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ABSTRACT

This thesis focuses on multi compartment heterogeneous vehicle fleet routing prob-

lems for the case of incompatible products dedicated to separately within the com-

partments. In order to supply the different product demand of the customers, delivery

plans are being prepared with minimum logistic costs while incompatible products

between compartments. While logistic cost is accepted as total distance in a unit pe-

riod of time, objective function is formed by combination of problems in both routing

and inventory loading. Although Vehicle Routing Problems (VRP) and variants can

be seen frequently in the literature, Multiple Compartment Heterogeneous Vehicle

Routing Problems are still being under investigation. As the discussed problem in

thesis is composed of combination of two different NP-Hard problems, comprehensive

mathematic model is proposed. Constructed model ensures minimum routing cost for

each vehicle in use and minimum number of deliveries per a unit period. We propose

two phase approach which contains clustering methodology, heuristics both routing

and inventory loading problem and set partitioning problem all together iteratively.

In small scale problem our solution approach obtained optimal solution comparing to

mathematical model. For large scale problems, mathematical models cannot give a

feasible solution. For this reason, Tabu Search methodology which is used for hetero-

geneous vehicle routing problem in literature has been applied. The performance of

two approaches were compared. Suggested algorithm is producing rapid and qualified

results especially for companies which are planning the product delivery such as food,

fuel, live animal or chemicals.
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ÖZETÇE

Bu tezde, çok kompartmanlı heterojen araç filolu dağıtım problemlerinde karışmayan

ürünlere odaklanılmıştır. Müşterilerden gelen farklı tipteki ürün taleplerini karşılamak

için en az lojistik maliyeti esas alınarak kompartmanlarda karışmayacak bir şekilde

dağıtım planı hazırlanmaktadır. Lojistik maliyeti olarak; birim periyottaki katedilen

uzaklık miktarlarının toplamı alındığından; amaç fonksiyonu hem rotalama hem de

envanter yükleme probleminin birleşimi şeklindedir. Araç Rotalama Problemi (ARP)

ve varyantları geniş bir literatüre sahip olduğu halde, Çok Kompartmanlı Heterojen

Filo Rotalama Problemi alanı hâla araştırmaya açıktır. Tez kapsamında ele alınan

problem iki ayrı NP-Zor problemin birleşimi olduğundan kapsamlı bir matematiksel

model önerilmiştir. Oluşturulan model sayesinde her bir araç için en kısa rotalama

hesaplanırken aynı zamanda birim periyottaki teslimat sayısını en aza indirgemeye

çalışmaktadır. Envanterlerin araçların kompartmanlara atanması ve araçların rota-

lanması için iki aşamalı bir yaklaşım önermekteyiz. İki aşamalı çözüm yaklaşımımızda

kümeleme metotları, rotalama ve yükleme için geliştirilen sezgisel algoritmalar ve

küme bölme problemi birlikte kullanılmıştır. Matematiksel modelin performanslarını

test etmek için sayısal deney hazırlanmıştır. Küçük ölçekli problem örnekleri için

iki aşamalı geliştirilen sezgisel yöntem sayesinde küçük ölçekli problemler için op-

timal sonuçları matematiksel modelden daha hızlı bir şekilde bulduğu görülmüştür.

Büyük ölçekli problem için matematiksel model çözüm verememektedir. Bu yüzden

literatürde heterojen filolar için kullanılan Tabu Arama metodolojisi uygulanmış ve

iki yaklaşımın performansları test edilmiştir. Gıda, yakıt, canlı hayvan veya kimyasal

ürün sevkiyat planlaması yapan şirketler için; önerilen algoritma, hızlı ve kaliteli

sonuçlar üretmektedir.
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Chapter I

INTRODUCTION

Supply chain is a network of organizations that are comprised in moving a product

or service from supplier to an end customer. Supply chain activities contain on raw

material flow to finished goods which are delivered to an end customer. Importance

of supply chain management is increasing day by day. As a reason, possible inte-

grated examination of trade-offs in supply chain could improve overall performance

of the system. Decision stages of supply chain management are strategic, tactical and

operational. Improvement of supply chain must be integrated every stage to sustain

business. However, improvement and development on strategic stage or level is poten-

tially costly and complex which leads companies and institutions focus on tactical and

operational stage of supply chain management. Decisions on tactical and operational

level could be achieved by lower investments and efforts, even it made same effect

comparing to strategic decision-making. For the illustration, principal components

of logistic costs are which are inventory costs and transportation costs, representing

successively one third and one fifth of logistic cost according to study [1]. Thus, an

improvement on inventory and transportation management activities have essential

role on increasing productivity and operational efficiencies. Researchers investigated

problems such as Vehicle Routing Problem (VRP), Periodic Vehicle Routing Problem

(PVRP) and Inventory Routing Problem (IRP) which are important and well known

combinatorial problems, in order to minimize logistic cost meanwhile satisfying cus-

tomer preferences and service level requirements.

One of the most studied combinatorial optimization problem is the VRP which exists

in many distribution and transportation system with significant economic benefits.
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Many organizations and companies in the area of transportation and logistic comply

with varieties of VRP every day. Furthermore, optimizing operations such as deliver-

ies or periodic pickups are made to a set of customers over a time horizon could be a

cause of significant cost savings in many supply chains such as e.g. waste collection

and grocery distribution. This problem is defined as the PVRP.

Vendor Managed Inventory (VMI) is an interesting concept of supply chain collabora-

tion. Under the Vendor Managed Inventory concept, the distributors or suppliers take

over responsibility in decision process to replenish customer according to inventory

data provided to suppliers by customers. The IRP is based on idea that integrated

inventory and distribution management provide a degree of freedom for constructing

efficient routes while optimizing inventory across the supply chain. The objective of

the IRP is to combine inventory management and transportation activities at the

same time because of minimizing inefficiency of solving underlying inventory and ve-

hicle routing sub-problems separately. Importance of IRP arises when working on

Supply Chain integration.

In reality, customer requests delivery of multiple commodities which need to keep

separately during storage and transportation in supply chain practice as grocery dis-

tribution, petroleum distribution and waste collection. As a result of that, multi

compartment vehicles are in use to deliver commodities to customers and these vehi-

cle have compartments which are dedicated to storage for different commodities. In

literature, tendency is rising as simplifying IRP by considering single product (com-

modity) models or multi-products (commodities) models with joint storage in vehicle

ignoring compartments in vehicle and inventories. Moreover in real world, the or-

ganizations and companies have heterogeneous vehicle fleet which ensures flexibility

in investments and operations. Therefore most models assume that each customer

delivered by vehicle or vehicle fleet which are homogenous structure and having ho-

mogenous compartments. The main contribution of this thesis is to investigate the
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IRP in a multi compartment settings of vehicles that are heterogeneous. Each com-

partments of vehicle is dedicated to a specific customer demand, mixing products in

compartments is not allowed, and delivery pattern of vehicle has static period struc-

ture. Moreover, our model is designed to choose which vehicle is whether in use or

not.

The rest of this thesis is organized as follow; Chapter 2 provides comprehensive liter-

ature review related IRP and we classified academic studies of IRP according to our

problem settings. Chapter 3 explains our problem structure in a broader sense with

example and includes mathematical model. In the following Chapter 4, we investigate

our problem in two part, the first part is dedicated to single vehicle version of the

problem and the second part is dedicated to multi vehicle version of the problem. We

have proved that even single version problem is very Np-Hard could not be solved in

mathematical model and in order to reach optimal solution must be divided into two

sub problems. We propose novel heuristic to solve loading problem and use existing

heuristic (Christofides) to solve routing problem for the single vehicle version of the

problem. Moreover, we proposed two-phase solution approach in order to solve multi

vehicle version of the problem. In this approach we benefit from cluster technique to

generate desirable solution space and integrated with set partition problem to choose

best solution across the solutions. However, due to the limited existing work on multi

compartment in heterogeneous vehicle structure, there is no available benchmark set.

Therefore we have to compare our solution efficiency with other well-known meta-

heuristic Tabu Search. This is the second contribution of this thesis to academic

literature. Finally, Chapter 5 provides computational results of proposed algorithms

and Chapter 6 concludes obtained results with mentioning future research areas.
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Chapter II

LITERATURE REVIEW

The problem we studied in this thesis is a variant of IRP. The IRP integrates vehicle

routing, delivery scheduling and inventory management decisions. The IRP has been

gained importance in VMI system which is withstanding and state of art business

practice and strategy. The VMI is based on collaboration between a suppliers and

its customers whose aim is creating business value and reducing logistic costs. Based

on demand and inventory provided by customers to supplier, Supplier takes on re-

sponsibility of managing inventory of customers regarding to delivery periods and

replenishment quantities of demands. In the VMI environment, replenishment strat-

egy varies under the supply chain policies [2, 3, 4]. The VMI practice is absolutely

win-win strategy for both parties. The buyers can not afford to control efficiently

their inventories, as a result the supplier can choose best option for them regarding

to distribution and production costs with right resource allocation. Three questions

arise in the IRP for the side of suppliers which are (1) how much to deliver to cus-

tomer when delivery accrued (2) how to construct route for costumers’ orders in a

delivery and (3) which time to serve a set of customers.

The IRP has been worked widely in Operations Research (OR) literature in many

fields. For example, in maritime transportation, this problem is stated as Maritime

Inventory Routing Problem (MIRP) which is a special class of IRP with maritime

settings. Even if the MIRP is the subset of IRP, MIRP is widely studied by many re-

searchers. The IRP is firstly introduced in the seminal-paper by [5] and they studied

on the distribution of industrial gases from a central depot to customers by a fleet

vehicles. Their aim is to minimize transportation costs in miles with no stock-outs.
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They proposed Langrangian-relaxation based algorithm to solve mixed integer pro-

gram. Moreover non-linear integer programming formulation is studied for minimizing

total transportation, inventory holding and shortage cost [6]. The methodology they

used is decomposing the main problem into inventory allocation problem and Travel

Salesman Problem in a way of solving two parts iteratively. We refer the reader to

excellence surveys [7, 8, 9, 10, 11] for MIRP, [12, 13, 14] for IRP.

To construct topology of the IRP, we prefer classify of our problem in eleven

criteria based on the study [12, 13], additional criterias will be added as in Table 1.

Table 1: Classification for the IRP
Criteria Possible Options

Demand Deterministic Stochastic
Planning Horizon Single Period Multiple Period Infinite Time
Replenishment Policy Order-up-to Level Maximum Level Zero Inventory Ordering
Shipping Strategy Direct Shipping Multiple Shipping
Inventory Decision Back-order Lost Sales Non-negative
Number of Products One Multiple
Replenishment Strategy Periodic(Static) Cyclic
Structure of Delivery One-to-one One-to-Many Many-to-Many
Fleet Size Single Multiple Unconstrained
Fleet Characteristic Homogenous Heterogeneous
Compartments Characteristic No Compartments Homogenous Compartments Heterogeneous Compartments

Without loss of generality, we prefer not to add an objective function as criteria

because flexibility of problems vary related to strategic decision process. Generally,

objective function is the minimization of vehicle routing and inventory costs. Vehicle

routing cost can be categorized as follow: (i) transportation cost when traversing

each edge [15, 16, 17] (ii) a fixed cost per stop at a customer location [18, 19] (iii) a

fixed cost accrued when each vehicle is dispatched [20, 21, 22], and (iv) a fixed cost

of fleet size as decision variable either use or not [23]. The inventory costs can be

categorized as follow: (i) holding cost at each customer location [24, 25, 26, 27], (ii)

shortage cost (negative inventory cost) [6, 28] and finally (iii) ordering cost prefering

external sources as producing instead of in house production [22, 29].

In the Table 1, demand is the major criteria effecting the IRP in terms of complex-

ity. The demand can be either deterministic [16, 25, 29, 30] or stochastic [28, 31, 32].

5



Most of the paper in OR worked on deterministic in a way the demand in each period

is satisfied instantly. In addition to that some researchers assumed the demand is

realized on a continuous time basis.

Another major criteria for the IRP is planning horizon which changes problem

structure eventually very much. The planning horizon can be single period [6, 33, 34],

multi-period [15, 16, 25, 35] and infinite time [5, 20, 24, 28, 29, 30]. Generally the

IRP is long term problem which deals with effects of short-term planning.

Replenishment strategy is defined as pre-established rules to replenish customers.

There are several replenishment policies but most of them categorized as Order-

up-to-Level(OU), Maximum Level(ML) and Zero Inventory Ordering (ZIO). OU is

the policy where customer’s inventory raised to its maximum level whenever each

delivery accrued. Therefore, the quantity to be delivered to customer is the difference

between its maximum capacity and its current inventory level [15, 25, 36]. Conversely

to OU policy, in the maximum-level (ML) policy, any quantity could be delivered

as much as the maximum level determined by the customer which is not exceeded

[16, 19, 37, 38, 39, 40]. Moreover in ZIO policy, in each period, only the set of

customers whose inventory drop at zero is replenished [41, 42]. In addition to that

Fixed Partition Policy (FPP) is widely used. In the FPP policy, the set of customers is

partitioned into a number of clusters such that each cluster replenishes independently.

Delivered amount could be restricted either OU or ML policy [3, 20, 29, 43, 44].

Direct shipping refers to each customer visited by only one tour or vehicle in a way

of repeated certain frequency [19, 20, 22, 32]. On the other hand multiple shipping

refers to each customer can be visited sequentially in a tour. In addition to that some

cases customer can be visited by multiple tours which means splitting the delivery to

customer among different tours. Therefore, multiple shipping provides better solution

to direct shipping because of flexibility; however it has more complexity than direct

shipping problem [15, 16, 19, 22, 28].
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Inventory decision is other pre-defined structure of problem. If the inventory can

be negative, then back-ordering occurs which means corresponding demand will be

procured when new shipments are delivered [16, 31, 45, 46, 47, 48, 49, 50]. In case

negative inventory under no back-ordering, then considering demand will be consid-

ered as lost sales [18, 19]. In both situation there may be a penalty for the stock-out.

Non allowing negative inventory ensure no-stock outs [25, 50, 51, 52]. The number of

product is other criteria of the IRP. Most studies work on one product [16, 25, 29, 36],

however quite few study work on multi-product settings as well [18, 30, 53, 54].

The structure of delivery is crucial settings for IRP and can be categorized as two

parts:(i) periodic (static) policy whose replenishment and delivery schedules are re-

peated same pattern for all periods [19, 40, 41, 55, 56] and (ii) cyclic policies where

the proposed delivery and replenishment schedules can change from periods to peri-

ods. Therefore cyclic policy are more flexible and ensures more cost effective solution

comparing to static policy [15, 16, 36, 37, 38, 51, 57, 58, 59, 60].

Also the customer, supplier numbers can be varied. Therefore, desired distribu-

tion process could be one-to-one which there is only one customer and one supplier,

one-to-many where one supplier is responsible for all customers, finally many-to-many

[50, 61] with several suppliers serve to several customers. The fleet can be hetero-

geneous and homogenous whose number could be defined as single, multiple and

unconstrained. Moreover, the vehicle could have compartments in such that homoge-

nous and heteregenous [62]. In the IRP settings compartment structure is used as

capacity constraints. As far as our knowledge there is no study which ensures to

schedule compartment allocation problem. Main study settings for single product

deterministic IRP can be found in Table 2.

7



T
a
b
le

2
:

C
la

ss
ifi

ca
ti

on
of

m
ai

n
st

u
d
ie

s
on

si
n
gl

e
p
ro

d
u
ct

d
et

er
m

in
is

ti
c

IR
P

S
tu

d
y

P
la
n
n
in

g
R
e
p
le
n
is
h
m
e
n
t

S
h
ip
p
in

g
In

v
e
n
to
ry

R
e
p
le
n
is
h
m
e
n
t

D
e
li
v
e
ry

F
le
e
t

F
le
e
t

C
o
m
p
a
rt
m
e
n
t

H
o
ri
zo

n
P
o
li
c
y

S
tr
a
te
g
y

D
ec

is
io
n

S
tr
a
te
g
y

S
tr
u
c
tu

re
S
iz
e

B
er

ta
zz

i
et

al
.

[2
00

2]
F

in
it

e
O

U
M

u
lt

ip
le

N
on

-n
eg

at
iv

e
C

y
cl

ic
1-

M
H

om
.

S
in

g.
N

o
C

om
p

A
d

el
m

an
[2

00
3]

In
fi

n
it

e
M

L
M

u
lt

ip
le

L
os

t
sa

le
s

C
y
cl

ic
1-

M
H

om
.

M
u

lt
.

N
o

C
om

p
C

am
p

b
el

l
an

d
S

av
el

sb
er

gh
[2

00
4]

F
in

it
e

M
L

M
u

lt
ip

le
N

on
-n

eg
at

iv
e

C
y
cl

ic
1-

M
H

om
.

M
u

lt
.

N
o

C
om

p
G

au
r

an
d

F
ic

h
er

[2
00

4]
F

in
it

e
M

L
M

u
lt

ip
le

N
on

-n
eg

at
iv

e
P

er
io

d
ic

1-
M

H
et

.
M

u
lt

.
N

o
C

om
p

A
gh

ez
za

f
et

al
.

[2
00

6]
In

fi
n

it
e

M
L

M
u

lt
ip

le
L

os
t

sa
le

s
C

y
cl

ic
1-

M
H

om
.

M
u

lt
.

N
o

C
om

p
A

rc
h

et
ti

et
al

.
[2

00
7]

F
in

it
e

O
U

M
u

lt
ip

le
N

on
-n

eg
at

iv
e

C
y
cl

ic
1-

M
H

om
.

S
in

g.
N

o
C

om
p

R
aa

an
d

A
gh

ez
aa

f
[2

00
8]

F
in

it
e

M
L

M
u

lt
ip

le
N

on
-n

eg
at

iv
e

P
er

io
d

ic
1-

M
H

om
.

S
in

g.
N

o
C

om
p

B
er

ta
zz

i
[2

00
8]

F
in

it
e

M
L

D
ir

ec
t

N
on

-n
eg

at
iv

e
C

y
cl

ic
1-

1
H

om
.

M
u

lt
.

N
o

C
om

p
S

av
el

sb
er

gh
an

d
S

on
g

[2
00

8]
F

in
it

e
M

L
M

u
lt

ip
le

L
os

t
sa

le
s

C
y
cl

ic
M

-M
H

om
.

M
u

lt
.

N
o

C
om

p
R

aa
an

d
A

gh
ez

aa
f

[2
00

9]
In

fi
n

it
e

M
L

M
u

lt
ip

le
N

on
-n

eg
at

iv
e

P
er

io
d

ic
1-

M
H

om
.

M
u

lt
.

N
o

C
om

p
A

b
d

el
m

ag
u

id
et

al
.

[2
00

9]
F

in
it

e
M

L
M

u
lt

ip
le

B
ac

k
-o

rd
er

C
y
cl

ic
1-

M
H

et
.

M
u

lt
.

N
o

C
om

p
B

ar
d

an
d

N
an

an
u

k
u

l
[2

01
0]

F
in

it
e

M
L

M
u

lt
ip

le
N

on
-n

eg
at

iv
e

C
y
cl

ic
1-

M
H

om
.

M
u

lt
.

N
o

C
om

p
S

ol
ya

li
an

d
S

ra
l

[2
01

1]
F

in
it

e
O

U
M

u
lt

ip
le

N
on

-n
eg

at
iv

e
C

y
cl

ic
1-

M
H

om
.

S
in

g.
N

o
C

om
p

C
o
el

h
o

et
al

.
[2

01
2]

F
in

it
e

O
U

-
M

L
M

u
lt

ip
le

N
on

-n
eg

at
iv

e
C

y
cl

ic
1-

M
H

om
.

S
in

g.
N

o
C

om
p

C
o
el

h
o

et
al

.
[2

01
2]

F
in

it
e

O
U

M
u

lt
ip

le
N

on
-n

eg
at

iv
e

C
y
cl

ic
1-

M
H

om
.

M
u

lt
.

N
o

C
om

p
A

rc
h

et
ti

et
al

.
[2

01
2]

F
in

it
e

M
L

M
u

lt
ip

le
N

on
-n

eg
at

iv
e

C
y
cl

ic
1-

M
H

om
.

S
in

g.
N

o
C

om
p

A
k
se

n
et

al
.

20
12

F
in

it
e

O
U

M
u

lt
ip

le
N

on
-n

eg
at

iv
e

P
er

io
d

ic
1-

M
H

om
.

S
in

g.
N

o
C

om
p

C
o
el

h
o

an
d

L
ap

or
te

[2
01

3]
F

in
it

e
M

L
M

u
lt

ip
le

N
on

-n
eg

at
iv

e
C

y
cl

ic
1-

M
H

om
.

M
u

lt
.

N
o

C
om

p
C

o
el

h
o

an
d

L
ap

or
te

[2
01

4]
F

in
it

e
M

L
M

u
lt

ip
le

N
on

-n
eg

at
iv

e
C

y
cl

ic
1-

M
H

om
.

M
u

lt
.

N
o

C
om

p
E

k
ic

i
et

al
.

[2
01

5]
F

in
it

e
M

L
M

u
lt

ip
le

N
on

-n
eg

at
iv

e
P

er
io

d
ic

1-
M

H
om

.
M

u
lt

.
N

o
C

om
p

D
es

au
ln

ie
rs

et
al

.
[2

01
6]

F
in

it
e

M
L

M
u

lt
ip

le
N

on
-n

eg
at

iv
e

C
y
cl

ic
1-

M
H

om
.

M
u

lt
.

N
o

C
om

p
R

aa
,

B
.

[2
01

6]
F

in
it

e
O

U
M

u
lt

ip
le

N
on

-n
eg

at
iv

e
P

er
io

d
ic

1-
M

H
om

.
M

u
lt

.
N

o
C

om
p

8



Routing and inventory loading problem for heterogeneous vehicle fleet with multi

compartments (RILPHVFC) we studied in this thesis. In our problem settings, the

objective is to find a static replenishment, delivery and loading scheduling which

minimize total logistic cost without stock-out at the customers. The demand or

consumption rate at each customer is continuous and deterministic. We solved our

problem in one period however thanks to static period policy we can repeat one

period structure as long as we want. Replenishment strategy is ZIO under restriction

of instant delivery. One depot which has an unlimited supply of product serving

un-capacitated customers with a single product. Each customer is served by only one

vehicle vice versa in one tour. We combined ZIO policy with FPP where the set of

customers is partitioned into a number of clusters such that each cluster is served

independently. We assume that there are multiple hetoregeneous vehicles which has

heteregeneous compartments which can be used or not in the scheduling. RILPHVFC

criterias related to IRP can be summarized as in Table 3 follows:

Table 3: Classification of RILPHVFC
Criteria Features

Demand Deterministic
Planning Horizon Single Period
Replenishment Policy Zero Inventory Ordering
Shipping Strategy Multiple Shipping
Inventory Decision Non-negative
Number of Products One
Replenishment Strategy Periodic(Static)
Delivery Structure One-to-Many
Fleet Size Multiple
Fleet Characteristic Heterogeneous
Compartments Characteristic Heterogeneous Compartments

As far as our knowledge, RILPHVFC has not been studied before. In the OR

literature, there are several solution approach to solve IRP with deterministic demand

for single product which are stated as Table 4. Moreover, most proposed algorithms

decompose the problem into two phase (i) vehicle routing and (ii) inventory control.
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We are inspired to construct our methodology from the work [55]. In their work,

they divide customers into clusters. Therefore, each of cluster is assigned to a vehicle.

Each vehicle serves only a single cluster of customer. In addition to that, they propose

three cluster algorithm one of the Iterative Random Subset Clustering . We use this

cluster technique in our two-phase strategy in order to reach better clustering. In their

Second Phase, they develop algorithms to generate feasible delivery, which are also

cost efficient for each cluster. Using three algorithm which are based on constructive

heuristic, integer programming and network flow formulation finds solution to obtain

the final set of delivery routes and volumes according to demand.

The other similar approach to use two-phase methodology in the work [16]. In

the first phase, they solve an integer programming to determine the customers to be

served on each day of planning horizon. Thanks to FPP, they can reduce number

of routes. Moreover, they applied set partitioning problem to select clusters and

embodied with insertion heuristic to solve the vehicle routing problem. Finally, they

incorporate Greedy Random Adaptive Search Procedure (GRASP) to generate more

solutions and choose the best one.

The last but not the least, it is worth to mention here the work of [63]. The

problem is studied on mainly VRP. Which part distinguishes them from others is

heterogeneous vehicle fleet and multi product. Moreover, heterogeneous vehicle fleet

have compartment structure. They also have to consider assignment of compart-

ments to products. They propose Reactive Tabu Search Algorithm (RTS), which is

well known metaheuristic. Firstly, they develop constructive heuristic and the im-

provement based on neighborhood structure or we can say that moves. In addition

to that all moves has guiding mechanism which penalize long distance in routes. In

the neighborhood generation neighborhood reduction strategy is applied to enhance

computational efficiency. Finally, they also make Tabu Search armed with reactive
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mechanism and local search to reach more solution space in order to satisfy diversifi-

cation [64].

Put in the nutshell, we also implement Tabu Search meta-heuristic to compare

with two-phase approach according to our problem settings in order to evaluate per-

formance in absolute sense.

Table 4: Solution methodologies of main studies on single product deterministic IRP

Study
Solution

Methodology
Bertazzi et al. [2002] Two-phase Decomposition
Adelman [2003] Dynamic Programming, Semi-Markov Decision Process

Campbell and Savelsbergh [2004]
Route-based MIP formulation; Limited number of routes; Two-Phase
Decomposition Algorithm

Gaur and Ficher [2004] Fixed Partition Policy; Weighted Matching; Heuristic
Aghezzaf et al. [2006] Column Generation Based Heuristic
Archetti et al. [2007] Branch-and-cut Algorithm
Raa and Aghezaaf [2008] Column Generation for Distribution Patterns
Bertazzi [2008] Worst-case Analysis
Savelsbergh and Song [2008] Reduction and Separation Heuristic, MILP
Raa and Aghezaaf [2009] Heuristic; Column Generation Algorithm
Abdelmaguid et al. [2009] MILP, Lagrangian Relaxation and Benders’ Decomposition
Bard and Nananukul [2010] Branch-and-price Algorithm
Solyali and Sral [2011] Branch-and-cut Algorithm, Strong Formulation, Priori-based Tour Heuristic
Coelho et al. [2012] ALNS
Coelho et al. [2012] MILP Formulation; Matheuristic; ALNS
Archetti et al. [2012] Tabu Search, Local Improvement Heuristic
Aksen et al. [2012] MILP Formulation
Coelho and Laporte [2013] Branch-and-cut Algorithm
Coelho and Laporte [2014] Valid Inequalities; Branch-and-cut Algorithm
Ekici et al. [2015] Fixed Partition Policy, Iterative Clustering; Two-phase Decomposition
Desaulniers et al. [2016] Branch-and-price-and-cut Algorithm
Raa, B. [2016] Multi Start Heuristic, Slot Selection Process
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Chapter III

PROBLEM DESCRIPTION

The problem we studied in this thesis is such an extension of basic inventory model.

Even if growing importance on proper management of replenishment process is in-

creased, our problem has not received much attention so far. We consider distribution

system, which has one depot and many geographically dispersed customers. More-

over each of customers order demands at constant, deterministic however specific

rates. In a practical manner these customer could be retailers of franchising com-

pany, which face external demands. We consider a set of commodities each having its

own demand per period. These commodities or products in terms of physical volume

must be transported from depot to a customer via heterogeneous vehicle fleet with

compartments. The compartment structure of vehicle fleet differs from each other.

Distribution process for this problem is illustrated in Figure 1.

The fundamental restriction we impose that no two demands (products) may be trans-

ported within the same compartment and customer may not be served by no more

than one vehicle. Allowing mixing products in a compartment may cause hazardous

reaction or as it may ruin individuals products. We wish to determine feasible re-

plenishment strategies both minimizing replenishment strategy and routing patterns.

Moreover we wish to find the type of products to which each vehicles compartments

assigned and the amount of that product loaded into specific vehicle compartments

regarding to route pattern. Successively with determining such an assignment, we

have to determine both tour length and replenishment time (or frequency in a unit

time) strictly ensure that no shortage are encountered at the customer site. Without

loss of generality, we assume the holding cost are only incurred at the customers’ sites
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therefore we did not take into account holding cost.

Figure 1: Distribution Process for Heterogenous Vehicle Fleet

In this study, we examined static policy is one which a vehicle fleet uses a delivery

every unit of time which can be a day, week or a proper fixed time duration. Thereon

we designate this unit of time as period. In addition to that, the vehicle fleet use

the same loading and route pattern for all periods. Consequently the objective is to

determine the best loading policy that satisfied product demands in every periods for

all in use vehicle by using minimum setup cost which is multiplication of route cost

and number of deliveries per unit time, for all trucks.

In this part, we present a formal definition of RILPHVFC under consideration. We

described the locations who are customers demanding only one product which is dif-

ferent product than the others. Our problem is defined on a complete undirected

network graph. An undirected graph G = {V,E} be given which consists of a vertex
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set V = {0, 1, ..., N} including one depot (node 0) and set N customers, and an edge

set E = {(i, j) : i, j ∈ V }, representing the edges which can be travelled between

the different locations. Each edges (i, j) has a cost (cij = cji) ∈ E and the set of

costs satisfies the triangle inequality. Each customer has a demand of di : i ∈ V \{0}

units of volume per unit time. We assume that K heterogenous vehicles with different

compartment capacity structures. In addition to that qmk is defined for capacity of

compartment m of vehicle k. Deliveries to the customers are made via routes that

start and end depot as illustrated in Figure 1. As we explained in beginning of this

section all trucks use static policy in which each customer is visited by only one ve-

hicle in each period.

Forgoing part, we present an example in order to explain how to minimize logistic

cost per unit time for each vehicle regarding to tour length and replenishment time.

To illustrate this concept firstly we explain how to calculate frequency. Frequency is

calculated minimize the maximum customers’ demand over assigned capacity to this

demand within all possible assignment. For example let two customers with demand

(10, 20) and one vehicle with two compartment capacity (20, 5). Optimal assign-

ment for this example will be first product to second compartment, second product

to first compartment. Therefore vehicle frequency is calculated minimum of maxi-

mum frequency among the assignments. In our case min((max(10/5 = 2; 20/20 =

1), (max(20/5 = 4; 10/20 = 1/2)) is 2 which means this truck has to deliver two times

in unit time in order to obtain no shortage at customers’ sites.

Note that the optimal frequency need not necessarily be an optimal because this is

only optimal in static policy. We stated delivery policies such as static and cyclic.

Static policy is repeated in every period therefore cyclic policy leads better result

in terms of objective value. For the illustration, consider the example, we have

two customers with demands (3, 1) and two compartments such as (3, 3). An op-

timal frequency solution would obviously repeat every period, delivering three units
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of customer-1’s demand in compartment-1 and one unit of customer-2’s demand in

compartment-2. However, in cyclic policy, the optimal solution would deliver three

unit of customer-2’s demand in compartment-1 and three units of customer-1’s de-

mand in compartment-2 during in the first period. For the second period, the config-

uration would change; in the next two periods no more customer-2’s demand needs

to be transported. In addition, in period 3, no delivery must be made before the

delivery pattern repeats. In static policy, we schedule total three deliveries; in the

cyclic policy, we schedule two deliveries. Therefore static policy frequency is 1 versus

cyclic policy frequency is 2/3.

Figure 2: Simple Illustration Example

To calculate logistic cost we introduce frequency fk for each vehicle represents num-

bers of deliveries per unit time. By all means, logistic cost is multiplication of fre-

quency and route cost for each vehicle. Therefore, in the example provided in Figure 2

we want to explain how we calculate logistic cost for our problem. In this example we

have three customers and two vehicles. If we generate all solutions according to our

problem settings, there are only eight scenarios for our problem which are presented

in the Table 5 and Table 6. For the sake of simplicity, we demonstrated optimal
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frequencies instead of showing all assignment among the compartments to demands

assignments. In the Table 7 , the optimal solution is 1 and 2 customers’ demand

Table 5: Scenarios for Vehicle-1
Vehicle 1

Scenario # Products Solution Representation Route Length Frequency Cost
#1 (1,2,3) (3-2-1) 4 Max (100/100, 120/100,80/20)=4 4*4=16
#2 (1-2) (2-2-1) 3 Max( 120 / (100+20), 100 /100 )=1 3*1=3
#3 (2-3) (2-2-3) 3 Max( 120 / (100+20), 80 /100 )=1 3*1=3
#4 (1-3) (1-1-3) 3 Max( 100 / (100+20), 80 /100 )=5/6 3*5/6= 15/6
#5 (1) (1-1-1) 2 Max(100/220) =5/11 2*5/11=10/11
#6 (2) (2-2-2) 2 Max(120/220) = 6/11 2*6/11=12/11
#7 (3) (3-3-3) 2 Max(80 / 220 )=4/11 2*4/11=8/11
#8 no assgn. infeasible infeasible infeasible infeasible

Table 6: Scenarios for Vehicle-2
Vehicle 2

Scenario # Products Solution Representation Route Length Frequency Cost
#1 no assgn. - 0 0 0
#2 (3) (3-3) 2 Max(80/80)=1 2*1=2
#3 (1) (1-1) 2 Max(100/80)=5/4 2*5/4=10/4
#4 (2) (2-2) 2 Max( 120 / 80))= 6/4 2*6/4=3
#5 (2-3) (2-3) 3 Max(100/40,80/40) =5/2 3*5/2=15/2
#6 (1-3) (1-3) 3 Max(120/40,80/40)=3 3*3=9
#7 (1-2) (1-2) 3 Max(120/40, 100/ 40 )= 3 3*3=9
#8 (1,2,3) infeasible infeasible infeasible infeasible

assigned to vehicle 1, 3 customer’s demand assigned to vehicle 2 with objective cost

5 per unit time. Solution representations for compartments are (2-2-1) for vehicle-1

and (3-3) for vehicle-2.

Table 7: Objective Costs for All Scenarios
All Results

Scenario # Vehicle 1 Cost Vehicle 2 Cost Objective
#1 16.00 0 16.00
#2 3.00 2 5.00
#3 3.00 2.25 5.25
#4 2.50 3 5.50
#5 0.91 7.5 8.41
#6 1.09 9 10.09
#7 0.73 9 9.73
#8 infeasible infeasible infeasible
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3.1 Multi-Product Loading Problem with Frequency

Logistic cost of vehicle contains frequency within itself, therefore firstly we demon-

strate Multi Product Loading with Frequency (MILPF) which is fundemantal part

of mathematical formulation in order to obtain frequencies of vehicles. Supposing

that one vehicle which has m compartments and serve n different customers who

demand only one product. It is not allowed to be mixed two products into same

compartment. The objective is maximizing the minimum replenishment time. The

mathematical formulation is as follows:

Parameters:

M : Set of compartments,

N : Set of customers,

di: Demand rate for customer i ∈ N ,

qm: Capacity of compartment m ∈M ,

Decision Variables:

xim: 1, if customer demands i is assigned to compartment m ; otherwise 0 : i ∈ N ,

m ∈M ,

T : replenishment time for static replenishment strategy

Max T (1)

s.t. ∑
m∈M

ximqm

di
≥ T ∀i ∈ N (2)∑

i∈N
xim = 1 ∀m ∈M (3)

xim ∈ {0, 1} ∀m ∈M,∀i ∈ N (4)

T ≥ 0 (5)

The objective (1) is clearly to maximize common replenishment time in static pol-

icy. Constraints (2) require that ample compartment space to be devoted to each

demand. Constraints (3) require that each compartment is dedicated to exactly one
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product. Finally, Constraints (4) and (5) dictate the structures and sign restrictions

of the decision variables. This problem is called as Multi Product Loading Problem

(MPLP) and it is firstly studied in the work which proposed Lagrangian Relaxation

to solve Maxmin problem [65].

Since our main concern is frequency which is multiplicative inverse of common replen-

ishment time T . We have to transform above Maxmin problem to Minmax problem

which is called Multi Product Loading Problem with Frequency (MPLPF). For the

sake of simplicity, we prefer to describe new decision variables and parameters in here

to avoid from repeating previous existing definitions. Mathematical formulation of

MPLPF is as follows:

New Parameter:

B: Sufficiently big number to enforce some constraints non-effective.

New Decision Variables:

f : frequency in static period

uim: auxillary variable for linearization of xim ∗ f ; ∀i ∈ N , ∀m ∈M

Min f (6)

s.t.

di ≤
∑

m∈M
uimqm ∀i ∈ N (7)∑

i∈N
xim = 1 ∀m ∈M (8)

uim ≤ f ∀m ∈M,∀i ∈ N (9)

uim ≤ B(xim) ∀m ∈M,∀i ∈ N (10)

uim ≥ f −B(1− xim) ∀m ∈M,∀i ∈ N (11)

xim ∈ {0, 1} ∀m ∈M,∀i ∈ N (12)

f ≥ 0 ; uim ≥ 0 ∀m ∈M,∀i ∈ N (13)
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The objective (6) is clearly to minimize common frequency or number of deliveries

per unit period time in static policy. Constraints (7) require that ample compartment

space to be devoted to each demand. Constraints (8) require that each compartment

is dedicated to exactly one product. Constraints (9),(10) and (11) ensure linearity in

xim ∗f . Finally, Constraints (12) and (13) dictate the structures and sign restrictions

of the decision variables.

Theorem 1. MPLPF is strongly NP-Hard problem.

Proof. To prove NP-Hardness, we must first define a decision problem (D-MLPLF)

related to MPLPF and prove that is NP-Complete. We demonstrate that there

exists a strongly NP-complete problem that polynomially reduces to D-MLPF from

The 3-Partition problem exclusively [66]. Given a multiset S of n = 3m positive

integers (a1, a2, ..., a3m) such that P/4 ≤ aj ≤ P/2 for j = 1, ..., 3m and such that

a1 + a2 + a3 + ... + a3m = mP . The problem is to decide whether a given multiset

S of integers can be partitioned into triples that all have the same sum. Can S be

partitioned into m subset S1, S2, ..., Sm such that the sum of the numbers in each

subset is equal? In this case, each subset Si is forced to consist of exactly three

elements and sum of the numbers in each subset equals P. From an instance of 3-

partition under the conditions above, we generate an instance of our problem as

follows. Assuming that we have 3m compartments with size integers (a1, a2, ..., a3m).

The sum of all these numbers is mP . In addition to that we have m customers with

same demand rates (d). The feasibility question of whether there is an assignment

of the comopartments to items such that there is a feasible solution with d/P is

equivalent to finding a solution to the corresponding 3-Partition Problem. To sum

up, Decision Problem (D-MLPF) is strongly NP-Complete since 3-Partition Problem

is strongly NP-Complete.
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3.2 Mathematical Model of RILPHVFC

In this section, we present mathematical model for the RILPHVFC. As it was ex-

plained in the beginning of this chapter, the distribution system has a fleet of hetero-

geneous vehicles having heterogenous compartments where a compartment can carry

and dedicated only one customer’s demand. Our objective is to minimize overall logis-

tic cost according to problem settings in Table 3. Mathematical model of RILPHVFC

is presented as below:

Parameters:

K: Set of vehicles,

Mk: Set of compartments in vehicle k; k ∈ K,

di: Demand rate for customer i; i ∈ V \{0},

qmk: Capacity of compartment m of vehicle k; m ∈Mk , k ∈ K,

cij: Non-negative distance between customer i and j; i ∈ V , j ∈ V ,

B: Sufficiently big number to enforce some constraints non-effective.

Decision Variables:

xikm: 1, if customer i is assigned to compartment m of vehicle k; otherwise 0 :

i ∈ V \{0}, m ∈Mk,k ∈ K.

yik: 1, if demand of customer i is delivered by vehicle k; otherwise 0 : i ∈ V , k ∈ K.

wijk: 1,if edge (i, j) is used once by vehicle k; otherwise 0 : i, j ∈ V , k ∈ K.

fk: Frequency of vehicle k in static period: k ∈ K.

ui: Auxiliary variable defined for customers i in order to eliminate subtours : i ∈

V \{0}.
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Min
∑
k∈K

∑
i∈V

∑
j∈V

(wijkcijfk) (14)

s.t. ∑
k∈K

yik = 1 ∀i ∈ V \{0} (15)

xikm ≤ yik ∀i ∈ V \{0},∀m ∈Mk,∀k ∈ K (16)∑
m∈Mk

xikm ≥ yik ∀i ∈ V \{0},∀k ∈ K (17)∑
i∈V \{0}

xikm ≤ 1 ∀m ∈Mk,∀k ∈ K (18)∑
k∈K

∑
m∈Mk

xikm ≥ 1 ∀i ∈ V \{0} (19)

B(1− yik) +

∑
m∈Mk

xikmqmk

di
fk ≥ 1 ∀i ∈ V \{0},∀k ∈ K (20)∑

i∈V

∑
k∈K

wijk = 1 ∀j ∈ V \{0} (21)∑
i∈V

∑
k∈K

wjik = 1 ∀j ∈ V \{0} (22)∑
j∈V

wijk =
∑
j∈V

wjik ∀i ∈ V, ∀k ∈ K (23)∑
j∈\{0}

w0jk ≤ 1 ∀k ∈ K (24)

1 ≤ ui ≤ |V | ∀i ∈ V \{0} (25)

ui − uj + |V |
∑
k∈K

wijk ≤ |V | − 1 ∀i, j ∈ V \{0} (26)

wijk ≤ yik ∀i ∈ V \{0},∀k ∈ K (27)

xikm ∈ {0, 1} ∀i ∈ V \{0},∀k ∈ K, ∀m ∈Mk (28)

yik ∈ {0, 1} ∀i ∈ V \{0},∀k ∈ K (29)

wijk ∈ {0, 1} ∀i, j ∈ V, ∀k ∈ K (30)

fk ≥ 0 ∀k ∈ K (31)

ui ≥ 0 ∀i ∈ V \{0} (32)
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Furthermore, (14) and (20) equations making our problem as non-linear prob-

lem. Nonetheless (14) and (20) includes only multiplication of binary and continuous

decision variables which can be transform into linear representation. Therefore we

introduce two new decision variables in order to obtain MIP formulation as follow:

sijk = auxillary variable for(wijk ∗ fk) ∀i, j ∈ V, ∀k ∈ K (33)

tikm = auxillary variable for(xikm ∗ fk) ∀i ∈ V \{0}, ∀m ∈Mk,∀k ∈ K (34)

Implementing two auxillary (33) and (34) decision variables we can formulate Mixed

Integer Problem (MIP) Formulation as follow:

Min
∑
k∈K

∑
i∈V

∑
j∈V

(sijkcij) (35)

s.t. ∑
k∈K

yik = 1 ∀i ∈ V \{0} (36)

xikm ≤ yik ∀i ∈ V \{0},∀m ∈Mk,∀k ∈ K (37)∑
m∈Mk

xikm ≥ yik ∀i ∈ V \{0},∀k ∈ K (38)∑
i∈V \{0}

xikm ≤ 1 ∀m ∈Mk,∀k ∈ K (39)∑
k∈K

∑
m∈Mk

xikm ≥ 1 ∀i ∈ V \{0} (40)

B(1− yik) +
∑

m∈Mk

tikmqmk ≥ di ∀i ∈ V \{0},∀k ∈ K (41)
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∑
i∈V

∑
k∈K

wijk = 1 ∀j ∈ V \{0} (42)∑
i∈V

∑
k∈K

wjik = 1 ∀j ∈ V \{0} (43)∑
j∈V

wijk =
∑
j∈V

wjik ∀i ∈ V, ∀k ∈ K (44)∑
j∈\{0}

w0jk ≤ 1 ∀k ∈ K (45)

1 ≤ ui ≤ |V | ∀i ∈ V \{0} (46)

ui − uj + |V |
∑
k∈K

wijk ≤ |V | − 1 ∀i, j ∈ V \{0} (47)

wijk ≤ yik ∀i ∈ V \{0},∀k ∈ K (48)

tikm ≤ fk ∀i ∈ V \{0},∀m ∈Mk, ∀k ∈ K (49)

tikm ≤ Bxikm ∀i ∈ V \{0},∀m ∈Mk, ∀k ∈ K (50)

tikm ≥ fk −B(1− xikm) ∀i ∈ V \{0},∀m ∈Mk,∀k ∈ K (51)

sijk ≤ fk ∀i, j ∈ V, ∀k ∈ K (52)

sijk ≤ Bwijk ∀i, j ∈ V, ∀k ∈ K (53)

sijk ≥ fk −B(1− wijk) ∀i, j ∈ V, ∀k ∈ K (54)

xikm ∈ {0, 1}, yik ∈ {0, 1} ∀i ∈ V \{0},∀k ∈ K, ∀m ∈Mk (55)

wijk ∈ {0, 1} ∀i, j ∈ V, ∀k ∈ K (56)

fk ≥ 0, ui ≥ 0 ∀k ∈ K, ∀i ∈ V \{0} (57)

tijm ≥ 0 ∀i ∈ V \{0},∀m ∈Mk,∀k ∈ K (58)

sijk ≥ 0 ∀i, j ∈ V, ∀k ∈ K (59)
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In the MIP model of RILPHVFC, the objective function (35) minimizes total

logistic costs which are the multiplication of transportation cost and frequency (the

number of deliveries per unit time) for each vehicle. Constraint set (36) ensures

each customer is served by exactly one vehicle. Constraint set (37) ensures that

assignment of customer’s products to compartments in which the vehicle serves that

customer. Constraint set (38) forces each customers assigned to vehicle must be

assigned to at least one compartment of that vehicle. Constraint set (39) ensures

no two demands mixing in same compartment. Constraint set (40) procures each

customers demand must be served by at least one compartment. Constraint set (41)

enforces minimize maximum frequency for each vehicle. Constraint sets (42) and

(43) ensure that number of entrance and departure for each node equals exactly one.

Constraint set (44) guarantees continuity in routes. Constraint set (45) makes sure

that there can be only one assignment of edge between depot and customer to vehicle.

Constraint sets (46) and (47) enforce sub-tour eliminations in routes. Constraint set

(48) ensures that customer’s products in the vehicle must be in the vehicles’ route.

Constraint sets (49), (50) and (51) linearize multiplication of xikm and fk. Constraint

sets (52), (53) and (54) linearize multiplication of wijk and fk. Finally, constraint sets

(55), (56), (57), (58), (59) dictate the structures and sign restrictions of the decision

variables.
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Chapter IV

METHODOLOGY

In this chapter, we construct solution framework for RILPHVFC. Initially we demon-

strate single vehicle version of the problem which is fundamental to our problem.

4.1 Routing and Inventory Loading Problem in Single Ve-
hicle with Compartments

Assuming that only one vehicle serves geographically dispersed customers under the

same restriction in the Chapter 3. The vehicle has numbers of compartments which

is greater than numbers of customers which ensures feasibility. RILPHVFC’s Mathe-

matical Formulation can be used for this problem. Moreover, there can be some for-

mulation technique regarding to single vehicle version which is tightened and shorten.

For the sake of simplicity we are avoiding specific formulation of this problem in here.

We refer the reader this specific formulation on Appendix A.1. Moreover, the problem

we studied the vehicle number and compartments structures is input of the problem

and we continue with same formulation.

Observation 1. Routing and Inventory for Single Vehicle with Compartments

(RILPSVC) can decompose two sub-problem which are Travelling Salesman Problem

(TSP) and Multi-Product Loading Problem with Frequency (MPLPF).

The logistic cost is multiplication of frequency and routing cost. Therefore if only

one vehicle serves all customers, routing cost is obviously TSP tour and frequency is

obviously obtained from MPLPF. Therefore if we solve simultaneously solve two prob-

lem then multiplying two objective leads original problem’s objective. The RILPSVC

is illustrated in Figure 3.
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Figure 3: Two Subproblems of RILPSVC

In Industrial Engineering Literature, TSP is the most famous problem which is NP-

Hard problem. We do not want to occupy place for showing formulation. Besides, we

use Miller-Tucker-Zemlin (MTZ) formulation to handle sub-tour elimination which

performs faster than constructing all subsets [67].

4.1.1 Solution Approach for Routing and Loading Problem for Single
Vehicle with Compartments

As we stated in the Section 4.1, single vehicle version of the problem could be solved

dividing problem into two sub problem and multiplying these two subproblem’s ob-

jective value as an objective value. Even single version problem could be solved by

two separately mathematical problem for small size problems in reasonable time, it

could not solved for large scale problem because of the nature of the NP-Hardness.

Therefore, we prefer to propose heuristic in case of larger problem to ensure compu-

tational efficiency. In the heuristic we proposed has two parts as routing part and

loading part as follow:
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4.1.1.1 Routing Problem

In the routing part, we use Christofides Algorithm to get TSP tour. We choose

Christofides Algorithm which has the best approximation ratio that has been proven

for the TSP on general metric space. The Pseudocode of the Christofides Algorithm is

represented in Algorithm 1. In addition to that, we empowered Christofides Algorithm

with improvement moves such as 1-0 insertion, 1-1 switch and 2-Opt after short

cutting phase in order to get more desirable route.

Algorithm 1 Pseudocode of Christofides Algorithm

1: Input: RILPSVC instance on a map of D × D unit square geographically dis-
persed locations and depot.

2: Output: TSP tour which starts from depot and returns to depot by visiting all
customer only once

3: Calculate Minimum Spanning Tree T
4: Define the set of vertices O with odd degree in T
5: Construct the subgraph of G using only the odd vertices of O
6: Solve a minimum-weight perfect matching M in this subgraph
7: Unite matching and spanning tree M ∪ T to construct an Eulerian multigraph E
8: Calculate Euler tour E
9: Apply short cutting repeated vertices in E
10: Perform 1-0 insertion, 1-1 switch and 2-Opt improvement until no more improve-

ment

4.1.1.2 Loading Problem

In the loading part we proposed novel heuristic called Greedy Assignment Heuris-

tic to solve MPLPF problem to assign customers’ demands to compartments. The

Pseudocode of Greedy Assignment Algorithm is represented in Algorithm 2. In ad-

dition to that, illustrative example is presented in Appendix A.2. This algorithm

firstly starts with initial solution. We use two phenomenon for initial solution, first

one is that sorted both compartments capacities and demands in decreasing order

then iteratively determines customer which has maximum frequency assigned next

unassigned compartment to that customer. Second one is randomly assign compart-

ments to customers demand. We combine these two methodologies together which
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could be considered as multi run process. Multi run process is limited as number

of customer. Moreover, we apply improvement phase to obtain more promising so-

lution, therefore at the improvement phase iteratively determine the worst customer

who has maximum frequency then searching other customers’ to switch their com-

partments whether it decrease maximum frequencies between customers. If switching

customers’ compartments leads decrease on maximum frequency, it will try to overall

sorting assigned compartments in a decreasing way. If it leads again decreasingly

on maximum frequency. Algorithm accepts last sorting phase then it will try until

there is no improvement. Finally, it selects minimum objective value from solutions

of multi run process.

The last but not least, we stated one more time, we proposed two methodologies

in face of whole mathematical formulation. First one is exact method to solve two

problem by mathematical model and multiplying these two sub problem as an ob-

jective function. We called this method as TSPMPLPF in further notations. The

other methodology is heuristic combined Christofides Algorithm and Greedy Assign-

ment Algorithm. For the sake of simplicity, we called this methodology as C-GAA in

further notations.
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Algorithm 2 Pseudocode of Greedy Assignment Algorithm

1: Input: Demand rates di , i ∈ N ; Compartment capacities qi , i ∈ M ;
Compartments assigned to demand rates Pi , i ∈ N ; Sum of compartments
capacities assigned to demand rates Ki , i ∈ N

2: Notations: Frequency of demand rates fi , i ∈ N ; Assignment of com-
partments to customer(demand rates) xij : (if compartment assigned to demand
rates(customer) equals 1 or 0, , i ∈ N ,j ∈M),

3: Output: Minmax frequence among the demand rates’ frequencies
4: for m=1 to |N ′| \\Multi run process do
5: Sort the demand rates in descending order as N ′

6: Sort the compartment capacity in descending order as M ′

7: if m =1 then
8: Set all xij = 0 for all i ∈ N ,j ∈M
9: for y=0 to |N ′|, y++ do
10: xyy = 1 y ∈ N ′,y ∈M ′

11: Calculate fi, Ki, i ∈ N ′
12: end for
13: for y=|N ′| to |M ′|, y++ do
14: fi∗ = max{fi|i ∈ N ′}
15: xi∗y = 1 y ∈M ′

16: Calculate fi, Ki, ∀i ∈ N ′
17: end for
18: else
19: Randomly assign compartments to customers and calculate fi, Ki,∀i ∈ N ′
20: end if
21: Start Improvement Stage
22: ∆ represent improvement on decrease in the max{fi}, i ∈ N ′
23: repeat
24: ∆ = 0 ; Select demand index which has fi∗ = max{fi|i ∈ N ′}
25: Ancillary Notations: W for define minimum decrease, W = 0;
26: for s=1 to |Pi| do
27: for k=1 to |N ′| and i 6= k do
28: for l=1 to |P ′k| do
29: if qs < ql then
30: Switch compartments and update W
31: end if
32: end for
33: end for
34: end for
35: Keep best improvement on ∆ regarding to W and switch compartment po-

sitions.
36: Sorting Ki in descending leads improvement on if ∆ changes in decreasing,

then change compartment assignments vice versa
37: until No more improvement on ∆
38: end for
39: Select minimum frequence from results of multi run process
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4.2 Solution Approach for Routing and Inventory Loading
Problem for Heterogeneous Vehicle Fleet with Com-
partments

In this section, we provide two-phase approach as illustrated in Figure 4 to solve

RILPHVC. In the first phase, we cluster customers and determine both routing cost

and frequencies for each cluster corresponding to each vehicle type. Therefore possi-

bilities of cost of serving customers in each cluster are total numbers of vehicles. In

the second phase, we solve a set partitioning problem to select best solution among

the solution pool.

Figure 4: An illustration of Two-phase Approach

4.2.1 Cluster Generation

In this section, we provide some cluster generation methodologies, which are Sweep

Algorithm, Iterative Sweep Algorithm and Random Subset Generation. All method-

ologies are based on create non-overlapping and potentially good cluster regarding to

distance which enhanced the routing part. In our problem setting, we restrict clus-

ter size as maximum compartment number among vehicles. For the illustration, In

Figure 5, supposing that we have only five vehicle, there is only one feasible solution
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which consists of (Cluster 1-2-3-4) which are non-overlapping (unique) and we have

to use 4 vehicle.

Figure 5: An Illustration of Cluster Generation

4.2.1.1 Sweep Cluster Algorithm

Sweep Algorithm is well known cluster generation technique for routing problem. The

idea of this methodology determines polar coordinates of each location and select each

location as starting point and sweeping area based on this starting point and clusters

locations by one by in a clockwise or counterclockwise [68]. However, this technique

does not provide enough clusters number, which eventually effects solution quality in

terms of diversification. Pseudocode of Sweep Algorithm is presented in Algorithm-

3.
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Algorithm 3 Sweep Cluster Algorithm Pseudocode

1: Input: RILPHVFC instance on a map of D × D unit square geographically
dispersed locations and depot.

2: Output: Cluster set S contains partitions of customer locations i ∈ V \{0}
3: Calculate polar coordinate system(angle θ,radius ρ) for all location i ∈ V \{0}

based on as if depot locations is (0,0)
4: Sort all customers in non-decreasing order of θ
5: Create empty candidate set S
6: repeat
7: Create set M
8: for i=0 to MaximumClusterSize do
9: Add nearest ’i’ locations to set M
10: if Is M in candidate set S then
11: i← i+ 1 and clear set M go to Step 8
12: end if
13: Add M to subset S
14: end for
15: until All customer is set as starting point

4.2.1.2 Iterative Sweep Cluster Algorithm

Iterative Sweep Algorithm is novel and developed from the idea of Sweep Algorithm

but it explores much more solution space comparing to Sweep Algorithm. This al-

gorithm needs to two inputs that are regions radian and starting angles degree. We

define these degrees as (3, 5, 15, 30, 45, 60, 90, 120, 180 and 360) which are denomina-

tors of 360. Iterative Sweep Algorithm use each starting angle and convert coordinates

to new coordinates as if these starting angles would zero angle. Then divide coordi-

nates as radians degree based on this new coordinates, then cluster locations in each

region based on their distance to depot iteratively. Thanks to constructing different

regions we can reach much more diversified space comparing to Sweep Algorithm.

Pseudocode of Iterative Sweep Algorithm is presented in Algorithm 4.
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Algorithm 4 Iterative Sweep Cluster Algorithm Pseudocode

1: Input: RILPHVFC instance on a map of D × D unit square geographically
dispersed locations and depot.
Input-2: Starting angle sets A, Sector radian sets L

2: Output: Cluster set S contains partitions of customer locations i ∈ V \{0}
3: Calculate polar coordinate system(angle θ,radius ρ) for all location i ∈ V \{0}

based on as if depot locations is (0,0)
4: Create empty candidate set S
5: Sort all customers in non-decreasing order of θ
6: for i=0 to |A| do
7: for j=0 to |L| do
8: Divide graph into sectors “Lj radians”
9: Sort all customers in non-decreasing order of distances to depot’s location

for each sectors
10: repeat
11: for k=0 to MaximumClusterSize do
12: Create set M which k successive order elements of ordered list in sector

Lj

13: for l=0 to |M | do
14: if Is Ml in candidate set in S then
15: l← l + 1 , go to Step 13
16: end if
17: end for
18: Add ML to candidate set
19: end for
20: until All sector is scanned.
21: end for
22: end for

4.2.1.3 Random Subset Cluster Algorithm

Random Subset Generation is based on randomly generated cluster regarding to ge-

ographically close locations [55]. At each iteration algorithm generates random base

point then it calculate distances to base location to each locations. After that assigns

probability to each location based on these distances. Assignment of customer loca-

tion to cluster proceeding from high probability which enable us to intensification in

solution space. On the other hand, MPLPF is independent of distance therefore we

used extra randomness to adding non-promising customer location into cluster which
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enables us to diversification in solution space. In the assignment process we gener-

ate random number between (0-1) for each location, if customer location probability

is greater than random number, it will be selected into cluster. As stated earlier we

want to generate cluster which are non-overlapping. As a result of that we ensure each

subset is unique. Moreover cluster generation process is restricted by pre-specified

number of iterations. Termination rule for our algorithm is either cumulative 200,000

unsuccessful or 60,000 successful cluster generation trials. Pseudocode of Random

Subset Algorithm is presented in Algorithm 5.

Algorithm 5 Random Subset Cluster Generation

1: Input: RILPHVFC instance on a map of D × D unit square geographically
dispersed locations and depot.

2: Output: Cluster set S contains partitions of customer locations i ∈ V \{0}
3: repeat
4: Pick a random point b, the base point, on the map.
5: Calculate cbi for all i ∈ V \{0}.
6: Set the probability pi of each customer location i for the selection process.

pi ←



0.9 if cbi ≤ D
10
,

0.7 if D
10
< cbi ≤ D×3

10

0.5 if D×3
10

< cbi ≤ D×5
10

0.2 if D×5
10

< cbi ≤ D×7
10

0 otherwise.

7: Order by descending these probabilities
8: Create empty set S
9: repeat
10: Create candidate set M
11: Generate random number r ∈ (0, 1) for selection process.
12: if pi ≥ r then
13: Add location i to M
14: end if
15: until M size is equal to maximum number of compartments having by vehicles
16: if Is candidate set M in S then
17: Go to the Step 3.
18: end if
19: Add candidate set M to S
20: until A termination condition is reached.
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4.2.2 Set Partitioning Problem

In this subsection, we demonstrate how to integrate our problems into Set Parti-

tioning Problem (SPP) in order to select best subset of generated clusters. Before

solving set partitioning problem, we apply pre-processing technique to prepare prob-

lem environment. The reason is that some of subset size is greater than vehicles total

compartment sizes that causes infeasibility. Therefore, we extract some cluster to

vehicle assignment from set partition problem in order to handle infeasibility. Pa-

rameter of our problem as follow:

Parameters:

S: Set of all generated clusters,

Sj: j
th cluster in S, j ∈ {1, ..., |S|},

K: Set of vehicles,

N : Set of locations except depot,

yjk: feasibility 0-1 matrix define whether cluster j can be served by vehicle k or not,

j ∈ {1, ..., |S|}, k ∈ {1, ..., |K|},

xij: coverage 0-1 matrix define whether i location is in cluster j or not, j ∈ {1, ..., |S|}, i ∈

{1, ..., |N |},

cjk: cost of serving cluster j by vehicle k, j ∈ {1, ..., |S|}, i ∈ {1, ..., |N |},

4.2.2.1 Cluster Cost

Before mathematical model, we want to state pre-processing algorithm for generate

cjk, yjk parameters. In this pre-processing code we calculate all cost of serving each

cluster which is satisfied feasibility. The cost of serving cluster is actually RILPSVC

problem. In the Section 4.1.1., we provide two methodologies. The cost of serving

cluster could be calculated as either TSPMPLPF or C-GAA. The Pseudocode of Pre-

Processing is presented in Algorithm 6.
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Algorithm 6 Pre-Poccessing Pseudocode.

1: Input: RILPHVC instance on a map of D × D unit square geographically dis-
persed locations and depot.

2: Input-2: Method← (TSPMPLPF ) or (C −GAA) \\To define which method
is applied to calculate the logistic cost of cluster

3: Output: cjk,yjk ,
4: for j=1 to |N| do
5: for k=1 to |K| do
6: if Sj is feasible for vehicle k then
7: cjk ←Method
8: yjk ← 1; else yjk ← 0;
9: end if
10: end for
11: end for

Decision Variables:

sjk =

 1, if the generated cluster j is served by vehicle k

0, otherwise.
j ∈ {1, ..., |S|}, k ∈ {1, ..., |K|}

The set-partitioning problem as follows:

SPP: Min
∑

j∈S,k∈S
cjksjk (60)

s.t. ∑
j∈S,k∈K

xijsjk = 1 ∀i ∈ N (61)∑
k∈K

sjk ≤ 1 ∀j ∈ S (62)

sjk ≤ yjk ∀k ∈ K, ∀j ∈ S (63)

sjk ∈ 0, 1 ∀k ∈ K, ∀j ∈ S (64)

The objective (60) is to find minimal cost partition from S. Constraints (61) ensure

that each location’s demand must be met exactly once by one tour. Constraints (62)

enforce location must be served by only one vehicle. Constraints (63) make sure

that no vehicle serves tour which has number of customers greater than its number

of compartments. Constraints (64) dictate structures and sign restrictions of the

decision variables.
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4.3 Tabu Search

In this section, we worked through other solution approach Tabu Search(TS), which

can be adapted to our problem from the work [63].

TS is a well-known local search metaheuristic, one of the most effective heuristic

for tackling with VRP and inventory related variations. The TS algorithm starts with

initial solution whether feasible or infeasible. Algorithm generates neighborhood by

the help of move operators for current solution. The current solution is selected by

best objective value, fitness value, in the neighborhood at each iteration. Previous

move or solution is kept in a tabu list, which ensures to avoid cycling, stuck in local

optima by prohibiting moves in tabu list for a certain number of iterations called

tabu-tenure. The tabu tenure of moves is updated at the end of each iteration. The

best neighborhood solution is selected as the new current solutions as long as it is not

labeled as tabu. Nevertheless, it is in the tabu list, it can have better fitness value

than the overall best feasible solution i.e. incumbent solution so far which can be

selected as the current solution even if it is in the tabu list. This is the aspiration

criteria, which break ties. The algorithm is continued until termination criteria have

been met [69].

Tabu Search presents basic framework to construct local search methodology,

which must be adapted to problem specific in a tailored way. Our Tabu Search

algorithm has 4 move operators to create neighborhood and contain Local Search

(LS) algorithm embedded into it. The initial solution is obtained by constructive

heuristic. We applied reduction technique to provide performance in terms of com-

plexity and reactive mechanism which can change tabu tenure and disable reduction

strategy in order to diversify more solution space.
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4.3.1 Solution Representation

Designing solution representation is essential in constructing metaheuristic. We prefer

to binary matrix to represent our solution as customer index and vehicle index, which

are sufficient to explore solution space related to our problem. We define binary

matrix such as each column represents customer index, each row represents vehicle

index. If element of matrix equals 1, related customer assign to that vehicle. It is

not allowed to assign one customer to multi vehicles therefore each sum of row must

equal to 1. To illustrate this phenomenon, suppose that 9 customer with 5 vehicles

each vehicle has at least 9 compartments, one feasible solution is as follow:

Figure 6: Illustration of Tabu Search Solution Representation

According to Figure 6, Vehicle 0 serves Customer 4-7, Vehicle 1 serves Customer

0-6, Vehicle 2 serves Customer 1-5, Vehicle 3 serves Customer 2-3-8, Vehicle 4 is not

in use.

4.3.1.1 Fitness Value of Solution Representation

Each solutions fitness value (objective value) could be calculated with Section 4.1.1.

In order to calculate fitness value, turn solution representation into clusters as if

customers being served by vehicle index. After that, use single vehicle version of
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problem whether use exact method (TSPMPLPF) or heuristic (C-GAA). In order to

achieve objective value calculation, select rows index for each column element which

equals to 1 and then calculate objective value for related column, after that summing

all rows objective value reveals fitness value of solution representation.

4.3.2 Initial Solution

Tabu Search mechanism starts with initial solution. Starting as possible as good so-

lution reveals better performance and well convergence. In our constructive heuristic,

infeasible solution is not allowed. We tested several constructive heuristic and we

decided to use Constructive Heuristic presented in Algorithm 7 as follow:

Algorithm 7 Constructive Heuristic Pseudocode

1: Input: Demand rates of customers, Vehicles, Method to evaluate calculation
(TSPMPLPF or C-GAA)

2: Output: Initial Solution
3: Sort the demand rates in descending order as D
4: Ancillary Notation: if xij=1 demand i assigned to vehicle j otherwise xij=0,
∀i ∈ D, ∀j ∈ V

5: Set xij=0 , ∀i ∈ D, ∀j ∈ V
6: for s=1 to |D| do
7: Try all possible assignment as if xsk = 1 which ensure feasibility,∀k ∈ V
8: Calculate objective values for each possible assignment
9: Select minimum objective value among possible assignments and related to

vehicle index (k∗);
10: xsk∗=1
11: end for

4.3.3 Neighborhood Generation

The fundemental of metaheuristic is creating good search space and evaluating its

neighborhood by predetermined rules. The neighborhood of the current solutions is

comprised by some move operators at each iteration in Tabu Search. Move operators

is designed in different ways which are generally depends on solution representation.

If move operators was used successively, it could searched every solution space. In

our solution representation, we neglected compartment assignment which was solved
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by single vehicle version of problem. We defined four moves, which are 1-0 Move,

2-0 Move, 1-1 Move and 2-2 Move. All moves interact with other routes therefore no

move in same route. The working mechanism of move operators is described as below

and illustration of move operators in Figure 7:

1-0 Move: Select a served customer from vehicle, remove from its current vehicle and

assigned to different vehicle.

2-0 Move: Select served two customer from same vehicle, remove them from their

current vehicle and assigned to different vehicle.

1-1 Move: Select served two customers from different vehicles and swap their vehicle

assignments.

2-2 Move: Select served two customer from same vehicle and other served two cus-

tomer from different vehicle. Swap their vehicle assignment pair to pair.

Figure 7: Illustration of Move Operators
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4.3.3.1 Feasibility Control

In our solution frame, only 1-0 Move and 2-0 Move operators can make solution infea-

sible. In case of assigning customers to vehicle, which has fewer compartments than

total number of customer assigned, is not allowed. Therefore, we ensure feasibility at

each neighborhood generation process.

4.3.3.2 Neighborhood Reduction Strategy

Due to the high complexity of the IRP’s, even metaheuristics need a significant

amount of computational time when solving large-scale problems. In addition, there

is a nearly general agreement on that researchers should implement the neighborhood

reduction strategy to focus on desirable neighborhoods in order to reduce computation

[70, 71].

To reduce neighborhood size, we adapted reduction technique into Move 1-0 and

2-0 operators. We have consensus that moving products from vehicle has greater

objective value to other vehicle has lower objective value leads more improvement.

Therefore, we design empirical study to test our consensus. In empirical study, we

generate 100 instance, which has 30 customer, 15 vehicle, and compartment number

in vehicles varies between 2-5. Then, we apply constructive heuristic and generate

all possible move 1-0 and 2-0 and reduction strategy. We tested neighborhood size

and best objective value. Reduction strategy has same objective value as all possible

neighborhood in %86 of instances while decreasing neighborhood size as %46 of in-

stances. The working mechanism of neighborhood reduction strategy is presented in

Algorithm 8. The related empirical study is presented in Appendix A.3

4.3.4 Local Search

Diversification and intensification are two concept must be accomplish within Tabu

Search mechanism [69]. Our main approach for diversification is move operators.

Tabu Search armed with Local Search creates more sequential move which could not
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Algorithm 8 Neighborhood Reduction Pseudocode

1: Input: Solution, Method to evaluate calculation (TSPMPLPF or C-GAA)
2: Output: Neighborhood List
3: Create empty set of Neighborhood List N
4: Decompose solution into for each vehicle’s solution as V
5: for i=1 to |V | − 1 do
6: for j=i+1 to |V | do
7: Create empty candidate list S
8: Generate and Move 1-0 and Move 2-0 for all products from Vehicle i and

assigned to Vehicle j if ensure feasibility.
9: Add candidates generated in Step 8 into S
10: Calculate all candidates Objective Value in the S
11: Add candidate list S into N
12: end for
13: end for

be create by iteration after iteration. Therefore we applied Local Search Procedure

within Tabu Search in order to get intensification. For that purpose, we used only

1-1 Move and 2-2 Move operators as Local Search operators. These operators create

neighborhood of best candidate constructed from neighborhood from 1-0 Move and

2-0 Move Operators.

Implementing Local Search without pre-defined rules and only integrated sequen-

tial move operators reminds of brute force calculation [69]. Therefore we implemented

sub procedure such as guiding mechanism which continuously identifies low-quality

features and tries to emphasize specific qualified solution space. As we stated in

Chapter 3, our problem is combined two sub problem. Therefore, we orient move

operators in two layer which want to improve two sub problem side by side.

The idea behind two layer is that selecting desirable demands or customers while

switching their assignment in their vehicles leads improvement on either routing prob-

lem or loading problem. For example, in the routing part we evaluate switching cus-

tomers on vehicles lead decrease on Minimum Spanning Tree comparing to previous

case. If switching customers leads decrease on sum of two vehicle Minimum Spanning

Tree, we accept this move. In loading part, we sort vehicles in decreasing order by
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their frequencies. We allow switching customers, which are greater demand rates from

higher frequencies of vehicle to less demand rates from fewer frequencies of vehicles.

The two layer local search is presented in Algorithm 9. We tested Local Search within

Tabu Search versus Tabu Search which includes also Move 1-1, 2-2. Our tested in-

stances has same characteristic features as in Section 4.3.3.2 and convergence of Local

Search presented in Figure 8 and numerical results in Appendix A.4.

Figure 8: Convergence of TS versus TS with Local Search

4.3.5 Determination of Tabu Search Parameters

In this section, we discuss on determination parameters of Tabu Search such as tabu

list, tabu tenure, termination criteria, aspiration criteria and reactive mechanism.

As the current solution is updated throughout the iterations, we decided to con-

struct tabu restriction therefore, solutions visited before would not be selected re-

peatedly. In the academic literature there are several techniques to employ tabu list

property such as keeping move indexes, solutions etc. We designed our two tabu lists

according to each move indexes. In the Move 1-0 operator, two index needed first

one is which product will assign to which vehicles. In the Move 2-0 operator, we

insert two-row entry into tabu list. Suppose that Customer 1 in vehicle 6 assigned to
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Algorithm 9 Neighborhood Generation in Local Search

1: Input: Best Solution from 4.3.3, Method to evaluate calculation (TSPMPLPF
or C-GAA)

2: Output: Neighborhood List
3: Create empty set of Neighborhood List N
4: Decompose solution into for each vehicle’s solution as V f

j frequencies and V r
j

routing cost ,∀j ∈ V
First Layer (Routing)

5: for s=1 to |V | − 1 do
6: for k=s+1 to |V | do
7: Create empty candidate list S1

8: Generate and Move 1-1 and Move 2-2 switching customers between Vehicle
s and Vehicle k if improvement in a decreasing way on sum of Minimum
Spanning Tree (MST) of Vehicle s,k

9: Add candidates generated in Step 8 into S1

10: Calculate all candidates Objective Value in the S1

11: Add candidate list S1 into N
12: end for
13: end for

Second Layer (Loading)
14: Sort V f

i frequencies in a descending order, i∈ V
15: for s=1 to |V | − 1 do
16: for k=s+1 to |V | do
17: Create empty candidate list S2

Notation: dji refers demand rates of customer i assigned to vehicle j,
Ls refers location set which is served by vehicle Vs

18: Generate and Move 1-1 and Move 2-2 switching customers between Vehicle
s and Vehicle k, in such that dsi > dkl ∀i ∈ Ls, ∀l ∈ Lk

19: Add solutions generated in Step 18 into S2

20: Calculate all candidates Objective Value in the S2

21: Add candidate list S2 into N
22: end for
23: end for
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Vehicle 5 with Move 1-0 operator, and Customer 2,3 assigned to Vehicle 4 with Move

2-0 operator, associated Tabu list as follow:

Table 8: Structure of Tabu List
Tabu List

Index Customer Vehicle
1 6 5
2 2 4
3 3 4

In the Move 1-1 and Move 2-2 operator we need two row entry according each pair

switching which means that two Move 1-0 Operator. For example suppose that Cus-

tomer 2 in vehicle 1 and Customer 3 in vehicle 3 changes according to Move 1-1

operator. Then two row entries will insert to tabu list as follow:

Table 9: Move 1-1 Operator in Tabu List
Tabu List

Index Customer Vehicle
1 1 3
2 3 2

The tabu tenure is assigned random integer values in the interval [5, Maxi-

mumTabuTenure] where MaxTabuTenure is 20. We use termination criteria for our

Tabu Search is the maximum permissible number of iterations during which incum-

bent solution does not improve. Maximum non improvement number is determined

as 50 which adapted from work [63, 72].

As we stated earlier in the beginning of the section, the solution whose move

operator is in tabu list can be executed for the next best candidate if it produces

a solution with a lower logistic cost than the incumbent’s logistic cost (current best

logistic cost so far) as integrated into Tabu Search as an aspiration criterion.

The reactive mechanism is first proposed by the study in [73]. The main idea

of reactive mechanism is adapting tabu tenure dynamically in order to free search

trajectory from limited part of the search space instead of avoiding closed search
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repetition or cycles. The robustness of the reactive mechanism is demonstrated in

the studies [74, 75]. The reactive mechanism does not change only tabu tenure, it

can control turn off reduction strategy. We prefer to use reactive mechanism in a two

way. After limited number of iterations, if there is no improvement on incumbent

solution, we turn off reduction strategy in neighborhood generation with Move 1-0

and Move 2-0 and change tabu tenure in randomly as [5, MaximumTabuTenure] to

handle existing Tabu List element we used First In First Out (FIFO) strategy in

order to rearrange tabulist. Effectiveness of the reactive mechanism is tested on 30

instance and provide overall %3.71 improvement on average. The numerical results are

presented in Appendix A.5. We limit number of iterations as half of the termination

number to activate reactive mechanism.

4.3.6 Tabu Search Framework

In this subsection, we provide flowchart in Figure 9 to describe the steps of our TS

implementation. For the beginning, we give notations used in flowchart.

Numb Iter: Number of iterations which the incumbent solutions

does not improve

Max Iter: Maximum number of iterations which the incumbent so-

lutions does not improve

Max IterReac: Maximum number of iterations to initiate reactive mech-

anisim

OV(): Objective value
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S Incumbent: Incumbent solution

S Candidate: Candidate solution

S Candidatebest: Best candidate solution in neighborhood

Candidate List: Candidate list which is generated by move operators

(Move 1-0, Move 2-0)

Candidate List L: Candidate list which is generated in Local Search by

move operators (Move 1-1, Move 2-2)

MoveList: Move lists associated to Candidate List

MoveList L: Move lists associated to Candidate List L

TL: Tabu list

BestMove: Best move associated with best candidate solution in

neighborhood

B Inc: Boolean in order to follow incumbent solution whether

change or not

R active: Boolean in order to follow reactive mechanism whether

active or not

N Gen: Neighborhood Generation

N Gen L: Neighborhood Generation in Local Search
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4.4 Lower Bound Approaches

In the area of optimization, there must be conducted studies on lower/upper bound

approaches with intention to understand nature of the problem and comparison is-

sues. By the help of lower/upper bound approaches, researcher figures out bound-

aries and limitations even for the large scaled problems. In this section, we worked

on lower bound approaches according to our problem. In general, constructing effec-

tive lower/upper bound on optimization problem is very time consuming and hard

comparing to developing solution approach.

4.4.1 Single Vehicle Version of the Problem

Observation 2. The multiplication of objective values (Minimum Spanning Tree and

Relaxed MPLPF) is a lower bound of single vehicle version of the problem.

Suppose that objective value of single version problem is OV which can be com-

posed in such that OV = OV R ∗ OV F where OV R is routing cost and OV F is

frequency. Since OV R and OV F are non-negative number, it is sufficient to find two

lower bound corresponding each subproblem and multiplication of these lower bound

reveals lower bound of the original problem. Minimum Spanning Tree is lower bound

of Travel Salesman Problem. In addition to that if we allow mixing product alloca-

tion into compartments, we are relaxing Constraint (58) and the optimum solution

of relaxing problem is unique because of each customer having same frequency such

that
∑

i∈N di∑
m∈M qm

. Therefore lower bound of RILPSVC is (
∑

i∈N di∑
m∈M qm

∗MST ).
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4.4.2 Multi Vehicle Version of the Problem

In this subsection, we work on lower bound according to multi vehicle version of the

problem. Multi vehicle version of problem is very complex problem hence proved

lower bound is not easy to find. We tested several approaches and decided on using

following lower bound technique.

Observation 3. The objective value in such that vehicle with maximum compartment

capacity travels each location and only serves customer with minimum demand is lower

bound of multi vehicle version of problem.

Suppose that optimum objective value of original problem is OV which can be

decompose into objective values for each vehicles such as OV ∗ = OV f
1 ∗OV r

1 +OV f
2 ∗

OV r
2 + ... + OV f

n ∗ OV r
n | ∀n ∈ |V | where f stands for frequency and r stands

for route cost. Suppose that OV fL is related frequence which is minimum customer

demand over maximum vehicle capacity (sum of all its compartments). The OV fL

ensure minimum frequency can be obtained according to problem settings. Therefore

OV fL≤ OV f
n | ∀n ∈ |V |. Moreover we can derive the distribution property of

multiplication over sum operation such as OV L = OV fL × {OV r
1 + OV r

2 + ... +

OV r
n } | ∀n ∈ |V |. However the

∑
n∈|V |OV

r
n is not known because we have no

clue which vehicle serves to which customer. However we can construct lower bound

on
∑

n∈|V |OV
r
n such as grand TSP which visit all customer. We define Minimum

Spanning Tree related to grand TSP tour cost as OV rL . Therefore lower bound OV L

equals to OV L = OV fL × OV rL . All objective costs are non-negative number as a

result of that we can proved observation by derived inequalities as below:

0 ≤ OV L ≤ OV fL × {
∑

n∈|V |OV
r
n } ≤ {OV

f
1 ∗ OV r

1 + OV f
2 ∗ OV r

2 + ... + OV f
n ∗

OV r
n } | ∀n ∈ |V |}
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Chapter V

COMPUTATIONAL STUDY

In this chapter, we conduct a computational study on randomly generated instances to

assess performances of all proposed algorithms in terms of solution quality and com-

putational performances. Firstly, we explain computational environment, instance

generation and then introduce results and findings related to proposed approaches.

5.1 Computational Environment and Instance Generation

As we stated earlier, our problem has not worked in the OR literature. As a reason,

there is no available benchmark data to compare with our solution methodology

performance. Therefore, we firstly want to mention our data generation. We have to

need six input for the instance generation, which are as follow:

• Geographical Map Size (Xmax, Ymax)

• Customer location number (Nlocation)

• Minimum-maximum demand size for each customer (Dmin, Dmax)

• Vehicle number (Nvehicle)

• Compartment number (CNmin, CNmax)

• Minimum-maximum compartment size (Capmin, Capmax)

First, we generate our map according to (Xmax, Ymax) coordinates. Then we generate

random numbers both (0, Xmax) and (0, Ymax) for each location. Then, we generate

random number (Dmin, Dmax) for demand rate for each customer location. Further

we generate random number (CNmin, CNmax) to assign compartment number for
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each vehicle. For the last stage we generate random number (Capmin, Capmax) for

all compartments in the vehicles. For the sake of simplicity, we use (1000 ∗ 1000)

unit square map for generating locations’ coordinates. For generation of demand

rates, we prefer to construct demand rates such that less and more varied which

randomly generated numbers between (1000, 2000), (1000, 4000). Moreover, we use

same structure in generation of compartment capacities such that less and more varied

which randomly generated numbers between (1000, 2000), (1000, 4000). If not defined

we prefer to generate both demand rates and compartment capacities in interval (1000,

3000).

The complexity of single vehicle version of problem mainly depends on number of

locations (customers) and number of compartments. Therefore, we have to define dy-

namic properties regarding to compartment numbers. The number of compartments

are randomly generated between [Nlocation, (2 × Nlocation)] which is applied for only

generating for single vehicle version of problem. In addition to that, we performed

analysis on number of locations such as 5, 10, 20, 30, 40 and 50.

Instance generation of multi vehicle version of the problem differs from single

version because of necessity of vehicle numbers. Number of vehicles is another

factor which is directly effecting complexity. Since our problem decides which ve-

hicle in use or not, invastigation of vehicle number must adapted in dynamically

changing instances. We assign random number between (dNlocation/CNmine, d2 ×

Nlocation/CNmine) before generating other variables. Plus, we use minimum com-

partment number which ensures feasibility on further process. Thanks to that, we

enchance stability in analysis of number of vehicles factor. For the part of generating

compartment structure, we address studies in the literature. The number of compart-

ments is varied on from studies to studies. However, general conception on number of

compartments is less than six. Moreover, we can refer famous studies [76], [77] ,[78],

[79] which are respectively use interval of compartments numbers as 2, (2-3), (2-5) and
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(2-6). Proposed solution methodologies were programmed in C# language in Visual

Studio 2015 Community platform and executed on a laptop with Intel (R) Pentium

Dual CPU at 2.33 GHZ, 2GB of RAM on Windows 7. In order to evaluate exact so-

lutions, we have run the developed mathematical models using Cplex 12.6 32 bit via

Concert Technology with C#. Cplex execution time and termination are controlled

by parameter setting. For that purpose, a relative optimality gap and termination

time are set to 0.000001 and 3 hours CPU time. As a result, Concert Technology will

terminates mathematical model either gap reaches optimality gaps value or execution

time reaches to termination time. For the purpose of memory management, we use

node file parameter as “2” in order to handle � out of memory � situation.

5.2 Single Vehicle Version of the Problem

In this section, we provide the results of our computational study on single vehicle

version of problem, we tested our Christofides with Greedy Assignment Algorithm

(C-GAA) with respect to the exact solution found by mathematical model (TSPM-

PLPF) on diversified size of problems. For small instances, mathematical model found

optimal solution whereas it could not find the optimal solution in large instances. For

the purpose of comparison and sensitivity analysis, we conduct assessments in two

ways such as optimality gap and computational time. We started analysis instances

with normal demand rates and compartment capacities. The evaluation of results

is based on two ways in such that optimality gap in percentage and computational

time in seconds. In order to obtain optimality gap, initially we used lower bound

in presented in the Section 4.4, however it did not provide tightened and effective

lower bound. Therefore, it is better to use lower bound which is acquired from Cplex

after predetermined time to end. This lower bound can be reached by method called

� GetBestObjV alue� in Concert Technology Library. As we stated in the Section

5.1, our Cplex algorithm terminates after 3 hour execution time for both TSP and
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MPLPF problems. It is worth to emphasize one more time here, we employ two

mathematical model in order to get optimal solution therefore maximum execution

time is 6 hours for each single vehicle version of the problem instances.

Not only we provide optimality gaps both C-GAA and TSPMPLPF algoritm, but

also we provide optimality gap for lower bound presented in the Section 4.4. In the

Table 17, we present comparisonal result according to proposed algorithm for single

vehicle version of problem on original instances. The first two columns represent

Instance name and number of locations. Following three columns defines optimality

gaps of C-GAA, TSPMPLF and Lower Bound comparing to lower bound of the Cplex.

Negative signs means that lower bound approach in Section 4.4 is lower than the lower

bound obtained from Cplex.

According to results presented in Table 10, we observe that the small instances

(5-10 number of locations) are solved to optimality by TSPMPLPF in a few seconds.

TSPMPLPF could not solve all problem in optimality and it takes 10,961 seconds

on average to solve instances which have more than 20 number of locations. On the

other hand, C-GAA is very effective in terms of computational efficiency even large

instances solved in a less than a second. Moreover C-GAA has average optimality

gap 0% and 0.30% for small instances respectively 5 and 10 number of locations.

C-GAA has average 6.99% optimality gap whereas TSPMPLPF has average 4.10%

on instances with more than 20 customers and the maximum difference of optimality

gap between C-GAA and TSPMPLF is 4.50%. In the worst case ,optimality gap of

C-GAA and TSPMPLPF are 19.23% and 14.73%. Unfortunately, our proposed lower

bound is not effective which is far away from optimal with average -25.15% on overall

instances.
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Table 10: The optimality gaps and computational times of C-GAA on single vehicle
instances on original instances

Optimality Gap(%) Time in Seconds
Instance Loc # C-GAA TSPMPLPF Lower Bound C-GAA TSPMPLPF Lower Bound

Ins 1 5 0.00% 0.00% -47.07% 0.01 0.09 0.00
Ins 2 5 0.00% 0.00% -41.05% 0.01 0.05 0.00
Ins 3 5 0.00% 0.00% -35.57% 0.01 0.05 0.00
Ins 4 5 0.00% 0.00% -35.86% 0.01 0.05 0.00
Ins 5 5 0.00% 0.00% -34.74% 0.01 0.17 0.00
Ins 6 10 0.00% 0.00% -33.65% 0.02 0.78 0.04
Ins 7 10 1.49% 0.00% -26.82% 0.02 10.90 0.00
Ins 8 10 0.00% 0.00% -37.79% 0.02 0.54 0.00
Ins 9 10 0.01% 0.00% -38.53% 0.01 0.69 0.00
Ins 10 10 0.00% 0.00% -37.10% 0.01 0.95 0.00
Ins 11 20 3.25% 1.67% -17.80% 0.04 11,308.19 0.02
Ins 12 20 5.68% 2.79% -15.10% 0.02 11,039.98 0.02
Ins 13 20 0.42% 0.00% -40.38% 0.03 2,257.96 0.00
Ins 14 20 3.60% 0.00% -37.66% 0.03 3,532.21 0.00
Ins 15 20 10.62% 5.55% -23.54% 0.02 11,289.79 0.00
Ins 16 30 5.20% 2.50% -18.94% 0.01 10,721.51 0.00
Ins 17 30 2.30% 0.00% -20.44% 0.02 5,692.12 0.00
Ins 18 30 9.30% 4.90% -27.33% 0.05 11,166.51 0.01
Ins 19 30 9.87% 6.30% -24.88% 0.04 11,158.26 0.00
Ins 20 30 5.20% 3.80% -29.08% 0.04 10,721.49 0.00
Ins 21 40 6.40% 1.94% -16.34% 0.06 11,649.39 0.02
Ins 22 40 2.40% 2.02% -14.06% 0.12 11,078.91 0.06
Ins 23 40 5.64% 1.64% -13.79% 0.09 11,002.47 0.03
Ins 24 40 6.70% 2.98% -10.50% 0.17 10,802.55 0.00
Ins 25 40 15.64% 11.90% -17.34% 0.09 15,802.16 0.00
Ins 26 50 4.23% 2.90% -13.54% 0.07 15,185.92 0.01
Ins 27 50 6.30% 3.60% -13.10% 0.08 12,698.58 0.02
Ins 28 50 11.20% 8.80% -9.89% 0.10 13,410.20 0.03
Ins 29 50 6.72% 3.94% -9.06% 0.11 11,892.00 0.02
Ins 30 50 19.23% 14.73% -13.41% 0.23 16,817.19 0.01

In addition we tested single vehicle version of problem with other characteristics

such as less and more varied demand rates, compartment capacities. We provided

these results on Appendix B.1. We prefer to present here summary of statistic mea-

sures according to all results in Table 11. According to Table 11, difference interval

of demand rates and compartment capacities do not significantly influence neither

C-GAA performance or TSPMPLPF performances in terms of optimality. The main

reason is that MPLPF problem complexity increases with ratio such that number of
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compartments over number of locations. Thus we conclude that C-GAA is very effec-

tive in solving single version of problem in terms of solution quality and computational

time.

Table 11: Statistical measures of C-GAA and TSPMPLPF performances on Opti-
mality Gap(%) in all results

Number of Locations
5 10 20 30 40 50

L
es

s
va

ri
ed

d
em

an
d

C-GAA

Average 0.00% 0.47% 4.87% 6.42% 8.66% 10.29%
Median 0.00% 0.00% 3.40% 5.30% 9.43% 8.16%
Min 0.00% 0.00% 2.71% 3.67% 3.10% 6.21%
Max 0.00% 2.19% 8.90% 11.20% 13.23% 16.23%

TSPMPLPF

Average 0.00% 0.00% 2.06% 3.93% 5.25% 6.25%
Median 0.00% 0.00% 1.72% 3.90% 4.98% 4.51%
Min 0.00% 0.00% 0.00% 0.00% 1.90% 3.54%
Max 0.00% 0.00% 4.50% 7.12% 9.63% 11.41%

M
or

e
va

ri
ed

d
em

an
d

C-GAA

Average 0.00% 0.39% 5.05% 6.77% 8.95% 10.66%
Median 0.00% 0.00% 4.00% 6.90% 8.33% 9.23%
Min 0.00% 0.00% 2.34% 5.25% 6.34% 5.78%
Max 0.00% 1.96% 8.35% 9.23% 14.21% 18.21%

TSPMPLPF

Average 0.00% 0.00% 2.04% 3.70% 6.25% 7.07%
Median 0.00% 0.00% 1.65% 3.17% 6.31% 6.94%
Min 0.00% 0.00% 0.00% 1.95% 2.54% 2.87%
Max 0.00% 0.00% 4.62% 7.34% 10.12% 13.21%

L
es

s
va

ri
ed

co
m

p
.

ca
p
.

C-GAA

Average 0.00% 0.41% 5.23% 6.91% 8.80% 10.18%
Median 0.00% 0.00% 3.78% 6.85% 9.75% 9.93%
Min 0.00% 0.00% 1.80% 2.75% 4.67% 5.80%
Max 0.00% 2.04% 9.12% 12.54% 12.33% 14.68%

TSPMPLPF

Average 0.00% 0.00% 2.05% 3.89% 6.68% 6.51%
Median 0.00% 0.00% 1.48% 3.14% 7.31% 5.91%
Min 0.00% 0.00% 0.00% 1.73% 2.12% 2.16%
Max 0.00% 0.00% 4.67% 8.47% 9.25% 12.94%

M
or

e
va

ri
ed

co
m

p
.

ca
p
.

C-GAA

Average 0.00% 0.46% 4.61% 6.63% 8.41% 10.24%
Median 0.00% 0.00% 3.91% 5.40% 8.07% 8.81%
Min 0.00% 0.00% 1.35% 5.00% 6.33% 6.26%
Max 0.00% 1.56% 8.62% 10.54% 12.78% 17.03%

TSPMPLPF

Average 0.00% 0.00% 1.88% 3.79% 5.07% 6.19%
Median 0.00% 0.00% 1.85% 4.02% 4.56% 4.91%
Min 0.00% 0.00% 0.00% 0.00% 3.08% 3.19%
Max 0.00% 0.00% 4.35% 6.71% 9.44% 12.84%
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5.3 Multi Vehicle Version of the Problem

In this section, we test performance of our proposed approaches (Two-phase approach,

Tabu Search). In order to evaluate performances, we design enumeration frame, which

gives optimal solution according to multi vehicle version of the problem in small size

instances even taking many computational times. According to Section 5.2, since

single version problem could be solved in reasonable amount of time by commercial

solver. If we generate all subsets less than or equal to maximum compartment size

among vehicles, after that we apply single version of problem for each subset for each

vehicle, which ensures all possibilities. Finally, we can apply SPP into all subsets

in order to find best assignment with minimum logistic cost. However, enumeration

frame only work for instances which have at most 25-customer locations and max

6-compartment size because of increasing number of subsets and complexity. In the

lights of enumeration frame, we can test our proposed algorithms and lower bound

performances for small size problems. For the large size problems, we compare our

proposed approaches with each others.

Table 12 provides a summary of the results on the main test instances which has

compartment numbers between 2 and 5, demand rates, compartment capacities be-

tween 1000 and 3000. In Table 12, the first column is the instance name, the second

column is the number of vehicles and third column is the number of locations corre-

sponding to instances. We evaluate four solution approaches which three of them are

clustering based two-phase approach and the other is Tabu Search. All of the solution

approaches using C-GAA algorithm in order to solve single version of problem within.

Clustering based Two-phase solution approaches are namely Sweep Algorithm (SC),

Iterative Sweep Algorithm (ISC) and Random Subset Algorithm (RSC). The Tabu

Search Algorithm is presented as TS. The following five columns (SC, ISC, RSC, TS

and Lower Bound) presents the optimality gaps of these approaches with respect to

results obtained by enumeration. We called enumeration as AC-TSPMPLPF. The
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remaining columns presents computational times of these approaches and enumera-

tion.

The average optimality gap of SC is about 1.82% on all instances whereas 6.83% in

the worst case. The average computational time for SC is 2.33 seconds. The average

optimality gap of ISC is 0.24% on all instances whereas 1.68% in the worst case. The

average computational time for ISC is 6.85 seconds. The average optimality gap of

RSC is about 0.03% on all instances whereas 0.76% in the worst case. The average

computational time for RSC is 42.78 seconds. Moreover the average optimality gap

of TS is 0.10% whereas 1.32% in the worst case. The average computational time for

TS is 110.10 seconds. The average computational time for obtaining optimal solution

in all instances is 2,771 seconds. More, it takes 6,605 seconds to get optimal solution

on average more than 20 customers. Which shows that both clustering based two

phase solution approaches and TS are very fast in terms of computational time. On

the contrary, the average optimality gap of Lower Bound Approach is -91.78%. Since

lower bound approach for single vehicle version problem fails in terms of optimal-

ity gaps, it is not surprising that lower bound of multi vehicle version of problem is

very weak; nevertheless, it is the first proven lower bound so far. To sum up, we

observed that RSC outperform significantly all the solution approaches. Next, we

investigate how our algorithms perform on instance with different characteristic such

as less/more varied compartment capacities and demand rates. For the sake of sim-

plicity, we prefer to present here summary of statistic measures of all results according

to generated instances. The detailed results of different characteristic instances are

presented Appendix B.1.
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Examination of Table 13 reveals that both less/more varied compartment capaci-

ties and demand rates do not effect significantly solution quality in terms of optimality

gap and computational times. In general, demand rates or vehicle capacity effect IRP

because of changing further planning delivery schedules. According to static policy

which deals with one scheduling at time which ensures stability on changing compart-

ment capacities and demand rates. Minor differences on optimality gaps on RSC is

based on instance specific features.

Next, we examine analysis on instances in where compartment number ranges is

between 2 and 6 and the results are presented in Table 14. Eventually, computational

times of solution approaches and enumeration is increase because of increasing com-

plexity. The average optimality gap of SC is about 2.72% on all instances whereas

10.23% in the worst case. The average computational time for SC is 0.08 minutes.

The average optimality gap of ISC is 0.31% on all instances whereas 2.12% in the

worst case. The average computational time for ISC is 0.28 minutes. The average

optimality gap of RSC is about 0.11% on all instances whereas 1.02% in the worst

case. The average computational time for RSC is 3.99 minutes. Moreover the average

optimality gap of TS is 0.29% whereas 2.25% in the worst case. The average compu-

tational time for TS is 6.43 minutes. The average computational time for obtaining

optimal solution in all instances is 509 minutes. In the worst case, it takes 2,803

minutes (approximately 46 hours) to find optimal solution. Computational times of

SC and ISC is less than RSC and TS. However, RSC ensure solution quality and

outperform SC, ISC and TS in terms of optimality gap.

Finally, we test performances solution approaches on instances where maximum

number of customers is 50 and their compartment number range is between 2 and 10.

For the comparison, enumeration is not possible. Therefore, we evaluate performances

of solution approaches with each other. So far, RSC has the least optimality gap,

we compare other approaches with results obtained by RSC. We presented results in
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Table 15. According to Table 15, The relative gap to RSC of SC is about 5.52% on

all instances whereas 14.82% in the worst case. The average computational time for

SC is 0.26 minutes. The relative gap to RSC of ISC is about 1.19% on all instances

whereas 4.23 % in the worst case. The average computational time for SC is 1.64

minutes. The relative gap to RSC of TS is about 1.42% on all instances whereas

6.03 % in the worst case. The average computational time for TS is 34.41 minutes.

Computational times of RSC and TS is increasing very much such that worst case

78.13 minutes for RSC and 93.25 minutes for TS. It is interesting thing that overall

average optimality gap of ISC is less than TS. The main reason is that constructing

TS parameters mainly based on compartment number range (2-5). Moreover, even if

solution quality of the ISC is worse than RSC, it provides well speed according to its

solution quality.

In conclusion, our proposed solution approaches perform well according to their

optimality gaps where compartment number ranges are (2-5) and (2-6). The best

performer is RSC and it provides good quality solution comparing to other solution

approaches.
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Chapter VI

CONCLUSIONS

In this study, we investigated a distribution system in which geographically dispersed

customers request one type of commodity. The supplier delivers these commodities by

a heterogeneous fleet of vehicle which ensuring that there is no stock out at customers’

side. The commodities must be stored separately in heterogeneous compartments

during transportation. Our main objective is to minimize total logistic cost regarding

to static replenishment policy. We presented two mathematical formulation for both

single and multi vehicle version of problems. Hence our problem is very complex,

we would rather solve dividing two sub-problem by commercial solver than solving

whole problem. We also develop a heuristic algorithm called Christofides-Greedy

Assignment Algorithm (C-GAA) for the single vehicle version problem. For the multi

vehicle version of the problem, we proposed two-phase solution approaches.

In the two-phase solution approach, we firstly implement clustering algorithms

such as Sweep, Iterative Sweep and Random Subset Clustering Algorithms which

classify customer locations into cluster and in the second phase solves a set parti-

tioning problem to determine the best set of clusters among the all generated ones

based on total logistic cost calculated by C-GAA algorithm. Furthermore, we also

implement Tabu Search Algorithm (TS) for multi vehicle version of the problem in

order to compare with two-phase solution approaches in large size of problems.

We test performances of our proposed solution approaches on randomly generated

instances with various characteristics. For the single version problem, C-GAA is also

very effective regarding to optimality and computational times. For multi vehicle

version of the problem, we use enumeration technique in small size problems to get
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optimal solution because of weakness of the lower bound. Comparison of solution

approaches reveals that Random Subset Algorithm has outperformed the other solu-

tion approaches in terms of optimality. As a managerial insight, the Iterative Sweep

Algorithm is very effective in terms of solution quality regarding to computational

times comparing with other solution approaches.

As this is the first work to study on the RILPHVC, no benchmark is available and

our results will be examined as benchmark data for further comparison by researchers.

There are multiple progression for future studies. Firstly, our problem characteristics

could be extended with changing replenishment policy as cyclic, partial delivery,

holding cost, customer preferences and so on. Since the complexity of problem is

very complex, the future research could focus on formal tightened lower bound or

exact algorithm as obvious step regarding to our problem. Finally, the new heuristic

approaches or existing heuristics combined in a new metaheuristic frame is a essential

path for future researches. It shall be enlightening to see how such algorithm would

ensure speed and quality compared to algorithms presented in this thesis.
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Appendix A

SUPPLEMENTARY

A.1 Tightened Mathematical Model for Routing and Inven-
tory Loading Problem in Single Vehicle with Compart-
ments

Parameters:

M : Set of compartments,

di: Demand rate for customer i : i ∈ V \{0},

qm: Capacity of compartment m : m ∈M ,

cij: Non-negatve distance between customer i and j: i ∈ V ,j ∈ V ,

B: Sufficiently big number to enforce some constraints non-effective.

Decision Variables:

xim: 1, if customer i is assigned to compartment m ; otherwise 0 : i ∈ V \{0}, m ∈M .

wij: 1,if edge (i, j) is used once by vehicle; otherwise 0 : i, j ∈ V .

f : Frequency in static period.

ui: Auxiliary variable defined for customers i in order to eliminate subtours :i ∈

V \{0}.

sij = auxillary variable for (wij ∗ f) : ∀i, j ∈ V

tim =auxillary variable for (xim ∗ f) : ∀i ∈ V \{0},∀m ∈M
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MIP: Min
∑
i∈V

∑
j∈V

(sijcij) (65)

s.t. ∑
i∈V

wij = 1 ∀i ∈ V (66)∑
j∈V

wji = 1 ∀i ∈ V (67)

u1 = 1 (68)

2 ≤ ui ≤ |V | ∀i ∈ V \{0} (69)

ui + uj + 1 ≤ |V |(1− xij) ∀i, j ∈ V \{0, 1} (70)∑
i∈V \{0}

xim = 1 ∀m ∈M (71)

di ≤
∑

m∈M
timqm ∀i ∈ V \{0} (72)

tim ≤ f ∀m ∈M,∀i ∈ V \{0} (73)

tim ≤ B(xim) ∀m ∈M,∀i ∈ V \{0} (74)

tim ≥ f −B(1− xim) ∀m ∈M,∀i ∈ V \{0} (75)

sij ≤ f ∀i, j ∈ V (76)

sij ≤ Bwij ∀i, j ∈ V (77)

sij ≥ f −B(1− wij) ∀i, j ∈ V (78)

xim ∈ {0, 1} ∀i ∈ \{0},∀m ∈M (79)

wij ∈ {0, 1} ∀i, j ∈ V (80)

f ≥ 0, ui ≥ 0 ∀i ∈ V \{0} (81)

tim ≥ 0 ∀i ∈ V \{0},∀m ∈M (82)

sij ≥ 0 ∀i, j ∈ V (83)
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A.2 Illustration of Greedy Assignment Algorithm

Suppose that there are five customer with demand rates/unit time di = 165, 155, 150, 135, 130

eleven compartments with capacity qm = (1700, 1650, 1525, 1350, 1325, 1250, 1125, 750, 650, 575).

This is the first run of the multi run process, but randomly assignment process is used

to same improvement stages.

Initial Assignment:

X1j = {1,0,0,0,0,0,0,0,1,0,0} with K1 =2450 f1 =165 / 2450 =0.06735

X2j = {0,1,0,0,0,0,0,0,0,1,1} with K2 =2850 f2 =155 / 2850 =0.05439

X3j = {0,0,1,0,0,0,1,0,0,0,0} with K3 =2775 f3 =150 / 2775 =0.05405

X4j = {0,0,0,1,0,1,0,0,0,0,0} with K4 =2600 f4 =135 / 2775 =0.05192

X5j = {0,0,0,0,1,0,0,1,0,0,0} with K5 =2600 f5 =130 / 2450 =0.05306

f = max {0.06735, 0.05439, 0.05405, 0.05192, 0.05306}

f = 0.06735 which is 1st customer can be improved by changing compartment with

other assigned compartment.

Improvement Phase:

To illustrate more precisely, we show only all possible changes in the Step 0 with

calculation, forgoing steps we prefer briefly summarize changes.

Step 0:

Possible Changes:

x19 can be interchanged with x22 and,

F’ =max( 165/3350, 155/1950, 150/2775, 135/2600, 130/2450);

F’= 0.07949

∆ =F’-F = 0.01214 (increasing)

x19 can be interchanged with x33 and,

F’ =max(165/3225, 155/2850, 150/2000, 135/2600, 130/2450);

F’= 0.07500
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∆ =F’-F = 0.00765 (increasing)

x19 can be interchanged with x37 and,

F’ =max(165/2950, 155/2850, 150/2275, 135/2600, 130/2450);

F’= 0.06593

∆ =F’-F = -0.00141 (decreasing)

x19 can be interchanged with x44 and,

F’ =max(165/3050, 155/2850, 150/2775, 135/2000, 130/2450);

F’= 0.06750

∆ =F’-F = 0.00015 (increasing)

x19 can be interchanged with x46 and,

F’ =max(165/2950, 155/2850, 150/2775, 135/2100, 130/2450);

F’= 0.06429

∆ =F’-F =-0.00306 (decreasing)

x19 can be interchanged with x55 and,

F’ =max(165/3025, 155/2850, 150/2775, 135/2600, 130/1875);

F’= 0.06933

∆ =F’-F = 0.00199 (increasing)

x19 can be interchanged with x58 and,

F’ =max(165/2825, 155/2850, 150/2775, 135/2600, 130/2075);

F’= 0.06265

∆ =F’-F =-0.00470 (decreasing)

The best improvement x19 with x58 and after changing we checked if sorting algorithm

70



leads better improvement as follow: Ki = {2825,2850,2775,2600,2075} sorting as K ′i

= {2850,2825,2575,2600,2075} does not lead improvement on ∆ or decreasing in f.

Therefore, we can iterate next step.

Step 1:

f = 0.06265 which is 5st customer can be improved by changing compartment with

other assigned compartment.

Best improvement on f is changing x55 with x33. The new objective value is 0.005840.

After applied changes made, sum of compartments to each customers as follow:

Ki = {2825,2850,2575,2600,2275} sorting as K ′i = {2850,2825,2600,2575,2075} lead

improvement ∆= 0.00051 and the new objective value is 0.057894.

Step 2:

f=0.057894 which is 1st customer can be improved by changing compartment with

other assigned compartment.

Best improvement on f is changing x11 with x21. The new objective value is 0.005769.

We checked if sorting algorithm leads better improvement as follow:

Ki = {2900,2775,2600,2575,2275} which is ordered by descending no sorting is needed.Therefore,

we can iterate next step.

Step 3:

f=0.0.005769 which is 3st customer can be improved by changing compartment with

other assigned compartment.

Best improvement on f is changing x36 with x45. The new objective value is 0.005714.

We checked if sorting algorithm leads better improvement as follow:

Ki = {2900,2775,2675,2500,2275} which is ordered by descending no sorting is needed.Therefore,

we can iterate next step.

Step 4:

f=0.005714 which is 5st customer can be improved by changing compartment with

other assigned compartment. There is no improvement changing 5st compartment

71



with other customer comperments. Since ∆ does not change decreasing way our

algorithm terminates iteration.

A.3 Empirical Study on Reduction Strategy

#
Objective Value of Reduction

Strategy
Best Objective Value of All

Possible Candidates
Neighborhood Size of All

Possible Candidates
Neighborhood Size of Reduction

Strategy
1 2,869 2,869 114 55
2 2,739 2,739 113 54
3 1,660 1,660 134 64
4 3,491 3,357 131 63
5 3,276 3,276 106 51
6 3,901 3,901 135 65
7 1,645 1,552 134 64
8 3,586 3,586 103 49
9 2,507 2,507 127 61
10 4,488 4,488 143 69
11 1,960 1,960 111 53
12 4,245 4,245 127 61
13 1,694 1,645 150 72
14 3,509 3,509 141 68
15 2,415 2,415 108 52
16 3,614 3,614 146 70
17 3,622 3,622 129 62
18 1,896 1,806 109 52
19 3,363 3,363 109 52
20 4,371 4,047 106 51
21 2,979 2,979 135 65
22 3,201 3,201 106 51
23 2,908 2,693 144 69
24 2,385 2,385 122 59
25 2,140 2,140 128 61
26 2,986 2,986 117 56
27 3,030 3,030 107 51
28 4,377 4,377 117 56
29 4,368 4,368 143 69
30 1,985 1,927 141 68
31 2,490 2,490 111 53
32 3,475 3,475 120 58
33 1,557 1,557 110 53
34 2,364 2,364 131 63
35 2,564 2,564 148 71
36 3,430 3,430 116 56
37 3,239 3,239 104 50
38 4,324 4,324 103 49
39 2,144 2,144 112 54
40 1,874 1,802 144 69
41 3,622 3,622 148 71
42 3,527 3,527 121 58
43 2,757 2,757 115 55
44 4,136 4,136 108 52
45 2,011 2,011 127 61
46 3,475 3,475 116 56
47 2,348 2,348 127 61
48 4,144 4,144 110 53
49 2,978 2,978 125 60
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#
Objective Value of Reduction

Strategy
Best Objective Value of All

Possible Candidates
Neighborhood Size of All

Possible Candidates
Neighborhood Size of Reduction

Strategy
50 4,244 4,244 145 70
51 4,278 4,278 146 70
52 1,648 1,600 109 52
53 2,696 2,696 114 55
54 4,000 4,000 102 49
55 1,818 1,818 128 61
56 3,987 3,987 138 66
57 3,180 3,180 136 65
58 2,654 2,654 119 57
59 4,462 4,462 117 56
60 3,718 3,508 112 54
61 2,220 2,220 133 64
62 3,361 3,361 111 53
63 2,614 2,614 107 51
64 2,653 2,653 147 71
65 1,779 1,779 126 60
66 4,311 4,311 126 60
67 1,898 1,898 123 59
68 3,860 3,860 123 59
69 1,716 1,716 137 66
70 1,951 1,951 131 63
71 2,816 2,607 120 58
72 2,460 2,460 135 65
73 2,355 2,355 120 58
74 1,836 1,836 131 63
75 2,551 2,551 104 50
76 3,405 3,405 139 67
77 4,024 4,024 127 61
78 1,889 1,889 131 63
79 2,379 2,266 147 71
80 2,890 2,890 109 52
81 3,219 3,219 127 61
82 3,432 3,432 111 53
83 4,008 4,008 140 67
84 3,353 3,353 135 65
85 3,336 3,336 147 71
86 3,511 3,511 132 63
87 2,351 2,351 128 61
88 2,174 2,111 117 56
89 3,957 3,957 112 54
90 2,632 2,632 109 52
91 3,855 3,855 125 60
92 3,830 3,830 121 58
93 2,653 2,503 135 65
94 2,845 2,845 113 54
95 3,493 3,493 140 67
96 4,289 4,289 140 67
97 1,595 1,595 136 65
98 3,046 3,046 101 48
99 1,591 1,591 112 54
100 3,453 3,453 120 58

Average 3,000 2,981 125 60
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A.4 Empirical Study on Local Search

This emprical study is based on one instance which has 30 customer with 15 vehicles

with compartments number varying between 2-5. Demand rates and compartments

capacities are randomly generated betweeen (1000-3000).

The Objective Value Changes through Iterations
Iteration Number TS TS with Local Search

1 6,000 6,000
2 5,907 5,907
3 5,826 5,826
4 5,799 5,799
5 5,658 5,658
6 5,609 5,609
7 5,528 5,528
8 5,484 5,484
9 5,484 5,484
10 5,434 5,434
11 5,389 5,389
12 5,357 5,357
13 5,338 5,338
14 5,309 5,309
15 5,290 5,290
16 5,262 5,262
17 5,227 5,227
18 5,223 5,223
19 5,204 5,204
20 5,193 5,193
21 5,193 5,193
22 5,114 5,114
23 5,091 5,091
24 5,063 5,063
25 5,056 5,056
26 5,020 5,020
27 4,985 4,985
28 4,968 4,968
29 4,949 4,949
30 4,889 4,889
31 4,805 4,805
32 4,752 4,752
33 4,689 4,689
34 4,615 4,615
35 4,527 4,527
36 4,441 4,441
37 4,408 4,408
38 4,363 4,363
39 4,360 4,360
40 4,359 4,359
41 4,286 4,286
42 4,207 4,207
43 4,199 4,199
44 4,163 4,163
45 4,117 4,117
46 4,082 4,082
47 4,061 4,061
48 4,058 4,058
49 4,051 4,051
50 4,048 4,048
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The Objective Value Changes through Iterations
Iteration Number TS TS with Local Search

51 4,039 3,816
52 4,036 3,808
53 4,033 3,787
54 4,026 3,787
55 4,021 3,787
56 4,020 3,787
57 4,017 3,787
58 4,012 3,787
59 4,003 3,787
60 3,998 3,787
61 3,994 3,787
62 3,992 3,787
63 3,986 3,787
64 3,983 3,787
65 3,983 3,787
66 3,974 3,787
67 3,964 3,787
68 3,955 3,787
69 3,950 3,787
70 3,946 3,787
71 3,943 3,787
72 3,943 3,787
73 3,943 3,787
74 3,943 3,787
75 3,943 3,787
76 3,943 3,787
77 3,943 3,787
78 3,943 3,787
79 3,943 3,787
80 3,943 3,787
81 3,943 3,787
82 3,943 3,787
83 3,943 3,787
84 3,943 3,787
85 3,943 3,787
86 3,943 3,787
87 3,943 3,787
88 3,943 3,787
89 3,943 3,787
90 3,943 3,787
91 3,943 3,787
92 3,943 3,787
93 3,943 3,787
94 3,943 3,787
95 3,943 3,787
96 3,943 3,787
97 3,943 3,787
98 3,943 3,787
99 3,943 3,787
100 3,943 3,787
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A.5 Empirical Study on Reactive Mechanism

This emprical study is based on instances which have 30 customer with 15 vehicles

with compartments number varying between 2-5. Demand rates and compartments

capacities are randomly generated betweeen (1000-3000).

Instance
No

TS Objective Value R-TS Objective Value GAP

1 3,493.21 3,470.30 1%
2 1,545.91 1,537.74 1%
3 4,227.05 3,955.20 6%
4 2,104.56 2,036.67 3%
5 1,477.48 1,358.10 8%
6 3,874.97 3,803.11 2%
7 2,716.15 2,534.03 7%
8 3,938.93 3,705.26 6%
9 3,595.59 3,595.59 0%
10 1,980.16 1,909.91 4%
11 3,448.16 3,429.73 1%
12 2,560.46 2,555.65 0%
13 3,325.21 2,993.83 10%
14 1,933.26 1,913.67 1%
15 3,037.68 2,916.73 4%
16 4,416.93 4,315.76 2%
17 1,843.03 1,828.81 1%
18 4,315.71 4,239.92 2%
19 3,141.30 2,856.43 9%
20 3,589.28 3,338.85 7%
21 3,042.74 2,917.28 4%
22 3,750.12 3,631.88 3%
23 2,947.92 2,758.39 6%
24 4,276.93 4,053.65 5%
25 3,262.24 2,986.36 8%
26 3,146.00 3,062.00 3%
27 3,836.66 3,821.81 0%
28 2,973.51 2,872.81 3%
29 1,980.63 1,955.84 1%
30 3,788.67 3,680.42 3%

Average 3.71%
Stand Dev, 2.90%

Minimum 0.00%
1st Quartile 0.95%

Median 3.19%
3rd Quartile 6.43%

Maximum 9.97%
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A.6 The Flowchart of Neighborhood Exploration and Re-
active Mechanism

Input:

TL;

BestMove

ADD BestMove into TL

IF ( Size (TL) > Tabu Tenure ) 

YES

Remove the first element 

of TL

NO

START

END

Input:

TL;

Generate number (N) ϵ [5, 

MaximumTabuTenure]
START

Tabu Tenure = N

Disable Neighborhood Reduction Strategy 

using with

Change j=i+1 to j=1 in Step 6 in Algorithm 8

IF ( Size (TL) > Tabu Tenure ) 

YES

NO

Remove the first element 

of TL

END

Tabu List Process

Reactive Mechanisim
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Appendix B

RESULTS

B.1 Single and Multi Vehicle(s) Version of Problem Re-
sults

Table 16: The optimality gaps and computational times of C-GAA on single vehicle
instances with less varied demands

Optimality Gap(%) Time in Seconds
Instance Loc # C-GAA TSPMPLPF Lower Bound C-GAA TSPMPLPF Lower Bound

Ins 31 5 0.00% 0.00% -36.06% 0.03 0.34 0.00
Ins 32 5 0.00% 0.00% -25.37% 0.02 0.37 0.00
Ins 33 5 0.00% 0.00% -33.22% 0.02 0.30 0.00
Ins 34 5 0.00% 0.00% -51.67% 0.02 0.08 0.00
Ins 35 5 0.00% 0.00% -33.94% 0.02 0.23 0.00
Ins 36 10 0.00% 0.00% -24.47% 0.01 1.95 0.00
Ins 37 10 0.00% 0.00% -22.90% 0.01 0.89 0.00
Ins 38 10 2.19% 0.00% -22.21% 0.01 20.90 0.00
Ins 39 10 0.00% 0.00% -36.26% 0.00 0.43 0.00
Ins 40 10 0.15% 0.00% -26.73% 0.01 1.46 0.00
Ins 41 20 8.90% 3.46% -22.45% 0.06 10,946.57 0.00
Ins 42 20 2.93% 0.64% -19.11% 0.11 10,806.61 0.00
Ins 43 20 6.40% 4.50% -20.73% 0.06 11,630.27 0.02
Ins 44 20 2.71% 1.72% -20.43% 0.12 10,908.15 0.01
Ins 45 20 3.40% 0.00% -30.10% 0.18 4,003.09 0.00
Ins 46 30 4.80% 3.90% -21.20% 0.10 11,642.72 0.02
Ins 47 30 3.67% 0.00% -16.90% 0.06 1,099.51 0.02
Ins 48 30 7.12% 5.40% -17.23% 0.11 11,512.61 0.03
Ins 49 30 11.20% 7.12% -33.80% 0.09 11,119.53 0.01
Ins 50 30 5.30% 3.24% -29.32% 0.12 10,975.83 0.02
Ins 51 40 11.24% 6.91% -16.23% 0.14 11,874.41 0.02
Ins 52 40 6.30% 1.90% -14.12% 0.12 13,365.97 0.02
Ins 53 40 3.10% 2.81% -23.65% 0.21 13,693.30 0.02
Ins 54 40 9.43% 4.98% -19.94% 0.14 11,745.82 0.03
Ins 55 40 13.23% 9.63% -21.91% 0.22 11,353.52 0.03
Ins 56 50 16.23% 11.41% -27.28% 0.13 12,143.52 0.01
Ins 57 50 6.21% 3.54% -13.67% 0.24 12,950.13 0.02
Ins 58 50 7.62% 4.51% -17.21% 0.21 12,262.13 0.03
Ins 59 50 8.16% 3.68% -12.96% 0.30 17,160.80 0.02
Ins 60 50 13.24% 8.10% -11.69% 0.30 12,887.05 0.01
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Table 17: The optimality gaps and computational times of C-GAA on single vehicle
instances with more varied demands

Optimality Gap(%) Time in Seconds
Instance Loc # C-GAA TSPMPLPF Lower Bound C-GAA TSPMPLPF Lower Bound

Ins 61 5 0.00% 0.00% -34.86% 0.00 0.12 0.00
Ins 62 5 0.00% 0.00% -42.13% 0.03 0.12 0.00
Ins 63 5 0.00% 0.00% -35.95% 0.00 0.25 0.00
Ins 64 5 0.00% 0.00% -41.63% 0.00 0.27 0.00
Ins 65 5 0.00% 0.00% -32.72% 0.02 0.11 0.00
Ins 66 10 0.00% 0.00% -45.19% 0.10 1.60 0.00
Ins 67 10 0.00% 0.00% -39.65% 0.01 1.27 0.00
Ins 68 10 1.96% 0.00% -28.21% 0.02 4.00 0.00
Ins 69 10 0.00% 0.00% -33.40% 0.00 0.81 0.00
Ins 70 10 0.00% 0.00% -39.39% 0.00 0.71 0.00
Ins 71 20 8.35% 3.91% -22.25% 0.01 10,938.66 0.02
Ins 72 20 7.20% 4.62% -25.91% 0.19 11,488.49 0.01
Ins 73 20 4.00% 0.00% -34.06% 0.08 2,004.34 0.00
Ins 74 20 3.38% 0.00% -27.37% 0.06 1,009.52 0.00
Ins 75 20 2.34% 1.65% -27.01% 0.12 11,196.66 0.00
Ins 76 30 9.23% 7.34% -31.24% 0.18 10,897.56 0.02
Ins 77 30 7.13% 3.74% -21.43% 0.07 11,509.41 0.02
Ins 78 30 5.25% 1.95% -26.91% 0.12 10,956.66 0.03
Ins 79 30 5.32% 3.17% -19.87% 0.13 10,421.06 0.02
Ins 80 30 6.90% 2.32% -14.91% 0.14 11,805.19 0.02
Ins 81 40 6.34% 2.54% -22.12% 0.15 13,501.17 0.04
Ins 82 40 7.24% 4.14% -19.81% 0.15 11,693.35 0.02
Ins 83 40 8.63% 6.31% -15.87% 0.12 13,321.02 0.01
Ins 84 40 14.21% 10.12% -24.17% 0.15 13,754.60 0.02
Ins 85 40 8.33% 8.12% -18.15% 0.13 11,654.56 0.03
Ins 86 50 11.56% 7.01% -21.53% 0.18 11,554.58 0.02
Ins 87 50 5.78% 2.87% -12.78% 0.15 10,632.91 0.01
Ins 88 50 8.54% 5.31% -13.65% 0.14 12,839.49 0.03
Ins 89 50 18.21% 13.21% -16.31% 0.20 10,456.31 0.02
Ins 90 50 9.23% 6.94% -15.32% 0.17 13,291.00 0.04
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Table 18: The optimality gaps and computational times of C-GAA on single vehicle
instances with less varied compartment capacity

Optimality Gap(%) Time in Seconds
Instance Loc # C-GAA TSPMPLPF Lower Bound C-GAA TSPMPLPF Lower Bound

Ins 91 5 0.00% 0.00% -38.41% 0.02 0.12 0.00
Ins 92 5 0.00% 0.00% -33.58% 0.02 0.14 0.00
Ins 93 5 0.00% 0.00% -49.72% 0.02 0.11 0.00
Ins 94 5 0.00% 0.00% -33.29% 0.00 0.16 0.00
Ins 95 5 0.00% 0.00% -37.38% 0.02 0.12 0.00
Ins 96 10 0.00% 0.00% -32.34% 0.01 1.96 0.00
Ins 97 10 0.00% 0.00% -51.27% 0.01 0.62 0.00
Ins 98 10 0.00% 0.00% -24.03% 0.01 1.17 0.00
Ins 99 10 0.00% 0.00% -42.24% 0.01 0.59 0.00
Ins 100 10 2.04% 0.00% -38.91% 0.00 0.62 0.00
Ins 101 20 9.12% 4.67% -20.44% 0.01 10,846.27 0.00
Ins 102 20 2.65% 0.92% -17.84% 0.12 11,221.12 0.00
Ins 103 20 3.78% 0.00% -18.70% 0.09 4,856.22 0.02
Ins 104 20 1.80% 1.48% -14.80% 0.14 11,564.55 0.01
Ins 105 20 8.80% 3.21% -14.24% 0.09 11,472.94 0.00
Ins 106 30 2.75% 1.90% -17.45% 0.17 11,981.88 0.02
Ins 107 30 9.25% 4.22% -14.21% 0.19 10,750.10 0.02
Ins 108 30 6.85% 3.14% -15.24% 0.14 11,803.26 0.03
Ins 109 30 12.54% 8.47% -18.32% 0.10 11,335.74 0.02
Ins 110 30 3.17% 1.73% -16.31% 0.10 11,441.58 0.02
Ins 111 40 9.75% 8.31% -19.43% 0.17 10,856.12 0.03
Ins 112 40 10.24% 7.31% -18.22% 0.19 12,401.15 0.02
Ins 113 40 7.02% 6.42% -17.42% 0.19 12,551.07 0.01
Ins 114 40 4.67% 2.12% -14.32% 0.20 13,302.77 0.02
Ins 115 40 12.33% 9.25% -21.03% 0.18 10,334.30 0.03
Ins 116 50 11.79% 5.91% -20.80% 0.24 10,167.81 0.03
Ins 117 50 14.68% 12.94% -19.21% 0.19 14,548.26 0.02
Ins 118 50 8.71% 4.12% -17.63% 0.21 13,898.60 0.04
Ins 119 50 5.80% 2.16% -19.27% 0.21 10,835.32 0.05
Ins 120 50 9.93% 7.42% -23.02% 0.18 14,179.26 0.03
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Table 19: The optimality gaps and computational times of C-GAA on single vehicle
instances with more varied compartment capacity

Optimality Gap(%) Time in Seconds
Instance Loc # C-GAA TSPMPLPF Lower Bound C-GAA TSPMPLPF Lower Bound

Ins 121 5 0.00% 0.00% -37.23% 0.01 0.12 0.00
Ins 122 5 0.00% 0.00% -37.31% 0.02 0.13 0.00
Ins 123 5 0.00% 0.00% -35.76% 0.01 0.18 0.00
Ins 124 5 0.00% 0.00% -38.74% 0.00 0.12 0.00
Ins 125 5 0.00% 0.00% -34.34% 0.02 0.15 0.00
Ins 126 10 0.00% 0.00% -32.99% 0.01 1.77 0.00
Ins 127 10 0.00% 0.00% -33.24% 0.01 1.08 0.00
Ins 128 10 0.73% 0.00% -26.12% 0.01 2.59 0.00
Ins 129 10 0.00% 0.00% -37.40% 0.01 0.64 0.00
Ins 130 10 1.56% 0.00% -38.00% 0.01 0.83 0.00
Ins 131 20 8.62% 4.35% -21.35% 0.03 10,942.62 0.01
Ins 132 20 3.91% 1.85% -18.47% 0.12 11,130.55 0.01
Ins 133 20 1.35% 0.00% -27.40% 0.07 9,130.55 0.01
Ins 134 20 3.05% 0.00% -23.90% 0.09 7,930.55 0.01
Ins 135 20 6.10% 3.21% -25.27% 0.11 11,130.55 0.00
Ins 136 30 5.00% 3.20% -20.07% 0.13 11,270.14 0.02
Ins 137 30 5.40% 0.00% -18.67% 0.07 8,221.11 0.02
Ins 138 30 6.99% 4.02% -22.07% 0.11 11,339.56 0.03
Ins 139 30 10.54% 6.71% -22.38% 0.09 11,138.90 0.02
Ins 140 30 5.25% 5.04% -22.70% 0.11 11,208.70 0.02
Ins 141 40 8.08% 4.73% -17.88% 0.15 11,761.90 0.03
Ins 142 40 6.77% 3.08% -16.17% 0.13 12,047.25 0.02
Ins 143 40 6.33% 4.56% -16.65% 0.15 12,936.04 0.01
Ins 144 40 8.07% 3.55% -17.13% 0.16 12,524.29 0.02
Ins 145 40 12.78% 9.44% -19.59% 0.15 11,504.04 0.03
Ins 146 50 11.67% 6.46% -21.17% 0.15 11,849.05 0.02
Ins 147 50 6.26% 3.57% -13.39% 0.17 12,824.35 0.02
Ins 148 50 8.81% 4.91% -15.43% 0.17 13,124.85 0.03
Ins 149 50 7.44% 3.19% -14.64% 0.20 11,363.66 0.02
Ins 150 50 17.03% 12.84% -14.37% 0.20 13,735.13 0.02
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