
MULTI-LINGUAL DEPRESSION-LEVEL ASSESSMENT
FROM CONVERSATIONAL SPEECH USING ACOUSTIC

AND TEXT FEATURES

A Thesis

by

Yasin Serdar Özkanca
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ABSTRACT

Depression is a common mental health problem around the world with a large burden

on economies, well-being, hence productivity, of individuals. Early diagnosis and de-

tection of depression can aid treatment, but diagnosis typically requires an interview

with a health provider or structured diagnostic questionnaire. Thus, unobtrusive

measures that might be able to monitor depression symptoms in daily life could have

great utility in monitoring depression for clinical treatment. Vocal biomarkers of de-

pression are a potentially effective method of assessing depression symptoms in daily

life, which is the focus of the current research. Although there have been efforts

to automatically assess depression levels from audiovisual features, use of transcrip-

tions along with the acoustic features has emerged as a more recent research venue.

Moreover, difficulty in data collection and the limited amounts of data available for

research are also challenges that are hampering the success of the algorithms. One

of the novel contributions in this thesis is to exploit the databases from multiple

languages for feature selection. Since a large number of features can be extracted

from speech, and given the small amounts of training data available, effective data

selection is critical for success. Our proposed multi-lingual method was effective at

selecting better features and significantly improved depression assessment accuracy.

In addition, text-based features were used for assessment and a novel strategy to

fuse the text- and speech-based classifiers were proposed, which further boosted the

performance.
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ÖZETÇE

Depresyon, bireylere ekonomik, refah düzeyi, dolayısıyla üretgenlik açısından büyük

bir yük olan, yaygın bir zihinsel sağlık sorunudur. Erken tanı ve depresyonun tespiti

tedaviye yardımcı olabilir, ancak tanı genellikle bir sağlık kuruluşu ile iletişim veya

yapılandırılmış tanısal bir anket gerektirir. Bu nedenle, günlük hayatta depresyon

belirtilerini izleyebilecek göze batmayan önlemler, klinik tedavi için depresyonun

izlenmesinde büyük yarar sağlayabilir. Depresyonun vokal biyobelirteçleri, güncel

araştırmaların odağı olan, günlük hayatta depresyon belirtilerini değerlendirmede

potansiyel olarak kullanılabilecek etkili bir araçtır. Görsel-işitsel özelliklerden de-

presyon düzeylerini otomatik olarak değerlendirme çabalarına rağmen, akustik özellikler

ile birlikte yazılı metin kullanımı daha yeni bir araştırma alanı olarak ortaya çıkmıştır.

Ek olarak, veri toplanmasındaki zorluk ve araştırmaya açık sınırlı miktarda veri de al-

goritmaların başarısını engelleyen zorluklardandır. Bu makalenin sunduğu katkılardan

biri, öznitelik seçimi için veritabanı olarak birden çok dil kullanmaktır. Etkili bir

öznitelik seçimi, az sayıda konuşma verisinden çok sayıda öznitelik elde edilebildiğinden

dolayı, başarılı bir çözüm için çok önemlidir. Önerilen çok dilli yöntemimizin daha

iyi öznitelikler seçmede etkili olduğu ve depresyon değerlendirme doğruluğunu önemli

ölçüde geliştirdiği gözlemlendi. Ayrıca, değerlendirme için metin tabanlı öznitelikler

de kullanıldı ve performansı arttırması adına metin ve konuşma temelli sınıflandırıcıları

birleştiren bir strateji önerildi.
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CHAPTER I

INTRODUCTION

Depression is a vital problem that affects a large portion of the population. It af-

fects the well-being and productivity of individuals as well as being a heavy economic

burden for the society [3]. Compared to other diseases, depression and many other

mental illnesses affect humans that are working and contributing to the economy,

hence it decreases the efficiency of productivity of the works being done [4]. De-

pression alone accounts for 10% of all disability due to physical and mental health

problems globally, which shows that it affects the economic well-being of the nations

too. Moreover, it is the primary reason for suicide, estimated to be responsible for

1.4% of all deaths around the world [5]. It is also predicted to be the leading cause

of disease burden by 2030 [6]. However, better diagnosis of depression followed by

successful treatment was shown to be effective in mitigating the symptoms and de-

creasing suicide rates [7]. Thus, inexpensive and accurate diagnosis with the help of

technology is an increasingly important research challenge [2].

It is well known that getting psychological help from an expert is expensive for

most people. Thus, creating an automated system that can identify one’s psycho-

logical condition would lower the costs of getting help. This thesis shows, only from

one’s voice, we can predict depression severity level of a person. Which sheds light

on further studies that can combine voice with face features, movement inputs or

even biological signals. This study is a part of behavioral signal processing (BSP),

which becomes more common with the ability to collect data is increased. It is being

employed by multiple topics like spouse therapies [8, 9], addiction counseling [10] or

autism [11].
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The distinguish of quality in speech, between depressed and non-depressed sub-

jects were a known fact for years [12, 13], but the mathematical proof of whether

depressive subjects have differences in their voice parameters was not present un-

til mid 70s [14, 15]. The speech pause times and different acoustic indicators were

counted as biomarkers for clues of depressive voice [16, 17]. The studies referenced

above were in the English language, the generalization of these works in different

languages was proved in [18]. Moreover, the change in speech pitch has been a topic

of this study [19]. It is also indicated that depression alters the way humans use their

language, in [20,21], it is stated that depressive people tend to use the word ”I” more

frequently than healthy subjects. Moreover, [22] suggests that the narrative struc-

ture of the conversations and the syntax that is being used by depressive people are

meaningful discriminators that can help assess depression. In addition to that, there

are non-verbal hints that have been explored by researchers that indicate depression,

such as lack of smiles and withdrawing gestures [23,24].

Use of antidepressant treatments and attaining clinical improvements were mod-

eled, employing multivariate equations of voice acoustic parameters in 90s [25–27].

The use of speech-related features of depression severity and healing response of clin-

ical trials have needs like quality recording devices, software, and technical skills

to analyze the speech data, and because of it, the studies were limited and expen-

sive. However, advancements and automation in collecting data were much easier

after powerful devices like smart phone became accessible and widely used. Speech

samples were collected over telephones and were used as clinical data [28]. These

innovations and progress made the studies cheaper and much more common.

The main goal of this study, is to lower the costs of people getting psychological

help from professionals, by bypassing the necessity of expensive clinical examinations.
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1.1 Related Work

It has been shown that speech signal carries significant amount of information about

the mental health of the speakers [29–31]. France et al. [31] show that features that

are coming from power spectral density and formant measurements were the best

indicators of depression and suicidal risk for both male and female groups. More-

over, the paper claims that features that are derived from F0 do not perform well as

discriminators.

In [32], phase distortion deviation that is used for voice quality examinations is

found to be helpful for detecting depression. In [33], distortions in formant trajectories

were used to detect depression. Moreover, principal component analysis (PCA) was

used for feature selection. In [34], degradation in spectral variability was used. In ad-

dition, they claim that affect on motor control in depression may lead to degradation

in acoustic variations.

In [35], gender-dependent feature extraction was found to improve the detection

performance. In addition, [36] also claims that different genders that are affected

by depression might show differences in formant features. The conclusion in [36] is

backed up by studies which indicated the advantage of gender-dependent classification

when the use of formant and spectral features were implemented [37,38].

In [39], voice quality features like i-vectors and MFCCs were found to be helpful

for depression detection. They have also used a score-based fusion algorithm which

improved the performance of their system. Moreover, the system in [39] found to

work well when the utterances were shortened to 10 seconds.

Various studies show that absence of spectral is correlated with the depression

level [40–42]. Studies in [29, 36] state that prosodic features are robust and reliable

discriminators for the use of depression level assessment. Speech segments with higher

articulation effort were found to be more informative for depression detection in [30].
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Besides acoustics-only methods, there are also multi-modal approaches for de-

tecting depression. In [43], face analysis and speech prosody are used for depression

detection. Similarly, audio-visual features are used in [44–47]. In [44], the fusion

algorithm that implemented was used to fuse the vocal quality features and visual

features. Study in [48] investigated the affiliation between audio-visual features and

depression with the use of Canonical Correlation Analysis (CCA).

Retardation in motor control due to depression causes changes in coordination

and timing of speech and face movements, which were used for audio-visual detec-

tion in [49–51]. Moreover, Syed et al., [52] proposed a set of temporal features and

demonstrated the usefulness of those features. Further, they explored craniofacial

movements are ominous of psychomotor retardation, thus the depression. In [53], low

and high-level features were used for each modality, audio, video, and text. They

also performed gender dependent and independent assessment. In addition, for text

features, they used speech-rate and semantic content. Nasir et al. [54] are also studied

on an audio-visual multi-modal system. For the audio part they have used Teager

energy cepstral coefficients (TECC), and for the video features, they have succeeded

with polynomial parameterization of facial landmark features.

Besides face features, text analysis of transcriptions has also been used as another

form of information [2]. In [55], transcription-derived features were employed in

addition to the speech features. Furthermore, sentiment analysis was conducted on

text and sentiment features were used to develop an independent detector. Then,

score fusion was used to combine acoustic and text-based system scores. Syntactic and

semantic features were derived from transcriptions in [56] and proved to be effective

indicators of depression. They also declared that negatively-draped and pronoun

words are in accord with depression. In [57], biomarkers that are originated from facial

coordination and timing features were used together with vocal cues and semantic

features from dialogue content employing a sparse coded lexical embedding space.
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They also practiced contextual cues like past or present of the patient’s depression

state.

In [58], the study claims depression and narcissism can be foretold from the usage

of words in personal narratives. The paper declares that depressive individuals use

less social words and more anxiety-related words, where narcissist do the opposite.

Recent study [59] manifests an automated depression-detection algorithm that models

the interaction between the depressed individual and the computer agent without the

need for explicit topic modeling of the content. They used Long-Short Term Memory

(LSTM) neural network and fed it with audio and text features.

In depression detection, another research challenge is to use speech data from

other languages/cultures to train models. This approach is not only necessary for

understanding universal cues of depression across different cultures/languages but

also it enables the use of data from other languages, which is important given the

typically small amounts of data available in the public databases. In [60], prediction

models built with a German database were shown to produce prediction scores in

English that were correlated with self-assessment scores. In [61], the combination of

datasets in different languages was shown to yield high accuracy whereas if the train

and test data are in different languages, performance was found to be lower.

Conversations with patients can be designed in a way to obtain data that is

more indicative of depression, as opposed to a regular conversation. In [62], type of

questions (positive and negative stimulus) during conversations has been shown to

impact voice quality parameters in psychologically distressed subjects.

1.2 Contributions

This study has two contributions. One of the contributions is novel algorithms for

feature selection which was not explored as much in the literature. We offer a multi-

lingual feature selection where three databases, Turkish, German and English were

5



used concurrently. Moreover, multi-lingual and single-lingual methods to enhance

redundancy and relevance computations in the case of data sparsity are introduced.

In addition, it has been confirmed that there are common features among languages

that can be essential to predict depression from conversational speech. The second

contribution is a novel feature fusion technique where transcription-derived model

predictions were used to adjust the predictions of the acoustic-only model when their

predictions are highly conflicting. Significant improvements are obtained for the Turk-

ish, German and English databases using the proposed techniques. The study aims to

improve the automatic detection of a mental illness to reduce the costs of professional

diagnosis.
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CHAPTER II

METHODS

2.1 Feature selection

As most of the statistical applications, machine learning algorithms are also vulnerable

to outliers and noisy data. However, this is much more effective when the data is

scarce and it is not enough to eliminate the noisy information comes from the depths

of the data. Thus, there are statistical ways that can only choose features that can

improve the effectiveness of the model that is being built. Not only the accuracy,

but these feature selection algorithms also can improve the computation time and

efficiency of the systems.

The motivations to use the feature selection algorithms are;

• Computation Time; Eliminates the unnecessary computations,

• Complexity of a Model; Makes the models simpler,

• Accuracy; Most of the times it improves the accuracy,

• Overfitting; It is a good way to fight against overfitting,

2.1.1 Minimum redundancy maximum relevance (MRMR) feature selec-
tion

A large number of features can be derived from conversational speech to detect de-

pression. However, building models with those features are challenging because of

the curse of dimensionality especially given the typically small amounts of training

data available in depression studies.

One way of reducing the dimensionality features is to use feature selection where

features that are most relevant for the classification task and least correlated among

7



themselves are selected. To that end, ”Minimum Redundancy Maximum Relevance”

(MRMR) algorithm is commonly used [63–65]. MRMR is widely used for bio-informatics

tasks. The strongest feature of the MRMR is that it does not only select the most

important features, it also eliminates the ones that are redundant.

In the MRMR approach, for maximizing the relevance of selected features for the

classification task, F-statistic is used.

F (gi) = [
∑
k

nk(ḡk − ḡ)2/(K − 1)]/σ2, (1)

ḡk is the mean of the gi, within the kth class. ḡ is the global mean of whole feature

set. The number of classes denoted by K and σ2 is the pooled variance:

σ2 = [
∑
k

(nk − 1)σ2
k]/(n−K), (2)

where for each class, nk and the σk are the size and the variance of those classes.

Relevance of the feature set S is then defined as

maxVF , VF =
1

|S|
∑
i∈S

F (i). (3)

Redundancy is defined using the Pearson correlation for every possible feature com-

bination:

minWc, Wc =
1

|S|2
∑
i,j

|c(i, j)|, (4)

where absolute value of the correlation c(i, j) is used. Finally, the optimization criteria

for MRMR is

max(VF −Wc). (5)

Figure 8 roughly shows how the process of MRMR looks when we have various

methods, including ml-MRMR.

2.2 Proposed feature selection algorithms

We propose several algorithms to improve the performance of the MRMR method

for the depression detection problem where data is typically limited and, therefore,

computation of F-statistic and correlation is unreliable.
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2.2.1 Multi-lingual computation of relevance

The F-statistic computation in Eq.(1) assumes that there is enough data for each

class to compute the mean and the variance of each class reliably, which is not the

case when the number of classes is large and the data is limited. For instance, when

there is only one sample for a class, the variance of that class becomes 0, which is

problematic for the computation of the F-statistic. In the multi-lingual MRMR (ml-

MRMR) approach, the core idea is to use the data, that is collected from the subjects

that are talking in different languages and use it for relevance computation and make

the process much more robust to scarcity situation of data.

Figure 1 briefly explains the process of the ml-MRMR algorithm. Small boxes

represent each of every class and inside the boxes is the amount of sample the class

has. As can be seen from the figure, the classes that don’t have enough samples,

tagged as yellow boxes, will be reinforced by the algorithm, which transports samples

from other languages and fills it till the Nmin constraint is satisfied.

Figure 1: A flowchart that explains how the ml-MRMR algorithm works.

In order to increase the number of available samples for each class, hence improve

the computation of relevance, we exploit the samples available in a different language

for the same or neighboring classes with reduced weights assigned to the samples as

the neighbors are further away on the depression scale. To that end, we have changed
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the computation of ḡk and nk. The weight parameter γ is defined as

γt = e−t
2

. (6)

where t indicates how close the neighbors are on the depression scale. The number of

samples in class k, n̂k is adjusted using the parameter γ, the amount of adjustment

depends on how much we need to satisfy the Nmin constraint.

n̂k =

+Jk∑
j=−Jk

γjnk+j (7)

J is set such that n̂k > Nmin. Thus, by including data from the same and neighboring

classes in a different database, we ensure that there are at least Nmin samples for each

class in the target database. The adjusted mean of each class k, ḡk
′, is then

ḡ
′

k =
1

n̂k

+Jk∑
j=−Jk

nk−j−1∑
s=0

γjgk−j(s)k − j(s) (8)

where gk−j(s) is sample s in class k − j. Thus, the final equation to compute

F-score becomes:

F (gi) = [
∑
k

n̂k(ḡk
′ − ḡ)2/(K − 1)]/σ2, (9)

Figure 2 presents the ḡk for the baseline MRMR and ml-MRMR algorithm with

Nmin = 3 German, it can be seen that ml-MRMR’s curve is much more close to the

normal distribution with respect to the baseline MRMR algorithm’s, which means

our ml-MRMR algorithm tries to minimize the outliers of the dataset with enriching

the samples for classes that lacks.

2.2.2 Clustering approach

Even though the Beck depression scale is from 1 to 63 with a step size of 1, given

randomness in the responses to Beck questionnaire, the resolution is expected to be

lower than that. Hence, the difference between a person with a score of 3 or 4 may

not be as significant to warrant different classes for those two cases especially gave

the very limited training data available.
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Figure 2: ḡk histograms for the baseline Turkish MRMR and ml-MRMR.

In the clustering approach, we clustered the depression classes and reduced the

number of classes in the MRMR training process to improve the feature selection

performance by increasing the data available for each class. In this approach, data is

split uniformly into Nclus classes.

2.2.3 Weighted F-Statistic

After the calculation of the F-Statistic for the 3 languages, we have mixed them using

a linear approach that multiplies every language’s F-Statistic with weight parameters.

Thus, calculating the F-Statistic in a multi-lingual manner. The weights are shown in

the Eq. 10 as a, b, and c. The motivation here was creating a multi-lingual algorithm

without including within class calculations.

Ffinal = a ∗ (FTr) + b ∗ (FGer) + c ∗ (FEng) (10)
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2.2.4 Robust computation of redundancy (RCR)

Class labels are not required for the computation of redundancy, as shown in Eq.(4).

Thus, large amounts of unlabeled, i.e. depression scores not available, speech data

can be exploited for computing the redundancy. In this approach, we propose using

unlabeled speech databases to compute redundancy when the amount of labeled data

is limited.

2.3 Fusion with text-based features

2.3.1 Description of text-based features

Sentiments in questions and patient responses were manually tagged for the Turkish

database. Examples of positive, negative and neutral questions and answers are

presented at Table 1. Counts of combinations of question and answer sentiments

were used as a feature vector. Because we have three sentiments for questions and

three sentiments for answers, a total of 9-dimensional sentiment feature vector was

generated for each conversation.

Table 1: Example of an interview in the Turkish database. Sentiment labels of both
questions and answers are shown.
Turn Phrase Sentiment
Question: Can you tell us a happy moment lately? Positive
Answer: I don’t have one for a long time. Negative
Question: Can you tell us an unhappy moment lately? Negative
Answer: Everything goes well lately. Positive
Question: What is your favorite food? Neutral
Answer: I like stuffed peppers. Neutral

Using the timing information in the transcriptions, length of the utterances and

the rate of speech were computed for each patient. Next, the average length and av-

erage rate of speech are computed for each sentiment. Thus, a total of 6 features were

obtained for those two features. Concatenating them with the 9 features described

above, a total of 15 features were derived from the transcriptions.
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Table 2: Descriptions of text-features, a total of 15 dimensional feature set.
Feature Description

Average Length of
the Utterances

The length of the subject’s answers for
negative, positive, and neutral answers
separately. 3 dimensional feature.

Rate of Speech
The length over time of the utterances for
negative, positive, and neutral answers
separately. 3 dimensional feature.

Sentimental Text
Features

The sentiment of the answers and the
questions taken into consideration and for
each possible combination a feature created.
9 dimensional feature.

2.3.2 The fusion algorithm

The fusion algorithm is designed based on the observation that acoustics-only sys-

tem often overestimates the depression level for the regression task. Those over-

estimations significantly impact the overall performance of the system and reduce its

reliability.

In our proposed approach, instead of performing commonly used score or feature

fusion methods, we used a co-training algorithm to adjust the scores produced by the

acoustics-only system. In this approach, we first divided the data into two classes.

Any patient with BDI-II score above 30 is tagged as class-1 and any patient with the

score below 18 is tagged as class-2.

If the acoustic-only system generates a depression level prediction that is above

30 or below 18 and if the text-only system also produces a score in the same class

(agreement case), then the score from the acoustic-only system is used. If they are

in disagreement, i.e., one of the systems produces a prediction that is in class-1 and

the other produces a prediction that is in class-2, the final prediction is computed by

fine-tuning the acoustic-only prediction by getting it closer to the opposite class. If

the prediction of the acoustic system is pacoustic, final prediction pfinal is computed by
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Figure 3: A flowchart that summarizes the general working process of the system.

the linear model:

pfinal = αpacou ± Γ (11)

where α and Γ are constant parameters. α and Γ was found using GridSearch Algo-

rithm.

2.4 Baseline system

In the baseline system, the MRMR feature selection method was first applied [66]

to reduce the number of acoustic features. Support Vector Regression (SVR) was

used for regression and SVM were used for classification. Because the amount of

training data is small, the leave-one-out method was used for the Turkish and German

experiments. There are enough training and test data for the English tasks, we did

not use leave-one-out for it. The training and development partitions were used. The

training set has 107 samples and the test has 35.
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CHAPTER III

EXPERIMENTS

3.1 Experiment setup

3.1.1 Databases

3.1.1.1 Turkish Database

The Turkish database was collected at a hospital in Istanbul. It consists of 70 subjects.

Mean age of the patients is 34. 14 of them are male and the rest is female. Beck scores

of all subjects are available using the depression questionnaire, the Beck Depression

Inventory-II (BDI-II) [67]. The average BDI-II score of the patients is 23.45 with a

standard deviation of 11.01.

The Turkish database consists of interviews with the patients. Three types of

questions were directed to the patients: neutral, positive and negative questions.

Each question type refers to the sentiment that we expect to invoke in the patient.

Similarly, the sentiment of the responses from the patients was manually-tagged by

three independent evaluators. Majority voting was used for the final sentiment label

of each response. Examples for sentiment labels are shown in Table 1.

The interview consists of 16 questions. Mean length of the conversations is ap-

proximate to 5 minutes. The total length of the recordings is 6 hours. They were

recorded using a headphone microphone connected to a built-in sound card of a laptop

with a sampling rate of 48 kHz.
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Figure 4: The distribution of BDI-II scores for Turkish database.

3.1.1.2 Structure of Turkish Database

Table 3.1.1.2 shows the top node of the Turkish database structure that is created.

First row indicates the name of the interview as, XX # G int . XX stands for

the first two letters of the patient’s name and surname respectively. # indicates the

number of recordings in case the patient has multiple recordings. G shows the gender

of the patient, int basically means interview.

Table 3: The top node of the structure for Turkish.
Name XX # G int
TRScript Lx4
ENGScript Lx1
INTScript Mx2
DepScore D
AnxScore A

Second row from the Table 3.1.1.2, TRScript, has the Turkish transcription of the
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patient’s answers from the interview, the start and end time of the sentences that the

patient created, and lastly the sentiment of the sentence of that turn. L indicates the

total number of sentences of the answers of the patient in the interview. In Table 4,

an example of a TRScript node has been presented. The first column shows example

sentences, each row is the consecutive turn that patient answers the question of the

interviewer. The second column shows the start time of that particular sentence, the

third column is the end time of it. The fourth column is the sentimental value of the

answer. Later the start-end time, and sentimental label information, which was used

to create the text features.

Table 4: TRScript node of the main structure node.
Sentence Start Time End Time Sentimental Label
Tavuk içeren her türlü yemeği seviyoru... 4.9715 9.6178 0
Yurtdışına gezmeye çıkmıştım üniversit... 14.7852 21.1630 1
Yani genelde annemle babamın yaşadı... 26.9325 34.5522 -1
Olay yaşandığı zaman mutsuz oluyorum. 34.5522 38.1451 -1
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

Third row of the Table 3.1.1.2, ENGScript, includes the English translations of the

TRScript. The translations are made manually and used for automatic sentimental

analysis using open-source tools, however, it has not been used, instead, we labeled

the sentences manually using 3 volunteers, and majority voting was used to decide

on the final label.

The fourth row of the Table 3.1.1.2, INTScript, has the Turkish transcriptions for

the interviewer’s questions turn by turn, M stands for the number of questions in

the session. The second column of the INTScript is the sentiment information of the

question. Later this information is being used for text features.

Last 2 rows show the depression score and anxiety score respectively. Depression

scores are used for model training and predictions, however, anxiety scores are not
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part of this study.

3.1.1.3 German Database

The German database, distributed as part of the AVEC 2014 challenge [68], consists of

conversations with 84 patients, some patients are in multiple recordings with a period

of two weeks. Beck scores of the 100 recordings in the training and development data

are available. However, they are not available for the 50 recordings in the test data.

The mean age of German database subjects is 31.5. Duration of the recordings ranges

from 6 seconds to 4 minutes. All recordings below 20 seconds were removed from the

experiments and eventually 98 recordings are left for processing. The average BDI-II

score of the patients is 15.0 with a standard deviation of 12.30.

Figure 5: The distribution of BDI-II scores for German database.
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3.1.1.4 English Database

The English database is part of The Distress Analysis Interview Corpus (DAIC) [69].

It contains clinical interviews designed to help diagnose psychological distress condi-

tions such as anxiety, depression or post-traumatic stress disorder. The depression

part of the corpus is the Wizard-of-Oz interviews, which are conducted by a virtual

interviewer. The depression score of the patients was calculated using the PHQ-8 de-

pression inventory [70], which differs from the German and Turkish databases. The

average depression severity of the training and development data is 6.67, and the

standard deviation is 5.75. Total of 189 recordings from 189 patients is available.

Figure 6: The distribution of PHQ-8 scores for English database.

3.1.2 Acoustic features extraction

The open-source toolkit OpenSMILE [71] was used for acoustic feature extraction.

OpenSmile is a toolkit that can extract features based on the selected script. The
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backend system is written in C++, which makes it fast and efficient. It can be used

on Linux, Windows or MacOS. The system supports writing data in CSV (Comma

Separated Value) and ARFF (Weka Data Mining).

The AVEC 2013 and GeMAPS feature extraction scripts were used for our study.

Feature vectors for AVEC 2013 includes 32 energy and spectral related low-level

descriptors (LLDs) and their functionals [68] such as statistical functionals (maxi-

mum, mean, skewness, flatness etc.), regression functionals (linear regression slope,

quadratic regression coefficient a etc.) and local minima/maxima related functionals

(mean and standard deviation of rising and falling slopes etc.). 2268 dimensional

features were extracted per speaker. Table 5 presents all the LLDs and functionals

that are included in Avec 2013 script. Functionals were computed over 20 seconds

time windows and averaged over the recording.

GeMAPS [72] has 18 low-level descriptors. Only the first 4 MFCC features are

used because those are more crucial for affect and paralinguistic voice analysis studies

[72]. In addition, jitter, shimmer, loudness, and spectral slope were used. Similar

to AVEC 2013, functionals of those low-level descriptors were also computed. The

dimensionality of the final feature set is 62.

3.1.3 Depression scores

3.1.3.1 Beck Depression Inventory II (BDI-II)

BDI-II is a revised version of the BDI questionnaire, which has been used by clinics

for over 35 years to identify depression severity. An important problem with the early

version of BDI was being gender biased and it could not keep up with the change

of times. BDI-II addressed these issues and it has become a successful depression

assessment questionnaire. It has 21 questions with 4 possible answers for each of

them, the subject can choose possible answers from not present (0) to severe (3).

BDI-II is a short questionnaire which only takes 5 to 10 minutes to complete, it also

has clear guidelines which helps subjects to follow the task easily. The score ranges
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Table 5: Low-level descriptors and functionals of Avec 2013 feature set.
Low-level Descriptors
Loudness, Zero Crossing Rate,
Energy in Bands from 250-650 Hz, 1 kHz - 4 kHz,
Spectral Roll-off Points, Spectral Flux,
Entropy, Variance, Skewness, Kurtosis, Psychoacoustic sharpness,
Harmonicity, Flatness, MFCC 1-16, F0, Probability of voicing,
Jitter, Shimmer (local), Jitter of Jitter, LogHNR
Functionals
Arithmetic mean, Root quadratic mean, Standard deviaton,
Flatness, Skewness, Kurtosis, Quartiles, Inter-quartile ranges,
1%, 99% Percentile, Percentile range 1%-99%,
Up-level time: 25%, 50% and 90%, Maximum, Mean,
Minimum segment length, standard deviation of segment length,
Linear regression slope, Quadratic regression coefficient a,
Mean and standard deviation of rising and falling slopes,
Mean and standard deviation of inter maxima distances,
Amplitude mean of maxima, Amplitude range of minima and maxima

of BDI-II is 0 to 63. The meaning of the score ranges are;

• 0-13 Minimal depression,

• 14-19 Mild depression,

• 20-28 Moderate depression,

• 29-63 Severe depression,

For the classification task, the scores were split into binary classes. For BDI-II scores

that were used in the Turkish and German databases subjects that have scores below

18 were classified as non-depressed. Other patients were classified as depressed.

3.1.3.2 Personal Health Questionnaire Depression Scale (PHQ-8)

The PHQ-8 questionnaire has 8 questions, each question has 4 possible answers and

the scoring goes from 0 to 3. At the end of the questionnaire, the corresponding scores

for the answers are summed up and in total it makes minimum 0 and maximum 24.
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This questionnaire mainly made for the use in the United States of America. It has

been tested on a large corpus to prove it’s reliability. The meaning of score ranges

defined as;

• 0-4 No significant depressive symptoms,

• 5-9 Mild depressive symptoms,

• 10-14 Moderate depressive symptoms,

• 15-19 Moderately severe depressive symptoms,

• 20-24 Severe depressive symptoms,

The PHQ-8 scoring system was used in the English dataset we have used, subjects

that have scores below 10 were classified as non-depressed and other patients were

classified as depressed [70].

In regression, ml-MRMR algorithm requires databases to have same depression

scales to compute within class statistics. Because the English database has PHQ-8

scores that range from 1 to 24 and the German and Turkish databases have Beck

scores ranging from 1 to 63, we converted the Beck scores to PHQ-8 scores. During

conversion, we uniformly split the 1-63 range into 24 segments and the Beck score in

each segment is mapped to the scale of PHQ-8.

3.1.4 Significance test

Significance test is the answer to the question; ”What is the likelihood that a random

sample that was chosen is not a part of the population have?”. The test also has

significance level threshold, for this study we have selected 0.05. Basically, if the p

value is lower than 0.5, the Null Hypothesis is rejected and it means the sample we

have provided is significant.
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3.1.4.1 T-test

There are various setups for this statistical approach. T-test assumes that the data

is normally distributed, for our case we conducted right-tailed t-test. This is because

our distribution is more likely fits the right-tailed assumption. The t-test is basically

comparing two means and the standard deviations of the data. For regression tasks

for all databases, T-test was used, which assumes that if p < 0.05 the regression

results are significant.

3.1.4.2 McNemar Test

A statistical test which is being used on a paired nominal data is called McNemar’s

test. It is applied to a 2x2 contingency table. Table 6 shows an example of how a

contingency table looks like.

Table 6: A 2x2 contingency table that shows the output of two tests.
Test 2 Positive Test 2 Negative

Test 1 Positive a b
Test 2 Negative c d

χ2 =
(b− c)2

(b+ c)
(12)

The results from the Eq. 12 determines if the difference between the two models

is significant or not. For the classification test we have used McNemar test, the

confidence level was p < 0.05.

3.1.5 Machine-learning algorithm

In this study, all machine-learning applications, both classification and regression

tasks were done by using Support Vector Machine (SVM). SVM is a member of the

supervised machine-learning family, which can be used for classification and regression

applications intuitively. The main idea of the SVM is to locate the best hyperplane

that distinguishes the classes of the data.
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Figure 7: A basic representation of classification on a 2-D data.

To maximize the distances between hyperplane and the data points SVM algo-

rithm uses distances called support vectors. These support vectors are the nearest

distances that a data point has to the hyperplane. Thus, the algorithm trying to

optimize these support vectors in order to maximize the separation of the classes.

Above explanation is the situation when we have data that can clearly separable

with linear hyperplanes. However, that is not the case for most situations. When we

have data that cannot be classified with linear methods, we are using kernels that

expand our inventory of solutions.

In our study, we are using Radial Basis Function (RBF) kernels for all SVM

applications. SVM also has gamma and C parameters which can be altered. C

parameter can adjust the decision function’s margin, which means when C gets bigger

the accepted decision function will have a smaller margin. Otherwise, if the C value

gets smaller the margin is encouraged to be bigger. Thus, the regularization parameter

of the SVM is C. gamma is controlling the impact of a single training sample on the

model.

For our study, the best gamma and C values are decided with using GridSearch

algorithm for every machine learning application.
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Figure 8: A flowchart that explains how MRMR works.
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CHAPTER IV

RESULTS AND DISCUSSION

Two sets of experiments were conducted. In the first set, the proposed feature selec-

tion algorithms were tested and compared with the baseline MRMR algorithm for the

German, Turkish and English tasks. The RCR algorithm proposed for redundancy

computation in Section 2.2.4 was used only for the German and English tasks since

unlabeled data are not available in the Turkish database. In the second set, text-based

features were tested only with the Turkish database because the transcriptions were

not available for the German database, and for the English database, the interviews

were not in the question/answer format but rather a free-form talk between human

and computer.

The evaluation criteria for all regression experiments were the root mean square

error (RMSE), which is also used in the AVEC challenges [1, 2, 68, 73]. Statistical

significance of the results were tested using the t-test with p < 0.05.

The evaluation criteria for all classification systems were F1-score, precision, and

recall for both depressed and non-depressed classes. For the classification tasks, the

statistical significance of results was measured using McNemar’s test with p < 0.05.

4.1 Performance of the ml-MRMR feature selection

4.1.1 Turkish task

Table 7 and Table 8 show the results with the baseline and the ml-MRMR algo-

rithms for the Turkish task. Best result with the regression model was 9.36 with

the Turkish-English ml-MRMR Nmin = 3 algorithm and the improvement compared

to the baseline was statistically significant. Similarly, Turkish-German ml-MRMR
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algorithm performed better than the baseline and the difference was statistically sig-

nificant. Gemaps feature set performed worse than the ml-MRMR algorithms, which

has the result of 11.48. It is also can be seen that when we increase the threshold of

Nmin the result got worse.

The ml-MRMR algorithm cannot be applied directly in the case of classifica-

tion because there are only two classes and each class has enough samples, 27 non-

depressed and 50 depressed. Still, we used the ml-MRMR algorithm to enrich each

class with samples from other languages by treating the problem as if it was a regres-

sion problem during the selection of cross-lingual samples. After each class (from 1

to 45) is enriched with those samples, training data is split into two classes.

Classification results are shown in Table 8. Even though ml-MRMR algorithm im-

proves the performance, the improvement was not found to be statistically significant.

Thus, in the classification case where there is enough data in each class for training

the classifier, the ml-MRMR algorithm was not as effective. Still, the system trained

with the text-based features significantly outperformed the other systems which are

exploited in our fusion-based system described in Section 2.3.2.

4.1.2 English task

Table 9 shows regression results for English task. Best result obtained by using the

ml-MRMR algorithm with Turkish Nmin = 5. ml-MRMR using German database

did not perform well, although there are slight improvements it is not significant.

Table 10 shows the results for the English classification task. The ml-MRMR

algorithm with Turkish using Nmin = 5 outperformed the baseline model, but they

are not statistically significant. However, when German data was used, performance

did not change. The baseline results from the Avec 2016 [2] are also reported in Table

10 and the improvement with ml-MRMR Nmin = 5 Turkish is statistically significant

compared to the Avec 2016 baseline result. The improvements with the ml-MRMR
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Table 7: Regression performance of the ml-MRMR Methods for the Turkish task
when the minimum occurrence threshold (Nmin) is set 3 and 5. In the underlined
bold case, improvement is significant compared to the baseline system. Result with
Gemaps feature set was: 11.48

Dim Baseline Nmin = 3 Nmin = 5 Nmin = 3 Nmin = 5
(Tr+Ger) (Tr+Ger) (Tr+Eng) (Tr+Eng)

2 13.30 10.84 11.98 10.79 10.88
3 12.30 10.51 11.26 10.40 11.94
4 12.45 10.85 10.74 9.85 12.68
5 12.56 10.58 11.23 9.36 13.65
10 12.45 10.82 12.13 11.87 13.93
15 12.08 11.12 12.00 11.99 13.30
20 12.87 11.91 11.46 10.92 12.00
40 13.28 12.67 11.98 10.93 10.31
80 11.58 12.28 13.06 10.80 10.50
100 11.75 11.95 13.08 10.88 10.23
200 11.32 11.55 12.14 11.05 11.06
400 11.42 11.72 12.00 10.99 11.23
800 11.31 11.39 11.35 11.10 11.08

Table 8: Best classification results for Turkish Task. Avec 2013 feature set used for
all results except Gemaps tab. The distribution of the scores was 50 Depressed, 27
Non-Depressed. Best F1-score results are shown in bold. Only the classification with
text features tab is statistically significant compared to baseline.

Method Classes Precision Recall F1-score

Baseline
MRMR:3

Non-Depressed 0.61 0.40 0.48
Depressed 0.72 0.86 0.78
Average 0.67 0.63 0.63

English
N min = 5
ml-MRMR:400

Non-Depressed 0.59 0.48 0.53
Depressed 0.74 0.82 0.78
Average 0.66 0.65 0.66

German
N min = 3
ml-MRMR:100

Non-Depressed 0.42 0.29 0.34
Depressed 0.67 0.78 0.72
Average 0.54 0.54 0.53

Only Text
Features
MRMR:7

Non-Depressed 0.78 0.40 0.53
Depressed 0.74 0.94 0.83
Average 0.76 0.67 0.68

GEMAPS
Non-Depressed 0.38 0.37 0.37
Depressed 0.66 0.68 0.67
Average 0.52 0.53 0.52
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Table 9: Regression performance of the ml-MRMR Methods for the English task
when the minimum occurrence threshold (Nmin) is set 5. In the bold case, improve-
ment is insignificant compared to the baseline system, however it is significant com-
pared to the baseline of the challenge paper [1]. Result with Gemaps feature set was:
6.72

Dim Baseline
Nmin = 5

(Ger+Eng)
Nmin = 5
(Tr+Eng)

3 6.85 6.66 6.66
4 6.87 7.21 7.20
5 7.31 7.78 7.78
10 7.85 7.05 7.05
15 8.08 7.94 7.70
20 7.89 7.63 7.46
40 7.25 7.12 6.63
80 7.67 6.26 6.37
100 7.57 6.38 6.15
200 7.13 6.42 6.70
400 6.95 6.72 6.73
800 6.92 6.74 6.66

algorithm are obtained on both for F1 scores of both depressed and non-depressed

subjects.

4.1.3 German task

Regression performance of the baseline and the proposed ml-MRMR and RCR feature

selection algorithms for the German task are shown in Table 11. In the multi-lingual

approach, Turkish database was used to supplement additional features for each de-

pression class in the German database when the number of samples is less than Nmin

as described in Section 2.2.1. Even though performance improved for Nmin = 3, the

improvement was not significant. Improvement with Nmin = 5 was found to be signif-

icant only when the RCR algorithm was also used. RCR algorithm was not effective

when it was used by itself.

For the classification task, Table 12 shows the results. The baseline feature selec-

tion algorithm has the best results for non-depressed recall and depressed precision

with the 10-dimensional feature set. However, the ml-MRMR algorithm with Turkish

29



Table 10: Best classification results for English task Development set. Multi-Lingual
methods annotated with M-L. Avec 2013 feature set used for all results except
GeMaps tab. Best F1-score results are shown in bold. Results are not statistically
significant compared to baseline MRMR, however they are statistically significant
compared to the baseline results from Avec 2016 [2].

Method Classes Precision Recall F1-score

Baseline
MRMR:20

Non-Depressed 0.76 0.96 0.85
Depressed 0.83 0.42 0.56
Average 0.79 0.69 0.71

Baseline Avec 2016
Results from

[2]
Non-Depressed 0.93 0.54 0.68
Depressed 0.31 0.85 0.46
Average 0.62 0.69 0.57

Turkish
N min = 5
ml-MRMR:100

Non-Depressed 0.79 1 0.88
Depressed 1 0.50 0.66
Average 0.89 0.75 0.77

German
N min = 5
ml-MRMR:20

Non-Depressed 0.76 0.96 0.85
Depressed 0.83 0.42 0.56
Average 0.79 0.69 0.71

GEMAPS
Non-Depressed 0.70 0.82 0.76
Depressed 0.50 0.33 0.40
Average 0.60 0.58 0.58

using Nmin = 3 outperformed on the rest of the indicators. ml-MRMR algorithm with

English performed worse than the baseline.

4.2 Performance of clustering algorithms

The clustering algorithm proposed in Section 2.2.2 for the Turkish database was used

with 2, 9, and 15 clusters instead of the 63 distinct classes available in the Beck scores.

Results are shown in Table 14. Even though the system with 15 clusters significantly

outperformed the baseline system, the improvement was still below what was obtained

with the multi-lingual MRMR approach.

4.3 Performance of weighted F-statistic

The weighted F-statistic algorithm mixes three languages into one F-statistic com-

putation. The detailed explanation of the algorithm can be found in Section 2.2.3.

Table 13 shows the results for the weighted F-statistic algorithm. The tests were done
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Table 11: Regression performance of the ml-MRMR Methods for the German
database when the minimum occurrence threshold Nmin is set 3 and 5. Results are
shown both when the RCR algorithm is used and not used. Best results are shown
in bold together with their statistical significance using t-test. Result with GEMAPS
feature set was: 10.14.

Dim Baseline
Nmin = 5
(Ger+Tr)

Nmin = 5 and RCR
(Ger+Tr)

Nmin = 3
(Ger+Tr)

Nmin = 3 and RCR
(Ger+Tr)

RCR

10 9.90 9.97 9.99 10.37 12.39 10.02
15 9.81 10.21 9.43 p(0.01) 10.13 12.12 10.08
20 9.86 10.32 9.52 9.84 10.68 9.74
40 10.25 10.35 10.45 9.73 11.36 10.22
80 10.69 9.93 9.88 9.42 p(0.47) 10.93 10.06
100 10.48 9.93 9.74 9.50 10.54 10.17
200 10.12 10.00 10.38 9.69 10.28 10.44
400 10.14 9.79 10.21 9.58 10.29 10.13
800 10.08 9.86 10.11 9.91 10.11 9.89
1000 10.02 9.85 10.14 9.79 10.16 9.98

Dim
Nmin = 3
(Ger+Eng)

Nmin = 3 and RCR
(Ger+Eng)

Nmin = 5
(Ger+Eng)

Nmin = 5 and RCR
(Ger+Eng)

10 11.16 11.24 12.75 13.40
15 11.54 11.54 12.44 12.49
20 11.76 11.70 12.27 13.15
40 11.47 11.57 12.35 11.48
80 9.79 9.79 11.01 10.89
100 10.41 10.37 10.83 10.38
200 9.96 9.96 10.55 9.95
400 9.66 9.60 p(0.22) 10.43 10.00
800 9.64 9.71 10.34 10.32
1000 9.71 9.68 10.41 10.28
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Table 12: Best classification results for German Task. Multi-lingual methods an-
notated with M-L. Avec 2013 Feature set used for all results except GeMaps Tab.
Best F1-score results are shown in bold. Although there are improvements, results
are insignificant compared to the baseline MRMR predictions.

Method Classes Precision Recall F1-score

Baseline
MRMR:10

Non-Depressed 0.76 0.87 0.81
Depressed 0.80 0.65 0.72
Average 0.78 0.76 0.77

Turkish
N min = 3
ml-MRMR:40

Non-Depressed 0.83 0.79 0.81
Depressed 0.74 0.80 0.77
Average 0.79 0.80 0.79

English
N min = 5
ml-MRMR:800

Non-Depressed 0.73 0.78 0.75
Depressed 0.70 0.63 0.66
Average 0.72 0.71 0.71

GEMAPS
Non-Depressed 0.74 0.70 0.72
Depressed 0.64 0.68 0.66
Average 0.69 0.69 0.69

on the Turkish database. The best result is obtained by using 0.3 Tr, 0.4 Eng, and

0.3 Ger, 9.62, which is also statistically significant compared to the baseline.

4.4 Performance of score fusion

Table 15 shows results when speech-based features were fused with text-based features

using the proposed approach described in Section 2.3.2. Fusion algorithm significantly

improved the performance (p-value=0.00006) compared to the baseline case by reduc-

ing the error more than 25% using ml-MRMR with English and Turkish (Nmin = 3).

Spread of the prediction errors is substantially reduced after fusion as shown in Figure

9.

Fifth column shows the results obtained with the clustering approach together

with the fusion method. That algorithm not only outperformed the baseline but also

outperformed the base-fusion algorithm significantly.

Comparison of real and predicted scores are shown in Figure 10 for the baseline

and the best ml-MRMR algorithm with fusion. Predictions get closer to the true

scores and errors significantly decrease with the proposed fusion method as shown
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Table 13: Regression results with weighted feature selection. The weight parameters
a,b, and c are changing. Turkish database is used. Statistically significant (p < 0.05)
improvement is shown in bold.

Dim Baseline
0.8 Tr-
0.1 Eng
0.1 Ger

0.7 Tr-
0.2 Eng
0.1 Ger

0.6 Tr-
0.3 Eng
0.1 Ger

0.5 Tr-
0.4 Eng
0.1 Ger

0.7 Tr-
0.1 Eng
0.2 Ger

0.6 Tr-
0.1 Eng
0.3 Ger

3 12.30 11.33 11.33 11.33 11.33 11.33 11.02
4 12.30 10.03 10.04 10.04 10.04 10.04 11.65
5 12.45 10.11 10.12 10.12 10.12 10.12 10.93
10 12.56 10.53 10.54 10.54 10.54 11.50 11.50
15 12.08 10.54 10.54 10.55 10.55 10.35 10.35
20 12.87 10.73 10.74 10.74 10.74 10.73 10.58
40 13.28 10.73 10.74 10.74 10.49 10.54 10.54
80 11.58 10.37 10.02 10.00 10.05 10.02 9.95
100 11.75 10.35 10.02 10.02 10.12 10.03 10.06
200 11.32 10.48 10.49 10.62 10.63 10.50 10.73
400 11.42 11.22 11.27 11.31 11.31 11.37 11.48
800 11.31 11.45 11.52 11.50 11.62 11.48 11.47

Dim Baseline
0.5 Tr-
0.1 Eng
0.4 Ger

0.6 Tr-
0.2 Eng
0.2 Ger

0.5 Tr-
0.2 Eng
0.3 Ger

0.4 Tr-
0.2 Eng
0.4 Ger

0.5 Tr-
0.3 Eng
0.2 Ger

0.4 Tr-
0.3 Eng
0.3 Ger

3 12.30 11.02 11.33 11.02 11.02 11.33 11.60
4 12.30 11.65 10.04 11.65 11.65 10.04 11.65
5 12.45 10.93 10.12 10.93 10.93 10.12 10.93
10 12.56 10.49 11.50 11.50 10.49 11.50 11.50
15 12.08 10.13 10.35 10.35 10.13 10.35 10.33
20 12.87 10.00 10.73 10.20 10.00 10.73 10.20
40 13.28 11.05 10.54 10.56 11.05 10.54 10.56
80 11.58 10.05 10.02 10.01 10.06 9.95 10.03
100 11.75 10.34 9.92 10.18 10.34 9.92 10.20
200 11.32 10.65 10.43 10.62 10.61 10.55 10.68
400 11.42 11.49 11.42 11.46 11.48 11.47 11.52
800 11.31 11.54 11.45 11.50 11.67 11.50 11.71

Dim Baseline
0.3 Tr-
0.3 Eng
0.4 Ger

0.4 Tr-
0.4 Eng
0.2 Ger

0.3 Tr-
0.4 Eng
0.3 Ger

0.2 Tr-
0.4 Eng
0.4 Ger

3 12.30 11.02 11.33 11.60 11.60
4 12.30 11.65 11.14 11.65 11.65
5 12.45 10.93 10.28 10.93 10.93
10 12.56 10.49 11.50 11.23 10.49
15 12.08 10.13 10.35 9.62 10.60
20 12.87 10.32 10.73 10.20 10.45
40 13.28 10.90 10.71 10.44 11.11
80 11.58 10.06 10.04 10.06 10.05
100 11.75 10.66 10.24 10.32 10.70
200 11.32 10.59 10.62 10.62 10.66
400 11.42 11.60 11.46 11.64 11.57
800 11.31 11.66 11.70 11.67 11.67
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Table 14: Regression results with feature selection using the clustering approach with
2, 9, and 15 clusters. Turkish database is used. Statistically significant (p < 0.05)
improvement is shown in bold.

Dim Baseline 2-Cluster 9-Cluster 15-Cluster
5 12.56 11.35 13.14 11.99
10 12.45 10.95 13.42 12.25
15 12.08 11.13 13.07 11.75
20 12.87 11.74 13.23 12.95
40 13.28 12.33 13.73 12.06
80 11.58 12.72 13.33 10.83
100 11.75 13.22 13.09 10.97
200 11.32 11.72 12.66 11.50
400 11.42 11.83 12.00 11.40
800 11.31 11.62 11.70 11.64

Figure 9: Distribution of squared errors for the baseline MRMR case is shown in the
top figure. The middle figure shows the squared error distribution for the Baseline
MRMR after fusion. Bottom figure shows the squared error distribution with Nmin =
3 with English and after fusion.
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Table 15: Regression results after fusing with text classification predictions. Turkish
database was used. Baseline acoustic system predictions are used in base-fusion. Bold
results show cases where the improvement is significant compared to the baseline case
but not to the base-fusion case. In the underlined bold case, improvement is significant
both compared to the baseline system and the base-fusion system.

Dim Baseline Base-fusion Fusion Tr+Ger Fusion Fusion Tr+Eng
Nmin = 3 15 Clus. Nmin = 3

3 12.30 10.71 9.76 9.75 9.43
4 12.45 10.68 9.54 9.74 8.88
5 12.56 10.69 9.61 9.78 8.30
10 12.45 10.91 9.83 10.05 9.74
15 12.08 10.44 9.63 9.95 10.12
20 12.87 10.91 9.65 9.66 9.62
40 13.28 11.33 10.45 10.88 9.55
80 11.58 10.12 10.67 9.99 9.37
100 11.75 10.25 10.77 10.24 9.45
200 11.32 10.03 9.98 10.40 9.76
400 11.42 10.29 10.00 9.78 9.60
800 11.31 10.31 10.19 9.88 9.79

in Figure 10. The best RMSE is 8.30, which is interestingly obtained with only 5

features. Three of the 5 selected features are MFCC related: peak standard deviation

of MFFC-5, amplitude mean of maxima for MFCC-5 and mean segment length of

MFCC-14. The other two is mean of the rising slope for spectral harmonicity and

up-level time(25) of spectral flatness. Those features are described in detail in Table

17.

Fourth column in Table 15 shows the results for the ml-MRMR algorithm with

German and Turkish when Nmin = 3. Even though that approach worked well com-

pared to the baseline, it did not perform as well as the Turkish and English case.

Moreover, its performance was not significantly different from the base-fusion. These

results are aligned with the results reported in Table 7 where performance with Turk-

ish and English datasets was better compared to the Turkish and German datasets.

Fifth column shows the results obtained with the clustering approach together

with the fusion method. That algorithm not only outperformed the baseline but also

outperformed the base-fusion algorithm significantly.
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Figure 10: The sorted real scores and the baseline MRMR predictions at the top.
Bottom figure shows the real scores vs. Nmin = 3 with Tr+Eng predictions.
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Table 16: Classification results after fusing with text classification. Turkish database
was used. Best F1-score results are shown in bold. The results are statistically
significant except Nmin = 3 with German.
Method Classes Precision Recall F1-score

Baseline
MRMR:3

Non-Depressed 0.61 0.40 0.48
Depressed 0.72 0.86 0.78
Average 0.67 0.63 0.63

Fusion Eng
Nmin = 3
ml-MRMR:100

Non-Depressed 0.71 0.63 0.67
Depressed 0.81 0.86 0.83
Average 0.76 0.75 0.75

Fusion Ger
Nmin = 3
ml-MRMR:4

Non-Depressed 0.75 0.55 0.63
Depressed 0.78 0.90 0.84
Average 0.76 0.73 0.73

Only Text
Features
MRMR:7

Non-Depressed 0.78 0.40 0.53
Depressed 0.74 0.94 0.83
Average 0.76 0.67 0.68

For the classification in Table 8 text-only model has the best results for the pre-

cision of non-depressed 0.78, and the recall of depressed 0.94. However, when the

text-only model used for fusion algorithm with acoustic predictions, the f1-scores

outperformed relative models, which is 0.67 for non-depressed and 0.83 for depressed

when Nmin = 3 English is used. The result is statistically significant with p-value of

p = 0.02. In addition, when Nmin = 3 German is used the f1-score for depressed is bet-

ter than the English used ml-MRMR. Although it is not statistically significant, with

German, only 4 features were used in comparison to 100 features of English-Turkish.

4.5 Common Selected Features Among Languages

Using the MRMR feature selection algorithm across the languages and selecting the

features that are most relevant has shown which acoustic features are important for

predicting depression. Across the three languages, we have examined the common

selected features. The first row of Table 17 shows the 150 most important selected

features that are overlapping between Turkish and English, the second row presents

it for Turkish and German, the third row is for English and German.
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As can be seen from Table 17, different languages have common acoustic cues

that might lead to observe depression. Even mostly phonetically distant languages

like German and Turkish or English and Turkish shares spectral information, which

is tied to the phonetic structure of the languages.

The common features between English and German are mostly frequency related.

Jitter is the descriptor of disruption of the frequency, and German and English lan-

guages have 4 common Jitter based features. This indicates the similarity of prosody

between western languages. Also, Table 17 shows, higher order MFCCs are effective

for the depression prediction for both German and English languages.

The common acoustic features for Turkish and German languages are mostly

higher-order MFCCs, which is a widely used acoustic feature for voice quality classi-

fication tasks and it is also effective for distinguishing healthy and unhealthy speech.

Lastly, for Turkish and English the common features are mostly energy related.

The details about the selected common low-level descriptors can be found at Table

18, and the functionals can be found at Table 19.
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Table 17: For all the languages we studied, these are the common selected features
among languages that are in top 150.

Language
Combination

LLD & Functionals

Turkish-English

MFCC-13 - Relative Mean of Peaks
Energy in Band 1000-4000 - Kurtosis
Spectral Harmonicity - Up-level Time:90
Spectral Harmonicity - Up-level Time:50
Energy in Band 1000-4000 - Up-level Time:25
Energy in Band 1000-4000 - Relative Mean of Peaks
Energy in Band 1000-4000 - Minimum Segment Length

Turkish-German

Spectral Skewness - IQR 2-3
Spectral Skewness - IQR 1-3
MFCC-4 - Mean Distance Between Peaks
MFCC-9 - Rise-time
MFCC-11 - Rise-time
MFCC-13 - Skewness
MFCC-14 - Flatness
MFCC-14 - Kurtosis

English-German

Energy in Band 250-650 - Quartile 1
Energy in Band 250-650 - Percentile 1.0
Spectral Harmonicity - Up-level Time:25
JitterLocal - Mean
JitterLocal - Standard Deviation
MFCC-10 - Mean Segment Length
MFCC-14 - Up-level Time:90
MFCC-16 - Mean Distance Between Peaks
JitterDDP - Up-level Time:50
JitterDDP - Up-level Time:90

Table 18: The descriptions for the common LLDs across 3 languages.
Low-level Descriptor Description

MFCC 1-16
Mel Frequency Cepstral Coefficient is a common
used automatic speech recognition (ASR) feature,
in the Avec 2013 feature set 16 dimension were used.

Energy Sum squares of amplitudes of a signal.
Spectral Harmonicity Aspect and number of the harmonics in a signal.
Spectral Skewness The third order moment of the power spectrum.

Jitter (Local)
Length variation of the fundamental period from
a single period towards the next one.

Jitter (DDP)
Delta period-to-period jitter can be defined as
”Jitter of the Jitter”. It is explained as the change
between two successive period-to-period jitters.
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Table 19: The functionals that has been used with the LLDs.
Statistical Functionals Description

Relative Mean of Peaks
Proportion of the mean of the
peak amplitudes to the mean of
windowed signal.

Kurtosis
A higher order statistical moment,
fourth standardised moment.

Skewness
A higher order statistical moment,
third standardised moment.

Up-level Time

Time or number of frames that the
signal is above a threshold, the possible
percentiles for the threshold
are 25,50,75,90.

Minimum Segment Length
Minimum length of a particular
segment.

Mean Segment Length
Arithmetic mean of a particular
segment.

Inter Quartile Range 1-2-3
(IQR)

The range between two percentile.
The possible combination of quartiles
are 1-3, 1-2 and 2-3.

Mean distance between peaks
The mean of distances between the
peaks, where a signal
reaches the highest.

Rise-time
The time where the signal contour is
rising.

Percentile 1.0 The minimum value of a signal.
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CHAPTER V

CONCLUSION

5.1 Conclusion and future work

This thesis is an expanded version of the study that we presented at the Interspeech

2018 conference in Hyderabad, India. We have added the database that was presented

at the AVEC 2016 conference, which is in the English language. The addition has

shown us that the proposed multi-lingual algorithm was applicable to more languages

other than German and Turkish. In addition, we have seen Turkish-English multi-

lingual feature selection performed better than the Turkish-German setup.

We investigated using multi-lingual databases for feature selection in the context

of depression assessment, which was found to be effective. This result is significant not

only because it is a step towards using larger multi-lingual databases for depression

detection, but also it indicates that there are similarities between entirely different

languages in the way they manifest depression.

As a second contribution, we proposed novel features derived from transcriptions

of the Turkish database and fused them with the acoustic features which significantly

improved the performance. The study has shown an RMSE improvement of nearly

25% when the fusion algorithm was used.

In the study, all the results that were reported have comparisons with the baseline

results that were reported by the database providers. We have outperformed these

results and also some of the findings that we reported are slightly better than the state-

of-art studies. Especially, the result we reported for English database classification

task is remarkable compared to the recent studies.

In possible future work, more languages could be added to the database and
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continue to improve the feature selection process. Moreover, we believe that our text

features are also language-independent and we will investigate fusion algorithms in a

multi-lingual setting.
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Devillers, J. Epps, P. Laukka, S. S. Narayanan, et al., “The geneva minimalistic
acoustic parameter set (gemaps) for voice research and affective computing,”
IEEE Transactions on Affective Computing, vol. 7, no. 2, pp. 190–202, 2016.

[73] M. Valstar, B. Schuller, K. Smith, F. Eyben, B. Jiang, S. Bilakhia, S. Schnieder,
R. Cowie, and M. Pantic, “Avec 2013: the continuous audio/visual emotion and
depression recognition challenge,” in Proceedings of the 3rd ACM international
workshop on Audio/visual emotion challenge, pp. 3–10, ACM, 2013.

49



VITA

Name: Yasin Serdar Özkanca
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