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Asst. Prof. Göktürk Poyrazoğlu
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ABSTRACT

In this thesis, the hardware implementation of a real-time image fusion algorithm

using a High-Level Synthesis (HLS) tool is presented. Image fusion combines two

or more images through a color transformation process. Different applications may

require different frames per second (fps) and/or resolution. Yet the specifics of the

image-processing algorithm may frequently change causing redesign. If the target

platform is Field Programmable Gate Array (FPGA), usually rapid yet optimized

hardware implementation is required. All these requirements cannot be met only by

HLS. Clever approaches in terms of architectural techniques such as unorthodox ways

of pipelining, coding Register Transfer Level (RTL) generators instead of RTL, and

creative ways of porting interface logic/software allowed us to meet the requirements

outlined above. With all these in our arsenal, we were able to get 3 versions of the

image fusion algorithm (with different fps and/or resolution) running on Intel Altera

Cyclone IV and Arria 10 FPGAs in a fairly short amount of time. In the image

fusion algorithm, there is a standard deviation calculation, implementation of which

requires accumulation of all pixel values of each frame. Hence, we designed two novel

pipelined reduction circuits (and hence their RTL generators) that are named Area-

Efficient Reduction Circuit (AERC) and High-Speed Area-Efficient Reduction Circuit

(HSAERC). We generated several reduction circuits (AERC and HSAERC) using our

own Verilog RTL generators. AERC and HSAERC designs were implemented on both

Xilinx Virtex-II Pro and Virtex-5 FPGAs, and their synthesis results were compared

with state-of-the-art designs in the literature. AERC design is better than the existing

designs in the literature in terms of area utilization. On the other hand, HSAERC

design is better than other designs in terms of performance.
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ÖZETÇE

Bu tezde, bir Yüksek-Seviyeli Sentez (HLS) aracı kullanarak gerçek zamanlı bir

görüntü birleştirme algoritmasının uygulaması sunulmuştur. Görüntü birleştirme

bir veya birden fazla görüntüyü bir renk dönüştürme yöntemi kullanarak birleştirir.

Farklı uygulamalar için saniyedeki kare sayısı (fps) ve/veya çözünürlük gereksin-

imi farklı olabilir. Görüntü işleme algoritmasının özellikleri sıkça değişebileceğinden

yeni tasarım yapmak gerekebilir. Hedef platform Sahada Programlanabilir Kapı

Dizisi (FPGA) olduğunda genellikle hızlı hatta optimize edilmiş donanım gerçeklemesi

gereklidir. Bütün bu gereksinimler, sadece HLS aracı ile karşılanamaz. Alışılmışın

dışında boru hattı yöntemleri, Yazmaç Transfer Seviyesi (RTL) kodlama yerine RTL

üreten araç kodlama ve mantık/yazılım arayüz bağlantısını yapmanın yaratıcı yolları,

yukarıda belirtilen gereksinimleri karşılamamıza izin verir. Bütün bu yaklaşımlarla

beraber, görüntü birleştirme algoritmasının 3 farklı versiyonunu (farklı fps ve/veya

çözünürlükte) Intel Altera Cyclone IV ve Arria 10 FPGA üzerinde oldukça kısa za-

manda çalıştırdık. Görüntü birleştirme algoritmasında standart sapma hesaplaması

bulunmaktadır, gerçeklemesi her görüntü karesindeki tüm piksel değerlerinin toplan-

masını gerektirir. Bu nedenle, Alan-Verimli İndirgeme Devresi (AERC) ve Hız-Alan

Verimli İndirgeme Devresi (HSAERC) diye adlandırılan iki özgün indirgeme devresi

(ve dolayısıyla RTL üreteçleri) tasarladık. Kendi Verilog RTL kod üreteçlerimizi kul-

lanarak birçok indirgeme devreleri (AERC ve HSAERC) ürettik. AERC ve HSAERC

devreleri, Xilinx Virtex-II Pro ve Virtex-5 FPGA’leri üzerinde gerçeklenmiştir ve

sentez sonuçları literatürdeki en gelişmiş tasarımlarla karşılaştırıldı. AERC tasarımı

alan kullanımı bakımından literatürdeki tasarımlara göre daha iyidir. Diğer yandan

HSAERC tasarımı ise performans bakımından diğer tasarımlardan üstündür.
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CHAPTER I

INTRODUCTION

This chapter introduces the problem, and gives an overview about image fusion and

reduction circuit. It also includes summary of our contributions and outline of the

thesis.

1.1 Problem Statement

The complexity of algorithms and large data sets in many real-time image processing

applications leads to high performance platforms. Field Programmable Gate Arrays

(FPGAs) provide a desirable platform to implement real-time image processing ap-

plications because FPGAs offer significant advantages in terms of parallel operation

and reconfiguration [1].

Image processing algorithms comprise a great variety of tasks that require many

computational operations on each pixel in each frame [2]. Moreover, the quality and

the size of image data is constantly increasing. In order to achieve high video rates

and resolutions, it is fundamental to process the image pixels simultaneously. How-

ever, the development time of the design becomes a significant issue for the FPGA

programmer as the algorithm becomes more complex [3]. Consequently, hardware de-

signers need to find new ways in order to complete their designs rapidly. Recently, the

usage and popularity of High-Level Synthesis (HLS) tools increase in FPGA commu-

nity [3] because it can translate high-level language codes into Hardware Description

Language (HDL) synthesizable projects [4].

This thesis work has been done as part of a project jointly supported by TÜBİTAK

ARDEB-EEEAG and European Union’s Artemis Joint Undertaking. Algorithms,
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Design Methods, and Many Core Execution Platform for Low-Power Massive Data-

Rate Video and Image Processing (ALMARVI) [5] was an ARTEMIS project which

was supported by both TÜBİTAK and European Union. Özyeğin University and

Aselsan were Turkish partners of ALMARVI project which had 16 partners from 4

different countries, namely, Netherlands, Finland, Czech Republic, and Turkey. In

the scope of ALMARVI project, we performed hardware implementation of an image

fusion algorithm [6]. Our special task was to implement it with 30 frames per second

at a resolution of 1920x1080 pixels.

In this thesis, we used Multiplexing Aware Function and Register Scheduler (MA-

FURES) HLS tool [3] in order to implement the real-time image fusion algorithm

rapidly. The algorithm includes standard deviation calculation that requires accumu-

lation of all pixels of each frame. However, the MAFURES HLS tool we used was not

sufficient to implement reduction operation. We decided to design our own reduction

circuits; hence, we initially made pipelined reduction circuit generators. Our reduc-

tion circuit designs contribute significantly in terms of performance and area with

respect to other designs in the literature.

1.2 Image Fusion Overview

Human visual system is very sophisticated and can be influenced easily by various

factors such as sunlight, shading, reflectance, and composition [7]. Therefore, the

human visual system cannot always interpret surrounding objects perfectly [7]. How-

ever, it is easier to identify the details of views in some circumstances. For example,

daylight images are more favorable than night images in order to identify features of

scene because color in daylight images provides much more information.

In real-world applications, more than one image is combined to produce a vision-

enhancing output images [7] and this technique is called image fusion. The goal in

image fusion is to reduce uncertainty and minimize redundancy in the output while

2



enhancing comprehensive information [8]. It achieves this goal by processing the

multiple images that are acquired by different sensors on a particular algorithm [9].

Image fusion has been used in many application areas. In medicine, it has recently

been used for diagnostics and treatment of patients [10]. In security and surveillance,

it used by both defense and commercial sectors for different objectives including

wide area border protection, harbor surveillance, and systems that can detect, track

and classify individual targets [11]. In remote or satellite area, it used to obtain

proper view of satellite vision [10]. In this thesis, the presented work can be used for

surveillance applications.

1.3 Reduction Circuit Overview

Reduction circuits that are used to reduce a set of numbers to a single value are used

in a wide range of fields ([12], [13], [14]) for many scientific applications such as vector

summation, dot product, and discrete cosine transform. Although FPGAs provide

various function units in order to perform these applications, it is challenging to design

a reduction circuit in an FPGA environment when high performance is necessity

because the design needs to be pure pipelined and also consists of pipelined function

units. Moreover, due to the fact that input vectors or matrices can be too large to

buffer in the hardware, each vector item need to be read sequentially every clock cycle.

This further complicates the design in order to prevent data hazards. Therefore, many

reduction circuit architectures had been proposed in the literature. In this thesis, we

also proposed two novel reduction circuit designs. Since high throughput reduction

circuits are typically hand designed for specific vector lengths, these circuits need to

be modified when the set lengths are changed; therefore, we wrote reduction circuit

generators at HDL to rapidly generate reduction circuit designs that can perform any

reduction circuit operations, such as floating-point addition and multiplication.

3



1.4 Contributions of the Thesis

The contributions to the literature are following:

• We proposed an HLS centered design strategy in order to implement an image

fusion algorithm rapidly.

• We proposed two novel reduction circuit architectures.

• We obtained superior timing and area results for our reduction circuits.

1.5 Outline of the Thesis

Chapter II presents previously proposed image fusion implementations, used image

fusion algorithm and its hardware implementation in detail. Chapter III presents

related work, reduction circuit problem, and our novel reduction circuit architectures.

Chapter IV shows the timing and area synthesis results for both image fusion designs

and reduction circuit designs.
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CHAPTER II

HARDWARE IMPLEMENTATION OF IMAGE FUSION

In this chapter, we first present previous work and used image fusion method. Then,

we propose image fusion hardware in detail. We also explain used tools and techniques

for the hardware implementation of the image fusion.

2.1 Previous Work

Image fusion has been performed using several approaches and presented in the lit-

erature ([15], [16], [17], [18]). In [19], Mohamed provides a detailed survey. In [15],

Besiris proposed a hardware implementation of pixel-level color image fusion. Their

technique is composed of covariance estimation, Cholesky decomposition and trans-

formation. In [20], Qu proposed a real-time image fusion system uses both FPGA

and multiDSP in order to perform algorithm. However, the performance result of the

system is low because DSPs are used as an algorithm processor. In [21], Song pro-

posed hardware implementation of real-time Laplacian pyramid image fusion. It was

implemented on Virtex-4 SX35 FPGA. The performance of the system was 25 frames

per second (fps) for 640x480 resolution images [21]. In [16], Sims proposed hardware

implementation of pattern-selective pyramidal image fusion technique that finds and

extracts all image characteristics from input images in order to combine them. It

was implemented on Virtex-II XC2VP100 FPGA that fused greyscale 640x480 reso-

lution images with 30 fps. In [22], Popovic proposed a real-time implementation of a

multi-resolution image blending algorithm that uses multi-resolution decomposition

of source images. The design which was implemented on Virtex-7 FPGA supports

pipelining [22]. The performance result was 94 fps for HD 1080 resolution [22]. All

of these designs ([16], [20], [21], [22]) are complex and require too much effort for
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implementation.

2.2 Image Fusion Method

In this section, the fundamental principles of image fusion algorithm ([6], [23]) pro-

posed briefly.

Image recoloring and color transferring are most common tasks in image process-

ing. Reinhard et al. [23] presented a method for transferring image characteristics

from an image to another image. Toet [6] showed that this method could be applied

to transfer the natural characteristics of daylight color image to (fused) multiband

night vision image.

Fig. 1 shows that the method is employed to combine display of visual (400 - 700

nm) and near infrared (700 - 900 nm) intensified low-light CCD images and thermal

middle wavelength band (3 - 5 µm) infrared images [6]. The visual light image is

mapped to R channel of an RGB image in Fig. 2(a). The near-infrared light image is

mapped to G channel of the RGB image in Fig. 2(b). And, the infrared light image

is mapped to B channel of the RGB image in Fig. 2(c). As shown in Fig.2(d), this

composition image is called false color image [6] that is also represented as a source

image. The important point is that the images of all three channels should be the

image of the same scene.

For the image fusion, a daylight image is called target image that is required to

transfer its natural color to the source image operations are performed on pixels of

these two source and target images. Structure of the image fusion method is given in

Fig. 3.

Firstly, the false color image generation is performed combining three identical

scene images that are obtained by different sensors to the proper channels. Then, the

source and target images are transformed from the RGB to the lαβ space in order

to minimize the correlation between channels. Then, mean and standard deviation

6



Figure 1: False Color Image Composition Methodology

values of the source and target images are calculated. The calculated mean values

are subtracted from each image pixel values. Thereafter, the source image is scaled

with the ratio of the standard deviations of the source and target images. As a result

of this process, a synthetic image is created and its standard deviation is conform to

the standard deviation of the target image. Then, the mean value of the target image

is added to the generated synthetic image pixel values. With this process, the mean

value of the synthetic image becomes equal to the mean value of the target image.

Finally, the synthetic image in lαβ space is transformed into the RGB space.

The image fusion method proceeds as in the following [6]:

1. False color image is created and it is named as a source image. An image that is

very similar to the color characteristic of the source daytime image is selected.

This image is called the target image. The color characteristics of the target

image are transferred to the source image.

7



Figure 2: Example of False Color Image Composition

2. The source and the target image are transformed from RGB space to lαβ space.

(a) Transform RGB to LMS space.


L

M

S

 =


0.3811 0.5783 0.0402

0.1967 0.7244 0.0782

0.0241 0.1288 0.8444



R

G

B

 (1)

(b) Perform logarithm in order to eliminate a deal of skew.

L = logL

M = logM

S = logS

(2)
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Figure 3: Structure of Image Fusion Method

3. Transform LMS to lαβ space [6] to decorrelate the axes in the LMS space.


l

α

β

 =


1√
3

0 0

0 1√
6

0

0 0 1√
2




1 1 1

1 1 −2

1 −1 0



L

M

S



=


1√
3

1√
3

1√
3

1√
6

1√
6
−2 1√

6

1√
6
− 1√

6
0



R

G

B


(3)

4. The mean and standard deviations are calculated for the source and the target

image.
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5. The calculated mean values are subtracted from the source and target image

data points.

l∗ = l − < l >

α∗ = α − < α >

β∗ = β − < β >

(4)

6. The source data points are scaled with the ratio of standard deviation of the

source and the target image. At the end of this process, a synthetic image is

created that is equal to the standard deviation of the target daylight image.

l′s =
σlt
σlt
l∗s

α′s =
σαt
σαt
α∗s

β′s =
σβt

σβt
β∗s

(5)

7. The mean of target image is added to the synthetic image; thus, the mean of

the synthetic image is equalized to the mean of the target image.

8. Finally, the synthetic image in lαβ space is transformed into RGB space.

(a) lαβ space to LMS space conversion


L

M

S

 =


1 1 1

1 1 −1

1 −2 0



√
3
3

0 0

0
√
6
6

0

0 0
√
2
2



l

α

β



=


√
3
3

√
6
6

√
2
2

√
3
3

√
6
6

−
√
2
2

√
3
3
−2
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
(6)
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(b) LMS space to RGB space conversion
R

G

B

 =


4.4679 −3.5873 0.1193

−1.2186 2.3809 −0.1624

0.0497 −0.2439 1.2045



L

M

S

 (7)

Fig. 4 shows varied synthetic images that are produced by using different daylight

target images and a false color source image. The image in Fig. 4(a) represents source

image (false color image). The images in Fig. 4(b) and in Fig. 4(d) are target images.

The images in Fig. 4(c) and in Fig. 4(e) are result images.

Figure 4: Examples of Image Fusion with Different Target Images
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Standard Deviation Formula

The hardware implementation of standard deviation calculation that is given in

(8) is challenging for designers because of data dependency issue. Hence, we used the

mean of previous frame. In order accumulate pixel values, we used reduction circuit

design that is explained in the next chapter.

σ(standard deviation) =

√√√√ 1

N

N∑
x=1

(xi −
1

N

N∑
x=1

xi)2 (8)

2.3 Image Fusion Hardware

The overall system is given in Fig. 5. A host processor is used to control video

acquisition and display. It supplies video streams from a camera or storage to the

FPGA over PCIe interface. The FPGA collects each frame data in its corresponding

FIFOs in order to perform the image fusion process. After completing the image

fusion process on the FPGA, each frame data is immediately transferred back to the

FIFOs, and then to the Host. The Host collects video frames and transmits them

to the FPGA, as well as captures processed frames from the FPGA and display the

video on the monitor.

Figure 5: Structure of Image Fusion Hardware
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2.3.1 Frame Pipelining

Fig. 6 shows the top-level schedule that is also our frame level schedule. In our

hardware design, the current frame starts to be processed without waiting for the

completion of the previous frame operations. This frame pipelining technique yields

increment in number of processed frame per unit time. As shown in Fig. 6(b), Vin f2

starts before Vout f1 finishes in Fig. 6(b). Otherwise, the schedule of implementation

is sequential like in Fig. 6(a). In order to make the figure easily readable, we shaded

the block of odd numbered frames. We used Vin and Vout to indicate Video in

and Video out. Vin and Vout are processes that are used to control the transaction

between the Host, the FPGA and the PCIe interface. Each frame streamed out back

to the Host after the image fusion process. In Fig. 6, Fs indicates the image fusion

process on the FPGA.

2.3.2 FPGA Architecture

The structure of the design consists of PCIe interface, input and output FIFOs,

wrapper, fusion main and standard deviation modules. Fig. 7 shows the top-level

block diagram of the FPGA in the image fusion design. Pixel streaming is done over

PCIe bus. SRAM FIFOs (made using FPGA Block RAM) provide pixel transaction

between PCIe interface and the wrapper module to provide synchronization. The

wrapper module controls input-output write and read enable signals between the

fusion main and the standard deviation modules and also between input and output

FIFOs.

The fusion main module is the most important module that contains all fusion

method operations except standard deviation (8) because there is a data dependency

issue. The standard deviation value of each frame is used once for each pixel scaling

operation. Therefore, the fusion main module is needed of the standard deviation

value of the current frame. However, this is quite costly because all pixels in the
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Figure 6: Schedule of (a) Sequential (b) Frame Pipelining Implementation

frame must be processed to calculate the standard deviation of the frame. Hence,

we designed the standard Deviation module as a separate module that gives the

standard deviation value of the previous frame to the fusion main module each time.

The Wrapper module provides the connection between the Wrapper module and the

fusion module.
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Figure 7: Top-Level Block Diagram of the FPGA for Image Fusion Design

FIFO Mechanism

Host sends pixel values to input FIFO via PCIe. If the input FIFO is not full, the

pixel values are written to the input FIFO. If the input FIFO is not empty, the pixel

values go to fusion process. After the fusion process, the pixel values are written to

output FIFO. Finally, if the output FIFO is not empty, the pixel values go back to

the Host via PCIe.

2.3.3 Details of FPUs

Altera has special floating-point IP cores to perform floating-point arithmetic oper-

ations. We created the necessary Floating-Point Units (FPUs) for the image fusion
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algorithm using Megawizard tool of Altera Quartus II. We determined the FPUs ac-

cording to the fps and resolution values that we have targeted for the real-time image

fusion application.

Our aim for the image fusion application was to process 30 frames per second at a

resolution of 1920x1080 pixels. In order to achieve this goal, FPGA needs to be able

to process 62,208,000 pixels per second. The calculation is given in (9).

Pixel number = fps · resolution

= 30 · 1920 · 1080

= 62, 208, 000

(9)

The used FPU properties of Cyclone IV FPGA for the image fusion design are

given in Table 1.

Table 1: FPU Properties of Cyclone IV FPGA

FPU IP Core Name Function Overview f(MHz) Latency(#cycles)
ADD SUB Adder/Subtracter 187 11

MULT Multiplier 188 5
DIV Divider 191 14

SQRT Square Root 233 28
LOG Natural Logarithm 184 21
EXP Exponential 110 17

CONVERT (INT to FP) Integer-to-Float 232 6
CONVERT (FP to INT) Float-to-Integer 210 6

When we designed the system to work on Arria 10 FPGA, we created new FPUs

because FPU properties for Arria 10 FPGA are different. The used FPU properties

of Cyclone IV FPGA for the image fusion design are given in Table 2.
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Table 2: FPU Properties of Arria 10 FPGA

FPU IP Core Name Function Overview f(MHz) Latency(#cycles)
ADD SUB Adder/Subtracter 521 11

MULT Multiplier 371 5
DIV Divider 449 25

SQRT Square Root 844 28
LOG Natural Logarithm 308 21
EXP Exponential 804 50

CONVERT (INT to FP) Integer-to-Float 299 6
CONVERT (FP to INT) Float-to-Integer 488 6

Logarithm and Exponent FPUs

There are some logarithm operations in the image fusion algorithm. However, MegaWiz-

ard tool of Altera Quartus II does not support logarithm FPU with base 10. On the

other hand, it supports natural logarithm. Hence, we used the formula that is given

in (10) in order to perform logarithm operations with base 10.

log10x = logex · log10e (10)

In the above formula, we can find log10x on the left side of the equation by

multiplying logex and log10e. Since log10e is a constant value, we only use FPU for

logex calculation.

We faced with similar problem for exponential operations because there is not

exponent FPU with base 10. Therefore, we used similar methodology like logarithm

calculation. We used the following formula that is given in (11) in order to perform

10x.

10x = ex·loge10 (11)

17



Convert FPUs

Since each pixel value that is read from the input FIFO is an integer value, we need

to convert integer values to floating-point values. Hence, we used integer-to-float

FPUs that operate each conversion with 6-clock cycle latency. Similarly, we used

float-to-integer FPU to convert floating-point values to integer values before sending

pixel values to the output FIFO. It also operates with 6-clock cycle latency. These

latencies cause the system to increase its total latency. However, since our system is

pipelined, it does not cause any problem.

Prevention of Not-a-Number (NaN) and Infinity Conditions

Output values of logarithm, square root and division FPUs can sometimes be NaN or

Infinity. This affects our system adversely. For example, when input of the logarithm

FPU is negative, output becomes NaN. Similarly, input of the square root FPU is

negative or NaN, output becomes NaN. In order to prevent these undesirable condi-

tions, we added control logic to check the signal value.

2.3.4 Pixel Pipelining

Fig. 8 shows our pixel-level pipelining that is similar to the frame pipelining. The

left hand side of the Fig. 8 shows sequential execution without pipelining. The right

hand side of the Fig. 8 shows the pipelined version of the order of computation in the

Fig. 3. In the pipelined version, a new pixel operation starts before the current pixel

is completed; hence, the time difference between the start time of pixel operation that

is the most essential parameter of the design in terms of the throughput and fps is

shorter than non-pipelined version. In addition to pixel-level pipelining, we used in

our design the Altera floating-point IP cores that are also support pipelining.
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Figure 8: Example of Pixel Pipelining (a) Not pipelined (b) Pipelined

2.3.5 Host Implementation

The Host processor is running a software that performs different tasks simultaneously.

The first task is capturing video from camera or storage (hard-disk). The second task

is streaming video to the FPGA. Similarly, the third task is receiving the output

stream from the FPGA to Host. The fourth task is displaying the output stream.

These tasks in the Host form a pipeline with the blocks in the FPGA. If the software

part of the system is not pipelined, the pipelined FPGA part will not work with high-

throughput performance as in the pipeline. Hence, the systems cycle time (frame

time) will be equal to the systems latency.
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2.4 Tools and Techniques

Our overall implementation methodology is given in Fig. 9. Design refers to writing

or generating the design in Verilog. Verification refers to simulation. After verifica-

tion passes, we synthesize. Otherwise, we go back to the design step. If Synthesize

does not meet timing or does not produce a design that fits the FPGA, then we go

back to the design step. If synthesis passes successfully, we go to Validation, which

refers to testing the design on the FPGA. If validation does not pass successfully,

then we go back to the verification step.

HLS and Code Generation

We firstly determine the image fusion algorithm is suitable for MAFURES HLS tool.

We code the algorithm in C++ language. This code is our golden reference for the

fusion design. There are considerable numbers of arithmetic operations in the code.

All operations are single-precision floating-point. However, there is a cyclic inter-

iteration dependency in the algorithm. The standard deviation and the mean values

should be calculated before they are subtracted from the each pixel values. Thus,

we used the previous frame standard deviation and mean calculation for the current

frame operations. However, this makes the algorithm complicated to generate the

whole code in one through MAFURES HLS tool. Hence, we used a methodology like

divide and conquer. We divide the design into two parts, the standard deviation and

the fusion main operation module. The fusion main operation module is generated

using MAFURES HLS tool. Accumulation parts of standard deviation module are

generated using reduction circuit code generator and the others are hand-coded de-

signs. Moreover, synchronization between the fusion main operation module and the

standard deviation module is provided by hand-coded wrapper module.

In this work, we used Altera FPGAs as target devices and used Quartus II and

Quartus Prime design software tools. These tools support floating-point IP cores
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Figure 9: Implementation Methodology

for arithmetic operations. These cores support pipelining in similar manner as MA-

FURES HLS tool. We determine types of FPUs by analyzing our reference C++

code. Our fusion designs need seven different kinds of FPU. These are addition,

subtraction, multiplication, division, square root, exponential, and logarithm FPUs.

FPU modules that are used in the design should be declared into the FPU input file in

the HLS tool. The name of the FPU operation, name of different modes, its latency,

inputs/output port names and parameter settings should be included in the FPU

module declarations file. The clock frequency of the design is affected by the clock

frequency of the FPUs; hence we have chosen the FPUs to work at the maximum
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frequency. At that point, we enter the latency information of FPUs to MAFURES

HLS tool as input. MAFURES also needs the information of Initiation Interval (II)

that describes time between two consecutive loop iterations in terms of cycle. Ideally,

II should be equal to 1 for the highest throughput. However, it cannot be possible

due to resource constraints. In case of II more than one cycle, multiple operations

can be assigned into single FPU with multiplexers. For the image fusion design, we

initially specify the II value to be 3. Since there was no problem in terms of resource,

we also implement the design by setting the initiation interval value to 1. We make

only a few modifications on the wrapper module for both designs.

22



CHAPTER III

PIPELINED REDUCTION CIRCUITS

This chapter presents previous work of reduction circuits in the literature and intro-

duces reduction problem. Also, it presents our proposed reduction circuit architec-

tures and reduction circuit Verilog Register Transfer Level (RTL) code generator.

3.1 Previous Work

In the literature, there are many reduction circuit designs. Previously, proposed

designs include various disadvantages in terms of area, performance, and implemen-

tation pitfall. They were designed to meet different requirements, some of which have

beneficial features but some of which are unfavorable features. We will present a brief

review in this section.

In [24], Kogge proposed a reduction method that uses lg(n) adders; however, de-

sign is not feasible when the input size are large because the design performs adder

tree and requirement of adder usage is large. In [25], Ni and Hwang proposed a re-

duction design that use one adder and a fixed size buffer. Firstly, it reduces n inputs

to α values, and then α values are reduced to a single value. This method stores

input items in the memory because when reducing α values starts, it cannot accept

new input item. Therefore, there is a large buffer requirement for large values of n. In

[26], Luo and Martonasi proposed a self-alignment technique in order to implement a

high-performance floating-point accumulator with using carry-save arithmetic in ac-

cumulator and delayed final adder. This technique that eliminates the interactions of

the incoming number and the running sum makes pipeline possible. However, it is not

fully pipelined because the accumulator needs to stall in order to prevent overflow.

In [27] adapted self-alignment technique to implement single-precision floating-point
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multiply accumulator (FPMAC). The proposed design resolves scheduling restrictions

between sequential FPMAC instructions and improve throughput with pipeline struc-

ture. In [28], Nagar and Bakos proposed a double precision accumulator design that

reduces complexity of the control logic by integrating a coalescing reduction circuit

within the low-level design of a base-converting floating-point adder. In [29], Zhou et

al. proposed the fully compacted binary tree (FCBT), the dual striped adder (DSA)

and the single striped adder (SSA). All of these designs can reduce multiple input

sets of arbitrary sizes without stalling the pipeline. In these designs, the numbers of

adders are fixed. The FCBT and the DSA uses two floating-point adders but SSA uses

one floating-point adders. Further, the size of buffers is independent of the number

of input sets for all of the three designs. The FCBT design needs background knowl-

edge of the maximum number of element in a vector in advance. The DSA is more

complex design with the lowest clock speed among the designs. Both DSA and SSA

produce out-of-order outputs, when process variable size of vectors. In [30], Huang

and Andrews proposed three different modular fully pipelined architectures. These

are capable of performing reduction over data sets of arbitrary sizes without stalling,

and generating results in order. The first one is named modular fully pipelined archi-

tecture (MFPA) that consists of (log2k+1) fully pipelined adders; however, these are

not fully utilized. The second one is named area-efficient fully pipelined architecture

(AeMFPA) that is better than MFPA in terms of area. It consists of two adders. The

third one is named alternative design of AeMFPA (A2eMFPA) that uses less buffer

than AeMFPA.

3.2 Reduction Problem

A reduction circuit typically performs the same operation around the primitive op-

erator in order to reduce given one or more set of numbers to a single value. One

example of reduction circuit is an accumulator that performs a simple summation of
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Figure 10: Simple Accumulation Architecture

the set of elements in Fig. 10. It uses a floating-point adder with pipeline latency

k clock cycle that is larger than one clock cycle. There are k cycle stalls to obtain

results for each addition. However, when new input value is fed to the accumulator

in each cycle, data hazards will occur in this accumulation. Although a single-stage

FPU works without the data hazard issue, its operating frequency is not high; there-

fore it is not desirable. Moreover, storing input values in FIFOs or registers may not

work since it may cause buffer to overflow or pipeline stalls [31].

Reduction operations can be also implemented using a full binary tree that is

given in Fig. 11. However, when the size of input element is high, we need more

pipelined FPUs. Due to the resource constraints, full binary tree methodology is not

desirable.
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Figure 11: Binary Tree Architecture

Reduction Problem Formal Definition:

The reduction problem can be formally defined as follows:

Given a set S = {S0, S1...Sn−1} of floating-point numbers, the problem is to reduce

n values in the set into a single values without any data hazard. The used FPUs are

pipelined with k pipeline stages and k > 1.

We met the following requirements to design our reduction circuits:

• Only one number enters to the FPU at each clock cycle.

• If the input is not ready, there will not be a problem. After all inputs are fetched

into the FPU, they are reduced correctly without any data hazard.

• The uses of fixed number of FPUs are allowed, and they cannot stall.
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3.3 Proposed Reduction Circuit Architectures

In this section, we first describe the interface of reduction circuit architectures. Then,

we propose the AERC and HSAERC architectures in detail.

3.3.1 Interface

The interface of reduction circuit is shown in Fig. 12. The input and output interface

of the reduction circuit consist of the following signals:

• reset: reset the status of registers

• dataIn: the input data item

• inEn: specify the validity of input items

• result: the reduced result

• resultRdy: specify the validity of the result signal

Since we produced reduction circuits using our code generators, there is no need

to indicate the last item of data set as an input.

Figure 12: Interface of Reduction Circuit
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3.3.2 Area-Efficient Reduction Circuit

The architecture of our area-efficient reduction circuit is shown in Fig. 13. It com-

posed of one FPU, three 2-to-1 multiplexers (mux1, mux3 and mux4), one 4-to-1

multiplexer (mux2) and some control logic. The FPU performs summation with k

pipeline stages. The control logic controls the statues of the multiplexer select sig-

nals and the resultRdy signal. The structure of control logic and the adder can vary

depending on the size of input items entered into the code generator. The rest of the

logic, multiplexers and one register are fixed in our proposed architecture.

Figure 13: Architectural Details of AERC
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The control logic is a little bit complicated; however, it does not pose any draw-

backs in terms of design time because the designs can rapidly produced by the code

generator. The control mechanism is given in Fig. 14 is structured as a basis of a

3-level reverse pyramid. At the level-1, 0 and input vector items (dataIn) are fed to

the FPU. After k cycles, first partial result is obtained from the FPU that indicates

the beginning of the level-2. At the level-2, partial result of the FPU and input vec-

tor items are fed to the FPU. When all input items are sent to the FPU, if modulo

number of current cycle and k value is 0, the level-3 starts. However, unless modulo

number of current cycle and k value is 0, the level-3 starts after k value and modulo

number difference cycles. During this process, partial result and 0 values are fed to

the FPU because all input vector items are finished. At the level-3, the partial results

are fed to the FPU. However, partial results need to be registered because they will

be operated with new partial results that will be obtained on next cycles.

Figure 14: Structure of Control Mechanism
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The control algorithm is given in Fig. 15. While the FPU performs operations

without stalling, three selection controls sel0, sel1 and sel2 associated with the mul-

tiplexers are used to direct the data to the FPU. If the input data is not ready, the

FPU still continues to operate. In order to prevent data hazard and keep result in

order, 0 is fed to the input B of the FPU. After the ongoing significant operations in

the FPU are completed, the result is registered until a new input is ready. Then, the

registered result is processed with the new input in the FPU. This ensures that the

final result of the reduction circuit is correct; however, this leads to increase in total

latency per vector set.

Figure 15: Control Algorithm for AERC Design
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Figure 16: Example of Partial Result Reduction

The AERC design reduces n inputs in equal or less than n + k - mod(n,k) +

k(log2k + 1) cycles. According to the structure of the control mechanism in Fig. 14,

the design needs k cycles at level-1. At level-2, if mod(n,k) is equal to 0, it needs n

- k cycles. However, unless mod(n,k) is equal to 0, it needs n cycles. At the level-3,

it uses maximum k(log2k + 2) cycles because it accumulates all partial results like

a chain as shown in Fig. 16. In Fig. 16, 8 partial results are reduced with 4 stages

using a chain of partial sums.

Examples of AERC design with different pipeline length and latency value are

shown in Fig. 17-22. In Fig. 17, AERC design accumulates eight input items (n=8)

using 2-pipeline stage (k=2) adder FPU. At the level-1, the input A of the FPU is 0,

on the other hand, the input B of the FPU takes the input items each cycle. When

the first result of the FPU emerges, the level-2 starts and it continues until all input

items are finished. The level-3 starts at clock cycle 8 due to the fact that modulo
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number of current cycle (8) and k value (2) is 0 at clock cycle 8 when all input items

are finished. On the other hand, in Fig. 18 , 0 is fed to input B of the FPU in the

clock cycle 9 because modulo number of current cycle (9) and k value (2) is 1, hence,

the level-3 starts at clock cycle 10. At the level 3, partial results of FPU are fed to

both input A and input B of the FPU in order to accumulate all partial results.

In the examples, some places are empty because they do not affect on our final

results; therefore, we fed 0 to input or inputs of the FPU.

Figure 17: AERC Design Example with k = 2, n = 8

Figure 18: AERC Design Example with k = 2, n = 9
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Figure 19: AERC Design Example with k = 3, n = 8

Figure 20: AERC Design Example with k = 3, n = 9
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Figure 21: AERC Design Example with k = 4, n = 8
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Figure 22: AERC Design Example with k = 8, n = 8
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3.3.3 High-Speed and Area-Efficient Reduction Circuit

Figure 23: Architectural Details of HSAERC

HSAERC architecture is developed to achieve better performance results than

AERC architecture in terms of clock frequency. The idea is based on using two prior

AERC reduction circuits concurrently; hence, unlike the AERC architecture, our

second design uses two FPUs. However, we keep the same interface as shown in Fig.

12 for the design. The architecture of HSAERC is shown in Fig. 23. It consists of

one asynchronous FIFO, two same AERC designs (AERC 1 and AERC 2), and some

control logics. The challenge of HSAERC design is to feed data to two AERC designs

properly; therefore, we used an asynchronous FIFO. The asynchronous FIFO stores

the input items and then feeds them into two AERC design modules consecutively.
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When reduction modules finish all operations, the result of AERC 1 module enters

the AERC 2 module as an input to produce the final result. Multiplexer controls

AERC 2 module input data.

Each AERC module in the HSAERC architecture uses its own control mechanism

that we have already explained. However, the HSAERC architecture contains control

logic in order to control the input enable signals (inEn 1 and inEn 2) of each AERC

module. This control logic controls status of sel signal of multiplexer (mux) that is

given in Fig. 23. When partial result is ready, the status of sel signal changes and it

allows the partial results to enter the AERC 2 module.

The clock frequency of asynchronous FIFO is twice as fast as the AERC modules,

as shown in Fig. 24. inEn 0, inEn 1 and inEn 2 signals represent the enable signals

that approve the entry of the vector items into the modules. There is a half-period

phase shift between inEn 1 and inEn 2 signals in order to prevent buffer underflow

case. The size of the asynchronous FIFO is Wx4. The data width of the asynchronous

FIFO is W in which W is operand precision of the reduction circuit.

The HSAERC design reduces n inputs in equal or less than (n + (k - mod(n,k)))/2

+ k(log2k + 3) cycles. Each AERC module in the HSAERC architecture reduces

vector sets 2 times faster than previous AERC design. That is, 2 divides total latency.

However, there are also k cycles need to reduce results of AERC 1 and AERC 2

modules.

3.3.4 AERC and HSAERC with Multiplication Operation

The proposed AERC and HSAERC designs, which can be implemented with different

type of arithmetic operations, require minor changes. In this section, we explain re-

quired modifications to implement reduction circuits with multiplication. The imple-

mentation of reduction circuits with multiplication demands only following changes:

• The FPU needs to be replaced by fully pipelined multiplier FPUs.
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Figure 24: Clock Frequency Details of HSAERC

• The constant input values of mux1 and mux2 need to be 1.

3.4 Reduction Circuit Verilog Code Generator

In this section, reduction circuit Verilog RTL code generator is mentioned. We wrote

codes in Python language to generate Verilog RTL codes for our reduction circuits.

Reduction circuits can have different requirements and features. For example, they

can use single-precision floating format or double-precision floating format. Moreover,

they can use FPU with different clock cycle latency and their operation type can be

different. Writing Verilog RTL code for different kind of reduction circuit can take

too much design time. Within this scope, we did code generators. We produced

Verilog RTL codes for our proposed AERC and HSAERC architectures using our

code generators.

The code generator only requires the information of FPU input and output names,
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FPU operator type, number of FPU latency cycle and input vector size.
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CHAPTER IV

RESULTS

In this chapter, we present image fusion implementation result and reduction circuit

implementation results.

4.1 Image Fusion Implementation Results

We have applied our tools and techniques to synthesize three image fusion designs

that are fully verified and tested. The implementations are performed on both Intel

Altera Cyclone IV (on Terasics De2i 150) and Intel Altera Arria 10 (on Nallatechs

385A) boards. We firstly implemented the design at II = 3 cycles on Cyclone IV board

and then, we reduced II value equal to 1 cycle in order to achieve higher fps value.

Afterwards we implemented the design on Arria 10 FPGA that is more superior to

Cyclone IV. Hence, better performance results are achieved.

Performance results of the image fusion designs are shown in Table 3 and 4.

Table 3: Image Fusion Design Results

FPGA II Resolution fps

Arria 10 1 Full HD (1920x1080) 86
Cyclone IV 1 VGA (640x480) 40
Cyclone IV 3 VGA (640x480) 15
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Table 4: Image Fusion Clock Speed Results

FPGA II 0◦Cfreq.(MHz) 85◦Cfreq.(MHz) 100◦Cfreq.(MHz)

Arria 10 1 198 - 188
Cyclone IV 1 104 95 -
Cyclone IV 3 78 73 -

Although Cyclone IV runs almost two times slower than Arria 10, fps result is

much more than twice for Cyclone IV because the processor of the Terasic DE-150

board with Altera Cyclone IV FPGA has a slower read/write speed than the Nallatech

385A board with Arria 10 FPGA.

In Table 5 and 6, logic block utilization of the FPGAs are shown. Both Cyclone

IV and Arria 10 FPGAs have sufficient resources for our image fusion designs.

Table 5: Resource Utilization Results of Image Fusion Design

FPGA II #LogicElement #Register

Arria 10 1 22320 60994
Cyclone IV 1 79975 53349
Cyclone IV 3 39812 27252

Table 6: Resource Utilization Proportion Results of Image Fusion Design

FPGA II LogicElement Register

Arria 10 1 5% 8%
Cyclone IV 1 53% 36%
Cyclone IV 3 27% 18%

Arria 10 and Cyclone IV have different IP cores so there is considerable difference

in terms of resource utilization. Moreover, when we reduce the II value from 3 to 1,

the resource utilization of the image fusion design also increases as shown in Table II
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4.2 Reduction Circuit Implementation Results

We have implemented AERC and HSAERC designs on Xilinx Virtex-II Pro and

Virtex-5 FPGAs. The characteristics of our proposed reduction circuit designs with

other designs in the literature are given in Table 7. In table, “k” refers to pipeline

stage of FPU and “n” refers to number of vector item.

AERC design is superior to other designs in terms of the usage of buffer size and

FPU. On the other hand, HSAERC design work with minimum latency in comparison

with other designs.

Table 7: Comparison of Reduction Circuit Designs

Design #FPU Buffer Size Total latency

AERC 1 0 ≤ n + (k - mod(n,k)) + k(log2k + 2)
HSAERC 2 4 ≤ (n + (k - mod(n,k)))/2 + k(log2k + 3)
PCBT[29] log2n 2(log2n) n + k(log2n)
FCBT[29] 2 3(log2n) ≤3n + (k-1)(log2 n)
DSA[29] 2 k(log2k + 1) n + k(log2k + 1)
SSA[29] 1 2k2 ≤ n + 2k2

MFPA[30] log2k + 1 k ≤ n + k(log2k + 2)
AeMFPA[30] 2 <2k ≤ n + k(log2k + 2)
A2eMFPA[30] 2 k ≤ n + k(log2k + 2)

Implementation results of different accumulator designs (n = 128, k = 14) on

Xilinx Virtex-II Pro and Virtex-5 FPGAs are given in Table 8 and 9. AERC is the

best design in terms of area, on the other hand, HSAERC is the best design in terms

of performance.
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Table 8: Implementation Results of Reduction Circuits for Virtex-II Pro FPGA

Design #FPU #Slices #BlockRAM freq.(MHz) Total latency

AERC 1 1,121 0 146 210
HSAERC 2 2,457 1 290 154
PCBT[29] 7 6,808 0 165 226
FCBT[29] 2 2,859 10 170 ≤ 475
DSA[29] 2 2,215 3 142 ≤ 232
SSA[29] 1 1,804 6 165 ≤ 520

MFPA[30] 5 4,991 2 207 198
AeMFPA[30] 2 3,130 14 204 198
A2eMFPA[30] 2 3,737 2 144 198

Table 9: Implementation Results of Reduction Circuits for Virtex-5 FPGA

Design #FPU #Slices #BlockRAM freq.(MHz) Total latency

AERC 1 412 0 226 210
HSAERC 2 2,185 1 450 154
MFPA[30] 5 1,692 2 367 198

AeMFPA[30] 2 1,234 14 321 198
A2eMFPA[30] 2 1,309 2 247 198
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CHAPTER V

CONCLUSION

In this thesis, we shared our experiences on hardware implementation of a real-time

image fusion algorithm using MAFURES HLS tool and other design techniques in

order to complete rapidly. In the literature, there are many image fusion hardware

implementations ([15], [16], [17], [18]). However, most of them were implemented by

using conventional methodology and without using HLS tools. Design time is very

significant for designers because they can do more design if they reduce their design

time. There is a trade-off between design time and productivity of hardware designers.

If they reduce their design time, their productivity can increase. Thus, we anticipate

that our experience of different design tools and techniques will pave the way for

hardware designers in order to reduce their design time. We implemented 3 version

of the image fusion algorithm (with different fps and/or resolution) on 2 different

FPGAs (Cyclone IV and Arria 10) in a fairly short amount of time. Each of these

designs on the average contains around 3500 lines of Verilog RTL code, 200 lines

of C++ HLS input code and many vendor-specific FPGA IP files separately. The

hardware implementation of the first version of the image fusion design takes much

more time than the second and third version of the image fusion design. We did not

modify so much code for the second design and the third design due to our clever

design methodology and used tools and techniques. However, we did not modify

so much code for the second design and the third design due to our clever design

methodology and used tools and techniques.

In this thesis, we also proposed two novel reduction circuit architectures (AERC

and HSAERC). We did Verilog RTL code generators in order to generate our proposed
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reduction circuit designs swiftly. We generated reduction circuit designs in different

specifications and synthesized them. We obtained competitive results in terms of area

and performance in comparison with previous designs in the literature.

For future work, it is possible to improve performance of our reduction circuit de-

signs. Moreover, our designs require some modifications in order to handle different

consecutive vector sets properly and produce systematical results. Our proposed re-

duction circuits can reduce accumulation and multiplication operations respectively.

However, it does not perform dot-product calculation that is a widely used oper-

ation in many scientific applications. Hence, we want to add new features to our

code generator in order to generate reduction circuits that perform any dot-product

operations.
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