
HTTP ADAPTIVE STREAMING
WITH ADVANCED TRANSPORT

A Thesis

by

Şevket Arısu

Submitted to the
Graduate School of Sciences and Engineering
In Partial Fulfillment of the Requirements for

the Degree of

Master Of Science

in the
Department of Computer Science

Özyeğin University
September 2018

Copyright c© 2018 by Şevket Arısu

HTTP ADAPTIVE STREAMING
WITH ADVANCED TRANSPORT

Approved by:

Asst. Prof. Ali Cengiz Beğen, Advisor
Department of Computer Science
Özyeğin University

Prof. Dr. Reha Civanlar
Department of Computer Science
Özyeğin University

Asst. Prof. Tufan Coşkun Karalar
Electronics and Communication
Engineering
Istanbul Technical University

Date Approved: 9 August 2018

To my wife Irmak

iii

ABSTRACT

QUIC (Quick UDP Internet Connections) is an experimental and low-latency trans-

port network protocol proposed by Google, which is still being improved and specified

in the IETF. The viewer’s quality of experience (QoE) in HTTP adaptive streaming

(HAS) applications may be improved with the help of QUIC’s low-latency, improved

congestion control and multiplexing features. In this master thesis, we measured the

streaming performance of QUIC on wireless and cellular networks in order to un-

derstand whether the problems that occur when running HTTP over TCP can be

reduced by using HTTP over QUIC. The performance of QUIC was tested in the

presence of network interface changes caused by the mobility of the viewer. We ob-

served that QUIC resulted in quicker start of media streams, better streaming and

seeking experience, especially during the higher levels of congestion in the network

and had a better performance than TCP when the viewer was mobile and switched

between the wireless networks. Furthermore, we investigated QUIC’s performance

in an emulated network that had a various amount of losses and delays to evaluate

how QUIC’s multiplexing feature would be beneficial for HAS applications. We com-

pared the performance of HAS applications using multiplexing video streams with

HTTP/1.1 over multiple TCP connections to HTTP/2 over one TCP connection and

to QUIC over one UDP connection. To that effect, we observed that QUIC provided

better performance than TCP on a network that had large delays. However, QUIC

did not provide a significant improvement when the loss rate was large.

iv

ÖZETÇE

QUIC (Quick UDP Internet Connections - Hızlı UDP Internet Bağlantıları) Google

tarafından bulunan ve halen IETF bünyesinde belirlenmekte ve geliştirilmekte olan,

düşük gecikmeli ve deneysel bir ağ haberleşme protokolüdür. HTTP üzerinden di-

namik adaptif iletim (DASH - Dynamic Adaptive Streaming over HTTP) uygu-

lamalarındaki kullanıcı deneyimi, QUIC’in sunduğu düşük gecikme, gelişmiş trafik

kontrolü ve çoğullamalı kanallar özellikleri sayesinde geliştirilebilir. Bunu araştırmak

amacıyla, TCP üzerinden HTTP kullanıldığında oluşan problemlerin, QUIC üzerinden

HTTP kullanılarak azaltılıp azaltılmadığını anlamak için kablosuz ve hücresel ağlar

üzerinde QUIC’in iletim performansını ölçtük. QUIC’in performansını izleyicinin

hareket halinde olmasından kaynaklanan bağlantı arayüzü değişikliklerinin bulunduğu

ağ koşullarında gözlemledik. Bu araştırmalarımız sonucunda, QUIC’in medyaları

daha hızlı başlattığını, özellikle yüksek trafik sıkışıklığı olduğunda daha iyi izleme ve

görüntü arama deneyimi sunduğunu ve kullanıcının hareketli olduğu ve kablosuz ağlar

arasında bağlantı değiştirdiği durumlarda TCP’den daha iyi performans gösterdiğini

gözlemledik. Buna ek olarak, çeşitli oranlarda gecikme ve kayıpların olduğu deney-

sel bir ağ ortamında, QUIC’in çoğullamalı kanallar özelliğinin, HTTP üzerinden

adaptif iletim için nasıl faydalı olabileceğini araştırdık. Çoklu TCP bağlantıları

üzerinden HTTP1.1, tek TCP bağlantısı üzerinden HTTP/2 ve tek UDP bağlantısı

üzerinden QUIC ile çoğullamalı kanallar kullanan adaptif iletim uygulamalarının

performanslarını karşılaştırdık. Bu hususta, QUIC’in yüksek gecikme olan ağlarda

TCP’den daha iyi performans gösterdiğini gözlemledik. Buna karşın, QUIC’in yüksek

kayıp olan ağlarda önemli bir iyileşme sağlamadığını gördük.

v

ACKNOWLEDGEMENTS

I would like to acknowledge Asst. Prof. Ali Cengiz Beğen for giving me the oppor-

tunity to realize this thesis and for his highly valuable comments and advice, which

have contributed immensely to this master thesis.

I would like to thank my teachers, particularly Princess and Birsen, for their

support. I am greatly thankful to my colleagues at work especially Ertan and Erkan,

for their advice and for sharing their experience.

Special thanks go to my lovely wife Irmak for her immense support during my

studies. Finally, I would like to express my infinite gratitude to my sisters, my mother

and my father for their outstanding support.

vi

TABLE OF CONTENTS

DEDICATION . iii

ABSTRACT . iv

ÖZETÇE . v

ACKNOWLEDGEMENTS . vi

LIST OF TABLES . ix

LIST OF FIGURES . x

I INTRODUCTION . 1

1.1 Media Stream Delivery . 1

1.2 HTTP Streaming . 3

1.3 MPEG DASH . 3

1.4 Head-of-Line Blocking in HAS Applications 6

1.5 Rebuffering Events in HAS Applications 7

1.6 Thesis Objectives . 7

II RELEATED WORK . 9

III APPROACH AND ENVIRONMENT SETUP 13

3.1 Internet Setup . 13

3.1.1 Frame-Seek Scenario . 16

3.1.2 Connection-Switch Scenario 16

3.2 Testbed Setup . 18

3.2.1 Evaluating QUIC’s Multiplexing Feature 18

IV RESULTS . 25

4.1 Measured Metrics . 25

4.2 Results for the Frame-Seek Scenario 26

4.3 Results for the Connection-Switch Scenario 28

4.4 Results for the Evaluation of Multiplexing Feature 29

vii

V CONCLUSIONS . 33

REFERENCES . 35

VITA . 38

viii

LIST OF TABLES

1 Comparison between this thesis and prior work (sorted by publication
date). 12

2 Measured network parameters (averages). 14

3 Frame-seek scenario for the 600-second content. 17

4 Connection-switch scenario for the 600-second content. 18

5 Frame-seek results with BASIC algorithm. 27

6 Frame-seek results with SARA algorithm. 28

7 Frame-seek results with BBA-2 algorithm. 28

8 WiFi-LTE switch results. 29

9 WiFi-3G switch results. 30

10 Results are averaged for BASIC, SARA and BBA-2 algorithms as well
as DASH-IF NP2b and FCC network profiles. 32

ix

LIST OF FIGURES

1 QUIC architecture (*: HTTP/2 shim). 2

2 HAS player adaptation. 5

3 HTTP streaming architecture. 6

4 Measured RTTs during the tests (milliseconds). 14

5 The HAS player can use QUIC or TCP to download the media segments. 22

6 Internet setup for the connection-switch tests. 23

7 Testbed setup for controlled experiments. 23

8 Sending multiple streams of data. 24

x

CHAPTER I

INTRODUCTION

Today, the QUIC protocol is distributed and extensively being used in many Google’s

services. Over 30% of Google’s total egress traffic is QUIC [1]. QUIC is widely

deployed to the user space by the Chrome browser (both desktop and mobile), and

already comprises 7% of all Internet traffic [2]. QUIC aims to reduce the connection

establishment latency and improve the congestion control, and provides multiplexing

streams and encryption at application transport level. QUIC replaces most of the

traditional HTTPS stack: HTTP/2, TLS and TCP. The architecture of QUIC is

shown in Figure 1. Some of these features may be modified or removed, or new

features may be added over time as all the aspects regarding the QUIC protocol are

currently being specified in the IETF by a large number of experts across a number

of companies and researchers working in the field.

1.1 Media Stream Delivery

Media stream delivery can be explained as providing a content to a viewer through

a network with respect to media constraints and network conditions. Media con-

tent constraints are related to the fact that streams have timing constraints within

one stream and as well as within different streams. Various different media delivery

techniques are defined ranging from centralized to decentralized ones. The older ar-

chitectures are characterized by the presence of a single provider for multiple viewers.

For this reason, it requires big amounts of resources at the server side. Broadcasting

and multicasting are typical examples of this architecture. The newer architectures

are capable of having multiple providers delivering media to multiple viewers. This

1

IP

TCP UDP

TLS

HTTP/2
QUIC

HTTP/2*
Application

Security

Transport

Network

Multiplexing

Congestion Control &
Loss Recovery

Multiplexing

Encryption

Congestion Control &
Loss Recovery

Figure 1: QUIC architecture (*: HTTP/2 shim).

architectures share and distribute the resource usage among multiple servers. Typ-

ical examples of this technique are peer-to-peer applications or video conferencing

applications.

In on-demand services, media is delivered when requested, thus network resources

are used only after a request received by the server. The server keeps a connection

per client, which can handle the presentation and communicate with the server using

another channel. In broadcast applications, media is delivered independently from

requests, and is the same for all clients. In contrast to on-demand there is no con-

nection. In this technique, clients join the broadcast, and the network resources are

independent from the number of users. The major media delivery techniques are

download and play, progressive download, traditional streaming and HTTP stream-

ing. Download and Play is the simplest solution among all. In this technique,

the client downloads the whole file, and then starts the playback of the content from

its local disk. Nonetheless, a long initial delay is required before playback and it

does not support live content. In progressive download, multimedia content is

2

downloaded progressively into a local buffer, from which the playback can start, as

soon as sufficient data is available. However, it has some drawbacks. It wastes both

network and local machine resources if the user stops watching content, and it does

not provide any adaptation mechanism. Traditional streaming is a packet-based

streaming requiring a state-full protocol, which sets up a session between the client

and the server. HTTP streaming is file based approach that delivers appropriately

structured files using HTTP. The deployment of HTTP streaming is simpler than

traditional streaming, in fact it can take advantage of all the HTTP architecture in

the existing Internet infrastructure.

In this thesis we primarily focus on HTTP streaming.

1.2 HTTP Streaming

HTTP streaming can be considered as an extension of progressive download, sup-

porting both on-demand and live scenarios. It has become a very popular to deliver

media content over the Internet. In fact, several commercial streaming platforms,

such as Microsofts Smooth Streaming, Apples HTTP Live Streaming, and Adobes

HTTP Dynamic Streaming, use HTTP streaming as delivery method. If a device

wants to use a streaming service, it needs to support the specific protocol because

each implementation defines its own manifest file (MPD) and segment format. The

need for interoperability, required for rapid market growth, led to the development of

MPEG DASH as a HTTP streaming standard.

1.3 MPEG DASH

Multimedia content consists of two parts in MPEG DASH streaming technology.

First part is Media Presentation Description (MPD) file which gives information on

the content properties such as representation alternatives and URLs of the segments.

The second part includes segments containing the actual media content. First of

all, MPD file should be downloaded from the server by the DASH client in order to

3

play the multimedia content. Secondly, the client parses the MPD file for obtaining

information on the media. By this process, the presentations, resolutions, media types

and available bandwidths gathered by the client. Representation that best suits its

needs can be selected and the streaming session can be started by requesting the

media segments using HTTP with the help of this information. Subsequent segments

can be downloaded and network bandwidth can be measured by the client during

the streaming session. Segments which belong to different representations can be

requested so that an enough buffer level can be kept. By this way adaptation into

network changes can be done by the client. A high level overview of an MPEG DASH

streaming session can be seen in Figure 2. The server containing media content at

different bitrate levels can be seen on the left side; the representation of the network

with variations of the available bandwidth over time can be seen in the middle and a

client which downloads segments in different quality levels in response to the network

bandwidth changes can be seen on the right side. The MPD file and the media

segment formats can be defined by the scope of the MPEG DASH specification.

However, the client behaviour for downloading segments, the media encoding formats

along with the adaptation logic is outside of the MPEG DASH specification scope.

An example of an MPEG DASH streaming scenario can be seen in Figure 3. In the

Figure 3, the server contains the MPD and all the related segments can be seen on

the left side. The MPD parser, the HAS adaptation algorithm, the HTTP library and

the media player which are included by the DASH client application can be seen on

the right side. The DASH client application contains the HAS adaptation algorithm

which enables to manage the streaming session. It is responsible for the selection of

the segments to be downloaded, using the information about the available bandwidth

and the media presentation description in the MPD file. The HTTP library module

sends the HTTP requests to the server, in order to download the selected segment,

and provides the media to the media player. The media player is responsible for

4

Internet

Server Client

Different
Bitrate
Presentations

Time

Network
Speed

Time Time

Selected
Bitrate
Quality

Figure 2: HAS player adaptation.

decoding and rendering of the media content.

The main MPEG DASH benefits are;

• Avoidance of problems with NAT traversal and firewalls,

• Reuse of the existing Internet infrastructure,

• Support for both on-demand and live streaming applications,

• Complexity is at the client side (HAS adaptation algorithm),

• Deployment of Content Delivery Networks (CDNs) can be kept simple,

• Seamless transition between different bitrate qualities,

• Support for different segment durations.

5

MPD
Parser

HTTP
Library

Media
Player

HAS Adaptation
Algorithm

High
Quality

Low
Quality

Segment 1

Segment 2

Segment N

MPD

HTTP
Request

HTTP
Response

Server Client

Figure 3: HTTP streaming architecture.

1.4 Head-of-Line Blocking in HAS Applications

The common belief that HTTP must used over TCP is a misconception. Although

TCP has been the primary protocol to use with HTTP, the HTTP specifications

(RFCs 7230 and 7540) do not state using TCP is mandatory. Rather, HTTP must

used with a reliable transport protocol. In case of a packet loss, TCP blocks the sub-

sequent packets that may have already been received in the receive buffer. In order to

guarantee in-order delivery, TCP does not deliver received packets to the application

layer unless the missing packet is recovered through a retransmission. With respect

to HTTP adaptive streaming, head-of-line blocking and slow retransmissions could

sometimes cause the delays of delivering media segments and degrade viewer expe-

rience, in particular if the data in the playback buffer of the player is running out.

QUIC can solve this problem by the help of its superior design. Multiplexed streams

are used over one UDP connection to support multiple HTTP requests in parallel by

QUIC. Streams in QUIC are independent of each other and each stream provides a

reliable delivery. In the case of losing a packet in a stream, the other streams are not

6

affected. HTTP/2 (RFC 7540) has multiplexing features, too. However, HTTP/2

may still have the problem of head-of-line blocking if it is used over TCP. Another

feature of QUIC is the reduced handshake latency. While TCP requires one and a

half round-trip time (RTT) to complete the handshake, QUIC needs roughly half an

RTT before the request is received by the server. This feature may potentially reduce

the initial startup or seeking latency for HAS applications. Last but not least, QUIC

may help to get a higher throughput by the help of its improved loss recovery and

congestion control features.

1.5 Rebuffering Events in HAS Applications

The studies previously showed that viewers are quite sensitive to rebuffering events as

even one percent increase in rebuffer rate can trigger a decrease in watch time more

than three minutes [3]. Another research [4] showed that that the viewer engagement

linearly decreased with increasing rate of rebuffer rate up to a certain threshold.

Viewers watch only 30% of the video when there are more than 0.3 buffering events

per minute. Experiencing more buffering events, the viewers got bored and stopped

watching the rest of the content. Buffering events can take place when there is a

significant delay or packet loss in the network during the playback, and also when the

viewer wants to seek to a video frame that has not been downloaded yet. Moreover,

buffering events can also occur when the network interface changes (e.g., switching

from WiFi to LTE or 3G network). During this change, the IP address of the device

changes and the streaming client has to re-establish the TCP connection.

1.6 Thesis Objectives

This thesis aims to answer the following three questions: First, on which conditions

and how can QUIC start media streams more quickly, help to reduce the initial startup

and seeking latency? Second, how can QUIC be beneficial to cope better with frequent

connection changes and get better experience when the viewer is mobile and switches

7

between the wireless networks? Third, how does QUIC’s multiplexing feature perform

against HTTP/1.1 over multiple connections and HTTP/2 over a single connection

when there are random losses and delays in the network? The HAS performance over

QUIC is evaluated vs. over TCP on the Internet to answer the first two questions. A

testbed environment is used to answer the third question.

This study is structured as follows: Chapter 2 presents an overview of other rele-

vant works that studied streaming over QUIC. Chapter 3 describes the approach and

setup that is designed to compare the performance of streaming clients running QUIC

and TCP under different frame-seek scenarios and various network interface change

scenarios. This chapter describes the approach for evaluating QUIC’s multiplexing

feature in a controlled network as well. Chapter 4 includes an analysis of the observed

QoE measurements. Finally, Chapter 5 includes the conclusions, and a discussion of

potential benefits of QUIC transport for HAS along with the future work.

8

CHAPTER II

RELEATED WORK

Timmerer et al. discovered that using QUIC instead of TCP, was not effective for

the overall streaming performance considering increased or decreased media through-

put [5]. Conversely, Szabo et al. proved QUIC’s benefit in initial buffering time with

a range of 6-49% changing on the media properties and network environment [6].

Li et al. worked on an MMT (MPEG Multimedia Transport) based multimedia sys-

tem using QUIC and found that QUIC was a better option for media transport in

comparison with HTTP when using on an MMT system [7]. Bhat et al. compared

TCP versus QUIC at the transport layer and measured the performance of the HAS

adaptation algorithms. The authors discovered that QUIC was not beneficial for the

existing adaptation algorithms because they were designed with respect to TCP [8].

Zinner et al. also worked on the same issue and found that QUIC with 0-RTT con-

nection establishment clearly performed better than the other protocols, reducing

the start time for the playback [9]. According to Google’s reports, QUIC reduced

the rebuffer rates of YouTube by 18% and %15 for desktop users and mobile users,

respectively [1]. Kakhki et al. reported that QUIC provided better streaming QoE

than TCP, but only for high-definition video. Ayad et al. worked on the perfor-

mance of commercial and open-source players and discovered that the QUIC protocol

was quite aggressive when competing with other TCP flows and not as responsive to

congestion as other TCP flows [10].

Some studies examined QUIC for not necessarily media streaming over HTTP

but ordinary Web transport. Carlucci et al. discovered QUIC had a better per-

formance than TCP, considering Web page load times when there were not random

9

losses and QUIC performed better than SPDY (the pre-standard version of HTTP/2)

when there were losses in the network [11]. Magyesi et al. investigated QUIC’s Web

performance over HTTP/1.1 and SPDY, and found that they were not exactly better

than each other and the network conditions determined which protocol gave better

performance [12]. Cook et al. founded out that QUIC outperformed HTTP/2 over

TCP/TLS in wireless mobile networks [13]. Qian et al. worked Web content delivery

on mobile networks in a recent study. The authors found that multiple QUIC connec-

tions could cope with the restrictions of different congestion control algorithms when

downloading short-lived Web content [14].

According to the result of some research, QUIC was not as competitive as TCP in

a network with little loss, large buffer or large propagation delay [15]. Furthermore,

there was no markable increase for adaptive streaming performance with QUIC [8, 5].

We suspect that the conflicting results are primarily due to the fact that these studies

tested either an older version of Google’s QUIC server or an open-source (experimen-

tal) implementation that was not provided by Google. The QUIC’s specification is

being rapidly developed and deployed at users. For that reason, an older version of

the code or a non-Google code is not guaranteed to reflect the true performance of

QUIC. Google informs that their QUIC toy server and toy client are not “perfor-

mant at scale” [16]. However, in the evaluations for this thesis, we observed that the

performance was good enough for testing with one client.

The differences compared to previous studies are listed below and summarized in

Table 1.

• The latest public version of Google’s QUIC implementation was used.

• Frame-seek scenarios were tested to investigate how much faster QUIC was

compared to TCP.

• Scenarios involving wireless network disconnections/reconnections were tested.

10

• Experimentation with live video content.

• Focus on the wireless environments.

• Evaluation of multiplexing techniques for HAS applications in networks with

packet loss and delay.

11

T
a
b

le
1
:

C
om

p
ar

is
on

b
et

w
ee

n
th

is
th

es
is

an
d

p
ri

or
w

or
k

(s
or

te
d

b
y

p
u
b
li
ca

ti
on

d
at

e)
.

T
es

te
d

Q
U

IC
V

er
si

on

U
se

d
G

o
og

le
’s

S
er

ve
r?

W
ir

el
es

s
N

et
w

or
k
s1

T
es

te
d

D
iff

er
en

t
A

lg
o-

ri
th

m
s?

E
va

lu
at

ed
F

ra
m

e
S
ee

k
in

g?

E
va

lu
at

ed
C

on
n
.

S
w

it
ch

es
?

T
es

te
d

L
iv

e
V

id
eo

?

T
im

m
er

er
[5

]
v
19

3
7

7
7

7
7

S
za

b
o

[6
]

L
at

es
t

2
7

O
n
ly

W
iF

i
7

7
7

7

L
i

[7
]

L
at

es
t

3
3

7
7

7
7

7

B
h
at

[8
]

L
at

es
t

2
7

O
n
ly

W
iF

i
3

7
7

7

Z
in

n
er

[9
]

L
at

es
t

3
3

7
7

7
7

7

K
ak

h
k
i[

17
]

v
37

3
A

ll
7

7
7

7

A
ya

d
[1

0]
L

at
es

t
3

3
7

3
7

7
7

O
u
r

w
or

k
v
39

3
3

A
ll

3
3

3
3

1
W

iF
i,

4G
/L

T
E

an
d

3G
.

2
B

as
ed

on
th

e
th

ir
d
-p

ar
ty

im
p
le

m
en

ta
ti

on
ve

rs
io

n
at

th
e

ti
m

e
of

re
se

ar
ch

.
3

L
at

es
t

at
th

e
ti

m
e

of
re

se
ar

ch
.

12

CHAPTER III

APPROACH AND ENVIRONMENT SETUP

We tested frame-seek and connection switch scenarios on the public Internet (un-

controlled environment). To evaluate different multiplexing techniques, we used a

testbed (controlled environment).

3.1 Internet Setup

In this setup, we did not use any test bed or any traffic shaping tool to throttle the

network speed, produce loss or delay. We used the QUIC server (v39) provided by

Google [16] for QUIC and Apache’s HTTP server (v2.4.33) [18] for TCP. We set up

the servers on an Amazon EC2 instance in Frankfurt (Germany) and the streaming

clients were in Istanbul (Turkey). The clients were connected via WiFi to residential

broadband access network or via a smartphone tethered to a commercial LTE or 3G

network.

Table 2 and Figure 4 show the network characteristics observed during the tests.

The lower, middle and upper bars in the box plots in Figure 4 represent the 25th,

50th and 75th percentiles of the measured RTTs, respectively, for all three types of

wireless networks. For WiFi, LTE and 3G networks, the average RTTs (drawn as

black squares) are 69 ms, 128 ms and 234 ms, respectively. Note that the RTTs that

were above 400 ms for 3G network are not shown in Figure 4.

We made a couple of modifications in the Python-based player [19] to ensure a

fair comparison of QUIC and TCP. First, we integrated Google’s QUIC client into

the player as a sub-process due to the lack of a Python library implementation for

QUIC. The media segments were downloaded by this sub-process using a single QUIC

connection over UDP. Second, the original player [19] used Python’s urllib [20] to

13

0

50

100

150

200

250

300

350

400

WiFi LTE 3G

R
TT

 (
m

s)

Connection Type

Figure 4: Measured RTTs during the tests (milliseconds).

Table 2: Measured network parameters (averages).

Type
Advertised
Bandwidth

Measured Tput btw.
Server & Client

Average RTT
Loss
Rate

WiFi 50 Mbps 5.9 Mbps 69 ms 0%
LTE 300 Mbps 5.4 Mbps 128 ms ˜0%
3G 21.6 Mbps 3.1 Mbps 234 ms ˜0%

14

make HTTP requests and it was creating a new connection for each media segment.

However, QUIC transfers the data over a single UDP connection by default. A new

TCP client was integrated instead of Python’s urllib to download the files over a single

TCP connection in order to make a fair comparison. The TCP client was coded using

libcurl [21] and worked with HTTP keep-alive feature on. We also enabled Apache

HTTP server’s KeepAlive feature. Figure 5 presents how the HAS player works with

TCP and QUIC. Both QUIC and TCP clients were coded in C++, and we made some

changes in Google’s QUIC server code to disable its in-memory cache. The modified

player code, modified QUIC server code, the QUIC and TCP clients are available for

public access on GitHub for the research community [22].

In our study, we used the following adaptation algorithms to run the experiments:

• BASIC (Throughput based): This adaptation algorithm uses the average

of the segment download rates. It starts by requesting the segment with the

lowest bitrate and then it selects the bitrate for the next segment based on the

calculated average throughput [19].

• SARA - Segment Aware (Buffer based): SARA considers the segment

size variation in addition to the estimated bandwidth and the current buffer

occupancy to accurately determine the time required to download the next

segment. This algorithm predicts the throughput with a weighted harmonic

mean method. [19].

• BBA-2 (Buffer based): BBA-2 algorithm uses a set of functions that maps

the buffer occupancy to a bitrate. The algorithm tries to reduce the rebuffer

events and increase the average bitrate quality. It directly chooses the next

bitrate considering the buffer occupancy and only uses bandwidth estimation if

necessary. This algorithm was used in a wide-scale Netflix experiment [23].

15

Note that in our study we primarily focused on the transport options for HTTP

adaptive streaming, not the features of the particular bitrate adaptation algorithms.

3.1.1 Frame-Seek Scenario

This section describes our test environment setup, modifications that we made in the

player and our approach to evaluate the performance of HAS applications over QUIC

and TCP for several frame-seek events. In our study, the results and conclusions

that we present are not only applicable for forward frame-seek scenarios, but also for

backward frame-seek scenarios.

We scripted frame-seek ability in the player to measure the performance of QUIC

and TCP when the viewer wanted to seek to a frame in the video. Upon jumping to a

second in the content where the respective media segments have not been downloaded

yet, there will not be any segment in the playback buffer and the player will require

to fill it up quickly in order to have a smooth seeking experience.

Table 3 shows the frame-seek scenario that has four seeking events at different

seconds. The player jumps to the seek-to time when the playback time equals to

seek-at time. Generally, the adaptation algorithm of the player may download the

segments at a lower bitrate to shorten the seeking time at the cost of decreased

playback quality. In our evaluations, we set the player to keep the bitrate equal to the

one of the last played segment before the seeking request since our primary goal was

to observe the impact of the transport layer on the seeking experience. We measured

the seconds between the time the frame seek was requested and the playback time of

the requested segment. An on-demand video was used in these frame-seek scenario

evaluations.

3.1.2 Connection-Switch Scenario

We installed a script at the client machine to evaluate QUIC’s performance against

various network interface disconnections and reconnections. Within fixed intervals,

16

Table 3: Frame-seek scenario for the 600-second content.

Viewer Action Seek at Seek to Play Duration
Start at 0 s - - 40 s

Seek #1 40 s 100 s 50 s
Seek #2 150 s 200 s 80 s
Seek #3 280 s 350 s 70 s
Seek #4 420 s 500 s 100 s

Finish at 600 s - - -

Total Viewed 340 s

the client’s active network interface was changed from WiFi to LTE or 3G or vice versa

by this script. The player tried to reconnect to the Internet by using the new interface

when it detected a connection loss. The playback continued as long as there was at

least one media segment in the playback buffer during the connection re-establishment

process. The connection re-establishment process may degrade the QoE, increase

rebuffering rate and produce a stall, naturally. In our tests, we measured the rebuffer

rate and the average playback bitrate when the client has various reconnection events

that were caused by network interface changes.

Most connections can be re-established in a few seconds thanks to the improve-

ments in the networking stack. The player can cope with most reconnection events

without resulting in a rebuffering event or significant quality degradation when it

is streaming an on-demand content with a large playback buffer. The player may

have to decide to download representations that are encoded at lower bitrates if the

reconnection process takes a long time. However, if the reconnection takes a longer

time to complete, the playback will inevitably stall.

We used a live video content and a smaller buffer size for the player for better

understanding the impact of using QUIC vs. TCP during the network interface

switches. Figure 6 shows the network setup for these evaluations and the connection

switch scenario is shown in Table 4.

17

Table 4: Connection-switch scenario for the 600-second content.

From Second To Second Connection Type
0 60 WiFi
60 180 LTE or 3G
180 300 WiFi
300 420 LTE or 3G
420 480 WiFi
480 540 LTE or 3G
540 600 WiFi

3.2 Testbed Setup

3.2.1 Evaluating QUIC’s Multiplexing Feature

In this section, we focus on evaluating QUIC’s multiplexing features in a controlled

environment. We used a testbed to evaluate different multiplexing techniques. For

the controlled experiments, our setup consisted of two machines, one for the players

and one for the servers (HTTP and QUIC). The network topology shown in Figure 7

consists of a server and a client connected through a bottleneck link of 10 Mbps. The

empirical RTT from the client to the server is 1 ms and the packet loss rate is negli-

gible. The server and client are bare metal machines that run vanilla Ubuntu 16.04.

We emulated the network in the bottleneck link between the router and server shown

in Figure 7 using the Network Emulator (tc-NetEm) tool [24]. We used the emula-

tion tool to throttle the available bandwidth of the link between the client and the

server according to the throughput profiles. We also emulated the respective RTT

and packet loss rate.

We used two different throughput profiles to throttle the bandwidth in the em-

ulated tests. The FCC profile [25] provides a profile with a bandwidth variation of

0.8 Mbps to 1.4 Mbps while the DASH-IF NP2b profile [26] provides a bandwidth

variation of 1.5 Mbps to 5 Mbps. The average bandwidth of FCC and DASH-IF

NP2b profiles is 1.1 Mbps and 3 Mbps, respectively. Furthermore, we applied four

different delay and loss patterns (Typical Delay - Typical Loss), (Typical Delay -

18

Large Loss), (Large Delay - Typical Loss) and (Large Delay - Large Loss) to stress

the TCP and UDP stack as recommended in the DASH-IF guidelines [26]. The

emulated network conditions were applied to the link between the client and server

within fixed intervals (30 seconds) while the client has been playing the video. For the

typical network emulation, we used the following set of RTTs and packet loss rates

sequentially: {(100 ms, 0.12%), (88 ms, 0.09%), (75 ms, 0.06%), (50 ms, 0.08%),

(38 ms, 0.09%), (50 ms, 0.08%), (75 ms, 0.06%), (88 ms, 0.09%)}. For the large delay

emulation scenario, we used the following RTTs: {200 ms, 400 ms, 600 ms, 800 ms,

1300 ms, 800 ms, 600 ms, 400 ms, 200 ms}. For the large loss emulation, we used the

following packet loss rates: {0.1%, 1%, 2%, 5%, 10%, 5%, 2%, 1%, 0.1%}. All values

were taken from the DASH-IF guidelines [26]. We used an on-demand content from a

dataset [27] in these tests. The segment duration and playback buffer size were four

and 20 seconds, respectively.

One technique used to send multiple streams of information is stream multiplex-

ing. This is done over a single transport connection. Since HTTP/1.1 can request just

one resource at a time, Web browsers generally open multiple independent TCP con-

nections at the same time. For example, Google Chrome opens up to six connections

and Internet Explorer (v11.0) opens up to 13 connections per origin at the same time

to handle multiple requests to each domain [28]. However, this produces additional

delays and increases the complexity of the application. HTTP/2 has multiplexing fea-

tures to alleviate head-of-line blocking, but may still suffer from head-of-line blocking

if it is used over TCP. In HTTP/2 technique, head-of-line blocking may be caused

by missing data on one stream for the data successfully transmitted and received on

another stream. This is because, despite the independence of each payload data of the

different streams, they are still transmitted in order, to the application over the same

TCP connection. QUIC has multiplexing features as well. It uses multiplexed streams

on one UDP connection to handle concurrent requests in parallel. Each stream in

19

QUIC has reliable delivery, independent of each other, which are also delivered in

order. The streams are not affected if a packet gets lost in another stream.

We evaluated the following three different approaches of sending multiple streams

of data for HAS applications as shown in Figure 8:

(a) HTTP/1.1 over multiple TCP connections,

(b) HTTP/2 with parallel requests over a single TCP connection

(c) QUIC over a single UDP connection.

While using HTTP/1.1 over multiple TCP connections, each video segment was

downloaded by more than one TCP connection using the HTTP partial GET method.

We experimented with different numbers of TCP connections such as one, two, four,

six, eight, ten and twelve connections to download a single segment. When using

more than one connection, each segment file was divided into two, four, six, eight, ten

or twelve equal parts, and each part was downloaded by a separate TCP connection

at the expense of increased overhead. The specification for HTTP/1.1 recommends

limiting the number of connections opened by a client to any server (although no spe-

cific limit is expressed) [29]. In the HTTP/2 approach, we used libcurl [21] HTTP/2

implementation with multiplexing and pipelining features enabled. The partial bytes

of a media segment were downloaded using a single TCP connection by sending mul-

tiple HTTP/2 GET requests in parallel without waiting for the response from the

previous request. QUIC can multiplex streams as well. It multiplexes multiple re-

quests and responses over a single UDP connection by providing each with its own

stream, so that no response can be blocked by another. In its QUIC implementation,

Google chose 1350 bytes as the default payload size for QUIC. Based on Google’s ex-

periments, there is a rapid decrease in reachability after 1450 bytes, which is caused

by the total packet size (sum of QUIC payload, UDP and IP headers) exceeding the

1500 byte Ethernet maximum transmission unit (MTU) limit [1]. In our experiments,

20

we did not change this setting. The maximum packet size for QUIC was 1392 bytes

(including the headers) in our tests.

21

Internet

Network Interface

HAS Player

TCP

TCP
Client

UDP

QUIC
Client

Single TCP or UDP
Connection

Single TCP or UDP
Connection

HTTP Server

Network Interface

Figure 5: The HAS player can use QUIC or TCP to download the media segments.

22

Internet

Network Interface

Server

TCP

Apache
HTTP
Server

Google
QUIC
Server

UDP

Client

Network
Interface 1

Player
(QUIC Mode)

Player
(TCP Mode)

Operating System

Network
Interface 2

LTE or 3G

W
iF

i

Base Station

WiFi AP
Smart
Phone

Switch Scheduler

Figure 6: Internet setup for the connection-switch tests.

Network
Emulation

HAS Server Client

Figure 7: Testbed setup for controlled experiments.

23

Server Client

HTTP/1.1 over Multiple TCPs

Stream 1

Stream 2Server Client

HTTP/2 over TCP

Server Client

QUIC over UDP

Stream 1

Stream 2

X Lost packet

Blocked packet

Data packet for a segment

X

X

TCP 1

TCP 2
X

X

Figure 8: Sending multiple streams of data.

24

CHAPTER IV

RESULTS

For the uncontrolled environment, we ran the tests for three different adaptation al-

gorithms on three types of wireless networks (WiFi, LTE and 3G) in different time

slots. However, to ensure the both protocols (QUIC and TCP) faced the same con-

ditions in the Internet, we started the players for each protocol with a time offset of

half a second. Furthermore, each test was repeated 10 times to prevent substantial

anomalies. In this section, we present the average results.

In our evaluations, we used 600-second long content with 20 different bitrates [27].

The bitrates ranged from 44 Kbps to 3.9 Mbps. For the on-demand content, the

segment duration and playback buffer size were four and 20 seconds, respectively.

For the live content, the segment duration and playback buffer size were set to two

and eight seconds, respectively.

4.1 Measured Metrics

• Average Playback Bitrate: We measured the average of the bitrates of the seg-

ments downloaded during the tests. Generally speaking, higher encoding bitrate

implies better QoE. We note that the average playback bitrate must be consid-

ered together with other metrics such as the number of bitrate changes to make

a more accurate assessment of the QoE [30].

• Average Wait Time after Seeking : This is the time from the frame-seek request

to the playback of the requested media. A rule of thumb is to keep this time

under two seconds [31, 32]. We measured this metric only for the frame-seek

scenarios.

25

• Rebuffer Rate: The rebuffer rate is calculated as follows:

Rebuffer Rate =
Rebuffer Time

Rebuffer Time + Media Play Time
(1)

where the “Rebuffer Time” is the time that the media pauses during the play-

back to rebuffer and “Media Play Time” is the length of the media.

In our tests in the uncontrolled environment, the players using QUIC always achieved

a higher average playback bitrate by selecting segments encoded at bitrates higher

than, or at least as high as, TCP while not increasing, and actually reducing, the

average wait time or rebuffer rate.

4.2 Results for the Frame-Seek Scenario

The frame-seek results for the BASIC, SARA and BBA-2 adaptation algorithms are

shown Tables 5, 6 and 7, respectively. QUIC performed a shorter average wait time

after seeking and started the media streams more quickly. QUIC achieved reducing

the wait times by up to 50% percent compared to TCP. QUIC reduced the rebuffer

rates as well. Our results may seem to conflict with some of the previous research [8].

We suspect that the contradictory nature of [8] compared to ours is primarily due

to the fact that an open-source server implementation with experimental QUIC sup-

port [33, 34] was used by Bhat et al. .

The player may have to empty the whole playback buffer upon a frame-seek re-

quest. The BASIC algorithm does not consider the current buffer occupancy to

calculate the next bitrate. However, the SARA and BBA-2 algorithms are sensitive

to buffer drains. During the tests, the available bandwidth on all types of wireless

networks was sufficient to download the segments at the highest bitrate. For these

reasons, the BASIC algorithm gives a better average playback bitrate than the other

two algorithms. The SARA and BBA-2 algorithms may be modified to better cope

with the frame-seek events.

26

Table 5: Frame-seek results with BASIC algorithm.

Avg. Playback
Bitrate (Mbps)

Avg. Wait Time
after Seeking (s)

Rebuffer Rate

WiFi LTE 3G WiFi LTE 3G WiFi LTE 3G

QUIC 3.38 3.38 3.37 1.35 1.40 1.42 1% 1% 2%
TCP 3.29 3.35 3.08 1.90 1.93 2.40 3% 3% 5%

For all algorithms on all types of wireless networks, we saw that the average wait

time after seeking was almost two seconds or longer when streaming over TCP. When

streaming over QUIC, average wait times were reduced to less than one and a half

seconds. This is an important result, considering that keeping the average seek time

less than two seconds is essential for viewer engagement and loyalty [31, 32].

We observed that the rebuffer rates were reduced by QUIC as well. When stream-

ing over TCP, the rebuffer rates were higher than 3% for the WiFi and LTE networks,

and higher than 5% for the 3G network. When streaming over QUIC, the rebuffer

rates dropped to 1% and 2% for the WiFi and LTE networks, respectively. QUIC

reduced the rebuffer rate more dramatically from 6% to 2% for the 3G network, which

naturally has delays larger than the other networks. In our tests, the 3G network

has 82% higher average RTT than the LTE network, and 339% higher RTT than the

WiFi network as shown in Table 2. Google reported that QUIC’s benefits were higher

when congestion and delays were higher in the network [1]. Our observations confirm

this with the results for the 3G network. However, our result conflicts with [17] where

the authors found that the higher packet reordering rates in 3G network (compared

to LTE) worked to QUIC’s disadvantage. However, the authors also pointed out a

potential problem with the two sample sets they used in their study.

27

Table 6: Frame-seek results with SARA algorithm.

Avg. Playback
Bitrate (Mbps)

Avg. Wait Time
after Seeking (s)

Rebuffer Rate

WiFi LTE 3G WiFi LTE 3G WiFi LTE 3G

QUIC 2.63 3.01 2.95 1.20 1.16 1.36 1% 1% 2%
TCP 2.57 2.92 2.87 2.20 2.32 2.42 4% 4% 6%

Table 7: Frame-seek results with BBA-2 algorithm.

Avg. Playback
Bitrate (Mbps)

Avg. Wait Time
after Seeking (s)

Rebuffer Rate

WiFi LTE 3G WiFi LTE 3G WiFi LTE 3G

QUIC 2.65 2.75 2.65 1.28 1.30 1.48 1% 2% 2%
TCP 2.53 2.69 2.62 2.17 2.22 2.33 4% 4% 6%

4.3 Results for the Connection-Switch Scenario

We investigated QUIC under inconsistent network conditions by the inspiration of

so-called “parking lot problem”. Assume that a viewer has a strong WiFi signal

that enables a smooth video streaming at home or in the office. As soon as the

viewer leaves the property and walks to his car, the WiFi signal fades away. When

the viewer is further away from the WiFi signal, the mobile device disconnects from

the active connection going through the WiFi and creates a new one(s) through the

LTE or 3G mobile network. In order to simulate this scenario, we used the setup

shown in Figure 6 and a script that changed the active Internet connection from

WiFi to cellular or vice versa regularly at fixed intervals1. As soon as the player

detects a connection loss within a default timeout (five seconds in our experiments),

the active connection was deactivated and a new one to the HAS server over the

new interface was established by the client. When the long-lived connection that had

a large congestion window is lost, the client will endure a low throughput till the

1Some mobile OSes use WiFi simultaneously with LTE to cope with poor WiFi signals.

28

Table 8: WiFi-LTE switch results.

Algorithm Protocol
Avg. Playback

Bitrate
Rebuffer Rate

BASIC
QUIC 3.19 Mbps 2%
TCP 2.98 Mbps 3%

SARA
QUIC 2.37 Mbps 3%
TCP 2.22 Mbps 4%

BBA-2
QUIC 1.24 Mbps 4%
TCP 1.20 Mbps 5%

handshake and any slow-start like phases are completed.

As it is detailed in Table 8, for all algorithms, the rebuffer rates were numerically

reduced by 1%, and higher average playback bitrates were achieved by QUIC in

the WiFi↔LTE switch scenario. Based on our observations, we confirm that QUIC

increases its window more aggressively than TCP and is able to achieve a larger

congestion window when competing with TCP [17]. Hence, we can say that QUIC

provides faster downloads for the segments, thus, starts the media streams more

quickly.

The results are more interesting in the WiFi↔3G switch scenario. We found

that BASIC algorithm had the highest rebuffer rate since it did not consider buffer

occupancy in bitrate adaptation. The rebuffer rate was decreased from 13% to 6%

by QUIC for this algorithm. Lower bitrates for future segments were selected by

the buffer-based algorithms, thus, naturally they did not have high rebuffer rates.

1% reduction in the rebuffer rate (not as substantial as for the BASIC algorithm)

was provided by QUIC for these algorithms. A higher average playback bitrate was

produced by QUIC for any of the algorithms. The results are shown in Table 9.

4.4 Results for the Evaluation of Multiplexing Feature

During the tests, the available bandwidth for all types of multiplexing techniques

were high enough to stream without causing a stall or rebuffer event except for the

29

Table 9: WiFi-3G switch results.

Algorithm Protocol
Avg. Playback

Bitrate
Rebuffer Rate

BASIC
QUIC 2.95 Mbps 6%
TCP 2.91 Mbps 13%

SARA
QUIC 2.12 Mbps 1%
TCP 1.95 Mbps 2%

BBA-2
QUIC 1.16 Mbps 4%
TCP 1.13 Mbps 5%

large delay and large loss scenario.

• When there was a typical delay and typical loss in the network, none of the three

techniques beat the others. All techniques provided similar average playback

bitrates.

• When the network had a typical delay and large loss, for HTTP/1.1, average

playback bitrates increased as the number of connections increased. However,

increasing the number of connections beyond eight worked for HTTP/1.1’s dis-

advantage. With eight or more connections, the average playback bitrate started

to decrease for HTTP/1.1. QUIC performed similar to HTTP/1.1 over two con-

nections in this scenario and performed worse than HTTP/1.1 over more than

two connections. However, QUIC provided a higher average playback bitrate

than HTTP/2 in all cases.

• In the large delay and typical loss scenario, QUIC performed better than all

HTTP/1.1 as well as HTTP/2 cases by selecting higher bitrates for the future

segments.

• For the large delay and large loss scenario, QUIC performed better than HTTP/1.1

over two or more connections in terms of rebuffer rates and performed slightly

worse than HTTP/1.1 in terms of average playback bitrate. HTTP/1.1 over

one TCP connection showed the lowest rebuffer rate. The HTTP/2 approach

30

performed worse than the others when there is large loss or large delay in the

network. For HTTP/2, the rebuffer rate increased slightly as the number of

parallel requests increased.

The results are shown in Table 10.

31

T
a
b
le

1
0
:

R
es

u
lt

s
ar

e
av

er
ag

ed
fo

r
B

A
S
IC

,
S
A

R
A

an
d

B
B

A
-2

al
go

ri
th

m
s

as
w

el
l

as
D

A
S
H

-I
F

N
P

2b
an

d
F

C
C

n
et

w
or

k
p
ro

fi
le

s.

T
y
p
ic

al
D

el
ay

an
d

T
y
p
ic

al
L

os
s

T
y
p
ic

al
D

el
ay

an
d

L
ar

ge
L

os
s

L
ar

ge
D

el
ay

an
d

T
y
p
ic

al
L

os
s

L
ar

ge
D

el
ay

an
d

L
ar

ge
L

os
s

A
v
g.

B
it

ra
te

(M
b
p
s)

R
eb

u
ff

er
R

at
e

A
v
g.

B
it

ra
te

(M
b
p
s)

R
eb

u
ff

er
R

at
e

A
v
g.

B
it

ra
te

(M
b
p
s)

R
eb

u
ff

er
R

at
e

A
v
g.

B
it

ra
te

(M
b
p
s)

R
eb

u
ff

er
R

at
e

H
T

T
P

/1
.1

(1
T

C
P

)
1.

94
0%

1.
01

0%
0.

75
0%

0.
37

1%
H

T
T

P
/1

.1
(2

T
C

P
s)

1.
92

0%
1.

37
0%

0.
77

0%
0.

34
10

%
H

T
T

P
/1

.1
(4

T
C

P
s)

1.
91

0%
1.

56
0%

0.
77

0%
0.

39
9%

H
T

T
P

/1
.1

(6
T

C
P

s)
1.

90
0%

1.
68

0%
0.

80
0%

0.
41

4%
H

T
T

P
/1

.1
(8

T
C

P
s)

1.
91

0%
1.

71
0%

0.
80

0%
0.

43
6%

H
T

T
P

/1
.1

(1
0

T
C

P
s)

1.
89

0%
1.

69
0%

0.
79

0%
0.

44
6%

H
T

T
P

/1
.1

(1
2

T
C

P
s)

1.
90

0%
1.

65
0%

0.
74

0%
0.

39
10

%
H

T
T

P
/2

(2
P

ar
al

le
l)

1.
85

0%
0.

95
0%

0.
72

0%
0.

28
4%

H
T

T
P

/2
(4

P
ar

al
le

l)
1.

84
0%

0.
96

0%
0.

63
0%

0.
26

6%
H

T
T

P
/2

(6
P

ar
al

le
l)

1.
92

0%
0.

94
0%

0.
57

0%
0.

24
8%

Q
U

IC
1.

94
0%

1.
39

0%
1.

04
0%

0.
32

4%

32

CHAPTER V

CONCLUSIONS

In this study, we evaluated the performance of HAS over QUIC in uncontrolled wire-

less network environments in the wild. We focused on standard QoE metrics as well

as the average wait time after frame seeking. QUIC empirically provided better QoE

especially in terms of shorter wait times and lower rebuffer rates, and while doing so,

QUIC did not decrease the average playback bitrate.

We investigated QUIC’s performance when frequent IP changes occurred due to

viewer mobility, especially for live video. Switching to a new network interface changes

the client’s IP address. TCP connections are identified by IP and port pairs whereas

QUIC connections are identified by a unique Connection Identifier (CID). Using CID

helps QUIC make fast switching upon network/IP changes. This enables viewers to

have a seamless transition among different networks. Even though the CID was not

used in our tests, we saw that QUIC outperformed TCP in terms of average playback

bitrate and rebuffer rate.

We also evaluated QUIC’s performance by comparing different types of multiplex-

ing data streams. In this evaluation, we saw that there was no advantage to QUIC for

networks that had typical loss and typical delays. However, when there are long de-

lays in the network, QUIC provided higher playback bitrates and lower rebuffer rates.

Since QUIC’s benefits are greater in networks that have larger delay (but without too

much loss), QUIC can help more to improve the overall viewer experience in regions

where early generation 3G networks still exist.

To make the best use of QUIC’s multiplexing feature, one may consider download-

ing subsequent segments in parallel. As most HAS applications and media decoders

33

are only capable of processing full media segments, the streaming client has to down-

load each segment completely before it can pass it to the decoder. However, if smaller

pieces inside a segment can be passed to the decoder and the decoder is capable of

decoding them, there can be further advantages. For example, the new MPEG stan-

dard, called Common Media Application Format (CMAF) has the concept of CMAF

segments and CMAF fragments [35]. CMAF segments consist of one or more CMAF

fragments, each of which is independently decodable. In other words, one CMAF

fragment can be decoded without the need of other CMAF fragments. In practice,

this means that if a CMAF fragment cannot be fetched in time but the subsequent

CMAF fragments have been already received, the streaming client might prefer to

skip the missing fragment in the interest of avoiding a stall. While this results in

a content skip, the viewer might still be happier compared to having to endure a

complete stall. We should, however, note that this approach requires certain modifi-

cations to the content encoding/packaging as well as the bitrate adaptation schemes

the streaming clients use.

Finally, we note that QUIC is currently being specified in the IETF and some

architectural changes are planned. Should there be significant changes in the protocol,

some of the tests will need to be repeated.

34

Bibliography

[1] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang,
F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman, J. Roskind, J. Kulik,
P. Westin, R. Tenneti, R. Shade, R. Hamilton, V. Vasiliev, W.-T. Chang, and
Z. Shi, “The QUIC transport protocol: design and Internet-scale deployment,”
Proceedings of the Conference of the ACM Special Interest Group on Data Com-
munication, 2017.

[2] Sandvine, “Global Internet Phenomena Report,” 2016.

[3] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan, and
H. Zhang, “Understanding the impact of video quality on user engagement,”
SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, pp. 362–373, 2011.

[4] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, and H. Zhang, “Devel-
oping a predictive model of quality of experience for Internet video,” SIGCOMM
Comput. Commun. Rev., vol. 43, no. 4, pp. 339–350, 2013.

[5] C. Timmerer and A. Bertoni, “Advanced transport options for the dy-
namic adaptive streaming over HTTP,” Computing Research Repository,
vol. abs/1606.00264, 2016.

[6] G. Szabo, S. Racz, D. Bezzera, I. Nogueira, and D. Sadok, “Media QoE en-
hancement with QUIC,” 2016 IEEE Conference on Computer Communications
(INFOCOM) Workshops, 2016.

[7] B. Li, C. Wang, Y. Xu, and Z. Ma, “An MMT based heterogeneous multimedia
system using QUIC,” 2016 2nd International Conference on Cloud Computing
and Internet of Things (CCIOT), 2016.

[8] D. Bhat, A. Rizk, and M. Zink, “Not so QUIC: a performance study of DASH
over QUIC,” Proceedings of the 27th Workshop on Network and Operating Sys-
tems Support for Digital Audio and Video, 2017.

[9] T. Zinner, S. Geissler, F. Helmschrott, and V. Burger, “Comparison of the initial
delay for video playout start for different HTTP-based transport protocols,” 2017
IFIP/IEEE Symposium on Integrated Network and Service Management (IM),
2017.

[10] I. Ayad, Y. Im, E. Keller, and S. Ha, “A practical evaluation of rate adaptation
algorithms in HTTP-based adaptive streaming,” Computer Networks, vol. 133,
pp. 90 – 103, 2018.

[11] G. Carlucci, L. De Cicco, and S. Mascolo, “HTTP over UDP: an experimental
investigation of QUIC,” Proceedings of the 30th Annual ACM Symposium on
Applied Computing, 2015.

35

[12] P. Megyesi, Z. Kramer, and S. Molnar, “How quick is QUIC?,” 2016 IEEE In-
ternational Conference on Communications (ICC), 2016.

[13] S. Cook, B. Mathieu, P. Truong, and I. Hamchaoui, “QUIC: Better for what and
for whom?,” 2017 IEEE International Conference on Communications (ICC),
2017.

[14] P. Qian, N. Wang, and R. Tafazolli, “Achieving robust mobile Web content
delivery performance based on multiple coordinated QUIC connections,” IEEE
Access, vol. 6, pp. 11313–11328, 2018.

[15] Y. Yu, M. Xu, and Y. Yang, “When QUIC meets TCP: an experimental study,”
2017 IEEE 36th International Performance Computing and Communications
Conference (IPCCC), 2017.

[16] “Playing with QUIC.” http://www.chromium.org/quic/playing-with-quic,
accessed Sep. 2017.

[17] A. M. Kakhki, S. Jero, D. Choffnes, C. Nita-Rotaru, and A. Mislove, “Taking
a long look at QUIC: an approach for rigorous evaluation of rapidly evolving
transport protocols,” Proceedings of the 2017 Internet Measurement Conference,
2017.

[18] “Apache HTTP server.” http://httpd.apache.org, accessed Jan. 2018.

[19] P. Juluri, V. Tamarapalli, and D. Medhi, “SARA: Segment aware rate adaptation
algorithm for dynamic adaptive streaming over HTTP,” 2015 IEEE International
Conference on Communication Workshop (ICCW), 2015.

[20] “Python urllib.” http://docs.python.org/2/library/urllib.html, accessed
Dec. 2017.

[21] “libcurl.” http://curl.haxx.se/libcurl, accessed Oct. 2017.

[22] “GitHub quic-streaming.” http://github.com/sevketarisu/

quic-streaming, accessed March. 2018.

[23] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, “A buffer-
based approach to rate adaptation: evidence from a large video streaming ser-
vice,” Proceedings of the 2014 ACM Conference on SIGCOMM, 2014.

[24] “tc-netem.” http://wiki.linuxfoundation.org/networking/netem, accessed
Jan. 2018.

[25] “F. c. commission. raw data - measuring broadband america..” https://

www.fcc.gov/reports-research/reports/measuring-broadband-america/

raw-data-measuring-broadband-america-2016, accessed June. 2018.

[26] “Dash-if guidelines.” https://dashif.org/wp-content/uploads/2016/06/

DASH-AVC-264-Test-Vectors-v1.0.pdf, accessed June. 2018.

36

[27] “DASH dataset.” http://www-itec.uni-klu.ac.at/ftp/datasets/

DASHDataset2014, accessed Sept. 2017.

[28] “Push technology.” http://docs.pushtechnology.com/cloud/latest/

manual/html/designguide/solution/support/connection_limitations.

html, accessed June. 2018.

[29] R. Fielding and J. Reschke., “Rfc 7230: Hypertext transfer protocol (http/1.1):
Message syntax and routing,” 2014.

[30] A. Bentaleb, A. C. Begen, R. Zimmermann, and S. Harous, “Sdnhas: An SDN-
enabled architecture to optimize QoE in HTTP adaptive streaming,” IEEE
Transactions on Multimedia, vol. 19, no. 10, pp. 2136–2151, 2017.

[31] Akamai, “Maximizing audience engagement: how online video performance im-
pacts viewer behavior,” 2015.

[32] Conviva, “OTT streaming market year in review,” 2017.

[33] “Caddy QUIC support.” http://github.com/mholt/caddy/wiki/QUIC, ac-
cessed Jan. 2018.

[34] “quic-go issues.” http://github.com/lucas-clemente/quic-go/issues/302,
accessed Jan. 2018.

[35] A. C. Begen and Y. Syed, “Are the streaming format wars over?,” IEEE Int.
Conf. Multimedia and Expo (ICME), July 2018.

37

VITA

Şevket Arısu was born in Isparta, Turkey. He received his B.Sc. in

Computer Science from Istanbul University in 2006. He is currently working as a

senior software engineer at Turkcell. Mr. Arısu started to study Master of Science

Program in Computer Science Department of Özyeğin University in 2015. His research

interests include HTTP adaptive streaming, QoE, QUIC and transport options for

media.

38

