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ABSTRACT

Software is becoming larger and more complex in consumer electronics products. As a

result, testing these products for reliability is becoming a major challenge. Traditional

and manual testing activities are not effective and efficient in pinpointing faults. Conse-

quently, manual testing activities are being replaced with automated techniques. Model-

based testing is one of these techniques. It uses test models as input and automates test

case generation. However, these models are very large for industry-scale systems. Hence,

the number of generated test cases can be very large as well. However, it is not feasible

to test every functionality of the system exhaustively due to extremely limited resources in

the consumer electronics domain. Only those system usage scenarios that are associated

with a high likelihood of failures should be tested. Therefore, we propose a risk-driven

model-based testing approach in this thesis. Hereby, test models are augmented with infor-

mation regarding failure risk. Markov chains are used for expressing these models, which

are basically composed of states and transitions. Each state transition is annotated with

a probability. Probability values are used for generating test cases that cover transitions

with the highest probability values. The proposed approach updates transition probability

values based on three types of analysis for risk estimation. First, usage profile is used for

determining the mostly used features of the system. Second, static analysis is used for es-

timating fault potential at each state. Third, dynamic analysis is used for estimating error

likelihood at each state. Test models are updated based on these analyses and estimations

iteratively. The approach is evaluated with three industrial case studies for testing digital

TVs, smart phones and washing machines. Results show that the approach increases test

efficiency by revealing more faults in less testing time.
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ÖZETÇE

Tüketici elektroniği ürünlerinde bulunan yazılımın hem boyutları, hem de karmaşıklığı

artmaktadır. Bu eğilim, ürünlerin test edilmesi ve güvenilirliklerinden emin olunması

için zorluk teşkil etmektedir. Geleneksel ve manuel test süreçleri, kritik hatalarının tespit

edilmesinde yetersiz ve verimsiz kalmaktadır. Bu süreçleri iyileştirmek ve otomatik bir

hale getirmek için çeşitli teknikler kullanılagelmiştir. Test modellerinden yararlanarak

otomatik test adımlarının oluşturulmasını sağlayan model bazlı test, bu tekniklerden biri-

sidir. Endüstriyel ölçekteki sistemlere ilişkin çok büyük olan test modellerinden, pren-

sip olarak sonsuz sayıda test adımı üretilebilmek mümkündür. Ancak tüketici elektroniği

alanında oldukça kısıtlı olan kaynaklar sebebi ile sistemin tüm fonksiyonlarını test etmek

mümkün değildir. Bu sebepten dolayı, bu tezde risk odaklı model bazlı test yaklaşımı

önerilmektedir. Bu yaklaşımda, test modelleri hata riskine ilişkin bilgilerle zenginleştirilmek-

tedir. Test modelleri, durum geçişlerinin olasılık değerleri ile etiketlendiği Markov zin-

cirleri şeklinde tanımlanmaktadır. Bu değerler, yüksek olasılıklı senaryoları kapsayacak

şekilde test adımlarının otomatik üretim sürecini yönlendirmektedir. Yaklaşımımızda, du-

rum geçişlerine ilişkin olasılık değerleri, üç farklı analiz tipi ile hesaplanan risk tahmin-

lerine göre güncellenmektedir. İlk olarak, ürün kullanıcılarından toplanan kullanım pro-

fili verileri analiz edilmektedir. İkinci olarak, sistemin farklı durumlarındaki hata potan-

siyelinin tahmini için statik analiz kullanılmaktadır. Üçüncü olarak ise, hata tahmini için

dinamik analiz kullanılmaktadır. Test modelleri, bu analizler ve tahminlere göre yinelemeli

olarak güncellenmektedir. Yaklaşımımızı değerlendirmek için dijital televizyonlar, akıllı

telefonlar ve çamaşır makineleri olmak üzere, üç farklı ürün üzerinde endüstriyel vaka

çalışmaları yapılmıştır. Elde edilen sonuçlar, yaklaşımın kısa sürede daha fazla hata tespit

edilmesini sağlayarak test verimliliğini arttırdığını göstermektedir.
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CHAPTER I

INTRODUCTION

Systems are used to be mainly electromechanical in consumer electronics domain. How-

ever, they are currently manufactured as software-intensive systems. Software is becoming

larger and more complex in consumer electronics products. Almost all the functionality

is implemented in software, which is deployed on standardized hardware. Moreover, the

number and variety of the provided functionalities are increasing. For instance, digital TV

systems today (also named as smart TV systems) support networking with other home ap-

pliances, streaming content from the Internet and other new functionalities in addition to

those previously provided by traditional TV systems [2]. As a result, a typical digital TV

system comprise tens of millions of lines of code [3].

The size and complexity of this code base are continuously increasing. One the one

hand, the reliability of software has become the main designator of overall system relia-

bility. Therefore, software reliability should be high for targeting at a market with high

competition. On the other hand, resources are extremely limited in consumer electronics

domain due to short time-to-market. It is not feasible anymore to test systems exhaus-

tively. Hence, software testing techniques must be efficient to be able to reveal and fix the

most critical faults1 with limited resources. These faults might not be critical in the sense

that they have catastrophic consequences like those taking place in safety-critical systems.

However, they are considered to be critical in consumer electronics domain if they lead to

a user-perceived failure [5]. Such faults must be detected and removed for preventing user

irritation, protecting the brand image and as such, survive through the tough competition.

1We adopt the terminology introduced by Avizienis et al. [4] in this thesis. We use the term fault (also
named as bug or defect) as the cause of an error. We consider error as a system state that can lead to failure.
The term failure is used for a user-observed event. This event can be an unexpected system behavior/output.
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Automating test activities [6] is a typical approach preferred for increasing test effi-

ciency. These activities can be related to test case generation, test execution or test ora-

cle [7] implementation. Various techniques can be employed for automating one or more

of these activities. One of these techniques is Model-Based Testing (MBT) [8, 9, 10], which

is now a state-of-the-practice technique for automating test case generation. Hereby, test

cases are generated by systematically exploring various executions paths on a test model,

which defines the usage behavior of the system. This reduces the test case creation time.

The input test model has to be created manually; however, there have been various tech-

niques proposed to generate [11], extend [12] or refine [13] these models automatically.

MBT also facilitates an increased and measured coverage defined based on the test model;

however, it turns out to be infeasible to achieve an extensive coverage of the model in prac-

tice. For example, a typical test model regarding smart TV systems can comprise thousands

of states and transitions [14]. Therefore, the test case generation process must be efficient

to explore only those execution paths in the test model that are associated with high risk of

failure.

In this thesis, we propose a risk-driven model-based testing approach, where test mod-

els are augmented with information regarding failure risk. The approach is automated with

a tool called RIMA2 (Risk Based Model Adapter), which iteratively updates test models to

employ random-stochastic test case generation based on risk of failure. Markov chains are

used for expressing these models, which are basically composed of states and transitions.

Each state transition is annotated with a probability. Probability values are used for gen-

erating test cases that cover transitions with the highest probability values. RIMA updates

transition probability values based on three types of analysis for risk estimation. The RIPR

model [15] suggests that for a fault to be observed as a failure, the faulty location must be

Reached, its execution must Infect the program state, which Propagates and gets Revealed.

Hence, the first analysis is applied on usage profile for determining the mostly used features

2Available online at https://github.com/csgebizli/RIMA
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of the system. Second, static analysis is used for estimating fault potential at each state.

Third, dynamic analysis is used for estimating error likelihood at each state. RIMA updates

test models based on these analyses and estimations iteratively. Test cases are generated

and executed after each update.

We performed three industrial case studies to evaluate our approach for testing a Digital

TV (DTV), a smart phone (SP) and a washing machine (WM). In all of these case studies,

we were able to detect several new faults after each update of the test models performed by

RIMA. Some of these faults were missed during the regular MBT process and they lead to

critical failures such as crashes, system restarts or lack of response for user input events.

We also compared the test efficiency achieved with our approach to that of random testing,

where the same test model is used by MBT without any updates in successive test iterations.

We measure test efficiency as the number of detected faults per unit of time. Hence, our

metric can be improved in two ways; the same set of faults can be detected in less testing

time, or additional/new faults can be discovered within the same test duration or less. Test

efficiency of DTV tests is calculated as 1.09 faults/hrs when our approach is used. It was

measured as 0.56 faults/hrs, when MBT is applied without the integration of RIMA. Results

for the SP case were 0.38 faults/hrs and 0.26 faults/hrs obtained with and without RIMA,

respectively. Likewise, results for the WM case were 0.052 faults/hrs and 0.039 faults/hrs

obtained with and without RIMA, respectively. These results show that our approach is

effective in detecting critical faults and it increases the efficiency of the MBT process.

We explain the organization of the remainder of the thesis before concluding this chap-

ter. In the following chapter, we provide a brief background on MBT and risk-based testing.

In Chapter 3, we introduce our risk-based MBT approach. In Chapter 4, we present the 3

industrial case studies conducted on DTV, SP and WM systems. We report and elaborate

on the obtained results in this chapter as well. In Chapter 5, we summarize related work

and position our study with respect to the literature. Finally, in Chapter 6, we conclude the

thesis with a discussion of future work.

3



CHAPTER II

BACKGROUND

In this chapter, we provide a brief background regarding model-based testing and risk-

driven testing. The chapter is divided into two sections. First, model-based testing is

described in the following section. Then, we introduce risk-driven testing in the second

section.

KEY: flow order artifact

A
B

D
E

Test Model

Test Case 
Generation

A, E, B, A
C, D, E, B
...

Test Cases

RQ1 …
RQ2 …
...

System 
Specification

/ Requirements

Modelling

manual 
process

automated 
process

Figure 1: The overall model-based testing process.

2.1 Model-Based Testing

Model-based testing (MBT) [8, 10] is an automated test case generation technique that

relies on test models. The overall MBT process is composed of two main steps as shown

in Figure 1. First, a test model is created. This model represents the external behavior of

the system under test. Hence, MBT can be considered as a black-box testing approach.

Modeling activity is usually a manual process where informal system specifications and

user requirements are interpreted to create a formal test model. Second, the created test

model is used for generating test cases. The second activity is automated by a tool, which
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takes the formal test model as test input and explores this model systematically. The model

can be specified in various formalisms including finite state automata [16], event sequence

graphs [17], event flow graphs [18], UML state charts [19] or Markov chains [20, 21].

MBT has been proven to be valuable for increasing the testing effectiveness and effi-

ciency [22]. It has also been applied in the industry for more than a decade. There are 3

main benefits of this approach [23]. First, it enables automated generation of test cases.

Second, it reduces maintenance costs. Test models can be updated based on changes in

requirements and test cases can be re-generated after these updates. Otherwise, one needs

to update dozens of test cases. Third, test models serve as documentation and reveals spec-

ification mistakes early in the process. Internal inconsistencies in system specifications and

user requirements can be detected while creating test models.

MBT has also limitations. Previously, 3 main limitations have been identified regarding

the application of MBT in consumer electronics domain [23]. First, test models can be

incomplete since model creation is a manual activity and the system specifications or user

requirements are usually incomplete and imprecise. As a result, the generated test cases

can fall short to detect all the critical faults. Second, test models can be subject to high

variation for large product families. Therefore, systematic management of this variability

is necessary to be able to reuse test models for all the products in the family. Third, test

models can be very large such that it might not be possible to exhaustively cover them due

to limited resources. Hence, test case generation should focus on execution paths that are

associated with the highest risk for exposing failures to users. The first two problems have

been addressed before [23]. In this thesis, we focus on the third problem, which was also

addressed with a risk-driven model based testing approach [14, 23]. In that approach, test

models are specified in the form of Markov chains. Therefore, they represent discrete-time

stochastic systems [20] with states and transitions among them. The systems transitions to

another state depending on the annotated transition probability values. MaTeLo1 is used as

1http://www.all4tec.net
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the MBT tool that generates test cases using these models. Hereby, transition probability

values steer the test case generation process. These values are updated based on risk of

failure estimated for the corresponding transition.

In this thesis, we build on top of the risk-driven model based testing approach [14, 23]

by automating its activities and generalizing the risk estimation process. We observed that

the risk of failure must be defined in different terms for various systems. For example, fluc-

tuations in power consumption is a relevant risk indicator for washing machines. However,

fluctuations in memory profile is a more relevant indicator for digital TV systems. In our

unified approach, various types of risks can be defined and estimated based on either static

or dynamic analysis of software artifacts.

2.2 Risk-Driven Testing

Risk-based testing aims at optimizing test efforts and mitigate risks by steering testing ac-

tivities according to risk assessments [1]. Hereby, a risk is defined as a factor that may

lead to negative consequences [24]; it is usually expressed with likelihood and impact at-

tributes. These attributes are used for guiding decisions throughout a testing process [25]

including phases such as test planning, design, implementation and evaluation. To be able

to make use of limited resources in an efficient manner, risk-based testing focuses activities

on scenarios that are more liable to critical situations [26].

Risk-based testing has become highly important and relevant since the size and com-

plexity of software are continuously increasing whereas software testing has to be per-

formed with limited resources. Therefore, there have been many risk-based testing ap-

proaches proposed [1], some of which were adopted in the industry [27]. These approaches

have been classified with a taxonomy [1] as depicted in Figure 2. It considers the whole

testing process and defines 3 top-level classes. These are risk drivers, risk assessment and

risk-based test process. In the following, we position our approach with respect to this

taxonomy.
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In our study, we are concerned with functionality as the main risk driver. Safety and

security are not major concerns in the consumer electronics domain in general. In our

approach, we adopt MBT, where risk exposures are reflected to elements of test models.

Therefore, risk item type can be considered as a functional artifact since we perform system

level black-box testing. Risk factors are quantified from two perspectives: risk exposure

and likelihood. We quantify risk exposure based on a user profile to determine if a user

could make use of a feature of a system. We quantify fault and error likelihood in each

feature based on static and dynamic analysis performed on the source code and the running

system, respectively. Hence, our analyses are based on formal models and our risk estima-

tion scale is quantitative. We do not consider impact rating as a risk assessment factor since

it is hard to estimate this beforehand. However, we take criticality of failures into account,

while evaluating our approach.

In our approach, we focus on test case generation rather than test execution and evalua-

tions. Therefore, the corresponding categories under risk-based test process are not relevant

in our case. Risk-based test planning can be considered to be relevant because our approach

involves test prioritization and selection. Instead of exploring a test model exhaustively, we

focus on parts of the model that are associated with high risk. Therefore, fault detection

capability and quality of testing is increased, while the number of test cases is decreased.

In terms of risk-based test design, we focus on functional testing as the test type and we

adopt a model-based coverage criteria, which falls into the asset category. Finally, our risk-

based test implementation involves test automation not only for test case generation, but

also for executing the generated test cases. Test case generation is automated with an MBT

tool, whereas test execution is automated with an in-house developed tool. The first tool

is bought and the second tool is developed by the company, where we conducted our case

studies.

In the following chapter, we introduce our approach. Then, we explain case studies and

discuss the obtained results.
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Figure 2: A taxonomy of risk-based testing [1] and the scope of this thesis.
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CHAPTER III

RISK-DRIVEN MODEL-BASED TESTING APPROACH

In this chapter, we introduce our risk-driven model-based testing approach. An earlier

version of this approach was proposed before [14, 23] to steer the model-based test case

generation process towards those execution paths in the test model that are associated with

the highest risk of failure as can be observed by the end users. That approach was later

applied on various subject systems as part of a series of industrial case studies. We observed

in these stuides that the risk of failure must be defined in different terms for various systems.

Therefore, we refined the approach based on our observations. In this thesis, we propose

a unified approach that can be applicable to various systems. Essentially, each application

turns out to be an instance of the unified approach. Various types of risks can be defined

and estimated in each instance application.

In our study, we aim at optimizing the test process based on the risk of user-perceived

failure. Such a failure occurs if the conditions hold [15]:

• there exist a fault in the system

• the faulty program statement is executed such that the fault is triggered, i.e., the

associated system feature is utilized by an end user

• the triggered fault leads to an error

• the error propagates to a failure that is observed by the user

The likelihood (risk) of the first condition can be estimated with static analysis. The

second condition depends on the usage profile of the system. The last two conditions are

related to the runtime behavior and as such their likelihood can be estimated with dynamic

analysis. Therefore, we employ the analysis of 3 types of profile in our approach: usage

9
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Figure 3: The unified risk-driven model-based testing approach.

profile, static profile and dynamic profile. The number of and the contents of these profiles

depend on the risk definitions and the way that risks are estimated.

The unified risk-driven model-based testing approach is depicted in Figure 3. There are

6 steps depicted. In fact, the process is iterative. The number of iterations depend on the

system under test and the considered types of risks. In our case studies, we implemented

the approach in 3 iterations. That is, the cycle shown in Figure 3 with 6 steps is repeated

3 times. It is assumed that a test model regarding the system under test is available. In our

approach this model is represented in the form of Markov chains so that risk estimations can

be reflected to the model in terms of state transition probability values. First, the test model

is provided to the MBT tool. This tool performs the test case generation process. This

process focuses on covering the most probable paths on the model according to transition

probabilities. A set of test cases is obtained as the output of this process. These test

10



cases are executed on the system. The system is monitored during test execution so that

a dynamic profile can be collected. The next step of the approach is to feed a collected

profile to RIMA, a tool that we developed to perform the risk-driven model update process.

The test model is updated as a result of this process. The updated test model is used in

the next iteration. A different profile (of type usage, static or dynamic) and a different risk

estimation procedure is utilized in each iteration.

KEY: flow order artifact
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Figure 4: An instance of our approach adopted for DTV and SP systems.

Figure 4 shows an instance of our approach as applied for Digital TV (DTV) and Smart

Phone (SP) systems. Hereby, the 3 iteration cycles are unrolled to depict the flow as a

pipeline of processes and artifacts. We start with the existing test model created for the

system under test. In Iteration 0, all the probability values for transitions exiting from a

state are equal to each other. An MBT tool is used for generating test cases based on this

model. These test cases are executed on the system. We collect data regarding the usage of

memory while test cases are being executed. RIMA updates the test model based on various

information sources in the succeeding 3 iterations. Each iteration involves a model update

11



step, a test case generation step and finally the execution of test cases. The difference

among them is the model update process performed by RIMA. Usage profile is used in

Iteration I for assigning probability values to state transitions such that these values reflect

the probability that an end user would make the system perform the same transitions. As

a result, test cases that are generated and executed in Iteration I should focus on mostly

visited execution paths in the field. A list of static analysis alerts are used in Iteration II.

A static code analysis tool is executed on the system source code to obtain such a list. The

list is used for estimating the relative risk of faults that can take place in various software

modules. These modules actually implement various features of the system. Therefore,

they are mapped to a set of states of the test model. Iteration III exploits the memory

usage profile for risk estimation. This profile is collected during the test executions in the

previous iterations. It is used for calculating the amount of memory leaks that take place

during transitions among the system states. The calculated amount is interpreted as the

relative risk of error for the corresponding state transition.
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Figure 5: An instance of our approach adopted for WM software.
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Figure 5 shows another application of the approach for Washing Machine (WM) soft-

ware this time. The overall process is very similar to the one that is shown in Figure 4 as

applied for DTV and SP systems. However, the risk estimation procedures are different in

Iteration II and Iteration III. In Figure 4, we utilize static code analysis alerts to estimate

the risk of fault. However, for this application, our discussion with the domain experts

revealed that the code base used for WM systems is stable for the most part and it is not

subject to many alerts. On the other hand, the configuration space of software is very large

and the most of the faults are introduced due to wrong/conflicting settings of configuration

options. Hence, we defined and calculated the risk of fault at a state as the ratio of con-

figuration options associated with that state. Then, the model is updated according to this

risk. In Iteration III, we perform an update based on dynamic analysis. In Figure 4, we

utilize memory profile to estimate the risk of error. However, for this implementation, our

discussion with the domain experts revealed that memory usage for WM systems is usually

stable. On the other hand, fluctuations in power consumption are more relevant indicators

of an error. Hence, we defined and calculated the risk of error at a state to be proportional

to the amount of power consumption associated with that state. Then, the model is updated

accordingly.

The following sections give detailed information on model updates perfomed in each

iteration.

3.1 Risk Estimation based on Usage Profile

The first risk estimation and model update process is performed based on usage profile in

Iteration I. Beforehand, in Iteration 0, probability values for transitions outgoing from a

state are equal and they add up to 1. Basically, if there are n such outgoing transitions,

then each of these transitions would have 1/n probability. A test model represents the

usage behavior of the system. If some of the features of the system are never used, then

users would not be exposed to any failure even if there exist many faults in these features.
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Likewise, the risk of failure is directly proportional to the probability that the corresponding

state will be visited in the test model. Risk estimation based on usage profile aims at

capturing this information. Data collection procedures for obtaining a usage profile are

explained in the following chapter in detail. In this section, we discuss the risk calculation

and model update procedure based on the collected profile.

Algorithm 1 Model update procedure based on usage profile.
1: Inputs:
2: M(S,T) is the test model,
3: V [1...|S|] is the number of visits for each state s ∈ S
4: procedure USAGE PROFILE BASED TEST MODEL UPDATE
5: foreach state s ∈ S do
6: total-visits← 0
7: foreach transition t ∈ T do
8: if t.src= s then
9: total-visits← total-visits + V [t.dest]

10: end foreach
11: foreach transition t ∈ T do
12: if t.src= s then
13: t.p←V [t.dest] / total visits
14: end foreach
15: end foreach

The update procedure is listed in Algorithm 1. It takes two inputs. The first one is the

test model M with a set of states S and a set of transitions T . Each transition t ∈ T is defined

as a 3-tuple (src, dest, p), where src defines the source state, dest defines the target state,

and p defines the probability associated with the transition t. The second input, V is a list of

size |S|. This list is derived from the collected usage profile and it contains the visit counts

regarding each state s ∈ S. The procedure iterates over all the states in S (Lines 5-15). In

the first part of this iteration (Lines 6-10), it calculates the total number of visits for states

that can be directly reached from each state s ∈ S. The variable total-visits saves the result,

which is initialized as 0 (Line 6). Then, all the transitions are checked if they are originating

from s (Lines 7-8). The number of visits for the target state of each such transition is added

to the total number of visits for s (Line 9). In the second part of the iteration (Lines 11-

14), the procedure updates transition probability values. All the transitions are checked if

they are originating from s (Lines 11-12). The probability value for each such transition is
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updated as the number of visits for its target state (V [t.dest]) divided by the total number

of visits calculated for its source state s (Line 13).

3.2 Risk Estimation based on Static Profile

The second risk estimation and model update process is performed based on static profile

in Iteration II. The data collection procedures and the resulting contents for this profile

may differ among systems under test. In our case studies, we utilized two types of static

profiles. The first type of profile, which includes a list of static code analysis alerts, is

used for estimating fault/error likelihood for DTV and SP systems. Hereby, we associate

modules in the software code base to features of the system. These features are represented

as states in the test model. Hence, each state is associated with a subset of the reported

alerts. We calculate the ratio of this subset for every state. Note that each state of the test

model represents a feature of the system, which is implemented by a set of source code

modules. We consider this ratio as the relative risk of failure for the state. A failure might

be observed if the reported alerts are not false positives and if they are triggered by a visit

to the state.

The second type of profile, which includes the number of configuration options, is used

for estimating fault/error likelihood for WM systems. Hereby, for each state, we calculate

the ratio of the number of configuration options. We consider this ratio as the relative risk

of failure for the state. The assumption is that a failure is more likely for those states being

subject to a high number of configuration options. Regardless of the utilized profile type, a

fault/error likelihood is calculated as the risk factor. RIMA updates the test model according

to this calculation as follows.

The update procedure is listed in Algorithm 2. It takes two inputs. The first one is the

test model M as defined and used in Algorithm 1. The second input, R is a list of size |S|,

which keeps the amount of risk estimated for each state s ∈ S. In this iteration, the amount

of risk for each state s is determined based on the static profile. This profile includes the
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Algorithm 2 Model update procedure based on fault/error likelihood.
1: Input:
2: M(S,T) is the test model,
3: R[1...|S|] is the amount of risk estimated for each state s ∈ S
4: procedure ERROR RISK ESTIMATION BASED TEST MODEL UPDATE
5: e = new state
6: S← S + e
7: total-risk← 0
8: foreach state s ∈ S do
9: total-risk← total-risk+R[s]

10: end foreach
11: foreach state s ∈ S do
12: te = new transition
13: te.src = s
14: te.dest = e
15: te.p = R[s] / total-risk
16: foreach transition t ∈ T do
17: if t.src= s then
18: t.p← t.p ×(1− te.p)
19: end foreach
20: T← T + te
21: end foreach

number of static code analysis alerts that are associated with s for DTV and SP systems

in our case studies. On the other hand, it includes the number of configuration options

associated with s for the WM system. The procedure adds a new state (error state, e) to

the model (Lines 5-6). Then, it calculates the total amount of risk by summing up all the

values in R (Lines 7-10). The procedure iterates over each state s ∈ S (Lines 11-21) after

these initialization steps. It introduces a new transition, te from s to e (Lines 12-14). The

probability value for this transition, te.p is equal to the risk associated with s divided by

the total risk (Line 15). All the existing transitions are checked if they are originating from

s (Lines 16-17). The probability value for each such transition is multiplied by (1− te.p)

(Line 18). Finally, the new transition te is added to the model (Line 20).

3.3 Risk Estimation based on Dynamic Profile

The third and the last risk estimation and model update process is performed based on

dynamic profile in Iteration III. The data collection procedures and the resulting contents

for this profile may differ among systems under test. In our case studies, we utilized two
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types of dynamic profiles. The first type of profile is the memory profile, which is used for

estimating fault/error likelihood for DTV and SP systems. The required data is recorded,

while test cases are being executed as part of previous iterations. A tool was developed [28]

for this purpose. This tool measures memory leakage for each feature in the system, and

as such, for each state of the test model. Then, a risk value is calculated for each state.

This calculation reflects the relative amount of memory leakage associated with the state.

The test model is updated with the RIMA tool using the same update procedure listed in

Algorithm 2.

The second type of profile, which includes the amount of power consumption, is used

for estimating fault/error likelihood for WM systems. We used an in-house developed tool

to measure the amount of power consumption. Then, for each state, we calculate a risk,

which is proportional to the amount of power consumed during the visit of that state. RIMA

and the employed update procedure (See Algorithm 2) is agnostic to the type of profile and

the way that a risk is estimated.

In the following section, we introduce 3 case studies to evaluate the approach.
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CHAPTER IV

INDUSTRIAL CASE STUDIES

We conducted 3 case studies to evaluate our approach. In this chapter, we present these

studies. We used 3 subject systems, DTV, SP and WM, all of which are being developed

and maintained by Vestel1. Vestel is a large-scale consumer electronics company in Turkey.

It is also one of the largest in Europe.

A risk-driven testing approach is especially relevant in the consumer electronics do-

main, where resources are extremely limited and the market is very competitive. The brand

image is directly affected by user-perceived failures [29]. Hence, although it is not feasible

to target at preventing any failure as it would be the case for safety-critical systems, the

testing process must be optimized to be able to prevent those failures that can be exposed

to end users. It was reported by the domain experts in Vestel that approximately %35 of the

overall product development is attributed to testing efforts. Hence, optimizing the testing

process has a promising potential for reducing the overall costs, while capturing critical

failures that can be observed by end users. In this chapter, our goal is to evaluate our

risk-driven MBT approach towards this goal.

In the following section, we introduce and motivate our research questions. Then, we

introduce DTV, SP and WM subject systems that are used in case studies. This is followed

by detailed explanations regarding the employed data collection and analysis procedures.

Then, results are presented and discussed. Finally, we discuss validity threats for our case

studies.

1http://www.vestel.com.tr
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4.1 Research Questions

In this section, we define our research questions that are aligned with the goals of our ap-

proach and constraints imposed by the research context. Our overall goal is to increase the

efficiency of the MBT process. This goal can be decomposed into two sub-goals. First, our

approach can improve the MBT process such that new and critical faults can be detected.

These are the faults that are missed with the regular MBT process and that lead to failures

observed by end users. Second, the number of test steps and as such the overall testing time

can be reduced. That is, the same set faults can be detected in less time, with less resources.

We update test models based on 3 types of profiles. Therefore, our research questions are

defined to reveal if/how each of these updates contribute to our goals and sub-goals. We

defined 4 research questions as follows:

RQ1: How effective it is to update test models based on usage profile to detect new

faults and/or reduce the the number of test steps and testing time?

RQ2: How effective it is to update test models based on static analysis to detect new

faults and/or reduce the the number of test steps and testing time?

RQ3: How effective it is to update test models based on dynamic analysis to detect

new faults and/or reduce the the number of test steps and testing time?

RQ4: Does RIMA improve test efficiency with respect to random testing?

The first 3 research questions above are defined to evaluate the result of the MBT pro-

cess when test models are updated based on 3 types of profile data. These updates are also

aligned with the successive iterations of our approach. Results are evaluated from two per-

spectives: i) the number of new faults detected as exposed to end users, and ii) the number

of test steps and the testing time.

The last research question is defined to compare our approach with respect to random

testing as the baseline approach. We observed in the state-of-the-practice that test models
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are mainly used for documenting the overall usage behavior. Transition probability values

are mostly fixed and they are not subject to any updates before successive test iterations.

We have seen updates made by practitioners based on the collected usage profile. However,

this adjustment only covers the first iteration of our approach and its was being performed

manually. Hence, we defined RQ4 to investigate how the test efficiency of MBT is without

RIMA. We measured test efficiency as the number of distinct faults found divided by the

total test duration.

In the following, we introduce the subject systems used in our case studies. Then, we

explain our data collection and analysis procedures. These explanations are followed by

the discussion of results and threats to validity.

4.2 Subject Systems

We used 3 subject systems in our case studies: DTV, SP and WM. In this section, we briefly

explain their features and introduce top-level test models that are created for these systems.

These models were previously developed by the software test group in the company for

MBT. We used them directly as input for our case studies.

Figure 6, Figure 7 and Figure 8 depict the test models that are used for DTV, SP

and WM, respectively. The models are defined in the forms of a Markov chain with the

MaTeLo2 tool. They constitute a hierarchical structure, in which states can further com-

prise sub-models. In our case study, we used RIMA for updating the the top-level test

models only. States of this model can be easily mapped to a particular system feature or a

set of software modules.

We see the initial test model for DTV in Figure 6. This figure represents DTV features

such as Media Browser (Audio, Picture, Video), Portal, Youtube, EPG, HDMI-SCART

(Source Switch), Record (PVR), HBBTV, Channel List and Teletext.

2http://www.all4tec.net/fr/matelo
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Figure 6: The first version of the test model developed for DTV.

The Figure 7 demonstrates main features in the SP system. In our case study, we fo-

cused on those applications that are developed by Vestel only. We see these features are

VCloud, VCam, Photos, Alarm, VMarket, Contacts, Phone Call, Themes, and SMS-MMS

The Figure 8 is the first test model developed for the WM system. In our case study, we

focused on those applications that are developed by Vestel only. The list of main features

for WM include Cotton, Easycare, Wool30, Rinse, Spin, Handwash, Sportwear, Mix30,

Duvet, Blouses, Daily60, Rapid15, and Babycare.

We explain the data collection and analysis procedures in the following.

4.3 Data Collection

In addition to test models, we collected additional data regarding the subject systems to be

able to perform the 3 model refinement steps of the approach. In particular, we collected

a usage profile, a static profile (based on static code analysis) and a dynamic profile (by

measuring memory usage and power consumption at runtime) for each subject system. In

the following, we explain how the data collection is performed.
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Figure 7: The first version of the test model developed for SP.

- Usage Profile

The first model update is performed based on usage profile. Usage profile is collected

as part of the regular alpha-test procedure of the company that we did not interfere. Hereby,

field testers are employed before a project is introduced to the production line for manu-

facturing and then to the market. These testers are actually the employees of the company

as well; however, they are selected from various departments such as Sales, Quality As-

surance, Manufacturing and Financing. The selection process starts with an announcement

made to all the employees in the company, informing them about the product, and data

to be collected. Then, applications are collected for 1 week. Normally, 30 to 50 people

among the applicants are selected as field testers. The selection is performed to maximize

the diversity among the testers in terms of the following properties: i) age, ii) department,

iii) peripheral devices being used at home, and iv) type/availability of network connection

at home. The selected field testers are asked to use the given products for 15 to 30 days.

The testing time depends on the product and its features. An application continuously runs
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Figure 8: The first version of the test model developed for WM.

in the background and records usage profile regarding the system during this period. The

collected information is analyzed by the test group. The main goal of this process is to

find usage specific failures caused by diverse (networked) environments for products that

require interactions with a variety of peripheral devices. We directly used the usage profile

data that is collected for the DTV, SP and WM subject systems.

- Static Profile

We used the list of static code analysis alerts as the static profile for DTV and SP.

We used Klocwork3 as the static code analysis tool to collect alerts regarding the system

source code. The only reason for this choice is that the tool was already being used by the

company. We directly used the list of alerts reported by the tool for the source code of DTV

and SP systems.

We used the number of configuration options per feature, as the static profile for WM.

We collected this profile manually by analyzing system specification documents. We it-

eratively refined the collected profile by discussing it with domain experts. In fact, this

3http://www.klocwork.com/
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profile is by-and-large obtained as a result of efforts spent for developing a test model for

the subject system.

- Dynamic Profile

We used the memory profile as the dynamic profile for DTV and SP. We used a cus-

tom developed tool [30] to collect memory profile. On the other hand, we used the power

consumption profile as the dynamic profile for WM. We calculated the power consump-

tion of each washing program such as Sportwear, Babycare etc. by using a measurement

device called the PCE (Personal consumption expenditure) instrument. We recorded these

measurements manually.

Dynamic profile is collected during every test execution. Test execution is performed

with a tool that is developed in-house by the company. The executed test cases are gener-

ated by the MaTeLo tool. There are several algorithms that proposed by MaTeLo for this

purpose. We employed two of these, namely the Minimum Arc Coverage (MAC) and the

User Oriented (UO) algorithm [31].

MAC is used for generating test cases in the initial iteration (Iteration 0). In this it-

eration, test models are not yet updated. Hence, all the probability values for outgoing

transitions of a state are equal to each other. MAC aims at edge coverage on such a model.

It systematically explores the model and stops generating test cases when all the state tran-

sitions of it are visited.

UO is used in succeeding iterations, after each model update. As a result of these

updates, the probability values for outgoing transitions of a state differ from one another.

UO explores the test model and chooses a transition at each state based on these values in a

non-deterministic manner. UO has two parameters; the limit on the number of test steps per

test case, and the limit for the total number of test cases. In our studies, these parameters

were set as 5000 and 1, respectively.
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4.4 Analysis

- Experimental Setup for DTV

In our DTV case study, we have used usage profile to collect sample which consists of

30 products. This sample have been sent to 30 different field testers. After 30 days past

from sending of the sample, the log files are collected and they are also analyzed. Then,

for each module, probability values are calculated by RIMA based on the raito of usage per

feature. These values can be seen in the first column of Table 1.

Feature % of usage % of warnings % of leakage

Portal 14.6 32.2 21.8

Youtube 17.3 32.2 47.7

HBBTV 3.8 10.8 4.7

Video(MB) 13.4 3.6 11.9

Audio(MB) 3 1.7 2.2

Picture(MB) 0.7 1.7 2.1

PVR 7.6 5.4 5

Channel List 13.4 5.4 1.3

EPG 15.3 3.6 1.7

Teletext 9.6 1.7 0.9

HDMI-SCART 0.7 1.7 0.5

Table 1: The collected data regarding the Digital TV system.

In the second column of Table 1, the ratio of the warning messages (as generated by

the static code analysis tool) for each module are listed. The model is updated by RIMA

accordingly, as it can be seen in Figure 9.

In the third column of Table 1, the ratio of memory leackage caused by each module

are listed. These values are obtained with runtime measurements performed by a custom-

developed tool. The model is updated by RIMA accordingly, as shown in Figure 10.
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Figure 9: The test model updated based on static profile after the second iteration (DTV).

- Experimental Setup for SP

As a sample of 50 products have been sent to 50 different field testers in order to collect

usage profile for SP. After 30 days past from sending of the sample, we have analyzed

usage of all of the users. After that, for each module, the probability values are calculated

by RIMA according to the ratio of usage, as listed in the first column of Table 2.

We have collected the alerts (warnings) reported by the static code analysis tool. In

the second column of the Table 2, ratio of these alerts are listed for each module. These

are used for calculating probability values taking part in the test model. Accordingly, the

model was updated by RIMA as it can be seen in Figure 11.

Finally, memory profiles are used in the last iteration. The required data is collected

by a custom-developed tool during the test runs performed in previous iterations. The ratio

of memory leakage associated with each module is listed in the third column of Table 2.

These are used for calculating probability values taking part in the test model. The resulting

model is shown in Figure 12.

- Experimental Setup for WM
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Figure 10: The test model updated based on dynamic profile after the third iteration (DTV).

The 8 washing machines were sent to 8 different people who are users of the machines in

order to collect usage profile for 100 days. With the helps of the Internet, these WMs send

log file to the company to be analyzed. The first column of Table 3 shows the ratio of usage,

which is taken as the basis for calcuating probability values regarding each module.

We have used program configuration analysis for the second iteration. The ratio of the

total number of configuration options are listed in the second column of Table 3 for each

module. It is assumed that the more the number of configuration options is, the more it

is likely to have a fault in the corresponding module. Hence, the test model is updated

according to these ratios. The Figure 13 demonstrates the model updated by RIMA.

For the third iteration, we used power consumption measurements. The third column of

Table 3 lists the power consumption ratio per feature, which is reflected to the probability

value on the correspondign transition. The model (Figure 14) was updated by using these

values with the help of RIMA.
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Feature % of usage % of warnings % of leakage

VCloud 0.9 9.5 0.5

VCam 22.2 11.6 3.8

Photos-Videos 14.8 11.6 57.1

Alarm 13.0 7.4 5

VMarket 5.6 9.5 14.8

Contacts 10.2 8.4 1.2

Dialer Phone Call 18.5 16.8 2.4

Themes 11.1 7.4 1.6

SMS-MMS 3.7 17.9 13.6

Table 2: The collected data regarding the Smart Phone system.

4.5 Results
4.5.1 Results for DTV

The summary of the results for DTV, is listed in Table 4. By using the original model, 7

faults and 2 more new faults were caught. With the help of the RIMA tool, 5 more new

faults could be found in the other iterations. All of the detected faults were critical4 for

usage of the DTV. It took 11 hours (4+4+1.5+1.5) to execute all the test cases and 12 faults

(7+2+1+2) were found in total.

Random testing results for the DTV case study are listed in Table 5. We kept the

Iteration 0 results for the initial test execution, which is the same with our approach. 7 faults

had been detected (2 new) with using the original model. Then, we iteratively generated

test cases without changing any probability values in the model. We generated test cases 3

more times and executed these cases. We observed that it took 16 hours (4+4+4+4) to run

all the test cases. However, we could find 9 distinct faults (7+0+2+0) in total.

4We deemed these faults to be relevant and important because they lead to failures such as crash or lack
of response, which can only be recovered by restarting the whole system. As such, they were categorized by
the collaborators as critical faults in the issue management system of the company.
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Figure 11: The test model updated based on static profile after the second iteration (SP).

4.5.2 Results for SP

Table 6 summarizes the SP case study results. 3 faults were pinpointed and only one new

fault were found by using the original model, before updates. After the model was updated

with RIMA, 5 more new faults were caught. These faults are related to performance prob-

lems in the system. For example, they include missing a message in the message box, a

wrong call information in the contact list etc. It took 21 hours (6.5+5.5+5+4) to run all the

test cases and 8 faults (3+3+1+1) were found in total.

Random testing results for the SP case study are in Table 7. We see that it took 26.5

hours (6.5+6.5+7+6.5) to run all the test cases. However, we could find 7 faults (3+2+2+0)

in total.

4.5.3 Results for WM

The WM case study results are listed in Table 8. When we used the original model, 8 faults

were detected. This model was transformed with RIMA. 4 new faults could be found in the

the succeeding iterations. All of the detected faults caused failures related to functionally

problem. For instance, they include door lock, spin, drain and shaking problems. It took
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Figure 12: The test model updated based on dynamic profile after the third iteration (SP).

227 hours (84+82+39+22) to run all the test cases and 12 faults (8+1+2+1) were found in

total.

Random testing results for the WM case study are in Table 9. We see that it took 301

hours (84+70+78+69) to run all the test cases. However, we could find 12 faults (8+3+1+0)

in total.

4.5.4 Interpretation of Results

In the following, we provide an answer to each research question by interpreting the ob-

tained results.

Effectiveness of RIMA updates based on usage profile (RQ1) In Table 4, Table 6 and

Table 8 the second rows regarding Iteration 1 show the results after test models are updated

based on usage profile. We can see for the DTV system that the number of test steps

was decreased by 4.49%. Test execution time remained the same. We could detect 2 new

faults. Otherwise, the number of test steps was decreased by 14.9% for the SP system. Test

execution time was decreased by 15.38%. 3 new faults were detected in this system. On

the other hand, the number of test steps was decreased by 1.61% for the WM system. Test
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Feature % of usage % of Configurations % of Power Consumption

COTTON 14.2 13.8 18.2

EASYCARE 7.5 8 22.5

WOOL30 2.4 6.5 7.2

RINSE 1.1 4.3 0.7

SPIN 1.3 0.6 0.7

HANDWASH 5.1 6.7 1.3

SPORTWEAR 4.3 7.5 3.4

MIX30 17.5 11 3

DUVET 1 11 6

BLOUSES 4.6 10.1 9.6

DAILY60 18.5 5.6 7

RAPID15 17 2.8 0.7

BABYCARE 5.5 12.1 19.7

Table 3: The collected data regarding the Washing Machine system.

execution time was decreased by 2.38%. We could detect a new fault in this system as well.

Overall, we can conclude that test suites became more effective in terms of the number of

detected new faults per executed test step.

Effectiveness of RIMA updates based on static code analysis (RQ2) In Table 4, Table 6

and Table 8, the third rows regarding Iteration 2 show the results after test models are

updated based on static code analysis alerts. We could detect 1 new fault in the DTV

system, where the number of test steps was decreased by 83.19% and test execution time

was decreased by 62.5%. Otherwise, the number of test steps was decreased by 15.85%

for the SP system. Test execution time was decreased by 9.1%. We could detect a new

fault as well. On the other hand, the number of test steps was decreased by 52.87% for the

WM system. Test execution time was decreased by 52.44% and 2 new faults were defined.

Therefore, we conclude that test suites became more effective after this update.
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Figure 13: The test model updated based on static profile after the second iteration (WM).

Figure 14: The test model updated based on dynamic profile after the third iteration (WM).

Effectiveness of RIMA updates based on dynamic analysis (RQ3) In Table 4, Table 6

and Table 8, the last rows (Iteration 3) show the results after test models are updated based

on memory profile. We can see for the DTV system that the number of test steps was

decreased by 15.83% although test execution time remained the same. In the mean time, we

could detect 2 new faults. We could detect a new fault in the SP system as well. However,

the number of test steps was decreased by 15.5% and test execution time was decreased by

20%. On the other hand, a new fault was detected. We could identify a new fault in the

WM system as well. However, the number of test steps was decreased by 41.74% in this

system. Test execution time was decreased by 43.59%. Hence, we conclude that test suites
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Iter. # # of Test Steps Time (hr) # of Faults # of New Faults

0 847 4 7 2

1 809 4 9 2

2 136 1.5 3 1

3 117 1.5 3 2

Table 4: Test results regarding the Digital TV sytem (with RIMA).

Iter. # # of Test Steps Time (hr) # of Faults # of New Faults

0 847 4 7 2

1 854 4 7 0

2 901 4 9 2

3 867 4 8 0

Table 5: Test results regarding the Digital TV system (without RIMA).

became more effective after this update as well.

Test efficiency with and without RIMA (RQ4) Finally, we compare the test efficiency

achieved with RIMA to that of random testing, where the same test model is used by MBT

without any updates in successive test iterations. We measure test efficiency as the number

of detected faults per unit of time. So, an improvement can be achieved in two ways;

the same set of faults can be detected in less testing time, or additional/new faults can be

discovered within the same test duration or less.

Test efficiency of DTV tests is calculated as 1.09 faults/hrs with RIMA based on the

results listed in Table 4. It would be 0.56 faults/hrs (See Table 5), when RIMA was not

used. Similarly, the achieved test efficiency in SP tests can be calculated as 0.38 faults/hrs

(See Table 6) and 0.26 faults/hrs (See Table 7) with and without RIMA, respectively. Also

similarly, the obtained test efficiency in WM tests can be determined as 0.052 faults/hrs

(See Table 8) and 0.039 faults/hrs (See Table 9) with and without RIMA, separately. We

conclude based on these results that RIMA does improve test efficiency with respect to

33



Iter. # # of Test Steps Time (hr) # of Faults # of New Faults

0 1416 6.5 3 1

1 1205 5.5 6 3

2 1014 5 4 1

3 857 4 3 1

Table 6: Test results regarding the Smart Phone system (with RIMA).

Iter. # # of Test Steps Time (hr) # of Faults # of New Faults

0 1416 6.5 3 1

1 1456 6.5 5 2

2 1502 7 7 2

3 1489 6.5 7 0

Table 7: Test results regarding the Smart Phone system (without RIMA).

random testing, where the model is not subject to any updates.

4.6 Threats to Validity

In this section, we discuss possible validity threats [32] regarding our case studies.

As a threat to construct validity, one might question the validity and completeness of

test models that are used as input in our case studies. These models were previously de-

veloped by the software test group in the company based on functional requirements docu-

ments. These documents are not always complete and precise in the consumer electronics

domain. In principle, the more the developed test models are incomplete, the less would be

the number of detected faults, regardless of the use of RIMA. Another threat is regarding

our evaluation of the detected faults in terms of their severity. Hereby, we attributed them

as critical faults based on the categorization scheme of the company. This evaluation does

not really reflect the perception of the end users.

Threats to internal validity are concerned with various factors that might have influenced
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Iter. # # of Test Steps Time (hr) # of Faults # of New Faults

0 248 84 8 -

1 244 82 5 1

2 115 39 6 2

3 67 22 3 1

Table 8: Test results regarding the Washing Machine system (with RIMA).

Iter. # # of Test Steps Time (hr) # of Faults # of New Faults

0 248 84 8 -

1 250 70 5 3

2 240 78 9 1

3 236 69 4 0

Table 9: Test results regarding the Washing Machine system (without RIMA).

the obtained results. To mitigate this threat, we compared these results with those obtained

with random testing. Hereby, we only removed the application of RIMA from the process

and kept everything else the same, including the test models, tools, employed test case gen-

eration algorithms and their parameter settings. The selection of the algorithms and their

parameter settings were directly adopted from the existing practices of the company.

To mitigate external validity threats, we performed two case studies focusing on three prod-

ucts, Digital Television, Smart Phone systems, and Washing Machine. However, both of

these systems are developed by the same company. Additional case studies in different con-

texts can be performed to address concerns regarding the generalisability of the approach.

In principle, our approach is applicable to black-box testing of any non-real-time reactive

system. It is especially relevant for the consumer electronics domain where the resources

are scarce. In terms of tool support, the current implementation only supports the update

of test models specified in Markov chain formalism. One of the authors was an employee

of Vestel and had access to resources/support in the company to perform case studies. This
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was the reason for conducting case studies in this company and using the Markov chain

formalism, which was already adopted by the company.

We use a set of external tools, which might be considered as a threat to the reliability of our

studies. Our approach employs RIMA for updating test models automatically. However, it

relies on a set of external tools and data for risk estimation and analysis. For instance, we

rely on alerts provided by a static code analysis tool to estimate the risk of fault occurrence.

If the output of this tool is not accurate, then our estimations would also be wrong.
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CHAPTER V

RELATED WORK

There have been various MBT techniques proposed [9]. These techniques employ a variety

of formalisms to document a test model like finite state machines [33, 34]. In our approach,

test models are specified in the form of Markov chains [21].

MBT is now a state-of-the-practice technique actively being used in industry. There

have been several case studies [35, 36] reported for evaluating MBT in an industrial setting.

In our work, we evaluate the effectiveness of our approach in an industrial setting as well.

In particular, we focus on the consumer electronic domain.

Our approach basically involves iterative refinements of a test model used for MBT.

There have been many other approaches [18, 12, 37, 14] that are also based on iterative

model refinements. These studies differentiate from our approach by their goal of extend-

ing test models. They augment existing models with additional states and transitions to

incorporate new system behavior. This behavior is mainly discovered by monitoring the

system execution at run-time. In our approach, we do not aim at extending existing test

models. We assume that the model is complete enough and it is so large that it is not possi-

ble to achieve an extensive coverage of the model during test case generation. We only add

fault/error states and update transition probabilities to steer the test case generation process

on various execution paths on the model. We employ multiple types of analysis for this

purpose based on usage profile, static analysis as well as dynamic analysis.

A risk-based MBT approach [28] was previously proposed based on an inspiration from

the principles of risk-based testing [1]. The risk estimation in that approach was only based

on dynamic analysis focusing on memory leaks. That approach was later extended with the

use of usage profile and static analysis for risk estimation [14]. Hereby, dynamic analysis
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was again focusing on memory leaks. Usage profile was used for calculating the probability

that a particular feature of the system is used and associated faults gets triggered. Static

code analysis alerts were used to estimate the likelihood of faults regarding each feature. In

this thesis, we generalize that approach and introduce a unified risk-driven MBT approach,

where the types of risks and their estimations can be defined based on the system under

test and its context. We conduct 3 case studies with various subject systems for which we

instantiate the approach according to each system.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

In this thesis, we presented a risk-driven model testing approach. Our approach refines a

test model iteratively for increasing the efficiency of model-based testing. The approach

is automated with a tool, called RIMA, which takes several types of profile data as input.

These include the usage profile, a profile collected using static analysis and another profile

obtained via dynamic analysis. RIMA adapts test models for steering test case genera-

tion such that various sections of a test model is covered after each refinement iteration

to effectively detect critical faults. These faults are the ones that have a higher chance to

get exposed to end users as failures. We refined a previously proposed risk-driven model-

based testing approach to make it generically applicable to various systems. In our unified

approach, various types of risks can be defined and estimated based on either static or dy-

namic analysis of software artifacts. Hence, the approach can be instantiated differently for

each subject system.

We evaluated our approach with 3 industrial case studies. In the first case study, we

applied our approach in the context of model-based testing of a Digital TV system. We

obtained promsing results where new faults were detected in less time. In the second case

study, we focus on smart phones as subject systems and likewise, we were able to pinpoint

new faults after each refinement iteration. We also measured the number of detected faults

and test duration when random-stochastic test case generation is used without model up-

dates of RIMA. We observed in both case studies that the number of detected faults was

decreased. Moreover, the test duration was increased for both case studies. We also instan-

tiated the approach for washing machine software, where risk estimations were performed
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differently. Yet, we obtained promising results also in this case study, where the test du-

ration was reduced without any decrease in the number of detected faults. These results

suggest that RIMA increases the efficiency of model based testing.

As future work, RIMA can be extended to take additional fault/error types into ac-

count and employ additional analysis to improve fault and error likelihood estimations.

The number of case studies can also be increased for evaluating the general applicability

and effectiveness of the approach in various application domains.
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[14] C. Gebizli, H. Sözer, and A. Ercan, “Successive refinement of models for model-based
testing to increase system test effectiveness,” in Proceedings of the 11th Workshop
on Testing: Academia-Industry Collaboration, Practice and Research Techniques,
pp. 263–268, 2016.

[15] P. Ammann and J. Offutt, Introduction to software testing. Cambridge University
Press, 2008.

[16] T. Chow, “Testing software design modeled by finite-state machines,” IEEE Transac-
tions on Software Engineering 4, vol. 4, no. 3, pp. 178–187, 1978.

[17] F. Belli, “Finite state testing and analysis of graphical user interfaces,” in Proceedings
of 12th International Symposium on Software Reliability Engineering, ISSRE2001,
pp. 34–43, 2001.

[18] X. Yuan and A. Memon, “Generating event sequence-based test cases using GUI run-
time state feedback,” IEEE Transactions on Software Engineering, vol. 36, pp. 81–95,
Jan. 2010.

[19] D. Harel, “Statecharts: A visual formalism for complex systems,” Science of Com-
puter Programming, vol. 8, no. 3, pp. 231–274, 1987.

[20] G. H. Walton and J. H. Poore, “Generating transition probabilities to support model-
based software testing.,” Software: Practice and Experienc, vol. 30, no. 10, pp. 1095–
1106, 2000.

[21] J. Whittaker and M. Thomason, “A markov chain model for statistical software test-
ing,” IEEE Transactions on Software Engineering, vol. 20, no. 10, pp. 812–824, 1994.

[22] E. Dustin, J. Rashka, and J. Paul, Automated Software Testing: Introduction, Manage-
ment, and Performance. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1999.

[23] C. S. Gebizli, Automated refinement of models for model-based testing. Ph.D. thesis,
Ozyegin University, 2017.

[24] “Standard glossary of terms used in software testing,” tech. rep., ISTQB, 2012.

[25] M. Felderer and R. Ramler, “Integrating risk-based testing in industrial test pro-
cesses,” Software Quality Journal, vol. 22, no. 3, pp. 543–575, 2014.

[26] M. Wendland, M. Kranz, and I. Schieferdecker, “A systematic approach to risk-based
testing using risk-annotated requirements models,” in Proceedings of the 7th Interna-
tional Conference on Software Engineering Advances, pp. 636–642, 2012.

42



[27] M. Felderer, C. Haisjackl, R. Breu, T. Margaria, and B. Steffen, “A risk assessment
framework for software testing,” in Leveraging Applications of Formal Methods, Veri-
fication and Validation. Specialized Techniques and Applications, pp. 292–308, 2014.
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