
ADVISOR: AN ADAPTIVE FRAMEWORK
FOR TEST ORACLE AUTOMATION

OF VISUAL OUTPUT SYSTEMS

A Thesis

by

Ahmet Esat Genç

Submitted to the
Graduate School of Sciences and Engineering
In Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in the
Department of Electrical and Electronics Engineering

Özyeğin University
January 2019

Copyright c© 2019 by Ahmet Esat Genç

ADVISOR: AN ADAPTIVE FRAMEWORK
FOR TEST ORACLE AUTOMATION

OF VISUAL OUTPUT SYSTEMS

Approved by:

Assoc. Prof. Hasan Sözer (Advisor)
Department of Computer Engineering
Özyeğin University

Asst. Prof. Furkan Kıraç
Department of Computer Engineering
Özyeğin University

Asst. Prof. Ahmet Tekin
Department of Electrical and Electronics
Engineering
Özyeğin University

Assoc. Prof. Mehmet Aktaş
Department of Computer Engineering
Yıldız Technical University

Asst. Prof. Cenk Demiroğlu
Department of Electrical and Electronics
Engineering
Özyeğin University

Date Approved: 10 January 2019

This thesis work is dedicated to my wife Selin, who has been a constant

source of support and encouragement during the challenges of graduate

school and life. I am truly thankful for having her in my life.

iii

ABSTRACT

Test oracles differentiate between the correct and incorrect system behavior. Automation of

test oracles for visual output systems mainly involves image comparison, where a snapshot

of the observed output during test is compared with respect to a reference image. Hereby,

the captured snapshot can be subject to variations due to, for instance, scaling, shifting,

rotation, or color saturation. These variations lead to incorrect evaluations. Existing ap-

proaches in the literature employ a combination of techniques from the computer vision

domain to address a specific set of variations. However, some of these techniques might not

be the most effective one for addressing a particular variation, while some other techniques

might not be necessary in the absence of a particular variation, introducing an unnecessary

performance overhead. In this paper, we introduce ADVISOR, an adaptive framework for

test oracle automation of visual output systems. The framework allows the use of a flexible

combination and configuration of alternative techniques from the computer vision domain.

We evaluated several instances of our framework with respect to state-of-the-art tools. We

achieved up to 3% better overall accuracy based on a benchmark dataset collected during

the tests of real Digital TV systems. We also observed that the accuracy of tools can differ

for particular variations in the captured images.

iv

ÖZETÇE

Test kahinleri, doğru ve yanlış sistem davranışını ayırt ederler. Görsel çıktı sistemleri

için test kahinleri esas olarak test sırasında gözlenen çıktının anlık görüntüsü ile refer-

ans görüntünün karşılaştırıldığı, görüntü karşılaştırmayı içermektedir. Bu yaklaşımda anlık

görüntü, yakalama metoduna bağlı olarak ölçekleme, kayma, dönme, veya renk doygunluğu

gibi değişikliklere tabi olmuştur. Bu değişiklikler, yanlış değerlendirmelere neden olmak-

tadır. Bilgisayarlı görme alanında bu konulara değinen birçok teknik vardır. Literatürdeki

mevcut yaklaşımlar, belirli bir varyasyon setini ele almak için bilgisayarlı görme alanındaki

tekniklerin kombinasyonunu kullanır. Ancak bu tekniklerin bazıları, belirli bir varyasy-

onu ele almak için en etkili olanı olmayabilirken, bazı diğer teknikler, belirli bir varyasy-

onun yokluğunda gerekli olmayabilir ve bu nedenle gereksiz bir performans yükü oluşturur.

Bu çalışmada, görsel çıktı sistemlerinin test kahini otomasyonu için uyarlamalı bir sistem

olan ADVISOR’ı tanıtıyoruz. Sistem, bilgisayarlı görme alanından esnek bir kombinasyon

ve alternatif tekniklerin yapılandırılmasına izin verir. Çalısmamızda, sistemimizin birkaç

örnegini güncel araçlara karşı değerlendirdik. Gerçek Dijital TV sistemi testinde elde

edilen kıyaslama veri setine dayalı 3% daha iyi genel doğruluğa ulaştık. Ayrıca, yakalanan

görüntülerdeki belirli değişiklikler için araçların doğruluklarının farklılık gösterebileceğini

de gözlemledik.

v

ACKNOWLEDGMENTS

Firstly, I would like to thank my advisor, Dr. Hasan Sözer for all his help and guidance

that he has given me over the past year. Secondly, I would also like to thank Dr. Furkan

Kıraç and Dr. Barış Aktemur for providing me support during this period. Finally, I would

like to thank my colleagues in Design Verification and Test Group at Vestel Electronics for

sharing datasets with me and supporting my case study.

vi

TABLE OF CONTENTS

DEDICATION . iii

ABSTRACT . iv

ÖZETÇE . v

ACKNOWLEDGMENTS . vi

LIST OF TABLES . viii

LIST OF FIGURES . ix

I INTRODUCTION . 1

II BACKGROUND . 4

2.1 Keypoint Detection and Descriptor Extraction 5

2.2 Descriptor Matching . 11

2.3 Transformation . 12

2.4 Image Matching . 12

III RELATED WORK . 15

IV TEST ORACLE IMPLEMENTATION . 19

V INDUSTRIAL CASE STUDY . 21

5.1 Dataset . 22

5.2 Evaluation . 23

VI RESULTS AND DISCUSSION . 27

6.1 Threats to Validity . 39

VII CONCLUSIONS AND FUTURE WORK 40

REFERENCES . 41

vii

LIST OF TABLES

1 The set of selected ADVISOR configurations when perspective trasform is
used as transformation method for evaluation. 24

2 The set of selected ADVISOR configurations when affine trasform is used
as transformation method for evaluation. 25

3 Evaluation of a verdict according to image set categories 26

4 Results of the configurations of [1] and SURFAndroid and VISOR(All the
listed numbers represent rounded up percentage (%) values). 28

5 Results of the configurations when perspective transform is used as trans-
formation method (All the listed numbers represent rounded up percentage
(%) values). 30

6 Results of the configurations when affine transform is used as transforma-
tion method (All the listed numbers represent rounded up percentage (%)
values). 31

7 Results of each image comparison algorithms for conf1, conf11, conf4,conf14,
conf5, conf15, conf10 and conf20 according to F1-Score. 32

8 Results of the 6 window sizes for for conf1,conf5,conf10,conf4,conf14 ac-
cording to F1-Score. 33

viii

LIST OF FIGURES

1 Feature diagram of ADVISOR. 6

2 The overall process. 19

3 Snapshot images taken from the online SPLOT tool that depict a part of the
created feature diagram for ADVISOR and a configuration defined on this
diagram. 20

4 Matching scores of 640x480 window size of Template matching for conf1 . 34

5 Matching scores of 480x270 window size of Template matching for conf1 . 35

6 Matching scores of 16x20 window size of Template matching for conf1 . . 36

7 Keypoint against Good Matches graphs of Saturation dataset for conf1,
conf3, conf3 from left to right. 37

8 Keypoint against Good Matches graphs of Saturation dataset for conf5,
conf6, conf7 from left to right. 37

9 Keypoint against Good Matches graphs of Saturation dataset for conf8,
conf9, conf10 from left to right. 38

10 A sample image pair from the Saturation dataset for which the verdict was
false positive . 39

11 A sample image pair from the Fail dataset for which the verdict was false
positive . 39

ix

CHAPTER I

INTRODUCTION

Automation of testing activities is a commonly preferred approach for reducing the costs of

testing [2, 3], which can account for at least half of the overall development costs [4]. One

of these activities is performed by a test oracle [5], which differentiates between the correct

and incorrect system behavior. An analysis of the literature [6] reveals that test oracle

automation has received significantly less attention compared to the automation of other

testing activities. However, automating test oracle is an essential stepping-stone towards

achieving overall test automation. Otherwise, one has to check the system behavior for all

test cases manually even if these test cases are generated and executed automatically.

Test oracle automation becomes a straightforward comparison task if formal specifi-

cations regarding the intended system behavior exist [7]. However, such specifications

are not always available and a trivial comparison is not usually effective, especially when

the expected output takes complex forms such as an image [8]. Accordingly, test oracle

implementations for visual output systems tend to be fragile and they lead to many false

positives [9], where an error is reported although an error does not exist.

A common implementation of test oracles for visual output systems involves image

comparison, where a snapshot of the observed output during test is compared with respect

to a previously taken reference image. Hereby, the captured snapshot can be subject to

several variations due to for instance, scaling, shifting, rotation or color saturation, depend-

ing on the method used for capturing the image. These variations lead to false positive

evaluations. There are many techniques available in the computer vision domain to address

such issues and perform an effective comparison between images. Existing approaches in

the literature [10, 11] employ a combination of these techniques to address a specific set of

1

variations for a dedicated test oracle implementation. However, some of these techniques

might not be the most effective one for addressing a particular variation, while some other

techniques might not be necessary in the absence of a particular variation and as such, in-

troduce an unnecessary performance overhead. Hence, a generically applicable, efficient

and effective test oracle implementation for visual output systems must be adaptable to

employ and tune the most effective techniques from the computer vision domain based on

the application context and the test setup.

In this paper, we introduce ADVISOR, an adaptive framework for test oracle automation

of visual output systems. ADVISOR allows the use of a flexible combination and config-

uration of alternative techniques from the computer vision domain. We reviewed these

techniques in terms of their pros and cons for applicability in various settings and imple-

mented them as part of our framework. To the best of our knowledge, there does not exist

such a generic framework for test oracle automation of visual output systems.

We evaluated several instances of our framework with respect to state-of-the-art tools.

We used a benchmark dataset, which includes 1000 image pairs that are collected during the

tests of real Digital TV systems [1]. These image pairs are manually labeled to distinguish

those pairs that are associated with failures. Although more than half of the image pairs

are not actually associated with failures, they are subject to variations that can result in

failing tests (i.e., false positives). These image pairs are further categorized with respect

to 3 types of variations they involve: i) pixel shifting, ii) scaling, and iii) color saturation.

Hence, we were not only able to evaluate the overall accuracy of alternative test oracle

implementations, but also their accuracy for image pairs that are particularly subject to

these types of variations.

Results showed that the accuracy of a test oracle can be improved if the involved tech-

niques are selected and fine-tuned for the application context. Several instances of ADVI-

SOR achieved up to 3% better overall accuracy compared to the state-of-the-art tools. We

also observed that the accuracy of tools can differ for particular variations in the captured

2

images.

The remainder of this paper is organized as follows. In the following chapter, we sum-

marize the related studies. In Chapter 2, we present a domain analysis of the relevant tech-

niques borrowed from the computer vision domain and depict the solution space, which

provides a common ground for creating alternative test oracle implementations. In Chap-

ter 4, we explain the implementation of ADVISOR. In Chapter 5.2, we present an empirical

evaluation of our framework, where we compare a set of these implementations with re-

spect to the state-of-the-art tools. Finally, in Chapter 7, we provide our conclusions.

3

CHAPTER II

BACKGROUND

We performed an analysis summarizing the Computer Vision based methodologies related

to image comparison. Domain analysis is an essential step in software product line en-

gineering [12] to identify commonalities and variations among the products of a product

family. The commonalities and variations are represented by means of a so-called feature

model [13]. A feature diagram depicts this model, which is a compact, visual representa-

tion of all the products in the product family.

We created a feature model for ADVISOR as a result of our domain analysis. ADVI-

SOR represents a family of test oracle implementations based on image comparison. Each

implementation employs a set of techniques to perform the comparison. The feature model

defines the available techniques that can be employed as well as the constraints among

them (e.g., two techniques must be used together or one technique cannot be used with

some other technique). Therefore, it also determines the possible set of test oracle imple-

mentations that can be instantiated with ADVISOR.

The feature diagram of ADVISOR is depicted in Figure 1. This diagram describes the

solution space. Common features among all the test oracle implementations are modeled

as mandatory features. Possible variations among these implementations are captured by

the set of optional features and the hierarchical structure. Exactly one feature out of the

ones that are bound with the Alternative connection must be chosen. At least one or more

features must be chosen if they are connected to their parent with the Or connection. The

selection of an optional or alternative feature can require the inclusion or exclusion of

another feature. Hence, a feature diagram is provided together with a set of constraints

as listed at the bottom of Figure 1.

4

We can see in Figure 1 that a test oracle involves four main features each of which can be

implemented using a set of alternative or complementary algorithms. Image matching is a

mandatory step for comparing the captured and the reference images with each other. The

remaining three features are optional steps that are used for transforming images before

the comparison is performed. During tests, a captured image may be subject to several

changes such as translation, rotation, scaling; depending on the capturing method. Images

modified by such transformations are needed to be transformed back into the same planar

surface with corresponding reference images making them aligned before comparison. To

facilitate such a transformation, keypoints1 of an image is extracted and utilized. Hence,

an image is described as a combination of features, namely keypoints. Each keypoint has a

location in the image. A keypoint’s surroundings is also described with a so-called keypoint

descriptor. The descriptor is designed in such a way that it is resilient to different image

transformations such as illumination change, translation, rotation, scaling, etc. Locations

of important features are detected by using keypoint detector which is also called a feature

detector. Surroundings of the extracted feature locations are described by using descriptor

extractor algorithms.

Finally, an alignment transformation is computed based on the keypoint locations and

descriptors. The image is then transformed by using transformation algorithms for aligning

it with the reference image. We discuss about keypoints and the related algorithms in

further detail in the following subchapters.

2.1 Keypoint Detection and Descriptor Extraction

An image may be represented by local keypoints and global keypoints [14]. Local key-

points include corners, edges and lines that take place in images [15], whereas global

1We need to clarify the two different uses of the term “feature” in this paper. Firstly, this term is used for
defining a functionality or capability of a product in software product line engineering. Secondly, the same
term refers to a measurable property or characteristic of images in computer vision domain. We adopt the
term keypoint instead of this second use to prevent confusion in the rest of the paper.

5

SIFT_Keyp_Detector

BRISK_Keyp_Detector

Transformat�on

BRIEF_Desc_Extractor

Template_Match�ng

ORB_Keyp_Detector

Image_Match�ng

P�xel_Match�ng

SURF_Keyp_Detector

STAR_Keyp_Detector

Keypo�nt_Detector

Test_Oracle

S�mpleBlob_Keyp_Detector

FREAK_Desc_Extractor

Perspect�ve_Transform

ORB_Desc_Extractor

FAST_Keyp_Detector

H�stogram_Match�ng

Descr�ptor_Extractor

SIFT_Desc_Extractor

Affine_Transform

SURF_Desc_Extractor

BRISK_Desc_Extractor

(Keypo�nt_Detector ⇒ Descr�ptor_Extractor) ∧ (Keypo�nt_Detector ⇒ Transformat�on)

(Descr�ptor_Extractor ⇒ Keypo�nt_Detector) ∧ (Descr�ptor_Extractor ⇒ Transformat�on)

(Transformat�on ⇒ Keypo�nt_Detector) ∧ (Transformat�on ⇒ Descr�ptor_Extractor)

Legend:

Mandatory

Opt�onal

Or

Alternat�ve

Abstract

Concrete

Figure 1: Feature diagram of ADVISOR.

keypoints include contour representations, shape descriptors, and texture [16]. ADVISOR

involves many keypoint detector alternatives including FAST [17], Star [18], SIFT [19],

SURF [20], ORB [21], BRIEF [22], BRISK [23] and SimpleBlob that find local keypoints

of an image. Implementations are available as part of the OpenCV library2. Note that some

of the above algorithms support both keypoint detection and keypoint description whereas

others are only capable of detection or description.

A descriptor acts like a fingerprint that differentiates a keypoint’s surroundings from

2http://opencv.org

6

others. It is represented as a vector, which contains information on the surrounding (neigh-

borhood) pixels of a specific location in an image. Different descriptors use different win-

dow sizes and techniques for representing the neighborhood. Nevertheless, all of them are

designed for being robust against different possible transformations that an image can un-

dergo. Some of these transformations include translation, scaling, rotation, illumination

changes, compression artifacts. This means that even if an image is under severe trans-

formation, an important keypoint in an image can still be detected and its surroundings

can still be described with a relatively similar description vector. Since descriptors con-

stitute invariant representations of an image patch regardless of transformations, they are

commonly used for supporting the image alignment and matching process. ADVISOR uses

BRIEF [22], BRISK [23], FREAK [24], ORB [21], SIFT [19] and SURF [20] as descriptor

extractors.

We briefly review the keypoint detection and descriptor extraction techniques employed

in ADVISOR in the following subsection.

2.1.1 FAST

Features from Accelerated Segment Test (FAST) [17] is a keypoint detector that is de-

veloped for real-time applications. FAST uses machine learning for high speed corner

detection. A so-called segment test criterion selects a candidate circular region with six-

teen pixels around a candidate corner. Candidate corner is categorized based on its rela-

tive intensity with respect to a circular region of adjacent pixels around it by a predefined

threshold level. There are three different categories, namely; darker, similar and brighter.

For instance, a candidate corner is classified as darker if the difference of its intensity level

is greater than all the pixels in the circular region and the amount of this difference is larger

than the threshold value. A decision tree [25] with an entropy optimizer is employed to de-

termine if a pixel is a corner or not. The main strength of the FAST algorithm is its speed.

However, it is difficult to determine an optimal threshold level, especially when the image

7

is subject to a high level of noise. Moreover, it is also not scale invariant. As a result, it

may not be effective for noisy images that are subject to scaling.

2.1.2 Star

Star keypoint detector is derived from the Center Surrounded Extrema (CenSurE) detec-

tor [18]. Aim of the Star keypoint detector is to find extrema in different scales and loca-

tions. In order to overcome computational load, bi-level filters multiplying intensity value

of image pixels with 1 or -1 are used. Circles, octagons, hexagons and boxes are used

as different bi-level filters. Performances of filters decrease according to their symmetry.

Octagon filter has better performance while box filter has better computational speed. Non-

maxima suppression method is used per different scale to find candidate local keypoints.

Detected keypoints are further filtered by a method such as Harris corner detector. Remain-

ing points are the local keypoints of Star keypoint detector.

2.1.3 SIFT

Scale Invariant Feature Transform (SIFT) [26] is used for both keypoint detection and

descriptor extraction. Scale space theory [27] is employed for keypoint detection. This

approach finds keypoints in different scales by utilizing a Gaussian pyramid. Algorithm

works in different scales of the same image starting from a lower resolution version and

going step by step to a higher resolution representation. Local extrema is detected by com-

paring a sample point with its neighbors in its below and above resolution scales. After

candidate keypoints are found, accurate localization of keypoints are computed. Finally,

neighborhood pixels are assigned to a histogram’s bin by quantizing the underlying edge’s

orientation. This method is called Histograms of Oriented Gradients [28] (HOG). The

histogram bin with the maximum value is chosen as a normalization point. Histogram is

rotated in such a manner that bin with the maximum value always stays at the leftmost bin.

This provides rotational invariance. Histograms are extracted around the keypoint location

8

in a 4x4 grid created in a 16x16 pixels patch around the keypoint. Each histogram is repre-

sented by 8 bins. 16 histograms are extracted. Each bin is represented as an 8 bit number.

This gives a 128 byte description vector that describes the 16x16 patch around a keypoint.

SIFT keypoints are computationally expensive to obtain but they lead to better accuracy

compared to other keypoint detection methods.

2.1.4 SURF

Speeded Up Robust Features (SURF) [20] is mainly based on SIFT. Keypoint detector

part of this algorithm is based on Hessian matrix which credits integral images to decrease

computational complexity and as such improve the performance. Hereby, the determinant

of the Hessian is called as Fast-Hessian detector and it is employed to find location and

scale. The Gaussian distribution is approximated by using second-order Gaussian deriva-

tives (Laplacian of Gaussians), which are evaluated by integral images. This approach leads

to a faster computation. In addition, the same integral images are utilized for calculating

box filters of any size in parallel without creating different resolution representations of the

same image. SURF keypoint detectors are faster that SIFT but the descriptors are slightly

less performant representations of the neighborhood when compared to SIFT.

2.1.5 BRIEF

Binary Robust Independent Elementary Features (BRIEF) [22] is used for extracting de-

scriptors in the form of bit vectors. The trade-off between the speed and accuracy can be

controlled via the length of this vector. Because of its sensitivity to noise, a preliminary

Gaussian smoothing with 9x9 window size is applied for erasing high frequency informa-

tion from the image. A preliminary pixel pair list to be compared is created and hard-coded

in the algorithm. This may be achieved by different methods such as uniform sampling,

Gaussian sampling, or random sampling. The bit vector is formed by comparing the inten-

sity levels of an interest point and its predefined pair. If the first pixel’s intensity is greater

than its pair’s intensity it is encoded as 1, or zero otherwise. In this study, the dimension of

9

the bit vector is selected as either 128, 256 and 512.

2.1.6 ORB

Oriented FAST and Rotated BRIEF (ORB) [21] is a combination of FAST keypoint de-

tector and BRIEF descriptor extractor together with some enhancements. The idea is to

sustain performance of SIFT for low-powered devices by using FAST keypoint detector,

while using BRIEF descriptor extractor enhanced for rotation invariance. This is done

by using a technique for measuring corner properties [29] which extracts orientation from

corner intensity. For descriptor extraction, a more efficient method called steer BRIEF is

introduced which creates a lookup table from angles quantized by 12 degrees. Whenever an

angle from lookup table has a coherent result, rotation set regarding to the angle is selected

as the dominant orientation.

ORB carries characteristics of both FAST keypoint detector and BRIEF descriptor ex-

tractor which means that computational load is extremely low.

2.1.7 BRISK

Binary Robust Invariant Scalable Keypoints (BRISK) [23] aims to find keypoints repeat-

edly in every viewpoint. Keypoints are fast computed by finding maxima in scale space

with the help of FAST. Descriptor of BRISK is formed in binary form. This is achieved

by employing intensity comparison tests that is proposed in BRIEF [22]. However, an

advancement is proposed that the pattern is equidistant on concentric circles. Gaussian

smoothing is applied to overcome aliasing effects in the pattern. BRISK’s detector and

descriptor are both fast methods making it available in real-time and low-power scenarios.

2.1.8 SimpleBlob

An old way of segmenting an image is binarizing it using a threshold and finding con-

nected regions in the binarized image. The connected regions are called blobs. In order to

10

binarize an image SimpleBlob assumes the image is grayscale. Therefore, color informa-

tion is erased from the image as a first step. SimpleBlob method applies several different

binarization thresholds and corresponding binary images. Blobs are detected, and their cen-

troids are used as keypoint locations. Blob’s different properties such as average brightness,

bounding box size, pixel area, eccentricity are combined and used as a descriptor [30].

We used the SimpleBlob blob detection algorithm as it is implemented as part of the

OpenCV library.

2.1.9 FREAK

Fast Retina Keypoint (FREAK) [31] is a method for descriptor extraction inspired from the

human visual system. FREAK uses circular sampling regions whose density diminishes

through the center of attention. The design approximates the human visual system. FREAK

creates a binary descriptor that is more suitable for computational purposes.

Keypoint detectors and descriptors such as BRIEF, BRISK, ORB, Star, SimpleBlob,

FREAK and FAST are all suitable to be used in real-time applications because of having

low computational load and complexity, whereas SURF and SIFT algorithms are suitable to

be used in more demanding applications with underlying transformations of a more difficult

nature.

2.2 Descriptor Matching

The most time consuming part of the image comparison system is descriptor matching.

Once the keypoints are found with feature detectors, they have to be matched with the help

of the feature detector. A few novel method are proposed such as FLANN matcher [32]

based on randomized k-d trees and hierarchical k-means trees, Best-Bin First algorithm [33]

based on k-d trees with modification of search ordering. Technics based on Brute-force

matcher as a part of OpenCV library are proposed as in [34]. Brute-force matcher offers

two paremeters, Euclidean or Hamming distance, for distance calculations and is combined

with k-Nearest Neighbors(knn) to remove outliers. Due to take much time to calculate of

11

distances for each correspondings, Brute-force matcher is a slow technic but the result is

precise. After matches between image features are found, good matches according to pre-

defined distance are extracted in order to be used in transformation. This idea provides

better transformation of captured image regarding reference image.

2.3 Transformation

Affine transformation covers translation, scaling, skewing, and rotation of an image. It

has six degrees-of-freedom, meaning that we have six unknowns, and therefore need six

equations to solve the system. Therefore, at least three pairs of 2D points selected in two

different images to be aligned. Affine transformation always keeps parallel lines parallel.

This approach is sufficient for aligning scaled, rotated and translated images. An upgrade to

affine transformation is perspective transformation. Perspective transformation is an eight

degrees-of-freedom system. We must use at least four pairs of 2D points selected in two

different images to be aligned. Perspective transformation does not preserve parallelism,

length and angle but preserves straight lines. In the end, one can only say that straight lines

still stay straight. Perspective transformation is the most general transformation and covers

all possible scenarios that an image can undergo. For most of the scenarios in real test

environments, using affine transform based alignment is sufficient.

2.4 Image Matching

Image matching is mainly performed for finding same images under different transforma-

tions. It is used as a similarity measurement, which can be utilized for image retrieval,

classification, registration, motion tracking, registration, etc. In the following subsections,

we discuss the types of image matching techniques we employ as part of ADVISOR.

2.4.1 Template Matching

Template matching is a type of shape matching approach that finds a predefined area from

one image in another image. Hereby, the predefined area extracted from one image slides

12

over the other image in one pixel strides. Histograms of the template and the corresponding

underlying patch are calculated and matched during this process. Various histogram match-

ing methods such as cross-correlation, sum of absolute differences, sum of squared differ-

ence, correlation coefficient and coarse-to-fine [35] [36] are employed. Cross-correlation

has better performance when pixel intensity levels change in sub-regions of an image but

its computational load is dramatically high especially for big window sizes [37]. On the

other hand, sum of absolute differences method is faster but its performance is worse when

pixel intensity levels change in sub-regions of an image. Correlation coefficient is more ro-

bust to pixel intensity changes [38]. OpenCV library offers three of these methods; cross-

correlation, sum of squared differences and correlation coefficient and their normalized

versions as a template matching method. We employed correlation coefficient method to

find template matching score.

In ADVISOR, six different window sizes are tried as the template region for histogram

extraction.

2.4.2 Histogram Matching

A histogram contains the number pixels of an image that suit to a specific criterion. In this

study, we use pixel intensity histograms applied to all color channels separately. Repre-

senting images as histograms relaxes the image template representation in such a manner

that locations of the pixels are not important anymore. Only important feature becomes the

intensity of a pixel. Changing a pixel’s location wouldn’t change the histogram. Hence,

we don’t directly compare the images pixel by pixel but compare the histograms extracted

from them. This provides robustness to matching images under translation transformation.

Despite translational robustness, this method might not work well with color saturated im-

ages, which are also available in one of our data sets.

Several histogram matching methods are proposed. Some of these methods consider

histograms as points in a high dimensional vector space and calculate distances between

13

the points. Other methods apply probabilistic similarity metrics between histograms. Eu-

clidean distance and intersection are the examples of distance based methods. Probabilistic

methods are based on probability density function (PDF) and Bhattacharyya distance [39],

Kullback and Leibler divergence [40], Hellinger distance [41], Chi-Square [42] and Earth

Movers distance [43]. OpenCV library offers Correlation, Chi-Square, Intersection, Bhat-

tacharyya, Hellinger and K-L methods as a parameter of histogram matching function. In

our case study, Correlation method is employed to calculate matching score of histograms.

2.4.3 Pixel Matching

Pixel matching is a straight-forward method, where each pixel of image pairs’ are com-

pared in each channel. This is done by summing up the square difference (SSD) of pixel

values. The lower the value calculated with SSD, the better the matching is. However,

image pairs should be tightly in the same planar surface as a precondition of obtaining

meaningful results with this method. In order to use the result of pixel matching with other

comparison algorithms, obtained values are normalized between 0 and 1 to be compared

with respect to a threshold value. Performance of image matching functions depend on the

success of preliminary alignment transformation. However, other effects such as illumina-

tion difference between grabbed and reference images might still negatively influence the

results. Hence, it is expected that the results should be better if all the matching algorithms

are employed together.

14

CHAPTER III

RELATED WORK

Systems that provide graphical user interfaces (GUI) can be considered as an important

category of visual output systems. Hence, GUI testing techniques are related to our work.

These techniques have been investigated for more than two decades [44] at the time of

writing this paper. The majority of these techniques focus on the modeling and verification

of functional behavior rather than GUI appearance and they are not purely black-box testing

techniques. They run on the same machine as the system under test [45, 46] and they

assume that GUI components (e.g., buttons, labels) or a document object model (e.g., as

in HTML) for Web applications [47, 48] are available. However, this assumption may not

hold for all types of systems. For instance, testers do not usually have any access to the

internal events during the testing of embedded systems such as those from the consumer

electronics domain. They do not have any access to the GUI components either. Such

components and a static structure regarding their organization are not externally visible for

some systems like Digital TVs. Hence, the visual output that is observed on the screen has

to be validated in a black-box fashion.

Automated test oracles that employ image comparisons have been proposed for pure

black-box testing [49]. This approach has become popular among researchers in the last

few years in particular [9, 50, 51, 52, 11]. Many of these recent studies focus on Web

applications [50, 51, 52]. For example, Selay et al. proposed the use of image compar-

isons to detect layout failures in these applications [50]. The proposed technique utilizes

previously observed failure patterns and compares a selected set of regions in the com-

pared images. However, it assumes that these images are not subject to any variations due

to, for instance, scaling or color saturation. Therefore, any difference detected among the

15

selected regions is deemed as a failure. Our framework can be configured to take such

variations into account, if there are any expected. Mahajan and Halfond also aimed at de-

tection of presentation failures in Web applications [51, 52]. Their first study [51] employs

pixel-to-pixel comparison and ignores variations among images as well. Later, they pro-

pose the use of perceptual image differencing [53] to compare images [52]. This technique

takes a particular set of variations into account to avoid spatial and luminance sensitivity

in comparisons. Mahajan and Halfond used an external tool, pdiff 1, for implementing their

approach. Unlike our generic framework, this tool considers spatial and luminance sensi-

tivity only. It was also shown to be substantially inefficient with respect to other recent test

oracle implementations [11, 1].

Sub-image searching was used in a visual testing tool called Sikuli [54], where test

scripts and assertions can be specified via a set of keywords and images of GUI elements.

These images are searched within a Web page, and assertions can lead to failure based

on their (non-)existence. This tool, however, facilitates the implementation of specific

assertions only and it also ignores variations among images that do not actually indicate a

failure.

Image comparison has been used for automating test oracles in other application do-

mains as well. For instance, such an approach was used in automotive industry [55].

Hereby, snapshots of the interactive display that is presented to drivers are taken during

tests. These snapshots are compared with respect to a specification that defines the layout

of the display as well as the set of icons and textual information expected to be displayed.

The comparison involves a set of specialized techniques; i) pixel-to-pixel comparison for

icons, ii) optical character recognition for textual information, and iii) custom visual feature

extraction for complex display items such as the level of a gauge. The tool was employed in

a simulation environment during model-in-the-loop tests. As a result, captured images are

not subject to any variations in that context. In this study, we aimed at providing a generic

1http://pdiff.sourceforge.net

16

solution rather than a tool dedicated for a particular context and application domain.

Automated test oracles can reach to a verdict based on a similarity measure calculated

with respect to the compared images [9, 56]. The similarity measurement is defined based

on a set of keypoints extracted from these images. These keypoints may relate to the color,

texture, and shape of objects. This approach has been applied mainly for desktop applica-

tions and Web applications. Our framework incorporates a variety of keypoint extraction

and comparison metrics rather than relying on a particular similarity measure only.

Efficiency and re-usability of automated test oracles have been recently evaluated for

android devices [10]. In the experimental setup, snapshots of the mobile device screen

are taken via an external camera. These snapshots are compared with respect to refer-

ence images. 3 different kinds of image comparison techniques are implemented/used: i)

SURF (Speeded up robust features), ii) Histogram matching, and iii) Template matching.

We compared the accuracy of this tool with respect to several instances of our framework

(Section 5.2).

We previously implemented an automated test oracle [11] called VISOR for testing

visual output systems. This tool employs an image processing pipeline for comparing

images. It includes a series of image filters that align the compared images and remove

noise to eliminate differences caused by scaling and translation. Hence, VISOR provides

an efficient but a dedicated solution for addressing scaling and translation variations only.

In this work, we introduce a configurable framework that can employ a combination of

available techniques in the computer vision domain tuned to address any set of variations.

We evaluated several instances of this framework by comparing its accuracy with respect to

VISOR as well as other tools previously employed/implemented for test oracle automation

based on image comparison.

There exist a recent survey [6] conducted for analyzing and categorizing test oracles

proposed so far. Our framework supports the development of so-called specified test or-

acles according to the proposed classification. Hereby, the evaluated image is compared

17

with respect to a specification, which is also provided in the form of an image, called the

reference image. Hence, our approach adopts so-called visual assertions according to a

previously made classification of test oracles used for GUI testing [57].

18

CHAPTER IV

TEST ORACLE IMPLEMENTATION

The overall process followed by ADVISOR is depicted in Figure 2. ADVISOR takes three

inputs: a reference image, a captured image, and a configuration. ADVISOR compares

the two images according to the parameters given in the configuration input, and gives a

verdict of pass or fail. A pass verdict means that ADVISOR decided the captured image is

sufficiently similar to the reference image to indicate no error in the SUT. Conversely, a fail

verdict means that the captured image was found sufficiently different from the reference

image to indicate an error in SUT.

f-Score

Detect features of
image pair

Extract
descriptors of

detected features

Find good
matches and

transform
captured image

Read reference/captured
images and user

configuration

Image matching scores >=
respective threshold

Yes

No

Image Matching

Fail

Find matching
score of image

pair

Is transformation
enabled?

Transformation

Yes

No

Pass

Figure 2: The overall process.

ADVISOR integrates all the techniques discussed in Chapter 2 and makes them avail-

able to the user as features. The configuration input of ADVISOR is a CSV file that specifies

19

which of these techniques are to be used for image comparison. The configuration file is

prepared via a web-based graphical user interface, where the user can select or deselect

features on the feature diagram of ADVISOR (see Figure 1). We implemented the feature

diagram using an online feature modeling environment, SPLOT1 (Software Product Lines

Online Tools). One can use this environment to create a configuration file by importing the

model and selecting or deselecting features. Consistency with respect to constraints is en-

sured by the tool during this process. The snapshot on the left-hand side of Figure 3 shows

the SPLOT model we created. One can select or deselect features on this tree structure to

define a configuration as shown on the right-hand side of Figure 3. The configuration in

this example takes FAST as the keypoint detector, BRIEF as the descriptor extractor, and

Perspective Transform as the transformation. It employs all the image matching techniques

together. The final configuration can be exported as a CSV file to be fed into ADVISOR.

Figure 3: Snapshot images taken from the online SPLOT tool that depict a part of the
created feature diagram for ADVISOR and a configuration defined on this diagram.

We implemented ADVISOR in Python; it is available as an open-source framework2.

1http://www.splot-research.org
2https://github.com/ahmetesatgenc/Test-Oracle

20

CHAPTER V

INDUSTRIAL CASE STUDY

In Vestel R&D, different types of tests such as conformance, performance, functional are

being performed by Design Verification and Test Group daily. Some of these tests can be

adopted to Vestel automation system called as VesTa. Thanks to this, overnight tests or tests

that have plenty of cases can be performed without wasting tester’s time. Testers prepare

test environment before starting the automation and check the verdict of the VesTa system

via web-based test tracking page run one local computer. Hence, sources can be managed

pretty easily during test a certification or mass production process.

VesTa, basically, sends remote control key codes to the DUT to follow instructions

of pregenerated test steps to reach expected result of test cases. In doing so, it captures

snapshots of predefined checkpoints in order to compare with reference images which are

snapshot of predefined checkpoints of previous test at the same step. Comparison algorithm

that VesTa using is peak signal-to-noise ration (PSNR) during comparison of captured and

reference images. The tester prepares test environment; prepares the device to be tested

with correct panel size if the device is a TV and profile options which define the behaviour

of the device during the test. The profile consist of two parts. One of which is software

profile that includes for instance audio codec, DVB type support, country, language, cus-

tomer, connectivty options. The other is the hardware profile that includes for instance

source types and counts, mainboard and remote control type options. After the device is

prepared for the test, image capturing board called Harran and is developed by Vestek, a

subsidiary of Vestel Electronic is connected to the device via Ethernet input. Finally, the

result of the test obtained by VesTa is controlled by the tester via web-based test tracking

page to eliminate false negatives and false positives.

21

Even VesTa automation system is being used over years, it has some drawbacks which

leads testers to spend more time than expected to check the results which motivate us to

improve the system. One of the drawback of the VesTa is that it never checks whether

captured and reference images are in the same planar surface or not. Vestel as a TV manu-

facturer produces TVs with panel size in range 24 to 75 inches. Due to the Harran board’s

nature, captured images are becoming subject of scale, shift, saturation or all of them when

the panel size of the DUT is different comparing to the panel size of the DUT used to obtain

reference images. The other drawback is to use PSNR algorithm is employed to validate

the performance of the denoising algorithms [58] and to compute PSNR between images.

However, because PSNR is not scale invariant, overall performance is getting lower when

the captured image is subject to scale, shift or saturation.

Alternative techniques from the computer vision domain are employed as proposed

in this work to improve the VesTA verdict. In order to measure the performance of the

proposed test oracle, a dataset from real Digital TV test is used.

5.1 Dataset

We used a data set that is collected during the testing process of commercial Digital TV

systems as previously introduced and used in [1]. The set contains a total of 1000 image

pairs (captured and reference images), each of which is manually labeled as belonging to

one of the following classes:

• failure: the captured image differs from the reference image, and the pair indicates

an error in the system. There are 456 image pairs in this category.

• pixel shift: the captured image differs from the reference image because of pixel

shifting effects; there is no indication of an error in the system. There are 42 image

pairs in this category.

• scale: the captured image differs from the reference image because of scaling effects;

22

there is no indication of an error in the system. There are 359 image pairs in this

category.

• saturation: the captured image differs from the reference image because of saturation

effects; there is no indication of an error in the system. There are 143 image pairs in

this category.

Note that in principle it is possible for a reference image to be subject to multiple effects

(e.g. pixel shifting plus scaling). When manually labeling the pairs, the human inspector

chose the most apparent effect in such cases.

5.2 Evaluation

In this section, we experimentally evaluate the accuracy of ADVISOR. To this end, we

compare several test oracle configuration instances derived from ADVISOR with previously

introduced tools. We ask the following research questions:

RQ1: How the overall accuracy of various test oracle implementations compare?

RQ2: How the accuracy of various test oracle implementations compare when the input

images are subject to pixel shifting, scaling and color saturation?

In the rest of this chapter, we present the dataset, subject systems, and the metrics used

for evaluation. Then we discuss the obtained results and threats to validity.

5.2.1 Subject Systems

We include all the subject systems that were previously evaluated [1] on the dataset we are

using. In addition, we evaluate two recently proposed test oracles, SURFAndroid [10] and

VISOR [11]. Finally, we create and apply 20 configurations of ADVISOR, shown in Table-1

and Table-2, built by combining the available features in various ways.

23

Table 1: The set of selected ADVISOR configurations when perspective trasform is used
as transformation method for evaluation.

Config. Feature Descriptor Transform Image
Detector Extractor Matching

onf1 BRISK BRISK Perspective (*)
conf2 FAST BRIEF Perspective (*)
conf3 FAST FREAK Perspective (*)
conf4 ORB ORB Perspective (*)
conf5 SIFT SIFT Perspective (*)
conf6 SimpleBlob BRIEF Perspective (*)
conf7 SimpleBlob FREAK Perspective (*)
conf8 Star BRIEF Perspective (*)
conf9 Star FREAK Perspective (*)
conf10 SURF SURF Perspective (*)

(*) In all configurations “Histogram - Template - Pixel” features were selected for image
matching.

5.2.1.1 Evaluation Criteria

Recall from Figure 2 that ADVISOR, when given an image pair and a configuration, gives

a verdict in the form of either pass or fail. This verdict is considered a true negative (TN),

true positive (TP), false negative (FN), or false positive (FP) as defined below [59]:

TN: There is no error and the verdict is pass.

TP: There is an error and the verdict is fail.

FN: There is an error and the verdict is pass.

FP: There is no error and the verdict is fail.

Table 3 associates the four image pair categories with the possible test oracle verdicts.

In order to measure validity of the measurement, we employed Precision and Recall as

defined in [60] as ratio of relevance of retrieved data and ratio of retrieved data that are

relevant; respectively. Below are the equations of Precision and Recall;

Precision =
|T P|

|T P|+|FP|
(1)

24

Table 2: The set of selected ADVISOR configurations when affine trasform is used as
transformation method for evaluation.

Config. Feature Descriptor Transform Image
Detector Extractor Matching

conf11 BRISK BRISK Affine (*)
conf12 FAST BRIEF Affine (*)
conf13 FAST FREAK Affine (*)
conf14 ORB ORB Affine (*)
conf15 SIFT SIFT Affine (*)
conf16 SimpleBlob BRIEF Affine (*)
conf17 SimpleBlob FREAK Affine (*)
conf18 Star BRIEF Affine (*)
conf19 Star FREAK Affine (*)
conf20 SURF SURF Affine (*)

(*) In all configurations “Histogram - Template - Pixel” features were selected for image
matching.

Recall =
|T P|

|T P|+|FN|
(2)

With the help of Precision and Recall, F-score, harmonic mean of them, can be calcu-

lated as below;

Fβ = (1+β
2)×

(precision×recall)

(β 2×precision+recall)
(3)

β is the weight of F-score and used to emphasize Precision when β<1 and Recall when

β>1. Hereby, true negative, true positive, false negative, and false positive values for each

threshold in range from 0 to 1 with 0.1 steps are calculated and F-score is extracted. As

F-score equation indicates that F-score in it’s highest value for a threshold set gives the

optimum threshold value. Since, as long as the true positive and true negative have high

values, F-score is getting higher. In ideal case, true positive and true negative converges

to 1 and false positive and false negative converges to 0 which means that F-score will be

zero. In our case study, we used F0.5-score to emphasizes Precision in order to minimize

the fp, F2-score to emphasizes the Recall in order to minimize the fn and F1-score.

25

Table 3: Evaluation of a verdict according to image set categories
Image Pair Category Test Oracle Verdict Evaluation

fail
Fail TP
Pass FN

pixel shift, scale, saturation
Fail FP
Pass TN

We applied 10-fold cross validation to eliminate the bias in the selection of the train-

ing dataset for optimizing the threshold value. That is, we partitioned the dataset into 10

randomly-selected, equally-sized, disjoint segments. Then, an optimal threshold value was

calculated 10 times. Each time, a different combination of 9 disjoint segments was used

for calculating the threshold; the remaining disjoint segment was used for testing.

The metric to be judged the system effectiveness is accuracy which is calculated as a

ratio of true positive and true negative to retrieved data as below:

Accuracy =
|T P|+|T N|

|T P|+|T N|+|FP|+|FN|
(4)

26

CHAPTER VI

RESULTS AND DISCUSSION

Proposed test oracle system integrates all technics that OpenCV library includes and plenty

of configurations can be generated by using SPLOT. However, some of the technics already

provide both keypoint detection and descriptor extraction such as SURF, SIFT, BRISK

and ORB. Additionally, some of them are based on already available keypoint detector or

descriptor extractor technics. For instance, ORB is a combination of FAST and BRIEF

with some enhancement. Due to the fact, configurations are generated in order to compare

the performance of transformation, image matching and keypoint detector or descriptor

extractor functions.

The overall results are listed in Table-4, Table-5 and Table-6. While listing all result

for the configurations, template metching with 640x480 window size is used. Recall that

the Fail dataset contains 456 image pairs that are all associated with failure cases. Hence,

the verdict can be either tp or fn regarding these pairs. (See Table 3). Image pairs included

in the other 3 datasets (Pixel Shift, Saturation, Scale) are all associated with successful

executions although the captured images are subject to distortions. Hence, the verdict can

be either fp or tn regarding these pairs. Following tables list the number of fp, tn, tp and

fn verdicts for all image pairs and the overall accuracy computed based on these values

in the last column. Each row of Table-4 corresponds to a subject system as previously

evaluated [1]. The last set of rows list the results for SURFAndroid [10] and VISOR [11]

in Table-4. Rows of Table-5 and Table-6 lists the result of the configurations of ADVISOR

as listed in Table-1 and Table-2. Additionally, tp, tn, fp, fn and accuracy values are added

to tables according to F1-score, F2-score and F0.5-score. Recall that, F0.5-score is used to

minimize the fp and F2-score is used to minimize the fn values.

27

Table 4: Results of the configurations of [1] and SURFAndroid and VISOR(All the listed
numbers represent rounded up percentage (%) values).

Tools / Pixel Shift Saturation Scale Fail Overall
Configurations TN FP TN FP TN FP TP FN Accuracy

PSNR 69.0 31.0 80.4 19.6 0.0 100.0 86.6 13.4 53.9
SSIM 100.0 0.0 95.8 4.2 98.6 1.4 37.2 62.8 70.3

DSSIM 100.0 0.0 100.0 0.0 100.0 0.0 0.0 100.0 54.4
PDIFF 100.0 0.0 76.2 23.8 97.4 2.6 37.9 62.1 67.4

AF 100.0 0.0 100.0 0.0 100.0 0.0 5.3 94.7 56.8
BT 100.0 0.0 100.0 0.0 100.0 0.0 1.6 98.4 55.1
IM 100.0 0.0 83.9 16.1 96.9 3.1 44.5 55.5 71.3
PIL 100.0 0.0 97.2 2.8 97.2 2.8 42.9 57.1 72.1

CV2-y1 69.0 31.0 76.2 23.8 88.0 12.0 74.5 25.5 79.4
CV2-y2 100.0 0.0 83.2 16.8 98.8 1.2 20.7 79.3 61.0
CV2-y3 100.0 0.0 100.0 0.0 88.8 11.2 30.1 69.9 64.1
CV2-y4 78.5 21.5 100.0 0.0 100.0 0.0 22.2 77.8 63.6
CV2-y5 100.0 0.0 100.0 0.0 100.0 0.0 22.6 77.4 64.7
CV2-y6 2.4 97.6 9.1 90.9 0.3 99.7 100.0 0.0 47.1

SURFAndroid 50.0 50.0 61.5 38.5 87.1 12.9 83.3 16.7 80.2
VISOR 95.2 4.8 92.3 7.7 95.8 4.2 93.9 6.1 93.9

As can be seen from the Table-5 that F0.5-score successfully minimizes the fp values

comparing to F1-score result. On the other hand, fn values are becoming higher as a side

affect of this. In the same manner, F2-score successfully minimizes the fn values comparing

to F1-score result but fp values are becoming higher. Thus, Fβ -Score provides an option to

choose between fp and fn. In real life applications, it is expected from test oracle system

to minimize the fn values which provides to the tester to check only fail verdicts of the

system. This avoids the tester to be in doubt whether the pass verdict is actually pass or

not.

Table-5 also allows us to understand the performance of keypoint detectors and descrip-

tor extractors. Recall that the image pairs included in the datasets (Pixel Shift and Scale)

are subject to a kind of transformation. Hence, the result from these datasets point the per-

formance of keypoint detectors and descriptor extractors regarding transformation method.

Since, the image matching methods are not scale invariant and transformation which is

computed by good matches should be successfully executed. When transformation method

28

is perspective transform and all image matching features of test oracle is selected in config-

urations, conf1, conf2, conf3, conf5 and conf10 provides maximum accuracy for both Pixel

Shift and Scale datasets. Fail dataset contains 456 image pairs that are all associated with

failure cases. All configurations with perspective transform fail to find them as different

images but have same performance on Fail data set. It’s known that actual comparison re-

sult of the Saturation data set that contains 143 image pairs is successful. However, due to

the different color intensities according to the related reference images, automatic results

can be obtained as unsuccessful fp. As can be seen from the Table-5, all configurations

have similar result for Saturation dataset while conf2, conf8 and conf10 have better result

with %81.4 percantage. In overall accuracy, conf10 and conf2 has the maximum accuracy

with %96.7 percentage.

Table-6 presents the result of the same configuration of Table-1 except transformation

method which is now affine transform. Performance of the configurations with affine trans-

form on Pixel shift dataset is similar to configurations with perspective transform. The

important difference is that the performance on the Scale dataset. As mentioned, keypoint

detector and descriptor extractor functions are important to transform images into same

planar surface. As can be seen from the Table-6 that the configurations with affine trans-

form are not successful which means that perspective transformation is better than affine

transformation when images are subjec to to scale. For other datasets, same judgment can

be reached about Fβ -score, Fail and Saturation dataset. In overall, conf20 which has the

same keypoint detector, descriptor extractor and image matching method with conf10 has

the maximum accuracy with %95.9 percentage.

It is expected that the best result is obtained when all comparison algorithms are used

together as in discussed in Chapter 2. Table-7 shows the result of comparison algorithm

combinations of conf1, conf11, conf4,conf14, conf5, conf15, conf10 and conf20. As can be

seen from the Table-7 that the template matching algorithm gives the best results according

to accuracies. For each dataset, template matching has better score rather than histogram

29

Table 5: Results of the configurations when perspective transform is used as transforma-
tion method (All the listed numbers represent rounded up percentage (%) values).

Configurations Fβ -Score
Pixel Shift Saturation Scale Fail

Overall Accuracy
TN FP TN FP TN FP TP FN

conf1

F1-Score 100.0 0.0 80.0 20.0 100.0 0.0 98.6 1.4 96.5
F2-Score 45.0 55.0 62.8 37.2 92.3 7.7 100.0 0.0 89.6
F0.5-Score 100.0 0.0 93.5 6.5 100.0 0.0 92.9 7.1 95.8

conf2

F1-Score 100.0 0.0 81.4 18.6 100.0 0.0 98.6 1.4 96.7
F2-Score 45.0 55.0 60.0 40.0 92.9 7.1 100.0 0.0 89.2
F0.5-Score 100.0 0.0 91.4 8.6 100.0 0.0 92.8 7.2 95.5

conf3

F1-Score 100.0 0.0 80.0 20.0 100.0 0.0 98.6 1.4 96.5
F2-Score 47,5 52,5 62.8 37.2 92.3 7.7 100.0 0.0 89.7
F0.5-Score 100.0 0.0 95.7 4.3 100.0 0.0 92.6 7.4 96.0

conf4

F1-Score 100.0 0.0 80.0 20.0 99.4 0.6 98.6 1.4 96.3
F2-Score 45.0 55.0 66.4 33.6 92.2 7.8 100.0 0.0 90.2
F0.5-Score 100.0 0.0 92.1 7.9 100.0 0.0 92.8 7.2 95.6

conf5

F1-Score 100.0 0.0 80.7 19.3 100.0 0.0 98.6 1.4 96.6
F2-Score 45.0 55.0 60.0 40.0 92.2 7.8 100.0 0.0 89.2
F0.5-Score 100.0 0.0 92.8 7.2 100.0 0.0 92.8 7.2 95.7

conf6

F1-Score 100.0 0.0 80.7 19.3 99.7 0.3 98.6 1.4 96.5
F2-Score 100.0 0.0 78.5 21.5 97.4 2.6 98.6 1.4 95.4
F0.5-Score 100.0 0.0 92.1 7.9 100.0 0.0 93.5 6.5 95.9

conf7

F1-Score 97.5 2.5 80.7 19.3 99.4 0.6 98.6 1.4 96.3
F2-Score 50.0 50.0 62.1 37.9 92.2 7.8 100.0 0.0 89.7
F0.5-Score 97.5 2.5 90.7 9.3 100.0 0.0 93.1 6.9 95.4

conf8

F1-Score 100.0 0.0 81.4 18.6 99.7 0.3 98.6 1.4 96.6
F2-Score 45.0 55.0 61.4 38.6 92.2 7.8 100.0 0.0 89.4
F0.5-Score 100.0 0.0 95.0 5.0 100.0 0.0 92.8 7.2 96.0

conf9

F1-Score 100.0 0.0 78.5 21.5 99.4 0.6 98.6 1.4 96.1
F2-Score 45.0 55.0 62.8 37.2 92.2 7.8 100.0 0.0 89.6
F0.5-Score 100.0 0.0 96.4 3.6 100.0 0.0 93.1 6.9 96.3

conf10

F1-Score 100.0 0.0 81.4 18.6 100.0 0.0 98.6 1.4 96.7
F2-Score 45.0 55.0 60.0 40.0 92.2 7.8 100.0 0.0 89.2
F0.5-Score 100.0 0.0 92.8 7.2 100.0 0.0 92.8 7.2 95.7

matching except Pixel shift dataset. Pixel matching is more sensitive than the other match-

ing algorithms from pixel intensities. Since, it finds a lot more unsuccessful result in the

datasets that have a pixel differences and images are subject to scale or shift but has better

result on fail data set. In overall, template matching has more stable performance when

30

Table 6: Results of the configurations when affine transform is used as transformation
method (All the listed numbers represent rounded up percentage (%) values).

Configurations Fβ -Score
Pixel Shift Saturation Scale Fail

Overall Accuracy
TN FP TN FP TN FP TP FN

conf11

F1-Score 100.0 0.0 77.8 22.2 97.1 2.9 98.6 1.4 95.2
F2-Score 45.0 55.0 60.0 40.0 96.2 3.8 100.0 0.0 90.7
F0.5-Score 100.0 0.0 89.2 10.8 99.7 0.3 93.1 6.9 95.2

conf12

F1-Score 100.0 0.0 78.5 21.5 96.8 3.2 98.6 1.4 95.3
F2-Score 97.5 2.5 77.8 22.2 96.8 3.2 98.6 1.4 95.0
F0.5-Score 100.0 0.0 90.7 9.3 99.7 0.3 92.8 7.2 95.3

conf13

F1-Score 100.0 0.0 77.8 22.2 96.8 3.2 98.6 1.4 95.1
F2-Score 45.0 55.0 59.2 40.8 96.2 3.8 100.0 0.0 90.6
F0.5-Score 100.0 0.0 86.4 13.6 99.4 0.6 93.1 6.9 94.6

conf14

F1-Score 100.0 0.0 80.7 19.3 97.1 2.9 98.6 1.4 95.6
F2-Score 45.0 55.0 65.7 34.3 96.2 3.8 100.0 0.0 91.5
F0.5-Score 100.0 0.0 88.5 11.5 98.8 1.2 93.5 6.5 95.0

conf15

F1-Score 100.0 0.0 78.5 21.5 97.1 2.9 98.8 1.2 95.4
F2-Score 100.0 0.0 77.8 22.2 96.8 3.2 98.8 1.2 95.2
F0.5-Score 100.0 0.0 89.2 10.8 99.7 0.3 94.0 6.0 95.6

conf16

F1-Score 100.0 0.0 79.2 20.8 97.1 2.9 98.6 1.4 95.4
F2-Score 47.5 52.5 59.2 40.8 96.2 3.8 100.0 0.0 90.7
F0.5-Score 100.0 0.0 85.0 15.0 98.8 1.2 94.0 6.0 94.6

conf17

F1-Score 87.5 12.5 80.0 20.0 97.1 2.9 98.6 1.4 95.0
F2-Score 45.0 55.0 65.0 35.0 96.0 4.0 100.0 0.0 91.3
F0.5-Score 92.5 7.5 88.5 11.5 99.7 0.3 93.7 5.3 95.1

conf18

F1-Score 100.0 0.0 80.0 20.0 97.1 2.9 98.6 1.4 95.5
F2-Score 100.0 0.0 77.8 22.2 96.8 3.2 98.6 1.4 95.1
F0.5-Score 100.0 0.0 90.7 9.3 99.7 0.3 92.8 7.2 95.3

conf19

F1-Score 100.0 0.0 77.8 22.2 96.8 3.2 98.6 1.4 95.1
F2-Score 45.0 55.0 59.2 40.8 94.2 5.8 100.0 0.0 90.6
F0.5-Score 100.0 0.0 88.5 11.5 99.7 0.3 92.4 7.6 94.7

conf20

F1-Score 100.0 0.0 87.1 12.9 97.1 2.9 97.3 2.7 95.9
F2-Score 100.0 0.0 77.8 22.2 96.8 3.2 98.6 1.4 95.1
F0.5-Score 100.0 0.0 90.7 9.3 99.4 0.6 94.2 5.8 95.8

perspective transform is applied to the datasets rather than affine transform.

As indicated in Chapter 2, template matching uses 6 different window sizes in this

paper. In every table in experimental result discussion, 640x360 window size is used.

This is because of this window size gives better result. However, when the window size

31

Table 7: Results of each image comparison algorithms for conf1, conf11, conf4,conf14,
conf5, conf15, conf10 and conf20 according to F1-Score.

Pixel Shift Saturation Scale Fail Overall
Configurations FP TN FN TP FP TN FP TN Accuracy

Comparison algorithms for conf1
Histogram 100.0 0.0 67.1 32.9 90.5 9.5 59.3 40.7 73.2
Template 65.0 35.0 93.5 6.5 98.2 1.8 60.2 39.8 78.7

Pixel 7.5 92.5 42.1 57.9 68.2 31.8 75.1 24.9 65.2
Comparison algorithms for conf11

Histogram 100.0 0.0 62.8 37.2 72.8 27.2 69.1 30.9 70.8
Template 90.0 10.0 94.2 5.8 96.2 3.8 58.6 41.4 78.4

Pixel 0.0 100.0 17.1 82.9 0.0 100.0 100.0 0.0 48.3
Comparison algorithms for conf4

Histogram 100.0 0.0 67.1 32.9 90.5 9.5 59.7 40.3 73.4
Template 62.5 37.5 94.2 5.8 98.8 1.2 58.8 41.2 78.3

Pixel 22.5 77.5 53.5 46.5 86.2 13.8 63.3 36.7 68.4
Comparison algorithms for conf14

Histogram 100.0 0.0 67.8 32.2 91.4 8.6 60.2 39.8 74.0
Template 95.0 5.0 95.0 5.0 96.2 3.8 62.0 38.0 80.3

Pixel 0.0 100.0 27.5 72.5 0.0 100.0 100.0 0.0 48.8
Comparison algorithms for conf5

Histogram 100.0 0.0 67.1 32.9 90.5 9.5 59.1 40.9 73.1
Template 45.0 55.0 67.8 32.2 92.5 7.5 68.8 31.2 76.2

Pixel 7.5 92.5 42.1 57.9 71.1 28.9 74.6 25.4 66.0
Comparison algorithms for conf15

Histogram 100.0 0.0 62.8 37.2 72.8 27.2 70.8 29.2 71.6
Template 95.0 5.0 95.0 5.0 96.2 3.8 62.0 38.0 80.3

Pixel 0.0 100.0 16.4 83.6 0.0 100.0 100.0 0.0 48.2
Comparison algorithms for conf10

Histogram 100.0 0.0 67.1 32.9 90.5 9.5 59.7 40.3 73.4
Template 50.0 50.0 85.0 15.0 95.4 4.5 62.8 37.2 77.1

Pixel 7.5 92.5 42.1 57.9 69.1 30.9 74.6 25.4 65.3
Comparison algorithms for conf20

Histogram 100.0 0.0 62.8 37.2 72.8 27.2 69.1 30.9 70.8
Template 95.0 5.0 95.0 5.0 96.2 3.8 62.0 38.0 80.3

Pixel 0.0 100.0 17.1 82.9 0.0 100.0 100.0 0.0 48.3

gets smaller, the results are not getting any better. Table-8 presents the result of each

window size for conf1,conf5,conf10,conf4 and conf14. As can be seen from the table that

the best result is obtained when window size 640x360 is used for only template matching

result. The minimum window size fails to give correct verdict on Fail dataset while having

same performance with other window sizes on Pixel shift, Scale and Saturation datasets.

Additionally, the accuracy on Fail dataset decreases rapidly when the window sizes are

becoming smaller. It can be understand that the small window sizes are not suitable to

judge image pairs which are not similar. Surprisingly, 480x270 window size has not same

32

performance with for instance 320x180 or 640x480 window sizes.

Table 8: Results of the 6 window sizes for for conf1,conf5,conf10,conf4,conf14 according
to F1-Score.

Pixel Shift Saturation Scale Fail Overall
Configurations FP TN FN TP FP TN FP TN Accuracy

Window sizes for conf1

640x480 65.0 35.0 93.5 6.5 98.2 1.8 60.2 39.8 78.7
480x270 100.0 0.0 87.8 12.2 99.7 0.3 10.2 89.8 56.9
320x180 62.5 37.5 92.8 7.2 98.2 1.8 59.3 40.7 78.1
160x108 100.0 0.0 93.5 6.5 99.7 0.3 31.4 68.6 67.4
120x90 100.0 0.0 87.8 12.2 99.7 0.3 10.2 89.8 56.9
16x20 100.0 0.0 85.7 14.3 98.8 1.8 9.1 90.9 55.8

Window sizes for conf5

640x480 45.0 55.0 67.8 32.2 92.5 7.5 68.8 31.2 76.2
480x270 100.0 0.0 88.5 11.5 99.7 0.3 8.3 91.7 56.1
320x180 62.5 37.5 95.0 5.0 97.4 2.6 50.8 49.2 74.2
160x108 100.0 0.0 94.2 5.8 99.7 0.3 22.3 77.7 63.3
120x90 100.0 0.0 88.5 11.5 99.7 0.3 8.2 91.8 56.1
16x20 100.0 0.0 86.4 13.6 99.1 0.9 7.7 92.3 55.4

Window sizes for conf10

640x480 50.0 50.0 85.0 15.0 95.4 4.5 62.8 37.2 77.1
480x270 100.0 0.0 87.8 12.2 99.7 0.3 10.6 89.4 57.1
320x180 65.0 35.0 93.5 6.5 97.1 2.9 59.3 40.7 77.9
160x108 100.0 0.0 95.0 5.0 99.4 0.6 27.7 72.3 65.9
120x90 100.0 0.0 87.8 12.2 99.7 0.3 10.6 89.4 57.1
16x20 100.0 0.0 86.4 14.3 99.1 1.8 9.3 90.7 56.1

Window sizes for conf4

640x480 62.5 37.5 94.2 5.8 98.8 1.2 58.8 41.2 78.3
480x270 100.0 0.0 89.2 10.8 99.7 0.3 6.6 93.4 55.5
320x180 57.5 42.5 94.2 5.8 99.1 0.9 57.3 42.7 77.5
160x108 100.0 0.0 95.0 5.0 99.4 0.6 25.3 74.7 64.7
120x90 100.0 0.0 89.2 10.8 99.7 0.3 6.6 93.4 55.5
16x20 100.0 0.0 86.4 13.6 98.8 1.8 5.3 94.7 54.1

Window sizes for conf14

640x480 95.0 5.0 95.0 5.0 96.2 3.8 62.0 38.0 80.3
480x270 100.0 0.0 94.2 5.8 100.0 0.0 7.7 92.3 56.8
320x180 95.0 5.0 95.0 5.0 96.8 3.2 57.3 42.7 78.3
160x108 100.0 0.0 95.0 5.0 97.1 2.9 42.4 57.6 71.8
120x90 100.0 0.0 94.2 5.8 100.0 0.0 7.7 92.3 56.8
16x20 100.0 0.0 91.4 8.6 100.0 0.0 6.8 93.2 56.0

In order to understand the template matching accuracies, we examined the matching

score of the template matching for 640x480, 480x270 and 16x20 window sizes with conf1.

Figure 4, Figure 5 and Figure 6 shows the matching score of template matching scores of

33

window sizes for each datasets.

It is expected that the matching scores should be maximum on Saturation, Pixel shift

and Saturation datasets and minimum for Fail dataset. As can be seen from the Figure 4

that the matching score is quite high when 640x480 window size is used on Saturation,

Pixel shift and Saturation datasets. Although matching scores are expected to be low on

Fail dataset, 640x480 window size has high matching score. This leads the test oracle gives

verdict pass.

Pixel Shift dataset Saturation dataset

Scale dataset Fail dataset

Figure 4: Matching scores of 640x480 window size of Template matching for conf1

It can be understand the accuracy differences between Saturation and Pixel shift dataset

of 640x480 and480x270 window sizes from the Figure 4 and Figure 5. While 480x270

window size matching scores are better on Pixel shift dataset rather than 640x480 window

size, it’s matching scores for Saturation dataset are worse. This leads better Pixel shift

accuracy but worse Saturation accuracy. As mentioned that it is expected the low matching

34

scores on Fail dataset in order to lead test oracle to give correct verdict. However, it’s

noteworthy that the matching scores of 480x270 window size on Fail dataset is quite high.

Pixel Shift dataset Saturation dataset

Scale dataset Fail dataset

Figure 5: Matching scores of 480x270 window size of Template matching for conf1

Accuracy differences on Fail dataset between window sizes are clearly the reason of

performance of the dataset about matching scores. 16x20 window size has similar results

with 480x270 window size which causes to decrease the accuracy on Fail dataset and also

overall accuracy. It is conceivable that smaller window size provides better results, because

the matching area is getting smaller and differences between images especially in Fail

dataset can be dissociated easily. On the contrary, the results of the window sizes and

matching scores graphs show that the bigger window sizes are better to compare images.

Performance of image matching algorithms are associated with how precise the im-

age pairs are transformed. Overall results show that the performance of transformation is

35

Pixel Shift dataset Saturation dataset

Scale dataset Fail dataset

Figure 6: Matching scores of 16x20 window size of Template matching for conf1

similar with different keypoint detectors, descriptor extractors and transformation meth-

ods. However, some of them have better result among them all. In order to compare their

performance, found keypoints for each images and good matches are examined. Figure 7,

Figure 8 and Figure 9 show the keypoints of captured image against good matches for Satu-

ration dataset. conf4 is not paid attention due to the ORB keypoint detector takes keypoint

number as a parameter of the function. Because of the default parameters are used for

every ORB keypoint detector and descriptor extractor, keypoint-goodmatches figures are

meaningless to present. In ideal case, detected keypoints are also the good matches when

keypoints of captured and reference images are matched. This provides a linear line that all

points of the line have the same number of good matches and keypoints number. In addition

to that the most number of computed good matches will benefit to transform image better.

Since, the transform methods use good match points to compute transformation matrix.

36

Figure 7: Keypoint against Good Matches graphs of Saturation dataset for conf1, conf3,
conf3 from left to right.

As shown in Figure 7, keypoints detected by keypoint detector of conf1 are in range

0 to 40000. Calculated good matches are in range 0 to over 8000 and the distribution

of the keypoints against good matches graph is similar to a linear line. On the other hand,

keypoint detector of conf2 and conf3 which is FAST finds the keypoints in range 0 to 50000.

However, good matches numbers are below against the found keypoints.

Figure 8: Keypoint against Good Matches graphs of Saturation dataset for conf5, conf6,
conf7 from left to right.

Although, SimpleBlob, keypoint detector of conf6 and conf7, founds a small number of

keypoints from captured images, calculated good matches of conf6 against the keypoints

match according to Figure 8. This means that the descriptor extractor of conf6 matches the

keypoints precisely rather than the conf7. On the other hand, performance of SIFT, which

is employed for keypoint detection and descriptor extraction for conf5, is better due to find

plenty of keypoints and match them.

conf10, employes SURF for keypoint detector and descriptor extractor, finds maximum

number of over 17500 keypoints and matches these keypoints approximately in ideal case.

37

Figure 9: Keypoint against Good Matches graphs of Saturation dataset for conf8, conf9,
conf10 from left to right.

On the other hand, Star feature detector for both conf8 and conf9 finds maximum number of

over 10000 keypoints but the matching performances of these configurations are not better

than conf10.

In overall, some of the feature detectors such as SIFT and BRISK find the most number

of keypoints and some of the descriptor extractors match these keypoints of captured and

reference images with better performance. It is expected that the conf1, conf5 and conf10

have better performance on Saturation dataset. However, as can be remembered from the

Table-5 that the conf2, conf8, and conf10 have the maximum accuracy with %81.4 percent-

age. Even the result for the Saturation dataset is not directly related to keypoint detectors

and descriptor extractors, their performances regarding to keypoints against good matches

graphs are evaluated. The reason of varying accuracy results of Saturation dataset is due

to not being saturation invariance of image matching methods. Figure 10 shows a sample

image pair from Saturation dataset that ADVISOR gives false verdict.

In addition to that ADVISOR gives false verdict on Fail dataset with maximum %2.7

percentage. A sample image pair from Fail dataset that ADVISOR gives false verdict can

be seen from Figure 11.

Hereby, image matching methods can reach the maximum possible accuracy for the

Pixel Shift and Scale datasets. This is due to the effective handling of transformation defi-

ciencies and highly accurate transformations.

38

Captured Image Reference Image

Figure 10: A sample image pair from the Saturation dataset for which the verdict was
false positive

Captured Image Reference Image

Figure 11: A sample image pair from the Fail dataset for which the verdict was false
positive

6.1 Threats to Validity

Our evaluation is subject to external validity threats [61] since it is based on a single bench-

mark dataset. This dataset was collected from a particular application domain.

Internal threats imposed by measurements are mitigated by using real image pairs col-

lected during regular regression tests of real products in the industry. Our work did not

involve any change of the data set throughout the measurements.

We compared our results with respect to previously made measurements on the same

dataset to mitigate conclusion and construct validity threats. We also performed 10-fold

cross validation on the dataset to mitigate these treats.

39

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

We introduced ADVISOR, an adaptive framework for test oracle automation of visual out-

put systems. The framework allows the use of a flexible combination and configuration of

alternative techniques from the computer vision domain. We performed a domain analy-

sis to review these techniques in terms of their pros and cons for applicability in various

settings. ADVISOR can be configured to utilize a subset of these techniques that are tuned

for a particular application context. We developed a feature model that defines common-

alities and variations in test oracle implementations, the available techniques as well as

constraints and conflicts among them. One can browse this model and define a test oracle

instance configuration via a Web-based graphical user interface.

We evaluated several instances of our framework with respect to state-of-the-art tools.

We used a benchmark dataset that includes image pairs collected during regular regression

tests of real Digital TV systems. ADVISOR configurations significantly outperformed the

other tools in terms of the overall accuracy achieved. Results also showed that there is an

inherent trade-off regarding the configuration options. Techniques that are effective for a

particular image effect like pixel shifting can turn out be less effective for another effect

such as color saturation. ADVISOR enables one to select these techniques based on the test

setup, the frequency of observed cases and trade-off decisions.

The framework is still open to extensions and improvements. In this work, we covered

the main features of an image-comparison based test oracle and their variations.

40

References

[1] O. Erdil, I. Can, and H. Sozer, “Evaluation of image comparison algorithms as test or-
acles,” in Proceedings of the 11th Turkish National Software Engineering Symposium,
pp. 101–113, 2017.

[2] S. Berner, R. Weber, and R. K. Keller, “Observations and lessons learned from au-
tomated testing,” in Proceedings of the 27th International Conference on Software
Engineering, pp. 571–579, 2005.

[3] D. Rafi, K. Moses, K. Petersen, and M. Mäntylä, “Benefits and limitations of auto-
mated software testing: Systematic literature review and practitioner survey,” in Pro-
ceedings of the 7th International Workshop on Automation of Software Test, pp. 36–
42, 2012.

[4] G. Myers, T. Badgett, and C. Sandler, The Art of Software Testing. Hoboken, NJ,
USA: John Wiley and Sons Inc., 3 ed., 2012.

[5] W. Howden, “Theoretical and empirical studies of program testing,” IEEE Transac-
tions on Software Engineering, vol. 4, no. 4, pp. 293–298, 1978.

[6] E. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The oracle problem in
software testing: A survey,” IEEE Transactions on Software Engineering, vol. 41,
no. 5, pp. 507 – 525, 2015.

[7] B. Meyer, “Eiffel: A language and environment for software engineering,” Journal of
Systems and Software, vol. 8, no. 3, pp. 199–246, 1988.

[8] Z. Q. Zhou, S. Xiang, and T. Y. Chen, “Metamorphic testing for software quality
assessment: A study of search engines,” IEEE Transactions on Software Engineering,
vol. 42, no. 3, pp. 264–284, 2016.

[9] M. Delamaro, F. de Lourdes dos Santos Nunes, and R. A. P. de Oliveira, “Using
concepts of content-based image retrieval to implement graphical testing oracles,”
Software Testing, Verification and Reliability, vol. 23, no. 3, pp. 171–198, 2013.

[10] Y. D. Lin, J. F. Rojas, E. T. H. Chu, and Y. C. Lai, “On the accuracy, efficiency,
and reusability of automated test oracles for android devices,” IEEE Transactions on
Software Engineering, vol. 40, pp. 957–970, Oct 2014.

[11] M. Kirac, B. Aktemur, and H. Sozer, “VISOR: A fast image processing pipeline with
scaling and translation invariance for test oracle automation of visual output systems,”
Journal of Systems and Software, vol. 136, pp. 266–277, 2018.

[12] P. Clements and L. Northop, Software Product Lines: Practices and Patterns. Boston,
MA: Addison-Wesley, 2002.

41

[13] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-oriented do-
main analysis (FODA) feasibility study,” Tech. Rep. CMU/SEI-90-TR-21, Carnegie-
Mellon University, Software Engineering Institute, 2010.

[14] M. Hassaballah, A. Abdelmgeid, and H. Alshazly, Image Features Detection, De-
scription and Matching, pp. 11–45. Cham: Springer International Publishing, 2016.

[15] R. Szeliski, Computer Vision: Algorithms and Applications. London, UK: Springer-
Verlag, 2011.

[16] D. A. Lisin, M. A. Mattar, M. B. Blaschko, M. C. Benfiel, and E. G. Learned-Mille,
“Combining local and global image features for object class recognition,” IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition, 2005.

[17] D. G. Viswanathan, “Features from accelerated segment test (fast),” 2009.

[18] M. Agrawal, K. Konolige, and M. R. Blas, “Censure: Center surround extremas for
realtime feature detection and matching,” in European Conference on Computer Vi-
sion, pp. 102–115, Springer, 2008.

[19] A. Vedaldi, “An implementation of sift detector and descriptor,” University of Cali-
fornia at Los Angeles, vol. 7, 2006.

[20] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (surf),”
Computer vision and image understanding, vol. 110, no. 3, pp. 346–359, 2008.

[21] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient alternative
to sift or surf,” in Computer Vision (ICCV), 2011 IEEE international conference on,
pp. 2564–2571, IEEE, 2011.

[22] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary robust indepen-
dent elementary features,” in European conference on computer vision, pp. 778–792,
Springer, 2010.

[23] S. Leutenegger, M. Chli, and R. Y. Siegwart, “Brisk: Binary robust invariant scal-
able keypoints,” in Computer Vision (ICCV), 2011 IEEE International Conference
on, pp. 2548–2555, IEEE, 2011.

[24] A. Alahi, R. Ortiz, and P. Vandergheynst, “Freak: Fast retina keypoint,” in 2012 IEEE
Conference on Computer Vision and Pattern Recognition, pp. 510–517, Ieee, 2012.

[25] J. Quinlan, “Induction of decision trees,” Machine Learning 1, vol. 1(1), pp. 81 – 106,
1986.

[26] D. Lowe, “Distinctive image features from scale-invariant keypoints,” International
Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[27] A. Witkin, “Scale-space filtering,” International Joint Conference on Artificial Intel-
ligence, pp. 1019–1022, 1983.

42

[28] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on, vol. 1, pp. 886–893, IEEE, 2005.

[29] P. L. Rosin, “Measuring corner properties,” Computer Vision and Image Understand-
ing, vol. 73(2), pp. 291 – 307, 1999.

[30] A.Kaehler and G.Bradski, Learning OpenCV 3: Computer Vision in C++ with the
OpenCV. O’Reilly Media, Inc., 2016.

[31] A. Alahi, R. Ortiz, and P. Vandergheynst, “FREAK: Fast retina keypoint,” in Pro-
ceedings of the 25th IEEE Conference on Computer Vision and Pattern Recognition,
pp. 510–517, 2012.

[32] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with automatic al-
gorithm configuration,” in Proceedings of the VISAPP International Conference on
Computer Vision Theory and Applications, pp. 331–340, 2009.

[33] J. S. Beis and D. G. Lowe, “Shape indexing using approximate nearest-neighbour
search in high-dimensional spaces,” in Proceedings of the 1997 Conference on Com-
puter Vision and Pattern Recognition(CVPR 97), pp. 1000–, 1997.

[34] A. Jakubovic and J. Velagic, “Image feature matching and object detection using
brute-force matchers,” in Proceedings of the 2018 International Symposium ELMAR,
pp. 83–86, 2018.

[35] Y. M. Fouda, “A robust template matching algorithm basedon reducing dimensions,”
Journal of Signal and Information Processing, vol. 06(02), pp. 109 – 122, 2015.

[36] A. Rosenfeld and G. Vanderbrug, “Coarse-fine template matching,” IEEE Transac-
tions on Systems, Man and Cybernetics, vol. 7, pp. 104 – 107, 1977.

[37] T. D. and L. C., “Fast normalized cross correlation for defect detection,” Pattern
Recognition Letters, vol. 24, pp. 2625 – 2631, 2003.

[38] K. S. Mahmood. A., “Correlation-coefficient-based fast template matching through
partial elimination,” IEEE Transactions on Image Processing, vol. 21 (4), pp. 2099 –
2108, 2012.

[39] T. Kailath, “The divergence and bhattacharyya distance measures in signal selection,”
IEEE Transactions on Communication Technolgy, vol. COM-15 (1), pp. 52 – 62,
1967.

[40] S. Kullback and R. Leibler, “On information andsujciency,” The Annals of Mathemat-
ical Statistics, vol. 22 (1), pp. 79 – 86, 1951.

[41] V. H. E. Hellinger, “Neue begrundung der theorie quadratischer formen von un-
endlichvielen veranderlichen,” Journal fur die reine und angewandte Mathematik,
vol. 136, pp. 210 – 271, 1909.

43

[42] K. Pearson, “On the criterion that a given system of deviations from the probable in
the case of a correlated system of variables is such that it can be reasonably supposed
to have arisen from random sampling,” Philosophical Magazine, vol. 5, pp. 157 –
175, 1900.

[43] C. Y. Rubner and L. Guibas, “A metric for distributions with applications to im-
age database,” in Proceedings of the International Conference on Computer Vision,
pp. 59–66, 1998.

[44] I. Banerjee, B. Nguyen, V. Garousi, and A. Memon, “Graphical user interface (gui)
testing: Systematic mapping and repository,” Information and Software Technology,
vol. 55, no. 10, pp. 1679 – 1694, 2013.

[45] E. Alégroth, R. Feldt, and L. Ryrholm, “Visual GUI testing in practice: challenges,
problems and limitations,” Empirical Software Engineering, vol. 20, no. 3, pp. 694–
744, 2015.

[46] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella, “Approaches and tools for automated
end-to-end web testing,” vol. 101 of Advances in Computers, pp. 193 – 237, Elsevier,
2016.

[47] S. Sprenkle, L. Pollock, H. Esquivel, B. Hazelwood, and S. Ecott, “Automated oracle
comparators for testing web applications,” in Proceedings of the 18th IEEE Interna-
tional Symposium on Software Reliability, pp. 117–126, 2007.

[48] S. Choudhary, M. Prasad, and A. Orso, “X-PERT: Accurate identification of cross-
browser issues in web applications,” in Proceedings of the 2013 International Con-
ference on Software Engineering, pp. 702–711, 2013.

[49] J. Takahashi, “An automated oracle for verifying GUI objects,” SIGSOFT Software
Engineering Notes, vol. 26, no. 4, pp. 83–88, 2001.

[50] E. Selay, Z. Q. Zhou, and J. Zou, “Adaptive random testing for image comparison
in regression web testing,” in Proceedings of the International Conference on Digital
Image Computing: Techniques and Applications (DICTA), pp. 1–7, 2014.

[51] S. Mahajan and W. Halfond, “Finding HTML presentation failures using image com-
parison techniques,” in ACM/IEEE International Conference on Automated Software
Engineering, pp. 91–96, 2014.

[52] S. Mahajan and W. Halfond, “Detection and localization of html presentation fail-
ures using computer vision-based techniques,” in Proceedings of the 8th International
Conference on Software Testing, Verification and Validation, pp. 1–10, 2015.

[53] H. Yee, S. Pattanaik, and D. Greenberg, “Spatiotemporal sensitivity and visual atten-
tion for efficient rendering of dynamic environments,” ACM Transactions on Graph-
ics, vol. 20, no. 1, pp. 39–65, 2001.

44

[54] T. Chang, T. Yeh, and R. Miller, “GUI testing using computer vision,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1535–1544,
2010.

[55] D. Amalfitano, A. Fasolino, S. Scala, and P. Tramontana, “Towards automatic model-
in-the-loop testing of electronic vehicle information centers,” in Proceedings of the
2014 International Workshop on Long-term Industrial Collaboration on Software En-
gineering, pp. 9–12, 2014.

[56] R. Oliveira, A. Memon, V. Gil, F. Nunes, and M. Delamaro, “An extensible framework
to implement test oracle for non-testable programs,” in Proceedings of the 26th Inter-
national Conference on Software Engineering and Knowledge Engineering, pp. 199–
204, 2014.

[57] Q. Xie and A. Memon, “Designing and comparing automated test oracles for
gui-based software applications,” ACM Transactions on Software Engineering and
Methodology, vol. 16, no. 1, pp. 1–36, 2007. Article No. 4.

[58] A. Kumar, N. Agarwal, J. Bhadviya, G. Mittal, , and G. Ramponi, “An efficient new
edge preserving technique for removal of salt and pepper noise,” in Proceedings of the
8th International Symposium on Image and Signal Processing and Analysis, 2013.

[59] F. T., “An introduction to roc analysis,” Pattern Recognition Letters, vol. 27(8),
pp. 861 – 874, 2006.

[60] C. D. Manning, P. Raghavan, and H. Schutze, Introduction to Information Retrieval.
Cambridge University Press, 2008.

[61] C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell, and A. Wesslen, Experi-
mentation in Software Engineering. Berlin, Heidelberg: Springer-Verlag, 2012.

45

