
A SEMANTIC POLICY FRAMEWORK
FOR

INTERNET OF THINGS

A Thesis

by

Emre Göynügür

Submitted to the
Graduate School of Sciences and Engineering
In Partial Fulfillment of the Requirements for

the Degree of

Doctor of Philosophy

in the
Computer Science Department

Özyeğin University
October 2018

Copyright c© 2018 by Emre Göynügür



A SEMANTIC POLICY FRAMEWORK
FOR

INTERNET OF THINGS

Approved by:

Associate Professor Murat Şensoy,
Advisor
Computer Science Department
Özyeğin University

Associate Professor Ali Fuat Alkaya
Computer Science and Engineering
Department
Marmara University

Assistant Professor Ahmet Tekin
Electrical and Electronics Engineering
Özyeğin University

Associate Professor Arzucan Özgür
Department of Computer Engineering
Boğaziçi University

Associate Professor Hasan Sözer
Computer Science Department
Özyeğin University

Date Approved: 31 October 2018



iii



ABSTRACT

With the proliferation of technology, connected and interconnected devices (hence-

forth referred to as IoT) are fast becoming a viable option to automate the day-to-day

interactions of users with their environments. However, with the explosion of IoT de-

ployments we have observed in recent years, manually managing the interactions

between humans-to-devices, and especially devices-to-devices, is an impractical task,

if not an impossible task. This is because devices have their own obligations and

prohibitions in context, and humans are not equipped to maintain a bird’s-eye-view

of the interaction space.

Motivated by this observation, in this thesis, we propose a semantic policy frame-

work that (a) supports representation of high-level and expressive user policies to

govern the devices and services in the environment; (b) provides efficient procedures

to refine and reason about policies to automate the management of interactions; and

(c) delegates similar capable devices to fulfill the interactions, when conflicts occur.

We then describe how to combine ontology-based policy reasoning mechanisms

with in-use IoT applications to customize and automate device behaviors and discuss

how the policy framework can be extended with data federation to handle diverse

and distributed data sources. We demonstrate that smart devices and sensors can

be orchestrated through policies in diverse settings, from smart home environments

to hazardous workplaces, such as coal mines. Lastly, we evaluate our approach using

real applications with real data and demonstrate that our approach is scalable under

high load of data and devices.

iv



ÖZET

Teknolojinin ilerlemesiyle, birbirine bağlı cihazlar (nesnelerin interneti, kısaca IoT),

insanların çevreleriyle günlük etkileşimlerini otomatikleştirmek için hızlı ve etkili bir

seçenek haline gelmektedir. Bununla birlikte, son yıllarda gözlemlediğimiz IoT uygu-

lamalarının artmasıyla, insan-cihaz ve özellikle cihaz-cihaz arasındaki etkileşimlerin

manuel olarak yönetilmesi imkansız olmasa bile pratik olmayan bir iş haline gelmiştir.

Bunun nedeni, cihazların kendi yükümlülükleri ve kısıtlamaları olması ve insanların

bu etkileşim alanının tümüne hakim olabilmek için donanımlı olmamalarıdır.

Bu gözlemden yola çıkarak, çevrede bulunan cihazları ve hizmetleri yönetmek

için genel ve semantik regulatif kuralların temsil edilmesini destekleyici bir sistem

önermekteyiz. Bu sistem düzenleyici kurallarla ilgili etkileşimlerin yönetimini

otomatikleştirmek ve kurallarla ilgili akıl yürütmek için etkili prosedürler sağlamakla

birlikte, bu kurallar arasında zıtlık meydana geldiğinde, yükümlülükleri yerine ge-

tirmek için benzer yetenekli aygıt veya servisleri kullanmayı hedefler.

Daha sonra cihaz davranışlarını özelleştirmek ve otomatikleştirmek için ontolo-

jiye dayalı akıl yürütme mekanizmalarının kullanılmakta olan IoT uygulamaları ile

nasıl birleştirileceğini ve farklı ve dağıtılmış veri kaynaklarını aynı anda kullanabilmek

için veri federasyonu ile düzenleyici kurallar sisteminin nasıl genişletilebileceğini an-

latıyoruz. Akıllı cihazların ve sensörlerin, akıllı ev ortamlarından kömür madenleri

gibi tehlikeli işyerlerine kadar çeşitli ortamlarda düzenleyici kurallar yoluyla nasıl

yönetilebileceğini gösterdikten sonra, son olarak, yaklaşımımızı gerçek uygulamaları

kullanarak değerlendiriyor ve yaklaşımımızın yüksek veri ve cihaz yükü altında

ölçeklenebilir olduğunu tartışıyoruz.

v



ACKNOWLEDGEMENTS

This research is supported by the Newton Fund and the Scientific and Technological

Research Council of Turkey (TUBITAK) under grant 116E918.

vi



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

II BACKGROUND AND RELATED WORK . . . . . . . . . . . . . 11

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Knowledge Representation . . . . . . . . . . . . . . . . . . . 11

2.1.2 Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Knowledge Base Implementation . . . . . . . . . . . . . . . . 15

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Policy Frameworks . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Policy Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . 23

III POLICY FRAMEWORK . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Illustrative Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Policy Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Policy Activations and Expirations . . . . . . . . . . . . . . . . . . . 29

3.4 Policy Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.1 Conflict Detection Algorithm . . . . . . . . . . . . . . . . . . 33

vii



3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5.1 Architecture of the Framework . . . . . . . . . . . . . . . . . 35

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

IV AUTOMATED CONFLICT RESOLUTION . . . . . . . . . . . . . 44

4.1 Utilizing Planning to Resolve Conflicts . . . . . . . . . . . . . . . . 44

4.1.1 Representing Planning Problems . . . . . . . . . . . . . . . . 46

4.2 Policy Reasoning in Planning . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 OWL-QL Reasoning in PDDL . . . . . . . . . . . . . . . . . 48

4.2.2 Policies in PDDL . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Reformulation of Policy Conflicts to PDDL . . . . . . . . . . . . . . 55

4.3.1 PDDL Domain . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.2 PDDL Problem . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

V REAL LIFE APPLICATION . . . . . . . . . . . . . . . . . . . . . . 66

5.1 Case Study: Health and Safety in Mines . . . . . . . . . . . . . . . . 66

5.1.1 Smart Mine Solutions . . . . . . . . . . . . . . . . . . . . . . 67

5.1.2 Domain Policies . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Policy Reasoning Over Distributed Data . . . . . . . . . . . . . . . . 69

5.2.1 Data Federation . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.2 Ontology Based Data Access . . . . . . . . . . . . . . . . . . 71

5.2.3 Revised Policy Framework . . . . . . . . . . . . . . . . . . . 73

5.3 Adding Temporal Constraints on Policies . . . . . . . . . . . . . . . 74

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 76

viii



5.4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.3 Planning Performance . . . . . . . . . . . . . . . . . . . . . . 82

5.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

VI DISCUSSIONS AND CONCLUSIONS . . . . . . . . . . . . . . . . 87

6.1 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1.1 Need for Policy Authoring Tools . . . . . . . . . . . . . . . . 89

6.1.2 Need for Interoperability . . . . . . . . . . . . . . . . . . . . 90

6.1.3 Need for Minimizing the Load on Target Databases . . . . . 90

6.1.4 Need for Realistic Planning . . . . . . . . . . . . . . . . . . . 91

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

ix



LIST OF TABLES

1 Definition of QLtiny language [1, 2] . . . . . . . . . . . . . . . . . . . 14

2 Comparison of the policy frameworks . . . . . . . . . . . . . . . . . . 23

3 An example TBox for an OWL-QL ontology. . . . . . . . . . . . . . . 27

4 Example ABox. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Prohibition policy example: Sleeping baby. . . . . . . . . . . . . . . 29

6 Obligation policy example: Doorbell notification. . . . . . . . . . . . 29

7 Obtained results for problems with 2, 3, 5, 10, 20 devices. . . . . . . . 62

8 Total number of conflicts in the settings. . . . . . . . . . . . . . . . . 63

9 Examples from mine regulations of Turkey. . . . . . . . . . . . . . . . 68

10 OBDA mapping of the Blaster class . . . . . . . . . . . . . . . . . . . 71

11 OBDA mapping of the Low Oxygen Danger class . . . . . . . . . . . 72

12 Prohibition policy example: Low Oxygen Danger. . . . . . . . . . . 73

13 Rescue plan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

x



LIST OF FIGURES

1 IBM’s IoT Cloud Architecture1 . . . . . . . . . . . . . . . . . . . . . 2

2 Rewritten activation query. . . . . . . . . . . . . . . . . . . . . . . . 29

3 Rewritten activation query. (SPARQL) . . . . . . . . . . . . . . . . 30

4 Rewritten expiration query. (SPARQL) . . . . . . . . . . . . . . . . 30

5 The canonical state of the world generated by the conflict detection
algorithm. (Green: Obligation, Red: Prohibition) . . . . . . . . . . . 34

6 The pseudocode of the conflict detection algorithm. . . . . . . . . . 36

7 System Architecture: Policy-enabled IoT Framework. . . . . . . . . . 37

8 Example HyperCat request of a speaker. . . . . . . . . . . . . . . . . 38

9 SenML output example. . . . . . . . . . . . . . . . . . . . . . . . . . 39

10 XML representation of a policy. . . . . . . . . . . . . . . . . . . . . 41

11 Pick-up action from Blocksworld PDDL domain. . . . . . . . . . . . 47

12 PDDL representation of the rewritten query TV(?d). . . . . . . . . . 49

13 PDDL actions using consistency check. . . . . . . . . . . . . . . . . 51

14 Smart Home PDDL domain definition. . . . . . . . . . . . . . . . . . 57

15 Data federation example . . . . . . . . . . . . . . . . . . . . . . . . . 70

16 The policy framework utilizing OBDA . . . . . . . . . . . . . . . . . 74

17 A sample temporal drive action in PDDL . . . . . . . . . . . . . . . 75

18 Overview of the experimental setup . . . . . . . . . . . . . . . . . . . 79

19 Query execution times of policies w.r.t. increasing dataset . . . . . . 81

20 Active instance creation times w.r.t. increasing dataset . . . . . . . . 82

21 Initial state of the PDDL problem . . . . . . . . . . . . . . . . . . . . 83

xi



CHAPTER I

INTRODUCTION

The rapid growth of the Internet of Things (IoT) paradigm has fostered new tracking

and sensor technologies, which have made the deployment of large numbers of sensors

cheaper and more efficient. This has, in turn, made it more convenient to measure,

infer and understand environmental indicators, from delicate ecologies and natural

resources to urban and hazardous environments [3]. In recent past, we have seen an

emerging trend wherein IoT systems are deployed to solve a wide range of complex

problems in many industries: from providing independent living for aging [4, 5] (i.e.,

health care) to improving worker safety in dangerous environments such as mining [6].

IoT is fast becoming a reliable and cost effective means to automate daily activities

for people and organizations.

In order for the above systems to function effectively, it is mandatory that an

IoT-enabled system supports functionality for devices, and especially the services

supported (or exposed) by those devices, to interact with each other in an efficient

manner [7, 8]. For example, a smoke detector in a smart home environment may

invoke a sprinkler’s water spraying capability to thwart a perceived fire unless the

cooker indicates that the smoke detected is in a acceptable range for grilling food.

This interconnection among devices not only yields to the need for effectively rep-

resenting such interactions, but also to the problem of efficiently managing them.

In order to simplify the discussion, in this work, we will abstract devices to specific

services provided by them—for example, a television could be abstracted to a thing

that provides display and audio services.

A common way of achieving some form of autonomy in distributed systems is

1



Figure 1: IBM’s IoT Cloud Architecture1

using policies, which define and manage the behaviors of system components without

human interaction and without modifying their source code [9, 10, 11]. Policies might

resemble event-condition-action rules at first, yet they are more expressive. Policies

can be seen as an external list of instructions that define a software application’s busi-

ness logic. Therefore, policies stand as an intuitive and principled way for regulating

actions and interactions among smart objects in the IoT paradigm. Principles of poli-

cies and normative reasoning are widely studied in Law literature [12, 13] and they

have attracted significant attention from the AI community to regulate the actions

of autonomous intelligent agents [14].

Figure 1 illustrates IBM’s cloud architecture 1 for IoT and its components. In

this thesis, we are primarily interested in the Orchestration component. We do not

particularly target IBM’s cloud architecture, however we use this figure to highlight

the focus of this thesis.

1.1 Motivation

Policies (or norms) are soft constraints that regulate the actions of autonomous enti-

ties such as humans through permissions, prohibitions, and obligations [15]. They are

classified as soft constraints, since they can be violated without making the system

1http://ibm.biz/iot-cloud

2



unpredictable. Policies can be applied in every IoT setting where actions of intel-

ligent entities should be regulated by one or more authorities. We predominantly

observe two types of policies—obligations which mandates actions, and prohibitions

which restrict actions [16] within the IoT domain. A policy could be a simple state-

ment of intent—e.g., do not make sound, if the baby is sleeping for a smart home

environment or policies could be used to modify the behaviors of other entities in

the environment—i.e. policies could be used to program an intelligent farming appli-

cation with respect to the changing environmental conditions and the status of the

crops (e.g. start watering, if the humidity level is low).

When such services are used by humans or other participating services their inter-

actions occur under varying constraints. This is due to a variety of reasons: (a) ser-

vices have their own obligations and prohibitions in context; (b) services are owned

and managed by different users and organizations, thus multiple constraints could

be placed on a single service; (c) dynamism in the environment, and the changes in

preferences and goals, which could abruptly change constraints; and (d) constraints

placed on a service could affect the functionality of another service.

It is essential that multiple policies apply to a device in order to cover the diver-

sity of management functions and of management domains [17]. However, there is

typically a potential for a conflict, whenever multiple policies act upon a device. For

example, let us assume that in a smart home environment there are two policies: if

someone rings the doorbell, then there should be a notification; and if the baby is

sleeping, devices should not make any sound. In this scenario, a conflict occurs if

someone rings the doorbell while the baby is sleeping. We use this simple scenario

as a running example through the rest of the thesis and introduce more complex

examples in later chapters.

Though human cognition is good at solving complex tasks, obtaining a bird’s-eye-

view of a network formed by heterogeneous services and managing them effectively

3



are not feasible for humans. Furthermore, the complexity of the problem is exacer-

bated when the numbers of devices increases as the number of services provided by

them increases too. Consequently, managing these devices—and their interactions—

manually has become an impractical task, if not impossible. Thus, the policy system

has to automatically handle exceptions when obligations and prohibitions overlap due

to unforeseen situations.

In case of a conflict, a resolution strategy, which is commonly a pre-defined rule,

is applied to determine the policy with the higher priority. i.e. is it more important

to notify the residents or to keep the baby asleep. As IoT systems gain more complex

capabilities – especially capabilities to learn, reason, and understand their environ-

ments and user needs – one can consider applying policy techniques to handle conflicts

found in the IoT environment. However, the dynamism of IoT environments when

compared with traditional systems must be taken into account; this necessitates more

intelligent automation techniques for policy conflict management. For instance, there

might be different actions that achieve a similar effect (e.g., a doorbell event could

be executed through a ringtone, by a message on the television, or through the smart

home assistant). Ideally, a policy system should choose to execute an alternative

action or a composition of actions to avoid or minimize policy violations.

The flexibility and the power of a policy management framework depends to a

large degree on the expressiveness and computational efficiency of its policy represen-

tation [18]. The challenge is to find a balance between the expresiveness of the policy

language, the efficiency of policy reasoning mechanisms, and ease of use [11]. It is

difficult to quantify these notions that highly depend on the target domain. Experi-

ments with people can be conducted to evaluate the expressiveness and ease of use.

Below we discuss these terms as desired features of a policy framework with respect

to the requirements of IoT.

4



1.1.0.1 Expressiveness

A policy framework needs to be expressive enough to describe the concepts, rela-

tionships and conditions used in the IoT applications. There is, however, a trade-

off between the expressiveness of a representational language and its computational

tractability [19], which generally determines the complexity of the reasoning process.

Without being expressive a policy language may not be able to regulate complex

system behaviour [20], yet expressiveness can be compromised to meet the perfor-

mance requirements of IoT applications as long as the language is able to represent

the policies of the application.

1.1.0.2 Computational Efficiency

The increase in the number of connected devices and sensors do not only increase the

generated data, but also increase the available services and policies in the system.

Therefore, methods used to reason about policies and to resolve conflicts must scale

well with the data size and the number of devices. Otherwise, the policy system will

become impractical, when new devices and sensors are introduced to the system. In

this thesis, we only focus on the scalability of the conflict resolution task and the policy

reasoning task that includes maintaining a list of active policies and detecting policy

conflicts. Building a scalable IoT system (i.e. network, communication platform etc.)

is not in the scope of this work.

1.1.0.3 Ease of Use

As smart objects become an increasingly important part of our lives, we intend policies

to be authored by non-technical people, preferably by domain experts or end users.

For example, if the framework is being used at a mining facility, a health and safety

expert should write the policies to ensure workers’ safety. However, different users

might formalize policies differently and validating the formalizations of policies may

require additional analysis or tools (i.e. graphical or speech interface etc.). Even

5



though there is on going work on this subject, we do not address these issues in this

thesis.

1.2 Hypothesis

Inspired by these observations, we present a semantic framework that could be used to

build IoT applications at scale which adhere to a set of governing rules set by the users

and the environments in which they are deployed. We utilize techniques based on

knowledge representation (KR) to represent high-level policies, efficient and scalable

mechanisms to refine those policies to service level policies, automatic mechanisms to

detect conflicts at design time when enforcing service level policies, and an AI planner

to automatically resolve such conflicts. Below we state our hypothesis for the thesis.

Existing policy frameworks some with rich policy representations [21, 22],

others targeting pervasive environments [23, 24, 25] are either compu-

tationally intensive or are not expressive enough (i.e. policies do not

have expiration conditions or frameworks are not capable of semantic rea-

soning) to be effective within the IoT domain. An approach based on

OWL-QL can effectively find the balance between the epxressivity and

computational efficiency that is required by IoT applications.

Specifically, the policy language is based on OWL-QL [26] (QL), which supports

efficient and scalable query re-writing mechanism for reasoning so that conflicts

could be detected in polynomial time (i.e., PTime), and space-wise in many cases

LogSpace or even AC0 for some specific classes of problems, and a planner-based set

of techniques to resolve conflicts automatically using a polynomial amount of space

(i.e., PSpace). We believe the OWL-QL based policy language will also help us with

the following aspects:

6



1.2.0.1 Ease of Adoption

Many of today’s IoT applications operate by collecting data from sensors and devices

into a central hub that makes the decisions. Moreover, it is a common practice among

those applications to store data in multiple different databases (i.e. streams, relational

and non-relational databases etc.) that rely on varying schemata. Augmenting these

systems with semantics require re-designing of databases to conform certain rules,

which would not be feasible for many applications. Thus, a policy system should

provide the means for its integration into in-use applications without affecting their

existing components and their interactions.

An alternative to implementing a semantic knowledge base with a strict schemata

is using Ontology-based data access (OBDA) methods. OBDA turns a relational

database into a knowledge base by mapping the concepts and properties of an ontology

over the target database. Thus, it is possible to define a high level vocabulary to

author policies over multiple data sources, when OBDA is used together with data

federation methods.

1.2.0.2 Conflict Resolution via Planning

Conflicts among policies occur when prohibitions and obligations get applied to the

same action of a device or a service at the same time. Most existing conflict avoidance

strategies offered by existing policy frameworks are static, i.e., they use pre-defined

rules that don’t make adaptive decisions. Users cannot be expected to manually

foresee and find solutions to resolve all such conflicts. Furthermore, by providing

information in real-time, all the sensors and tags available make it possible for us

to model the application environment in a detailed and up-to-date manner. In or-

der to provide an automated solution to this problem, we propose and implement

a mechanism which minimizes the policy violations by automatically reformulating

the conflict resolution as an AI planning problem. Since QL is less expressive than

7



Planning Domain Definition Language (PDDL) [27], it is possible to model policies

along with QL inference rules using off-the-shelf planners.

Even though we are concerned with all the aforementioned notions, realistically

addressing or evaluating all is too ambitious for a single PhD work. For example,

developing an intuitive user interface for authoring policies, validating the

formalization of policies, or analyzing how much of the policies in the IoT domain

can be represented with our policy language are beyond the scope of this thesis.

However, we believe these ideas could be easily incorporated into our framework. In

the concluding chapter of this document, we discuss the limitations of our

framework and highlight our plans to address them.

1.2.1 Main Contributions

The work described in this thesis makes the following contributions:

1) We introduce a policy language that provides efficient mechanisms with the right

amount of expressivity to describe and reason about policies. The approach

allows to detect conflicts at design time and to use high-level concepts to refine

policies to individual devices or services.

2) We provide a conflict resolution strategy which utilizes a general purpose AI

planner. The planner determines the best course of action (minimizing or avoid-

ing policy violations) by making use of available services at the run time. The

planner can also be used as a conflict detection mechanism.

3) We describe how ontology based data access and data federation methods can

be adopted to implement the policy framework and to consolidate in-use IoT

applications that use multiple diverse data sources.

We, further, show the applicability of the framework through two different use

cases; a smart home application and an intelligent mine solution.

8



1.3 Thesis Outline

The outcome of this research is a policy framework that utilizes an effective knowledge-

based approach to represent high-level policies, efficient and scalable mechanisms to

refine those policies to service level policies, automatic mechanisms to detect conflicts

when enforcing service level policies, and state-of-the-art mechanisms to automati-

cally resolve such conflicts. The framework can also be integrated into in-use IoT

applications without affecting their existing workings. The rest of this document is

structured as follows.

Chapter 2 The chapter presents an overview of the preliminaries to the proposed

policy framework. It also surveys and discusses the previous research done in policy

frameworks and policy conflict resolution.

Chapter 3 The chapter introduces the formalization of our policy representation

and the conflict detection algorithm using an illustrative scenario. We, then, discuss

the implementation of the policy management framework with respect to the same

scenario.

Chapter 4 The chapter motivates the need for planning and introduces the use of

automated planning techniques in our system to automatically resolve conflicts, and

other extensions that could be explored. Next, we present means to automatically

translate semantic policy representations to the planning domain, and we evaluate

the proposed approach.

Chapter 5 In this chapter, we discuss how to do policy reasoning over distributed

data through a case-study. We specifically focus on health and safety policies in

underground mines and show how planning could be useful in this new domain.

Finally, we evaluate the performance of our implementation using official mining

safety regulations and a database that we obtained from a mining company.

9



Chapter 6 This chapter discusses the limitations of our work and possible solutions

to those limitations. Then, we sketch some ideas for future extensions and conclude

the document by highlighting the contributions of our work.

10



CHAPTER II

BACKGROUND AND RELATED WORK

This chapter outlines the technical background, semantics, and the related work that

the contributions of this thesis rely on. Several other topics and methods, such as

planning, ontology based data access, and data federation will be discussed in the

following chapters.

2.1 Background

The flexibility and the power of a policy management framework is to a large degree

determined by the expressiveness and computational efficiency of its policy repre-

sentation [28]. In this section, we provide the theoretical foundations of our policy

framework and introduce the language constructs to ground our policy representation.

2.1.1 Knowledge Representation

Formal representation of knowledge enables computers to solve complex tasks (e.g.

predicting drug side effects) and interact with their environment in a more intelligent

fashion (i.e. context aware computing). Knowledge representation methods provide

the means for automated reasoning, which is the ability of deriving new knowledge

from the data and making inferences. The most common knowledge representation

methods involve logic, rules, and semantic nets [29].

Typically, knowledge representation languages grounded on expressive semantics

focus on providing support for modeling complex relations and descriptions. As de-

scriptions become more complex, the reasoning task becomes more complex too, thus

requiring more compute power. Therefore, not all languages are suitable for IoT ap-

plications, which must handle large volumes of instance data, ideally, with low power

11



consumption.

2.1.1.1 OWL-QL

OWL 2 QL (OWL-QL) [30] is a sub-language of Ontology Web Language (OWL) [31],

which specifically targets applications that produce large volumes of instance data

and query answering is the most important reasoning task. In OWL-QL, sound and

complete conjunctive query answering can be performed in LogSpace with respect to

the size of the data (i.e., assertions), and polynomial time algorithms can be used

to implement the ontology consistency and class expression subsumption reasoning

problems [31].

OWL-QL includes the most of the main features of other ontology languages;

however, it compromises some expressiveness to gain performance. Since the OWL 2

profiles are defined as syntactic restrictions without changing the basic semantic as-

sumptions, in the OWL 2 QL profile, it was chosen not to include any construct that

interferes with the Unique Name Assumption (UNA)—i.e., with the absence of the

UNA, it would have had higher reasoning and query answering complexities. UNA is

a simplifying assumption that enforces entities to have different names [32], however

QL’s logical foundation does not make this assumption. Thus, this brings restrictions

to OWL-QL such as no cardinality restrictions nor functionality constraints [33]. For

example, it is not possible to make a statement like a room can only have one temper-

ature. It is also not possible to use individual equality assertions (SameIndividual).

OWL-QL depends on the Description Logic DL-LiteR [33]. The complexity of

logical entailment in most of the Description Logics is Exptime [34]. Calvanese et

al. [35] proposed DL-LiteR, which can express most features in UML class diagrams

with a low reasoning overhead—i.e., data complexity of AC0 for ABox reasoning. It

is for this reason that we base our policy framework on DL-LiteR (to be referred to as

DL-Lite); below we provide a brief formalisation of DL-Lite to ground the subsequent

12



presentation of our model. We refer the reader to the comprehensive introduction [1]

of OWL 2 Profiles for further information.

2.1.1.2 Representation and Semantics

A DL-Lite knowledge base K = (T ,A) consists of a TBox T and an ABox A. Axioms

of the following forms compose K: (a) class inclusion axioms : B v C ∈ T where

B is a basic class B := A | ∃R | ∃R−, C is a general class C := B | ¬B | C1 u C2,

A is a named class, R is a named property, and R− is the inverse of R; (b) role

inclusion axioms : Ri v P ∈ T where P := Rj | ¬Rj; and (c) individual axioms :

B(a), R(a, b) ∈ A where a and b are named individuals. Description Logics have a

well-defined model-theoretic semantics, which are provided in terms of interpretations.

An interpretation I is a pair (∆I , ·I), where ∆I is a non-empty set of objects and ·I

is an interpretation function, which maps each class C to a subset CI ⊆ ∆I and each

property R to a subset RI ⊆ ∆I ×∆I .

Using a trivial normalization, it is possible to convert class inclusion axioms of the

form B1 v C1 uC2 into a set of simpler class inclusions of the form B1 v Bi or B1 v

¬Bj, where B1, Bi, and Bj are basic classes ([36]). For instance, during normalisation,

B1 v B2 u ¬B3 is replaced with B1 v B2 and B1 v ¬B3. With a normalized TBox,

tractable semantic reasoning and query answering can be implemented using query

rewriting techniques ([37]).

We borrow syntax and semantics from the DL-Lite [35] family to illustrate our

TBox. For example, the statement: Computer v ElectronicDevice means that

Computer class is a subclass of ElectronicDevice; and the statementElectronicDeviceu

∃playSound represents devices that can play sound. On the other hand, an ABox

is a collection of extensional knowledge about individual objects, such as whether

an object is an instance of a concept, or two objects are connected by a role [35].

In Description Logic, roles are binary relations between two individual objects—e.g.

13



livesIn(John,NewY ork).

2.1.1.3 Language Definition

Table 1 presents the constructs that can be used in QLtiny (OWL-QL) language. IN-

ame, CName, and PName are used for individual names, class names, and property

names. The complete list of supported axioms can be found in the official documen-

tation [2].

Table 1: Definition of QLtiny language [1, 2]
Axiom ::= CL v — CR(IName) — P (IName, IName)
CL ::= CName — > — ⊥ — ∃ P.>
CR ::= CName — > — ⊥ — CR u CR — ¬ CL — ∃ P.CR
P ::= PName — PName−

2.1.2 Reasoning

Reasoning in ontologies and knowledge bases is one of the motivations why a spec-

ification needs to be a formal one [38]. It is required for deriving facts that are not

explicitly defined in a knowledge base (KB). It makes it possible to keep a consistent

KB, to infer types of individuals (i.e. a dog is an animal), and, essentially, to answer

queries over ontologies. In the context of policy frameworks reasoning can be used to

develop a policy language with high level concepts and properties, to find active and

expired policies, and to detect conflicting policies.

We base our policy language on OWL-QL so that the policy reasoning framework

can exploit OWL-QL’s efficient and powerful query answering mechanisms [26]. We

recall that an OWL-QL ontology consists of a TBox and an ABox. Concepts, prop-

erties, and axioms that describe relationships between concepts form the TBox of an

ontology. We note that an ABox may be large and volatile, while a TBox is small

and static.

OWL-QL is designed to store the data (A) in a relational database and to reduce

the reasoning process to query answering by query rewriting. Query answering is

14



performed by first computing a rewriting of the initial query with respect to the in-

tensional part of the ontology (T ), and then evaluating this re-written query over

the database. This property of OWL-QL is called first-order rewritability of conjunc-

tive queries, which allows perfect reformulations to be represented with SQL. The

worst-case complexity of the size of re-written queries is exponential [35]. Hence,

the resulting query might consists of hundreds or thousands of queries given a large

ontology [39]. There are various different rewriting algorithms [40, 41, 42, 43, 44, 45]

to produce an efficient reformulation in a reasonable amount of time.

These algorithms produce non-recursive datalog programs. The main idea is to

eliminate existential join variables, while defining views corresponding to the expan-

sion of basic concepts and roles. In other words, efficient reformulation algorithms try

to eliminate redundancies and to reduce the number of unions in conjunctive queries

(UCQs) by reformulating them. Eventually, the remaining complexity of the gener-

ated query is handled by the database system. We can illustrate the query answering

process with the following scenario. Let us assume that an ontology defines students

at a university as; undergrad students UndergradStudent v Student and anyone who

has an advisor Student v ∃hasAdvisor . Query to retrieve all students Student(?s)

will be rewritten to include both axioms. Student(?s) t UndergradStudent(?s) t

hasAdvisor(?s, ?someone). The subclass axiom with the hasAdvisor property can

be used to discover students in the KB, even if they are not explicitly defined as

students.

2.1.3 Knowledge Base Implementation

It is not trivial to store and reason over large volumes of ontology data, due to

the dynamic nature of ontologies and the data heterogeneity [46]. Depending on

the reformulation algorithm and the ontology, the schema of the target relational

database must conform to certain specifications. A naive approach is to represent

15



each class in TBox as a table, whose entries are the instances of the class. Similarly,

each object or datatype property in TBox is represented as a table, whose entries

are 〈subject, object〉 or 〈subject, data〉 pairs, respectively. However, this approach

suffers heavily from joins (unions of subclass axioms) which are generated by the re-

writing algorithm. There are efficient frameworks like Quetzal 1 that provides efficient

mechanisms [46] to store Resource Description Framework (RDF) [47] in relational

databases. A comparison of various methods on managing large volumes of RDF data

can be found in this survey [48].

It may not always be possible to mold the target database schema into the desired

structure or the ontology data might reside in different data sources. For example,

it is a common practice in IoT applications to store less volatile data (i.e. machine

configurations, employee information etc.) in relational databases, while maintaining

more frequent data like sensors readings in a non-relational database. In such cases

ontology based data access methods can be utilized to convert the target database

into a QL knowledge base. We discuss this method further in Chapter 5

2.2 Related Work

2.2.1 Policy Frameworks

There is a multitude of policy frameworks; some with rich policy representations and

some targeting pervasive environments. We begin this section by reviewing the policy

frameworks, which we found to be the most relevant to our work, in chronological

order. Finally, we discuss policy-based control mechanisms developed for Wireless

Sensors Networks (WSNs).

1https://github.com/Quetzal-RDF/quetzal

16



2.2.1.1 Rei

Rei [21] is a policy language designed to control the security functionality and be-

haviors of pervasive computing applications. The language is based on deontic con-

cepts [49] and implements four types of policies; rights, prohibitions, obligations, and

dispensations (obligations that no longer apply). Rei allows policies to be defined for

roles, groups, and individuals. Furthermore, it is possible to delegate policies to other

users. e.g. a lab owner can grant access to her students for the lab machines without

requiring any action from another authority.

The policy engine of Rei is implemented with Prolog [50]. It takes an RDF-S [51]

ontology as an input that must provide domain specific information based on the

concepts in Rei’s ontology. Prolog provides Rei the reasoning power and enables Rei

to specify role value maps that are not directly possible in OWL. i.e. people who are

the same age.

The ability of using role value maps prevents Rei from detecting policy conflicts

in design time. In Rei’s context, conflicts can occur between right-prohibition and

obligation-prohibition policies and the policy engine requires meta-policies to resolve

these conflicts. Meta-policies are rules about other policies that are used for specifying

if positive policies hold precedence over negative policies or not.

Rei is an expressive policy language, however RDF-S policies must be based on

the concepts of Rei ontology. Furthermore, Prolog uses depth-first search to match

predicates. Therefore, the policy engine is prone to infinite loops, if this specific issue

is not addressed in Rei’s implementation.

2.2.1.2 KAoS

KAoS [18] is one of the most advanced ontology-based policy frameworks. KAoS

services are described using an OWL-DL [33] domain ontology by linking concepts to

the Kaos’s generic framework ontology. The underlying ontologies make it possible

17



to represent groups, actors, actions, and other necessary concepts such as computing

resources of actions. KAoS supports obligation and authorization policies, which can

either be positive or negative.

As the policy language is limited to description logics, KAoS is able to detect

policy conflicts at design time by performing subsumption reasoning. e.g. if one

description subsumes to other. The reasoning algorithm is implemented using Java

Theorem Prover (JTP)2. However, this makes it impossible to use variables (i.e. to

bind values to object properties) in policy descriptions. This can be considered as a

limitation of a policy language, since it is not possible to represent statements like

two speakers in the same room.

Authors addressed the above issue in a later work [52] by extending their imple-

mentation with role-value maps [53] by adopting syntax from Semantic Web Rules

(SWRL) [54]. This enables KAoS to represent role-value maps along with parametric

values like thresholds. Authors integrated a separate reasoner into their JTP rea-

soner to detect conflicts in the presence of role-value maps. However, subsumption

reasoning in DL with arbitrary role-value maps is undecidable [34].

Finally, KAoS also offers policy harmonization to resolve detected policy conflicts.

The algorithm makes use of metrics like update time of policies and priority values

determined by policy authors to decide which of the conflicting policies is more im-

portant. If the reasoner cannot come to a conclusion with the given rules, an error is

prompted and an action from a human administrator is required.

2.2.1.3 Protune

Protecting user privacy from web services is particularly important in the IoT domain,

as information sources greatly increase in number, provide sensitive information (e.g.

2http://www.ksl.stanford.edu/software/JTP/

18



health data), and become even more integrated into our lives. PRovisional TrUst NE-

gotiation [55] (Protune) is a rule-based policy framework that is designed to regulate

access control in web service applications. It allows users to define policies about how

much information they want to reveal under certain conditions. Protune’s rule lan-

guage extends PAPL [56] and PEERTRUST [57] and developed specifically to handle

trust negotiations.

Protune still depends on lightweight ontologies, which models concepts used in

policies, the relationship between those concepts, and the evidence required to prove

their truth. Protune can detect conflicts and inconsistencies in metapolicies, however,

this is a computationally exhaustive task [55]. Protune uses meta-policies for making

trust negotiation decisions. To our knowledge, Protune does not offer a mechanism

to detect and resolve conflicts.

2.2.1.4 Ponder2

Ponder2 [25] -the successor of the famous policy framework Ponder [10]- comprises a

general-purpose object management system, which is not built on top of an ontology.

Ponder2 targets pervasive environments and addresses the limitations of using its

predecessor in such applications. Ponder2 aims to build a simple, easy-to-use, and

scalable policy framework that does not rely on any other infrastructure services and

supports dynamically adding new functionality.

Unlike Ponder, Ponder2 does not rely on a Policy Decision Point. It is implemented

as a self-managed cell [58], which is a set of hardware and software components form-

ing an administrative domain that is able to function autonomously and is capable

of self-management [25]. SMCs can be thought of as virtual machines that are able

to make all kinds of policy decisions. This ability of Ponder2 makes it suitable for a

wide range of environments like WSNs, robots, mobile phones etc.

Ponder2 policies are written in a policy language called PonderTalk, which is

19



inspired by Smalltalk [59]. PonderTalk supports authorization and obligation policies,

as well as the use of variables in policy descriptions. There is a simplified and scaled-

down version of Ponder2 called Finger2 [23], which is an embedded policy-framework

that specializes in WSNs. As Ponder2 does not offer any semantic descriptions of

policy actions, addressees or activation conditions, it is not possible to use inferred

knowledge or to reason over Ponder2 policies.

Since it is not possible to perform conflict detection on PonderTalk policies, au-

thors have chosen to put constraints on the expressions and actions of the language

by defining a formal Alloy specification. Alloy is a first-order logic based declarative

specification language for expressing complex structural constraints and behavior in

a software system. This enables Alloy Analyzer [60, 61] to perform such analysis on

policies. Ponder2 resolves conflicts at design time by selecting the more specific policy

with respect to the type hierarchy. It is also possible to specify global rules (i.e. meta

policies) for resolving conflicts instead of selecting the most specific policy. However,

Ponder2 does not offer any adaptive conflict resolution strategies at run time.

Ponder2 is designed for developing self-contained applications in pervasive envi-

ronments. Thus, the policy language and its framework is tightly coupled with the

software on these devices, which makes Ponder2 difficult to integrate into in-use appli-

cations. Furthermore, a centralized decision point might be more beneficial to some

IoT systems (especially for resolving conflicts), if the policy engine makes decisions

by maintaining a bird-eye-view of the system.

2.2.1.5 Proteus

Proteus [62] can be considered as a hybrid policy framework that combines rule-

based and ontology-based methods to add context awareness to access control policies.

Proteus prioritizes the contextual information such as location, time, current activity

etc over the identity and the role of subject. While frameworks like KAoS and Rei

20



uses contextual information as a means to filter policies and use identity and role to

refine policies to subjects, Proteus considers context information as the primary basis

to refine policies.

The policy language of Proteus is based on DL and uses DL reasoning to deter-

mine active contexts. Further, the language is extended with horn clauses and Logic

Programming (LP) reasoning to support role-value maps. This approach is adopted

from authors’ previous work [63]. Proteus can also detect policy conflicts at design

time and allows definitions of constraints to avoid conflicting situations. Although

the approach is promising, Proteus do not focus on resolving conflicts and it would

be difficult to scale rules and DL reasoning due to their computational complexity.

2.2.1.6 OWL-POLAR

OWL-POLAR [22] (OWL-based POlicy Language for Agent Reasoning) is an OWL

2.0 knowledge representation and reasoning framework for policies. It is developed

to offer an expressive policy language with decidable reasoning mechanisms. Later in

this chapter, we discuss the policy representation and reasoning methods of OWL-

POLAR in more detail. Policies in OWL-POLAR can be used to oblige, prohibit, or

to permit an action. Even though OWL-POLAR does not provide an authorization

policy type, these modalities can represent access control policies.

The policy language of OWL-POLAR is based on OWL-DL and its reasoning

capabilities depends on the Pellet [64] ontology reasoner. Policies are described using

concepts and properties that exist in the input ontology. Moreover, it is possible

to use both specific individuals and variables in the policy descriptions, which are

not only event-condition-action rules with priorities, but they also have an expiration

condition to determine if the policy is no longer active.

In order to support role-value maps in DL, policies are represented with conjunc-

tive semantic formulas, which can be translated into SPARQL [65] queries. These

21



queries are executed using the SPARQL-DL [66] engine of Pellet. This allows OWL-

POLAR to detect policy conflicts and idle policies (policies that can never be active)

using query containment methods. Query freezing [67, 68] is used to reduce the query

containment problem -if a conjunctive formula subsumes the other- to query answer-

ing in DL [67, 68]. The policy language also restricts comparing two different data

types in policy descriptions to preserve the decidability of the reasoning process.

Furthermore, OWL-POLAR is the first policy framework that uses AI plan-

ning [69] for automatic conflict resolution. This approach tries to minimize (avoid

if possible) policy conflicts by finding an alternative route rather than resolving it

for good. Planning would be especially useful in the IoT domain, as connected de-

vices and sensors increase the number and variety of available actions and make it

possible to model their environment. The complexity and performance of planning

significantly relies on the constraints put on the planning domain [69]. The worst-case

complexity of planning is PSPACE-complete in the set-theoretic representation [70].

Although OWL-POLAR is powerful and expressive, reasoning with Pellet and

OWL-DL cannot be considered as efficient or lightweight for IoT applications. This

performance loss is mainly caused by the expressiveness of OWL-DL. Finally, OWL-

POLAR offers a conflict resolution method that uses an HTN planner, yet it cannot

automatically formulate conflicts as planning problems and external analysis of gen-

erated plans are required to select the right plan.

2.2.1.7 Summary

In this section we reviewed the most notable policy frameworks and discussed the

trade-off between expressivity and reasoning power. Ontologies-based methods are

widely adopted by policy frameworks to model context with an expressive language.

These frameworks are extended with logic programming languages to support the use

of variables in policy descriptions and to be able to reason about policies. i.e. to

22



Table 2: Comparison of the policy frameworks
Policy Framework Language Semantic Reasoning Conflict Detection Conflict Resolution Reasoning Complexity Central Decision Point

Rei
OWL-Lite

+
Prolog Variables

Yes Not in design time Meta-Policies NP-Complete Yes

KAoS
OWL-DL

+
Role-Value Maps

Yes
Java Theorem

Prover
Meta-Policies NP-Complete Yes

Ponder2 PonderTalk No Alloy Analyzer Meta-Policies NP-Complete No

OWL-POLAR OWL-DL Yes Query Freezing HTN-Planning NEXPTIME Yes

Proposed Framework OWL-QL Yes Query Freezing PDDL Planners LOGSPACE Yes

detect policy conflicts. However, this extension makes reasoning process undecidable.

Ponder2 does not use ontology-based methods and it is probably the most devel-

oped platform among the introduced frameworks. It is designed as a self-contained

system and targets pervasive environments. Each self-managed cell in the system

is able to make all kinds of policy decisions. PonderTalk, the underlying language,

cannot detect policy conflicts, thus Alloy Analyzer is used to perform such analysis.

OWL-POLAR differs from other ontology-based frameworks, as it uses conjunctive

formulas, which are converted to SPARQL queries to do DL reasoning with Pellet. It

aims to offer an expressive policy language, while preserving the decidability of the

reasoning process. OWL-POLAR can detect both policy conflicts and idle policies.

Table 2 depicts a comparison of the policy frameworks.

There are various conflict resolution algorithms adopted by these policy frame-

works. We can roughly group them as meta-policies, which are policies about policies

used to determine the more important policy. Finally, OWL-POLAR’s conflict res-

olution method differs from others as it uses an AI planner to automatically resolve

those conflicts. The planner dynamically utilize the available resources to avoid or

minimize conflicts. We present a more comprehensive review of conflict resolution

algorithms in the next section.

2.2.2 Policy Conflict Resolution

The majority of the policy applications adopt a rule-based or an ontology-based rea-

soning to detect policy conflicts. In addition to the frameworks discussed in the

23



previous section, some of the more recent work [71, 72, 73, 74] on policies–including

smart homes, web services, and multi-agent environments–employ similar method-

ologies (ontologies, rule-based approaches, csp solvers) for detecting and resolving

conflicts. Thus, in this section, we focus on conflict resolution methods.

In our context, conflicts among policies occur when negative and positive policies

get applied to the same action of a device or a service at the same time. For example,

a conflict may arise if a policy might require an air conditioner to keep the temper-

ature at 25, while another prohibits it from working when there is an open window.

Furthermore, there are other types of conflicts such as two people who prefer different

temperatures or two policies trying to open and close the same window at the same

time. However, conflicts between positive policies (i.e. management of conflicting

obligations [75]) and the policies of different agents are not in the scope of this work.

Vasconcelos et al. [15] represents policies as atomic formulae whose variables may

have arbitrary associated constraints. They provide a conflict detection mechanism

that uses unification (first order logic and theorem proving) and a conflict resolution

strategy called policy ”curtailment” based on constraint satisfaction. Policy curtail-

ment is the process of manipulating the constraints of policies to avoid overlapping

values of variables. Policies are simply re-written in such a way that these policies do

not get activated at the same time.

Lupu et al. [17] comprehensively discusses policy conflicts and resolution strategies

in their survey. These strategies include; a) prioritizing negative policies over positives

and vice versa b) assigning explicit priorities to each policy c) computing the distance

between a policy and the managed objects: Priority is given to the policy applying to

the closer class in the inheritance hierarchy. e.g. Speaker is closer to the ”Bluetooth

Speaker” class than ”Device”. d) choosing the specific policy over the more general

one (sometimes policies with same precedence might conflict) e) using meta policies,

which are the management policies.

24



We can even add more conflict resolution strategies like choosing the more recent

policy or the policy of a higher authority [22]. However, these examples should be

sufficient to show that the most of the resolution strategies are pre-defined rules to

select the more significant policy. We believe that such static strategies fail to exploit

the true potential and the dynamic nature of IoT, since they do not consider options

like delegating obligations to another actor or doing a composition of available actions.

25



CHAPTER III

POLICY FRAMEWORK

In this chapter, we formalize the representation of policies, and discuss the conditions

for policy activation, expiration, and conflicts. We first provide an illustrative scenario

and use it to ground our discussions throughout the thesis. Then, we introduce the

terminology that will be used in the rest of this paper to represent policies.

3.1 Illustrative Scenario

Let us assume that a smart home is equipped with an intelligent doorbell amongst its

many devices. A doorbell is typically tasked with notifying the household inhabitance

when new events occur. e.g., when the doorbell is pressed, it could make a noise or

send a message to a handheld device. Let us also assume that in association with the

smart home hub is an interactive interface in which occupants of the house can enforce

such conditions on the devices in context. Now, let us assume that the occupants

have enforced a collection of such policies on the doorbell and a couple of such policy

examples are notify when the doorbell is pressed by an audio alarm. We, now assume

that the dynamics of the household have changed and there is a baby in the house.

Now the occupants of the house place an extra policy on the smart hub to state that

no device should make noise when the baby is sleeping . This is due to the current

sleeping pattern of the baby which is monitored by another sensor. When this policy

gets refined and applied to the doorbell, we have a conflict. i.e., the doorbell is obliged

to make a noise, but what happens if the baby is sleeping?

Though simple yet intuitive the above scenario advocates for the need to have

a policy framework that is agile enough to address the ever changing policy needs

of the users, while providing efficient reasoning mechanisms quickly find conflicts

26



and resolve them. In order to model such environments, we need effective domain

modeling languages, and in the next section, we introduce one such language.

3.2 Policy Representation

We use OWL-QL, which is based on DL-lite family to represent and reason about

policies. Even though DL-lite seems like a simple language, it allows expressive

queries and efficient query answering over large instance data sets. By using OWL-

QL as an ontology language, we exploit its efficient and powerful query answering

mechanisms [26] in our policy language and reasoning framework. We provide an

example TBox and ABox of an OWL-QL ontology, which could be used to illustrate

our scenario, are depicted in Table 3 and 4.

Table 3: An example TBox for an OWL-QL ontology.

An OWL-QL TBox
Awake v ¬Asleep
Baby v Person
Adult v Person
TV v ∃hasSpeaker u ∃hasDisplay
TV v Device
DoorbellEvent v Event
SoundAction v Action u ∃playSound
Doorbell v Device
SoundNotification v SoundAction u ∃hasTarget
PortableDevice v Device
MobilePhone v PortableDevice

Motivated by the work of [22], we formalize a policy as a six-tuple (α, N , χ : ρ,

a : ϕ, e, c) where:

a) α is the activation condition of the policy;

b) N is either obligation (O) or prohibition(P );

c) χ is the policy addressee and ρ represents its roles;

27



Table 4: Example ABox.

Baby(Jane)
Baby(John)
Adult(Bob)
Doorbell(dbell)
Flat(flt)
hasResident(flt, Bob)
inFlat(John, flt)
inFlat(Jane, flt)
inFlat(dbell, f lt)
Asleep(John)
Awake(Jane)
DoorbellEvent(e1)
producedBy(e1, dbell)
SoundNotification(playAudio)

d) a : ϕ is the description of the regulated action; a is the action instance variable

and ϕ describes a;

e) e is the expiration condition; and

f) c is the policy’s violation cost.

ρ, α, ϕ, and e are expressed using a conjunction of concepts and properties from

the underlying OWL-QL ontology—i.e., they are of the form C(x) or P (x, y), where

C is a concept, P is either an object or datatype property, and x and y are either

variables or individuals from the knowledge base. For example, using variables b and

f , and the conjunction of atoms Baby(?b) ∧ Asleep(?b) ∧ inF lat(?b, ?f), describes a

setting where there is a sleeping baby in a flat. c is a numerical value determined by

policy authors to reflect how important a policy is. We assume that all actions are

permitted unless they are explicitly prohibited.

Table 5 illustrates a policy that prohibits devices from making sounds if there is

a sleeping baby in the flat. It is important to note that, though the addressee of

the policy is specified as a device (i.e., Device(?d)), concepts such as TV (?d) and

Doorbell(?d) are also included automatically while evaluating the policy by means

28



Table 5: Prohibition policy example: Sleeping baby.

χ : ρ ?d : Device(?d)
N P
α Baby(?b) ∧Asleep(?b) ∧ inF lat(?b, ?f) ∧ inF lat(?d, ?f)

a : ϕ ?a : SoundAction(?a) ∧ actor(?a, ?d)
e Awake(?b)
c 10.0

Figure 2: Rewritten activation query.

p(d , f , b ) :− Device (d ) , Baby(b ) , Asleep (b ) , i nF la t (d , f ) , i nF la t (b , f )
p(d , f , b ) :− Doorbe l l (d ) , Baby(b ) , Asleep (b ) , i nF la t (d , f ) , i nF la t (b , f )
p(d , f , b ) :− Te l ev i s i on (d ) , Baby(b ) , Asleep (b ) , i nF la t (d , f ) , i nF la t (b , f )
p(d , f , b ) :− hasSpeaker (d , ) , hasDisplay (d , ) , Baby(b ) , Asleep (b ) , i nF la t (d , f ) , i nF la t (b , f )

of role inferencing through query re-writing. The conjunctive semantic formulas can

simply be translated to conjunctive semantic queries. Figure 2 depicts the expanded

query required for this policy’s activation.

Table 6, on the other hand, illustrates an obligation policy, which enforces door-

bells to notify the residents using a sound action.

Table 6: Obligation policy example: Doorbell notification.

χ : ρ ?d : Doorbell(?d)
N O
α DoorbellEvent(?e) ∧ inF lat(?d, ?f) ∧ producedBy(?e, ?d) ∧ hasResident(?f, ?p) ∧Adult(?p)

a : ϕ ?a : SoundNotification(?a) ∧ actor(?a, ?d) ∧ hasTarget(?a, ?p)
e gotNotifiedFor(?p, ?e)
c 5.0

3.3 Policy Activations and Expirations

A policy is activated for a specific set of instances that fulfill its activation condition.

Likewise, an active policy instance expires if its expiration condition holds true or

the goal of that policy is fulfilled. The conjunctive semantic queries that describe the

activation and expiration conditions of policies are converted to SPARQL [65] queries,

which can be re-written and evaluated using a QL reasoner over triple stores [76] or

29



Figure 3: Rewritten activation query. (SPARQL)

PREFIX : <www. ozyeg in . edu . t r / sensoy /smart−home . owl#>
SELECT DISTINCT ?d ?b ? f
WHERE {

{ ?d a : Device }
UNION
{ ?d a : Doorbe l l }

UNION
{ ?d a : T e l e v i s i on }

UNION
{ ?d : hasSpeaker ?unbound 0 ;

: hasDisplay ?unbound 1 }
?d : i nF la t ? f .
?b : i nF la t ? f ;

a : Baby ;
a : Asleep

}

Figure 4: Rewritten expiration query. (SPARQL)

PREFIX : <www. ozyeg in . edu . t r / sensoy /smart−home . owl#>
ASK
WHERE { : John a : Awake . }

relational databases [77]. This is a trivial conversion, since SPARQL queries are more

expressive than conjunctive queries [77].

The re-written SPARQL query required for the activation of the policy in Table 5

can be seen in Figure 2. In our scenario, the activation condition for this policy holds

for the binding {?d = dbell, ?b = John, ?f = flt}. As a result, an activated policy

instance is created with this binding;“dbell is prohibited to perform playAudio action

until John is awake”.

Whenever the expiration condition of an active policy instance holds, that instance

should be removed; e.g., the activated policy expires if the baby John wakes up. The

devices would be allowed to use sound actions again, if there is no active instance of

the prohibition policy. i.e. if there is no baby in the flat or both John and Jane are

awake. Unlike creating active instances of a policy the existence of a single solution

for expiration queries is sufficient for active instances to expire. Therefore, expiration

conditions are translated into ASK queries as seen in Figure 4.

30



Some active policies expire when they are satisfied. For instance, obligation poli-

cies can expire after obligations are fulfilled. Let us consider the policy example in

Table 6, which defines an obligation policy stating that a doorbell has to notify adult

residents of a flat if someone rings the bell. In this case, since the dbell is ringed, the

active policy “dbell is obliged to notify an adult resident of flt with sound” should

be created. After notifying the targeted person Bob in the flat, the obliged action

would be performed and the activated policy would be satisfied. Alternatively, there

could be an expiration condition to keep that policy instance active until someone

explicitly acknowledges the notification or the door is opened.

A deadline field can be added to the policy definition as a complimentary mech-

anism to expiration conditions, since certain actions have to be performed within a

reasonable time frame. For example, there is no point in notifying the residents 5

hours later than the doorbell was ringed. However, introducing deadlines increases

the complexity of the conflict detection problem and render the proposed conflict

detection algorithm impractical. Even though deadlines are beyond the scope of this

thesis, we believe ideas from temporal logic and planning [78, 79, 80] could be utilized.

3.4 Policy Conflicts

Policies may conflict under various settings [17, 81]. Detecting conflicts at design

time helps with writing policies that less likely to conflict and recognizing a potential

conflict scenario ahead of time. The most obvious example is when an obligation

policy requires a prohibited action. The other examples of conflicts with different

types include; two policies that require opening and closing the same window at the

same time, two people with different temperature preferences sharing the same room,

two actions that require the same resource for different purposes etc. However, in

this work we only focus on the first conflict type, thus three conditions have to hold

true for two policies to conflict:

31



a) Both policies should be applied to the same policy addressee, e.g., same device

or individual.

b) One policy must oblige an action, while the other prohibits the same action.

c) These two policies should be active at the same time in a consistent world state

according to the underlying ontology.

It is important to state here that unless an addressee has to violate one of its

own policies to fulfill another one, there is no conflict. For instance, in our scenario,

the doorbell is obliged to notify the household with sound due to one policy while

the very same doorbell is prohibited to make any sound due to another policy. As

it has to violate its own prohibition policy to fulfill its goal policy, these policies are

considered to be in conflict.

Early detection of conflicts is particularly important in hazardous environments

like underground mines, since unnoticed conflicts may cost money and time for com-

panies and at worst lives. The success of the detection algorithm relies on the action

descriptions of policies and the structure of the TBox. We note that the subsumption

relation between the sound and notify with sound actions are explicitly defined in the

TBox. For example, the conflict detection algorithm described below fails to capture

the relation between two actions, if one of them implicitly subsumes the other. This

situation generally occurs when a defined action is a composition of actions. Let us

consider a scenario in which a policy requires all occupants of a building to evacuate

in case of a fire. There might be another policy, which got activated long before the

fire, prohibiting some occupants to use a door that might be crucial for the evacu-

ation. In this scenario, evacuate action in the policy definition is a chain of actions

that includes using a prohibited door. In the next chapter, we discuss how automated

planners can be utilized both to minimize policy violations and to capture implicit

conflicts.

32



3.4.1 Conflict Detection Algorithm

We can easily compute if modalities of two policies are in conflict. The tricky part

of the conflict analysis is determining whether two policies can be active at the same

time and get refined to the same action. Since conjunctive queries are used to describe

actions in policy definitions, we need to check if one of the queries subsumes the other

one. If there is a subsumption relation between action descriptions, that means these

queries will have common tuples (action instances) in their result set.

The above mentioned query containment problem can be reduced to query an-

swering in Description Logics using the standard technique of query freezing [67, 68].

However, subsumption reasoning becomes undecidable in the presence of arbitrary

role-value-map [34, 22], thus datatype variables cannot be compared in our policy

language. For example, q(p):- Person(p)∧hasAge(p, 25) is a valid query, yet q(a, p):-

Person(p)∧ hasAge(p, a)∧ a ≤ 25 is not allowed in our policy language. In order to

describe real IoT policies, unfortunately, it may be necessary to use variables in data

properties and to place constraints on them, since a large portion of data is gener-

ated by sensors. We partly address this issue by shifting some of these constraints to

OBDA mappings. This is further discussed in Chapter 5.

We describe the conflict detection algorithm using our running example. In the

remainder of the section, we denote the policies represented in Table 6 and 5 by p1

(obligation) and p2 (prohibition), respectively. To test whether qA subsumes qB, a

canonical ABox (sandbox) is created and populated with the instances and relation-

ships that appear in role and activation conditions of the policies.

We first freeze the role, the activation condition, and the action description of p1,

and populate the sandbox with the following set of assertions, which are the minimum

requirements for p1 to be active: {Doorbell(ind1), DoorbellEvent(ind4), Adult(ind5),

producedBy(ind4, ind1), inF lat(ind1, ind3), hasResident(ind3, ind5), actor(ind6, ind1),

SoundNotification(ind6), hasTarget(ind6, ind5)}. We then query this sandbox with

33



Figure 5: The canonical state of the world generated by the conflict detection algo-
rithm. (Green: Obligation, Red: Prohibition)

p2’s action description: q(a, d):- SoundAction(a) ∧ actor(a, d). Since the action de-

scription of p2 subsumes p1’s’, this query holds true for the binding: {?a = ind6, ?d =

ind1}.

Next, we freeze the role and activation conditions for p2. However, while doing so,

we do not use a fresh individual for the policy addressee in p2 since for two policies

to be in conflict, they should have the same policy addressee. The following asser-

tions get inserted into the sandbox: {Device(ind1), Baby(ind2), inF lat(ind1, ind3),

inF lat(ind2, ind3), SoundAction(ind6), actor(ind6, ind1)}. Now, the canonical ABox

represents a world state, in which both policies are active and one of the action de-

scriptions subsumes the other one. Since the resulting sandbox is consistent, it is

apparent that p1 and p2 can be active at the same time. Thus, we can conclude that

these policies are in conflict. We would have to make an additional check if p1 and p2

had expiration conditions since one of the policies might expire when the other one

becomes active. Figure 5 illustrates the final state of the sandbox.

34



If p1’s action description does not subsume p2’s action, we swap the policies

and restart the algorithm with a fresh sandbox. If there is no subsumption relation

between actions, the algorithm terminates concluding no conflict. Figure 6 depicts

the pseudocode of our conflict detection algorithm.

3.5 Implementation

In order to show the mechanics of our approach, we implemented a system that would

act like a hub (central point) to govern the behaviors of all devices in a smart home

environment. These devices include, and not limited to air conditioning systems,

television, coffee maker, doorbell, laptop, smart phones, windows, cleaning robots etc.

However, in this section, we only discuss the implementation of the policy reasoning

mechanisms and leave the discussions of the conflict resolution process to the next

chapter.

3.5.1 Architecture of the Framework

The architecture of our solution is depicted in Figure 7; it is composed of five main

components: HyperCat Server, Device Coordinator, Knowledge Base, Policy Rea-

soner, and Planner. We implemented all these components along with the sensors

and smart devices in our running example.

3.5.1.1 HyperCat Server

HyperCat [82] Server is responsible for device registration and storing data that

does not frequently change—e.g., capabilities (services) of devices. It is an open,

lightweight JSON-based hypermedia catalogue for IoT devices, and stores informa-

tion in triples. When used with an ontology, we can exploit this structure to exchange

and store semantic information about devices and associated services. This method

could act as a means for achieving semantic interoperability between heterogeneous

IoT devices and services alike.

35



Figure 6: The pseudocode of the conflict detection algorithm.

input : πA, πB , Tin
output : bool

begin

i f ! checkModalityConflict(πA, πB)
return f a l s e

AC = createSandbox(Tin)
for i = [ 0 1 ]
p1 = (i == 0)?πA : πB
p2 = (i == 0)?πB : πA

i f i == 1
Acan = createSandbox(Tin)

freezeQuery(p1.getActivation(),AC)
freezeQuery(p1.getAction(),AC)

subsumed = executeQuery(p2.getAction(),AC)
i f size(subsumed) > 0

break

i f size(subsumed) == 0
return f a l s e

freezeQuery(p2.getActivation(),AC)
freezeQuery(p2.getAction(),AC)

instances1 = executeQucery(p1.getActivation(),AC)
instances2 = executeQuery(p2.getActivation(),AC)

instances1 = removeExpiredInstances(instances1,AC)
instances2 = removeExpiredInstances(instances2,AC)

i f size(instances1) == 0 | | size(instances2) == 0
return f a l s e

return isConsistent(AC)
end

36



Figure 7: System Architecture: Policy-enabled IoT Framework.

Devices that want to connect to the system have to register their capabilities

through the server; furthermore, sensors may also stream collected data to the server.

Our system considers all devices as a collection of services they provide. As mentioned

in the introduction, a television could be modelled as a collection of a speaker, a

video player, a photo viewer, a web browser, a notification tool and so forth. In

addition, if a device needs to learn about the current state of the system, it can retrieve

the necessary sensor data from the server. However, HyperCat does not specify

an interface for devices to prioritise real time events like motion sensor or doorbell

signals, thus we extended the protocol to provide an interface for the incoming events.

Figure 8 illustrates an example JSON request for a speaker, which only offers one

service, to register itself and its capabilities.

37



Figure 8: Example HyperCat request of a speaker.

{
”item−metadata ” : [ ” items ” : [
{ {

” rel ” :” rdf−syntax−ns#type ” , ”href ” :” http :// speaker . ip /MakeSound” ,
”val ” :” Speaker ” ” i−object−metadata ” : [

} , {
{ ” rel ” :” rdf−syntax−ns#type ” ,

” rel ” :” rdf−syntax−ns#about ” , ”val ” :” PlaySound”
”val ” :” speaker1 ” } ,

} , {
{ ” rel ” :” rdf−syntax−ns#about ” ,

” rel ” :” canPerformAction ” , ”val ” :” PlaySoundSpeaker1”
”val ” :” PlaySound” } ] } ] }

} ,
{

” rel ” :” inRoom” ,
”val ” :” room1”

}
] ,

}

3.5.1.2 Device Coordinator

This component acts as a mediator for devices that do not have enough computational

resources to communicate with the Hypercat server and make decisions. It has three

roles:

1. pull information from sensors;

2. compute action plans to achieve goals of devices; and

3. execute plans by sending action commands to the devices.

Frequently updated data like sensor readings are stored in SenML [83] files on the

sensor according to HyperCat specification. Devices and sensors that are capable of

communicating with HyperCat server push data to the server directly. However, data

from other devices and sensors are polled by the Device Coordinator. It scans SenML

files and finds the latest entry. The below JSON formatted text could be an output

file of a sensor that measures temperature and humidity.

In our implementation, all active policy instances are stored in the Device Coor-

dinator, which performs policy reasoning on behalf of the devices; individual devices

38



Figure 9: SenML output example.

{
”e ” : [
{

”n” :” TemperatureOut ” ,
”v” : 2 2 . 5 ,
”u” :” c e l s i u s ” ,
”t ” :26

} ,
{

”n” :” TemperatureOut ” ,
”v” : 2 9 5 . 6 ,
”u” :” k e l v i n ” ,
”t ” :26

} ,
{

”n” :” HumidityOut ” ,
”v” : 80 ,
”u” :”RH” ,
”t ” :27

}
] ,
”bn” :” http :// l o c a l h o s t /out . senml ” ,
”bt ” :1320078429 ,
”ver ” :1

}

do not know if they are prohibited or obliged to perform certain actions—this is a

realistic assumption, especially for a swam of dumb devices. Whenever an obligation

is activated, Device Coordinator runs the planner and executes the generated plan.

3.5.1.3 Knowledge Base

KB provides the domain descriptions—based on an ontology—and the initial state of

the system to the planner, so that it can act, when policy conflicts are detected or an

obligation policy gets activated.

3.5.1.4 QL Reasoner

The QL reasoner is used to interpret role descriptions, activation conditions, action

descriptions, and expiration conditions of a policy over the KB. However, directly

querying the knowledge base may not reveal the inferred information that may be

deduced through the TBox. For this purpose, query rewriting is used to expand the

policy descriptions.

Additionally, the KB must be in a consistent state with respect to the rules defined

39



by the underlying ontology, since reasoning on an inconsistent KB might yield false

results. Updating knowledge bases is an error-prone process [84, 85] and the most

common problem is integrity constraints checking. Even though efficient integrity

checking methods have been developed [86, 87], we adopt a trivial solution to make

the policy system work, since maintaining a knowledge base is not in the scope of

this work. Whenever new information is received from the HyperCat Server—or

the Device Coordinator—the QL reasoner simulates insertion of the new piece of

information using a sandbox; consistency check query is then executed in the sandbox,

and finally the new transaction is committed only if the world state is consistent.

Consistency checking is also performed by means of disjunctive queries that consist

of conditions that may cause inconsistency based on the axioms in the TBox. The

consistency and re-written queries can be cached to be re-used, as long as the TBox

is not modified.

The QL Reasoner is also used for integrating reformulation rules into the static

domain files to allow the planner to exploit semantic information about the domain.

We have adopted OWL-QL package of Quetzal [88] for generating type inference and

consistency check queries. Conjunctive formulae are converted into SPARQL queries,

and are then fed into the reasoner; the re-written output queries are then converted

into SQL.

3.5.1.5 Policy Reasoner

The policy reasoner utilizes the above QL reasoner to keep a track of the normative

state of the world—i.e., a list of active policies in that state of the world. Once a

policy is rewritten through the QL reasoner, the expanded policy set is then used by

the policy reasoner to create or delete active policy instances, or to detect conflicts

between policies at design time.

The policy reasoner reads policies from an XML file and stores each policy in

40



Figure 10: XML representation of a policy.

<Policy Name=”Not i fyDoorbe l l ” Addressee=”?d” Modality=”Obl igat ion ”>
<AddresseeRole> Doorbe l l (?d) </AddresseeRole>
<Activation> Doorbel lEvent (? e ) , producedBy (? e , ?x ) ,

Adult (?p ) , i nF la t (?d , ? f ) , hasRes ident (? f , ?p)
</Activation>
<Action var=”?a”>SoundNot i f i ca t i on (? a ) , hasTarget (? a , ?p ) , ac to r (? a , ?d)</Action>
<Expiration> gotNot i f i edFor (?p , ? e ) </Expiration>
<Cost>5 .0</Cost>

</Policy>

the memory—code snippet in Figure 10 shows the XML representation of the policy

in Table 6. Internally, the policy reasoner uses the QL reasoner to rewrite policies

with respect to the roles, actions, and conditions. Active instances of policies are

stored in the normative state and obligations are passed to the Device Coordinator.

Furthermore, Policy Reasoner is used to compute accurate plan costs, as resulting

plans may violate existing policies or new policies may become active during sub-

steps of the plan.

In the next chapter, we discuss the conflict resolution problem, present our plan-

ning approach and complete the implementation of this system.

3.6 Discussion

The policy framework is able to perform efficient reasoning and detect policy conflicts

due to the properties of OWL-QL—i.e., expressiveness of OWL-QL, and database

driven fast consistency checking and class expression reasoning—when compared to

other languages from OWL family. However, the limitations of expressivity associ-

ated with the OWL-QL introduces limitations in expressing policies—e.g., number

restrictions and functionality constraints are not supported by DL-Lite family of lan-

guages. For example, we cannot state that a room can only have one temperature in

OWL-QL.

Policies are represented using conjunctive semantic formulas. Although disjunc-

tions in policy definitions do not increase the complexity of the policy reasoning, we

41



decided not to include them for simplicity. For instance, the conflict detection algo-

rithm would have to create multiple canonical states when comparing policies with

disjunctions. Such policies can easily be converted to a set of policies described with

only conjuntive formulas.

The numerical values associated with the violation costs of policies are set by

policy authors. These costs are compared to make an automated decision in case

of conflicts. However, it could be difficult for people to quantify the importance

of a policy and set correct individual costs without some assistance. Moreover, the

significance of these values are relative to each other, as we sometimes need to make a

decision between more than two policies. Thus, we can consider learning approaches

wherein user preferences are captured as utility functions, however it is not within

the scope of this thesis. We discuss how conflicts are resolved in the next chapter.

We note that we are only concerned with the modality conflicts. Logical conflicts

between two obligation policies are beyond the scope of this thesis. The conflict

detection algorithm can detect policy conflicts at design time, if the subsumption

relation between action descriptions of policies are explicitly defined in the TBox.

Thus, the algorithm cannot capture the relation between two actions, if one of them

is a composition of actions that includes the other. We discuss how this issue can be

addressed using AI planners in the next chapter.

Furthermore, data properties can be used in the policy descriptions, yet data val-

ues cannot be compared. The reasoning process in the conflict detection algorithm

becomes undecidable, when such constructs are allowed in the policy language. How-

ever, in Chapter 5, we exploit OBDA methods to reduce the need for data value

comparisons in policy descriptions.

Though our current implementation has all the necessary backend components

and services, intuitively authoring policies is a challenging task. This is mainly due

to the steep learning curve users must go through to author policies with respect to

42



ontologies. System assisted query writing (or generation) is an interesting research

problem, but is out of the scope of this thesis. However, we can get inspiration from

techniques such as conversational aspects in query generation with respect to schema

information [89, 90], and pragmatically aware query formulation [91], to augment our

system to address this issue.

43



CHAPTER IV

AUTOMATED CONFLICT RESOLUTION

Policy conflicts may arise between two given policies when the conditions outlined in

the previous chapter are met. In such cases, it is essential for the system to devise

a way to resolve the conflict and move forward. In this chapter, we first outline a

way of posing this conflict resolution problem as a planning problem, and using auto-

mated planning technology to solve that problem instance. Then, we briefly discuss

a preliminary proof-of-concept evaluation of the planning approach and complete the

implementation of the policy system from the previous chapter.

4.1 Utilizing Planning to Resolve Conflicts

When compared with traditional IT systems, one of the major issues in managing

IoT-based systems is the impracticality of using humans to configure, maintain, and

manage all these connected devices, and the services associated with them. This is

because services related to IoT are dynamic (especially in terms of availability), agile,

and context sensitive. Thus, resolving policy conflicts is a critical part of policy based

systems.

IoT systems are data-intensive and highly dynamic environments, in which new

devices join and leave the system on the fly. Each connected device introduces new

capabilities from a system’s perspective. Systems’ capabilities do not have to consist

of only device actions, but they could also include web services. We believe that

utilizing all available capabilities to completely or partially avoid policy conflicts

could prove to be an effective conflict resolution mechanism. In order to resolve a

conflict: (a) a composition of actions (b) a different action, which serves the same

purpose (c) a different set of parameters, which is not prohibited, for the same action

44



could be found.

Some of the policies are more important than others and, if critical circumstances

arise that makes it impossible to satisfy all the constraints, it might become necessary

to violate the less important ones. For instance, notifying a doorbell event may not

be more important than waking up the baby or an alternative notification action can

be just as useful. Let us assume that in addition the baby, the baby’s parents are

sleeping as well, and the doorbell is rung. Now, the system has to make a decision;

to either violate the sound policy, or to not notify and ignore the visitor at the door.

In this extended scenario, the planner needs to make a decision according to the

violation costs set by the policy’s authors. The real-world domains are more complex,

thus there may be much more complicated scenarios in which multiple policies are

active and the solution is much more complicated; this demonstrates the need for soft

constraints of some nature, such as preferences.

The actors involved in IoT systems cannot act unilaterally because they do not

possess complete context-awareness about the scenario; and they may be violating

policy compliance by taking unilateral action. AI planners are commonly used for

solving above described problems [92, 93]. Moreover, planners can answer to the

performance requirements of IoT and cope with the dynamically changing environ-

ment. Thus, we think that using planners as a conflict resolution mechanism would

enhance IoT systems by allowing connected devices to collaborate with each other

and possibly available web services.

We propose using planners to solve conflicts at run time, which is important

for two reasons; a previously found solution may not work the next time due to the

changes in the environment or a better solution might become available. For example,

let us assume that there is an available service which displays a message on the TV

in our smart home scenario. The planner can use this action to notify the residents

without making a sound if somebody is watching the TV. However, this plan becomes

45



ineffective, if nobody is watching the TV or the TV is just turned off. Then, the policy

system needs to devise a new plan to notify the residents. Therefore, we treat each

conflict resolution problem (even the encountered conflicts) as a different planning

problem.

4.1.1 Representing Planning Problems

A planning problem, which is essentially a search problem, consists of: an initial

state description, definitions of available actions and their effects, and a goal state.

A planner looks for a solution by considering applicable actions until it either finds a

chain of actions that make it possible to reach the goal state from the initial state or it

concludes that there is no solution. In order to represent planning problems and utilize

off-the-shelf planners, we use Planning Domain Definition Language (PDDL) [27]

that is an expressive language yet carefully constrained to scale up to large problem

sizes [32].

The descriptive model–created using PDDL–is called a planning domain, which is

necessarily an imperfect approximation that must incorporate trade-offs among sev-

eral competing criteria: accuracy, computational performance, and understandability

to users [79]. There are several versions of PDDL with various features (disjunctions,

preferences, temporal actions etc.) that enable modeling complex problems. However,

the most of the planners do not support all these constructs due to the aforementioned

trade-offs. We now introduce the basic concepts of PDDL and discuss the additional

features necessary for the reformulation process later in this chapter.

A state in PDDL in its simplest form is described using conjunctions of positive

unary and binary predicates. The use of variables are not allowed in state definitions,

as they are either used to represent the information in the knowledge base (initial

state) or a desired state (goal state) to be achieved using available objects. For

instance, the predicates Baby(John)∧ hasFather(John,Bob) are valid, however the

46



Figure 11: Pick-up action from Blocksworld PDDL domain.

( :action pickup
:parameters (? ob )
:precondition (and ( c l e a r ?ob ) ( on−table ?ob ) (arm−empty ) )
: e f f e c t (and( ho ld ing ?ob ) (not ( c l e a r ?ob ) ) (not ( on−table ?ob ) ) (not (arm−empty ) ) ) )

following hasResident(?f,Bob) is invalid. Empty predicates that do not contain any

variables or objects are also valid.

Action definitions consist of three parts; parameters, precondition, and effect.

Each variable that is used to describe the preconditions and the effects of an action

has to be declared as a parameter. The precondition field of an action describes the

state that needs to be true with respect to its parameters prior to the execution of

the action. Finally, the effect field describes how an action changes its environment

when it is performed.

The precondition and the effect of an action can be described using conjunctions of

both positive and negative predicates. If a predicate that exists in the preconditions

of an action but it is not mentioned in its effects, that predicate remains unchanged.

However, if a predicate is negated in the effect field, then that predicate is removed

from the world state. Figure 11 illustrates the pick up action from the famous blocks-

world domain in PDDL syntax. In this example, a robot arm can pick up an object

if the robot is not already holding anything and the object on the table does not

have another block on top of it. After performing the action, negated predicates

are removed and the Holding(?ob) predicate is added to the world as the robot just

picked up the object.

4.2 Policy Reasoning in Planning

In this section, we outline a way of translating conflict resolution problems into a

PDDL planning problem. We particularly focus on PDDL 3.1 [94].

47



4.2.1 OWL-QL Reasoning in PDDL

Our policy framework exploits OWL-QL to cope with very large volumes of instance

data. OWL-QL is less expressive compared to PDDL; hence, it is possible to repre-

sent its reasoning mechanisms in PDDL. PDDL makes the unique name assumption

(UNA), which means that objects with different names are considered to be distinct

individuals. QL neither strictly requires this assumption nor violates it. Thus, we

assume that used QL ontology respects UNA. However, PDDL uses the closed-world

assumption that states any predicate, which is not present in the current state of a

planner is assumed to be false. i.e. the planner does not assume that Bob is a father,

unless Father(Bob) predicate is explicitly provided. On the other hand, QL adopts

the open-world assumption and utilizes query re-writing to infer information.

Given the exploratory nature of this work, as well as the use of multiple planners,

there is a lot of related work that must be cataloged and explored. Web-PDDL [95]

adopts and extends PDDL with namespaces and sameAsClass to make ontologies

more suitable for web applications. From the same author, another software tool

called PDDOWL [96] converts OWL-QL queries to Web-PDDL, which are then con-

verted to SQL. Our work does not share the same goal as PDDOWL and Web-PDDL;

however [95] explains more in detail what PDDL lacks to fully represent ontologies.

4.2.1.1 Query Rewriting

PDDL’s typing feature is suitable to encode simple class hierarchies into the do-

main file. However, typing alone is not sufficient to express multiple inheritance

and subclass expressions with object or data properties, e.g. TV v ∃hasSpeaker u

∃hasDisplay . For this reason, we represent types of an object with PDDL predicates.

All the reasoning formulas concerning types can be then integrated into the PDDL

domain by either encoding them in action preconditions with disjunctions or using

derived predicates. We use the latter approach as it is more concise.

48



Figure 12: PDDL representation of the rewritten query TV(?d).

( :derived (TV ?d) (and ( hasSpeaker ?d ?unbound 1 ) ( hasDisplay ?d ?unbound 2 ) ) )
( :derived ( Parent ?p) (or ( hasChi ld ?p ?unbound 1 ) (Mother ?p) ( Father ?p ) ) )

The first derived predicate in Figure 12 indicates that anything with a display and

a speaker can be used as a television even if it is not defined explicitly as a TV. We

note that the above approach is insufficient to encode inference queries that include

data properties, since numeric values in PDDL are represented using cost functions

which are not allowed in derived axiom definitions. This can be addressed using

disjunctions, which are also required to fully support type inferences. For instance,

to infer that someone is a parent we can use the second rule in the same Figure 12

4.2.1.2 Consistency Check

As explained in the previous chapters, an ontology consists of a TBox and an ABox.

Each world state created after applying an action during planning represents an ABox,

and an ABox of an ontology is valid as long as it is consistent according to the rules

defined in the TBox. Hence, we need to be sure that none of the steps in a generated

plan make the ontology inconsistent; otherwise the generated plan is inapplicable.

In other words, as each state during planning represents an actual, real-world state,

none of the actions of a valid plan should put the world in an inconsistent state; e.g. a

door cannot be both open and closed at the same time. Action preconditions could be

designed to handle such inconsistencies; however, here it is important to focus on the

fact that this state cannot be achieved in real life. For this reason, we have to check

for consistency of the current state every time the planner applies an action. The

rules that may cause inconsistency in an ontology are derived from its TBox. Hence,

either an external program must check if the generated plans cause inconsistencies,

or the planner must handle this. Most planners do not provide a mechanism to run

a program after each step; hence we propose the following solution.

49



Since we can express the consistency query in PDDL using predicates, we cre-

ate a special action called check-consistency and use a special empty predicate

called isConsistent. isConsistent is true in the initial state and it must also be

true in the goal state and in all states that lead to the goal state. Furthermore,

all the action descriptions are modified to include isConsistent in their precondi-

tions along with ¬isConsistent in their effects. This simply means that we need

the isConsistent predicate to apply an action, and that the predicate is deleted af-

ter an action is applied. Furthermore, the special check-consistency action has

the negation of the consistency check in its preconditions and isConsistent in its

effects. As check-consistency is the only action that can add the isConsistent

predicate, it has to be applied after each action. However, the precondition of the

check-consistency action has to be reinforced with the forall construct since none

of the existing objects should violate the consistency rules.

If the world state is inconsistent, the check-consistency action will not add

the isConsistent predicate and all actions will become inapplicable; the goal state

will then be unreachable. This will prevent the planner from going even deeper in

the current branch of its search space, as that branch will not produce a valid plan.

A notify action’s PDDL definition implementing the above mentioned approach is

presented in Figure 13. However, this solution adds some extra complexity to the

planning problem. Considering the performance requirements of IoT applications

and to reduce the load on planners we skip the consistency check during planning.

Depending on the context we either assume that PDDL actions (i.e. in a controlled

environment) do not cause an inconsistency, or we do the consistency analysis via an

external program only to validate found plans.

50



Figure 13: PDDL actions using consistency check.

( :action check−cons i s tency
( :parameters . . . )
( :precondition (and (not ( i sCon s i s t e n t ) )

(not ( f o ra l l . . . ) . . . ) ) )
( : e f f e c t ( i sCon s i s t e n t ) ) )

( :action notify−with−sound
:parameters (? dev i c e ? ac t i on ? person ? f l a t ? event )
:precondition (and ( canPerform ? dev i ce ? ac t i on )

( SoundAction ? ac t i on ) ( Event ? event )
( Flat ? f l a t ) ( Person ? person ) ( i sCon s i s t e n t )
( i nF la t ? person ? f l a t ) ( i nF la t ? dev i c e ? f l a t ) )

: e f f e c t (and ( go tNot i f i edFor ? person ? event ) ( not i f i edWith ? person ? ac t i on )
(not ( i sCon s i s t e n t ) ) ) )

( :action not i fy−with−visua l
:parameters (? dev i c e ? ac t i on ? person ?room ? event )
:precondition (and ( canPerform ? dev i ce ? ac t i on ) ( Visua lAct ion ? ac t i on )

( Event ? event ) ( Person ? person ) ( i sCon s i s t e n t )
( inRoom ? person ?room) ( inRoom ? dev i ce ?room ) )

: e f f e c t (and ( go tNot i f i edFor ? person ? event ) ( not i f i edWith ? person ? ac t i on )
(not ( i sCon s i s t e n t ) ) ) )

4.2.2 Policies in PDDL

The central contribution of this chapter is automating the policy conflict resolution

process using automated planning techniques. The first step towards this goal is the

modeling of the conflicting situation and its attendant information into a planning

problem instance. Specifically, obligations and prohibitions relating to a specific entity

need to be handled, since they are the primary reason that a conflict might arise.

The key concept here is the framing of obligations and prohibitions as soft con-

straints on a given policy that must be handled by the underlying planner. In this

notion, obligations and prohibitions can be seen first and foremost as goals that an

entity must achieve. These goals may be soft in nature, i.e., there may be degrees of

fulfillment rather than just binary true or false. Additionally, since we are consider-

ing conflicts in the policy space, obligations and prohibitions may be competing with

each other. In such instances, it may be the case that not every conflict can be fully

resolved; instead, a plan needs to be formulated that least violates some goodness

metric defined for the domain.

We illustrate this idea with the use of our running example, outlined in Chapter 3

51



previously. Envision a scenario where if the doorbell is pressed, an obligation to

notify someone within the house (that there is someone at the door) is immediately

created due to an existing policy. However, there is also a current prohibition on

making sound, since someone is sleeping – this is due to a second policy that exists

on the doorbell. This forces the addressee (in this case, the doorbell) to make a

determination and pick between one of the two policies to violate.

However, if there were another way to fulfill both of these policies (one of them with

an obligation, the other with a prohibition) at the same time without violating the

other, the conflict and ensuing violation could be avoided. Given that we are dealing

with complex domains with multiple entities and services, it is entirely possible that

notification is possible in a number of ways. We investigated two different methods

to model policies in PDDL; using preferences, using cost functions.

4.2.2.1 Policies as Preferences

Policies are soft-constraints (preferences) by definition, thus it is more intuitive to

use a preference based planner for this work. However, policies are more expressive

and dynamic in nature than PDDL preferences. Now, we discuss the advantages and

limitations of preference based planning.

In our smart home domain, the preferences (one on the obligation, and one on the

prohibition) would be represented as follows:

a) preference pref-0 (gotNotifiedFor Bob dbell)

b) preference pref-1 (notifiedWith Bob visualaction)

In the above, pref-0 stands for the obligation that when the doorbell rings, Bob

(a person in the house) must be notified. pref-1 is the prohibition that whenever

the doorbell rings, the notification must happen visually1. These two preferences are

1An alternate way of encoding this preference would be to define a (DoNotUseSound ?entity)

predicate; this is a domain modeling question

52



in conflict, and will be resolved by the planner based on the violation cost that is

prescribed for each.

One question that crops up is whether this can just be achieved with regular

PDDL actions, without the use of preferences. For example, consider the actions

in Figure 13. The two notification actions both give the same main effect, namely

(gotNotifiedFor ?person ?event). Therefore, it bears asking why the conflict

resolution problem cannot just be handled in a straightforward manner by the planner

without the need to invoke preferences; clearly, there are two choices, and the planner

can take the visual notify action if the sound notify will violate some other constraint.

However, this line of thought precludes the possibility that sometimes there may

be no other way to uphold a specific obligation, or avoid a certain prohibition. In

certain cases, the problem may be overconstrained to the point where some constraint

has to be violated. In such cases, it is useful to think of these constraints as no longer

hard goals but instead soft constraints that carry violation costs – preferences. The

planner now has more room in a complex problem setting to decide which constraints

can be violated, and to arrive at the best possible solution.

Unfortunately, preferences cannot capture the whole notion of prohibition policies,

as they do not allow placing constraints on domain actions. This solution requires

domain engineering and enforces policy authors to define a fallback strategy to model

a prohibition. Furthermore, multiple restrictions might apply to a certain action, in

which case the cost of the action should reflect all the violation costs associated with

that particular action. Even though preferences alone cannot represent policies, they

can be used as a complementary mechanism in the conflict resolution process.

4.2.2.2 Policies as Cost Functions

PDDL models support a global function that keeps track of the accumulated cost

associated with executing all the actions in the domain. Planners can be specified to

53



minimize the total cost, while trying to achieve the goal. In addition to the global

one, we introduce a new cost function for each different active prohibition policy.

These prohibition cost functions are associated with the effects of the actions that

they regulate to increase the global cost if the prohibited action is used.

Using cost functions makes it straightforward to model obligations in the problem

file. We simply set the goal state required by the obligation policy. Unlike obligations,

there are more details that need to be considered, while modeling prohibitions. These

are, (a) multiple prohibition policies might prohibit an action (b) multiple prohibition

policies might apply to a device (c) a device might be restricted to use an action, while

another is not (d) each prohibition policy has its own cost Keeping all these points

in mind, we create a specific predicate to represent the violation cost of a prohibition

policy and couple it with the addressee individual in the problem file. If a prohibition

policy does not apply to an individual, its violation cost could be considered and

represented as 0.

Whenever the effects of an action take place, the action cost and any cost function

associated with it are added to the total cost. To encode the sound prohibition

(sleeping-baby) a new cost function (sleeping-baby ?device) is added into the

effects of notify-with-sound action. A complete example is provided in the next

section in Figure 14.

By adding that violation cost to the total cost, we add a penalty, if a prohibited

action/device pair is used in the plan. Furthermore, this formulation allows us to map

each different policy to each different device and action they apply to. If we had more

active prohibition policies, we could create more cost predicates like p2Cost, p3Cost,

.... Encoding prohibition policies as cost functions in PDDL is more intuitive than

using preferences. Furthermore, the planner utilizing this method can detect implicit

conflicts, which occur when an obligation policy’s target action is a composition of

actions that includes a prohibited action. The planner can detect such conflicts as it

54



computes the costs of each individual action in a plan.

Modeling policies this way, however, only works if each action description contains

its actor as a parameter, since policies are refined to actor-action pairs. Otherwise,

it is not possible to associate a penalty with an action. For example, performing the

notify-with-sound action may be prohibited for electronic devices, but the same

policy may not apply to fire alarms. Thus, the device that performs the action has

to be explicitly defined.

Although using above discussed methods make the formulation of conflict resolution

problem more natural, they do not completely solve it, since policy activation and

expiration conditions are queries. Hence, during planning, we need to query the

current state with the activation and expiration conditions of policies to check if a

new policy is activated or an active policy is expired. Keeping performance issues in

mind this can be addressed by finding a limited number of plans with the assumption

of an immutable normative state. An external program can then simulate the found

plans while updating the normative state and compute the correct plan costs.

4.3 Reformulation of Policy Conflicts to PDDL

A PDDL definition consists of two parts: The domain and the problem definition.

Below we describe how the policy conflicts were automatically translated into these

PDDL definitions while preserving their semantics.

4.3.1 PDDL Domain

A domain definition primarily provides the predicates, functions, and action defini-

tions available to generate a planning problem. The predicates are used as a vocab-

ulary to describe the action definitions and the problem instances. Additionally, any

PDDL features required by the planning problem should be declared in the domain

definition. i.e. ADL for disjunctions, derived-predicates, action-costs etc.

55



The translation process starts with encoding all concepts and object properties

from the ontology as predicates and their inference rules as derived predicates in

the PDDL domain. Concepts are defined as unary predicates (i.e. Flat(?f)), while

object properties are defined as binary predicates (i.e. inF lat(?o, ?f)). Thus, both

the service descriptions of devices and the policy definitions must share the same

vocabulary. For instance, if devices expose their services using a different vocabulary,

then it must be possible to translate it to the ontology used by the policy system.

The next step is to declare all the numerical data properties and active prohibition

policies as functions. e.g.battery-level. Comparing and modifying numeric-valued

fluents require planners to support the fluents feature of PDDL. Unfortunately,

some planners operate with integers, hence encoding floating numbers as integers

might be necessary.

The final step of the translation process is to define actions and associate them

with the active prohibition functions. However, discovering and translating service

descriptions into PDDL is beyond the scope of this thesis. An example domain

definition generated by extending the TBox 3 is shown in Figure 14

4.3.1.1 Action Descriptions

Given the importance of the constituent actions in our domain description, we briefly

describe the genesis of this knowledge. In the context of our application, an action

can be an API offered by a device or a web service. For example, an action could be

moving a robot, downloading information from the internet, or turning a TV on. For

an illustration, see the simplified version of the notify-with-sound action shown in

the previous section.

In order to keep things simple, we assume that service descriptions are available

to us in quasi-PDDL form using our ontology and that we do not need to do com-

plicated conversions from a description language. However, it is possible to expose

56



Figure 14: Smart Home PDDL domain definition.

(define (domain i o t )
( :requirements :adl : d e r i v ed−pr ed i ca t e s : a c t i on− co s t s )
( :predicates

( Person ?p) ( Adult ?p) (Baby ?p)
( SoundAction ?a ) ( SoundNot i f i ca t i on ?a ) ( Visua lAct ion ?a )
( Flat ? f ) ( i nF la t ?o ? f ) ( hasRes ident ? f ? r ) ( inRoom ? r ?o )
( Event ? e ) ( Doorbel lEvent ? e ) ( not i f i edWith ?p ?a )
( producedBy ?e ?d) ( go tNot i f i edFor ?p ? e ) ( canPerform ?d ?a ) )

( :functions ( to ta l−co s t ) ( s leeping−baby ?d ) )

( :action notify−with−sound
:parameters (? dev i c e ? ac t i on ? person ? f l a t ? event )
:precondition (and ( canPerform ? dev i ce ? ac t i on )

( SoundAction ? ac t i on ) ( Event ? event )
( Flat ? f l a t ) ( Person ? person )
( inF la t ? person ? f l a t ) ( i nF la t ? dev i c e ? f l a t ) )

: e f f e c t (and ( go tNot i f i edFor ? person ? event ) ( not i f i edWith ? person ? ac t i on )
( increase ( to ta l−co s t ) ( s leeping−baby ? dev i ce ) ) ) )

( :action not i fy−with−visua l
:parameters (? dev i c e ? ac t i on ? person ?room ? event )
:precondition (and ( canPerform ? dev i ce ? ac t i on ) ( Visua lAct ion ? ac t i on )

( Event ? event ) ( Person ? person )
( inRoom ? person ?room) ( inRoom ? dev i ce ?room ) )

: e f f e c t (and ( go tNot i f i edFor ? person ? event ) ( not i f i edWith ? person ? ac t i on ) ) )

( :derived
( Event ? e )
( Doorbel lEvent ? e ) )

( :derived
( SoundAction ? e )
( SoundNot i f i ca t i on ? e ) )

( :derived
( Person ?p)
(or ( Adult ?p) (Baby ?p ) ) ) )

(define
(problem i o t )
( :domain i o t )
( :objects dbe l l f l t room speaker t e l e v i s i o n

Bob Jane John e1 playAudio disp layMessage )
( : i n i t

(Baby Jane ) (Baby John ) ( Asleep John ) (Awake Jane )
( Doorbe l l db e l l ) ( Doorbel lEvent e1 ) ( producedBy e1 dbe l l )
( Flat f l t ) ( i nF la t John f l t ) ( i nF la t Jane f l t )
( Adult Bob) ( hasRes ident f l t Bob) ( inF la t Bob f l t )
( SoundNot i f i ca t i on playAudio ) ( Visua lAct ion disp layMessage )
( canPerform speaker playAudio ) ( canPerform t e l e v i s i o n playAudio )
( canPerform t e l e v i s i o n disp layMessage ) ( inRoom Bob room)
( inF la t speaker f l t ) ( i nF la t t e l e v i s i o n f l t ) ( inRoom t e l e v i s i o n room)
(= ( sleeping−baby speaker ) 10) (= ( sleeping−baby t e l e v i s i o n ) 10)
(= ( sleeping−baby dbe l l ) 10)
(= ( to ta l−co s t ) 0 ) )

( :goal ( go tNot i f i edFor Bob e1 ) )
( :metric minimize ( to ta l−co s t ) ) )

57



device capabilities as services with the appropriate infrastructure. A numeric value

is associated with each action to represent how much they are preferred by the user

or how much resource their execution requires in terms of computation power or

other resources. These numerical values could be difficult to come up with for policy

authors, yet various methods could be used to compute them.

We tackled the service definition issue in our implementation by using concepts

and properties from the policy ontology. For example, a sound action could be de-

fined using SoundAction class and actor and hasParameter and hasEffect properties.

Devices expose their capabilities through the HyperCat [82] server. This is a trivial

solution and is probably not sufficient for sophisticated real applications.

4.3.2 PDDL Problem

The instances in ABox, which contains knowledge about individual objects, are

mapped to the initial state and the goal of the planning instance. For example,

the atom (canPerform speaker playAudio) indicates that the doorbell can produce

a sound to notify when it has been pressed. In addition, cost functions are also ini-

tialized for each capable device in the initial state. Whenever there is a change in

the external world, we assume that this is reflected in the initial state. For example,

when the baby wakes up, the value of function (= (sleeping-baby speaker) 10)

is updated to 0 in the initial state.

The goal of the planning problem is to fulfill the obligation policy, while minimizing

the total cost. However, the final plan cost should not exceed the violation cost of the

obligation. In that case, the framework would choose to violate the obligation policy

instead of executing the found plan. The plan metric requires the minimization of the

total cost: (:metric minimize (cost)). The PDDL problem definition of our running

example is illustrated in Figure 14. We generated the initial state by extending the

ABox in Table 4.

58



All individuals in the KB are defined as objects in the PDDL problem. Similarly,

class and property axioms of these individuals are selected from the KB and written

into the initial state using PDDL predicates. We note that each entry in the KB is

either a concept or a property assertion. This approach is trivial to implement and

probably would work for a smart home example, however it could prove to be an

exhaustive task for large KBs. Then, methods can be developed to use only a part of

the KB for planning.

The total cost is initially set to zero and prohibition cost functions for each policy-

addressee pair are set to the corresponding violation costs. Cost functions for unaf-

fected objects are initialized to zero. Finally, the goal state is produced by using

the expiration conditions of the active obligation’s instances with disjunctions. Let’s

assume there is another resident, Alice, at home. Now, it could be sufficient to notify

either Bob or Alice. The goal state is defined as (:goal (or (gotNotifiedFor bob

someoneAtFrontDoor) (gotNotifiedFor alice someoneAtFrontDoor)))

All active prohibition policies along with their bindings are encoded in the plan-

ning problem to prevent unintentional violation of other active policies while avoiding

the actual conflict. In our implementation, we used a central server to processes the

policies of all the connected devices for convenience. We note that for each prohibi-

tion instance, a cost function predicate is created using its name, and added to the

effects of actions that the policy prohibits. For example, if sleeping-baby is the

name of the policy, then (increase (total-cost) (sleeping-baby ?x)) statement is added

into the effects of notify-with-sound action. Finally, each function is initialized in

the problem definition.

Encoding an obligation policy becomes relatively simple when the desired goal

state is already defined in the expiry conditions—i.e., the variables in the condition

get bounded when the activation query is executed over the knowledge base. For

example, in the case of Bob and Alice, activation condition would return two rows with

59



different bindings; {?d = dbell, ?p = Bob, ?f = flt, ?e = e1} and {?d = dbell, ?p =

Alice, ?f = flt, ?e = e1}.

4.4 Evaluation

At the outset, we clarify that the current evaluation is presented in the spirit of a

proof-of-concept rather than as a full-scale evaluation of our design choice to imple-

ment policy conflict resolution as a preference-based planning problem. The approach

explained in the previous section requires a PDDL planner that supports action costs,

derived predicates, and preferences at the same time. Other PDDL features can easily

be added to the list to make the planning domain more realistic. Unfortunately, we

could not obtain a planner that implements all of those requirements, and were thus

unable to evaluate our approach using a single planner.

4.4.1 Implementation

In order to complete the implementation of our system introduced in Chapter 3,

we implemented the following: a cost-based planning strategy based on LAMA [97],

which is a planner that builds on Fast Downward [98], supports ADL descriptions, ac-

tions costs, and derived predicates. We thus used it to check if we could accommodate

OWL-QL reasoning into PDDL. However, Lama does not support numeric-valued flu-

ents, which are required to deal with data properties.

We then tested our planner implementation against our running scenario of smart

doorbell and home automation by simulating sensors with Java and Android applica-

tions. The policy system introduced uses the planner to find all solutions, and then

analyzes the found plans with external scripts to update the plan costs. The plan,

as expected, which displays a message is selected as the final choice due to its lower

cost.

60



4.4.2 Experimental Setup

We compared our approach with the most generalized conflict resolution strategies:

always prohibition, always obligation, and higher violation cost. There are other

conflict resolution strategies that use meta-policies, class hierarchies etc., however

these approaches are highly customizable and their success depends on the application

context (i.e. how domain ontology is created). Thus, we do not consider those

approaches in this experiment.

In order to make a comparison, using the ontology developed for our smart home

scenario we generated random problem files (settings) that have at least one policy

conflict. Then, we tried solving each of these conflicts with our planner and com-

pared the results of the plans with the rewards obtained by the other methods. This

experiment also allows us to show that planning is not only used to do a composition

of actions, but also used to select the right parameters for a single action.

We generated 75 problem files in total; 15 problem files for 5 different number

of devices (2, 3, 5, 10, 20). Our intuition here was that each newly added device

favors the planning method even if they did not add a new capability. We randomly

generated problems as follows:

• Each problem has only 1 goal: Bob has to be notified.

• Add X number of devices to each problem instance.

• Add capabilities (sound, visual, sms) with probability 1/3 to a newly created

device. e.g. a device has all three capabilities with a probability of 1/9.

• For each device and for each capability of that device, add a prohibition with

the probability 1/5 along a random violation cost from 1 to 10.

• Max violation cost is set to 10.

61



Table 7: Obtained results for problems with 2, 3, 5, 10, 20 devices.

Number of Devices: 2
Method Total SCnt FCnt SAvg SMax SMin FAvg FMax FMin

Always Prohi. 15 0 15 0 0 0 4 8 1
Higher Cost 15 4 11 3 6 1 4 8 1
Planner 15 15 0 0 3 0 0 0 0
Always Obli. 15 15 0 6 10 1 0 0 0

Number of Devices: 3
Always Prohi. 15 0 15 0 0 0 6 10 1
Higher Cost 15 7 8 4 8 3 4 7 1
Planner 15 15 0 0 3 0 0 0 0
Always Obli. 15 15 0 5 8 2 0 0 0

Number of Devices: 5
Always Prohi. 15 0 15 0 0 0 4 10 1
Higher Cost 15 4 11 4 7 1 3 7 1
Planner 15 15 0 0 0 0 0 0 0
Always Obli. 15 15 0 5 10 1 0 0 0

Number of Devices: 10
Always Prohi. 15 0 15 0 0 0 6 10 2
Higher Cost 15 6 9 4 7 1 4 8 2
Planner 15 15 0 0 0 0 0 0 0
Always Obli. 15 15 0 5 10 1 0 0 0

Number of Devices: 20
Always Prohi. 15 0 15 0 0 0 7 10 3
Higher Cost 15 9 6 4 8 2 6 10 3
Planner 15 15 0 0 0 0 0 0 0
Always Obli. 15 15 0 6 10 2 0 0 0

• Randomly choose the device, which is obliged to notify the person, until a

conflict happens.

• Randomly choose the violation cost of the obligation.

The result is X number of devices with random capabilities and random prohibi-

tions. Through the first part of the evaluation, one problem file corresponds to one

specific conflict of a device, since devices cannot collaborate using other strategies.

e.g. our running example becomes a question of should doorbell make sound or not.

If prohibitions always method is applied, it should not make sound. If obligation

always method is used, it should make sound.

4.4.3 Results

Now, we show and discuss the outcomes of our experiments. The abbreviations in

the result tables are as follows: Total = total number of problems, SCNT = number of

62



Table 8: Total number of conflicts in the settings.

Device No Problem Size Total Prohibitions Max # Prohibitions Min # Prohibitions Avg
2 15 22 3 1 1
3 15 19 3 1 1
5 15 26 4 1 1
10 15 45 6 1 3
20 15 93 10 2 6

times the obligation is fulfilled, SAVG = average violation cost to fulfill the obligation,

SMAX = max violation cost, and F stands for Failed.

Although in most cases planning seems like it never violates a policy, this is not

what we claim and these results are obtained due to the simplicity of our domain.

However, results in Table 7 with 2 devices show that planning approach choose to

violate a policy to fulfill the obligations at least once. So, as we add more capabilities

to devices or more devices with different capabilities into the system, we add more

solutions to our planning problem. The IoT system gets more powerful by allowing

devices to collaborate. However, adding more devices does not affect the results of

other strategies, as they are resolving conflicts from a single device’s perspective.

Since planning approach resolves conflicts at a global scale, we also computed the

number of potential conflicts (prohibition policies) that exist in the system to show

how much of these could be avoided by the planner. Table 8 illustrates how many

prohibitions existed in the generated problem files. The fields ”Max Prohibition” and

”Min Prohibitions” show the maximum and the minimum number of prohibitions that

a setting contains. For example, average violation cost for the planning approach for

planning problems with sizes of 3,5, 10, and 20 is 0. This means that none of the

policies are violated and could be interpreted as planning avoided all possible conflicts

(19, 26, 45, 93). However, the planner still had to violate a policy in some of the

problem files, which consist of only 2 devices.

63



4.5 Discussion

As part of our IoT policy framework, the biggest advantage of planning compared to

other systems (i.e. Smart Environments Configurator [99]) is that planning can avoid

policy violations in scenarios where there exists a path to do so. The use of planning

allows conflicts to be resolved at a global scale by enabling all available and connected

devices to collaborate and avoid violations. Additionally, it also confers a scalability

advantage—as problem instances get larger, one of the following three situations arise,

once again highlighting the advantages of a planning-based approach: (a) handcrafted

policies can be customized to specific problem devices, capabilities, and problem

instances in order to minimize violations, but such policies cannot scale as the instance

size increases; and (b) planning approaches—which can be general enough to apply to

diverse problem instances and efficient enough to scale to increasing instance size—

always look to optimize the metric. (c) larger problem instances may actually work

in favor of planning approaches, since larger instances may contain more devices and

resources, which allow for more solution paths through the problem space.

There is still room for improvement in our implementation. As the number of

objects in IoT applications can get very high, similar policy conflicts will be raised.

Our current implementation treats each conflict (even if it is encountered before) as

a new planning problem. We can improve the implementation by developing a re-use

mechanism such as creating and storing plan templates or caching previous plans in

a database. Furthermore, the framework can preprocess a conflict to only use a part

of the ABox to improve the planning performance by decreasing the problem size.

The main idea behind adopting PDDL in our work is to utilize off-the-shelf plan-

ners. However, we were not able to find a single planner that can handle all the

features we required. Unfortunately, to create a more realistic planning domain we

can complicate the planning problem even more by introducing concepts such as inter-

leaved planning that requires the execution of non-deterministic actions such as locate

64



and search actions, probabilistic planning, and temporal planning [100] to handle du-

rative actions like ventilating. As with many other real-world applications which do

service compositions, these concepts are essential for the IoT Domain.

Violation costs of policies and action costs play a significant role in resolving

conflicts. These numeric values are difficult to come up with and highly depend on

the context. i.e. if an IoT application is trying to minimize the energy consumption,

then the violation and action costs could represent the consumed power. However,

in most cases setting the violation costs is not so trivial. For instance, policy costs

in the context of health and safety applications are not only more sensitive, but also

they do not represent tangible resources.

65



CHAPTER V

REAL LIFE APPLICATION

In this chapter, we describe how to combine ontology-based policy reasoning mech-

anisms with in-use IoT applications to customize and automate device behaviors.

First, we present our case study. We then discuss how the policy framework can be

extended with data federation to handle diverse and distributed data sources. We

demonstrate that smart devices and sensors can be orchestrated through policies in

hazardous workplaces, such as coal mines. Lastly, we evaluate our approach using

real applications with real data and demonstrate that our approach is scalable under

high load of data and devices.

5.1 Case Study: Health and Safety in Mines

Monitoring and following regulations are especially important in health and safety

applications in hazardous working environments. The great majority of occupational

accidents are preventable through adherence with existing International Occupational

Health and Safety standards1, which are not always implemented by workplaces.

Incorporating these regulations in IoT solutions can be an effective way to improve

worker’s health and safety in dangerous environments, as mental and physical fatigue

under tough working conditions may harm workers’ decision making process. In this

section, we show how our policy framework can be used to enhance health and safety

of mine workers.

We particularly focus on mines due to their complexity. IoT solutions are already

adopted within this domain to monitor the environment and to take safety measures.

1https://www.iso.org/iso-45001-occupational-health-and-safety.html

66



However, the code of these applications has to be changed to modify or customize

policies, since they are hard-coded and generic. Furthermore, detecting conflicts

within this domain is particularly important, as undetected conflicts between policies

in these applications can cost people’s lives. Deployed sensors and readers enable

these solutions to maintain a near-to complete view of the environment that makes

the planning approach more suitable for resolving conflicts, while responding to events

in real time becomes even more challenging.

We believe that the safety of the workers in an underground mine can be greatly

enhanced by assessing their health status, measuring gas levels in the mine, tracking

assets and preventing vehicle collisions. In this section, we present our use case

domain, discuss the significance of regulations, and explain how our framework could

be applied to in-use solution.

5.1.1 Smart Mine Solutions

IoT solutions2,3 for underground mines, in general, have two main components; one

for tracking RFID tags (assets, vehicles, personnel), and another one for measuring

gas levels. In addition to tags and gas sensors, there are other sensors like panic

buttons, vibration sensors, and motion sensors to detect fall accidents. In this work,

we only focus on the location sensors, panic button, and gas sensors for the sake of

simplicity.

The gas levels are measured approximately every 5 seconds and tags are sensed

arbitrarily as assets or personnel come close to indoor readers. These systems are

able to perform geofencing, locate assets in the dark, detect dangerous gas levels and

so forth. However, they do not offer adaptive solutions, and they are not capable of

making intelligent decisions in case of multiple conflicts. Although IoT devices carry

a huge potential for improving mining operations, existing smart mine solutions are

2http://litumiot.com/mine-rtls-worker-tracking/
3www.cat.com/en_US/by-industry/mining/underground-mining

67



Table 9: Examples from mine regulations of Turkey.
1 Employees are not allowed to use tools without the proper license.
2 Assets should not function outside their assigned regions.
3 Empoyees should not enter unauthorized regions.
4 All personnel must go to a safe zone before blasting.
5 Personnel are obliged to help, if a person is in need.
6 Personnel must exit a zone if oxygen level is ≤ 19.0%
7 Firemen are obliged to respond to fire dangers in the mine.
8 Employer must take her personnel to safety.

limited since they mostly operate on raw data with dangerous events and outcomes

being hard-coded along with predefined one-size fits all remediations and the collected

data is monitored by human in control rooms without any intelligent assistance.

5.1.2 Domain Policies

Coal mines host various dangers and people die or suffer for various different reasons

such as operating a vehicle for which they are not licensed, unnoticed fires in coals,

staying in an explosion area, inhaling toxic gas etc. Since underground mines are

extremely dangerous environments, worker safety is highly regulated. We use policies

taken from the health and safety regulations of underground mines in Turkey as our

motivating examples. These policies are depicted in Table 9.

The language used in these regulations is too vague for people without expert

knowledge to understand. In addition, multiple policies might be necessary to capture

a rule’s true meaning. For example, the 4th policy obliges each personnel to leave

a blasting zone. This statement can be represented with a single obligation policy.

However, the obligation alone is not sufficient to fulfill the rule’s safety goal, unless it

is accompanied by a prohibition policy that prohibiting all personnel from entering

into the blasting zone. Furthermore, if critical circumstances arise that makes it

impossible to satisfy all the constraints and it might become necessary to violate

some regulations; for instance, a personnel can take initiative and cut the electricity

in a dangerous location, if there is not enough time for an engineer to arrive.

68



5.2 Policy Reasoning Over Distributed Data

Typical in-use IoT solutions come with multiple heterogeneous databases (and/or

software components) that rely on varying schemata, and they implement their own

communication protocols. Thus, augmenting such systems with semantics require

re-designing of databases to conform certain rules, which would not be feasible for

many applications.

We propose using a data federation solution to provide a unified access for target

application’s data sources. Then, our policy system can be integrated into the appli-

cation by adopting ontology-based data access (OBDA). OBDA allows to define an

ontology over a database (i.e. virtual database), thus it eliminates the QL knowledge

base restrictions for implementing the policy system. Let us note that data federation

is not necessary to adopt OBDA if the target application has a single data source and

OBDA is not necessary for tasks that do not depend on the ABox. i.e. TBox is

sufficient to create a sandbox for detecting policy conflicts.

5.2.1 Data Federation

It is a common practice among IoT applications to store sensor readings in non-

relational databases or process them as streams, while storing less volatile data in

relational databases. Data federation (also known as data virtualization) is a method

to query data that resides on disparate data sources through one virtual (federated)

database [101, 102]. The virtual database does not maintain copies of data, however

it provides a way of querying separate data sources, as if there is one single database

system. The physical data sources can be relational or non-relational databases,

streams, or even documents. These data sources can be geographically decentralized

and operate autonomously and independently of each other. Thus, federation does

not only provide a unified interface, but it also makes it possible to scale data sources

individually.

69



Figure 15: Data federation example

For example, let us assume a mining company stores employee and less volatile

sensor information (i.e. placed locations, types etc.) in a relational database (i.e.

PostgreSQL4) and writes frequently updated data such as locations of vehicles and

gas readings into a document (non-relational) database (i.e. MongoDB 5). Then, a

state-of-the-art federation tool like JBoss Data Virtualization 6 can be used to unify

these two data sources as illustrated in Figure 15.

The created virtual database does not have to represent the whole data in these

data sources. Sensitive data (i.e. personal information of employees) and data that

is not required by the policy ontology can be left out during the mapping process.

Representing only the relevant data creates a less complex database view and it could

also eliminate some privacy concerns. The schema of the virtual database might

have certain limitations depending on the adopted federation solution, as the data

4https://www.postgresql.org
5https://www.postgresql.org
6https://www.redhat.com/en/technologies/jboss-middleware/data-virtualization

70



Table 10: OBDA mapping of the Blaster class
mappingId Blasters

target :employee{employee id} a :Blaster ;
:authorizationLevel {auth level} ; :hasTag :tag{tag id} .

source SELECT ”employee id”, ”tag id”, ”auth level”
FROM tbl employees WHERE role = 5

is physically scattered across heterogeneous data sources. Accessing data requires

the translation of user requests into database queries and the accumulation of their

results.

The virtualization layer provides a unified layout to access data through virtual

tables. Then, we can create mappings between the ontology and these virtual tables

to turn the virtual database into an OWL-QL knowledge base. Consequently, this

approach enables policy framework to do semantic reasoning over the data that is

split across different data sources.

5.2.2 Ontology Based Data Access

Ontology-based data access (OBDA) is a paradigm that allows users to query existing

data sources by using concepts and properties from an ontology. It makes it possible

to define an ontology over a relational database by mapping [103] the concepts and

properties of an ontology to the columns of tables in the target database using SQL

queries. Table 10 illustrates the mapping of the Blaster class and some associated

properties in a mine ontology, which we developed for our use case, over an intelligent

mine solution’s database. The mapping defines what a Blaster individual corresponds

to in the target database, and how her/his tag and authorization level can be found.

Using axioms in the ontology and the mapping definitions, the OBDA system

rewrites queries (e.g. activation conditions of policies) into the vocabulary of the data

sources and then delegates the actual query evaluation to a suitable query answering

71



Table 11: OBDA mapping of the Low Oxygen Danger class
mappingId Low Oxygen Danger

target :danger{region id} a :LowOxygen .
:region{region id} :hasDanger :danger{region id} .

source SELECT ”region id” FROM tbl gas readings
WHERE oxygen ¡= 19

system such as a relational database [104]. On the negative side, this evaluation

adds an overhead to QL query answering process [105]. The re-written query is a

SQL query with the UNION operator that includes inference rules and it is typically

optimized for execution. For instance, Blaster is a sub-class of Employee, thus its

individuals constitute a subset of all employees. However, including Blaster mapping

in a query that retrieves all employees would be redundant, since all employees are

already stored in the same table.

Unfortunately, OWL-QL lacks expressivity to represent the most of the real life

scenarios. For example, it is not possible to represent a statement like ”oxygen ≤

19%” that is necessary to describe the 6th policy in Table 9. However, if we make

the same assumption that we make in Chapter 4 and assume that UNA is respected

in the underlying QL ontology, unqualified number restrictions become harmless to

the reasoning process [104]. Placing this constraint on the ontology makes even more

sense in the context of OBDA as all databases and PDDL work with the UNA. Then,

native operators in SQL can be utilized to reason over the numerical constraints found

in QL knowledge bases, which is not possible w.r.t. the QL language. Utilizing OBDA

we can create a LowOxygen concept that can be used to describe the low oxygen

policy. The mapping of the concept and the policy description are shown in Table 11

and Table 12, respectively.

The adopted OBDA framework’s reformulation algorithm and query execution

performance directly affects how fast the policy system can reason about policies.

72



Table 12: Prohibition policy example: Low Oxygen Danger.

χ : ρ ?e : Employee(?e)
N O
α inRegion(?e, ?region) ∧ hasDanger(?region, ?danger) ∧ LowOxygen(?danger)

a : ϕ ?a : EvacuateRegion(?a) ∧ actor(?a, ?e) ∧ target(?a, ?region)
e inRegion(?e, ?safe) ∧ SafeZone(?safe)
d 10:Minutes

c 20.0

Moreover, the complexity of the mapped ontology is critical for achieving good per-

formance with the OBDA system and re-written queries. The common practices

include avoiding imports and deep hierarchies in the ontology [106]. Furthermore,

queries used in the mappings can significantly degrade the performance if they in-

clude unnecessary joins or unions.

5.2.3 Revised Policy Framework

We recognize the costs and difficulties in modifying existing systems, thus, any seman-

tic solution to the problem should have the least overhead to encourage the adoption.

To overcome the shortcoming of the proposed framework, we reconsider its archi-

tecture without affecting existing functionality, components—and their interactions.

Figure 16 depicts an overview of the framework.

The solution not only minimizes (or avoids) changes in target data sources, but

also enables applications to scale each data source independently. Moreover, we pro-

pose exposing only the necessary information to the policy framework to increase the

performance and to prevent privacy related issues. For instance, the policy frame-

work does not need to know about the model of a drill machine to decide whether

the quality of air requirement is met for the people working in the mine. The policy

system in this new architecture can be considered as an external component or a

software library that provides policy reasoning and conflict resolution mechanisms to

in-use IoT applications.

73



Figure 16: The policy framework utilizing OBDA

5.3 Adding Temporal Constraints on Policies

It is easier to make compromises from the expressivity of a policy language to increase

the efficiency of the reasoning process, when working with more tolerant domains such

as managing smart home devices. However, certain factors like timeliness of actions

become vital when reasoning with health and safety policies. For example, if the

residents cannot be notified of a doorbell event, in the worst case scenario the guest

will leave. On the other hand, if a worker does not evacuate a dangerous zone in a

short amount of time, then his/her life will be at stake. Furthermore, some obligations

might be more urgent than the others. Thus, in order to help IoT applications with

prioritizing their obligations, we extend the policy definition described in Chapter 3

with a deadline field. i.e. Table 12 depicts the description of the 6th policy with an

added time constraint.

When modeling prohibition policies, in our experience, the deadline field does

not seem to be as crucial as it is for prioritizing obligations. It might be necessary

to place time constraints on prohibitions to restrict actions for a certain amount of

74



Figure 17: A sample temporal drive action in PDDL

( :durative−action dr ive
:parameters (? v − v eh i c l e ? l 1 ? l 2 − l o c a t i o n )
:duration (= ? durat ion ( road− length ? l 1 ? l 2 ) )
:condition (and ( at s t a r t ( at ?v ? l 1 ) ) ( at s t a r t ( road ? l 1 ? l 2 ) ) )
: e f f e c t (and ( at s t a r t (not ( at ?v ? l 1 ) ) ) ( at end ( at ?v ? l 2 ) ) ) )

time. However, we were able to avoid this need by utilizing the expiration conditions

of prohibitions. Let us consider the following policy; all machines should stop working

for T minutes, if the carbon monoxide level is above a pre-defined threshold. If we

assume that the IoT solution will ventilate the region in T minutes, then we can

represent the same policy as all machines should stop working, unless the carbon

monoxide level is below a pre-defined threshold.

Introducing deadlines in the policy descriptions do not affect how we detect con-

flicts. We still consider two policies to be in conflict, even if the prohibition policy

has a shorter deadline than the obligation. The conflict detection algorithm can be

extended to handle this situation. However, the deadline field, enforces the conflict

resolution strategy to adopt temporal planning methods, as now goals have to be

achieved in an absolute deadline. Subsequently, action definitions in the planning

domain has to provide at least an estimation of the execution of time with respect to

its parameters. An example definition of a drive action is presented in Figure 17.

We can model safety regulations as a temporal planning problem instead of hard-

coded rules and, by exploiting the technology, offer adaptive solutions. For instance,

having access to real-time location and sensor information it is possible to create a

comprehensive model of a mine. Planning can then be used in two different ways:

(1) in under normal conditions, to organize the activities of the workers in the mine

with the goal of maximizing worker safety; and (2) in abnormal conditions, to deal

with emergencies or anomalies. However, in both cases, the main goal of planner is

to minimize the violation cost of policies. In some cases, a planner might decide not

to fulfill an obligation if it violates too many prohibitions.

75



5.4 Evaluation

In Section 5.2, we described how our framework can be extended to perform policy

reasoning over federated data sources. However, the performance of the policy rea-

soning over federated data sources depends on many additional factors, such as, the

structure of the target data, the number of different data sources and their geograph-

ical locations, the OBDA software, and the data federation solution.

That is why, it is not possible to evaluate the performance of our framework with a

federated database in isolation from all these factors. Nevertheless, we employed the

state-of-the-art solutions for data federation and OBDA to avoid any bottlenecks as

much as possible. For instance, we used Ontop [106] and JBoss Data Virtualization

software, which are among the most efficient implementations available and are being

actively developed. Their benchmarks7 8 can provide some insight into how efficient

policy queries can be executed over federated data sources.

In this section, we describe how we evaluated the performance of our policy frame-

work by integrating it with a real mine solution’s database. Let us note that we do

not use a data federation software in this evaluation due to aforementioned issues.

5.4.1 Experimental Setup

We ran our experiments on a server with 32 GB RAM and two 8-core Intel Xeon

CPU (E5-2650 0 - 2.00GHz). However, we obtained similar results using a Late 2011

MacBook Pro with 8GB RAM and one 4-core Intel i7 (2.4GHz), since we did not

parallelize any of the computations. We mainly conducted our experiments on the

server due to its larger main memory capacity.

7https://www.redhat.com/en/resources/jboss-data-virtualization-query-

performance-benchmark-study
8https://github.com/ontop/ontop/wiki/ObdalibQuestBenchmarks

76



5.4.1.1 Ontology

We developed an underground mine ontology with the help of the faculty members

of Istanbul Technical University’s (ITU) mining engineering department and OHS

professionals from Turkish Ministry of Labor. The ontology in total has 45 classes,

7 object properties, and 20 data properties. The ontology can be considered as

small, however it can easily capture the concepts and relationships in the target

database. It is also important to keep the ontology as simple as possible to obtain

better performance with OBDA methods.

5.4.1.2 Policies

We derived 8 policies from the official health and safety regulations of mines in Turkey9

to evaluate the framework. We selected those policies among many others, as they are

easy to understand even without domain knowledge. The number of active instances

typically grow, as the data in the database increases. Thus, the number of active

instances can be in thousands even with eight policies. The regulation document

only contains high level descriptions of policies. Thus, the complexity of the policy

conditions depends on how policies are formalized and how concepts and properties

used in this formalization are mapped over the target database. The implemented

policies are depicted in Table 9.

5.4.1.3 Data

We were told that there are 1600 personnel ( 200 in a given shift), 185 gas sensors, and

approximately more than 10 vehicles working (at the same time) at one of the largest

coal mine facilities of Turkey. This specific company does not track its assets, however

we assume that they are being tracked and there are 6400 assets (4 per personnel)

in the underground facility to make the problem more challenging. Measurements of

9http://www.lawsturkey.com/law/occupational-health-and-safety-law

77



sensors are made every 5 seconds and tag readings are done arbitrarily. Based on

this information, we filled in the database with randomly generated data. The above

numbers belong to a fairly large mining facility.

The initial experimental setting represents smaller mines, which composed of 200

personnel, 30 gas sensors, 30 vehicles and 800 assets. Then, at each iteration of the

experiment, we increased the size of the data by 100 personnel, 15 gas sensors, and

400 assets. Hence, we started with 1060 rows in total and increased it up to 83460

rows (160 iterations). We used the values in IJCRS 15 Data Challenge: Mining Data

from Coal Mines [107] to generate values for gas levels realistically. However, this

dataset does not contain any events risking OHS. Hence, we modified some sensor

readings to generate unusual events (e.g., dangers or hazardous situations) to increase

the number of active policies during experiments.

5.4.1.4 Implementation

We implemented the policy system using an OBDA framework Ontop [106] to map

the mine ontology over the target application. We were provided with the empty

schema of a smart mining solution and sample values for the columns in tables. The

target application can track employees, assets, vehicles, and gas levels and all the

data is stored in a single relational database. The schema did not allow efficient

mappings for reasoning, since the database was normalized. Moreover, the dynamic

and large part of the database mostly consists of location and gas readings, however

we need only the most recent readings, and they can easily be fit into an in-memory

database (i.e. H210) along with the rest of the necessary data. For this reason, we

developed a basic data federation solution (a software agent) that pulls the relevant

information and the most recent readings from the target database into an OBDA

friendly in-memory database.

10http://www.h2database.com/html/main.html

78



Figure 18: Overview of the experimental setup

Finally, we developed a software agent in Java, which uses Ontop API and connects

to the database of the company to update our in-memory database. We do not try to

evaluate the performance of Ontop, however we show that an OBDI approach could

be used to implement a policy framework that can meet the performance demands of

a large scale existing IoT system without performing any modifications to the target

databases. It is important to note that only frequently changing data is the locations

of personnel and assets, and sensor readings. Small changes in sensor readings might

be useful for predicting the future value of gas levels or locations, however we do not

need to update the sensor data so often to check policy activations. For efficiency

reasons and to put less workload on the tables in the disk, we created two materialized

views that capture the last locations and sensor readings. The agent simply queries

these tables, when it needs to refresh the data in the memory. Figure 18 depicts an

overview of our implementation for the experiments.

5.4.2 Experiments

The main goals of our experiments are as follows: 1. to see how fast we can run

activation/expiration queries and how many policy instances we can create before a

new update in the database; and 2. how these numbers change with respect to the

79



increase in the number of working personnel, assets, and sensors.

Ontop translates the activation conditions of policies (SPARQL queries) into re-

written SQL queries and executes them over the H2 in-memory database. We mea-

sured two different times: the query execution time and the policy instance creation

time. The latter measures how fast we can create Java objects which represent ac-

tive instances (with bindings) of a policy. In other words, we execute an activation

condition and create an active instance for each tuple in the result. It would not be

useful just to show the query performance of Ontop as we still need to refine these

activated policies to their addressees.

We evaluated the performance of our framework with the 8 policies presented in

Table 9; each of the policies are given 3 warm-up runs and then 10 consecutive runs

for evaluation. We discard the slowest run and take the average of the remaining 9

runs. For each policy, we timed how fast we created policy instances and computed

the average. We repeated this experiment 10 times and calculated their mean and

standard deviation.

5.4.2.1 Policy Activation Performance

Figure 19 illustrates the execution times of the activation conditions of our 8 different

policies. The slowest run is about 1.3 milliseconds and the time does not increase

as the data increases; hence the returned number of rows increases. Aside from the

fact that Ontop being a very efficient framework, the main reason behind this is the

fact that even the largest data set is manageable. The data stored on the memory

is greatly reduced compared to the data stored on target system’s disk, however the

in-memory database still contains more information than the real system, since we

increased the number of entities to test the system. The history of readings could

be useful for doing prediction or anomaly detection, yet we only require the most

recent readings and only a part of the database to see which policies are activated or

80



Figure 19: Query execution times of policies w.r.t. increasing dataset

expired. Isolating the arbitrary information from the policy system reduces the size

of the data, hence improves the query times.

5.4.2.2 Policy Instance Creation Performance

The policy instance creation times for each policy are shown in Figure 20. It can

be seen that deviation is higher and instance creation time varies for each policy.

The deviations are caused by garbage collection and system related factors, however

instance creation time mainly depends on the expiration conditions of policies and

how fast we can bind them. The amount of time spent executing the expiration

query and the number of tuples returned by it (the more tuples it returns the longer

it takes) directly affects the object creation time. These run times could be improved

by doing lazy binding. The slowest creation time for an active instance belongs to

the first policy and the required time is ∼3 milliseconds. The fastest time is less than

a millisecond, since that policy does not have an expiration condition—i.e., always

active.

81



Figure 20: Active instance creation times w.r.t. increasing dataset

5.4.3 Planning Performance

It is crucial to model this high-risk domain in PDDL by making as few assumptions

as possible and evaluate the performance of planners on real-world problem instances.

This would allow us to test if planners can meet the performance demand posed by

mining problems.

We modeled a simple domain and a problem in which a person is in panic at a

fire zone as depicted by Figure 21. The initial state consists of firemen, transporter

vehicles, drivers, gas levels, the map of the mine, and so on. We also put explosion

risks to some regions to create policy conflicts such as some people are obliged to help

the person in panic, but they are also prohibited to enter the regions with explosion

risk. We used temporal Fast Downward planner [108] and OPTIC [100] to perform

temporal planning. Although both planners were able to provide a solution for this

scenario, they fail to solve slightly more complex problems.

We provide a sample initial state and the plan generated by OPTIC in Table 13.

In this scenario, we assume that it is an early stage of a fire and it is possible for a

82



Figure 21: Initial state of the PDDL problem

Step Action
1) move-asset truck1 driver1 fireman r1 r2
2) go-to-region truck2 driver2 r6 r5
3) move-asset truck driver1 fireman r2 r3
4) go-to-region truck2 driver2 r5 r4
5) move-asset truck2 driver2 john r4 r3
6) go-to-region truck1 driver1 r3 r2
7) move-asset truck1 driver1 fireExt r2 r3
8) move-asset truck2 driver2 john r3 r2
9) extinguish-fire fireman fireExt r3 r4 fire
10) move-asset truck2 driver2 john r2 r1

Table 13: Rescue plan.

driver to pick up the person in panic without the help of firemen. However, without

much effort we could also model the scenario, in which fire has to be extinguished

before saving the person in panic.

The planner is intelligent enough to perform a division of tasks between two

available drivers. The planner assigns driver1 to locate fireman along with the fire

extinguisher, and take them both close to the fire. Meanwhile, driver2 ’s task is to

bring john to safety, while the ambulance, which is closer to john delegates its task

to avoid the explosion zone.

83



One issue we highlighted is that rarely a single planner can handle all the expres-

sivity requirements of complex real-world domains such as mining. OPTIC seems

to be the most promising available planner as it implements features like ADL,

durative-actions, numeric-fluents, andpreferences to represent this real-world appli-

cation. However, we could not test it extensively as the planner started to fail due to

a bug in its software.

5.4.4 Results

In order to increase the efficiencies, we can separate the querying and object creation

processes; with two different threads running simultaneously, the system could execute

activation and expiration queries while the activation that returns rows could create

a new thread to create policy instances. We note that it takes between 0.2ms to

0.3ms to refresh the information in memory when there are more than 470k entries in

sensor tables, so the process is efficient and applicable in highly dynamic situations.

Since the mining company generates approximately 200k entries in a day from 185

gas sensors, this is applicable in real-time for the mining problem we have highlighted

in this document.

Based on our experimentation, we observed that we can execute ∼770 queries in

a second. Considering the gas levels are measured every 5 seconds and the database

is only updated when their value change, at the worst case, we could run 3850 queries

which may be expiration conditions of active instances or activation conditions of

policies before the next update in the database. Furthermore, we can create ∼300

instances of a policy in a second, which allows us to refine a policy to 1500 assets and

personnel in 5 seconds. This number approximately corresponds to all personnel in

the mining facility. It is also important to note that the most of the policies will only

be refined to a small part of the assets and personnel.

The results demonstrate that our framework can efficiently react to changes in

84



sensor readings in real time and maintain its performance even if the number of

employees and sensors go way above the initial numbers. The data stored in the

memory is greatly reduced compared to the data stored on target system’s disk.

The history of readings could be useful for doing prediction or anomaly detection,

yet we only require the most recent readings and only a part of the database to

see which policies are activated or expired. Further performance evaluations could be

conducted to investigate how efficiently the system can determine the affected actions

and addressees be notified.

5.5 Discussion

In this chapter, we first discussed how ontology based data access (OBDA) and data

federation can be adopted to integrate the policy system into in-use applications.

Data federation methods provide a unified view of separate data sources that can

be used by OBDA methods to map concepts and properties of an ontology. These

methods introduce some overhead, however they make it possible to create a high level

vocabulary to author policies without modifying the target application. Furthermore,

OBDA mappings compensate OWL-QL’s lack of expressivity to represent real life

policies.

Through a case-study and publicly available data, we showed how the policy

framework can be used to enhance health and safety of mine workers. Specifically,

we showed that our system can respond to real-time events in a hasty manner and

handle the increase in the volume of data. However, querying the database every

time it is updated to maintain the normative state (activated/expired policies) is not

a feasible solution for real applications. Thus, a smarter strategy has to be deployed

for managing the normative state and reducing the load on the target database. For

instance, when a tuple is updated, the application should determine and run only the

queries of policies that might potentially get activated or expired. There is no need

85



to execute queries of those unaffected.

Some limitations discussed in Chapter 3 such as finding the right violation costs for

policies and validating policy descriptions still remains. In fact these topics become

more important as the domain gets more complex and mistakes in policy descriptions

may endanger worker’s safety. In addition to the violation costs, we extended the

policy descriptions with deadlines to better represent obligations and help with prior-

itizing the active policies. However, introducing deadlines increases the complexity of

our conflict resolution strategy and requires domain actions to provide a formulation

to estimate their execution times.

86



CHAPTER VI

DISCUSSIONS AND CONCLUSIONS

In this chapter, we highlight our contributions, discuss our framework’s limitations,

and outline possible solutions to those limitations. In Section 6.2 we highlight poten-

tial future research directions for this work, and we conclude the chapter in Section 6.3

by reiterating the main contributions of the thesis.

6.1 Discussions

The Internet of Things (IoT) is a highly agile (sensitive to availability, connectivity,

and so forth) and complex (i.e. cross-connected devices) environment managed via

the Internet. IoT promises a paradigm shift in which internet-enabled devices – and

the services provided by them – are seamlessly meshed together such that end-users

can experience improved situational awareness (e.g., “Your usual route home has a

30 min. delay”), added context (e.g., “An accident at Broadway and 8th”), and so

forth to effectively and efficiently function in the environment. However, with growing

adoption and deployment, the complexity of such IoT systems is fast growing. Such

complexity is exacerbated in urban environments where large human populations will

deploy ubiquitous devices (and in turn services), consume them, and interact with

such systems to fulfill daily goals by meshing IoT services with external services such

as location, weather and so forth. Hence, we believe that policies can be an effective

means of regulating device actions.

We recall that there is a multitude of policy frameworks; some with rich policy

representations[21, 22, 18], and some targeting pervasive environments [23, 24, 25].

However, they are either not scalable (to create and refine policy instances to large

number of devices) or expressive enough to use high level concepts to describe devices

87



and situations. For example, OWL-POLAR [22] uses OWL-DL and places various

constraints (i.e. does not allow comparing data properties) on its policy language to

preserve the decidability of query answering. However, data properties play a key role

in IoT and the worst-case complexity of consistency checking and conjunctive query

answering in OWL-DL is NEXPTIME-complete. Other policy frameworks such as

[23, 24, 25] target pervasive environments and do policy reasoning on the edge devices.

These policy systems can run on resource constrained devices by compromising either

expressivity or other features like detecting conflicts. Even if policy conflicts can be

detected, these systems do not offer a global resolution strategy that considers other

available services.

The above mentioned policy frameworks are built for different purposes, thus

they cannot cope with our requirements. In order to develop an expressive policy

framework that provides scalable (w.r.t. increase in the data) reasoning mechanisms

(i.e. policy conflicts, active/expired policies), in Chapter 3, we introduced a policy

language that is based on OWL-QL, a formal model to represent policies, and an al-

gorithm to detect conflicts between obligation and prohibition policies. In Chapter 4,

we introduced our conflict resolution mechanism that utilizes a PDDL planner to min-

imize violation costs with respect to available resources (devices and services). We

assume that the underlying knowledge base respects to the Unique Name Assumption

(UNA) like PDDL to reformulate policy conflicts as a planning problem. Then, we

discussed the complete policy framework through a smart home application. Unfor-

tunately, OWL-QL lacks expressivity and requires the target application’s database

to conform to particular rules. Thus, we adopt ontology based data access (OBDA)

to compensate the expressivity and to eliminate the constraints on the target data-

base’s schemata. Furthermore, many real life applications use multiple data sources.

Thus, in Chapter 5, we discuss OBDA and data federation methods and show how

our policy framework can be integrated with an intelligent mining solution that uses

88



heterogeneous data sources.

6.1.1 Need for Policy Authoring Tools

Developing ontologies and creating their OBDA mappings considering design and

performance requirements of an application require expertise and should be handled

by the solution providers. However, authoring policies remains to be a challenging

task, due to the steep learning curve users must go through to describe policies with

the vocabulary provided by these ontologies. Furthermore, a user still has to validate

the described policy to make sure that the system will behave as expected. i.e. does

a policy get activated/expired exactly when user wanted it to be or does it only get

refined to the intended devices. Thus, we believe that developing a tool for writing

and validating policies is necessary.

Assisting users with writing queries is a well studied problem, but writing author-

ing policies is slightly different as policies consist of four different queries, a violation

cost, and a modality. However, we believe that methods developed for question

answering systems over linked data [109] or tools that provide a natural language

interface for SPARQL queries [110] can be very helpful in developing a policy au-

thoring tool with voice support, which has become a very popular user interaction

method due to the advancements in voice assistants. As discussed in Chapter 3 we

can also get inspiration from techniques such as conversational aspects in query gen-

eration with respect to schema information [89, 90], and pragmatically aware query

formulation [91].

Validating a policy and its associated violation cost might require a simulation

environment to present the user what is expected to happen in the system. If some

scenarios can be simulated, then the system can try to learn violation costs with

reinforcement learning methods [111]. Users can interact with the simulator and

decide which policies should be violated in given scenarios. Otherwise, violation costs

89



can be modeled as a utility function [112] to compute the right value according to

some pre-defined features.

6.1.2 Need for Interoperability

Another issue that needs to be addressed is how action descriptions of policies can be

matched with the services provided by the devices. This is also essential for creating

the domain of the planning problems. It is possible to create semantically rich descrip-

tions of device services [99, 113] using service description formats like RESTdesc1, but

it is not crucial for devices to share the same description format as the implementation

of policy systems can simply be extended to support different standards. However,

the exposed service descriptions must either use the same vocabulary or a vocabulary

that can be translated to the policy ontology to maintain interoperability, which is

one of the most fundamental issues of IoT systems. Only then the policy system can

refine policies to individual device actions and resolve conflicts.

6.1.3 Need for Minimizing the Load on Target Databases

We note that in this work, we implemented the entire policy framework utilizing

two different approaches; using a QL knowledge base [46] and using an OBDA [106]

framework. Both of the methods have proven their efficiency, but in our context the

OBDA approach seems to be superior as it improves the expressivity of the policy

language and more practical in real life. Throughout the thesis we also discussed how

fast the number of policies and devices can increase within an IoT system. Thus, the

number of queries that the policy system needs to execute over its target database

can increase even faster. The extra load that our policy system puts on the target

database should not degrade the application’s performance.

We implemented a naive normative state manager, which polls the database every

five seconds (specific to the mining application) to determine activated and expired

1http://restdesc.org

90



policies. Even though we use efficient state-of-the-art solutions, executing more than

a thousand policies every five seconds might degrade the regular performance of the

application. However, not all policies have to be checked with the same frequency.

For example, the location of a vehicle might change very frequently if it is moving but

the model of a machine does not change. Furthermore, an update frequency analysis

on data may help us with caching the less volatile data and removing atoms from

conjunctive queries to increase the performance (i.e. reducing joins in a query).

An alternative can be developing a pushing mechanism for the query answering

problem. For instance, if the application knows which columns are updated at a given

transaction, it can either determine the affected policies and run their queries or try

to directly update those policies’ result sets. We can get inspired by the work on

continuous queries [114, 115].

6.1.4 Need for Realistic Planning

We reformulated policy conflict resolution as a planning problem by encoding policies

in PDDL by means of cost functions and goals. We then utilized a planner to avoid

or mitigate conflicts found in plethora of policies. It is crucial to model domains

by making as few assumptions as possible and evaluate the performance of planners

on real-world problem instances. Unfortunately, one known issue is that there is

rarely a single planner that can handle all the expressivity requirements of complex

real-world domains. OPTIC [100], which is an open-source temporal planner that

supports preferences and numeric fluents, seems to be the most promising planner we

tested.

Our current approach allows us to embed OWL-QL reasoning rules and initial

policies (preferences) into PDDL. However, there is much room for improvement.

As discussed in previous chapters, we could not find a singular planner that could

check if new preferences were activated, expired, or violated during planning. We

91



had to develop a small program solely for this purpose. Furthermore, we still need

to explore a variety of different solutions, among them translating web and device

service descriptions into PDDL, interleaved (reactive) planning and scheduling, and

contingent planning. These topics are not trivial, but they are studied extensively by

the robotics community and necessary for applicability in real-world scenarios.

6.2 Future Work

Given the exploratory nature of this work there is a lot of topics from different fields

(systems, robotics, multi-agent systems etc.) that must be cataloged and explored.

Our primary focus is to keep the implementation of this framework lightweight and

make it as efficient as possible. Thus, reducing the load that the policy framework

puts on target databases would be the next step. Then, developing a policy authoring

tool would have the highest priority.

The history of the data can be used for automatically extracting obligation poli-

cies from users behaviors by applying methods inspired by reverse correlation. For

instance, the system can learn that it needs to lower the room temperature whenever

the user leaves the house. Users decision might be affected by many things such as

time, room and outside temperature, health condition of user, guests in the house,

recent activities of user (such as running) and so on. Hence, if a frequent pattern

is recognized by the system, this could be used to add a new policy. e.g., user is

always turning on the TV, when she comes home. Automatically learned policies

might include some correlations that humans might miss or may not think of.

The conflict detection algorithm can be extended to consider logical conflicts be-

tween obligation policies . Then, we hope to focus on a conflict resolution strategy,

which could try to find a middle ground between conflicting policies. For instance,

instead of keeping all devices silent when the baby is asleep, devices could be allowed

to use sound as long as they don’t wake the baby up. Another example (mentioned in

92



Section 3.4) could be a conflict between two people who prefer different room temper-

atures. A solution for this case could be setting to a temperature somewhere in the

middle of both preferences. If modeled properly, constrained satisfaction problems

can be solved by using preference-based planning or with general AI planners that

use mixed integer linear programming. However, this may not be possible to resolve

conflicts between policies opening and closing the same door at the same time. User

interaction or a meta-policy approach might be necessary for such actions.

We assume that all device actions are permitted unless they are explicitly pro-

hibited. A new modality can be introduced to represent actions that entities are

authorized for performing but do not have to perform. However, this eventually

could increase the number of policies that need to be maintained and the load put on

the target database. If the prohibition policies are extensively used in an application,

then introducing permission policies might be necessary to increase the performance.

In that case, the conflict detection algorithm has to be revised to consider conflicts

between permissions and prohibitions.

6.3 Conclusions

In this thesis, we have proposed a new policy framework that specifically targets

IoT applications. Our focus has been to provide a lightweight semantic framework

with efficient reasoning support that scales with data size. Due to the heterogeneity

of resources and the dynamism associated with such environments, we developed an

adaptive policy conflict resolution mechanism. We have kept the discussion in general

terms, however we have also provided specific technology solutions and prototypical

implementation of the research. Three of the main contributions of this thesis are:

A Scalable Semantic Policy Framework: A formal model to represent

obligation and prohibition policies was introduced in Chapter 3. Then an efficient

algorithm to detect policy conflicts in design time was introduced. We provided a

93



use case to illustrate the way policies are used to manage the behaviors of devices in

a smart home environment and to discuss the need for an automated conflict

resolution mechanism. Finally, we provided a prototype implementation of the

introduced framework and the use case.

Automated Conflict Resolution Strategy: Utilizing PDDL planners, in

Chapter 4, we addressed the need for an automated conflict resolution mechanism

introduced in Chapter 3. The expressivity of PDDL allowed us to reformulate

conflicts as planning problems and to offer a global solution to the problem. We

discussed the necessary features to represent policies in a PDDL and its

shortcomings. Through controlled experiments, we have shown that utilizing a

resolution mechanism that considers all available resources within a system is more

flexible and powerful than rule based solutions.

Implementing the Framework in Real Applications: Methods to integrate

the policy framework introduced in Chapter 3 with in-use applications were

introduced in Chapter 5. We adopted ontology based data access (OBDA) to

minimize the restrictions on the schemata of target databases and to improve the

expressivity of our policy language. When the target application had heterogeneous

data sources, we utilized data federation methods to create a unified single view

that we can use for OBDA. We further discussed temporal planning and other

topics to do conflict resolution in complex environments. These methods enabled us

to model and reason with health and safety policies in a real coal mine environment.

We finally evaluated the scalability of our approach through a database provided by

an intelligent mining solution.

Through this thesis work, we have discussed and demonstrated the applicability

of a knowledge-based policy framework for managing devices in IoT systems. We

94



believe that this can be a useful foundation for a policy system that operates real

applications.

95



Bibliography

[1] M. Krötzsch, “Owl 2 profiles: An introduction to lightweight ontology lan-
guages,” in Reasoning Web. Semantic Technologies for Advanced Query An-
swering, pp. 112–183, Springer, 2012.

[2] B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz, “Owl 2 web
ontology language: Profiles,” w3c working draft, W3C, October 2008.

[3] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (iot):
A vision, architectural elements, and future directions,” Future Gener. Comput.
Syst., vol. 29, pp. 1645–1660, Sept. 2013.

[4] A. Dohr, R. Modre-Opsrian, M. Drobics, D. Hayn, and G. Schreier, “The in-
ternet of things for ambient assisted living,” in Information Technology: New
Generations (ITNG), 2010 Seventh International Conference on, pp. 804–809,
Ieee, 2010.

[5] C. Doukas and I. Maglogiannis, “Bringing iot and cloud computing towards
pervasive healthcare,” in Innovative Mobile and Internet Services in Ubiquitous
Computing (IMIS), 2012 Sixth International Conference on, pp. 922–926, IEEE,
2012.

[6] S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang, “A vision of iot: Applications,
challenges, and opportunities with china perspective,” IEEE Internet of Things
journal, vol. 1, no. 4, pp. 349–359, 2014.

[7] P. Bak, R. Melamed, D. Moshkovich, Y. Nardi, H. Ship, and A. Yaeli, “Location
and context-based microservices for mobile and internet of things workloads,” in
2015 IEEE International Conference on Mobile Services, pp. 1–8, IEEE, 2015.

[8] A. J. Jara, P. Lopez, D. Fernandez, J. F. Castillo, M. A. Zamora, and
A. F. Skarmeta, “Mobile digcovery: discovering and interacting with the world
through the internet of things,” Personal and ubiquitous computing, vol. 18,
no. 2, pp. 323–338, 2014.

[9] J. M. Bradshaw, “Making agents acceptable to people,” in Multi-Agent Systems
and Applications III (V. Mař́ık, M. Pěchouček, and J. Müller, eds.), (Berlin,
Heidelberg), pp. 1–3, Springer Berlin Heidelberg, 2003.

[10] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The ponder policy specifi-
cation language,” Policy, vol. 1, pp. 18–38, 2001.

[11] G. Tonti, J. M. Bradshaw, R. Jeffers, R. Montanari, N. Suri, and A. Uszok,
“Semantic web languages for policy representation and reasoning: A comparison
of kaos, rei, and ponder,” in International Semantic Web Conference, pp. 419–
437, Springer, 2003.

96



[12] T. J. M. Bench-Capon, “Deep models, normative reasoning and legal expert
systems,” in Proceedings of the 2Nd International Conference on Artificial In-
telligence and Law, ICAIL ’89, (New York, NY, USA), pp. 37–45, ACM, 1989.

[13] A. Soeteman, Logic in Law: Remarks on logic and rationality in normative
reasoning, especially in law, vol. 6. Springer Science & Business Media, 2013.

[14] G. Andrighetto, G. Governatori, P. Noriega, and L. W. van der Torre, Norma-
tive multi-agent systems, vol. 4. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2013.

[15] W. W. Vasconcelos, M. J. Kollingbaum, and T. J. Norman, “Normative con-
flict resolution in multi-agent systems,” Autonomous agents and multi-agent
systems, vol. 19, no. 2, pp. 124–152, 2009.

[16] G. Kortuem, F. Kawsar, V. Sundramoorthy, and D. Fitton, “Smart objects as
building blocks for the internet of things,” IEEE Internet Computing, vol. 14,
no. 1, pp. 44–51, 2010.

[17] E. C. Lupu and M. Sloman, “Conflicts in policy-based distributed systems man-
agement,” IEEE Transactions on software engineering, vol. 25, no. 6, pp. 852–
869, 1999.

[18] A. Uszok, J. Bradshaw, R. Jeffers, N. Suri, P. Hayes, M. Breedy, L. Bunch,
M. Johnson, S. Kulkarni, and J. Lott, “Kaos policy and domain services: To-
ward a description-logic approach to policy representation, deconfliction, and
enforcement,” in Policies for Distributed Systems and Networks, 2003. Proceed-
ings. POLICY 2003. IEEE 4th International Workshop on, pp. 93–96, IEEE,
2003.

[19] H. J. Levesque and R. J. Brachman, “Expressiveness and tractability in knowl-
edge representation and reasoning,” Computational intelligence, vol. 3, no. 1,
pp. 78–93, 1987.

[20] R. Craven, J. Lobo, J. Ma, A. Russo, E. Lupu, and A. Bandara, “Expres-
sive policy analysis with enhanced system dynamicity,” in Proceedings of the
4th International Symposium on Information, Computer, and Communications
Security, pp. 239–250, ACM, 2009.

[21] L. Kagal, T. Finin, and A. Joshi, “A policy language for a pervasive computing
environment,” in Policies for Distributed Systems and Networks, 2003. Proceed-
ings. POLICY 2003. IEEE 4th International Workshop on, pp. 63–74, IEEE,
2003.

[22] M. Sensoy, T. J. Norman, W. W. Vasconcelos, and K. Sycara, “Owl-polar: A
framework for semantic policy representation and reasoning,” Web Semantics:
Science, Services and Agents on the World Wide Web, vol. 12, pp. 148–160,
2012.

97



[23] T. Bourdenas, M. Sloman, and E. C. Lupu, “Self-healing for pervasive com-
puting systems,” in Architecting dependable systems VII, pp. 1–25, Springer,
2010.

[24] N. Qwasmi, Distributed Policy-Based Management Framework for Wireless
Sensor Networks. PhD thesis, University of Ontario Institute of Technology
(Canada), 2014.

[25] K. Twidle, N. Dulay, E. Lupu, and M. Sloman, “Ponder2: A policy system for
autonomous pervasive environments,” in Autonomic and Autonomous Systems,
2009. ICAS’09. Fifth International Conference on, pp. 330–335, IEEE, 2009.

[26] R. Fikes, P. Hayes, and I. Horrocks, “Owl-ql?a language for deductive query
answering on the semantic web,” Web semantics: Science, services and agents
on the World Wide Web, vol. 2, no. 1, pp. 19–29, 2004.

[27] M. Ghallab, A. Howe, C. Knoblock, D. Mcdermott, A. Ram, M. Veloso,
D. Weld, and D. Wilkins, “PDDL—The Planning Domain Definition Lan-
guage,” 1998.

[28] A. Uszok, J. M. Bradshaw, J. Lott, M. Breedy, L. Bunch, P. Feltovich, M. John-
son, and H. Jung, “New developments in ontology-based policy management:
Increasing the practicality and comprehensiveness of kaos,” in Policies for Dis-
tributed Systems and Networks, 2008. POLICY 2008. IEEE Workshop on,
pp. 145–152, IEEE, 2008.

[29] R. Davis, H. Shrobe, and P. Szolovits, “What is a knowledge representation?,”
AI magazine, vol. 14, no. 1, p. 17, 1993.

[30] P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-Schneider, and S. Rudolph, “Owl
2 web ontology language primer,” W3C recommendation, vol. 27, no. 1, p. 123,
2009.

[31] D. L. McGuinness, F. Van Harmelen, et al., “Owl web ontology language
overview,” W3C recommendation, vol. 10, no. 10, p. 2004, 2004.

[32] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach. Malaysia;
Pearson Education Limited,, 2016.

[33] A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev, “The dl-lite
family and relations,” J. Artif. Int. Res., vol. 36, pp. 1–69, Sept. 2009.

[34] F. Baader, The description logic handbook: Theory, implementation and appli-
cations. Cambridge university press, 2003.

[35] D. Calvanese, G. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati, “Tractable
reasoning and efficient query answering in description logics: The dl-lite family,”
J. Autom. Reason., vol. 39, no. 3, pp. 385–429, 2007.

98



[36] D. Calvanese, G. D. Giacomo, M. Lenzerini, R. Rosati, and G. Vetere, “DL-
Lite: Practical Reasoning for Rich DLs,” in Proc. of the DL2004 Workshop,
p. 92, 2004.

[37] R. Rosati, “Prexto: Query rewriting under extensional constraints in dl- lite,”
in Extended Semantic Web Conference, pp. 360–374, Springer, 2012.

[38] J. O’Shea, N. T. Nguyen, K. Crockett, R. J. Howlett, and L. C. Jain, Agent
and Multi-Agent Systems: Technologies and Applications: 5th KES Interna-
tional Conference, KES-AMSTA 2011, Manchester, UK, June 29–July 1, 2011,
Proceedings, vol. 6682. Springer Science & Business Media, 2011.

[39] H. Pérez-Urbina, E. Rodrıguez-Dıaz, M. Grove, G. Konstantinidis, and E. Sirin,
“Evaluation of query rewriting approaches for owl 2,” in Proc. of the Joint
Workshop on Scalable and High-Performance Semantic Web Systems (SSWS+
HPCSW 2012), vol. 943, 2012.

[40] A. Chortaras, D. Trivela, and G. Stamou, “Optimized query rewriting for
owl 2 ql,” in International Conference on Automated Deduction, pp. 192–206,
Springer, 2011.

[41] S. Kikot, R. Kontchakov, and M. Zakharyaschev, “On (in) tractability of obda
with owl 2 ql,” CEUR Workshop Proceedings, 2011.

[42] R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev, “The
combined approach to query answering in dl-lite.,” in KR, 2010.

[43] H. Pérez-Urbina, B. Motik, and I. Horrocks, “Tractable query answering and
rewriting under description logic constraints,” Journal of Applied Logic, vol. 8,
no. 2, pp. 186–209, 2010.

[44] M. Rodrıguez-Muro and D. Calvanese, “High performance query answering over
dl-lite ontologies,” in Proceedings of the 13th International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR 2012), 2012.

[45] R. Rosati and A. Almatelli, “Improving query answering over dl-lite ontologies,”
2010.

[46] M. A. Bornea, J. Dolby, A. Kementsietsidis, K. Srinivas, P. Dantressangle,
O. Udrea, and B. Bhattacharjee, “Building an efficient rdf store over a relational
database,” in Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’13, (New York, NY, USA), pp. 121–132,
ACM, 2013.

[47] G. Klyne and J. J. Carroll, “Resource description framework (rdf): Concepts
and abstract syntax.” W3C Recommendation, 2004.

[48] Z. Kaoudi and I. Manolescu, “Rdf in the clouds: a survey,” The VLDB Journal,
vol. 24, no. 1, pp. 67–91, 2015.

99



[49] J.-J. C. Meyer, “Deontic logic: A concise overview,” in Deontic Logic in Com-
puter Science: Normative System Specification, John Wiley & Sons, 1993.

[50] J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager, “SWI-Prolog,” Theory
and Practice of Logic Programming, vol. 12, no. 1-2, pp. 67–96, 2012.

[51] D. Brickley and R. V. Guha, “Rdf schema 1.1,” Jan. 2018.

[52] A. Uszok, J. M. Bradshaw, M. Johnson, R. Jeffers, A. Tate, J. Dalton, and
S. Aitken, “Kaos policy management for semantic web services,” IEEE Intelli-
gent Systems, vol. 19, no. 4, pp. 32–41, 2004.

[53] M. Schmidt-Schau, “Subsumption in kl-one is undecidable,” in Principles of
Knowledge Representation and Reasoning: Proceedings of the 1st International
Conference, pp. 421–431, 1989.

[54] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosofand, and
M. Dean, “SWRL: A semantic web rule language combining OWL and
RuleML.” W3C Member Submission, May 2004. Last access on Dez 2008 at:
http://www.w3.org/Submission/SWRL/.

[55] P. Bonatti and D. Olmedilla, “Driving and monitoring provisional trust nego-
tiation with metapolicies,” in Policies for Distributed Systems and Networks,
2005. Sixth IEEE International Workshop on, pp. 14–23, IEEE, 2005.

[56] P. Bonatti and P. Samarati, “Regulating service access and information release
on the web,” in Proceedings of the 7th ACM conference on Computer and com-
munications security, pp. 134–143, ACM, 2000.

[57] R. Gavriloaie, W. Nejdl, D. Olmedilla, K. E. Seamons, and M. Winslett, “No
registration needed: How to use declarative policies and negotiation to access
sensitive resources on the semantic web,” in ESWS, pp. 342–356, Springer, 2004.

[58] E. Lupu, N. Dulay, M. Sloman, J. Sventek, S. Heeps, S. Strowes, K. Twidle, S.-L.
Keoh, and A. Schaeffer-Filho, “Amuse: autonomic management of ubiquitous
e-health systems,” Concurrency and Computation: Practice and Experience,
vol. 20, no. 3, pp. 277–295, 2008.

[59] A. Goldberg and D. Robson, Smalltalk-80: The Language and Its Implementa-
tion. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1983.

[60] D. Jackson, “Alloy: a lightweight object modelling notation,” ACM Trans-
actions on Software Engineering and Methodology (TOSEM), vol. 11, no. 2,
pp. 256–290, 2002.

[61] D. Jackson, Software Abstractions: logic, language, and analysis. MIT press,
2012.

100



[62] A. Toninelli, A. Corradi, and R. Montanari, “A quality of context-aware ap-
proach to access control in pervasive environments,” MobileWireless Middle-
ware, Operating Systems, and Applications, pp. 236–251, 2009.

[63] A. Toninelli, R. Montanari, L. Kagal, and O. Lassila, “A semantic context-aware
access control framework for secure collaborations in pervasive computing en-
vironments,” in International semantic web conference, pp. 473–486, Springer,
2006.

[64] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A practical
owl-dl reasoner,” Web Semant., vol. 5, pp. 51–53, June 2007.

[65] E. Prud’hommeaux and A. Seaborne, “SPARQL Query Language for RDF.”
W3C Recommendation, 2008.

[66] E. Sirin and B. Parsia, “Sparql-dl: Sparql query for owl-dl.,” in OWLED,
vol. 258, 2007.

[67] B. Motik, Reasoning in description logics using resolution and deductive
databases. PhD thesis, Karlsruhe Institute of Technology, 2006.

[68] J. D. Ullman, “Information integration using logical views,” in International
Conference on Database Theory, pp. 19–40, Springer, 1997.

[69] M. Ghallab, D. Nau, and P. Traverso, Automated Planning: theory and practice.
Elsevier, 2004.

[70] T. Bylander, “Complexity results for planning.,” in IJCAI, vol. 10, pp. 274–279,
1991.

[71] M. Belchior and V. T. da Silva, “Detection of normative conflict that depends
on execution order of runtime events in multi-agent systems,” in Proceedings of
the International Conference on Web Intelligence, pp. 372–380, ACM, 2017.

[72] R. Camacho, P. Carreira, I. Lynce, and S. Resendes, “An ontology-based ap-
proach to conflict resolution in home and building automation systems,” Expert
Systems with Applications, vol. 41, no. 14, pp. 6161–6173, 2014.

[73] H. Kamoda, M. Yamaoka, S. Matsuda, K. Broda, and M. Sloman, “Policy
conflict analysis using free variable tableaux for access control in web services
environments,” in Proceedings of the Policy Management for the Web Workshop
at the 14th International World Wide Web Conference (WWW), 2005.

[74] A. A. Nacci, B. Balaji, P. Spoletini, R. Gupta, D. Sciuto, and Y. Agarwal,
“Buildingrules: a trigger-action based system to manage complex commercial
buildings,” in Adjunct Proceedings of the 2015 ACM International Joint Con-
ference on Pervasive and Ubiquitous Computing and Proceedings of the 2015
ACM International Symposium on Wearable Computers, pp. 381–384, ACM,
2015.

101



[75] R. Ananthanarayanan, M. Mohania, and A. Gupta, “Management of conflicting
obligations in self-protecting policy-based systems,” in Autonomic Computing,
2005. ICAC 2005. Proceedings. Second International Conference on, pp. 274–
285, IEEE, 2005.

[76] A. Fokoue, M. Bornea, J. Dolby, A. Kementsietsidis, and K. Srinivas, “An offline
optimal sparql query planning approach to evaluate online heuristic planners,”
in International Conference on Web Information Systems Engineering, pp. 480–
495, Springer, 2014.

[77] R. Kontchakov, M. Rezk, M. Rodriguez-Muro, G. Xiao, and M. Zakharyaschev,
“Answering sparql queries over databases under owl 2 ql entailment regime,” in
International Semantic Web Conference, pp. 552–567, Springer, 2014.

[78] F. Bacchus and F. Kabanza, “Using temporal logics to express search control
knowledge for planning,” Artificial Intelligence, vol. 116, no. 1-2, pp. 123–191,
2000.

[79] M. Ghallab, D. Nau, and P. Traverso, Automated Planning and Acting. Cam-
bridge University Press, 2016.

[80] J. Kvarnström, P. Doherty, and P. Haslum, “Extending talplanner with con-
currency and resources,” in ECAI, pp. 501–505, 2000.

[81] G. Sartor, “Normative conflicts in legal reasoning,” Artificial intelligence and
law, vol. 1, no. 2-3, pp. 209–235, 1992.

[82] H. Consortium, “Hypercat.” http://www.hypercat.io/standard.html, 2016.
Accessed: 2016-10-02.

[83] C. Jennings, Z. Shelby, and J. Arkko, “Media types for sensor markup language
(senml).” https://tools.ietf.org/html/draft-jennings-senml-10, 2016.
Accessed: 2016-10-02.

[84] R. Kowalski, “Database updates in the event calculus,” The Journal of Logic
Programming, vol. 12, no. 1-2, pp. 121–146, 1992.

[85] S. Abiteboul, “Updates, a new frontier,” in International Conference on Data-
base Theory, pp. 1–18, Springer, 1988.

[86] E. Teniente and A. Olivé, “Updating knowledge bases while maintaining their
consistency,” The VLDB Journal, vol. 4, no. 2, pp. 193–241, 1995.

[87] G. De Giacomo, X. Oriol, R. Rosati, and D. F. Savo, “Updating dl-lite ontolo-
gies through first-order queries,” in International Semantic Web Conference,
pp. 167–183, Springer, 2016.

[88] Quetzal-RDF, “Quetzal.” https://github.com/Quetzal-RDF/quetzal, 2016.
Accessed: 2016-10-02.

102



[89] D. Braines, A. Preece, G. de Mel, and T. Pham, “Enabling coist users: D2d at
the network edge,” in Information Fusion (FUSION), 2014 17th International
Conference on, pp. 1–8, IEEE, 2014.

[90] B. Hixon and R. J. Passonneau, “Open dialogue management for relational
databases.,” in HLT-NAACL, pp. 1082–1091, 2013.

[91] A. Viswanathan, G. de Mel, and J. A. Hendler, “Pragmatics and discourse in
knowledge graphs,” 2015.

[92] M. Klusch, A. Gerber, and M. Schmidt, “Semantic web service composition
planning with owls-xplan,” in Proceedings of the 1st Int. AAAI Fall Symposium
on Agents and the Semantic Web, pp. 55–62, sn, 2005.

[93] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau, “Htn planning for web
service composition using shop2,” Web Semantics: Science, Services and Agents
on the World Wide Web, vol. 1, no. 4, pp. 377–396, 2004.

[94] A. Gerevini and D. Long, “Plan constraints and preferences in pddl3,” tech.
rep., Technical Report 2005-08-07, Department of Electronics for Automation,
University of Brescia, Brescia, Italy, 2005.

[95] D. Dou, “The formal syntax and semantics of web-pddl,” tech. rep., University
of Oregon, 2008.

[96] D. Dou, P. LePendu, S. Kim, and P. Qi, “Integrating databases into the seman-
tic web through an ontology-based framework.,” in ICDE Workshops (R. S.
Barga and X. Zhou, eds.), p. 54, IEEE Computer Society, 2006.

[97] S. Richter and M. Westphal, “The lama planner: Guiding cost-based anytime
planning with landmarks,” J. Artif. Int. Res., vol. 39, pp. 127–177, Sept. 2010.

[98] M. Helmert, “The fast downward planning system.,” J. Artif. Intell.
Res.(JAIR), vol. 26, pp. 191–246, 2006.

[99] S. Mayer, R. Verborgh, M. Kovatsch, and F. Mattern, “Smart configuration
of smart environments,” IEEE Transactions on Automation Science and Engi-
neering, vol. 13, no. 3, pp. 1247–1255, 2016.

[100] J. Benton, A. Coles, and A. Coles, “Temporal Planning with Preferences and
Time-Dependent Continuous Costs,” in Proceedings of the Twenty Second In-
ternational Conference on Automated Planning and Scheduling (ICAPS-12),
2012.

[101] M. Karpathiotakis, I. Alagiannis, T. Heinis, M. Branco, and A. Ailamaki, “Just-
in-time data virtualization: Lightweight data management with vida,” in Pro-
ceedings of the 7th Biennial Conference on Innovative Data Systems Research
(CIDR), no. EPFL-CONF-203677, 2015.

103



[102] L. Weng, G. Agrawal, U. Catalyurek, T. Kur, S. Narayanan, and J. Saltz, “An
approach for automatic data virtualization,” in High performance Distributed
Computing, 2004. Proceedings. 13th IEEE International Symposium on, pp. 24–
33, IEEE, 2004.

[103] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati,
“Journal on data semantics x,” ch. Linking Data to Ontologies, pp. 133–173,
Berlin, Heidelberg: Springer-Verlag, 2008.

[104] R. Kontchakov, M. Rodriguez-Muro, and M. Zakharyaschev, “Ontology-based
data access with databases: A short course,” in Reasoning web. semantic tech-
nologies for intelligent data access, pp. 194–229, Springer, 2013.

[105] M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, V. Ryzhikov, and
M. Zakharyaschev, “The complexity of ontology-based data access with owl 2
ql and bounded treewidth queries,” in Proceedings of the 36th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, pp. 201–216,
ACM, 2017.

[106] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti, M. Rezk,
M. Rodriguez-Muro, and G. Xiao, “Ontop: Answering SPARQL queries over
relational databases,” Semantic Web, vol. 8, no. 3, pp. 471–487, 2017.

[107] A. Janusz, M. Sikora, L. Wrobel, S. Stawicki, M. Grzegorowski, P. Wojtas,
and D. Slkezak, “Mining Data from Coal Mines: IJCRS15 Data Challenge,” in
Proceedings of RSFDGrC 2015, vol. 9437 of LNAI, pp. 429–438, Springer, 2015.

[108] D. Furelos-Blanco, A. Jonsson, H. Palacios, and S. Jiménez, “Forward-search
temporal planning with simultaneous events,” COPLAS 2018, p. 11, 2018.

[109] A. Bouziane, D. Bouchiha, N. Doumi, and M. Malki, “Question answering
systems: survey and trends,” Procedia Computer Science, vol. 73, pp. 366–375,
2015.

[110] C. Pradel, O. Haemmerlé, and N. Hernandez, “Swip: a natural language to
sparql interface implemented with sparql,” in International Conference on Con-
ceptual Structures, pp. 260–274, Springer, 2014.

[111] G. Tesauro, R. Das, W. E. Walsh, and J. O. Kephart, “Utility-function-driven
resource allocation in autonomic systems,” in null, pp. 342–343, IEEE, 2005.

[112] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das, “Utility functions in au-
tonomic systems,” in Autonomic Computing, 2004. Proceedings. International
Conference on, pp. 70–77, IEEE, 2004.

[113] R. Verborgh, T. Steiner, D. Van Deursen, S. Coppens, E. Mannens, R. Van de
Walle, and J. G. Vallés, “Integrating data and services through functional se-
mantic service descriptions,” in Proceedings of the W3C Workshop on Data and
Services Integration, 2011.

104



[114] S. Babu and J. Widom, “Continuous queries over data streams,” ACM Sigmod
Record, vol. 30, no. 3, pp. 109–120, 2001.

[115] Y. Watanabe and H. Kitagawa, “Query result caching for multiple event-driven
continuous queries,” Inf. Syst., vol. 35, pp. 94–110, Jan. 2010.

[116] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-
Muro, and R. Rosati, “Ontologies and databases: The DL-Lite approach,”
in Semantic Technologies for Informations Systems – 5th Int. Reasoning Web
Summer School (RW 2009) (S. Tessaris and E. Franconi, eds.), vol. 5689 of
Lecture Notes in Computer Science, pp. 255–356, Springer, 2009.

[117] G. De Giacomo, D. Lembo, X. Oriol, D. F. Savo, and E. Teniente, “Practical
update management in ontology-based data access,” in International Semantic
Web Conference, pp. 225–242, Springer, 2017.

[118] M. Rodrıguez-Muro, R. Kontchakov, and M. Zakharyaschev, “Obda with on-
top,” in Proc. of the OWL Reasoner Evaluation Workshop, 2013.

[119] W3C, “Owl 2 web ontology language document overview (second edition),” Jan.
2018.

105


