pre-positioning and dynamic delivery planning for short-term response following a natural disaster," Socio-Economic Planning Sciences, vol. 46, no. 1, pp. 46–54, 2012.
- [49] L. C. Salas, M. R. Cárdenas, and M. Zhang, "Inventory policies for humanitarian aid during hurricanes," Socio-Economic Planning Sciences, vol. 46, no. 4, pp. 272–280, 2012.
- [50] S. Taskin and E. J. Lodree, "Inventory decisions for emergency supplies based on hurricane count predictions," International Journal of Production Economics, vol. 126, no. 1, pp. 66–75, 2010.
- [51] ——, "A Bayesian decision model with hurricane forecast updates for emergency supplies inventory management," Journal of the Operational Research Society, vol. 62, no. 6, pp. 1098–1108, 2011.
- [52] M. Yao and S. Minner, "Review of multi-supplier inventory models in supply chain management: An update," 2017.
- [53] W. W. Nasr, M. K. Salameh, and L. Moussawi-Haidar, "Transshipment and safety stock under stochastic supply interruption in a production system," Computers \mathcal{B} Industrial Engineering, vol. 63, no. 1, pp. 274–284, 2012.
- [54] A. C. C. van Wijk, I. J. B. F. Adan, and G. J. van Houtum, "Approximate evaluation of multi-location inventory models with lateral transshipments and hold back levels," *European Journal of Operational Research*, vol. 218, no. 3, pp. 624–635, 2012.
- [55] T. Cheong, "Joint inventory and transshipment control for perishable products of a two-period lifetime," The International Journal of Advanced Manufacturing Technology, vol. 66, no. 9-12, pp. 1327–1341, 2013.
- [56] P. Feng, R. Y. K. Fung, and F. Wu, "Preventive transshipment decisions in a multi-location inventory system with dynamic approach," Computers \mathcal{C} Industrial Engineering, vol. 104, pp. $1-8$, 2017.
- [57] C. A. Hochmuth and P. Köchel, "How to order and transship in multi-location inventory systems: The simulation optimization approach," International Journal of Production Economics, vol. 140, no. 2, pp. 646–654, 2012.
- [58] H. Zhao, V. Deshpande, and J. K. Ryan, "Emergency transshipment in decentralized dealer networks: When to send and accept transshipment requests," Naval Research Logistics, vol. 53, no. 6, pp. 547–567, 2006.
- [59] G. Tagaras and D. Vlachos, "Effectiveness of stock transshipment under various demand distributions and nonnegligible transshipment times," *Production and* Operations Management, vol. 11, no. 2, pp. 183–198, 2002.
- [60] T. W. Archibald, S. A. E. Sassen, and L. C. Thomas, "An optimal policy for a two depot inventory problem with stock transfer," Management Science, vol. 43, no. 2, pp. 173–183, 1997.
- [61] T. W. Archibald, "Modelling replenishment and transshipment decisions in periodic review multilocation inventory systems," Journal of the Operational Research Society, vol. 58, no. 7, pp. 948–956, 2007.
- [62] S. Axsäter, "A new decision rule for lateral transshipments in inventory systems," Management Science, vol. 49, no. 9, pp. 1168–1179, 2003.
- [63] S. Minner and E. A. Silver, "Evaluation of two simple extreme transshipment strategies," International Journal of Production Economics, vol. 93, pp. 1–11, 2005.
- [64] K. S. Ramakrishna, M. Sharafali, and Y. F. Lim, "A two-item two-warehouse periodic review inventory model with transshipment," Annals of Operations Research, vol. 233, no. 1, pp. 365–381, 2015.
- [65] Y. T. Herer and A. Rashit, "Lateral stock transshipments in a two-location inventory system with fixed and joint replenishment costs," Naval Research Logistics, vol. 46, no. 5, pp. 525–547, 1999.
- [66] Y. T. Herer and M. Tzur, "The dynamic transshipment problem," Naval Research Logistics, vol. 48, no. 5, pp. 386–408, 2001.
- [67] C. Paterson, R. Teunter, and K. Glazebrook, "Enhanced lateral transshipments in a multi-location inventory system," European Journal of Operational Research, vol. 221, no. 2, pp. 317–327, 2012.
- [68] K. Glazebrook, C. Paterson, S. Rauscher, and T. Archibald, "Benefits of hybrid lateral transshipments in multi-item inventory systems under periodic replenishment," Production and Operations Management, vol. 24, no. 2, pp. 311–324, 2015.
- [69] J. Grahovac and A. Chakravarty, "Sharing and lateral transshipment of inventory in a supply chain with expensive low-demand items," Management Science, vol. 47, no. 4, pp. 579–594, 2001.
- [70] F. Olsson, "Optimal policies for inventory systems with lateral transshipments," International Journal of Production Economics, vol. 118, no. 1, pp. 175–184, 2009.
- [71] S. Axsäter, "Evaluation of unidirectional lateral transshipments and substitutions in inventory systems," European Journal of Operational Research, vol. 149, no. 2, pp. 438–447, 2003.
- [72] F. Olsson, "An inventory model with unidirectional lateral transshipments," European Journal of Operational Research, vol. 200, no. 3, pp. 725–732, 2010.
- [73] A. Kukreja and C. P. Schmidt, "A model for lumpy demand parts in a multilocation inventory system with transshipments," Computers $\mathcal B$ Operations Research, vol. 32, no. 8, pp. 2059–2075, 2005.
- [74] S. Saedi, O. E. Kundakcioglu, and A. C. Henry, "Mitigating the impact of drug shortages for a healthcare facility: an inventory management approach," European Journal of Operational Research, vol. 251, no. 1, pp. 107–123, 2016.

[75] J. Hu, E. Watson, and H. Schneider, "Approximate solutions for multi-location inventory systems with transshipments," International Journal of Production Economics, vol. 97, no. 1, pp. 31–43, 2005.

VITA

Cem Deniz Çağlar Bozkır graduated from V.K.V. Koc School in 2010. He received his B.S. degree in Industrial Engineering from Özyeğin University in January 2015. After graduation, he joined Master of Science program in Industrial Engineering at Özyeğin University, and has been working under supervision of Assoc. Prof. Erhun Kundakcıoğlu. His research focuses on inventory management in humanitarian operations and healthcare systems.