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Özyeğin University

Associate Professor Hürevren Kılıç,
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ABSTRACT

Face recognition problem were studied for more than four-decade, and many descrip-

tors and neural network architectures have been proposed since then. The aim is

simple, extract features from the same subjects for training and test face image sets,

if the proposed method was accurate, the extracted features categorized under the

same label. However, the problem starts with the illumination effect on the images;

the illumination effect may cause the extracted features for the same subject to be

classified with the different labels. Therefore, illumination and other environmental

impacts should be removed for accurate classification. One solution for eliminat-

ing environmental effect is using Local Binary Pattern (LBP) descriptor. LBP is

an illumination invariant, computationally simple, and highly discriminative visual

descriptor. Therefore, LBP based descriptors have been developing for more than a

two-decade for solving face recognition problem. LBP′s computationally simple prop-

erty make it applicable to different types of computer vision problems, also there are

many examples of LBP variants either achieved state-of-the-art results in a particular

application or complementary to the LBP. Having been inspired from the results, in

this thesis, an LBP variant descriptor, Multi-scale Binary Similarity approach is pro-

posed. MSBS encodes face image characteristic by analyzing the pixel relationships

in selected components. The encoded features of the MSBS trained with Support

Vector Machines (SVM) and tested with AT&T, Extended Yale B, Georgia Tech and

MNIST datasets. The results show that MSBS outperforms most of the proposed

approaches in the literature.
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ÖZETÇE

Yüz tanıma problemi üzerine kırk yıldan fazla bir süredir çalışılmaktadır ve bu prob-

lemi çözmek için birçok algoritma ve sinir ağ yapısı önerilmiştir. Yüz tanımadaki

amaç oldukça basittir, eğer önerilen metod, aynı kişiye ait eğitim ve test setlerinden

alınmış örneklerden çıkarılan özellikleri aynı etiket altında kategorize edebiliyorsa, bu

o algoritmanın doğruluğunu gösterir. Öte yandan problem ise resimler üzerindeki

ışıklandırma efekti ile başlar. Işıklandırma efekti, aynı kişiye ait iki farklı örnekten

çıkarılmış özellikleri farklı etiket altında kategorize edilmesine, bu resimleri farklı

kişilere aitmiş gibi gösterilmesine sebep olabilir. Bu yüzden doğru sınıflandırma ya-

pabilmek için, ışıklandırma ve diğer çevresel etkiler ortadan kaldırılmalıdır. Çevresel

etkilerin ortadan kaldırılması için bir çözüm yerel ikili örüntü (LBP) algoritmasını

kullanmaktır. LBP ışıklandırma efektinden etkilenmeyen, kolay hesaplanalabilen,

örneklerden çıkarılan özellikleri başarılı bir şekilde ayırt edebilen bir görsel anahtar

nokta tanımlayıcıdır. Bu yüzden LBP temelli tanımlayıcılar yirmi yılı aşkın süredir,

yüz tanıma problemini çözmek için geliştirilmektedir. LBP’nin kolay hesaplanala-

bilme özelliği onun farklı problemlere uygulanabilir olmasını sağlamıştır, hatta LBP

türevlerinin farklı uygulamalarda en iyi sonuçu aldığı veya LBP ile birlikte kul-

lanılarak, LBP’nin sınıflandırma doğruluğunu artırdığı çok örnek vardır. Bu sonuçlardan

esinlenerek, bu tezde, bir LBP varyantı tanımlayıcı olan Çok Ölçekli İkili Benzerlik al-

goritması (ÇÖİB) önerilmiştir. ÇÖİB tanımlayıcı algoritması, yüz resmindeki karak-

teristiği, seçilen alanlar içerisindeki, pikseller arasındaki ilişkiyi kodlayarak ortaya

koyar. ÇÖİB’in çıkardığı özellikler, Destek Vektör Makinesi (SVM) ile eğitilmiştir ve

AT&T, Extended Yale B, Georgia Tech verisetleri ile test edilmiştir. Sonuç olarak

ÇÖİB algoritması, literatürde önerilmiş yaklaşımların çoğundan daha iyi sınıflandırmıştır.
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CHAPTER I

INTRODUCTION

The way the humans act in the daily life is based on perceiving and interpreting

the events. We can recognize faces, read handwritten characters, identify foods, etc..

While we are accomplishing these actions, we analyze the information received from

the environment through our vision. At least 50% of human brain is dedicated to

vision [1]. Therefore, vision is crucial for people. Vision is also essential for machines.

Computer vision helps us to track multiple objects, detect, recognize or classify them;

it makes human-computer interaction more useful. Computer Vision capabilities can

be summarized with Human Behavior Analysis (HBA) [2]. HBA consists of two parts,

models, and analysis. The second part is divided into pattern recognition, machine

learning, and statistics. Pattern Recognition is the act of analyzing and categorizing

raw data [3].

Pattern Recognition is the machine imitation for what most humans do in daily

life, perceiving the distinguishing characteristic of raw data from the environment

and interpreting obtained feature for classification. Pattern Recognition consists of

four-steps, taking raw data, preprocessing, feature extraction and classification [3].

The first step is receiving input data, and it can be an image or integer matrix. The

second phase is preprocessing. The input data may contain unwanted artifacts, to

remove these effects, multiple filters are applied. The third step is feature extraction,

finding the distinguishing characteristic or pattern from input data. The fourth step is

classification; extracted features are categorized due to their unique properties. If first

three steps are effectively accomplished, possible highest classification accuracy can

be achieved. Otherwise, the selected features must be changed with new ones, until
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highest accuracy is achieved. This can be an exhaustive long iterative loop. There-

fore, feature selection is essential for classification accuracy. One possible solution

for selecting discriminative features is preprocessing the input data. For this reason,

preprocessing is considered to be useful [1] and preprocessing algorithm aims to in-

crease classification or detection accuracy. Preprocessing can be a chain of multiple

filters [4] or a descriptor [5]. The preprocessing algorithm can be designed for a par-

ticular application, or descriptor. There are nine LBP variant development directions

cited in the literature, those are preprocessing, neighborhood topology, thresholding

& encoding, multiscale analysis, handling rotation, handling color, complementary

descriptors, feature selection and learning, and also the other methods inspired by

LBP [1]. In this thesis, we focused on preprocessing and neighborhood topology direc-

tions bu using preprocessing chain [4], which proved to be an effective preprocessing

method and LBP descriptor with a broad range of application areas, e.g., face analy-

sis [6], face recognition [7], handwritten digit recognition [8], bioimaging techniques,

such as biopsied organ tissue and blood cell phenotype classification [9], radiological

techniques such as the magnetic resonance imaging [10].

We proposed a directly applicable, visual descriptor, called Multi-scale Binary

Similarity (MSBS), for face recognition. MSBS is designed to extract interest points

from the input image. The term interest points refer to candidate feature [11]; it

can be an edge, corner or spot. The extracted feature descriptor chooses the best

matching interest points. In this study, MSBS extracts interest points from the input

data, and LBP used to select among interest points. Extracted features were classified

using SVM. MSBS was tested with AT&T [12], Extended Yale B [13] and Georgia

Tech [14] face recognition datasets.
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CHAPTER II

PREVIOUS WORK

2.1 Local Binary Pattern

The original LBP descriptor was first proposed by Ojala et al. in the comparative

study of texture measures [15]. The study consisted of LBP method explanation

and comparison with other current descriptors. Ojala et al. profoundly influenced

and embraced the idea of texture spectrum and modified the texture spectrum and

named as LBP. Texture spectrum used three-level encoding structure 0, 1, 2 for the

characterization of the image. Texture spectrum checks three conditions, whether the

neighbor pixel is greater, equal to or lower than the center pixel, which will result in

38 = 6561 histogram bin. Instead, Ojala et al. suggested the same method with binary

encoding structure, which checks two conditions. The first condition is neighbor

pixel either greater than or equal or the second condition, lower than the center

pixel. The new descriptor was compared using Nearest-Neighbor Classifier with Gray-

level difference method, Law’s texture measures [16], center-symmetric covariance

measures, Complementary feature pairs. The result was, LBP had the lowest error

rate. LBP has reduced dimension, and highest classification rate compared to Texture

Spectrum.

2.1.1 Texture Spectrum

Texture Spectrum was designed to extract principal features, which believed to be

efficient at the characterization of the image. The characterized features are dis-

criminative and higher classification accuracy achieved. The motivation behind the

texture spectrum was Wang et al. disbelieved in the co-occurrence matrix because

the co-occurrence matrix depends on pixel pair occurrences and background pixels.

3



The co-occurrence matrix calculation as in the following:

Figure 1: A simple Co-occurrence matrix calculation demonstration.

The sum of the Matrix A values =6. (1)

Co-occurrence Matrix (C) =
1

6
A. (2)

As it can be interpreted from the above calculations, The co-occurrence matrix

indicates the number of pixel values occurs in the selected spatial coordinate, and

it was widely used for feature extraction. Wang et al. proposed the term texture

spectrum, which did not depend on background pixel and the pair of pixel occurrences.

Texture Spectrum consisted of texture units and labeling.

2.1.1.1 Texture Units and Labeling

Texture units (TU) was designed to extract the principal features from the selected

region of the input image, which believed to best characterized the local region. As the

name implies, texture means characterization of gray-level variation in an image [17].
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The term unit referred to the set of eight elements, where each element (E) can

only be 0, 1 or 2; therefore texture unit means calculating eight elements from the

selected region in the gray-scale image. The term element should not be confused

with pixel intensity (V), element value calculated by thresholding pixel values. The

reason texture unit consisted of eight elements is because each element obtained from

the 3x3 matrix. Texture unit calculation can be represented as in the following:

V = {V0, V1, ...V8}

TU = {E0, E1, ...E8}

Ei =


0, if Vi < V0

1, if Vi = V0

2, if Vi > V0

(3)

for i = 1,2,..., 8, where V0 is the center pixel intensity and Vi is the current neighbor

pixel intensity.

Texture spectrum is the histogram of all texture units obtained from the image. To

be more precise, from the selected 3x3 matrix, which consists, a center pixel and eight

neighbors, each neighbor, starting from upper left spatial coordinate, thresholded with

the center pixel in a clockwise direction to encode texture unit.

The encoded texture unit was converted into a single decimal value named as

texture unit number(NTU). Converting texture unit to decimal value is called labeling,

using the following formula:

NTU =
8∑
i=1

3i−1Ei, NTU ∈ {0, 1, 2, ..., 6560} (4)

For Instance; the calculated TU 00000200 converted as 486 value. The calculated

decimal value used as bin value in texture spectrum distribution.

5



Figure 2: A simple Texture Unit Calculation.

2.1.1.2 Texture Classification

Texture spectrum classification accuracy is calculated as following [18]:

procedure Texture Classification

(1) For each image in the dataset, randomly select 30x30 pixels regions.

(2) For each selected pixel region, calculate texture spectrum by overlapping

3x3 matrix inside.

(3) For each image in the dataset, move sliding window 30x30 pixel inside the

image. Each time the sliding window moves, calculate the texture spectrum, then

move the sliding window 2 pixels right and down.

(4) Calculate absolute difference between the calculated texture spectrum of

the sliding window and computed texture spectrum of pixel regions (D(i)), using

the below formula;

D(i) =
6561∑
j=1

|W (j)− S(i, j)|, i = 1, 2, 3, 4 (5)

W(j): TU j occurrence value in the sliding window.

S(i, j): TU j occurrence value in the pixel region i.

6



(5) The minimum D(i) values are categorized together as labels.

end procedure

Texture spectrum was tested on only four images in Brodatz dataset [19]. The

average classification accuracy was calculated as 97.5%. However, texture spectrum

tested on only four images and the dataset was not divided into training and test set.

Therefore the value 97.5% interpreted as the training set accuracy.

2.1.1.3 Texture Spectrum Modification

Ojala et al. proposed each element of TU should be either 0 or 1, instead of 0, 1 or

2. This result reduced bin size 6561 (38) to 256 (28). The basic LBP operator can be

summarized as follows:

LBPP,R =
P−1∑
p=0

SLBP (gp − gc) ∗ 2p (6)

SLBP (z) =


1, z ≥ 0

0, z < 0.

(7)

LBP was tested with Brodatz and images were used as in Ohanian and Dubes [20]

study. Both images were classified using Nearest-Neighborhood Classification. Each

extracted LBP features are distributed in 32 bin histogram, and as a similarity func-

tion, Kullback’s minimum cross entropy principle is used [21]. In equation 8, s is the

sample, m is model distribution, n is a number of the bin, si, and mi are respective

sample and model probability at bin i.

D(s : m) =
n∑
i=1

si log
si
mi

(8)

The significant modification of texture spectrum is reducing bin size 6561 to 256.

One possible reason for this is, as Harwood et al. stated if histograms have too

many bins, histograms become sparse and unstable, therefore reducing bins make
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Figure 3: The Original LBP Calculation.

histogram more stable [22]. The minor modifications were made in terminology;

the term element interpreted as bin, texture unit interpreted as the pattern. Other

principals of texture spectrum were accepted as it is, for instance, each pattern has

eight bins, the patterns calculated by thresholding neighbor and center pixels in a

clockwise direction.

2.1.2 Uniform Patterns

During the development of LBP, calculated patterns were divided into uniform and

non-uniform patterns. The reason for the division was, better results were obtained

with uniform patterns. Uniform patterns had more discriminating power compared

with non-uniform patterns. Uniform pattern has many advantages; it is less affected

by noise, reduced the size of calculated labels and detected local primitives. The

term local primitive refers to spot, spot/flat, Line end, edge, and corner [1]. The

non-uniform patterns are collected into the single bin size in the histogram.

The detection of uniform pattern was based on a simple rule, the change in bits

should be equal to or less than two. For instance, the pattern 01000000 is uniform.
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Brodatz Image Texture Spectrum LBP

Figure 4: Texture Spectrum and LBP Histograms comparison. (Brodatz Images and
Texture Spectrum Histograms adapted from [15])

The reason is the change in bits is two. The first change is from first to second bit 0

→ 1 and the second change is from second to third bit 1 → 0. In a gray-scale image,

9



Figure 5: Local Primitives detected by the LBP (Figure adapted from [1]).

there is 58 uniform pattern (Table 1). Here in the above Figure, Spot pattern is

00000000, Spot/flat pattern is 11111111, Line end pattern is 00000110, Edge pattern

is 00000110, Corner pattern is 00000111.

Table 1: Uniform Patterns Examples

Pattern
Representation

Uniform Pattern Decimal Value

00000000 0

00000001 1

00000010 2

00000011 3

00000100 4

00000110 6
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2.1.3 Rotationally Invariant Local Binary Pattern

The effect of rotating an image changes the order of pixels; therefore the obtained

pattern from the selected region is different from the unrotated image.

Figure 6: Rotated Image effect on obtaining the pattern (Figure adapted from [1]).

Figure 7: The difference between Original and Rotated Image Patterns.

In the original image, the obtained pattern is 01110000, and the rotated image

received pattern is 001110000. Both original and rotated images pattern extracted

from same pixel and region, however, the results are not same. Since results are not

same, two images are interpreted as different images. Therefore rotational invariant

mapping is required [1]. The idea of mapping is to rotate the obtained pattern to

its minimum value. The result is both patterns are same. For instance; 01110000

rotated to 001110000, so both patterns have the same value. This rotation equalizes

both patterns and can be shown in the formula:

LBP ri
P,R = minROR(LBPP,R, i) (9)
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2.2 Local Binary Pattern Variants

2.2.1 Preprocessing

The general purpose of preprocessing algorithm is to analyze the given input image

pixel by pixel and obtain complementary information. A Preprocessing algorithm

can be a filter, combination of filters, or even a descriptor. There are two distinctions

between preprocessing and a descriptor. The first distinction is the range; the pre-

processing algorithm considers all pixels, where the descriptor considers only selected

region inside the image. The second distinction is the purpose, the preprocessing

algorithm, aimed to encode image data, where descriptor extracts small and crucial

information from the selected region. Some successful preprocessing algorithms have

been shown in face recognition, facial appearance, and shape localization fields. In

their pioneering work, Zhang et al. [23] combined Gabor filter with LBP, named their

method as Local Gabor Binary Pattern Histogram Sequence (LGBPHS). LGBPHS

tested on face recognition field. Given input image divided into local region, from each

region LGBPHS histograms are extracted. Each histogram is concatenated to create

the feature vector. LGBPHS reached the state-of-the-art performance in face recog-

nition. Another preprocessing algorithm is Tan and Triggs preprocessing chain [4].

Preprocessing Chain three main steps are gamma correction, the difference of Gaus-

sian filtering (DoG), masking (optional) and contrast equalization (Figure 8). As seen

in Figure 9, Preprocessing Chain is useful for recognition.

Figure 8: The steps of Preprocessing Chain
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Figure 9: The effect of Preprocessing Chain on Extended Yale B database

2.2.2 Neighborhood Topology

2.2.2.1 Elongated LBP

LBP features are usually extracted from a circular or square neighborhood. As a re-

sult, the rotational-invariance is ensured. However, if the rotational-invariance is not

needed or depending on the need of the application, neighborhood calculation can be

different. For instance, Liao et al. [24] used elliptical neighborhood instead of a cir-

cular or square neighborhood. The reason is their study focused on face recognition.

In face recognition problem, anisotropic structural information is the only concern.

Therefore the best way to increase face recognition accuracy is extracting anisotropic

structure from the face. An anisotropic structure can be eyes, mouth, etc.. For this

reason, Liao et al. proposed two features, the Elongated LBP (ELBP) and Aver-

age Maximum Distance Gradient Magnitude (AMDGM). ELBP extracts anisotropic

structure from an elliptical neighborhood, while AMDGM, for each pattern, captures

gradient information. There are three parameters for ELBP: Long (A) and short axis

(B) of the ellipse and the number of neighboring pixels (m) (Figure 10).

ELBP tested with FERET [26] and ORL [12]. The conclusion was, ELBP with

AMDGM performed higher classification accuracy compared to LBP.
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Figure 10: ELBP Demonstration. A: long axis of the ellipse; B: the short axis of
the ellipse; m: number of neighboring pixels. From selected center pixel, A and B
distance away, m neighbors are selected.

Figure 11: The different Neighborhood Topologies (Figure adapted from [9]): (a)
circle; (b) ellipse; (c) parabola; (d) hyperbola; (e) Archimedean spiral

2.2.2.2 Quaternary Pattern

Nanni et al. [9] compared five different neighborhood (Figure 11) on three different

datasets for medical image analysis; classification of pain expression (COPE) [28],

2D-HeLa dataset [29], pap smear diagnosis [30]. The term pain expression provides
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crucial information for the baby’s state. The conclusion was, elliptic neighborhood,

encoded with quaternary patterns, performs the best classification for medical image

analysis. Unlike binary pattern, the quinary pattern is encoded using five values (-2,

-1, 0, 1, 2) and two threshold values (τ1, τ2). The difference (d) calculated using

neighbor pixel (ε) and center pixel (x). The quaternary pattern is split into four (-2,

-1, 1, 2) binary patterns.

d =



2, υ ≥ x+τ2

1, x + τ1 ≤ υ < x+τ2

0, x− τ1 ≤ υ < x+τ1

-1, x− τ2 ≤ υ < x-τ1

-2, otherwise

(10)

Figure 12: Quinary Pattern Example.

2.2.2.3 Local Line Binary Pattern

Petpon et al. [31] proposed Local Line Binary Pattern (LLBP). LLBP has two dif-

ferences compared to LBP. The first difference is the neighborhood, LLBP calculated

with the horizontal and vertical neighborhood. The second difference is encoding, and

if the neighbor pixel is lower than the center pixel, then it is encoded as 1, otherwise
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0. This approach is the opposite of LBP encoding. LLBP was tested on FERET

and Yale Face Database B [13]. LLBP has higher classification compared to LBP.

Equation 11, 12 and 13 show how LLBP is calculated.

LLBPh(N,C) =
c−1∑
n=1

s(hn − hc).2(c−n−1) +
N∑

n=c+1

s(hn − hc).2(n−c−1), (11)

LLBPv(N,C) =
c−1∑
n=1

s(vn − vc).2(c−n−1) +
N∑

n=c+1

s(vn − vc).2(n−c−1), (12)

LLBPm =
√
LLBP 2

h + LLBP 2
v (13)

Figure 13: LLBP Calculation Example.

Each encoded bit multiply with its corresponding weights, both in horizontal and

vertical directions. Each result is used to calculate the magnitude, which represents

the feature of the image. Figure 13 shows how LLBP calculated. First, the image

is divided into the grids. Second, The horizontal grid values are used for encoding

binary pattern. For Instance, in figure 13, the middle image shows the center and

neighbor pixel intensities. The binary pattern can be encoded as in the following;

252 > 232 and 232 = 232. Therefore upper neighborhood pattern is 00000011. Same
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is also true for lower neighborhoods; 229 < 232 and 226 < 232. Therefore the pattern

is 00000000. Now the encoded two binary pattern; 00000011 (3) and 00000000 (0) will

be the new value of LLBPh(N,C), which is 3. The calculation of the LLBPv(N,C) is

similar to the LLBPh(N,C). The encoded patterns are; 00000000 (0) and 00000001

(1), the sum is 1. The magnitude result will be
√

(3)2+(1)2 ≈ 3.16

2.2.2.4 Three-Patch and Four-Patch LBP

Wolf et al. [6] proposed Three-Patch LBP (TPLBP) and Four-Patch LBP (FPLBP)

for face analysis. This is a new approach to find complementary information in a

given image. Both descriptors find complementary information by finding similari-

ties between neighboring pixels. Both TPLBP and FPLBP was inspired by Center-

Symmetric LBP [34]. TPLBP have four parameters; radius (r) from a selected patch,

r pixel distance selected circularly. The number of patches (S) is uniformly distributed

in a ring, r distance. The size of the patch (ω), and the distance between two patches

(α). TPLBP encoding is shown in formula 14.

TPLBPr,S,ω,α(p) =
S∑
i

f(d(Ci, Cp)− d(Ci+α mod S, Cp))2
i (14)

Figure 14: TPLBP code with α=2, S=8, ω=3.

The above TPLBP can be calculated as follows:
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TPLBPr,8,3,2(p) = f(d(C0, Cp)− d(C2, Cp))2
0+

f(d(C1, Cp)− d(C3, Cp))2
1+

f(d(C2, Cp)− d(C4, Cp))2
2+

f(d(C3, Cp)− d(C5, Cp))2
3+

f(d(C4, Cp)− d(C6, Cp))2
4+

f(d(C5, Cp)− d(C7, Cp))2
5+

f(d(C6, Cp)− d(C0, Cp))2
6+

f(d(C7, Cp)− d(C1, Cp))2
7

f(x) =


1, if x ≥ τ

0, if x < τ

(15)

It can be interpreted from the Figure 14; There are nine patches distributed

in a given image. The center patch and eight neighbor patches. Each time three

patch selected for encoding, the center patch and two neighbor patches. The first

neighbor patch is the left patch of center patch. The second neighbor patch is α

patch away from the first neighbor patch. Each neighbor center pixel thresholded

with central patch center pixel. If the result is bigger than defined τ value 1, otherwise

0 (Equation 15). In FPLBP there are two center patches; therefore two radii are set.

FPLBP calculated as follow (Equation 16):

FPLBPr1,r2,S,ω,α(p) =

S/2∑
i

f(d(C1i, C2,i+α mod S)-d(C1,i+S/2, C2,i+S/2+α mod S))2i (16)

Both TPLBP and FPLBP tested with Labeled Faces in the Wild [32]. When

TPLBP and FPLBP combined with each other, performs better than LBP. Figure 15

shows the results of TPLBP and FPLBP.
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Figure 15: The difference between TPLBP and FPLBP (Figure adapted from [6]).

2.2.2.5 Angular and Radial Difference Based LBP

Liu et al. [35] proposed angular-difference based local binary pattern (ADLBP) and

radial-difference based local binary pattern (RDLBP). Both descriptor thresholds the

neighbor pixels within each other, instead of thresholding each neighbor pixel with

the center pixel. The motivation behind both ADLBP and RDLBP was to find the

complementary information using the neighboring pixels difference. Both descriptors

starts with dividing images into patches. From each patch, first center pixel spatial

coordinate found, based on the center pixel spatial coordinate, neighbor pixels uni-

formly distributed in the ring of radius r. As it can be interpreted from figure 16, the

spatial coordinate of the center pixel of 7 x 7 image is (4, 4). The neighbor pixels uni-

formly distributed around the (4, 4) spatial coordinate with radius 1. They divided

their approach into two parts; radius and angular. The radius approach was thresh-

olding neighborhood tuples in the same radii. The angular approach was thresholding

neighborhood tuples in the same angle (Figure 17). For each neighbor tuple in the

clockwise direction, the difference was calculated. However, there is a constraint in

neighborhood selection. At each level, for instance, in figure 16, red, green and blue

colors represents level, only multiples of 8 neighbors are selected (Equation 17). This
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constraint represented for ADLBP (Equation 18), and RDLBP (Equation 19). In

both equation 18 and 19, the parameters r, δ, q are same. The parameter r radius

specifies where the neighbor pixels starts and the distance between the circular neigh-

bor pixels. The parameter δ specifies how many neighbor pixels will be distributed

in r. The parameter q specifies how many neighbor pixels will be selected. The

binary pattern evaluation for both descriptors is nearly same, similar to LBP, if the

thresholded value is greater or equal to 0, encoded as 1, otherwise 0. Both descriptors

equations is nearly same, in equations 20 and 21. The ’ S’ represents the sign, Liu

et al. symbolized the thresholding calculation as S symbol. The only difference is

ADLBP S, calculate the difference of the neighbor pixels in the same angular distance,

where RDLBP S calculate the difference of the neighbor pixels in the same radius.

After binary pattern obtained, same as LBP, if the thresholded value is greater than

or equal to 0, encoded as 1 or 0 (Equation 22). The encoded pattern converted into

decimal value. Decimal values were used to obtain the histogram. From each patch,

histograms were obtained. Finally obtained histograms were used for classification.

Both ADLBP and RDLBP was the result of the two extensive research [35], [38]. In

their previous research [38], Liu et al. stated the LBP’s limitations. One of the major

limitations is LBP’s assumption on thresholding neighbor pixels with the center pixel

is independent of the center pixel. However, the independence is not guaranteed [39].

The question aroused from this assumption; Could LBP miss textural information?

Therefore they considered the thresholding of neighbor pixels as well. As a result,

they came up with ADLBP and RDLBP.

xr,8q = [xr,8q,0, ..., xr,8q,8q−1]T (17)

φAngSign
r,δ,q

= [φAngSignr,δ,q,0 , ..., φAngSignr,δ,q,8q−1]T (18)
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Figure 16: Example of Sampling the Neighbor Pixels with radius 1 (Figure adapted
from [38]).

Figure 17: RDLBP Approach (Left), ADLBP (Right) (Figure adapted from [38]).

∆Rad
r,δ,q = [∆Rad

r,δ,q,0, ...,∆
Rad
r,δ,q,8q−1]T (19)

ADLBP S =
7∑

n = 0

s(φAngSignr,δ,q,n )2n (20)

RDLBP S =
7∑

n = 0

s(φRadSignr,δ,q,n )2n (21)

s(x) =


1, x ≥ 0

0, x < 0

(22)
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2.2.2.6 Comparing Previous Studies

In this section, the summary of the previous neighborhood topology algorithm are

compared (Table 2). The illumination invariance is probably the most striking com-

ponent of LBP. Therefore the first component compared was illumination invariant.

The most descriptor influenced by LBP already illumination invariant. The second

component compared was being computationally simple. The proposed algorithm

may reach the highest accuracy, however, how the highest accuracy reached? If the

answer is, with a simple and efficient algorithm, then the computationally simple com-

ponent checked. The third component compared was flexible neighborhood topology.

If the neighborhood selection is parametric, then this component was checked. For

instance, ELBP neighborhood selection based on two parameter, where LLBP neigh-

borhood selection was static. The fourth component is being rotational invariant.

Generally, in face recognition application, the rotational invariant is not a necessity.

Therefore most descriptor, focused on other components. If the proposed algorithm

considered rotational invariant, then this component was checked. The fifth compo-

nent is whether the proposed algorithm was used with another descriptor. Since LBP

is very flexible, it is possible to use with other image descriptors. If the proposed

algorithm used with another algorithm, then this component was checked. The sixth

component is highly discriminative. If the proposed algorithm, surpasses the LBP

accuracy, or multiple algorithms accuracy, then this component was checked.

2.3 Convolutional Neural Networks

Convolutional Neural Networks often abbreviated as ConvNet or CNNs, is part of the

neural network and common form of Deep Neural Networks [40], which was inspired

by animal visual cortex organization [41]. The discovery of animal visual cortex or-

ganization started with Hubel and Wiesel experiments on monkeys. [42]. Hubel and

Wiesel found light was detected by the receptive fields of visual cortex in animals.

22



Table 2: Comparison of Neighborhood Topology Algorithms

ELBP LLBP TPLBP FPLBP RDLBP ADLBP
Illumination

Invariant
Computationally

Simple
Flexible

Neighborhood
Topology

Rotational
Invariant
Used with

Other Descriptor
Highly

Discriminative
Application Face Face Face Face Face Face

Area Recognition Recognition Analysis Analysis Recognition Recognition
Yale Face Extended Extended

Dataset FERET [26] Database B [13] LFW [32] LFW [32] Yale B [13] Yale B [13]
AT&T [12] FERET [26] CAS-PEAL-R1 [33] CAS-PEAL-R1 [33]

Visual cortex has the following structure: Lateral Geniculate Body (LGB) → simple

cells→ complex cells→ lower order hypercomplex cells→ higher order hypercomplex

cells. Fukushima [43] converted this discovery to the architecture, named Neocogni-

tron (Figure 18).

Figure 18: Neocognitron Network Model

Neocognitron has three layers; each layer consisted of the simple cell (US) and

complex cell (UC). From each layer, features are extracted and passed to the next

layer. In Figure 18 there is a ’?’ in the architecture. The reason for that is Hubel

and Wiesel did not tell what kind of cell exists after higher order higher complex

cell. Therefore Fukushima inserted question mark instead removing the part from

architecture. Neocognitron was designed for the improvement of the unsupervised

learning, as Fukushima defined as ”self-organized by learning without a teacher.”
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Unfortunately, the time neocognitron published, there wasn’t enough data to test

the neocognitron. Therefore, Fukushima was tested on digit images, and neocogni-

tron successfully extracted the features and classified based on its extracted features.

Although Fukushima described neocognitron as a hypothesis for visual pattern recog-

nition, it was accepted as the predecessor of CNN [44]. Successful classification using

neural network required preprocessing of the dataset as a preliminary step. For in-

stance, acquisition, binarization, and segmentation [45]. However, preprocessing a

large-scale dataset can be very hard due to its size. Therefore Lecun et al. [46] pro-

posed neural network with backpropagation. Backpropagation learning aim was to

minimize the measure between output vector to the desired vector by adjusting weight

with repetitive steps [47].

J(Θ) = -
1

m

m∑
i=1

K∑
k=1

[
y

(i)
k log((hΘ(x(i)))k)+(1-y

(i)
k )log(1-(hΘ(x(i)))k)

]
+
λ

2m

L−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(Θ
(l)
j,i )

2

(23)

The neural network cost function (J(Θ)) is the generalization of the logistic re-

gression cost function [48]. If we look at figure 19, we can analyze J(Θ) better.

Figure 19: Logistic Regression Cost Function

The logistic regression cost function J(θ) is similar to the linear regression opti-

mization function (Equation 24). The idea is hθ(x
(i)) represents the prediction of the

i’th sample and y(i) represents the actual value of the i’th sample. Therefore, if the

result of hθ(x
(i))-y(i) is close to zero, this means predicted value is very close to the

actual value. When we take the square, we calculate the euclidian distance between
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two samples. The coefficient 1
2m

is to make calculation easier [49].

Linear Regression Optimization Function = min
1

2m

m∑
i

(hθ(x
(i))-y(i))2 (24)

Now, we can analyze the J(θ). The first difference is the logarithm of hθ(x
(i))-y(i)

was taken. The reason is we hθ(x) is a non-linear function, and if we take the square of

a non-linear function, a non-convex cost function appears. Gradient descent function

cannot guarantee to find the global minimum in a non-convex function. Therefore we

take the logarithm of the result, to guarantee gradient descent for finding the global

minimum (Figure 20). The second difference is regularization term λ
2m

∑n
j=1 θ

2
j . The

regularization term adds up the weights of other eliminated features. For instance,

defining an object requires 1000 parameter. The cost function is similar to J(θ) =

θ0+θ1x+...θ999x
999. However, some features are less important. Therefore instead of

multiplying with 1000 parameter, adding a regularization term to the cost function is

more feasible and gives the approximate result when the less crucial features added.

The summation formula of regularization term starts from 1 ends with n. The reason

for this, the bias term θ0 is not added. The neural network J(Θ) is similar to the

logistic regression J(θ). The only difference is for each neuron in the layer, J(θ)

calculated. Therefore if we have k neuron in the single layer, we obtain k output.

Figure 20: The Difference of Finding the Global Minimum in non-convex and convex
functions
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Suppose we have L layer in our network with m number of training samples. First,

the activation function of each neuron was calculated during forward propagation.

The reason is we have to observe how our actual result is close to correct output.

Therefore we calculate the difference of last layer result from the correct output. If

the output is close to zero, this can be interpreted as the activation function suitable

for classifying the current label. Otherwise, activation function needs to be updated,

until the actual result is close to the correct output. LeCun et al. [46] applied the

neural network with backpropagation to zip code recognition. They tested neural

network with backpropagation on U.S. Mail dataset, and the result was 99% correct

classification accuracy. Having inspired by the result, LeCun et al. [27] proposed

LeNet-5 (Figure 21).

Figure 21: The Architecture of LeNet5

LeNet-5 has seven layers (C1, S2, C3, S4, C5, F6, Output ), can be trained with

backpropagation and obtain the effective representation of the original image (Fig-

ure 23). LeNet-5 consisted of three types of layer, convolutional(C1, C3, C5), pooling
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(S2, S4) and fully-connected (F6). The first layer is C1; it is a convolutional layer

with six feature maps. Feature maps generate high-level abstraction of the data [40].

The term high-level abstraction of data refers to preserving essential information.

The result of C1 shows the learned weights from the example image (Figure 22).

Figure 22: The Result of the C1 Convolutional Layer (Figure adapted from [44])

The output of C1 layer pass to the S2 subsampling layer. S2 is the pooling layer.

The pooling layer aim is to make input image reduce resolution, so the image features

aligned into the center. Therefore in the subsampling layer, the image size is halved.

The result of S2 connected to C3, and after C5 layer the result is connected to

fully-connected layer F6. The fully connected layer aims to find the global semantic

information by connecting to every single neuron of the last convolutional layer to

current layer [44]. Global semantic information refers to finding the unique generalized

representation of the current image using the least resource. The output layer was

used to classify the output of the fully-connected layer. However, there is some

constraint in LeNet-5 architecture. First not every pooling layer output is given input

to the convolutional layer. According to LeCun et al. [46], it broke the symmetry of

the network and forced to extract different features. Therefore, starting from the
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third convolutional layer, they took only first six feature maps. However, the reason

for selecting first six feature map is still ambiguous.

Figure 23: LeNet5 recognition of visual patterns form unusual, distorted and noisy
images (Figure adapted from [27])

The second question is why LeNet-5 has seven layers? LeCun et al. [46] had been

experimenting on optical character recognition dataset US Postal Service zip codes

(USPS)., starting with LeNet-1. They described LeNet-1 as a small network [50].

LeNet-1 achieved 1.7% error rate on USPS. LeNet-1 has six layers, three convolutional,

two pooling layer and one output layer (Figure 24).

The success of LeNet-1 motivated LeCun et al. [50] built LeNet-4. LeNet-4 has

six layers, similar to LeNet-1, three convolutional, two pooling and one output layer.

LeNet-4 achieved 1.1% error rate on USPS. The success of LeNet-4 motivated LeCun

et al. [50] LeNet-5, which achieved 0.9% error rate on USPS. The difference between

them shown in Table 3. The reason is Lecun et al. [50] discovered as layer and

connection size increases, the error rate decreases, resulting in better classification

accuracy. Therefore LeNet-5 has seven layers.

LeNet-5 is the first successful application of convolutional neural network on both

optical character recognition and digit recognition [27]. Other researchers were inter-

ested in more complex areas, such as large-image and video classification. However,
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Figure 24: The Architecture of LeNet1

Table 3: Summary of LeNet-1, LeNet-4, and LeNet-5

LeNet-1 LeNet-4 LeNet-5
Input Image Size 16x16 32 x 32 32 x 32

Total Connection Size 260.000 340.000
Layer Size 6 6 7
Accuracy 98.3% 98.9% 99.1%

due to large training data and computing power, their networks did not perform

well [44]. Since 2006, researchers concentrated on difficulties encountered in CNN.

One of the researchers’ group, Krizhevsky et al. [51] proposed AlexNet. AlexNet is

the winner of ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [52].

ILSVRC is computer vision competition, focused on the large dataset of object de-

tection and image classification. AlexNet has some similarity with LeNet-5, the ar-

chitecture is deeper than LeNet-5. After the proposal of AlexNet, many networks

designed to improve the performance of AlexNet. For Instance, ZFNet [53], VG-

GNet [54], GoogleNet [55] and ResNet [56]. The difference between them is, CNN

architectures are getting deeper. For instance, the winner of ILSVRC 2015 ResNet
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is 20 times deeper than AlexNet [44]. There are some similar components between

each CNN architecture, feature map calculation, activation function, pooling, fully

connected and output layers, respectively.

The first component is the feature map calculation. The feature map calculation

is selecting a patch inside the image, multiply with the randomly generated weight

and added with randomly generated bias. This mathematical operation continues

until every pixel inside the image filter. For instance, assume we want to find the

feature in the l’th layers k’th feature map with spatial coordinate i, j (zl
i,j,k). We select

an area (patch) in the l’th layer, represented as xl
i,j. Now, random weight and bias

values should be generated. The weight value multiplied with selected patch, wlT

k *xl
i,j

and bias value added wlT

k *xl
i,j+bl

k. The result will give the feature value of the selected

region. The feature value is the unique information obtained from the region. The

reason for multiplying with weights is because we want to compare the importance of

each filtered region. When we multiply weight with our xl
i,j, we show its importance

in the current layer and scale the data in the specified interval, for instance, -1 to 1.

Therefore multiplication with weights reduce the complexity and make the network

easier to train. The reason for adding is because the bias value shifts the activation

function to the center.

The second component is the calculation of the activation functions. There are

three commonly used activation functions, sigmoid, tanh [57] and linear rectified unit

(ReLU) [58] as shown in Figure 25. Activation function detects the nonlinear features

from the input feature map.

The third component is pooling. Pooling applied each channel separately, for

making the network shift invariant by reducing dimensionality. The result is network

learns robust features from the input channel. There are two typical pooling oper-

ation, max pooling [59] and average pooling [60]. Max Pooling finds the maximum
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Figure 25: Commonly used activation functions, from left to right, Sigmoid (y =
1

1+e-x
), Tanh (y = ex-e-x

ex+e-x
) and ReLU (y = max(0, x))

value in the kernel and places it in the center pixel location. Average pooling cal-

culates the mean value in the kernel and places it in the center pixel location. The

kernel is a non-overlapping window (Figure 26).

Figure 26: Window size effect on Max and Average Pooling

The fourth component is the fully-connected layer. So far, the network learned

every detail from input image during feature map → activation function → pooling

layer steps. Now it is time to creating the character of the image from learned features.

Fully-connected layer gathers all neurons from the previous layer and connects to the

current layer to generate the characteristic of the image.

The fifth component is the output layer. Output layer is responsible for the

classification of the features. Generally, Softmax or Multi-class SVMs are used [61].
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2.4 Visual Descriptors and CNNs

CNNs have been developing more than a three-decade, its root is even older com-

pared to visual descriptors. CNN works like the human brain and also classify better

than human[51]. There are two significant reasons why for practitioners started to

develop visual descriptors, descriptor-based methods are computationally simple and

require less computation power. As a result, the algorithm can be tested instantly.

Visual descriptors are simple, extracts the discriminative features from the input im-

age and feed into the classification algorithm. If the obtained features are highly

discriminative, then the method performs well. However, CNN is not simple, first

of all, CNN has an architecture. Based on the architecture it might have multiple

convolutional, pooling and fully-connected layers, for extracting highly discriminative

features. Therefore CNN requires large training data and computing power [44].

Visual descriptors cannot be compared with CNNs; they can only be the part of

CNN. There are several options, a visual descriptor can be the part of convolution

operation, or it can be a separate layer. Recently, practitioners have been combining

visual descriptors with CNN. For instance, Local Binary Pattern CNN (LBCNN) [62]

and LBPNet [63]. In LBCNN, there are separate layers for LBP operation, wherein

LBPNet, LBP used as convolution operation. LBCNN was tested on MNIST [27]

99.51%, SVHN [64] 94.50%, CIFAR-10 [65] 92.99%. LBPNet tested on FERET [26]

and LFW [32] 94.04%.
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CHAPTER III

PROPOSED METHOD

3.1 Overview

In this chapter, the proposed algorithm Multi-scale Binary Similarity (MSBS) and

its variants are presented in detail. First, MSBS approach for feature extraction is

explained. Then MSBS stages are explained in detail.

3.2 Multi-Scale Binary Similarity

LBP has many qualifying attributes, thresholding each neighbor pixel intensity to its

center pixel intensity make it illumination invariant. Normalizing the binary code to

its minimum value make it rotational invariant. Selecting either circular or square

neighbor make it flexible in neighborhood topology. Placing obtained patterns based

on its uniformity make it flexible in histogram size. Computationally simple attributes

make it applicable to many real-time applications. LBP can be used together with

other image descriptors [66]. LBP is easily adapted to different types of problem, and

it is highly discriminative texture operator. However, LBP still can be improved based

on application. In specific application areas, LBP’s classification accuracy can still

be increased for instance, face recognition. LBP’s illumination invariant property

naturally avoids the unwanted lighting effect in a given face image. Next step is

selecting the discriminative feature from the face image. In literature, there were

many studies proposed for facial feature extraction.

Liao and Chung [24] mentioned that anisotropic information (mouth, eyes, nose,
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etc..) is the discriminative characteristic for a given face image. First, they ques-

tioned the circular neighborhood topology which was part of the rotational invari-

ance. However, rotational invariance is not needed for given face image. Therefore,

they proposed elongated LBP (ELBP). ELBP has three parameters A, B, and m.

From a selected center pixel, A pixel distance in horizontal and B pixel distance in

the vertical direction are covered. From covered area m pixels are selected. The order

of selecting pixels are same with LBP. Liao and Chung discovered that LBP had the

lack of gradient information. The gradient information of a standard image shows

the direction of rapid changes in an image.

According to Liao and Chung, the gradient information shows the direction of

anisotropic information. Anisotropic information means having a physical property

which has a different value when measured in different directions [67]. For instance,

a repetitive pattern structure, texture, the isotropic information is essential, but

wood along the grass, the anisotropic information is necessary. When Elongated

LBP used, the missing anisotropic information obtained. For instance, eye, a mouth

is an anisotropic structure. Our method also gets the anisotropic information. How-

ever, the basic LBP cannot obtain isotropic information, because it uses circular

neighborhood for extracting features. Therefore, Liao and Chung proposed Average

Maximum Distance Gradient Magnitude (AMDGM). AMDGM first thresholds the

neighbor pixel intensities with center pixel intensity then calculate the distance from

neighbors to the center pixel. The calculated values are divided with each other. The

maximum divided values were selected as features. The drawback of this study is only

uniform patterns are considered. Liao et al. [25] stated that a large amount of useful

patterns turns into non-uniform ones. The non-uniform patterns are not considered

by conventional LBP since Ojala et al. [11] stated that 90% of texture information

obtained by the uniform pattern. However, in face recognition dataset, non-uniform

patterns are also important.
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Nanni et al. [9] studied on Medical Image Analysis. They analyzed LBP variants

with different neighborhoods. They discovered quinary encoding using elliptic neigh-

borhood accurately classify medical images. They tested each LBP, local ternary pat-

tern and elliptic quinary pattern with five different topologies, circle, ellipse, parabola

and archimedean spiral. Petpon et al. studies on face recognition. Instead of using

the traditional circular symmetric neighborhood, they considered the vertical and

horizontal pixels from the selected center pixel. Approach named as local line binary

pattern (LLBP). Results show that LLBP performs slightly better than LBP.

Wolf et al. focused on finding the complementary information from given the face

image. In a previous study, it was stated that the patch based approach provided

state of the art in learning of faces [68]. This motivated Wolf et al. for designing a

patch based descriptor. The term patch refers to square neighborhood operator. S

additional patches were placed on the image. The image is divided into the center

patch and (S-1) neighbor patches. Each patch is w x w size, where w is the integer

value. Each time distance between patches was calculated. Wolf et al. calculated the

distance of three patches, abbreviated as (TPLBP) and four patches (FPLBP). Selec-

tion of patches is based on neighbor patches distance to center patch. For instance,

in TPLBP, two neighbor patch distance to center patch was calculated.

Liu et al. studied the effect of thresholding neighbor pixels on classification.

Instead of thresholding each neighbor pixel intensity with the center pixel intensity,

they threshold neighbor pixel based on the same position. The position is separated

into twofold. First, the neighbor pixels in the same radius are thresholded, then

neighbors in the same angular angle thresholded. The first approach named as radial

difference local binary pattern (RDLBP). The second approach named as angular

distance local binary pattern (ADLBP). Feature extraction is similar to LBP. If the

thresholded neighbor intensities greater or equal to zero, current bit is one, otherwise

zero. Liu et al. achieved state of the art result in Extended Yale B dataset.
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After analyzing the previous works, we gain the insight of taking non-uniformity

into consideration is useful, deciding on neighborhood topology may increase the clas-

sification accuracy; the patch-based approach provides the state of the art learning

and, the anisotropic information is essential for face recognition. It is a fact that, there

are relations between pixels in the dataset since each dataset has the specific charac-

teristic. For instance, in a face recognition dataset, anisotropic information(two eyes,

one nose) is the characteristic. The distance between each anisotropic information

can be approximated. Standard LBP approach neglected this anisotropic information

and used the same neighborhoods. The previous works were used a static way for

finding anisotropic information based on their algorithm. We questioned this static

approach for finding anisotropic information. We believe that unique neighborhood

information is required for face recognition classification. This motivated us and us-

ing, for each pixel in the dataset, we extracted a neighborhood template based on

measured pixel neighborhood importance. Each neighbor pixel assigned a value based

on a score. After calculation, the value of each neighbor represents its importance

for classification. Therefore best K neighbor selected. Selecting here, refers to get-

ting the best K neighbor spatial coordinate inside the neighborhood window. After

deciding about important neighbors, we need to decide about their order of selec-

tion. In previous studies, texture spectrum, basic and conventional LBP descriptors

used counter-clockwise approach for picking up neighbor pixel values and achieved

the state-of-the-art classification accuracy. Therefore, we used counter-clockwise ap-

proach for ordering the neighbor pixel spatial coordinates. Each ordered spatial coor-

dinates were selected inside the moving window. Each corresponding spatial coordi-

nate intensity was used for creating the decided pattern. Created patterns were used

for establishing the histogram. Histogram values of each label used in classification.

We named this approach as Multi-Scale Binary Similarity (MSBS), since it considers

neighborhood topology inside windows of different sizes.
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MSBS algorithm is designed to analyze the pixel relationships and represent it as

a binary vector. Similar to previous studies [23], [35], MSBS divides the input image

into regions and extracts features from regions, represented by histograms. Then all

histograms are concatenated for representing the image characteristics. Unlike the

traditional approaches, MSBS algorithm has some differences for feature extraction.

The first difference is, instead of dividing the image into fixed regions, MSBS obtains

image regions, using a moving window (Figure 27). This moving window is named

as the major patch (Pmaj) and defined by a radius value, named r1. Pmaj starts the

movement in the horizontal and continues with the vertical until all pixels are covered.

As a result, MSBS covers all local regions for further processings.

Figure 27: The difference between traditional (left) and MSBS(right) approach for
dividing images.

From each local region, the Pmaj in our case, the pixel relationships are analyzed.

The analysis starts with selecting two more regions, the minor patch (Pmin) and

the pivot patch (Ppiv) both declared with radius r2. The difference is, Pmin moves

inside the Pmaj, and Ppiv fixed at r2 radius, the square area from major patch center
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pixel (Cmaj). Pmin, similar to Pmaj movement, moves in the horizontal direction and

continues with the vertical direction, until all pixels covered inside the Pmaj window.

Each Pmin neighbor pixel is thresholded with Ppiv neighbor pixels. This thresh-

olding has shown some similarity with LBP; if Pmin center pixel (Cmin) is greater

than or equal to Ppiv center pixel (Cpiv), Pmin neighbors which are greater than or

equal to Ppiv, are encoded as 1, otherwise 0. As a result, a binary pattern is obtained

(Figure 28).

Figure 28: Major Patch decomposed into several minor patches

3.2.0.1 The movement of Major Patch

Pmaj size is (2× r1+1)× (2× r1+1) pixels for a given r1 value. The total movement of

the Pmaj in an image of size height (H) and width (W) can be calculated as below;

Total Moves = (H− (2× (r1+r2)+1))*(W-(2× (r1+r2)+1)) (25)

So far, we have explained the base calculation of MSBS. We used this base ap-

proach for the main steps of MSBS calculation. MSBS has three main steps, neighbor-

hood template calculation, spatial coordinates selection and MSBS feature extraction.
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3.2.1 Neighborhood Template

The basic LBP selects all the neighbors in a counter-clockwise direction. Each selected

neighbor pixel value is thresholded with center pixel. This approach shows basic LBP

has no rule for neighbor pixel selection. We questioned this approach and created

computationally simple score matrix. Score matrix calculation uses the base approach

and defined by r2 radius. Pmin is compared with the Ppiv. First, the inequality between

center pixels determined. The inequality as shown before, either Cmin is greater than,

equal or less than Cpiv. Each neighbor pixel that supports the inequality will get score

+1, otherwise -1 (Algorithm 1). The value is stored in the same spatial coordinates

with compared pixels (Figure 29). Accumulated score matrix is calculated by using

all images in the dataset.

Algorithm 1 Neighborhood Template Calculation

Require: Pmin : A moving window with size (2× r2+1)2

Ppiv : A grid area with size (2× r2+1)2

r2 : Minor and Pivot patches radius

Cmin ← P
(r2+1, r2+1)
min -Initialize Pmin center pixel

Cpiv ← P
(r2+1, r2+1)
piv -Initialize Ppiv center pixel

L← (2× r2+1) -Edge of the both Pmin and Ppiv

-Let score total ST be a matrix of size L × L.

for s← 1 to L do
for t← 1 to L do

if (Cmin ≥ Cpiv) & (P
(s, t)
min ≥ P

(s, t)
piv ) then

S
(s, t)
T ← S

(s, t)
T + 1

else if (Cmin < Cpiv) & (P
(s, t)
min < P

(s, t)
piv ) then

S
(s, t)
T ← S

(s, t)
T + 1

else

S
(s, t)
T ← S

(s, t)
T - 1

end if
end for

end for
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Figure 29: Example Score Matrix Calculation

3.2.2 Neighborhood Template Extraction from Accumulated Score Ma-
trix

The accumulated score matrix shows the weights of each pixel in the Pmin. The

weights represent the importance of pixel’s spatial coordinate for classification. The

highest scored K neighbors are selected in clockwise direction. The coordinates are

stored in ordered set T which defines the neighborhood template (Figure 30).
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Figure 30: Selecting Coordinates from Score Matrix

3.2.3 MSBS Features Extraction

MSBS feature extraction is similar to neighborhood template extraction. MSBS has

three main components; Pmaj, Ppiv and Pmin. Each component is established in the

following order; first, the center pixel spatial coordinate is located, then from the

located coordinate, a square neighborhood is selected. The square neighbor selection

depends on radius parameter. The first component is the Pmaj. Cmaj is located at

(r1, r1). From the initial pixel spatial coordinates (0, 0), Cmaj is (1+r1, 1+r1) distance

away. The square neighborhood of Pmaj depends on r1. Each pixel, r1 distance away

from Cmaj, is major patch neighbor (Figure 31).

Figure 31: Major Patch Initialization

The second component is the Ppiv. Cpiv has the same spatial coordinate at Cmaj.

The square neighborhood of Ppiv depends on r2. Each pixel r2 distance away from

Cpiv is pivot patch neighbor (Figure 32). The third component is the Pmin. Cmin is

at the initial pixel in Pmaj. Each pixel r2 distance away from Cmin is Pmin neighbor
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(Figure 33).

Figure 32: Pivot Patch Initialization Figure 33: Minor Patch Initialization

After all patches are located, Pmin and Ppiv are analyzed to obtain encoding.The

first rule of analysis is center pixel thresholding. Both Cmin and Cpiv are thresholded,

respectively. Based on the inequality condition, each neighbor tuples (Pmin and Ppiv,

respectively) are compared. Neighbor coordinates are already calculated in neighbor-

hood template section. The selected tuples supports the inequality encoded as 1, else

0. The resulting pattern holds the new extracted interest point values. The next step

is, Cmin visit each pixel of Pmaj. After visiting done, Pmaj moves one pixel at a time,

until there is no movement left for Pmaj (Algorithm 2).

3.2.3.1 MSBS Formulation

MSBS encodes the neighborhood tuples of minor and pivot patches, based on the

comparison between Cmin and Cpiv, respectively. As formulated in Algorithm 1, if each

neighbor tuple supports the direction of thresholded center pixels, then the pattern is

encoded as 1, otherwise 0. Formulation has two steps. First step is subtracting Pmin

from Ppiv. The result of substraction stored in the temporary patch (Pt) (Figure 34).

Second step is comparing each sign of the neighbor pixel value with center pixel sign

(Equation ??). If they have the same sign, the result is 1, otherwise 0 (Equation ??).

The process is explained in Algorithm 3.

msbsPattern(r1, r2, K) =
K−1∑

i=0 ∧ Li∈T

SMSBS(PLi
t , P c

t ) × 2i (26)
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Figure 34: MSBS Formulation
Remember that the ordered set T is constructed by using all dataset images.

Li is the ith member of T and PLi
t is the temporary patch value, defined by Li.

SMSBS(x, y) =


1, x× y ≥ 0

0, x× y < 0

(27)

3.2.4 Variants of MSBS

3.2.4.1 MSBS with Feature Matrix

The process is same as MSBS feature calculation, to make calculation faster, the

feature matrix is created during MSBS features extraction step. The process is simple,

the binary patterns converted to decimal value and placed on the feature matrix.

The feature matrix has the same size as the input image. Instead of placing the

decimal value of binary pattern directly on MSBS histogram, the value is placed on the

feature matrix on minor patch spatial coordinate. MSBS features are extracted from

the feature matrix and placed on the histogram within defined cell size (Figure 35).

Instead of placing features one-by-one, multiple features are placed on the histogram.

Creating feature matrix is almost similar to Algorithm 2. The only difference is that
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the decimal value is set to feature matrix (Algorithm 5)(the difference is shown in

red). Then feature matrix is divided into defined cell sizes, and from each cell size

histograms are evaluated (Algorithm 6).

Figure 35: Creating MSBS Histogram from the Feature Matrix

3.2.4.2 MSBS extract features from Major Patch

In the initial approach, features extracted from the moving window, which was de-

clared with r2. We wanted to see the effect of the features extracted from the major

patch on classification. This approach suggests extracting features from Pmaj instead

of Pmin. Therefore, neighborhood template calculation (Algorithm 4) and feature

extraction are modified based on this approach (Algorithm 7). In previous version,

moving window is not exceeding Pmaj borders. However, in this version each pixel in

Pmaj will be Pmin center pixel. Therefore Pmin exceeds Pmaj borders. Same as MSBS,

each time Pmin compared with Ppiv, and the best K neighbor selected inside Pmaj. The

calculation of the spatial coordinates is same. MSBS feature extraction is similar to

neighbor template calculation, binary pattern is obtained from each comparison with

Pmin and Ppiv. Note that, MSBS feature extraction from the major patch produces

identical patterns and histogram results as a consequence.
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Algorithm 2 MSBS Feature Extraction

Require: I : A gray-scale image.

H×W : dimensions of the gray-scale image.

r1 : Major patch radius

r2 : Minor and Pivot patches radius

K : Neighbor number

D : Distance from center pixel to neighbor pixels with the dimension 2×K

Ymaj ← H-(2× r1+1) -Pmaj movement in Y direction

Xmaj ←W-(2× r1+1) -Pmaj movement in X direction

L← 2× (r1-r2) -Pmin movement in Pmaj

-Let msbs Pattern (Pmbs) be a vector of size K.

-Let msbs Histogram (Hmsbs) be a dynamic array.

for i← 1 to Ymaj do
for j← 1 to Xmaj do

−Assume Cymaj and Cxmaj represents the Pmaj spatial coordinates inside I

for k← 1 to L do
for l← 1 to L do

Ymin ← C
(k, l)
ymaj : C

(k, l)
ymaj +2× r2 -Pmin y coordinates

Xmin ← C
(k, l)
xmaj : C

(k, l)
xmaj +2× r2 -Pmin x coordinates

Pmin ← I(Ymin, Xmin) -Pmin intensity values

Cmin ← P
(r2+1, r2+1)
min -Pmin center pixel intensity

for m← 1 to K do

Ycurrent ← D(m, 1)+r2+1 -Current Neighbor Y coordinate

Xcurrent ← D(m, 2)+r2+1 -Current Neighbor X coordinate

Ncurrent ← P
(Ycurrent, Xcurrent)
min -Current Neighbor

if Ncurrent ≥ Cmin then
P

(m)
msbs ← 1

else
P

(m)
msbs ← 0

end if
v← 0
for q← 1 to size of Pmsbs do

v← v + P
(q)
msbs × 2(q-1)

end for

H
(v)
msbs ← H

(v)
msbs+1

end for
end for

end for
end for

end for
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Algorithm 3 MSBS Simplified Version

Require: Pmin : A moving window with size (2× r2+1)2

Ppiv : A grid area with size (2× r2+1)2

r2 : Minor and Pivot patches radius

K : Neighbor number

Pt ← Pmin-Ppiv

Ct ← P
(r2+1, r2+1)
t -Initialize Pt center pixel

-Let msbs Pattern Pmsbs be a vector of size K.

for i ← 1 to K do
if P

(i)
t × Ct ≥ 0 then

P
(i)
msbs ← 1

else

P
(i)
msbs ← 0

end if

end for

for i← 1 to K do

v← v + P
(i)
msbs × 2(i-1)

end for

Cmin ← v -Set decimal value to Pmin center pixel
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Algorithm 4 MSBS Vectorized Approach for Neighborhood Template Calculation

Require: Pmin : A moving window with size (2× r2+1)2

Ppiv : A grid area with size (2× r2+1)2

r2 : Minor and Pivot patches radius

Cmin ← P
(r2+1, r2+1)
min -Initialize Pmin center pixel

Cpiv ← P
(r2+1, r2+1)
piv -Initialize Ppiv center pixel

L← 2× (r2+1) -Edge of the both Pmin and Ppiv

if Cmin ≥ Cpiv then

P← sum(sum(Pmin ≥ Ppiv)) -Sum of the condition supported values
N← sum(sum(Pmin < Ppiv)) -Sum of the condition unsupported values

else

P← sum(sum(Pmin < Ppiv)) -Sum of the condition supported values
N← sum(sum(Pmin ≥ Ppiv)) -Sum of the condition unsupported values

end if

S← P-N -Score value is the difference between supported and unsupported values
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Algorithm 5 MSBS Feature Matrix

Require: I : A gray-scale image.

H×W : dimensions of the gray-scale image.

r1 : Major patch radius

r2 : Minor and Pivot patches radius

K : Neighbor number

D : Distance from center pixel to neighbor pixels with the dimension 2×K

Ymaj ← H-(2× r1+1) -Pmaj movement in Y direction

Xmaj ←W-(2× r1+1) -Pmaj movement in X direction

L← 2× (r1-r2) -Pmin movement in Pmaj

Yfeaturematrix ← H-2× r2

Xfeaturematrix ←W-2× r2

-Let msbs pattern (Pmsbs) be a vector of size K.

-Let msbs histogram (Hmsbs) be a dynamic array.

-Let feature matrix (MF) be a matrix of size Yfeaturematrix × Xfeaturematrix

for i← 1 to Ymaj do
for j← 1 to Xmaj do
−Assume Cymaj and Cxmaj represents the Pmaj spatial coordinates inside I

for k← 1 to L do
for l← 1 to L do

Ymin ← C
(k, l)
ymaj : C

(k, l)
ymaj +2× r2 -Pmin y coordinates

Xmin ← C
(k, l)
xmaj : C

(k, l)
xmaj +2× r2 -Pmin x coordinates

Pmin ← I(Ymin, Xmin) -Pmin intensity values

Cmin ← P
(r2+1, r2+1)
min -Pmin center pixel intensity

for m← 1 to K do

Ycurrent ← D(m, 1)+r2+1 -Current Neighbor Y coordinate

Xcurrent ← D(m, 2)+r2+1 -Current Neighbor X coordinate

Ncurrent ← P
(Ycurrent, Xcurrent)
min -Current Neighbor

if Ncurrent ≥ Cmin then
Pmsbs ← 1

else
Pmsbs ← 0

end if
v← 0 -Initialize decimal value to 0
for q← 1 to size of Pmsbs do

v← v + P
(q)
msbs × 2(q-1)

end for

M
(Ymin(1), Xmin(1))
F ← v -Store decimal value inside Feature Matrix

end for
end for

end for
end for

end for
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Algorithm 6 MSBS Extract Features From Feature Matrix

Require: MF : Feature Matrix.

H×W : dimensions of the preprocessed image.

Ycell ×Xcell : dimensions of the cell size

K : Neighbor number

Ymovement ← floor(H/Ycell ) -Cell movement in Y direction

Xmovement ← floor(W/ Xcell) -Cell movement in X direction

Ycounter ← 1

Xcounter ← 1

-Let msbs Histogram (Hmsbs) be a vector of size 2K.

-Let total Histogram (Htotal) be a dynamic array.

for i← 1 to Ymovement do
for j← 1 to Xmovement do

Xrange ← (Xcounter : Xcounter+Xcell)
Yrange ← (Ycounter : Ycounter+Ycell)

Sarea ← P(Yrange, Xrange) -Select Area from P based on X and Y ranges

for k← 1 to height of Sarea do
for l← 1 to width of Sarea do

V← S(k, l)
area

H
(V)
msbs ← H

(V)
msbs+1

end for
end for

Htotal ← Htotal+Hmsbs -Add current histogram to the total histogram

end for
end for
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Algorithm 7 MSBS Feature Extraction from Major Patch

Require: I : A gray-scale image.

H×W : dimensions of the gray-scale image.

r1 : Major patch radius

r2 : Minor and Pivot patches radius

K : Neighbor number

D : Distance from center pixel to neighbor pixels with the dimension 2×K

Ymaj ← H-(2× (r1+r2)+1) -Pmaj movement in Y direction

Xmaj ←W-(2× (r1+r2)+1) -Pmaj movement in X direction

Cmaj ← I(r1+1, r1+1) -Pmaj center pixel intensity

c← 1 -Initialize histogram counter
-Let msbs Pattern (Pmsbs) be a vector of size D.

-Let msbs Histogram (Hmsbs) be a dynamic array.

for i← 1 to Ymaj do
for j← 1 to Xmaj do

Pmaj ← I(C
(1)
maj-r1 : C

(1)
maj+r1, C

(2)
maj-r1 : C

(2)
maj+r1)

for k← 1 to size of D do

p← Pmaj(D(k, 1), D(k, 2)) -Get current pixel intensity

P
(k)
selected ← p -Add intensity to the selected pixel

end for

for l← 1 to size of Pselected do

if P
(l)
selected ≥ Cmaj then

P
(l)
msbs ← 1

else

P
(l)
msbs ← 0

end if

end for

v← 0
for m← 1 to size of Pmsbs do

v← v + P
(m)
msbs × 2(m-1) -Convert binary pattern to decimal

end for

H
(c)
msbs ← v -Add decimal value to histogram

if j← Xmaj then

C
(2)
maj ← r1+r2+1, C

(1)
maj ← C

(1)
maj+1

else
C

(2)
maj ← C

(2)
maj+1

end if
end for

end for
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CHAPTER IV

EXPERIMENTS

4.0.1 AT&T

AT&T, formerly known as ORL, face recognition dataset [12] consisted of 400 grey-

scale images of 40 subjects. Each subject has ten samples. Each image captured under

the nominal lighting condition, with the size of 92×112 pixels. For each subject, five

randomly selected samples are placed in the training set (Figure 36) and the rest are

put into the test set (Figure 37). Both training and test sets have consisted of 200

images. We also applied the preprocessing chain for both training (Figure 38) and

test sets (Figure 39), to observe how it will affect the classification accuracy.

Figure 36: AT&T Training Examples Figure 37: AT&T Test Examples

Figure 38: Preprocessing Chain Ap-
plied AT&T Training Examples

Figure 39: Preprocessing Chain Ap-
plied AT&T Test Examples
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The main reason we divided the training and test set equally, is because we want

to compare our results with the previous study [69]. We tested our algorithm using

LIB-SVM [70] with linear, polynomial and rbf kernels respectively. The best results

were shown in bold in Table 4.

Table 4: AT&T SVM Results
AT&T- 40 Classes SVM Accuracy on Test Set with 10-Fold Cross Validation

Each class having 10 samples Method Unscaled PCA Whitening Whitened PCA
Each Class Image 92 x 112 pixel r1 r2 K Cell Size Accuracy Accuracy Accuracy Accuracy

Linear Kernel 2 1 4 45x45 95% 93.5% (144→27) 98% 97% (144→27)
Polynomial Kernel Degree 3 2 1 4 45x45 93.5% 89.5%(144→27) 97.5% 93%(144→27)

RBF Kernel Degree 3 2 1 4 45x45 94% 91%(144→27) 98% 97.5%(144→27)

Table 5: Preprocessing Chain Applied AT&T SVM Results
AT&T- 40 Classes SVM Accuracy on Test Set with 10-Fold Cross Validation

Each class having 10 samples Method Unscaled PCA Whitening Whitened PCA
Each Class Image 92 x 112 pixel r1 r2 K Cell Size Accuracy Accuracy Accuracy Accuracy

Linear Kernel 2 1 4 45x45 84.5% 82% (144→22) 94% 93% (144→22)
Polynomial Kernel Degree 3 2 1 4 45x45 82.5% 80.5% (144→22) 94.5% 92% (144→22)

RBF Kernel Degree 3 2 1 4 45x45 83% 77.5% (144→22) 95% 93% (144→22)

MSBS was compared with various descriptors and achieved the highest classifica-

tion accuracy (Figure 40).

The results of Table 4 and 5 reveal two facts. The first one is, the preprocessing

chain did not improve the classification accuracy. For each kernel, the preprocessing

chain accuracy is lower than the normal accuracy (Figure 41). One possible reason is

the images are visible, and there is no illumination effect on the images. Therefore,

the preprocessing chain had no impact on classification accuracy. The second fact is,

highest classification accuracy was achieved when whitening applied to both training

and test features. In previous face recognition studies [72], [73], [74] authors have

stated that the Whitened PCA technique was useful for improving the classification

accuracy. In face recognition, PCA’s eigenvectors mostly encode illumination, rather

than discriminating information. The whitening normalization applied to the PCA

features to reduce the negative influence of eigenvectors on classification. For instance,

MSBS extracted feature matrix size is 200×144, where 200 is the number of images in
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Figure 40: Comparing MSBS Results with other descriptors using AT&T dataset

the set and 144 (N) is the feature vector. First, the feature vector mean is calculated

(X̄). Second, the covariance matrix (S) was calculated. Assume Q represents the N

times X̄, Q = [X̄, X̄, . . . . X̄] and Ftrain and Ftest represent the training and tests

feature matrices respectively.

S =
(Ftrain −Q)× (Ftrain −Q)T

N
(28)

Each feature value is subtracted from the mean and multiplied with its transpose,

then divided to feature vector size. The covariance matrix measures the linear associ-

ation of the feature values. In theory, the + value represents the growing relationship

and - value represents the decreasing relationship. The size of S is N×N. Third, ap-

plying whitening noise to the data. Assume function Z selects the diagonal values

in the matrix and the resulting training and test set represented as Wtraining, Wtest

respectively.
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Wtraining = Z(
1√

D(S) + ε
)× Ftrain Wtest = Z(

1√
D(S) + ε

)× Ftest (29)

In the equation 29, the whitening part is represented with Z( 1√
D(S)+ε

) in the For-

mula. The Whitened PCA dimensionality reduction calculation is similar to PCA.

First, the Singular Value Decomposition of the covariance matrix is calculated. Sin-

gular value decomposition divide matrix into the product of three matrices; Left

Singular (U), Singular (D), and Right Singular (V). D matrix is used for the finding

the dimensionality reduction coefficient. The idea is, if the result of the i’th total

sum divided by the total sum of D is greater or equal than a constant named as

energy preservation value, then the new reduced dimension is ’i’ value. In all of our

experiments, we kept the energy preservation value 95%. The algorithm is below:

Algorithm 8 PCA and Whitened PCA Dimensionality Reduction

Require: D: Singular Matrix

EPV: Energy Preservation Value

eigenSum← sum(D)
Dnew ← 0 -The New Dimension

for do i ← 1 to size of D

currentEnergy ← currentEnergy + D(i)

if then currentEnergy /eigenSum ≥ EPV
Dnew ← i

end if

end for

The new dimension (Dnew) is applied to the Left Singular matrix (U) because U

matrix contains the eigenvectors. The new dimensionality reduced matrix (G) will

be the G = U(1:Dnew), since the 95% energy preserved at Dnew dimension. In this

thesis, both PCA and WPCA were calculated as in the following formulas:
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PCAtraining = GT × Ftrain PCAtest = GT × Ftest

WPCAtraining = (Z(
1√

D(S + ε)
) × G)

T

× Ftrain WPCAtest = (Z(
1√

D(S + ε)
) × G)

T

× Ftest

4.0.2 Extended Yale B

Extended Yale B face recognition database [13] consisted 2452 grey-scale images of

38 subjects. Each subject has nearly 64 samples. Each image was captured under

controlled lighting conditions, with the size of 168×192 pixels. There are two ways

to discriminate dataset into training and test set. The first way is randomly selecting

half of the images per subject for the training and the other half for the test set. The

second way is to divide into five subsets. Subset 1 is the training set, and Subset 2-5

will be the test sets. The second way is considered to be a challenging setup [35].

We chose the second way, for demonstrating our algorithm usefulness and potential

for face recognition. Dividing into subsets was based on the name of the image.

For instance, let’s consider the image name ‘yaleB01 P00A-010E+00.pgm’. The first

part ‘yaleB01 P00’ refers to the subject labeled as 01’ subject inside extended yale

B dataset. The second part ‘A-010’ refers to the image azimuth value is -10◦. The

third part ‘E+00’ refers to the image elevation degree is +0◦. If elevation degree kept

same and azimuth value gets higher or lower degree, darker images occur (Figure 42).

In Figure 42 only azimuth values changed, and all images elevation degree is 0◦.

Starting from left to right the corresponding azimuth values are -120◦, -95◦, -70◦,

-50◦, -25◦, -10◦, +10◦, +50◦, +75◦, +95◦, +120◦. As absolute azimuth values increases,

the image becomes harder to recognize. The same fact is also true for elevation degrees

(Figure 43). In Figure 43, starting from left to right the corresponding elevation values

are -35◦, -20◦, +20◦, +45◦, +90◦. If both azimuth and elevation degrees are high, the

recognizing face image is also hard (Figure 44).
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Figure 41: Comparing AT& T Kernel Results

Figure 42: The Effect of Azimuth Degrees on Image, elevation degree is 0◦
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Figure 43: The Effect of Elevation Degrees on Image, azimuth degree is 0◦

Figure 44: Azimuth and Elevation Degrees high Images

Liu et al. [35], Naseem et al. [36] and Tahir et al. [37] were used 2414 images instead

of 2452. The reason was for each label there was an ambient image. (Figure 45).

Figure 45: First 11 Class Ambient Images of Extended Yale B

They divided 2414 frontal face images into five subsets. Subset 1 consisting of nom-

inal lighting condition images, Subsets 2 and 3, each consisting of slight-to-moderate

luminance variation images, while subset 4 and 5, each consisting of depicting severe

light variations images. Each subset number is shown in Table 6.

Table 6: Subset Numbers.

# of Images

Subset 1 263
Subset 2 456
Subset 3 525
Subset 4 456
Subset 5 714

However, the explanation of subset division is not clear. For instance, what does
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the term nominal lighting condition refers regarding azimuth and elevation? In the

previous study [13], Subset 1 is up to 12◦, Subset 2 is up to 25◦, Subset 3 is up to 50◦,

and Subset 4 is up to 77◦. We started with obtaining Subset 1. When we applied

both azimuth and elevation values < 12, we acquired 943 images. Some of the images

were the examples of severe illumination (Figure 46).

Figure 46: Examples of Severe Illumination Images in Extended Yale B dataset

However, the subset 1 rule was under nominal lighting condition images were col-

lected. So how do we separate the severe illuminated images from nominal lighting im-

age? If we carefully look at the names of severe illuminated image ‘yaleB01 P00A-120E+

00’ and nominal lighting image ‘yaleB01 P00A+010E+00’, the only difference is az-

imuth values. In the severe illuminated image, the azimuth value is -120◦ where

nominal lighting azimuth value is +10◦. Therefore we added the rule azimuth ≥ 0.

When we applied azimuth ≥ 0 and azimuth and elevation < 12, we acquired seven

images per class which are 266 images in total. We continued with obtaining with

Subset 2. When we applied both azimuth and elevation values < 25◦, we acquired 491

images. However, in previous studies, Subset 2 size is 453. None of the 491 images

contains severely illuminated images. When we carefully examine, 38 images azimuth

value is 0◦. Therefore we added the rule azimuth 6= 0. When we applied azimuth

6= 0 and azimuth and elevation ≤ 25, we obtained seven images per class which are

453 images. For Subset 3 and 4, we applied the same rule with [13], which is both

azimuth and elevation values ≤ 50◦, and ≤ 77◦, respectively. The remaining images

belong to Subset 5.

Same as in the previous studies [35], [36], the MSBS algorithm was trained on

Subset 1 (263 samples) and tested on Subset 2-5. Subset 1 (Figure 47, 48) and Subset
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2 (Figure 49, 50) are both images under nominal lighting condition, easily recognized

by human eyes. Subset 3 (Figure 51, 52) is slightly darker compared to Subset 1

and 2 but still recognizable with a human eye. Subset 4 (Figure 53, 54) images

were taken under severe lighting conditions, and few images are hard to recognize.

Subset 5 (Figure 55) is the hardest set, some of the images are impossible to see or

recognize with a human eye. The preprocessing chain enables Subset 5 (Figure 56)

to be recognizable with a human eye.

Figure 47: Extended Yale B Subset 1
Examples

Figure 48: Extended Yale B Prepro-
cessing Chain Applied Subset 1

The results of Table 7 - 12 shows three facts. The first one is the preprocessing

chain did improve the classification accuracy. For each kernel (Figure 58 - 61), the

preprocessing chain accuracy is greater than the normal accuracy, except for Subset

2 polynomial kernel, where the Whitened PCA accuracies of both preprocessed and

normal accuracies are same. (Table 8 and 11). The effect of the preprocessing chain

is clearly can be seen in Figure 60 and 61. The second fact is the highest classification

accuracies were obtained when Whitened PCA was applied. The third fact is, MSBS

algorithm was higher than the previous results. (Table 13, Figure 57).
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Figure 49: Extended Yale B Subset 2
Examples

Figure 50: Extended Yale B Prepro-
cessing Chain Applied Subset 2

Figure 51: Extended Yale B Subset 3
Examples

Figure 52: Extended Yale B Prepro-
cessing Chain Applied Subset 3

4.0.3 Georgia Tech Face Dataset

Georgia Tech Face Recognition database [14] consisted 750 colorful images of 50

subjects. Each subject having 15 samples. Each image was captured under nominal

60



Figure 53: Extended Yale B Subset 4
Examples

Figure 54: Extended Yale B Prepro-
cessing Chain Applied Subset 4

Table 7: Extended Yale B SVM Linear Kernel Results
Extended Yale B - 38 Classes SVM Linear Kernel Accuracies

Each class having around 64 samples Method Unscaled PCA Whitening Whitened PCA

Each Class Image 168 x 192 pixel r1 r2 K Cell Size Accuracy Accuracy Accuracy Accuracy

Test 2 2 1 4 7x7 99.5585% 99.5585% (10752→189) 99.5585% 99.5585% (10752→189)

Test 3 2 1 4 7x7 99.0476% 99.0476% (10752→189) 99.4286% 99.4286% (10752→189)

Test 4 2 1 4 7x7 52.8509% 52.8509% (10752→189) 76.5351% 76.3158% (10752→189)

Test 5 2 1 4 7x7 12.8852% 12.6050% (10752→189) 25.4902% 27.0308% (10752→189)

Table 8: Extended Yale B Polynomial Kernel Results
Extended Yale B - 38 Classes SVM Polynomial Kernel Degree 3 Accuracies

Each class having around 64 samples Method Unscaled PCA Whitening Whitened PCA

Each Class Image 168 x 192 pixel r1 r2 K Cell Size Accuracy Accuracy Accuracy Accuracy

Test 2 2 1 4 7x7 99.5585% 85.872% (10752→189) 99.7792% 96.0265% (10752→189)

Test 3 2 1 4 7x7 58.4762% 20% (10752→189) 94.0952% 44.7619% (10752→189)

Test 4 2 1 4 7x7 4.6053% 2.6316% (10752→189) 57.8947% 2.8509% (10752→189)

Test 5 2 1 4 7x7 2.6611% 2.6611% (10752→189) 28.5714% 2.6611% (10752→189)

lighting conditions, with the size of 640×480 pixels. We discriminate the dataset based

on the previous studies [36] [71]; For each subject, first eight samples were placed into

the training set and the rest placed into test set. Training set was consisted of 450

images (Figure 62) and test set was consisted of 300 images (Figure 63). All images
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Figure 55: Extended Yale B Subset 5
Examples

Figure 56: Extended Yale B Prepro-
cessing Chain Applied Subset 5

Table 9: Extended Yale B SVM RBF Kernel Results
Extended Yale B - 38 Classes SVM RBF Kernel Degree 3 Accuracies

Each class having around 64 samples Method Unscaled PCA Whitening Whitened PCA

Each Class Image 168 x 192 pixel r1 r2 K Cell Size Accuracy Accuracy Accuracy Accuracy

Test 2 2 1 4 7x7 99.5585% 94.0397% (10752→189) 99.5585% 99.5585% (10752→189)

Test 3 2 1 4 7x7 98.4762% 91.619% (10752→189) 97.5238% 99.0476% (10752→189)

Test 4 2 1 4 7x7 57.8947% 55.0439% (10752→189) 50.8772% 72.5877% (10752→189)

Test 5 2 1 4 7x7 12.465% 23.3894% (10752→189) 17.0868% 23.3894% (10752→189)

are converted to gray-scale using the standard equation given below: [11]

I = 0.299*R+0.587G+0.114B. (30)

In the equation, R represent the red channel, G represent green channel and B
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Table 10: Preprocessing Chain Applied Extended Yale B SVM Linear Kernel Results
Extended Yale B - 38 Classes Preprocessed Chain Applied SVM Linear Kernel Accuracies

Each class having around 64 samples Method Unscaled PCA Whitening Whitened PCA

Each Class Image 168 x 192 pixel r1 r2 K Cell Size Accuracy Accuracy Accuracy Accuracy

Test 2 2 1 4 7x7 99.7792% 99.7792% (10752→194) 99.7792% 99.7792% (10752→194)

Test 3 2 1 4 7x7 99.619% 99.619% (10752→194) 99.619% 99.619% (10752→194)

Test 4 2 1 4 7x7 76.7544% 76.7544% (10752→194) 82.6754% 82.0175% (10752→194)

Test 5 2 1 4 7x7 58.9636% 59.8039% (10752→194) 64.7059% 64.7059% (10752→194)

Table 11: Preprocessing Chain Applied Extended Yale B Polynomial Kernel Results
Extended Yale B - 38 Classes Preprocessed Chain Applied SVM Polynomial Degree 3 Kernel Accuracies

Each class having around 64 samples Method Unscaled PCA Whitening Whitened PCA

Each Class Image 168 x 192 pixel r1 r2 K Cell Size Accuracy Accuracy Accuracy Accuracy

Test 2 2 1 4 7x7 99.7792% 99.5585% (10752→194) 99.7792% 98.0132% (10752→194)

Test 3 2 1 4 7x7 98.8571% 82.0952% (10752→194) 99.4286% 60%

Test 4 2 1 4 7x7 68.6404% 30.7018% (10752→194) 76.3158% 8.9912% (10752→194)

Test 5 2 1 4 7x7 48.4594% 22.1289% (10752→194) 58.2633% 6.0224% (10752→194)

Table 12: Preprocessing Chain Applied Extended Yale B SVM RBF Kernel Results
Extended Yale B - 38 Classes Preprocessed Chain Applied SVM RBF Kernel Degree 3 Accuracies

Each class having around 64 samples Method Unscaled PCA Whitening Whitened PCA

Each Class Image 168 x 192 pixel r1 r2 K Cell Size Accuracy Accuracy Accuracy Accuracy

Test 2 2 1 4 7x7 99.7792% 99.7792% (10752→194) 100% 99.7792% (10752→194)

Test 3 2 1 4 7x7 99.8095% 99.4286% (10752→194) 100% 99.619% (10752→194)

Test 4 2 1 4 7x7 91.6667% 83.114% (10752→194) 93.8596% 86.8421% (10752→194)

Test 5 2 1 4 7x7 82.493% 73.5294% (10752→194) 90.1961% 72.8291% (10752→194)

Table 13: Recognition rates of different methods on the Extended Yale B dataset
Method Subset-2 Subset-3 Subset-4 Subset-5 Mean

PCA 98.5% 80.0% 15.8% 24.4% 54.7%
ADLBP (uniform pattern) 99.8% 89.5% 28.5% 12.5% 57.6%

LRC 100% 100% 83.27% 33.61% 79.2%
ADLBP 99.8% 99.6% 91.4% 67.1% 89.5%

RDLBP (uniform pattern) 99.8% 99.4% 91.9% 68.5% 89.9%
LBP S (uniform pattern) 99.8% 99.6% 93.2% 77.7% 92.6%

LRC Fused 100% 100% 88.97% 84.73% 93.4%
ADLBP M (uniform patern) 99.8% 99.6% 94.5% 88.7% 95.7%

MSBS 100% 100% 93.4% 90.2% 96%

represents the blue channel. After converting to grey-scale, we cropped image to

size of 92 × 112 pixel [71]. We also applied preprocessing chain for both training

(Figure 64) and test sets (Figure 65), to observe how preprocessed chain will effect
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Figure 57: Comparing Extended Yale B Subset Means

the classification accuracy.

We tested our algorithm with LIB-SVM [70] with linear, polynomial and rbf ker-

nels respectively. Polynomial and rbf degree were three and two-fold cross validation

applied. The best results, for each kernel, highlighted bold in Table 14 and Table 15.

Table 14: Georgia Tech SVM Results
Georgia Tech- 50 Classes SVM Accuracy on Test Set

Each class having 15 samples Method Unscaled PCA Whitening Whitened PCA
Each Class Image 92 x 112 pixel r1 r2 K Cell Size Accuracy Accuracy Accuracy Accuracy

Linear Kernel 2 1 4 7x7 91.4286% 91.4286% (3584→283) 90.2857% 91.4286% (3584→283)
Polynomial Kernel 2 1 4 7x7 90.2857% 85.7143% (3584→283) 91.1429% 91.1429% (3584→283)

RBF Kernel 2 1 4 7x7 91.7143% 91.4286% (3584→283) 92.5714% 91.4286% (3584→283)

Table 15: Preprocessing Chain Applied Georgia Tech SVM Results
Georgia Tech- 50 Classes SVM Accuracy on Test Set

Each class having 15 samples Method Unscaled PCA Whitening Whitened PCA
Each Class Image 92 x 112 pixel r1 r2 K Cell Size Accuracy Accuracy Accuracy Accuracy

Linear Kernel 2 1 4 7x7 91.4286% 92% (3584→310) 89.4286% 90.8571% (3584→310)
Polynomial Kernel 2 1 4 7x7 91.1429% 87.1429% (3584→310) 87.7143% 76% (3584→310)

RBF Kernel 2 1 4 7x7 92% 91.7143% (3584→310) 91.7143% 90.2857% (3584→310)

MSBS result was compared with the previous results (Figure 66). MSBS classifi-

cation accuracy (92.57%) is better than the previous results.
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Figure 58: Comparing Extended Yale B Test2 Kernel Results
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Figure 59: Comparing Extended Yale B Subset 3 Kernel Results
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Figure 60: Comparing Extended Yale B Test4 Kernel Results
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Figure 61: Comparing Extended Yale B Subset5 Kernel Results
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Figure 62: Georgia Tech Face Recog-
nition Training Examples

Figure 63: Georgia Tech Face Recog-
nition Test Examples

Figure 64: Preprocessed Chain Ap-
plied Georgia Tech Face Recognition
Training Examples

Figure 65: Preprocessed Chain Ap-
plied Georgia Tech Face Recognition
Test Examples
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Figure 66: Comparing MSBS Results with other descriptors using Georgia Tech
dataset

The results of table 14 and 15 shows that the WPCA increased the classification

accuracy. Especially in table 14, the highest classification accuracy was obtained

using gaussian kernel. Unlike the previous, AT&T and Extended Yale B datasets,

Georgia Tech faces is not a cropped face images dataset. Each face image have a

background. Therefore the background pixels might reduce the MSBS accuracy, by

creating a noise in our feature vector. The preprocessed chain effect can be seen on

PCA accuracy (Figure 67).

4.0.4 MNIST

MNIST, Optical Character Recognition (OCR) database [27] consisted 70.000 grey-

scale images of 10 digits from 0-9. Each digit is having different size samples. There

are 60.000 Training and 10.000 Test samples. As the name implied, MNIST is the
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Figure 67: Comparing Georgia Tech Kernel Results
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Modified version of NIST database. All the NIST data samples were normalized and

centered to the 28 x 28 pixel size. MSBS algorithm was designed for face recognition.

Therefore, MSBS was not expected to perform good on MNIST. However, MNIST

was a test case for most of the algorithms [75].

MSBS was tested using fitcecoc [76] command, because LIB-SVM computation

time takes long time on MNIST. The command ‘fitcecoc’ calculates error-correcting

output codes (ECOC) for multiclass model. MSBS features were trained using SVM

and the best results were obtained using the linear kernel (Table 16). We tested

with linear and polynomial kernels, because radial-bases kernel (rbf) kernel takes

long time for computation. We used the default polynomial kernel degree two. The

preprocessing chain was also applied to the MNIST dataset (Figure 69), however

preprocessed MNIST samples similar to MNIST samples (Figure 68), therefore we

tested using MNIST samples.

Table 16: MNIST SVM Results
MNIST- 10 Classes SVM Accuracy on Test Set

Each class have different size samples Method Unscaled PCA Whitening Whitened PCA
Each Class Image 28 x 28 pixel r1 r2 K Cell Size Accuracy Accuracy Accuracy Accuracy

Linear Kernel 2 1 4 7x7 93.29% 91.79% (256→51) 93.26% 91.89% (256→51)
Polynomial Kernel 2 1 4 7x7 50.16% 59.53% (256→51) 11.35% 91.32% (256→51)
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Figure 68: MNIST Examples Figure 69: Preprocessed Examples
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CHAPTER V

CONCLUSION

In a face recognition problem, the illumination is one of the challenges. Lighting on

the image directly affects classification accuracy. The solution is either selecting il-

lumination invariant visual descriptor or applying preprocessing method. Therefore,

LBP is one of the solutions. LBP is illumination invariant, computationally simple

and flexible at neighborhood pixel selection. However, LBP’s has two significant lim-

itations. The first significant limitation is selecting the uniform pattern. Researchers

were discovered non-uniform patterns also contain the essential characteristic of the

face image. Therefore neglecting or placing non-uniform pattern will be resulted in

poor performance. In this study, all patterns were taken into consideration.

The second major limitation is the circular neighborhood. The circular neigh-

borhood is one of the factors for the rotational invariant property. However, in face

recognition problem, the rotational invariant property is not essential. The critical

thing is extracting, characteristic (eye, nose, mouth, etc..) information. Since each

face characteristic is in the different direction, with a different pixel value, researchers

had named this fact as anisotropic information. MSBS captures anisotropic informa-

tion by analyzing the neighborhood pixel relations, obtain pattern and give features

to the classification algorithm.

Applying PCA usually increases the classification accuracy. However, in face

recognition problem, researchers were discovered that PCA eigenvectors mostly en-

code illumination rather than characteristic information, instead Whitened PCA was

suggested. The Whitening process normalizes the illumination effect and, PCA de-

creases the dimension; as a result, the performance increases. Therefore Whitened
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PCA is used in this study. Most of the best results were obtained using both Whiten-

ing and Whitened PCA.

In this study, LBP’s neighborhood topology variants are studied, and a new LBP

based face recognition algorithm proposed. The proposed algorithm, named Multi-

scale Binary Similarity are evaluated on standard datasets. MSBS classification ac-

curacy compared with the previous methods, and its performance is better than most

of the methods in literature.

As a future work, we will investigate the neighbor template extraction in a broader

manner. We, currently, linearly score for similar neighbor behaviors. Scoring function

can be incorporated a distance notion. Moreover, neighbor template extraction can

be specialized for partial rotational invariance. While rotational invariance is not

always desired, there are certain scenarios where it matters. For those special cases,

we will investigate MSBS neighborhood template extraction with partial rotational

invariance.

75



Bibliography
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