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Özyeğin University

Assistant Professor Mustafa Gökçe
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ABSTRACT

The purpose of this study is to solve the multi-instance classification problem by

directly maximizing the area under Receiver Operating Characteristic (ROC) curve

(i.e., AUC). We derive a mixed integer linear programming model that produces

the best possible hyperplane-based classifier for multi-instance classification. Our

study sheds a light on the potential of hyperplane-based approaches, reflecting cross

validation (CV) results for benchmark instances. As we maximize AUC directly, a

hyperplane-based classifier can only coincidentally provide a better CV accuracy than

those presented in this paper. Finally, we present how Kernel trick can be applied to

produce nonlinear classifiers that maximize AUC.
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ÖZETÇE

Bu çalışmanın amacı çoklu örnek sınıflandırma problemini Alıcı İşletim Karakteristiği

(ROC) eğrisi altındaki alanı (yani, AUC) doğrudan maksimize ederek çözmektir. Çok

örnekli sınıflandırma için mümkün olan en iyi hiperdüzlem tabanlı sınıflandırıcıyı

üreten karma bir tamsayı doğrusal programlama modeli türetilmiştir. Çalşmamız,

kıyaslama örnekleri için çapraz doğrulama (CV) sonuçlarını yansıtan hiperdüze ta-

banlı yaklaşımların potansiyeline ışık tutmaktadır. Doğrudan AUC’yi en üst düzeye

çıkardıkça, hiperdüze tabanlı bir sınıflandırıcı sadece şans eseri bu yazıda sunulan-

lardan daha iyi bir CV doğruluğu sağlayabilir. Son olarak, AUC’yi maksimize eden

doğrusal olmayan sınıflandırıcılar üretmek için çekirdek püf noktasının nasıl uygulan-

abileceğini sunuyoruz.
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CHAPTER I

INTRODUCTION

Supervised learning studies pairs of (xi,yi) where xi introduces set of features (at-

tributes) for instances and yi are corresponding responses or labels [2]. The intend is

learning a mapping from input x to output y with approximations. In the literature

of multi-instance classification, instances are grouped as bags and labels only refer

to bags those behave on similar patterns [3]. This makes it challenging to reach the

label of an individual instance a bag. Well-known multi-instance problems arise from

drug activity prediction, image classification, economic predictions, audio processing,

and information retrieval [4].

Classification methods and algorithms have the most attention in machine learn-

ing. However in today’s world, needs are shifting beyond classification where ordering

applications are becoming popular and solely classification does not meet the needs.

Related to ordering , in the area of ranking , the goal is ordering a set of instances with

their possibility to have desired attributes while showing a corresponding ranking to

the end-user.

For example, in e-mail filtering, where unread messages appear above read mes-

sages; the ranking of unread messages would be in an order based on their probability

being “urgent” [5]. Note that, learning whether a message is urgent or not is more

valuable than knowing one’s preference list of reading unread e-mails. Getting re-

lated information that an urgent message should appear on non-urgent ones is more

natural and might be easier than obtaining general classification information. In ad-

dition, there are crucial topics such as ranking electrical grid components and drug

screening, where a small improvement has a huge impact. Spotify challenge is another
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similar setting that focuses on music recommendation to generate automatic play-list

continuation after a play-list ends [6]. For that reason, a ranking information of the

candidate songs for a specific list would be more valuable than only having the infor-

mation of which songs can be added to this list. Due to aforementioned necessities, a

classification approach which considers directly the performance of the learning would

be a solution.

This paper focuses maximizing area under ROC curve (AUC) by developing a

mixed integer model for Multi-Instance Learning (MIL). As our approach perform

in the light of AUC, our model’s structure resembles supervised bipartite ranking

problem as well. Our approach provides a guarantee for optimality in small cases and

a bound on the optimal objective value for large-scale problems. On the development

of our model, first we provide an optimal hyperplane that maximize AUC. Next, a

comparative study of hinge loss, 2-norm soft margin loss, hard margin loss, and ramp

loss are presented to find offset parameters. Furthermore, our study sheds a light

on the potential of hyperplane-based approaches, reflecting cross validation (CV)

results for benchmark instances. Our findings indicate a hyperplane-based classifier

providing better CV accuracy than those presented in this paper can be explained by

luck.

The rest of this paper is organized as follows. Chapter 2, describes definitions,

notations and background information related to the concepts. Chapter 3 presents our

motivation behind this study and reviews the related work. Chapter 4 contains our

mixed integer formulation for MIL. In Section 5, we demonstrate our computational

results comparing them with a linear programming approach. In Chapter 6, we show

our primary future work and conclude in Chapter 7.
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CHAPTER II

BACKGROUND

2.0.1 Supervised bipartite ranking and Notation

Supervised bipartite ranking problems are generally favored in the community of ma-

chine learning [7]. The problem consists of a set of training examples/bags as inputs,

which these bags contains a related binary labeled instance and the labels are known.

For the latter reason, this type of ranking problems called “Supervised”. Typically

in binary classification, classes are described as ‘+1’ or ‘-1’, which denotes positiv-

ity or negativity to show some characteristic of the instance. However, in bipartite

ranking problem, the setting is different than classification problems, since there is

a scorer. Scorer which is a function attributes real numbers to each instance, hence

while positive instances have some greater scores, negative ones have scores always

less than positive instances. In order to make this classification secured, violations

are minimized through the bipartite ranking risk of scorer and some loss.

In the notation we refer to Bertsimas et al. [1] where a supervised bipartite ranking

problem is studied for single instance classification. Our approach in this notation is

transforming the single instance classification problem to multi-instance classification

problem, where labels are defined over bags of instances. Hence, formulation of MI

bipartite ranking problem adapts these constraints:

1. The rank of an instance should be greater than or equal to its minimum rank.

2. Each probable rank for every instance, can be only attained by a single example.

3. If there are repeating scores within a positive and a negative instance, in other

words if they share the same score, negative instance always attain the higher

3



rank.

However, there is no singularity between two positively labeled or between two

negatively labeled instances. This means, from these two examples, one of the positive

examples might take a higher rank even if they share the same score. Otherwise, if

there is no repeating scores, minimum rank is assigned to the rank of corresponding

instance. Minimum rank is calculated as the number of instances that strictly score

less than itself. If any negative instance has a higher rank than a positive instance or

scores greater than equal to a positive instance, then we consider that as a misrank.

This is why, in case of a tie between scores of a positive and a negative instance,

positive instance stated as misranked. For this study, a linear scoring function is

used in the formulations. f(xi)= wTxi where w ∈ Rd. Hence, scoring coefficients are

optimal for the ranking quality measure.

Label yi + + + - - + - + -
Score f(xi) 6 6 5 4 3 3 2 2 1
MinRank 7 7 6 5 3 3 1 1 0
Rank 8 7 6 5 4 3 2 1 0

Table 1: Example of rank definitions[1]

2.0.2 Mixed Integer Optimization (MIO)

Mixed integer problems involve both discrete and continuous decisions with restricting

constraints less than equal to, grater than equal to or to be equal to some numerical

limits [8]. Fundamentals of mixed integer linear programming are a non-empty integer

variable set, linear constraints and an objective function. Besides, having integer

variables participating to continuous variables separably and linearly is crucial [9].

The structure of mixed integer optimization problem commonly follows two type of

model based on availability of quadratic features in the objective function. Mixed

integer linear problems does not contain any quadratic terms neither in objective nor

in the constraints, however; mixed integer quadratic programming problems contain

quadratic terms only in objective function. In our solution approach to multi-instance
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learning, we propose one mixed integer problem and one mixed integer quadratic

problem for linear and non-linear datasets.

The following form of mixed integer optimization model refers to the maximization

of a ranking problem introduced in this work,

max
∑
j∈I

cjxj +
∑
j∈C

cjxj (1a)

s.t.
∑
j∈I

aijxj +
∑
j∈C

aijxj

{≥
=

≤

bi ∀i (1b)

xj ∈ Z+ ∀j ∈ I (1c)

xj ∈ R+ ∀j ∈ C (1d)

Set C in formulation (1) contains the continuous variables, while set I includes

only integral values. If the set of I is empty, problem becomes a linear optimization; if

set C is empty then problem is called an integer optimization. In addition to integer

optimization problem, if each variable is restricted to be 1 or 0, problem becomes a

binary integer problem.

2.0.3 Maximize Area Under Receiver Operator Characteristic Curve (AUC)

After testing a binary classification problem, a confusion matrix containing true pos-

itive, true negative, false positive and false negative demonstrates the correct and

incorrect classifications for a set of labeled instances. Based on these values one can

calculate the accuracy, which can be shown as 1-Error as well, is calculated as the

ratio of summation of truly predicted positives and negatives to the number of in-

stances in the dataset. In general this probability of error is tried to minimize, but it
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actually does not minimize the misclassification rate [10].

As in our case, in machine learning, if there is no information related to mis-

classification costs for your learning, or the data has imbalanced classes AUC has

advantage over accuracy [11]. Accuracy implies, 1 minus probability of misclassifi-

cation error which exceeds zero threshold. However, AUC calculates the probability

of ranking error exceeds zero threshold. In addition, AUC offers successful results in

differentiating distinct classes and this is more appropriate than using accuracy as a

performance metric in MIL. As a result, AUC gets popularity in machine learning

community.

2.0.4 Start Based Model

The initial mixed integer optimization model for single instance learning AUC maxi-

mization has the form:

max
∑
i∈I+

∑
k∈I−

zik (2a)

subject to zik ≤ vi − vk + 1− ε ∀i ∈ I+ , ∀k ∈ I− (2b)

vi = wTxi ∀i ∈ I+ (2c)

vk = wTxk ∀k ∈ I− (2d)

− 1 ≤ wj ≤ 1 ∀j ∈ 1, ..., d (2e)

zik ∈ {0, 1} ∀i ∈ I+ , ∀k ∈ I− (2f)

Based on above model [1], vi and vk are the scorer for positive instance xi and

negative instance xk. The score functions are designed in the form of constraint (2c)

and (2d). Binary variable zik on the objective keeps a record if a positive instance gets

strictly higher score than a negative instance as a pair. Namely, objective function
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maximize the true classification of instances in a pair of (xi,xk) where i ∈ I+ and k

∈ I−. Consequently, zik takes value 1 in when true classification appears, but mis-

classifications are ignored and takes value 0. At the end, the aim is to catch all true

classifications by using the constraint (2b). In this constraint ε is a user-specified

small number greater than 0 because of the reason that vi has to be forced to be

strictly greater than vk. Constraint (2e) restricts the solution space of wj in the

interval of [-1,1] to provide a shorter run-time.

2.0.5 Support Vector Machines

The idea of support vector machine (SVM) is to find the hyperplane that separates

the classes in feature space. As the nature of classification methods try to separate

two classes, since it is not always possible, there exist two common methodology to

enable this classification. First one is that softening the definition of separation, and

the latter is enlarging the future space, thus separation becomes possible in higher

dimensions. For binary classification, one side of the hyperplane is labeled negative,

where the other side is positive. It drives a conclusion of all points lying in one side

have either positive or negative distance with the hyperplane where all points on

the hyperplane are having distance of 0. On the other hand, selecting an optimal

hyperplane is another subject, but having the largest gap (margin) from the points

is what is aimed fundamentally.

However, not in all of the cases defining a hyperplane is that easy. In general

when the number of sample points is less than the dimensions, separation with a

hyperplane is easier. However, in most of the cases the number of points is large

compared to dimension, which causes overlap of points. Furthermore, noises in data

leads to dramatic shifts on hyperplanes. To deal with that problem, soft margin

could be a solution where bias can be tolerated. Another way to eliminate overlaps

on data points is what we mentioned above feature expansion. It is a standard
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trick of adding features by including polynomial transformations. Therefore, the

problem goes to a higher dimensional space. As the number of transform variables

increases, the possibility to get a separation in this higher dimensional space increases

as well. Nevertheless, turning back to 2 dimensional picture of the original variables

concludes with non-linear hyperplanes. Even in regression, cubic polynomials are not

preferred just because they grow fast in higher dimensions. A more controlled way of

introducing non-linearity to support vector classifies is kernels. A kernel function is

a function of two arguments, generally vectors. Kernels compute the inner products

in a higher dimensional space and then most of the spaces squashed down so that we

can fit support vector classifier in a high dimensional space.

When it comes to measuring the performance of SVM, Receiver Operator Curve

(ROC) is tracing out true positive rates and false positive rates given the threshold,

as there would be errors on classification after training and testing. This is a way of

comparing classifiers with the Area Under Curve (AUC) a measure of curve showing

that how much it closer to the one hundred percent of true positive rates corner.

Finding best support vector classifier requires parameter tuning, as it is optimizing

the decision boundary.

8



CHAPTER III

RELATED WORK

3.0.1 Motivation

Many algorithms appears in supervised learning systems containing logistic regression,

decision trees, decision forest, neural networks, support vector machines and Bayesian

classifiers aim to learn the mapping from f(x) to an output y [12]. These learning

procedures mostly arise from numerical analysis or optimization theory depending

on the type of machine learning problems. Indeed, diversity among these algorithms

demonstrate the need of various applications with a different settings in this area.

As each method address a particular level of sufficiency on computational complexity

and performance offerings, there is no single beating method for any type of machine

learning problem. This leads our research as our primary reason to observe the

performance of an exact method. Additionally, MIL (Multi-Instance Learning) gets

high attention in machine learning community in nowadays either because of the need

to label large instances or because of the problem nature itself has a bag pattern.

Thus, we drive our studies on the necessity of an exact approach in MIL.

This work circumvents the search for algorithms in multi-instance learning prob-

lem with the improving ability of solvers on MIO problems. Based on the paper of

Bertsimas et al. called “ Integer Optimization Methods for Supervised Ranking ” we

developed the offered mixed integer optimization model for multi-instance learning

[1]. Their work offers a not commonly attempted mixed integer optimization method

for machine learning problems to solve ranking tasks. As integer optimization have

been explored firstly in ranking problems by them, it serves many rank statistics and

objectives if it is looked for. On the upside, problem is solvable with exact solution
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without any approximation or heuristic loss functions and yields an objective which is

also a measure for ranking quality. Plus, model objective can be altered based on dif-

ferent rank statistics for different cases or specialized problems. This adds flexibility

to study on various topics as well.

3.0.2 Literature Review

Multi-instance learning is a type of supervised machine learning problem [13]. Namely,

it is a general form of supervised classification in that training class labels are cor-

related with sets of bags, or patterns, rather than singular patterns [14]. Therefore,

individual labels of instances are not available in this setting. MIL handles the uncer-

tainties in labels of bag. A classification is accepted as a true, if a bag only contains

one positive instance labeled positive and a bag full of negative instances labeled as

negative. The other cases than these conditions refer to misclassification [15].

[16] provides a broad range of survey about MIL problems branching the charac-

teristics and types of it. Major characteristics of the MIL problem arises from bag

composition, prediction level, label ambiguity and data distributions. Predictions

might be done for instance level or bag level. However, while instance level predic-

tions ensures the bag level predictions, the opposite is not true. Since instance labels

are not available in real, classifying all bags correctly still result in misclassification

of positive instances. Another issue with that is training. Even it is likely to train

one hundred percent, it is not an assurance for testing with higher performance and

hard to compute with the same reason of non-availability of instance labels.

Moreover, bag compositions can done by witness rate (WR) or relations between

instances. WR is the rate of positive instances in a positive bag. When the WR

rate is low it causes an imbalance problem and affects the performance. On the other

side, relations between instances is another approach which focuses on similarities and

dissimilarities of instances intra-bags. For picture subjects instance co-occurrences is

10



more popular because of the correlation of picture with another environment.

Beside machine learning algorithms, mathematical programming approaches are

studied in the literature. They are generally derived as an extension of SVM model,

and witness selection takes place in maximization of instance level margins. SVM

models for MIL setting are formulated for two soft margin maximization (MIHLSVM),

hard margin maximization (MIHMSVM) and ramp loss margin maximization (MIRLSVM)

[15].

In this paper, we take into account the maximum margined witness (a single

instance) from each bag. In order to deal with imbalance issues, we take witnesses

from negative bags as well. We offer a wide range comparison of four loss models

which are hinge, soft, hard and ramp margin maximization models.

11



CHAPTER IV

MATHEMATICAL MODEL

In this section, we introduce two comparative models; a MILP (Mixed Integer Linear

Programming) model for linearly separable datasets finds optimal hyperplane. After,

a hinge loss, a soft margin loss, a hard margin loss and a ramp loss linear program-

ming models proposed to optimize offset parameter. 2-norm soft margin formulation

objected to minimize error square (loss). On the other hand, hard margin formu-

lation minimizes the misclassified selected instances among each bags. Ramp loss

model both try to minimize misclassification and error in some extent [17]. These

selection of instances from positive bags is determined with a decision variable, in

other words a witness s selected from each positive bags, (θi) according to the max-

imum margin from the hyperplane. For negative bags, most prominent (the one

has maximum margin from the hyperplane) negative instances selected after finding

the margin coefficients. Later, these selected instances constitutes the optimal offset

parameter(b).

The data originate in instances (vector patterns) xi ∈ Rd, i ∈ I+ = {1, .., N}

for positive instances and xk ∈ Rd , k ∈ I− = {1, .., N} for negative instances. As

bags also consists of 2 sets; positive S+ , p ∈ S+ = {1, ..,M} and negative S−,

n ∈ S− = {1, ..,M} the responses (+1,-1) are representing those associated bags not

instances. Vector coefficient variable wj ∈ Rd , j ∈ d = {1, .., D}.

4.0.1 Parameters

ε A small user-specified constant

R A user-specified limit for ramp loss

12



4.0.2 Decision Variables

zik Binary variable to keep track of whether xi is scored higher than xk

Vi The score instance for xi

Vk The score instance for xk

Ωpn A variable to keep track of whether pair of bag p and bag n correctly labeled

γin Binary variable compares the correctness of selected positive xi instance with

the negatively labeled bag n

ζin Binary threshold for linearization

θi Weights on each instance i in a positive bag p

wj Hyperplane coefficients

b Offset parameter

ξj Slack variables for hinge loss

zj Binary variable takes 1 if there is a misclassification, 0 otherwise

4.0.3 MILP Model

The proposed model for multi-instance learning Roc maximization finds w the sepa-

rating hyperplane. Then, with the given hyperplane coefficients w we find the offset

parameter (threshold) b that maximize training accuracy.

max
∑
p∈S+

∑
n∈S−

Ωpn (3a)

subject to zik ≤ vi − vk + 1− ε ∀i ∈ I+ , ∀k ∈ I− (3b)

vi = wTxi ∀i ∈ I+ (3c)

vk = wTxk ∀k ∈ I− (3d)

− 1 ≤ wj ≤ 1 ∀j ∈ 1..d (3e)∑
k∈In

zik ≥ |In|γin ∀i ∈ I+ , ∀n ∈ S− (3f)
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θi + γin ≥ 2ζin ∀i ∈ I+ , ∀n ∈ S− (3g)∑
i∈Ip

ζin = Ωpn ∀p ∈ S+ , ∀n ∈ S− (3h)

∑
i∈Ip

θi = 1 ∀p ∈ S+ (3i)

γin ∈ {0, 1} ∀i ∈ I+ , ∀n ∈ S− (3j)

ζin ∈ {0, 1} ∀i ∈ I+ , ∀n ∈ S− (3k)

zik ∈ {0, 1} ∀i ∈ I+ , ∀k ∈ I− (3l)

θi ∈ {0, 1} ∀i ∈ I+ (3m)

0 ≤ Ωpn ≤ 1 ∀p ∈ S+ , ∀n ∈ S− (3n)

Our objective is to maximize the true labeled bag numbers among instances.

Constraint (3a) ensures the true rankings among instances. Constraint (3c) and (3d)

presents the scores of positively and negatively labeled instances. Constraint (3e),

ensures the bound of wj in the feasible region to find optimal solution. Constraint (3f),

keep track of correctly labeled bags. Ensures the comparison of positive instances with

each negatively labeled bag’s instances. Finally constraints (3g) and (3h) guarantees

and selects the instance vi as a bag’s representative, then if bags labeled true Ωpn takes

1 in case of there is at least one positive instance in each positive labeled bag(3i).

In this setting, optimal wj values are obtained, then after picking the highest

scored instances from each bag we continue to the following models to optimize tresh-

old b value. Loss functions for training classifier that we formulated accordingly are

shown in the next sections.
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4.0.4 Hinge Loss

Hinge loss formulation is the traditional way of minimizing the continuous error for

observations.

min
xi,b

∑
ξj (4a)

subject to yj(w
Txj + b) ≥ −ξj , ∀j = arg max

i∈Ip
wTxi, p ∈ S− ∪ S+ (4b)

ξj ≥ 0 , ∀j (4c)

(4d)

4.0.5 2 Norm - Soft Margin Loss

Soft margin loss is enlarging the distance of observation from the margin by taking

the square of loss. Therefore, it is the least robust method compared the other loss

formulations presented in this paper.

min
xi,b

∑
ξ2j (5a)

subject to yj(w
Txj + b) ≥ −ξj , ∀j = arg max

i∈Ip
wTxi, p ∈ S− ∪ S+ (5b)

4.0.6 Hard Margin Loss

The number of observations misclassified on the wrong side of the margin is minimized

with this formulation. This method increases the robustness of classifier compared to

2-norm soft margin loss.
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min
xi,b

∑
zj (6a)

subject to yj(w
Txj + b) ≥ −Mzj , ∀j = arg max

i∈Ip
wTxi, p ∈ S− ∪ S+ (6b)

zj ∈ {0, 1} , ∀j (6c)

4.0.7 Ramp Loss

This formulation is also known as robust hinge loss. The difference with the Hinge loss

model is the misclassification errors. Ramp Loss puts greater error to misclassified

observations. Restricts the impact of hinge loss in a specified ramp amount and

punish them in the objective.

min
xi,b

∑
ξj +R

∑
zj (7a)

subject to yj(w
Txj + b) ≥ −ξj −Mzj , ∀j = arg max

i∈Ip
wTxi, p ∈ S− ∪ S+ (7b)

zj ∈ {0, 1} , ∀j (7c)

0 ≤ ξj ≤ R , ∀j (7d)
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CHAPTER V

COMPUTATIONAL RESULTS

In this section we compare the performance of our MILP method with another study

in the literature which proposes a linear programming approach to multi-instance

learning[18]. For a performance metric, we compare the accuracy of their linear pro-

gramming method, hence corresponding results of their study are listed as benchmark

to ours.

Referring to their ten-fold cross validation indices, constituted by bag id numbers,

we tested our linear programming method for five replication. Table 2 provides the

related information for our experiment datasets and their corresponding number of

instances, the min and max values of instances, number of bags and number of fea-

tures. Additionally, the number of positive and negative bags are listed which is very

significant for multi-instance learning. R instance and R cluster in Table 3 refers to

their proposed linear programming methods. By taking their results as a benchmark

to our study, along with the LP methods comparison, there are also two baseline

methods results called miFV (MI based on Fisher vector representation) and MInD

with Dmeanmin (uses bag-to-bag dissimilarity measures) representation presented in

Table 3.

As our model objective is designed for ROC maximization, we reported our perfor-

mance metric accuracy results for 5 times 10-fold cross validation. The LP solutions

were generated using the Gurobi 8.0 solver. All computations are performed on a 3.6

GHz Intel Core i7-7700 computer with 16 GB DDR3 ECC (1866 MHz) RAM and the

Ubuntu Linux operating system.

Based on our results it can be said that among four loss function hard margin loss
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Name Instances Min Max Features Bags + bags - bags
Musk 1 476 2 40 166 92 47 45
Elephant 1391 2 13 230 200 100 100
Tiger 1220 2 13 230 200 100 100

Table 2: Description of common MIL Datasets

formulation, on average, yields the better accuracy performance with the CV among

our datasets. Table 3 shows the results of their LP model. Table 4 and 5 presents

the our results of MILP with hinge, soft, hard and ramp loss formulation. We tested

ramp loss with 6 different parameters where R is set to 0.01, 0.5, 1, 2, 5, and 10.

Hard margin loss for Elephant and Tiger datasets and soft margin loss for Musk1

dataset yield our best performance, which constitutes a lower bound for optimal

hyperplane. Ramp loss with parameter 10 gives the second best bound for Musk1

among 6 different parameter. Soft margin loss is not performed well in Elephant and

Tiger dataset, however performed best in Musk1 dataset.

Dataset Rinstance Rcluster MInD(Dmeanmin) miFV

Musk 1 87.1 86.2 84.1 85.2
Elephant 87.4 84.1 86.2 82.9
Tiger 82.8 80.3 77.7 80.4

Table 3: Accuracy results of other MIL methods with 10 fold cross-validation re-
peated 5 times.

Dataset MILPhinge MILPsoft MILPhard MILPramp(.01)

Musk 1 63.1 57.2 70.5 60.5
Elephant 66.1 58.6 70.9 67.3
Tiger 69.3 71.1 69.1 69.1

Table 4: Comparison of accuracy results of MIL methods with 10 fold cross-validation
repeated 5 times.

Dataset MILPramp(0.5) MILPramp(1) MILPramp(2) MILPramp(5) MILPramp(10)
Musk 1 59.7 59.6 59.5 59.4 59.1
Elephant 66.1 65.8 65.7 65.5 65.5
Tiger 69.1 69.1 69.3 69.3 70.0

Table 5: Comparison of accuracy results of MIL methods with 10 fold cross-validation
repeated 5 times.
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The following Figure 1 and 2 belongs to Tiger and Elephant datasets. We demon-

strate the decreasing trend of average gap in time for 5 times 10-fold cross validations.

For the Tiger and Elephant datasets the optimal solutions are obtained after 125 sec-

onds and 1100 seconds on average respectively. Musk 1 dataset find optimal solution

directly in one step on average 2 seconds, thus there is no progression in the gap for

it.

Figure 1: Average time to solve w that maximize AUC for Tiger dataset

Figure 2: Average time to solve w that maximize AUC for Elephant dataset
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CHAPTER VI

FUTURE WORK

MILP model is not yielding solutions for hard datasets which are not solvable with

a linear hyperplanes. Therefore, we decided to improve MILP model for non-linear

datasets. In this section we briefly describe the steps that we follow in our formulation.

We used a SVM classifier to find the maximum margin hyperplane with a linear kernel

function to map non-separable dataset in a separable format.

6.0.1 Nonlinear Transformation - MIQP Model

In this section, we introduce MINLP (Mixed Integer Non-Linear Programming) model

for nonlinear datasets, which are not separable with linear hyperplanes. To address

arrangements in the model, we developed objective function of the MILP formulation

in a form that involves w with a small coefficient value ρ for regularization instead

of bounding each component of w.

max
∑
p∈S+

∑
n∈S−

Ωpn −
ρ

2
‖w‖2 (8a)

subject to zik ≤ wTxi −wTxk + 1− ε ∀i ∈ I+ , ∀k ∈ I− (8b)∑
k∈In

zik ≥ |In|γin ∀i ∈ I+ , ∀n ∈ S− (8c)

θi + γin ≥ 2ζin ∀i ∈ I+ , ∀n ∈ S− (8d)∑
i∈Ip

ζin = Ωpn ∀p ∈ S+ , ∀n ∈ S− (8e)

∑
i∈Ip

θi = 1 ∀p ∈ S+ (8f)

γin ∈ {0, 1} ∀i ∈ I+ , ∀n ∈ S− (8g)
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ζin ∈ {0, 1} ∀i ∈ I+ , ∀n ∈ S− (8h)

zik ∈ {0, 1} ∀i ∈ I+ , ∀k ∈ I− (8i)

θi ∈ {0, 1} ∀i ∈ I+ (8j)

0 ≤ Ωpn ≤ 1 ∀p ∈ S+ , ∀n ∈ S− (8k)

This problem can be decomposed as the following:

max
γ,ζ,θ,z,Ω

∑
p∈S+

∑
n∈S−

Ωpn + max

w :

zik ≤ wTxi −wTxk + 1− ε ∀i ∈ I+,∀k ∈ I−

−ρ
2
‖w‖2 (9a)

subject to
∑
k∈In

zik ≥ |In|γin ∀i ∈ I+ , ∀n ∈ S−

(9b)

θi + γin ≥ 2ζin ∀i ∈ I+ , ∀n ∈ S−

(9c)∑
i∈Ip

ζin = Ωpn ∀p ∈ S+ , ∀n ∈ S−

(9d)∑
i∈Ip

θi = 1 ∀p ∈ S+

(9e)

γin ∈ {0, 1} ∀i ∈ I+ , ∀n ∈ S−

(9f)

ζin ∈ {0, 1} ∀i ∈ I+ , ∀n ∈ S−

(9g)
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zik ∈ {0, 1} ∀i ∈ I+ , ∀k ∈ I−

(9h)

θi ∈ {0, 1} ∀i ∈ I+

(9i)

0 ≤ Ωpn ≤ 1 ∀p ∈ S+ , ∀n ∈ S−

(9j)

In this decomposition, binaries that denote misclassification are set at the outer

level. Inner problem only checks for the existence of such a classifier. The inner

problem can be restated as

min
w

1

2
‖w‖2 (10a)

subject to zik ≤ wT (xi − xk) + 1− ε ∀i ∈ I+ , ∀k ∈ I− (10b)

max
λ

inf
w

1

2
‖w‖2 +

∑
i

∑
k

λik(zik − wT (xi − xk)− 1 + ε) (11)

Considering the transformation of the optimization problem into its corresponding

dual problem, we found the primal Lagrangian as above, where all λik are Lagrange

multipliers and greater than zero.

After differentiating the primal Lagrangian with respect to w and imposing sta-

tionary,

∂L(w, λ)

∂w
= w −

∑
i

∑
k

λik(xi − xk) = 0 (12)

and re-substituting the relations obtained,

w =
∑
i

∑
k

λik(xi − xk) (13)

into the primal to obtain
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max
λ≥0
− 1

2

∑
i

∑
k

∑
j

∑
n

λikλjn(xi − xk) · (xj − xn)+

∑
i

∑
k

λik(zik − 1 + ε)

(14)

Therefore, the formulation for nonlinear classification becomes with the Gaussian

kernel function,

max
∑
p∈S+

∑
n∈S−

Ωpn −
ρ

2

∑
i

∑
k

λik(zik − 1 + ε)

− ρ

2

∑
i

∑
k

∑
j

∑
n

λikλjnK(xi − xk,xj − xn) (15a)

subject to
∑
k∈In

zik ≥ |In|γin ∀i ∈ I+ , ∀n ∈ S−

(15b)

θi + γin ≥ 2ζin ∀i ∈ I+ , ∀n ∈ S−

(15c)∑
i∈Ip

ζin = Ωpn ∀p ∈ S+ , ∀n ∈ S−

(15d)∑
i∈Ip

θi = 1 ∀p ∈ S+

(15e)

γin ∈ {0, 1} ∀i ∈ I+ , ∀n ∈ S−

(15f)

ζin ∈ {0, 1} ∀i ∈ I+ , ∀n ∈ S−

(15g)

zik ∈ {0, 1} ∀i ∈ I+ , ∀k ∈ I−

(15h)
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θi ∈ {0, 1} ∀i ∈ I+

(15i)

λik ≥ 0 ∀i ∈ I+ , ∀k ∈ I−

(15j)

0 ≤ Ωpn ≤ 1 ∀p ∈ S+ , ∀n ∈ S−

(15k)

6.0.2 McCormick Relaxation

By applying McCormick Relaxation we are linearizing the product of λik and zik in

the above objective function by adding a new variable λ′ik. Based on this relaxation

new tie constrains added to the model.

max
∑
p∈S+

∑
n∈S−

Ωpn −
ρ

2

∑
i

∑
k

(λ′ik − λik + λikε)

− ρ

2

∑
i

∑
k

∑
j

∑
n

λikλjnK(xi − xk,xj − xn) (16a)

subject to λ′ik ≥ λik −M(1− zik) ∀i ∈ I+ , ∀k ∈ I−

(16b)

λ′ik ≤Mzik ∀i ∈ I+ , ∀k ∈ I−

(16c)∑
k∈In

zik ≥ |In|γin ∀i ∈ I+ , ∀n ∈ S−

(16d)

θi + γin ≥ 2ζin ∀i ∈ I+ , ∀n ∈ S−

(16e)
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∑
i∈Ip

ζin = Ωpn ∀p ∈ S+ , ∀n ∈ S−

(16f)∑
i∈Ip

θi = 1 ∀p ∈ S+

(16g)

γin ∈ {0, 1} ∀i ∈ I+ , ∀n ∈ S−

(16h)

ζin ∈ {0, 1} ∀i ∈ I+ , ∀n ∈ S−

(16i)

zik ∈ {0, 1} ∀i ∈ I+ , ∀k ∈ I−

(16j)

θi ∈ {0, 1} ∀i ∈ I+

(16k)

0 ≤ Ωpn ≤ 1 ∀p ∈ S+ , ∀n ∈ S−

(16l)

λik ≥ 0 ∀i ∈ I+ , ∀k ∈ I−

(16m)

λ′ik ≥ 0 ∀i ∈ I+ , ∀k ∈ I−

(16n)
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CHAPTER VII

CONCLUSION

In this study we developed a multi-instance classification model by directly maximiz-

ing the area under ROC curve (AUC). Our mixed integer linear programming model

produces the best possible hyperplane-based classifier. With this study, we bring light

on the potential of hyperplane-based approaches providing cross validation (CV) re-

sults for benchmark instances. In addition, we demonstrate a Kernel trick application

for nonlinear classifiers that maximize AUC.

It is clearly observed that having the optimal hyperplane for given datasets is

not a guarantee for predicting the best accuracy as different bounds obtained in the

different datasets. It is clear that in time our model generates optimal hyperplane

with a decreasing optimality gap with 100% training. However, even though the

accuracy results of MILP model are low compared to other LP study, generating

different witness selection strategy might increase the accuracy results. In our case,

we followed a strategy of selecting highest scored instance from each bag. In this

study, witness selection is the most significant part in testing, which directly effects

the cross validation results. Therefore, there are still potential to increase performance

of this method. On the other hand, reporting AUC performance would be another

strategy, but it will not be effective as changing the witness selection strategy from

the bags.

To conclude, there exists potential research directions with the light of quadratic

programming model as well. We believe that, by going further with the presented in

our MIQP model, sophisticated optimization approaches would minimize the compu-

tation time and complexity.
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