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ABSTRACT

Sparse matrix-vector multiplication (SpMV) is an important sparse linear algebra ker-

nel that has a wide range of application domains, including computational science,

graph analytics, machine learning and many more. Due to its significance, numerous

studies have been conducted and are still being proposed to improve the performance

of SpMV. Most of the studies evaluate the performance of their method in a custom

experimental environment, which weakens the reproducibility of the empirical results,

and also makes it hard to compare the proposed method to a wide range of existing

methods. In this study, we address this problem by introducing an easy-to-integrate

benchmarking framework that is able to unify SpMV methods in a single experimen-

tal environment to obtain consistent evaluation results. As a proof-of-concept, we

have integrated several state-of-the-art CPU and GPU-based SpMV methods in our

framework. We make the framework available as an open-source software for the

convenience of researchers.
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ÖZETÇE

Seyrek matris-vektör çarpımı (SpMV) hesaplama bilimi, çizge analitiği ve makine

öğrenmesi de dahil pek çok kullanım alanı olan önemli bir seyrek doğrusal cebir

çekirdeğidir. Bu önemi sebebiyle pek çok çalışma SpMV performansını arttırmayı

hedeflemektedir. Yapılan çalışmaların çoğu, önerdikleri metotların performansını

özel deney ortamlarında değerlendirmektedir. Özel deney ortamlarının kullanılması,

değerlendirme sonuçlarının tekrar edilebilirliğini olumsuz etkilemekte ve önerilen

metotların mevcut metotlarla kıyaslanmasını zorlaştırmaktadır. Sunduğumuz bu

çalışmada, tutarlı deney sonuçları elde etmek için SpMV metotlarını tek bir deney

ortamında birleştiren, kolay entegre edilebilir bir performans değerlendirme çerçevesi

oluşturarak problemi çözmeyi hedefledik. Bu kavramın bir kanıtı olarak, en gelişmiş

CPU ve GPU tabanlı metotlarını sunduğumuz çerçeveye entegre ettik. Geliştirdiğimiz

çerçeveyi açık kaynak bir yazılım olarak araştırmacıların kullanımına sunuyoruz.

v



ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor Asst. Professor T. Barış Aktemur
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CHAPTER I

INTRODUCTION

Sparse matrix-vector multiplication (SpMV) is a fundamental sparse linear algebra

operation that takes role in a wide range of science and engineering problems, where

substantial amount of time is spent performing the SpMV operations. Hence, improv-

ing the performance of SpMV has been the concern of a large body of work (see Langr

and Tvrdik [1], and Filippone et al. [2] for two recent surveys). Because the matrix

operand of SpMV is sparse, it is stored in a sparse storage format to reduce the space

requirements – a dense format causes extremely large space penalties. The downside

of a sparse format is irregular memory access patterns, causing under-utilization of

the peak performance available on the computer. For this reason, many studies aimed

at improving SpMV’s performance by attacking various aspects of execution limita-

tions including efficient parallelization of SpMV execution (e.g. [3, 4]), maximization

of cache reuse (e.g. [5, 6, 7, 8]), design of new sparse storage formats (e.g. [9, 10, 11]),

and dynamic or static generation of SpMV programs optimized for a given set of

situations (e.g. [12, 13, 14, 10]).

No matter what approach is used to improve the performance of SpMV, a study

needs to provide experimental evaluation results to demonstrate the impact on effi-

ciency. Although a general benchmarking structure is usually followed, to the best of

our knowledge, there does not exist a common benchmarking framework that allows

researchers to evaluate the performance of their new SpMV approach with respect to

existing methods. Researchers manually craft their benchmarking software. This not

only causes valuable time to be spent on rudimentary tasks, but also makes it diffi-

cult and error-prone to compare evaluation results coming from different sources. In
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this work, we propose a unified benchmarking framework that fills this gap in SpMV

research. We developed this framework with the motivation and goal that

• researchers will be able to integrate their new SpMV methods conveniently.

• researchers will not have to spent time implementing the experimental setup.

• industrial-strength SpMV libraries such as Intel MKL [15], cuSPARSE [16],

and CUSP [17] are available built-in as common baseline methods to enable

comparability.

• researchers will be encouraged to provide their SpMV methods to others for

reproducibility of the results.

We have examined several existing SpMV work whose benchmarking code is avail-

able. We developed our framework by considering the common benchmarking flow

in these work, the execution stages that they profile, the timing procedures they use,

the metrics they report, the SpMV method that they use as the baseline, etc. We

aimed to benchmark both CPU and GPU based SpMV methods. We have integrated

ViennaCL [18] (for both CPU and GPU), several methods from Yzelman [19, 6], and

methods from Thundercat library [14] into our framework as proof-of-concept.

This paper is organized as follows: In Chapter 2 we provide background informa-

tion about SpMV, followed by a discussion of related previous work in Chapter 3.

We present our proposed approach in Chapter 4, and in Chapter 5 we explain how

to integrate a new SpMV method into this framework. We demonstrate integrations

in framework in Chapter 6. Finally, we give our conclusions in Chapter 7.

Our framework is publicly and freely available at the following URL:

https://github.com/ozusrl/spmv-benchmarking
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CHAPTER II

BACKGROUND

SpMV takes two inputs, a sparse matrix A and a dense vector x, and accummu-

lates their multiplication on an output vector y. The mathematical notation for this

operation is y ← y + Ax. In a computer program, the sparse matrix A is stored

using a sparse storage format. Probably the most basic of these formats is the co-

ordinate (COO) format, also known as the triplet representation, where the nonzero

elements of A are stored in a contiguous array, values. Two other arrays, named

rows and cols, store the row and column indices of the elements in values such that

values[k] = Arows[k],cols[k] for each k such that 0 ≤ k < NNZ, where NNZ is the num-

ber of nonzero elements in A. Figure 1 shows a sparse matrix in COO format, and

Figure 2 shows SpMV using the COO format.

A =

0 4.0 2.1 0

0 0 1.3 0

0 5.7 0 3.6

6.8 0 0 0

(a) Matrix A.

0 1 2 3 4 5

values : 4.0 2.1 1.3 5.7 3.6 6.8

rows : 0 0 1 2 2 3

cols : 1 2 2 1 3 0

(b) Matrix A in the COO format.

Figure 1: A sparse matrix in the COO format.

To take advantage of spatial locality for cache, matrix values can be ordered in

row-major or column-major order. This causes many repetitions in the rows, or

respectively cols, array that can be compressed. This leads to a compressed storage

format such as Compressed Sparse Row (CSR) [20], also known as Compressed Row

3



input : NNZ: number of nonzero elements in matrix
values: nonzero elements of matrix
rows: row indices of elements in values
cols: column indices of elements in values
x: input vector

output: y: output vector

for i← 0 to NNZ do
y[rows[i]]← values[i]× x[cols[i]] + y[rows[i]]

end

Figure 2: SpMV using the COO format.

A =

0 4.0 2.1 0

0 0 1.3 0

0 5.7 0 3.6

6.8 0 0 0

(a) Row major order on matrix A.

0 1 2 3 4 5

values : 4.0 2.1 1.3 5.7 3.6 6.8

rowptr : 0 2 3 5

cols : 1 2 2 1 3 0

(b) Matrix A in the CSR format.

Figure 3: A sparse matrix in the CSR format .

Storage (CRS). It stores the nonzero elements in row major order, again in a single-

dimensional array, values. Similar to COO, another array, cols, stores the column

indices. A third array, rowptr, stores for each row the index of the first nonzero

element. In CSR, for each row i of the matrix A, we have values[j] = Ai,cols[j] for each

j such that rowptr[i] ≤ j < rowptr[i + 1]. Figure 3 demonstrates an example matrix

in CSR format. Figure 4 shows SpMV using the CSR format.

Compressed Sparse Column (CSC), also known as Compressed Column Storage

(CCS), is highly analogous to CSR format, exercising column major ordering for

nonzero elements instead of row-major. Figure 5 shows an example matrix in the

CSC format and Figure 6 outlines the algorithm of SpMV using the CSC format.
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input : M : number of rows in matrix
values: nonzero elements of matrix in row major order
rowptr: pointers to row beginnings on values
cols: column indices of elements in values
x: input vector

output: y: output vector

for i← 0 to M do
for j ← rowptr[i] to rowptr[i+ 1] do

y[i]← values[j]× x[cols[j]] + y[i]
end

end

Figure 4: SpMV using the CSR format.

A =

0 4.0 2.1 0

0 0 1.3 0

0 5.7 0 3.6

6.8 0 0 0

(a) Column major order on matrix A.

0 1 2 3 4 5

values : 6.8 4.0 5.7 2.1 1.3 3.6

colptr : 0 1 3 5

rows : 3 0 2 0 1 2

(b) Matrix A in the CSC format.

Figure 5: A sparse matrix in the CSC format.

input : N : number of columns in matrix
values: nonzero elements of matrix in row major order
colptr: pointers to column beginnings on values
rows: row indices of elements in values
x: input vector

output: y: output vector

for j ← 0 to N do
for i← colptr[j] to colptr[j + 1] do

y[rows[i]]← values[i]× x[j] + y[rows[i]]
end

end

Figure 6: SpMV using the CSC format.
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CSR is arguably the defacto standard representation for sparse matrices. Sev-

eral SpMV libraries accept matrix inputs in CSR format, including Intel MKL [15],

cuSPARSE [16], CUSP [17], and ViennaCL [18]. For this reason, we opted in our

framework for using CSR as the format of input matrices.

6



CHAPTER III

RELATED WORK

SpMV is an extensively studied problem. A complete overview of this problem is

out of the scope of this work. For two recent surveys, see Langr and Tvrdik [1], and

Filippone et al. [2]. In this section we give an overview of previous SpMV work with

benchmarks, focusing more on those whose code is available online. In general, we

notice that there are subtle differences that make SpMV evaluations incomparable to

each other directly, such as

• Number and diversity of matrices included in the experiment

• Number of experiments done per input matrix

• Use of cache warm up iterations before experiments

• Reported performance measurement unit (GFlops, milliseconds, speed up ratio)

• Reported measurement sampling (best performing, mean, median)

• Mechanism used for measuring execution times (wall-clock, profiler)

• The performed operation (y ← y + Ax vs. y ← Ax)

• Whether explicit zeros in the input matrix are discarded or not

Yzelman proposes an SpMV method named zz-crs, for partitioning an input ma-

trix in such a way that the SpMV can be executed in a cache-friendly manner [19].

The study compares the proposed method with self implemented CSR and incremen-

tal CSR (ICSR) variants as well as the OSKI [5] library. 14 different matrices are

used in experiments which are classified in two groups; the ones that benefit from
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cache reuse due to their size and structure, and the ones that do not. Experiments

are carried on two different architectures, an Intel Q6600 CPU and a supercomputer

named Huygens. Execution times are measured by wall-clock and normalized aver-

age of 1000 SpMV operations for each matrix are considered. This work reports the

speedup ratios between the proposed method and others.

Yzelman and Bisseling perform another cache optimization study [6], where they

introduce a new matrix storage format, Bi-directional Incremental Compressed Row

Storage (BI-CRS) that uses Hilbert curve to order nonzero elements in matrix. A

comparison is done between CSR, ICSR, and the proposed method BI-CRS. In this

study, authors prefer to experiment with 9 matrices, for which the input/output

vectors do not fit in the cache, so the cache reuse is not possible. Experiments are

carried on two architectures, Intel q6600 and AMD 945e. Wall-clock is used to time

the experiments; 100 SpMV executions are performed for each matrix and the average

of those timings are reported in milliseconds.

Yzelman’s SpMV benchmarking library is available online1. The library con-

tains 15 sequential and 5 parallel SpMV schemes. We noticed that the CSR method

performed a replacing SpMV operation (i.e. y ← Ax) while others performed accu-

mulative (i.e. y ← Ax + y). We also noticed that CSR, McCSR, and SVM methods

ignored explicit zeros when reading matrix data as input, while other methods did

not. These inconsistencies jeopardize the reliability of performance comparison of

these methods with respect to each other.

CSR5 [9] is a sparse matrix format designed for obtaining high throughput SpMV

execution on different platforms with low conversion cost from CSR. The format is

based on the idea of partitioning the input matrix into small, same-sized, 2D tiles to

improve multicore/multithreaded execution. In this study CSR5 method is compared

with Intel MKL, NVIDIA cuSPARSE, CUSP, and ViennaCL on 4 different platforms:

1Yzelman Sparse Library, http://albert-jan.yzelman.net/software.php
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Intel Xeon, NVIDIA Geforce, AMD Radeon R9, and Intel Xeon Phi. 24 different

matrices are used in tests. For each matrix, 10 experiments are performed. Each

experiment involves 1000 iterations of which the average run time is recorded. The

best timing of 10 experiments is reported. For the execution time measurements,

OpenCL is used on the AMD platform, and wall-clock is used for the others. Time

measurements are reported in GFlops. The source code of this study is publicly

available2.

Kourtis et al. introduce a storage format, Compressed Sparse eXtended (CSX),

that is used to take advantage of recurring substructures in sparse matrices and

generate specialized code at run time [10]. Experiments are conducted on an 8-

core Intel Harpertown and a 24-core Intel Dunnington. Authors compile a list of

15 matrices to experiment with. 128 executions of SpMV are done for each matrix

with randomly generated input vectors. No measures are taken to prevent cache

reuse in-between each iteration. The speed up of CSX against CSR, BCSR, and

CSR-DU formats are reported. The time measurement approach is not stated in the

study. However the source code of the study3 reveals that the time measurements are

performed based on a custom method using CPU frequencies and time stamp counter

registers.

Merrill and Garland propose a merge-based scheduling method for parallel execu-

tion of SpMV [3]. The essence of their approach is to merge row indices and values

into a single sequence, and do the partitioning accordingly to remedy the downsides

of row or nonzero element partitioning. The partitioning is designed to have very

low preprocessing overhead on the CSR format. The study conducts experiments on

two different platforms, Intel Xeon E5-2690v2 CPU and NVIDIA Tesla K40 GPU,

using 4,201 different matrices. Authors compare the performance of their approach

2CSR5 Benchmark, https://github.com/bhSPARSE/Benchmark_SpMV_using_CSR5
3CSX Library, https://github.com/cslab-ntua/csx
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against Intel MKL and NVIDIA cuSPARSE. The study reports execution times in

milliseconds and also performance in GFlops. The paper does not explicitly state

how execution times are measured, how many iterations are done per experiment, or

which measurements are reported – best of all or average. However, based on our

inspection of their source4, we have found out that

• The number of iterations is adaptively set in between 100 and 5000 depending on

the number of nonzero elements in matrix, trying to achieve 16 billion nonzeros

per experiment.

• Platform-dependant profilers are used for timing: For the experiments on CPUs

OpenMP timers are used if OpenMP is present. Otherwise, getrusage system

calls are used on Linux platforms and Performance Counters are used on Win-

dows. For the GPU experiments CUDA events are used to measure elapsed

time.

• Average elapsed time is reported per experiment.

The study also provides the “Stream Triad” [21] throughput scores for both platforms

to give a comparative view of how good each method is in utilizing the processor.

Xie et al. propose Compressed Vectorization-oriented sparse Row (CVR) format

which aims to improve SIMD lane utilization and cache efficiency by assigning each

indivudual matrix row to a different SIMD lane [22]. They conduct experiments on

Intel Xeon Phi (Knights Landing 7250) platform using 58 different matrices. Perfor-

mance of CVR is compared to Intel MKL CSR, Intel MKL CSR(I), ESB [23], VHCC

[24], CSR5 [9] with respect to average execution time of 1000 iterations and prepro-

cessing overheads. The gettimeofday system call is used to measure the wall-clock

time. The source code for this work is available online5

4Merge Based Parallel SpMV, https://github.com/dumerrill/merge-spmv
5CVR, https://github.com/puckbee/CVR
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Buluç et al. propose Compressed Sparse Blocks (CSB) scheme which partitions

the input matrix into fixed sized blocks organized similar to COO format [25]. This

scheme is tested on AMD Opteron 8214 and Intel Xeon X5460 platforms with 14

different matrices. Subsequently they improve CSB with Bitmasked Compressed

Sparse Block scheme (BiCSB) by introducing bitmasked indexing mechanism for bet-

ter bandwidth utilization [11]. BiCSB is benchmarked on AMD Opteron 8431 and

Intel Xeon 7550 using 7 matrices. Neither of the studies reports how many iterations

are performed or how the time is measured. But since both schemes are published

as part of Compressed Sparse Block library6, it is possible to find out that library

reports average GFlops achieved for 10 iterations and timing functions from Cilk++

library are used for time interval profiling.

Augusto et al. [26] conduct a performance comparison of popular linear algebra

libraries; Intel MKL, CUSP, NVIDIA cuSPARSE, and ViennaCL. They experiment

with relatively small set of five matrices on two different platforms: Intel Xeon E5-

2650v2 CPU and NVIDIA Titan GPU. They report average GFlops performance of

1000 SpMV executions.

Another study that benchmarks popular linear algebra libraries in terms of SpMV

performance is done by Kasmi et al. [27]. This study compares CUSP and Intel MKL

libraries on NVIDIA GTX580 GPU and Intel Core i7 CPU. Five different matrices

are included in the experiments and the performance results are reported as GFlops.

However there is no information provided on details of the experiments such as how

many iterations are done or how the performance values are obtained – average or

best of all iterations.

Kamin et al. [28] evaluate various code specialization techniques for optimizing

performance of SpMV and compare performance of these techniques to Intel MKL

6Compressed Sparse Block library, https://people.eecs.berkeley.edu/˜aydin/csb/
html/index.html
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library, BiCSB [11] and CSX [10]. The experiments are run on 23 different matrices.

Each experiment involves 10,000 SpMV runs and is repeated 5 times. The fastest

of those five experiment is chosen for comparison. Results of each experiment are

reported as GFlops and also speed up ratio compared to Intel MKL.

Langr and Tvrdik define a set of criteria to evaluate sparse storage matrix formats

[1]. These criteria can be classified as in Table 1 into 4 groups: Runtime Performance,

Memory Footprint, Preprocessing Runtime Overhead, Preprocessing Memory Over-

head. Although memory-related criteria are hard to measure programmatically in an

accurate and reliable way, runtime-related criteria can easily be used to evaluate any

SpMV Method.

Table 1: SpMV format evaluation criterion by Langr and Tvrdik.

Runtime Performance
Maximum Performance in Flops
Performance w.r.t. Standard CSR
Performance w.r.t. Platform Upper Bound

Memory Footprint
Total Footprint
Footprint per Nonzero Element
Footprint per Nonzero w.r.t Standard CSR

Preprocessing Overhead
Conversion from Standard CSR
Finding Optimal Parameters

Memory Overhead
Conversion from Standard CSR
Finding Optimal Parameters

Langr and Tvrdik do not provide an implementation that other researchers can use

to integrate their methods. In our framework, we provide timing probes to measure

the maximum performance (reported in microseconds and in flops), the overhead of

preprocessing the input, and the cost of conversion to the new format. SpMV using

CSR is a built-in method, so it is straightforward to find the relative performance.

In our work, we deliberately refrain from providing a pre-compiled data set of

input matrices, because the ideal set depends on target-specific features such as the

cache size of the machine on which the experiments are run, or the matrix properties

for which the new SpMV format is optimized.
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CHAPTER IV

PROPOSED FRAMEWORK

In this section we present the overview and details of our SpMV benchmarking frame-

work. From the user point of view, it is a tool with a command-line interface (CLI)

that is executed by providing the required and optional command-line arguments.

The help message and the CLI parameters are shown on Figure 7. The framework

takes the name of the matrix file and the SpMV method to use as the required pa-

rameters. With optional parameters, the user can set the number of threads, turn on

the debug mode, set the number of iterations for invoking the SpMV function and

the number of warm-up iterations, and dump the contents of the output to a file for

post-processing. The matrices are read from Matrix Market exchange files [29] that

typically have the .mtx extension. The output of an example benchmark session

with 8 threads, 10 warm-up iterations, and 100 benchmark iterations using the plain

CSR SpMV method “pcsr” on the matrix file “s3dkt3m2.mtx” is shown on Figure 8.

> ./spmv_benchmarking --help

OzU SRL SpMV Benchmarking.
Usage:

spmv_benchmarking <mtxFile> <method>
[--threads=<num>] [--debug] [--iters=<count>]
[--dump-output] [--warmups=<count>]

spmv_benchmarking (-h | --help)
spmv_benchmarking --version

Options:
-h --help Show this screen.
--version Show version.
--debug Turn debug mode on.
--dump-output Dump output vector to <method>.out
--threads=<num> Number of threads to use [default: 1].
--iters=<count> Number of iterations for benchmarking [default: 10].
--warmups=<count> Number of warmup iterations before benchmarking [default: 5].

Figure 7: Command-line interface parameters of the framework.
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> ./spmv_benchmarking s3dkt3m2.mtx pcsr --threads=8 --warmups=10 --iters=100

Options:
========
matrix file: s3dkt3m2.mtx
method : pcsr
threads : 8
iters : 100
warmups : 10
debug : false
dump output: false
==================

1 1378494 usec. ReadInputFile
1 3 usec. Init
2 953203 usec. ConversionToCSR
2 0 usec. Analysis
2 0 usec. Conversion
1 953479 usec. Preprocess
1 155307 usec. Warm up
1 1395486 usec. Spmv

13954 usec. perIteration
0.537976 GFlops perIteration

100 times iterated

Figure 8: An example run with 8 threads, 10 warm-up iterations, and 100 benchmark
iterations.

An SpMV benchmarking session involves multiple stages that are interesting to

time individually for the purposes of benchmarking. A session starts with data-

independent initialization steps such as initialization of the threading framework,

initialization of the GPU, querying of the CPU or GPU features. Following this stage,

the input matrix is read from the specified file, and converted to the CSR format. Next

come the method-specific initialization steps such as converting the input matrix to a

custom format and processing the matrix for collecting features that will be used by

the method for tuning the operation. This initialization phase is followed by a small

number of invocations of the SpMV function for eliminating the effects of cold-start of

the cache. This phase is called “warm-up”. Next comes the actual SpMV execution

phase, where the function is invoked for many times consecutively. The exact number

of iterations can be adjusted, and may range from tens to thousands, depending on

the duration. The aim in making many SpMV invocations is to time a total duration

14



<<interface>>
SpmvMethod

<<abstract>>
CsrSpmvMethod

<<abstract>>
Specializer

Figure 9: SpMV methods hierarchy.

that is long enough that the effects of interference on individual function calls can

be diminished. Finally, GPU-based methods also include data-copying phases that

are also timed. We classify the SpMV stages in accordance with the performance

criterion defined by Langr and Tvrdik [1] in terms of time measurement as overheads

and performance measurements. The timing probes for the phases we discussed above

are already inserted in our framework. It is straightforward to insert new probes

should the user desire to do so.

4.1 SpMV Method Interfaces

At the center of the framework, there are three interfaces at different refinement

levels that constitute a contract to integrate new SpMV methods into the framework:

SpmvMethod, CsrSpmvMethod, and Specializer. The inheritance hierarchy of

these interfaces is shown in Figure 9. SpmvMethod is the most generic definition of

an SpMV method. CsrSpmvMethod derives from SpmvMethod, and is designed for

methods that take an input matrix in CSR format. Specializer further derives

from CsrSpmvMethod, and is an abstraction of methods that generate code at

runtime. Below we discuss details of these interfaces.

• SpmvMethod: This interface is the most basic interface to implement an SpMV

15



class SpmvMethod {
public:
virtual void init(unsigned int numThreads) = 0;
virtual void preprocess(MMMatrix<double> &matrix) = 0;
virtual void spmv(double * v, double * w) = 0;

};

Figure 10: SpmvMethod interface definition.

method. As depicted in Figure 10, the interface defines three functions to exe-

cute an SpMV operation. The init function is the first function that is called

during a benchmarking run. It only accepts a single parameter from the frame-

work, numThreads, which is the factor of parallelization. The init function

performs all the data independent initialization, such as initialization of the

threading framework. The second function is preprocess. It receives the

input matrix in type MMMatrix. This is an in-house implementation of the

Matrix Market format, and offers conversions to the common COO, CSC, and

CSR formats. The preprocess function executes data-dependent initializa-

tion steps, such as converting the matrix to a different format, reordering the

matrix data, or tuning the optimization parameters. Lastly, the spmv function

is the actual function that performs the SpMV calculation. Figure 11 shows the

generation execution flow of any method as driven by the framework.

• CsrSpmvMethod: This interface is an extension on top of SpmvMethod. It

includes some default behaviour for executing SpMV on CSR formatted matrices

and defines means of customization of preprocessing step. Figure 12 shows the

definition for this interface.

CsrSpmvMethod converts the input matrix to CSR format then performs a

one-dimensional, row-based partitioning to split the matrix into stripes. The

number of stripes is determined according to the number of threads. The matrix
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Framework MMMatrix IO SpmvMethod

read Matrix

init

preprocess

spmv

Figure 11: SpmvMethod execution flow.

class CsrSpmvMethod : public SpmvMethod {
public:
virtual void init(unsigned int numThreads);
virtual void preprocess(MMMatrix<double> &matrix);
virtual void spmv(double * v, double * w) = 0;

protected:
virtual void analyzeMatrix();
virtual void convertMatrix();
std::vector<MatrixStripeInfo> *stripeInfos;
unsigned int numPartitions;
std::unique_ptr<CSRMatrix<double>> csrMatrix;

};

Figure 12: CsrSpmvMethod definition.

in CSR format is accessible via the member variable csrMatrix, and the par-

titioning information is available via stripeInfos. CsrSpmvMethod allows

further refinements on preprocessing steps. The analyzeMatrix function

can be used to extract features from the matrix that will be useful in the later

stages, e.g. recurring non-zero patterns. The convertMatrix function shall

be implemented to convert the matrix from CSR to another format, or to re-

order the matrix data. These two functions are profiled by the framework for

the convenience of researchers.

Figure 13 shows the execution flow for a CsrSpmvMethod.
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Figure 13: CsrSpmvMethod execution flow.
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class Specializer : public CsrSpmvMethod {
public:
virtual void init(unsigned int numThreads) final;
virtual void preprocess(MMMatrix<double>& matrix);
virtual std::vector<asmjit::CodeHolder*> *getCodeHolders() final;
virtual void spmv(double* v, double* w) final;

protected:
virtual void emitMultByMFunction(unsigned int index) = 0;
std::vector<asmjit::CodeHolder*> codeHolders;
std::vector<MultByMFun> functions;
std::unique_ptr<CSRMatrix<double>> matrix;

private:
virtual void emitCode() final;
asmjit::JitRuntime rt;

};

Figure 14: Specializer definition.

• Specializer: This interface is derived from CsrSpmvMethod with the pur-

pose of generating SpMV code specialized for the given input matrix. The

definition is given in Figure 14. The most important function in this inter-

face is emitMultByMFunction, which is responsible for code generation.

Specializer interface is an abstraction of the SpMV methods implemented

in Thundercat [30, 14], and uses the asmjit1 just-in-time assembler. In ad-

dition to the time measurements taken for CsrSpmvMethod, the framework

includes probes for measuring the costs of code generation.

The execution flow of this method is similar to the CsrSpmvMethod. As the

first step of preprocessing, the input matrix is converted to CSR format. Then

the input matrix is analyzed to obtain useful information for code specialization.

Following analysis, input matrix can be converted to any other form if neces-

sary. Lastly, specialized code for the final form of input matrix is generated.

When the preprocessing is done and specialized code is generated, framework

calls the Specializer::spmv function to initiate the SpMV calculation with

specialized functions. Figure 15 illustrates execution flow of Specializer.

1asmjit JIT and Remote Assembler, https://github.com/asmjit/asmjit
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Figure 15: Specializer execution flow.
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class Profiler {
public:
static void recordTime(std::string description,

std::function<void()> codeBlock);
static void recordSpmv(std::function<void()> codeBlock);
static void recordSpmvOverhead(std::string description,

std::function<void()> codeBlock);
static void print(unsigned int numIters,

unsigned int NNZ,
unsigned int flopPerNNZ = 2);

};

Figure 16: Profiler definition.

4.2 Method Registry

SpmvMethodRegistry is the component responsible for storing and providing

SpMV methods for benchmarking. The framework makes use of template based

helpers to register existing methods via REGISTER METHOD macro. This macro de-

fines a method provider type for a given method and then creates a static instance

of this method specific provider. During instantiation, a method provider registers

itself to SpmvRegistry. Auto instantiation and registering of methods provides a

straightforward and convenient way of integrating new methods; this way an SpMV

method easily makes itself available in the command-line interface. When the frame-

work queries registry for a method by method name, SpmvMethodRegistry fetches

the registered method provider and uses provider to create an instance of the queried

method.

4.3 Profiling Time Intervals

In our framework, we provide an execution time profiler. The profiler is able keep track

of wall-clock, and measures execution time in microseconds as well as in GFlops. The

definition of our Profiler class is shown in Figure 16. Our profiler implementation

supports three different types of time measurement:

• The recordTime function is a general-purpose time profiler. As arguments,
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it takes a string as the description, and the code block in the form of a lambda

function, whose execution time will be measured. The recordTime function

can be used for nested time measurements. In other words the code block that

is being measured can also call recordTime to introduce further fine grained

measurements. In this case, each of the nested measurements is recorded as a

child of the enclosing measurement in a children-first (postorder) fashion. Fig-

ure 17 shows an example usage of the recordTime function. In our framework,

we use this type of measurements to profile initialization and preprocessing over-

heads.

• The recordSpmv function tracks the entire SpMV calculation, namely execu-

tion of SpmvMethod::spmv. This function is designed to be called only once

and the framework should be the only caller. The recordSpmv creates the

measurement named "Spmv" once the SpMV exection is completed.

• The framework is able to record the overheads via recordSpmvOverhead

function. This is especially useful for the cases where overhead tasks cannot

be easily moved out of the SpMV logic. One of those cases might be the tasks

that move the data between CPU and GPU. Similar to recordTime function,

recordSpmvOverhead also accepts a code block and a description; however,

it does not support nested measurements. Total overhead time measured by

recordSpmvOverhead function is deducted from the SpMV execution time

in order to find the net SpMV execution time. Figure 18 depicts an example

usage scenario for the recordSpmvOverhead function.
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void readFile() {
/* read file */

}

void convertMatrix() {
Profiler::recordTime("Mem Alloc", [&]() {

/* allocate memory */
});

Profiler::recordTime("Do Conversion", [&]() {
/* do conversion */

});
}

void initilize() {
Profiler::recordTime("Initialization", [&]() {

Profiler::recordTime("Read File", [&]() {
readFile();

});
Profiler::recordTime("Convert Matrix", [&]() {

convertMatrix();
});

});
}

(a) Nested calls to Profiler::recordTime func-
tion.

Root

Initialization

Read File Convert Matrix

Mem Alloc Do Conversion

(b) Measurement hierarchy.

2 1300 usec. Read File
3 500 usec. Mem Alloc
3 200 usec. Do Conversion
2 700 usec. Convert Matrix
1 2000 usec. Initialization

(c) Measurement report in pos-
torder (children-first).

Figure 17: Profiler::recordTime example.
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void copyToGPU(double * data) {
/* copy data to GPU */

}

void copyToCPU(double * data) {
/* copy data to CPU */

}

void spmv(double * inVector, double * outVector) {

Profiler::recordSpmvOverhead("Copy to GPU", [&]() {
copyToGPU(inVector);

});

/* Do SpMV on GPU */

Profiler::recordSpmvOverhead("Copy to CPU", [&]() {
copyToCPU(outVector);

});

}

(a) Measuring the SpMV overhead.

1 1300 usec. Read File
1 750 usec. Init
1 1050 usec. Preprocess
1 850 usec Spmv

Spmv Overheads:
100 usec. Copy to GPU
120 usec. Copy to CPU

630 usec. Spmv w/o Overheads

(b) Measurement report with overheads.

Figure 18: Profiler::recordSpmvOverhead example.
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CHAPTER V

EXTENDING THE FRAMEWORK

The implementation or integration of a new method begins with deciding which SpMV

interface to use as the base. As discussed in Section 4.1, we provide three different

interfaces for integration:

• SpmvMethod is the most basic interface applicable for any SpMV method or

format, but provides no builtin functionality other than basic profiling.

• CsrSpmvMethod is convenient for CSR-based methods since it provides auto-

matic conversion to the CSR format and defines two injection points for analyz-

ing the input matrix and transforming the CSR matrix to an internal format.

• Specializer supports run time code generation on top of CsrSpmvMethod.

New SpMV methods should be derived from one of the above framework interfaces

and implement the functions of the parent according to the guidelines described in

Section 4.1.

Another important point for implementing a new SpMV method is how to profile

it. All of the interfaces in our framework provide basic profiling intervals. These

particularities are discussed in the previous chapter. The default profiling should be

sufficient for most of the cases. However it is at developers’ will to introduce more

granular profiling or mark certain intervals of SpMV execution as overheads.

Rest of this chapter describes how to add a hypothetical SpMV method to our

framework.

Suppose we want to implement an SpMV method that uses the CSC format. Let

us also assume that our method reorders columns by the number of nonzero elements
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class NewMethod : public SpmvMethod {
public:

virtual void init(unsigned int numThreads);
virtual void preprocess(MMMatrix<double> &matrix);
virtual void spmv(double * v, double * w);

private:
std::unique_ptr<CSCMatrix<double>> cscMatrix;

};

Figure 19: NewMethod definition.

they contain. In order to implement this method we need to:

1. Convert input matrix to CSC format

2. Reorder the converted matrix

3. Align input vector to the reordered matrix

4. Run the SpMV function

5. Align the output matrix to the initial order

Note that this method is not the most efficient and performant SpMV method; how-

ever, it provides enough variety to cover different scenarios for this tutorial.

Since the most basic interface is SpmvMethod, we are going to use this interface

for our implementation. Figure 19, shows the definition of our method. We inherit

all the functions from SpmvMethod. We also have a member variable to hold the

matrix CSC format after conversion.

As mentioned before, init function is responsible for initialization steps that are

independent of the input data. Suppose our method runs in a multithreaded fashion.

Thus, we need to initialize the threading framework. This operation suits well to the

init function, whose implementation is given in Figure 20.

Continuing with our todo list, converting the input matrix to CSC and reordering

the columns are considered as preprocessing steps, since they only depend on the input

matrix. We use the MMMatrix argument to convert the matrix, and suppose that
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void NewMethod::init(unsigned int numThreads){
MyThreadingFramework::init();
MyThreadingFramework::setNumberOfThreads(numThreads);

}

Figure 20: init function.

void NewMethod::preprocess(thundercat::MMMatrix<double> &matrix) {
Profiler::recordTime("Conversion to CSC", [&] () {

cscMatrix = matrix.toCSC();
};

Profiler::recordTime("Sort Input Matrix", [&] () {
SmartSorter::sortByNnz(cscMatrix);

});
}

Figure 21: preprocess function.

there is already a sorter provided that can track all the sort actions and revert them.

Although the framework measures the execution time of the preprocess function,

we might still want to introduce more granular timings, by measuring conversion

and sorting separately. Figure 21 outlines the implementation of the preprocess

function.

Now we can perform the actual SpMV calculation. In order to achieve this, we

need to first sort the input vector, do the SpMV execution, and sort the output vector

to align with the initial indices. Again, for simplicity, we assume that all this function-

ality is provided to us. However, profiling the spmv function might need tweaking.

The framework measures the entire execution of spmv, which also includes all sorting

sections. If we want to avoid this and only measure the actual SpMV execution, we

should mark sorting parts as overhead using recordSpmvOverhead, so that the

framework will deduct the time spent during sorting from the total execution time

of spmv. We suppose actual SpMV logic is already provided. Figure 22 shows the

spmv function.

The last step to complete our method integration is registering the method to
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void NewMethod::spmv(double * v, double * w){
Profiler::recordSpmvOverhead("Sort Input Vector", [&] (){
SmartSorter::sortInputVector(v);

});

w = SpmvLogic::multiply(cscMatrix, v);

Profiler::recordSpmvOverhead("Revert Output Vector", [&] (){
SmartSorter::revertOutputVector(w);

});
}

Figure 22: spmv function.

REGISTER\_METHOD(NewMethod, "newmethod")

Figure 23: Registering method to the framework.

the framework. This can be achieved by calling the REGISTER METHOD macro as in

Figure 23. Following that, our method is fully integrated in the framework with the

name "newmethod". It is ready to run for benchmarking and to be compared to all

the other state of the art methods which are already integrated into the framework.

Figure 24 shows the entire implementation of our method
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#include "method.h"

class NewMethod : public SpmvMethod {
public:
virtual void init(unsigned int numThreads);
virtual void preprocess(MMMatrix<double> &matrix);
virtual void spmv(double * v, double * w);

private:
std::unique_ptr<CSCMatrix<double>> cscMatrix;

};

(a) Header file for NewMethod.

#include "newmethod.h"
#include "spmvRegistry.h"
#include "profiler.h"

REGISTER_METHOD(NewMethod, "NewMethod")

void NewMethod::init(unsigned int numThreads){
MyThreadingFramework::init();
MyThreadingFramework::setNumberOfThreads(numThreads);

}

void NewMethod::preprocess(thundercat::MMMatrix<double> &matrix) {
Profiler::recordTime("Conversion to CSC", [&] () {

cscMatrix = matrix.toCSC();
};
Profiler::recordTime("Sort Input Matrix", [&] () {

SmartSorter::sortByNnz(cscMatrix);
});

}

void NewMethod::spmv(double * v, double * w){
Profiler::recordSpmvOverhead("Sort Input Vector", [&] (){

SmartSorter::sortInputVector(v);
});

w = SpmvLogic::multiply(cscMatrix, v);

Profiler::recordSpmvOverhead("Revert Output Vector", [&] (){
SmartSorter::revertOutputVector(w);

});
}

(b) Source file for NewMethod.

Figure 24: Implementation of NewMethod.
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CHAPTER VI

BUILTIN SPMV INTEGRATIONS

We provide several SpMV methods already integrated into the framework. These

built-in methods are particularly useful because they allow users to benchmark their

own methods against the existing ones without any effort. They also constitute

concrete examples of how to integrate an SpMV method; a user can implement their

own method by duplicating an existing one and modifying it appropriately. The

available SpMV methods are listed in Table 2. In this section we discuss these methods

and their integration.

Table 2: Built-in SpMv methods.

Reference CPU GPU Specializer

PlainCSR Intel MKL ViennaCL CSRbyNZ
PlainCSR4 ViennaCL cuSPARSE CSRLenWithGOTO
PlainCSR8 Yzelman - Hilbert CUSP CSRWithGOTO
PlainCSR16 Yzelman - HTS GenOSKI
PlainCSR32 Yzelman - zzcrs RowPattern

Incremental CSR Unfolding

6.1 Reference Benchmarking Methods

Reference benchmarking methods are a set of CSR-based SpMV methods that estab-

lish a baseline for a comparison. They form the most basic implementation of SpMV

with a one-dimensional partitioning that aims to split the matrix into stripes with

as equal number of nonzero elements per stripe as possible. Each stripe is processed

by a thread concurrently. Parallelization is achieved by means of OpenMP pragmas.

The implementations themselves are derived from the Thundercat library [30, 14] and
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for(int i = 0; i < rowCount; i++){
double res = 0.0;
for (int j = rows[i]; j < rows[i + 1]; j++) {
output += vals[j] * x[cols[j]];

}
y[i] += res;

}

(a) PlainCSR method (unrolling factor: 1).

for(int i = 0; i < rowCount; i++){
double res = 0.0;
for (int j = rows[i]; j < rows[i + 1] - 3; j += 4) {
res += vals[j] * x[cols[j]];
res += vals[j + 1] * x[cols[j + 1]];
res += vals[j + 2] * x[cols[j + 2]];
res += vals[j + 3] * x[cols[j + 3]];

}

for (; j < rows[i + 1]; j++) {
res += vals[j] * v[cols[j]];

}
y[i] += res;

}

(b) PlainCSR4 method (unrolling factor: 4).

Figure 25: PlainCSR and PlainCSR4 variant.

integrated into the framework as an instance of CsrSpmvMethod.

• Plain CSR: This method is the most straightforward implementation of SpMV

over the CSR format. In our integration, there are 5 variants; each having a

different unrolling factor for the inner loop – 1, 4, 8, 16 and 32. Figure 25a

and Figure 25b illustrate PlainCSR, where the unrolling factor is simply 1, and

PlainCSR4, where the factor is 4, respectively.

• Incremental CSR: This method is a CSR variant that attempts to decrease the

memory footprint of row pointers [31]. Rather than storing absolute position of

row beginnings, it stores displacement with respect to the previous row begin-

ning. Figure 26 compares a normal CSR row pointer array and an Incremental

CSR row pointers array. As the values stored in the array become smaller, this
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0 1 2 3 4 5 6

values : 4.0 2.1 1.3 5.7 3.6 6.8 ×

CSR row ptr : 0 2 3 5 6

Incremental CSR row ptr : 0 2 1 2 1

Figure 26: CSR and Incremental CSR row pointers.

method enables the chance that the data type of the rowptr array is two-byte

or even one-byte integer, instead of four. Although this has the potential of re-

ducing the memory footprint, it comes with a runtime penalty, since additional

steps are needed to reconstruct the row pointer values.

6.2 Integrated CPU and GPU methods

• Intel MKL: Intel Math Kernel Library (Intel MKL) offers a rich collection of

highly optimized vastly threaded math routines supporting a wide range of usage

scenarios including but not limited to Linear Algebra, Fast Fourier transform

and Deep Neural Network primitives [15]. The library is designed to run on

CPU, is available on Windows, Linux, and MacOS platforms, and has support

for C/C++ and FORTRAN.

MKL provides a number of different variants for SpMV. We integrate matrix

vector multiplication routine for double precision sparse matrices in CSR format,

mkl_dcsrmv, as an CsrSpmvMethod to our framework. Being a BLAS level

2 [32] routine, the mkl dcsrmv function supports SpMV in the following forms:

y ← αA× x+ βy or y ← αAT × x+ βy

In our integration we omit the transpose operation on input matrix and fix

the values for α and β to 1. This yields a more simple and comparable SpMV

operation: y ← A× x+ y.
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The MKL integration follows the general flow of the CsrSpmvMethod; in the

init phase we inform MKL about the parallelization factor, in preprocessing

we convert the input matrix to CSR format, and finally for spmv, we call the

mkl_dcsrmv function to compute y ← A× x+ y.

• Yzelman: Yzelman put together a collection of various research oriented sparse

matrix formats and computations in his “Sparse Library”1. The library not only

consists of methods and formats that is studied by Yzelman and his colleagues

such as ZZCRS and Hilbert-curve ordered BICRS, but also others like COO,

CSR, HTS, ICRS.

The methods in Sparse Library follow a common approach. Each method ac-

cepts a COO formatted matrix – referred as Triplet Scheme in the library. Upon

its instantiation, a method converts the input data to the format on which it

operates. Then user can call the SpMV function named zax which computes

z ← A× x+ z.

This common approach proves to be helpful in our integration. We define a

base template method for all methods to be integrated. Our template method,

YzelmanMethod, is derived from SpmvMethod. It defines a function to inject

an SpMV method from the library. In preprocessing, YzelmanMethod con-

verts input matrix to COO format (Triplet) and instantiates a library method

using the injection function. The SpMV execution is as simple as calling the

zax function of the injected method. With this approach it becomes convenient

to integrate any method since integration is reduced to just defining an injec-

tion function. Our integration includes ZigZag CRS (ZZ CRS), Hilbert curve

ordered BICSR (Hilbert), and Hilbert Triplet Scheme (HTS) from Yzelman’s

Sparse Library.

1Sparse Library, http://albert-jan.yzelman.net/software.php
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• cuSPARSE: NVIDIA cuSPARSE library [16] consists of a series of basic linear

algebra routines for dealing with sparse matrices on NVIDIA GPUs. The library

is built on top of NVIDIA general purpose processing API, CUDA2. cuSPARSE

runs on Windows, Linux and MacOS and can be called from C/C++. The

library is organized around four groups of operations:

– Operations on a sparse vector and a dense vector

– Operations on a sparse matrix and a dense vector

– Operations on a sparse matrix and a set of dense vector

– Conversions between different matrix formats

Our framework integrates cusparseDcsrmv function which is the double pre-

cision SpMV function offered by cuSPARSE. Analogous to MKL, this function

also computes y ← α op(A) × x + βy, where op() is one of identity function,

transpose, or conjugate transpose on A. In our integration we again set value

of α and β to 1 and use identity function to calculate a simpler form of SpMV;

y ← αA× x+ βy.

Nevertheless, the integration of cuSPARSE is still not simple for two main

reasons. First, cuSPARSE assumes that the input data for the routines are

already on GPU memory. If not, developers are expected to move the data

between CPU and GPU. Although these copy operations have to be performed

in every iteration of a benchmark run, they should not be considered as part

of the SpMV execution, but rather as overheads. Second, the sources for GPU

and CPU need to be compiled separately and then linked together, since they

are usually compiled with different compilers – icpc or gcc for CPU, nvcc for

GPU. Furthermore, the compilers for CPU generally support the most recent

2CUDA Zone, https://developer.nvidia.com/cuda-zone
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class CusparseAdapter {
public:
void init();
void preprocess(int nnz, int m, int n, int *rowPtr,

int *colIdx, double *values);
void setX(double *x);
void getY(double *y);
void spmv();

};

Figure 27: CusparseAdapter definition.

C++ standards whereas GPU compilers often do not. Therefore, compile unit

isolation for GPU and CPU sources is essential.

In order to overcome these issues, we divide the cuSPARSE integration into

two. We develop an adapter that performs all cuSPARSE and CUDA re-

lated operations, outlined in Figure 27, and a light proxy layer that implements

SpmvMethod. The proxy layer is responsible for the communication between

framework and the adapter, and for profiling the operations performed by the

adapter.

The flow of execution starts with a call to init method of proxy and it is

delegated to adapter in order to initialize the cuSPARSE environment. Sub-

sequently, preprocessing starts. Proxy converts the matrix to CSR format and

hands the data over to adapter. Adapter allocates memory for input matrix, in-

put vector and output vector on GPU, then copies input matrix to GPU. Once

the preprocessing ends, SpMV execution is performed in three steps. First, the

proxy passes the input matrix to adapter, and the adapter copies the input

vector to GPU. Following that, proxy initiates the SpMV execution and the

adapter calls the corresponding cuSPARSE function. Finally, the output vector

is copied from GPU to CPU. One important point to note in SpMV execution

is, all copy operations in-between CPU and GPU are profiled as SpMV exe-

cution overheads by our profiler and not included in SpMV execution timings.
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Figure 28 illustrates this flow.

• CUSP: CUSP library [17] is a template based C++ library for sparse linear

algebra and graph computations that is built on top of NVIDIA CUDA and

Thrust [33].

CUSP library offers two SpMV functions for several formats. The multiply

function that performs y ← A×x, and the generalized spmv function that

can be used to perform z ← A×x+y. We initially integrated the latter function.

However, CUSP does not allow accumulating on the same vector to calculate

y ← A × x + y; therefore, we used an intermediary vector which slowed down

the execution significantly. We integrate both functions as different methods,

and let the users of our framework choose the integration they need.

The integration follows a similar approach to cuSPARSE since it has the iden-

tical requirements for compile unit isolation. CUSP is also integrated as an

SpmvMethod, and the implementation is again divided into two as a proxy

and an adapter. However, since CUSP works with Thrust pointers, all the raw

CUDA pointers are translated into Thrust pointers during preprocessing.

The execution flow of CUSP integration is also very much like cuSPARSE, since

they both operate on top of CUDA. First, the CUDA environment is initialized,

then matrix is converted to CSR format. Following that, all input data is copied

to GPU and SpMV is executed. Finally, the result is fetched from GPU memory

to CPU memory. The time spent in moving data between CPU and GPU is

marked as overhead and excluded from the SpMV execution time.

• ViennaCL: ViennaCL3 is a scientific computing library introduced by Rupp

et al. [18]. It is designed for providing common data types for linear algebra

3ViennaCL, http://viennacl.sourceforge.net/
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Figure 28: cuSPARSE SpMV execution flow.
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operations on CPU and GPU, and is based on OpenCL. Recently it also supports

CUDA and OpenMP backends [34] and even has Python and MatLab Interfaces.

The linear algebra operations are designed as a collection of algorithm func-

tions and operators on data types. The SpMV in y ← αA × x + βy form can

be performed as y = alpha * prod(A, x) + beta * y in ViennaCL.

Our integration uses the slightly simplified version y += prod(A, x) which

computes y ← A× x+ y.

In order to fully support all available ViennCL backends —CUDA, OpenCL

and, OpenMP— we organized our ViennaCL integration as proxy and adapter

layers much the same as cuSPARSE and CUSP integrations, since supporting

CUDA backend and others at the same time requires compile unit segregation.

This also yields a similar execution flow as cuSPARSE and CUSP integrations

with data exchange in-between CPU and GPU. Surely the data exchanges are

considered as overheads, and do not affect the SpMV performance measurement.

6.3 Specializers

Specializer methods are also CSR-based methods that generate SpMV code special-

ized for a given matrix at runtime. They use this generated code to carry out the

calculation. We integrate the following specialization methods from the Thundercat

library [30, 14]. All of these specializer methods are derived from the Specializer

interface.

• CSRbyNZ: This method groups the rows of the input matrix according to the

number of nonzeros they contain, and creates a specialized code for each group

by unrolling the innermost loop in plain CSR based SpMV [28, 14].

• CSRWithGOTO: Aktemur introduces this method as an intermediary method

to CSRLenWithGOTO [35]. The main idea in this method is to improve the

38



CSRbyNZ method by unrolling the inner loop just once according to the length

of the row with maximum number of nonzero elements, and then using this code

again for the rows with fewer nonzero elements. In order to reuse the same code

for the rows with fewer elements, this method calculates a jump address based

on the row length and then starts execution from the calculated jump address,

basically skipping instructions for longer rows.

• CSRLenWithGOTO: This method is also proposed by Aktemur as an improve-

ment on top of CSRWithGOTO [35]. Compared to CSRWithGOTO, this method

makes use of the rowptr array of CSR to pre-compute the jump addresses.

• RowPattern: This method analyzes the matrix and looks for patterns of nonzero

entries. It groups rows by the patterns they contain, and generates specialized

code for each group accordingly.

• GenOSKI: This method also analyzes the input matrix as in RowPattern; how-

ever, it looks for patterns in r × c sized blocks, rather then individual rows. It

generates specialized code for each block pattern. We have integrated the 3× 3

and 4× 4 block size variants of this method.

• Unfolding: This method completely unfolds the entire CSR SpMV loops, gen-

erates a program that consists of individual calculation of every element of the

output vector, without any loops.

For the specializer methods, the framework measures the time spent for runtime

emission of code, so that it can also be used in evaluation of the performance.
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CHAPTER VII

CONCLUSION

In this study we presented a framework for benchmarking SpMV methods. We de-

signed our framework to be extensible with new SpMV methods in order for re-

searchers to integrate their SpMV methods conveniently. Such a framework is needed

to enable reproducibility of experimental SpMV evaluations and consistency through-

out experiments. We have integrated several state-of-the-art SpMV methods and

libraries not only to show the framework’s extensibility, but also to provide a ready-

to-use experiment environment. We make our framework available as open source to

the use of researchers.
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