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ABSTRACT

This thesis addresses big data challenges seen in large–scale, mission–critical indus-

trial plants such as oil refineries. These plants are equipped with heavy machinery

(boilers, engines, turbines, etc.) that are continuously monitored by thousands and

various types of sensors for process efficiency, environmental safety, and predictive

maintenance purposes. However, sensors themselves are also prone to errors and fail-

ure. The quality of data received from them should be verified before being used

in system modeling or prediction. There is a need for reliable methods and systems

that can provide data validation and reconciliation in real–time with high accuracy.

Furthermore, it is necessary to develop accurate, yet simple and efficient analytical

models that can be used with high–speed industrial data streams.

In this thesis, design and implementation of a novel method called DREDGE, is

proposed and presented first by developing methods for real–time data validation,

gross error detection (GED), and gross error classification (GEC) over multivariate

sensor data streams. The validated and high quality data obtained from these pro-

cesses is later used for pattern analysis and modeling of industrial plants. We obtained

sensor data from the power and petrochemical plants of an oil refinery and analyzed

them using various time–series modeling and data mining techniques that are in-

tegrated into a complex event processing (CEP) engine. Next, the computational

performance implications of the proposed methods are studied and regimes that are

sustainable over fast streams of sensor data are uncovered.

Distributed Control Systems (DCS) continuously monitor hundreds of sensors in

industrial systems, and relationships between variables of the system can change over

time. Operational mode (or state) identification methods are developed and presented
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for these large–scale industrial systems using stream analytics, which are shown to

be more effective than batch processing models, especially for time–varying systems.

To detect drifts among modes, predictive modeling techniques such as regression

analysis, K-means and DBSCAN clustering are used over sensor data streams from

an oil refinery and models are updated in real–time using window–based analysis. In

addition, the shifts among steady states of data are detected, which represent systems’

multiple operating modes. Also, the time when a model reconstruction is required

is identified using DBSCAN algorithm. An adaptive window size tuning approach

based on the TCP congestion control algorithm is proposed, which reduces model

update costs as well as prediction errors.

Finally, we proposed a new Lambda architecture for Oil & Gas industry for unified

data and analytical processing over DCS. We discussed cloud integration issues and

share our experiences with the implementation of sensor fault detection and classifi-

cation modules inside the proposed architecture.
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ÖZETÇE

Bu tezde büyük–ölçekli ve görev–kritik işlerin yürütüldüğü endüstriyel tesislerin büyük

veri problemleri ele alınmaktadır. Bu tesislerde çalışan ağır sanayi makinaları (kazan-

lar, motorlar, türbinler, vb.) binlerce sayıda ve çeşitli tipte duyargarlar ile sürekli

olarak ölçümlenmekte ve üretimde verimlilik artışı, iş–çevre güvenliği ve sezgisel

bakım planlaması gibi konularda kararlar alınmaktadır. Ancak duyargalar da bozula-

bilmekte veya hatalı ölçümler yapabilmektedirler. Bunlar tarafından ölçülen verinin

kalitesi, sistem modellemesi veya tahminlemede kullanılmadan önce doğrulan–malıdır.

Bu sebeple, gerçek–zamanlı ve yüksek doğrulukla veri düzeltmesi yapabilecek güvenilir

metodlara ihtiyaç duyulmaktadır. Geliştirilen metodlarn çok–hızlı endüstriyel veri

akışlarını takip edebilmeleri için, doğrulukları kadar, basit ve etkin olmaları da gerek-

mektedir.

Bu tezde DREDGE isimli, öncelikle gerçek–zamanlı veri doğrulama, kaba hata

tespiti ve kata hata sınıflandırması yapabilen yenilikçi metotun tasarım ve gerçekleme

bilgileri sunulmaktadır. Bu süreçler sonrasında elden edilen doğrulanmış ve yüksek

kaliteli veri, desen analizi ve endüstri tesislerinin bütünsel modellemesi için kul-

lanılmaktadır. Çalışmada bir petrol rafinerisinin güç üretim ve petrokimya tesis-

lerinden elde edilmiş gerçek duyarga verileri zaman–serisi ve veri madenciliği model-

lerinin eğitiminde kullanılmış ve elde edilen modeller Karmaşık Olay Işleme motoruna

entegre edilmişlerdir. Daha sonra, bu modellerin motor içerisindeki performansları

çalşılarak, hızlı veri akışları üzerindeki sürdürülebilir rejimlerin tespiti sağlanmıştır.

Sonrasında, büyük–ölçekli endüstriyel sistemlerin operasyonel durum tespiti için

akış analitiğine dayalı metodlar geliştirilmekte ve özellikle zamana–bağlı değişen sis-

temlerde, toplu işleme yapan modellere göre daha etkin çalıştıkları gösterilmektedir.
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Dağıtık kontrol sistemleri sürekli olarak üzlerce duyargayı takip etmekte ise de, değişkenler

arası ilişkiler zaman içerisinde değişebilmektedir. Petrol rafinesindeki cihazların mod-

lar arası geçişlerini farkedebilmek için veri akışları üzerinde gerçek–zamanlı ve zaman–

penceresi temelli regresyon analizi, K-means ve DBSCAN kümeleme sezgisel mod-

elleme teknikleri kullanılmştır. Ayrıca, durağan–durumlar arası kayışlar tespit edil-

erek, operasyonel mod geçişleri tespit edilmiştir. Gerçek–zamanlı DBSCAN kullan-

larak model değişikliği veya düzenlemesinin gerektiği anlar tespit edilmiştir. Bu

bölümde son olarak, zaman–pencere boyutlarının TCP algoritmaları ile adaptif olarak

değiştirilmeleri önerilmiş ve model güncelleme maliyeti ile tahminsel hatalarna olumlu

etkileri gözlemlenmiştir.

Son olarak, rafineri endüstrisi için dağıtık kontrol sistemleri (DCS) verilerine

yönelik, birleşik (çevrimiçi–çevrimdışı) analitik işleme içeren yeni bir Lambda mi-

marisi önerilmektedir. Önerilen mimarinin buluta entegrasyonu ile içerisindeki sensör

hata tespiti ve sınıflandırmasına yönelik modül geliştirilmesine yönelik tecrübe paylaşımı

yapılmaktadır.
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ÖZETÇE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

I INTRODUCTION AND PROPOSED TASKS . . . . . . . . . . . 1

1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Proposed Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

II BACKGROUND AND RELATED WORK . . . . . . . . . . . . . 8

2.1 Data Validation and Reconciliation . . . . . . . . . . . . . . . . . . 11

2.1.1 Steady–State System Model . . . . . . . . . . . . . . . . . . 12

2.1.2 Time–Varying Kalman Filter . . . . . . . . . . . . . . . . . . 14

2.2 Time–Series Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Exponential Smoothing . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Auto Regressive Moving Average (ARMA) . . . . . . . . . . 18

2.3 Modeling System Using Data Mining Techniques . . . . . . . . . . . 19

2.3.1 Regression Analysis Method . . . . . . . . . . . . . . . . . . 20

2.3.2 Classification Techniques . . . . . . . . . . . . . . . . . . . . 20

2.3.3 Clustering Techniques . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

III MULTIVARIATE SENSOR DATA ANALYSIS FOR OIL REFINER-
IES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Description of CPS for Oil Refineries . . . . . . . . . . . . . . . . . . 28

3.2 Methodology in DREDGE . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Steady–State and Instantaneous Mass Balance (IMB) . . . . 33

ix



3.2.2 Capturing System Memory Using ARMA Model . . . . . . . 35

3.2.3 Time–Varying Kalman Filter (KF) . . . . . . . . . . . . . . . 37

3.2.4 DREDGE: Novel Approach . . . . . . . . . . . . . . . . . . . 37

3.2.5 Gross Error Classification (GEC): Novel Approach . . . . . . 40

3.2.6 Rule–Based Algorithm for Labeling Gross Error Types . . . . 41

3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Results for Synthetic Data . . . . . . . . . . . . . . . . . . . 44

3.3.2 Results for Real Refinery Data . . . . . . . . . . . . . . . . . 47

3.3.3 Computational Performance Evaluation . . . . . . . . . . . . 53

3.4 Holt-Winters vs. ARMA . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Complexity of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 60

IV SYSTEM OPERATIONAL MODE IDENTIFICATION AND MODEL
UPDATES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 Sub–model Analysis and Parameter Estimation . . . . . . . . . . . . 61

4.2 Operational Mode Identification Methodology . . . . . . . . . . . . . 62

4.2.1 Regression Analysis Method . . . . . . . . . . . . . . . . . . 63

4.2.2 K-means Clustering . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.3 DBSCAN Clustering . . . . . . . . . . . . . . . . . . . . . . 64

4.2.4 System Operational State Analysis in Real–time . . . . . . . 65

4.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Regression Model Evaluation . . . . . . . . . . . . . . . . . . 68

4.3.2 K-means Clustering vs. RM Mode Identification . . . . . . . 70

4.3.3 Density–Based Clustering . . . . . . . . . . . . . . . . . . . . 71

4.3.4 Using DBSCAN for Mode Change Detection . . . . . . . . . 72

4.3.5 Using Two–Term Gaussian Function for Mode Change Detection 78

4.3.6 Discussion: Sensor Error or System Anomaly . . . . . . . . . 80

4.4 Adaptive Window Size Tuning . . . . . . . . . . . . . . . . . . . . . 80

4.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 83

x



V A CLOUD–BASED BIG DATA PROCESSING ARCHITECTURE
FOR INDUSTRY 4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Private Cloud Implementation . . . . . . . . . . . . . . . . . . . . . 87

5.2.1 Spark Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.2 Machine Learning Library: MLlib . . . . . . . . . . . . . . . 90

5.2.3 Kafka Streaming Platform . . . . . . . . . . . . . . . . . . . 91

5.3 Fault Detection and Classification Modules . . . . . . . . . . . . . . 92

5.4 Public Cloud Implementation . . . . . . . . . . . . . . . . . . . . . . 94

5.4.1 Spark on Amazon EMR . . . . . . . . . . . . . . . . . . . . . 95

5.4.2 AWS–Kinesis and AWS–S3 . . . . . . . . . . . . . . . . . . . 96

5.5 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 96

VI CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . 99

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xi



LIST OF TABLES

1 Sample data for yt, input/output flow values (ton/hour) of one of the
boilers. The complete data spans 5 months worth of measurements
from 12/2014 to 4/2015. . . . . . . . . . . . . . . . . . . . . . . . . . 34

2 Sample flow measurements for 17 sensors yt (ton/hour) of the petro-
chemical system of Figure 6. The complete data spans 2 months worth
of measurements from 08/2014 to 10/2014. . . . . . . . . . . . . . . 34

3 A result of data reconciliation using IMB method. . . . . . . . . . . . 35

4 GED results of IMB, KF, and DREDGE for Bias-type gross error over
synthetic data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 GED results for IMB, KF, and DREDGE over different gross error
types on synthetic data. . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 F-measure for GEC results of CDT, NN, and KNN over different gross
error types on Real and Synthetic (Synt) data. . . . . . . . . . . . . . 47

7 GEC results for CDT, NN, and KNN over different gross error types
on real data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8 GEC results of IMB, KF, and DREDGE over real dataset. . . . . . . 50

9 Values are average of RMSE, comapring two model over real data,
using 1-4 days data for modeling. . . . . . . . . . . . . . . . . . . . . 58

10 R2 values of fixed-window size for regression model prediction perfor-
mance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

11 Gaussian parameter analysis in fixed–window size for sub–model de-
tection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

12 R2 , RMSE values of adaptive–window size for regression model pre-
diction performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xii



LIST OF FIGURES

1 Overview of the organization and contribution for GED and GEC. . . 5

2 Data quality dimension chart. . . . . . . . . . . . . . . . . . . . . . . 10

3 Common types of gross error. . . . . . . . . . . . . . . . . . . . . . . 13

4 Illustration of the cyber-physical systems inside the oil refinery; high-
level operation of the power plant, petrochemical plant for crude oil
processing, and data stream processing services. . . . . . . . . . . . . 29

5 Illustration of a boiler power plant. Various types of sensors are im-
planted for real–time data collection. The boiler can change states
among the desired stream pressure levels (low, high, very-high) or go
automatically into heating, cooling, recycling, and condensing modes.
KBS: cold water input; VHP: Very-high power steam output; DSH:
De-Super Heater. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Petrochemical process showing crude oil input, preflash, debutanizer,
atmospheric columns, and sensors (1-17) measuring input and output
flows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7 Different types of gross errors are inserted on top of refinery power plant
real data. Blue dots show that gross errors can correctly detected using
KF. These error are then classified by mean-variance tracking. . . . . 41

8 Categorization of gross error types with respect to changes in mean
and variance of sensor values. . . . . . . . . . . . . . . . . . . . . . . 43

9 Snippet of the CEP + DVR development. . . . . . . . . . . . . . . . 45

10 (a) GED for the water/vapor lines of the Power Plant data, (b) GED
for debutanizer lines 3=5+6+7 of the Petrochemical process data. . . 48

11 (a) Water temperature/pressure lines of power plant used for GED,
(b) Vapor temperature/pressure lines of power plant used for GED, by
DREDGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

12 (a) GEC for errors detected by IMB, (b) GEC for errors detected by
KF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

13 Power Plant: computational loads of reference queries and GED algo-
rithms with respect to total memory usage (MB) for different window
sizes over streaming data. . . . . . . . . . . . . . . . . . . . . . . . . 55

14 Power Plant: total processing time (sec) for different window sizes over
streaming data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

xiii



15 Petrochemical Plant: computational loads of reference queries and
GED algorithms with respect to total memory usage (MB) for different
window sizes over streaming data. . . . . . . . . . . . . . . . . . . . . 56

16 Petrochemical Plant: total processing time (min) for different window
sizes over streaming data. . . . . . . . . . . . . . . . . . . . . . . . . 56

17 ARMA model: Real Data Results. . . . . . . . . . . . . . . . . . . . . 59

18 Holt-Winters Smoothing: Real Data Results. . . . . . . . . . . . . . . 59

19 Model evaluation of pressure/temperature data. . . . . . . . . . . . . 66

20 Regression model on streaming sensor data, (a) in windows #1→#2
RM models are close and system works in the same operational mode,
but in (b) window #3 data requires a new RM sub–model since the
distribution is changed and shows a transition among system’s oper-
ational modes, (c) system clearly drifted to a new operational mode
with updated RM in window #4, and (d) window #5 stays in the new
operational mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

21 (a) Comparison of RMSE values of regression sub–model from previous
window and current streaming window, (b) window–based stream data
used for operational modes identification analysis depicted for windows
#1→#10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

22 K-means clustering is also used for operational mode identification, in
(a) window #3, observations are clustered into two partitions in a tran-
sient mode, (b) window #4 observations consist of two clusters where
one centroid has a close distance to previous centroid from window #3. 71

23 DBSCAN clustering, (a) in window #1 two clusters are identified in
steady–state mode outliers and inliers, in (b) window #2 the system is
under same operational state as window #1, but in (c) window #3 data
points are partitioned into 3 separate clusters since the distribution is
changed and a transient in system operational mode has occurred, (d)
system clearly drifted to a new operational mode. . . . . . . . . . . . 73

24 DBSCAN model on streaming sensor data water/vapor flow rate: (a)
in window #8 (refer to Figure 19), DBSCAN model shows formation
of one cluster of inliers indicating one operational state, (b) as new
data samples are recieved from window #9, data gets split into 2 main
clusters and some outliers that indicates a drift in data context and
that the system is in a transient mode. (c)-(d) Windows #10→#11
show that the system is operating under a new steady–state mode. . . 74

xiv



25 DBSCAN model on streaming sensor data water/vapor, pressure/ tem-
perature: similar to flow rate, (a) in window #8 DBSCAN model shows
formation of one cluster of inliers indicating one operational state, (b)
in window #9, data split into 2 main cluster and some outliers that is a
distinctive indication of drift in data context and the system goes into
transient mode, requiring a model update. (c)-(d) Windows #10→#11
show that the system is operating under a new steady–state mode. . . 75

26 Comparison of regression model result on (a) batch analysis, (b) window–
based analysis. Although a single regression model describes the data,
operational modes of the system are not distinguished by batch analysis. 76

27 Histogram of input and output flow rates (ton/hour). . . . . . . . . . 77

28 Gaussian distribution model on streaming sensor data, (a)-(b) in win-
dows #1→#2 Gaussian curves are close and system works in the same
operational mode, but in (c) window #3 data requires a new Gaussian
sub–model since the distribution is changed and shows a transition
among system’s operational modes, (d) system clearly drifted to a new
operational mode with updated curve in window #4. . . . . . . . . . 79

29 Adaptive window size tuning over data. . . . . . . . . . . . . . . . . . 82

30 Three cloud service layers. . . . . . . . . . . . . . . . . . . . . . . . . 86

31 Proposed Lambda architecture for Oil & Gas data analysis. . . . . . . 89

32 The different components of Spark. . . . . . . . . . . . . . . . . . . . 91

33 Kafka cluster’s core API. . . . . . . . . . . . . . . . . . . . . . . . . . 92

34 Running fault detection application on Spark cluster. . . . . . . . . . 93

35 AWS architecture for stream processing. . . . . . . . . . . . . . . . . 96

36 Running application on AWS-EMR. . . . . . . . . . . . . . . . . . . . 97

xv



CHAPTER I

INTRODUCTION AND PROPOSED TASKS

In modern industrial plants hundreds of sensor data streams measuring flow rates,

temperature, pressure, etc. are recorded automatically for purpose of process control

and system evaluation. The quality of data, whether processed online or stored,

affects the performance of successively used monitoring and system control software.

In industrial systems measurements always contain errors that affect and sometimes

invalidate the process model. Measurement errors can occur during data acquisition,

data processing, and data transmission. The difference between measured and true

value is caused by two types of errors: random error and gross error which in turn

reflect to the quality of streaming data.

While managing high “volume” and large “variety” of data have always been a

challenge for IT, its increasing “velocity” is the new issue of the 21st century due

to increased use of sensors and “things” in industrial plants. Attempting to store

these data first to analyze them later creates additional costs, unwanted delays to ac-

tionable information, and mishandling of threats or opportunities. Fortunately, there

are now tools to process data on-the-fly as they move from DCS to selected desti-

nations. Yet, adding the challenges of “veracity”, i.e data correctness factor, creates

the ultimate Big Data problem (with “4Vs”) for industrial plants. Neither relational

databases nor distributed batch processing systems alone are designed to cope with

this problem. Accordingly, three concerns of utmost importance for mission–critical

industrial systems are:

• process efficiency,

• long-term reliability,

1



• and continuous safety.

Toward achieving all of these goals, it is necessary to continuously monitor and verify

the accuracy of measurements streaming in, from numerous and various types of

sensors placed around the plants.

1.1 Problem Definition

In an oil refinery, everything happens in big proportions: liquids flow in ton/hour

rate, temperatures are measured in hundreds to thousands ◦C degree, and electricity

is produced in megawatts. Thousands of people and millions of dollars are at stake

every moment as one tiny malfunction or mistake in the system can cause serious

damage to the entire plant and the workers, or generate losses in revenue. Thus,

achieving continuous safety, process efficiency, long–term durability and planned (vs.

unplanned) downtimes are among the main goals for industrial plant management.

Due to mission–criticality of industrial processes, Oil & Gas businesses have al-

ready implanted thousands of sensors inside and around their physical systems [1].

Raw sensor data continuously streams via distributed control systems (DCS) and

supervisory control and data acquisition (SCADA) systems measuring temperature,

pressure, flow rate, vibration, level, etc. of drills, turbines, boilers, pumps, compres-

sors, and injectors.

Another aspect in real–time system identification, is updating the models accord-

ing to currently received pattern from stream data [2]. Since the systems are dynamic

and the quality of models are dependent on both quality of data and system model,

it is crucial to assess the current context of the system as the relations among model

variables can change over time.

Achieving all of these goals, necessitate to continuously monitor and verify the

accuracy of measurements streaming in from numerous and various types of sensors
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placed all around the refinery. However, sensors are also prone to failures and mea-

surement errors. At normal operation, sensor measurements are assumed to be noisy

(i.e. to have random errors). Electro-mechanical effects such as malfunctioning,

uncalibrated or broken sensors and human factors also introduce systematic errors

(a.k.a. “gross errors”) to these measurements. Ability to differentiate sensor errors

from real system abnormalities is crucial for the safety of the plants. However, there

is lack of real–time industrial Data Reconciliation (DR) and Gross Error Detection

(GED) software and data services that can be used by oil refineries.

The underlying platform for such data processing and efficient management in

real–time becomes a challenge in large–scale industrial plants, thus design and imple-

mentation of a cloud platform service is required to provide performance and elastic

scalability for the digital plants [3].

In summary, the scientific problems faced in modeling and analysis of industrial

systems are as follows:

1. multivariate industrial data validation and reconciliation (DVR) problem,

2. data analysis and system modeling in real–time,

3. model accuracy problem for dynamic systems,

4. elastic scale for multivariate, high dimensional and fast sensor data processing.

1.2 Proposed Tasks

This thesis presents big data challenges seen in large–scale mission–critical industrial

plants equipped with thousands of sensors of various types. In this regard, I propose

two main approaches to acquire veracity aspect of sensor data. In the first approach,

data validation and reconciliation (DVR) technique [4] is proposed for sensors that

are prone to errors and failure to satisfy plants models such as Mass Balance equi-

librium for improving the accuracy of data. For this purpose, the process model

equations such as equilibrium relation and conservation law is used to perform data

3



reconciliation and gross error detection. Regimes (e.g. windows sizes) are found to

be sustainable over fast streams of sensor data to improve the performance [5]. In the

second approach, gross error detection and error classification solution is proposed,

which combines techniques for time–series analysis such as the ARMA model with

signal processing tools such as Kalman Filter, integrated into a commercial Complex

Event Processing (CEP) engine. In addition, the shifts among different states in

datastets are detected to represent systems’ multiple operating modes, and for iden-

tifying the time when a model reconstruction is required. On the other hand, design

and implementation of a cloud platform service [6] is proposed to provide scaling

characteristics for fast streaming data in industrial systems.

To motivate and demonstrate the use of real–time multivariate data analysis, we

obtained time–series data from the power and petrochemical plants of a real refinery

with approximately 11.5 million ton/year processing capacity [7]. Contributions of

this thesis can be summarized as follows:

• First, multivariate data including flow, temperature, pressure is analyzed using

ARMA time–series modeling and synthetic datasets are generated for ground

truth tests.

• Second, accuracy of three GED models are compared: an optimizer using In-

stantaneous Mass Balance constraint (IMB), Kalman Filter (KF), and a new

Kalman Filter with Unity Gain constraint (KF-UG counterpart) over real and

synthetic sensor data.

• Third, for the detected errors, gross error classification (GEC) is applied using a

Complex Decision Tree (CDT), neural network (NN), and K-Nearest Neighbor

(KNN) algorithms, and sensor errors are classified into four types called Bias,

Drift, Precision Degradation and Failure [8], [9] illustrated in Figure 1. Applying

GEC on top of GED is crucial for oil refineries, and it is demonstrated that
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Figure 1: Overview of the organization and contribution for GED and GEC.

accuracy of GED techniques can vary per error type. Each error type requires

a relevant action on sensors: some error types are fixable whereas others aren’t

and need sensor replacement.

• Fourth, the trained DR-GED, GEC models are integrated into a complex event

processing (CEP) engine and the accuracies and performances of the proposed

techniques are verified over real refinery datasets.

• Finally, validated data is used for analysis of changing system modes. The

aim of operational mode analysis is to identify the time where operation shifts

from one steady–state to another and a model reconstruction is required. The

context shift is analyzed based on fluctuations in streaming sensor data using

DBSCAN clustering.

I propose to solve the described scientific problems using the following approaches:

1. Select and integrate a set of analytical tools from different domains such as
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statistics, signal processing, and distributed systems, as a solution for the chal-

lenges faced in multivariate data reconciliation problem.

2. Evaluate gross error detection (GED) accuracy for three different tools that are

applied for DVR: Instantaneous Mass Balance using Mass Balance constraint

(IMB), Kalman Filter (KF), and Kalman Filter with unity-gain (DREDGE)

over controlled datasets.

3. Real–time data validation (i.e. detect gross errors) and reconciliation, inte-

grated into a complex event processing (CEP) engine, for classifying gross errors

into four different types including bias, drift, precision degradation and total

failure [5, 6].

4. Using regression model for analysis of changing modes in the system and validate

results using clustering techniques such as K-means and DBSCAN methods.

5. Integrate these models into a real–time CEP engine for studying sustainability of

the proposed techniques at scale as a cloud platform service, (Amazon AWS [10])

and implementation on the Private Cloud services.

6. Using modern open–source distributed cluster–computing framework like Apache

Spark in real–time, scalable (multi-core machines) for implementation of Big

Data engines [11].

Overall, selection and synergetic use of a set of analytical tools from different

domains including data mining, statistics, and distributed systems are discussed to

address challenges faced in petrochemical industry. The aim of this thesis is not only

detecting outliers and improving the accuracy of data but also recognizing the state

of physical sensors as well as industrial systems and identifying the time of model

reconstruction.
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I hope the contributions in this thesis for oil refineries will also contribute to

smarter industrial models, Industry 4.0 and digital transformation [12] efforts of other

future industries.
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CHAPTER II

BACKGROUND AND RELATED WORK

Data–intensive computation have been recently considered as an important paradigm

for science. Two factors in this trend are: (1) vast amount of data obtained from

applications and; (2) the infrastructures that provide storing these vast amounts of

data, sharing data and data processing [13]. Every day 2.5 quintillion bytes of data

is created by users and about 90% of available data is generated and collected in

the last two years. These data are collected from sensors, Internet of Things (IoT),

Industrial IoT (IIoT), social media, digital media, business transactions to name a

few. This data is called Big Data. We face new waves and innovations for analyzing

large datasets. Big Data is not simply defined with large size of data but allowing

new content available for scientific and business requirements which were beyond our

reach in past [14].

The current needs for better control, monitoring, and management in many ar-

eas by development of IoT, have originated the appearance and creation of multiple

systems like smart–home, smart–city, smart–grid, and smart–factories. In general

smart–cities rely on sensors and a vast number of sensing devices for integrating re-

ceived data into underlying platform for relevant data processing [15]. IoT devices

are limited in storage and computational power and for complex analysis, they re-

quire technology of Cloud Computing. While IoT generates high amount of varied

data, Cloud technologies are available to gather and process data with almost infinite

computational and storage power [14].

On the other hand, IoT is enabling numerous and various types of sensors to be

placed around critical industrial facilities, thus allowing distributed data collection
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in real–time. Specifically, IIoT devices collect data from complex physical devices

and instruments with time–varying and possibly nonlinear behavior [16]. Estimated

cyber models for collected data are expected to help industries with process efficiency

tracking, load forecasting [17], predictive maintenance [18] decisions, anomaly detec-

tion [19], reducing factory downtimes and increasing safety as well as profits. Thus,

it is necessary to develop accurate, yet simple and efficient models that can be used

with high–speed industrial data streams [20], [21].

In this regard, artificial intelligence is becoming popular in smart–factories and

industry 4.0 revolution for communication between machines and components for pro-

duction processes. Intelligent systems are used in digital control of facilities for quality

insurance and the sensors are implanted in smart–factories and machine learning uses

the data received from them for analysis, maintenance, and future predictions. Re-

ducing costs and improving the safety of pipelines, machine failure prediction before

it actually happens, improving equipment reliability for preventing potential down-

times, and identifying significant changes in data to give alert before damage occurs

are few use cases of real–time onsite intelligence in Oil & Gas smart–industry [22].

Data is the main resource in industrial and business processes that should be

utilized to support decision making (i.e. decision support systems). The quality

of data has a high value when it can provide timely and relevant information to

organizations. Therefore, data quality is a challenging problem when data quantity

is increasing with poor quality. “Fitness for use” is a comprehensive definition for

data quality requirements beyond traditional concerns on data accuracy. We need to

develop cost-effective solutions for data quality assurance that can sustain over high

volumes [23], [24]. This is a multidimensional concept assuring suitability according

to the nature of a problem [25].

Six dimensions of data quality depicted in Figure 2 can be described as follows:

• Accuracy: Data conforms to its correct value for the object or event being
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Figure 2: Data quality dimension chart.

described.

• Completeness: Information is not missing any items and/or is sufficient for

the task.

• Validity: Data complies with its defined syntax (format, type, range).

• Consistency: Representation of data values remain the same in multiple lo-

cations and forms.

• Timeliness: Data is up to date and it is available on time.

• Integrity: The relation between entities and attributes is consistent.

The problem of data quality and anomaly detection we attempt to solve in Oil &

Gas industry, will involve machine learning techniques in order to model the system

and take a relevant action based on the knowledge acquired from analysis of industrial

sensor data. According to data quality dimensions described here and importance of

this issue in mission–critical industrial systems, techniques for assuring some of these

dimensions are applied on the data obtained from Turkish Petroleum & Refineries

Inc. in this thesis.
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2.1 Data Validation and Reconciliation

In modern chemical plants or refineries, hundreds of data streams such as flow rates,

temperature, pressure, etc. are measured and recorded automatically for online pro-

cess control and evaluation purpose. In the past 40 years, data validation and reconcil-

iation techniques have been developed to satisfy plant models and improve accuracies.

For this purpose, the process model equations such as equilibrium relation and con-

servation law, are used to perform data reconciliation and gross error detection. Data

reconciliation is a technique developed to improve the accuracy of measurements by

reducing the effect of random errors on data, which is a mathematical model [26] to

reduce inconsistency between measured data and industrial process model [27]. Ma-

jor difference between data reconciliation and other filtering techniques is that the

former explicitly uses process model constraints by adjusting measurements to satisfy

the constraints. Reconciled estimates are expected to be more accurate, and in order

for data reconciliation to be accurate there should be no gross errors in measurements.

GED is a companion technique to data reconciliation. This technique is developed

to detect and eliminate gross error from data. In summary, data reconciliation and

GED are interrelated and can be applied to improve the accuracy of measured data.

For applying them on data, the plant should be modeled according to its constraints.

The natural laws of mass or energy conservation are typically used for constraints in

data reconciliation, which can be expressed in the following form [28]:

Input− output+ generation− consumption− accumulation = 0 (1)

In this thesis, two main models are used for data reconciliation, mass balance

constraints for systems in steady–state and Kalman Filter [29] for time–varying pro-

cesses.
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2.1.1 Steady–State System Model

The quality of process data in mission–critical industrial systems affects the perfor-

mance of process monitoring and system control software. In industrial systems in

which the data is collected from several resources, the measurements always contain

error which affects and sometimes invalidate the process model. These errors can oc-

cur during physical measurement, data processing, and transmission of the measured

signal. The difference between a measured value and a true value is represented as

contribution of two types of errors: random error and gross error [8]. The magnitude

and sign of random error may not be predicted, which means even if the same process

is repeated with the same instruments, it may result in a different value. The reasons

for these errors can be power supply fluctuation, network transmission and signal

conversion noise, etc. This kind of errors usually have small magnitudes and can be

completely eliminated. Gross errors, on the other hand, are caused by nonrandom

events like: instrument malfunctioning, miscalibration or corrosion of sensors. The

nonrandom nature of these errors usually identifies itself by having certain magnitude

and sign in any given time. In other words, if an experiment is repeated in the identi-

cal circumstance, the systematic measurement error will be the same [8]. In Figure 3,

common types of gross error are illustrated which includes:

• Bias: Due to uncalibrated sensors, the received values contain constant shift

with respect to correct value.

• Drift: Due to uncalibrated sensors, the data contains an increasing or decreasing

amount of error with time.

• Precision Degradation (PD): The sensor plates may wear out or get dirty over

time, resulting in received data from sensors containing errors resembling ran-

dom noise but with higher variance.

• Failure: Due to sensor failure, the measured data is almost constant.

Another important issue while performing data reconciliation is model selection:
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Figure 3: Common types of gross error.

steady–state or dynamic model. In theory, a system or process is in steady–state

if the parameters that define the system’s behavior, are not changing over time. In

practice, a process is never truly at steady–state. However, a plant normally operates

for hours or days in a region around steady–state. For applications that have a

low frequency of change, steady–state reconciliation can be performed. In transient

periods of changing states a dynamic model can be applied. The general formulation

of linear models is described in equations 2–5 can be explained as follows:

y = x+ ε (2)

where y is vector of n measurements, x is corresponding true values and ε is vector of

unknown random errors. The constraint explained in Equation 1 can be represented

in general by:

Ax = 0 (3)

where A is m × n matrix and 0 is m × l vector whose elements are zero. Each

row of equation 3 corresponds to related constraints such as mass balance. The

elements of matrix A are either +1, -1 or 0, depending on corresponding stream flow

is input, output or respectively not associated in process. The objective function can
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be represented in general by equation 4:

minx(y − x)TW (y − x) (4)

where W is usually diagonal matrix representing weights that contain statistical prop-

erties of errors. The analytical solution to the above problem can be obtained using

mathematical optimization strategy like Lagrange multiplier method as follows:

x̂ = y −W−1AT (AW−1AT )−1Ay (5)

This equation denotes the solution for estimated values by x̂. The estimation satis-

fies the corresponding constraints of the system. Data reconciliation is built on the

assumption of normal distribution of random errors (white noise). Accordingly, the

reconciled values may be inaccurate if measurements contain a significant process

leak. To identify and remove such errors is a critical problem to be solved which is

known as gross error detection process.

2.1.2 Time–Varying Kalman Filter

If we consider systems that require regular control and accurate estimates of process

variables, data reconciliation has to be applied frequently as well. In this case, the

whole process can no longer be assumed in steady–state. The time–varying Kalman

filter is a generalization of the steady–state for time–varying systems with nonsta-

tionary noise covariance [30].

Kalman filter is a state space model used for tracking and parameter estimation

formulated with the system Equation 6 where xn+1 is the state vector at time n

that is transformed to yn the measurement vector. A,B,C are state transition and

measurement matrices and wn and vn are white Gaussian noise with zero mean.

System statemodel : xn+1 = Axn +Bun + wn

Measurementmodel : yn = Cxn + vn

(6)
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KF has two phases: prediction for projecting current state obtaining a priori

estimate as shown in Equation 7, and correction step for obtaining posteriori estimate

by incorporating actual measurement into the a priori estimate as x̂n|n, P is the

estimate error covariance, Q and R are covariance matrices and, Mn is the KF gain [8].

The prediction and correction steps are executed recursively as follows:

Prediction step

x̂n+1|n = Ax̂n|n +Bun

Pn+1|n = APn|nA
T +Qn

(7)

Correction step

x̂n|n = x̂n|n−1 +Mn(yn − Cx̂n|n−1)

Mn = Pn|nC
T (CPn|n−1C

T +Rn)−1

Pn|n = (I −MnC)Pn|n−1

(8)

Given the observed input data, the system state is tracked in a KF. The “in-

novation” is computed in the correction step of the KF, which is subjected to a

Chi-Squared test. If the test fails, a gross error is detected. KF is used for random

error detection and data reconciliation in sensor data and an adapter is required to

turn its output prediction error (called innovations) into a GED tool, similar to the

statistical global test used in IMB. Constructing a statistical test in dynamic linear

systems is possible by utilizing the properties of KF innovations (i.e. output predic-

tion error), which is computed in the correction step of KF. Innovations have normal

distributions with expected values and a covariance matrix Vk given by Equation 9,

where Pk|k−1 is a priori estimate covariance, C is observation model and Qk is noise

covariance matrix [8].

Vk = CPk|k−1C
T +Qk (9)

Equation 10 is used to obtain a γ value, where Vk is innovation covariance and vk is

innovation residual at time k. The γ value follows a Chi-squared distribution with
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1 degree of freedom and if it exceeds the criterion 95% corresponding probability for

the desired confidence interval, the test fails and the gross error existence, as well as

its location, are detected [8].

γ = vTk V
−1
k vk (10)

2.2 Time–Series Analysis

For understanding the underlying mechanism in a time–varying system, time–series

analysis method is required to achieve system control. There are two main types for

time–series model: time domain and frequency domain. In time domain models, data

is studied using mathematical models with respect to time. Time–series variation

modeling include three main classes, autoregressive, integrated and moving average

models for the purpose of system control and future forecast. In general, time–series

data show seasonal behavior and analysis of seasonality and seasonal forecasting is

considered as an important issue. Seasonality analysis requires model selection for

forecasting when the data from time–series is captured as data sequences [31]. After

selecting a model, the variables and equational relationships and parameters are in-

volved for model specification. Once the model is specified, the characteristics should

be validated by comparison of forecasted values with real data (historical data) [32].

Error measures such as Mean Absolute Percentage Error (MAPE), Mean Squared Er-

ror (MSE), and Root Mean Square Error (RMSE) are used for model validation. For

validation, time–series forecasting methods assume there is a combination of pattern

and random error in data and understanding the pattern’s trend and its seasonality

is its main goal. Methods like Moving Average, Linear Regression, and Exceptional

Smoothing are commonly used for time–series forecasting.
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2.2.1 Exponential Smoothing

Smoothing for time–series analysis is a technique for reducing random fluctuations and

adjustment of seasonal components [31]. Seasonality is defined by tendency of time–

series behavior that repeats itself every L periods. Seasonality trends types contain

Additive, Multiplicative, Linear and Exponential growth in time–series. Exponential

Smoothing though, is a procedure for revising a forecast in light of recent experience

and assigns exponentially decreasing weights as the observations gets older, a simple

exponential smoothing is described in the Equation 11 as below:

St = αXt + (1− α)St−1 (11)

Applying this recursively to each successive observations, each new smoothed fore-

cast is computed as weighted average of current observation and previous smoothed

observations. The initial value of St plays an important role in computing all the

subsequent values. Setting it to y1 is one method of initialization. Another possibil-

ity would be to average the first four or five observations. The smaller the value of

α, the more important is the selection of the initial value of St [33].

For example, Holt-Winters is a Triple Exponential Smoothing technique used for

data that shows trend and seasonality. In addition, overall smoothing, trend bt, and

seasonality St has to be updated as described below:

Overall Smoothing (level)

Rt = α ∗ yt/St−L + (1− α)(Rt−1 +Gt−1) (12)

Smoothing Trend Factor

Gt = β ∗ (Rt −Rt−1) + (1− β)Gt−1 (13)

Smoothing Seasonal Index
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St = γ ∗ yt/Rt + (1− γ)St−L (14)

The value of forecast for next period is given by:

Ft = Rt−1 +Gt−1 + St (15)

where 0 < α, β, γ < 1 are smoothing constants, and values of these parameters are

initialized according to length of data [34], [33].

2.2.2 Auto Regressive Moving Average (ARMA)

ARMA is a time domain model used for time–series analysis and includes autoregres-

sive (AR) and moving average (MA) methods for modeling variations of a process [32].

This model can capture the dynamic nature or “memory effect” of the systems with

respect to sudden changes in the input. Mathematically AR model is defined as:

Xt = c+

p∑
i=0

φiXt−i + εt (16)

where c is constant εt is white noise and φi are model’s parameters, and MA can be

expressed as:

Xt = µ+ εt +

q∑
i=0

θiεt−i (17)

where µ is expectation of Xt , θi parameters of the model, and εt white noise error

term. Combining AR and MA models, the ARMA can be described by the recursive

equation:

yk + α1yk−1 + . . .+ αnyk−n = β0xk + . . .+ βmxk−m (18)

where yk are the output, and xk are the input of the system at time k. Error terms in

this model are assumed to be independent and randomly distributed with zero mean.

This model can be used for future forecasting of time–series as well [31].

Exponential smoothing and ARMA models are the two most widely–used ap-

proaches to time–series forecasting, and provide complementary approaches to the
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problem. While exponential smoothing models are based on a description of trend

and seasonality in the data, ARMA models aim to describe the autocorrelations in the

data. Autocorrelation is a measure to find correlation between values of time–series in

different points. This measure can be used for discovering patterns or identification

of missing frequency in a signal. Mathematically autocorrelation, when mean and

variance of time–series are time–independent, can be defined as:

R(τ) =
E[(Xt − µ)(Xt+τ − µ)]

σ2
(19)

where time–lag is τ = t− s at any time t and s.

2.3 Modeling System Using Data Mining Techniques

Data mining is a process of learning, improving and extracting useful information

using algorithms to learn automatically by machines, from data repositories and past

experiences [35]. Applications using large datasets for learning methods are called

data mining [36]. This process helps us explain the observed data, detect certain

patterns and make predictions, build models and detect anomalies. Machine learning

techniques, build mathematical model of processes using the theory of statistics and

consist of two steps: training a model and use the learned model as algorithmic solu-

tion [35]. There are two approaches of supervised and unsupervised learning, where

in supervised learning the output of training dataset is provided but in unsupervised

learning, the output is not available and the problem is how to cluster data into

different classes. Machine learning is being used in a wide variety of applications in

computer science and currently is attracting attention from organizations for stock

market analysis, optimization problems, control, customer behavior for data analy-

sis in large scale. Industrial applications are also deploying services for complicated

processing to solve their problems efficiently and accurately using machine learning

approaches.

The problem of data quality and anomaly detection we attempt to solve in Oil &
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Gas industry will involve these techniques for classification of detected errors in order

to take relevant action on data and sensors. Supervised learning algorithms such as

Rule–Based, Decision Tree, Neural Networks are used in this work as a descriptive

task [36] for deriving patterns of data points received from sensor stream–data and

techniques such as K-means and DBSCAN clustering for operational mode detection

of industrial systems over fast streams of data.

2.3.1 Regression Analysis Method

Regression is a widely used technique that is applicable to time–varying systems.

Sensor measurements in industrial plants may be interdependent and fluctuations on

one measurement may have an affect on other measurements (i.e. input and output

of a system). This information can be extracted from the estimated parameters.

Linear regression model (RM) is a statistical learning method used for analysis of

relationships between system variables [37]. It is a low degree polynomial regression

model that usually does a satisfactory job [38]. Observed sensor data collected via

IIoT from physical devices are fed into stream mining process for cyber model extrac-

tion. In general, a statistical relation of observed data is explained by yi = b0 + b1xi,

where b0, b1 are linear model parameters, variable yi is the observed response, variable

xi is the predictor for experimental unit i [39].

The linear model is explained by Equation 20 where ŷi is the predicted response.

It is clear that the predicted values will contain “prediction error” or “residual error”.

ŷi = b0 + b1xi (20)

2.3.2 Classification Techniques

In machine learning classification is a supervised learning approach that learns from

past data to classify new observations. Data–driven techniques such as Complex

Decision Trees (CDT), Neural Networks (NN) and K-Nearest Neighbors (KNN) clas-

sifiers are used in this thesis. CDT is a regression tree for modeling relationship
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between variables [40] and the dataset breaks down to smaller subsets and constructs

a tree with decision and leaf nodes. Artificial NN is used for pattern recognition and

classification of data which consists of neurons in several layers and applies nonlin-

ear functions to pass outputs to the next layer. KNN is a density–based clustering

method that classifies data based on top–k nearest neighbor by labeling a new data

point according to the label of most of its neighbors [41].

2.3.3 Clustering Techniques

Clustering methods can be used for modeling a system’s behavior. Data points col-

lected from different processes can be analyzed for knowledge extraction. In this

thesis sensor data is analyzed for system’s operating states. Data points would be

grouped in one cluster denoting one operating state and formation of new clusters is

interpreted as drift to new conditions or emerging patterns. As such, a locality–based

clustering approach, without specifying cluster numbers in advance is beneficial in

modeling a system’s behavior. Density–based clustering methods are suitable for this

evaluation and can be compared to other clustering techniques such as K-means.

DBSCAN algorithm can be used for discovering clusters in arbitrary shapes based

on density of data points. It requires two input parameters (Eps,minPts) where Eps-

neighborhood for a point p is all neighbors within range Eps defined in Equation 21

that has more than minPts data points [42].

NEps = {q ∈ D | dist(p, q) ≤ Eps} (21)

2.4 Related Work

Data validation and reconciliation (DVR) techniques were developed to improve data

quality and satisfy plant models within the last few decades. The process model

equations such as mass equilibrium and conservation laws were used to perform DR-

GED. Data reconciliation is a mathematical model [26] that reduces inconsistency
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between measured data and physical model by reducing the effect of random errors

on data. Reconciled estimates are expected to be more accurate and without (or

at least smoothed) outliers. To accomplish accuracy improvement of data, outlier

detection methods were developed and applied together as a companion technique to

DR. Tang et al. [43] studied outlier detection and anomaly detection [44], [45] as data-

driven approaches developed for identification of unexpected patterns in data and can

be categorized into four types: distribution–based, distance–based, clustering–based

and density–based [46] that are applicable to data directly. But, DR-GED techniques

use the underlying physical system model to satisfy constraints in addition to outlier

detection. Approaches like statistical outlier detection are applicable where data

follows a certain distribution. For model construction of a system fed with stream

data, time–series analysis such as autoregression, moving average and exponential

smoothing are required to fit model, monitor and understand underlying forces of

process model [47], [48] in order to make future predictions and replace possible

missing values [49]. Time–series models are applicable in a wide variety of sectors

such as health care [50], transportation [47], forecasting [51], and stock market. Error

detection and classification such as ours provide a data quality improvement for better

system modeling and isolation of faulty processes.

DR-GED applications have been used in chemical or petrochemical processes [52],

[53] since their analysis quality has been known to directly improve the process per-

formance and increase profits as well as safety [54]. Most prior studies focused on

performing DR-GED offline using static samples of data collected from relatively old

system logs. Over the past decades, the number of data resources such as sensors used

in industrial facilities and Internet of Things (IoT) has risen dramatically. Yet, online

data processing remains a challenge. Attempting to store these data first to analyze

them later creates additional IT costs, unwanted delays to actionable information,

and mishandling of threats or opportunities. Fortunately, there are now tools to
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process data on-the-fly as they move from DCS and SCADA systems to selected des-

tinations. Neither relational databases nor distributed batch processing systems [55]

alone are designed to cope with industrial data analytics. In sectors such as finance

and mobile telecommunications, enterprises started employing CEP engines [56] for

tracking Key Performance Indicators (KPI) in real–time or for carrying out rule–

based alarm management. Nowadays, heavy industries also want to complete their

“digital transformation” or Industry 4.0 journey [57] by extending their data architec-

tures with real–time complex analytical [58], [59]) capabilities. However, data needs

to be validated first in real–time, for the rest of the online analytical models to work

accurately.

Do Valle, et al. [60] collected benchmarks for DR-GED issues introduced in the

literature for mass and energy balance preservation. Zhang, et al. [61] studied DR

and parameter estimation (DR-PE) for systems with multi–operating conditions and

suggested a PCA-based steady–state detection technique extended with clustering to

partition the data into different modes of operation, so that accurate reconciliation

can be applied for each mode. They also addressed the DR-GED problem for dynamic

systems using particle filters [27]. Guo, et al. [62] proposed a systematic approach

for DR of a thermal system using mass balance and improved data accuracy. Ruan,

et al. [63] used a symbolic representation of time–series data for reducing the volume

while also extracting patterns.

Rafiee et al. [53] studied DR-GED using material and energy conservation laws in

natural gas processing. Jiang, et al. [64] studied GED for data obtained from a coal–

fired power plant. They modeled the system at steady–state and reconciled the data

using the mass and energy balance equations. They employed statistical global test to

detect gross errors and serial elimination technique to identify the error sources. Their

steady–state technique compares to the basic Instantaneous Mass Balance (IMB)

method described in this thesis. We find that IMB and similar “stateless” techniques
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are less effective compared to modified Kalman filters that track system behavior

when the system is not at steady–state. They also did not discuss applying GED on

top of streaming data.

The approach used in this thesis integrates the prior information from the sys-

tem in steady–state to model plants and uses statistical tests for validation of data

in real–time relates to system identification work in the literature. For example,

Alenany, et al. [65], applied a subspace identification approach using constrained

least squares with prior information of the system, which leads to a computationally

efficient approach. Larimore [66] also applied maximum likelihood methods using

subspace system identification to obtain the most appropriate statistical model of a

system. Buchhloz, et al. [67] compared noiseless and noisy data models and the effect

of noise on a system model. Robust parameter estimations of systems in a linear sub-

space model were applied to reflect confidence in an apriori model by McWhorter,

et al. [68]. For all these cases, the quality of models depends on the quality of data.

The proposed real–time GED and GEC techniques are therefore complementary to

all and aim to fill this gap in the literature.

In data stream analysis evolution of states should be taken into consideration dur-

ing adaptive modeling. When the measurements collected from IIoT devices consist of

multi–operating conditions the model’s parameters change state and identifying these

states is useful for understanding normal behavior, anomaly detection, and data rec-

onciliation. Researchers have employed different techniques and algorithms in the past

to address similar problems [69]. Zhang, et al. [70] proposed a quality–directed adap-

tive analysis framework AQuA, for incremental model tracking. Lughofer, et al. [71]

proposed an incremental rule splitting concept to autonomously deal with gradual

drifts for local distributions. Zhu, et al. [72] proposed a “multi–scenario” parameter

estimation for dynamic systems. Zheng, et al. [61] proposed parameter estimation
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with multi–operating conditions for data reconciliation in steady–state. For han-

dling drifts in data streams Shaker, et al. [73] proposed an adaptive forgetting factor

depending on the current intensity of drift in stream data. In another approach

Lughofer, et al. [2] proposed a dynamic clustering method based on evolving vector

quantization for cluster extraction of online data. A related work for building Oil &

Gas ontologies [74] and addressing data integration issues includes POSC Caesar As-

sociation (PCA)’s ISO 15926 standardization efforts. Algorithmic designs also need

to change to support incremental updates over streams. Within the last decade, spe-

cial “stream mining” versions [75] of rule–mining, pattern recognition, classification

and clustering algorithms have been developed and embedded into emerging data

architectures. The aim is to identify the time where the state is shifting from one

steady–state to another and a model reconstruction is triggered. The context shift

of the system is detected according to the error fluctuations of the trained DBSCAN

clusters. This study involves using and comparing stream–based regression and clus-

tering methods over oil and gas sensor data for differentiating operational models of

industrial systems and is complementary to these related works.

The proposed approaches combine steady–state modeling with real–time model

updates, operational mode identification and data cleaning via error detection all at

once.

For using data processing tools next to industrial requirement in data manage-

ment there are several architectures to implement Cyber–Physical System (CPS) of

industrial plants. CPS is used to develop required environment by: (1) a methodology

to model and analyze CPS’s behavior; and (2) CPS architecture for monitoring the

system based on cloud technologies for sensor network data analysis [76].

The cloud platform provides the opportunity for collecting real–time information

coming from real–world resources to improve decision making processes and pattern

extraction from data. IoT (Internet of things) can generate this kind of real–time,
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large amounts of varied data when there are millions of things feeding data to cloud

computing [77]. Knowledge discovery and decision making from such data are chal-

lenging tasks and an emerging trend known as Big Data. This paradigm combines

large scale computation with data intensive techniques and mathematical modeling

for analyzing data. Big data computation needs huge storage, repositories for applica-

tions that have high volume in exabytes and associated applications are encountered

with challenges in software development [78]. This is a clear example of Big Data

that demands to take cloud computing into account [15]. This large volume of data

is collected from IoT are fast with high velocity and consequently require frequent

decision making using machine learning and Big Data framework to divide problems

to subproblems and solve in parallel [79]. Miller, et al. [80] developed a framework

called SCALATION for sensor data analytics using traffic data. Jian, et al. [81]

analyzed Spark’s framework performance, running machine learning instance (linear

regression) on a local cluster deployment. Richter, et al.[82] compared tools used

for machine learning in big data frameworks with regard to scalability and speed of

algorithms which can be used as a guide to select an applicable tool for a problem.

Similarly, features of distributed stream computing architectures are introduced and

discussed by Cia, et al. [83] that is used for component selection of proposed Big

Data architecture in this thesis. Also, another architecture is proposed to perform

data analysis in real–time by Mauro [84] for network traffic data.

In [85] a Big Data architecture is proposed in which DQ is pervasive throughout

the platform. Their architecture consists of a markup language SDQ-ML for describ-

ing sensor services developed for applications for declaration of sensor requirements.

To create the ability to query over sensor data, Wang et al. [86] used tags as data

source creation time, this gives user ability to filter out data with undesirable speci-

fication and data quality for their requirements. Testing data quality in Big Data is

another aspect in DQ assurance and tools like Zoho [87] is proposed for this purpose
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in the cloud. Technologies for real–time analytics like Apache Storm [88], Spark [89]

Streaming and Complex Event Processing(CEP) are getting attention for Big Data

applications [90]. In addition to Big Data solutions in these technologies, the focus

is also moved to online stream processing. Guanitz et al. [91] used Apache Storm

with CEP in applications for dynamic and event–driven data processing in real–time.

Santos el al. [92] proposed two new technologies: JStreams a CEP engine for lo-

cal analytics and DiAlM for distributed analytics taking benefit of cloud computing

technologies. Ophidia is also a research effort for mining scientific data using MySQL

array–based data analysis [93].

The rest of the thesis is organized as follows. Chapter 3 describes the cyber–

physical systems and proposed data architecture for oil refineries and compares dif-

ferent GED methods including IMB, KF, and DREDGE and experimental results on

multivariate sensor data, also compares the accuracy and computational performance

of approaches, and explains different GEC methods including CDT, NN, and KNN for

gross error classification and discusses the accuracies. Chapter 4 describes the iden-

tification of operational modes of industrial systems using sub–model analysis and

details the proposed algorithm for adaptive window size tuning and related results.

Chapter 5 describes the proposed data architecture for industrial plant in private and

public clouds. Finally, Chapter 6 concludes this thesis.
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CHAPTER III

MULTIVARIATE SENSOR DATA ANALYSIS FOR OIL

REFINERIES

For knowledge extraction from physical data resources a systematical transforma-

tion technology is defined for interconnecting system’s physical components to cyber

computational space called Cyber–Physical System (CPS) [94]. CPS are described

by Rajkumar, et al. [95] as “physical and engineered systems whose operations are

monitored, coordinated, controlled, and integrated by a computing and communica-

tion core”. Industry 4.0 will be realized by connecting CPS with Cloud via Internet

of Things (IoT) and providing distributed, secure, and intelligent analytical data

services at the Edge or the Cloud [96], [97].

3.1 Description of CPS for Oil Refineries

Oil & Gas businesses have already implanted thousands of sensors inside and around

their physical systems. Sensor data continuously streams in via DCS and SCADA

systems measuring temperature, pressure, flow rate, etc. of drills, turbines, boilers,

pumps, compressors, and injectors. Figure 4 illustrates the the CPS and software

architecture of our oil refinery. The major “physical” components are the power

systems depicted in Figure 5 and the crude oil processing columns depicted in Figure 6;

their “cyber” counterparts are composed of the sensors, servers, and the data–based

services that store and process the digital models. The power plant provides electricity

to the rest of the refinery and has about 80 megawatts of generation capacity. There

are 8 boilers with maximum flow capacities of 100 ton/hour, which turn hot water

into super–heated and highly–pressurized vapor. The vapor output from every boiler
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Figure 5: Illustration of a boiler power plant. Various types of sensors are implanted
for real–time data collection. The boiler can change states among the desired stream
pressure levels (low, high, very-high) or go automatically into heating, cooling, recy-
cling, and condensing modes. KBS: cold water input; VHP: Very-high power steam
output; DSH: De-Super Heater.
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is directly fed into a corresponding steam turbine with an alternator, which turns the

thermo–kinetic energy into electrical energy. The flow rates of the inputs (hot water)

and the outputs (vapor) of the boilers are measured by flow rate sensors (S-In1, S-

Out1, etc.) and these measurements are fed into the models. Placing redundant (i.e.

extra) sensors around the physical systems increases reliability and allows replacement

of missing values that helps to locate and classify errors or detect sensor failures.

Crude oil columns take the oil as input and deliver several by–products such as

liquid propane gas, fuel oil, kerosene, diesel, and asphalt. A preflash unit reduces the

pressure and provides the first vaporization, where the vapor goes to a debutanizer

for distillation and the liquid mix goes to an atmospheric column for separation.

On the digital side, we have servers and software for online and offline processing of

received data. For offline data processing, the Hadoop Distributed framework [55]

is used for providing the Extract, Transform and Load (ETL) services. This service

gathers raw data from all sensor streams and presents them in a unified format. Using

offline data, we can extract the steady–state models for physical systems and use this

prior information to instantiate cyber models. Using the online data, we can tune

the system models dynamically and detect gross errors in real–time. We deployed

DR-GED models and GEC algorithms inside a CEP engine.

The benefits of using CEP engines for data stream analytics are at least threefold:

• They can turn raw data into actionable information quickly, thus helping oil

refineries catch critical issues to avoid losses or detect alarming situations and

operational inefficiencies in real–time.

• They can eliminate unwanted data early in the data pipeline, saving further

CPU, memory, storage and energy costs.

• They can catch transient or emerging patterns, which never show up in an offline

data mining analyses.

The client applications with a graphical user interface (GUI) can connect to data
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services to receive reconciled data and alert about the existence of gross errors in

sensors, as well as their types after classification.

Considering all input–output lines and the different types of measurements (water

and vapor flow rates, temperature, pressure, fuel oil and fuel gas flow rates), there are

about 1,000 sensors in the power plant and 60,000 sensors in the entire oil refinery,

where a sample of one month real data measured every minute is made available for

academic use at OpenML datasets web site [98]. Our goal is to process all of this

raw, streaming sensor data and create valuable data services for generating clean and

reconciled data, detecting and classifying gross errors (i.e. avoid false positives - FP),

and raising alerts when the system is malfunctioning (i.e. true positives - TP). The

system can also be used to track a set of KPI for the entire plant and report results

in dashboards if the performances are below or above pre-defined thresholds.

3.2 Methodology in DREDGE

DR-GED requires a mathematical model to reduce inconsistency between measured

data and industrial process model [27]. In this study, we use two main models for

data reconciliation: mass balance constraints for systems in steady–state and Kalman

filters [99] for time–varying processes. We also propose DREDGE, which is a special

Kalman Filter implementation extended with unity-gain that incorporates system dy-

namics into mass balance constraints. After modeling system we apply a distribution–

based outlier detection approach on the estimated system model as GED method. All

methods are implemented into a CEP engine.

On the other hand, industrial systems can have multiple operational modes and

there can be shifts among them during daily operation. Accordingly, the models are

required to be reconstructed and time–varying parameters updated, which explains

the emergence of local and window–based stream online analysis to be more reliable

than offline (or batch data) analysis.
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3.2.1 Steady–State and Instantaneous Mass Balance (IMB)

The first method used for GED is IMB. IMB enforces a mass balance constraint

at every sensors’ measurement instant and does not take into account the system

dynamics or the memory effect. This is a standard DR-GED method, based on

comparison of observed data to their statistics [8] as shown in Equation 22.

ŷt = yt − V AT (AV AT )−1Aŷt (22)

If we assume yt matrix contains the masses of input water and De-Super Heater

(DSH), and the mass of output vapor, then ideally mass balance constraint should

enforce Ayt = 0, where matrix A represents the system input flow +1, output flow -1,

and unused measurements 0. For our power plant system, yt is a 3-dimensional vector

of these masses and a sample is shown in Table 1. IMB method also uses a covariance

matrix V (Eq.1), in order to find out how attributes vary together. We obtained

covariance matrices by using historic data, where V is an N ×N matrix (N = 3 for

power plant and N = 17 for petrochemical plant) containing the variance–covariance

of all the input–output attributes:

A =

[
+1 +1 −1

]

V =


104.998 1.825727 128.1891

1.825727 0.236576 2.163642

128.1891 2.163642 163.9264


Next, the data is reconciled using Equation 22 and x̂ denotes the reconciled (or

de-noised) data. Then, under the null hypothesis H0 (H0: The system is working,

so there is no gross error), a statistical test analogous to global test is applied for

detecting gross errors known as Chi-Squared test (X2), which is a nonparametric

statistical test corresponding to cumulative probability, exceeding the 95% criterion
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Table 1: Sample data for yt, input/output flow values (ton/hour) of one of the boilers.
The complete data spans 5 months worth of measurements from 12/2014 to 4/2015.

Water DSH Vapor

54.15951 0.737258 52.311
53.48025 0.74118 51.476
54.11722 0.740656 53.231
51.46956 0.742319 53.128
54.07272 0.738685 51.057

Table 2: Sample flow measurements for 17 sensors yt (ton/hour) of the petrochemical
system of Figure 6. The complete data spans 2 months worth of measurements from
08/2014 to 10/2014.

1 2 3 4 . . . 17

14136.54 34.91064 1530.896 12549.15 . . . 910.1204
14139.98 35.59276 1537.567 12557.17 . . . 909.0833
14122.35 35.73056 1533.281 12553.83 . . . 906.283
14113.85 36.53142 1529.905 12545.45 . . . 902.0441
14126.97 35.47277 1527.698 12555.25 . . . 909.6918

gross error is detected. Given r the vector of residuals of linear model that follows a

normal distribution with zero mean and the covariance matrix V , the statistical global

test is constructed. Statistics given by γ in Equation 23 follows a X2-distribution with

v degree of freedom, where v is the rank of matrix A. The 1 × 3 Matrix A used in

Equation 22 in IMB method has rank 1 and the Chi-Squared test for this process has 1

degree of freedom and 95% confidence (X2
95%(m) < 3.84) corresponding to cumulative

probability for desired confidence interval. A result of data reconciliation and gross

error detection using IMB method is shown in Table 3.

φ = AV AT , R = Ayt, γ = RTφTR (23)

For the petrochemical plant, the same approach is used for DR-GED on raw

values. As depicted in Figure 6, this plant has 17 flow sensors over 3 main branches

of material flows and the corresponding sensor data streams. Each branch has its own

mass balance consideration as follows: 1=2+3+4, 3=5+6+7, 4=8+. . . +17. Table 2
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Table 3: A result of data reconciliation using IMB method.

Water Vapor Rec. Water Rec. Vapor γ

54.582 59.898 57.307 57.66 7.230
55.951 58.477 57.246 57.414 1.632
55.316 58.320 56.856 57.055 2.308
54.004 59.372 56.756 57.112 7.372
55.239 58.644 56.985 57.210 2.966
55.158 58.366 56.803 57.015 2.633

shows sample sensor measurements for Figure 6 and matrix A represents the mass

balance equation (V17×17 not shown for brevity). The least squares estimates (LSE)

method is used to obtain ŷt and a Chi-squared test with rank(A) = 3 degree of

freedom is used for GED in this plant.

A =


1 −1 −1 −1 0 0 . . . 0 0 0

0 0 1 0 −1 −1 . . . 0 0 0

0 0 0 1 0 0 . . . −1 −1 −1


3.2.2 Capturing System Memory Using ARMA Model

Assuming plants are linear dynamical systems, their operation can be explained with

the AutoRegressive Moving Average (ARMA) model [32]. This model can capture

the “memory effect” of the systems with respect to sudden changes in the input.

For example, in the power plant any sudden change in the amount of water input

might not reflect itself at the vapor output instantaneously, as some water/vapor gets

stored in the system during heating. The ARMA model is described by the recursive

Equation 24:

yk + α1yk−1 + . . .+ αnyk−n = β0xk + . . .+ βmxk−m (24)

where yk are the output, and xk are the input of the system at time k. For the

power plant, yk is the vapor output and xk is the water input, both in ton/hour. For

the petrochemical processes, yk is the various by-products (fuel, diesel, kerosene) and
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Figure 6: Petrochemical process showing crude oil input, preflash, debutanizer, at-
mospheric columns, and sensors (1-17) measuring input and output flows.

xk is the crude oil input. Enforcing instantaneous mass balance (i.e. IMB) at the

input and output might not work if the system is not in steady–state. ARMA model

captures this system buffering, thus “memory effect”. The order of the model in

Equation 24 is given by m and n parameters. The higher the order is, the bigger the

memory of the system. In this system, discrete time is chosen, since the sensor values

are obtained in discrete time intervals. A set of training data is chosen for fitting

ARMA model and extracting the coefficients αi and βj to identify system order.

Then for a given system order and corresponding coefficients, the estimated model

is trained and applied on test data. The system order that performs best on training

data is selected, which resulted in m = n = 1 with both of our systems (power plant

and petrochemical plant). We also compared ARMA with Holt-Winters time–series

modeling technique [34], which is a special case of ARMA model used for time–series
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smoothing (that integrates level, trend, seasonality of data). Since Holt-Winters does

not take into account input/output autocorrelations, we observed the ARMA model

to be more effective for our scenario.

3.2.3 Time–Varying Kalman Filter (KF)

A system’s stability is preserved when the coefficients are all in a region of conver-

gence, so, the step response and impulse response of the system are more reliable.

These explanations show that the system is simulated reasonably and using Kalman

Filter to remove random error from data and detect gross error is possible for this

linear dynamic system. The ARMA model obtained for both systems (power plant

and crude oil) is converted to state–space representation. Then given the observed

input data, the system state is tracked using KF as explained in Equations 7, 8. The

“innovation” (i.e. delta) is computed in the correction step of the KF, which is sub-

jected to a Chi-Squared test similar to IMB. If the test fails, gross error is detected.

This method incorporates system dynamics, however, mass balance is not watched

for. To incorporate mass balance as well, we used the unity-gain for KF and will be

referred as DREDGE 1 (Data REconciliation and Gross Error Detection) method.

KF is designed for noise detection and removal. The input, output, reconciled

input and output and KF states are implemented and tested on a fraction of 2,000

of Water-input and Steam-output data. Constructing a statistical test to be applied

in steady–state systems for GED in dynamic linear systems, is possible utilizing the

properties of innovations.

3.2.4 DREDGE: Novel Approach

IMB method is ideally used with systems at steady–state. The time–varying Kalman

Filter (KF) is a generalization of the steady–state models for time–varying systems,

i.e. systems with nonstationary noise covariance. Although the ARMA model takes

1The word “Dredge” means: to dig and remove rocks and earth continuously from a stream.
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into account the dynamics of the boilers, it does not take into account the fact that, all

the water that goes in must eventually come out of the system. This means the ARMA

model for this process requires to have a D.C. gain of 1 which is a smoothing technique

in moving–average model for reduction of random fluctuations in time–series [31].

Given the plants’ state obtained by ARMA model, power plant and petrochemical

plant are converted into a state–space representation [30]. In our approach initial

KF method tracks systems’ dynamic state. To incorporate system dynamics into

mass balance constraints, we also added the unity-gain constraint to the KF method

and called it DREDGE [100]. Unity-gain constraint in ARMA model is defined with

D.C. gain of 1 allowing imbalance instantaneously, but enforcing mass balance to be

preserved at the long run [31]. Equation 25 explains this additional linear constraint

with respect to Equation 24.

−α1 − α2 − . . .− αn + β0 + β1 + . . .+ βm = 1 (25)

Thus, we modified the above method to use a constrained least–squares step in

estimating the system coefficients, to enforce mass balance.

To improve the quality of identification, it is intuitive to incorporate prior infor-

mation about the system like stability or D.C. gain and system structure. In our

system, we need to consider the unity-gain to achieve mass balance of input and out-

put. For this purpose, the system needed to be modeled with ARMA model with

prior information so the problem is to solve an LSE problem subject to unity-gain.

The problems formulation is as follows:

Minimizing ||Aθ − b||2

Subject to CT θ = d

(26)

where unity-gain is considered in CT θ which is equal to one, and the C matrix is a

vector of ones. Vector b is real output system and θ is to be estimated. The solution
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to this problem is solving the Lagrangian relaxation with optimality condition [101].

L(θ, λ) = 1/2||Aθ − b||2 + λT (CT θ − d)

θ = (ATA)−1(AT b− CTλ)

where λ = (C(ATA)−1CT )−1(C(ATA)−1AT b− d)

(27)

Solving this problem, θ which is the systems characteristics is estimated such that

error is minimized considering unity-gain. After estimating θ according to the above

explanation, the dynamic system is converted to state–space model and combined

with KF for GED.

Since DREDGE combines the best of both worlds, we expect it to give the most

accurate results in GED. Then given the observed input data, the system state is

tracked in a Kalman Filter. The “innovation” is computed in the correction step of

the Kalman Filter, which is subjected to a Chi-Squared test. If the test fails, a gross

error is detected. KF is used for random error detection for data reconciliation in

sensor data is required to turn its output prediction error into a GED tool, similar

to the statistical global test used in IMB. Constructing a statistical test in dynamic

linear systems is possible by utilizing the properties of KF innovations (i.e. output

prediction error), which is computed in the correction step of KF. Innovations have

normal distributions with expected values and a covariance matrix Vk given by Equa-

tion 28, where Pk|k−1 is a priori estimate covariance, Hk is observation model and Qk

is noise covariance matrix [8].

Vk = HkPk|k−1H
T
k +Qk (28)

Equation 29 is used to obtain a γ value, where Vk is innovation covariance and vk

is innovation residual at time k. The γ value follows a Chi-squared distribution with

1 degree of freedom and if it exceeds the criterion 95% corresponding probability for

the desired confidence interval, the test fails and the gross error existence, as well as

its location, are detected [8].
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γ = vTk V
−1
k vk (29)

Combining a Chi-squared test and unity-gain to KF, we obtained a GED method

that considers mass balance in a time–varying process model.

3.2.5 Gross Error Classification (GEC): Novel Approach

The Second component of the proposed software service is classification of detected

errors called GEC. In the previous chapter, we addressed models for GED in detail and

in this section take the vision a step further by formally classifying oil refinery sensor

errors into four types using data–driven techniques CDT, NN, and KNN classifiers

for pattern recognition and classification of data. These machine learning algorithms

were trained with the sudden changes of mean and variance properties of measured

data in a window–based analysis according to the definition of each gross error type.

Different types of gross errors have their own natural data corruption behavior or

characteristics. In relation to the physical defects of the sensors and their operational

conditions, common types of gross errors are as follows:

• Bias: Due to uncalibrated sensors, the received values contain a constant shift

with respect to the correct value.

• Drift: Due to uncalibrated sensors, the data contains increasing or decreasing

amounts of error with time.

• Precision Degradation (PD): The sensor plates may wear out or get dirty over

time, resulting in received data from sensors containing errors resembling ran-

dom noise around the nominal values.

• Failure: Due to sensor failure or measurement boundaries, the received data is

constant or completely random.

For comparison of gross error detection and classification accuracies of IMB, KF
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Figure 7: Different types of gross errors are inserted on top of refinery power plant
real data. Blue dots show that gross errors can correctly detected using KF. These
error are then classified by mean-variance tracking.

and DREDGE methods, we generated a synthetic dataset with 1 million data sam-

ples whose properties were extracted from real data obtained from the power plant.

Next, error events representative of different gross error types (Bias, Drift, PD, and

Failure) were added to the synthetic data as exemplified in Figure 7. After detect-

ing the gross error, for each error type, the F-measure values of classifiers including

CDT, NN, and KNN are calculated and compared. F-measure is a harmonic mean

of precision (TP/(TP+FP)) and recall (TP/(TP+FN)) as described in Equation 30

which provides a unified score for the classification quality evaluation [36].

F −measure =
2 ∗ precision ∗ recall
precision+ recall

(30)

3.2.6 Rule–Based Algorithm for Labeling Gross Error Types

For applying a supervised learning algorithm to learn gross error behavior, data should

be labeled. But, the real data obtained from our oil refinery did not have any extra

information about types of gross errors. With statistical study done after GED, and

evaluation of mean and variance for data points that detected as gross error point in
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synthetic data, rule–based learning algorithm is used for data labeling purpose. The

real data from oil refinery is unlabeled data and for error type distinction after GED,

we developed a rule–based algorithm based on 3 − σ rule for normal distribution.

Pseudo code in Algorithm 1 shows this rule–based learning algorithm.

Algorithm 1 Gross Error Classifier

1: procedure
2: 3σ = MaxDev : σ is StdDev of gross errors extracted from historic data
3: maintain a sliding window
4: for each line do
5: M = Mean(previousWindow)
6: V alue = parseLine(line)
7: insert new value to current sliding window
8: ∆M = |M − value|
9: S = StdDev(window)

10: case =′′ Normal′′

11: if GED(value) == true then
12: if(1.5σ < ∆M < 3σ and 1.5σ < S < 3σ) then case =′′ Bias′′

13: if(∆M < 3σ and S < σ) then case =′′ Drift′′

14: if(∆M < 1.5σ and σ < S < 3σ) then case =′′ PrecisionDegradation′′

15: if(∆M > 3σ or S > 3σ) then case =′′ Failure′′

16: else(′′UnClassified′′)

17: end if
18: print(line+ case)

19: end for

The algorithm is trained with mean (µ) and the variance (σ2) values of offline

data and obtained the model illustrated in Figure 8. This model is used for labeling

data and by measuring the latest mean (µ) and the variance (σ2) values of the time–

series data in the current sliding window and classify gross errors accordingly. Given

one method of GED that detects a gross error event, if the mean changes up to

3σ (∆M < 3σ) and variance does not change drastically (S < σ), then the gross

error is classified as Drift. If both the mean and variance change significantly (1.5σ <

∆M&S < 3σ), then it is classified as a Bias. If the mean does not change significantly

(∆M < 1.5σ), but the variance increases (σ < S < 3σ), then it is classified this as

Precision Degradation. Finally, if both variance and the mean changes significantly,
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Figure 8: Categorization of gross error types with respect to changes in mean and
variance of sensor values.

it is classified as a Failure–Random. In case there is no movement at all, the sensor

is classified as Failure–Dead. The classification categories illustrated in Figure 8 are

separated linearly without any overlap, but in real data, gross error types might have

overlaps or some detected data points may contain more than one type of error. By

training the classifiers using these rules, the unclassified or misclassified data points

can be detected and their true classes can be extracted. These points are also revealed

by the accuracy evaluation of supervised learning algorithms and F-measure values.

3.3 Experimental Results

In this section, the GED accuracy results of IMB, KF, and DREDGE methods for

different gross error types are discussed over synthetic data. Next, data reconciliation
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Table 4: GED results of IMB, KF, and DREDGE for Bias-type gross error over
synthetic data.

Gross Erorr GE Prediction
Existance T F

DREDGE
T 2755 0
F 0 2756

KF
T 2741 14
F 0 2742

IMB
T 2795 0
F 40 2796

and error classification are applied over the real refinery dataset. Finally, the per-

formance of different algorithms over different streaming window sizes are tested and

compared to better understand the scalability and sustainability of these DR-GED

techniques over fast moving sensor data.

Java Eclipse is used to implement DREDGE using ESPER engine and using linear

algebra library for Java to support matrix operations. IMB, KF, DREDGE were first

implemented and tested in Matlab. In all scenarios, GED methods were implemented

in Java to be utilized in real–time GED and GEC. The first code block in Figure 9

shows the configuration of the ESPER engine for reading the data stream of the boiler

sensor data in the correct format. The raw data stream is then started and is fed

into the ARMA model, IMB and, KF by calling the related class, wrapped inside the

KFListener classes for ARMA and DREDGE and IMBListener for IMB method.

3.3.1 Results for Synthetic Data

Table 4 shows the GED accuracy results of IMB, KF, and DREDGE methods in

detecting Bias type gross error over the synthetic dataset, to which N = 2, 755 Bias

events/epochs were synthetically inserted at random points. Logically, there will be

(N + 1) 2,756 periods where there is no gross error. Each Bias event contains a set

of Biased values, the count of which randomly varies between 5 and 25 to provide

statistical significance. A “True (T)” event signifies the existence and a “False (F)”
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Figure 9: Snippet of the CEP + DVR development.

event signifies the non-existence of gross error in that period.

As seen in Table 4, our DREDGE method gives the most accurate prediction

results for Bias type gross events, where the 2,755 synthetically inserted events were

all correctly detected (true positive-TP) and no misdetections (false positive-FP or

false negative-FN) were recorded. However, the KF algorithm misses 14 of the Bias

events. The IMB method is the least accurate in this case, where 40 “non-gross

error” events were detected as gross error events. Since the DREDGE method takes

into account both system dynamics and mass balance constraint, it performs the

best. Note that a FP increases the total number of both gross error and non-gross

error events, whereas a FN decreases both since we have time–series event data.

The experiments are repeated for all 4 types of errors (Failure, Bias, Drift, Precision
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Table 5: GED results for IMB, KF, and DREDGE over different gross error types on
synthetic data.

Failure Bias Drift PD
Precis Recall Precis Recall Precis Recall Precis Recall

DREDGE 100% 100% 100% 100% 100% 99.14 % 99.8% 90.8%
KF 100% 100 % 100% 99.49 % 100% 99.37% 99.54% 78.05%
IMB 91.40% 100% 98.57% 100% 95.71% 100% 81.36% 100%

Degradation) and summarized results in Table 5.

Table 5 shows the precision and recall rates in confusion matrix for the GED

methods over all gross error types. Precision of both KF and DREDGE are very high

(99.54-100%), since they make little or no FP. Since IMB does not track the dynamics

of the system, it has lower precision ratios (81.3-98.57%) due to FPs. One interesting

phenomenon is the relatively low recall rates for KF (78.05%) and DREDGE (90.8%)

during detection of PD type errors. This happens because they both suffer from

over–fitting their models and include precision degradation errors as regular, non-

gross error events. In summary, we learned IMB can cause a lot of false alarms and

DREDGE and KF methods are more dependable in their predictions compared to

IMB. Therefore, KF-based methods are preferable for GED over time–varying systems

found in refineries.

Applying GEC technique on top of GED methods, Table 6 and Table 7 show the

F-measure, precision, and recall of all classifiers per error type. The F-measure values

are between 0 ≤ F ≤ 1 and the higher F-measure shows that the classification has a

higher predictive power. In Table 6, we generally observe that the F-measure values

of classifiers over synthetic data are higher than the real data. This can be attributed

to the higher number and separation of gross errors inserted in the synthetic data,

whereas in the real data the errors may be overlapped.

Over synthetic data CDT has the highest F-measure values 0.994 ≤ F ≤ 1.0

and the lowest values are achieved by KNN 0.965 ≤ F ≤ 0.995. This shows that
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Table 6: F-measure for GEC results of CDT, NN, and KNN over different gross error
types on Real and Synthetic (Synt) data.

Failure Bias Drift PD
Real Synth Real Synth Real Synth Real Synth

CDT 0.958 0.994 1.0 0.996 0.992 1.0 1.0 0.998
NN 0.869 0.915 0.867 0.964 0.989 0.974 0.953 0.973
KNN 0.851 0.967 0.836 0.976 0.982 0.995 0.984 0.965

Table 7: GEC results for CDT, NN, and KNN over different gross error types on real
data.

Failure Bias Drift PD
Precis Recall Precis Recall Precis Recall Precis Recall

CDT 95.8% 95.8% 100% 100% 99.2% 99.2% 100% 100%
NN 90.9% 83.3 % 81.3% 92.9 % 99.3% 98.6% 96.8% 93.8%
KNN 86.9% 83.3 % 85.1% 82.1 % 99.2% 97.22% 100% 96.8%

the classifiers can learn the labeled data and they have high predictive power. Next,

these classification algorithms are validated over real data.

3.3.2 Results for Real Refinery Data

After evaluating the accuracy of GED and GEC methods on synthetic data, these

methods were validated on real data. IMB, KF, and DREDGE models were trained

using a common dataset from a single day (8/1/2013) and tested again on another

common dataset from the following day (8/2/2013). The visualization in Figure 10-

(a) shows the gross errors detected by KF for the flow rate measures (in ton/hour)

on the two main lines (water/vapor) of the power plant (time = 2000 mins). Note

that, the transient jumps in data are marked (∗) by KF algorithm and there are not

gross error marks in the steady–state regions.

In Figure 10-(b), we see the petrochemical material flow measurements and the

gross errors detected therein. We first observe that GED can be applied on different

lines simultaneously to identify and potentially locate which lines have which type of

gross errors. We see some locality among the gross errors on different lines, but also
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Table 8: GEC results of IMB, KF, and DREDGE over real dataset.

Gross Erorr GE Prediction
Existance T F

DREDGE
F 9754 0
T 5 241

KF
F 9781 0
T 4 215

IMB
F 9477 0
T 1 522

some independence. This proves that we can detect, locate, differentiate, classify, and

fix gross errors on different sensors for different industrial processes. For sensor #3,

where 3=5+6+7, we used reconciled values obtained from line 1, 1=2+3+4 (refer to

Figure 6 for petrochemical plant’s details).

Our GED methods can also be applied on sensor measurements of different types

such as temperature/pressure, temperature/flow, etc. Figure 11-(a) and Figure 11-

(b) respectively show that, beyond the use of flow rates, water temperature/pressure

and vapor temperature/pressure measurements can be utilized for GED purposes.

Using multivariate data is beneficial if some gross errors are not detectable in one set

of data, but can be extracted from among different sensor measurements.

Next, the GEC technique is applied on top of GED (IMB, KF, DREDGE) methods

over real data from the power plant and report results in Table 8. IMB declared

522 measurements as gross errors, which was significantly more than KF (215) and

DREDGE (241). We know from Table 5 that IMB has a low Precision (81.36%) for

detecting PD types, therefore the higher GED numbers can be attributed to higher

FPs for PD. In Figure 12-(a) we see that the water/vapor flow rates cluster around 45-

70 ton/hour creating a concentrated green region, which is referred to as the normal

range; GED algorithms detect and mark gross errors on top of this cluster. IMB acts

like a multi-linear classifier by declaring errors detected above the normal range as
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Drift, Bias, and PD and errors below this range as Failure types. As seen in Figure 12-

(b), KF model also detects the same Failure types, as detected by IMB in the lower

region, but does not agree in most of the Drift, Bias, PD types (FPs) declared by

IMB in the upper region; IMB and KF only agree on a few of the Bias types on this

upper region. However, Drift and PD errors detected by KF and DREDGE models

are more dispersed among the normal values. This is because KF can track Drifts

and PDs that are a part of the dynamic system behavior even inside normal ranges.

The F-measure obtained from CDT model over real data is 0.958 ≤ F ≤ 1.0 for

each type of gross error. NN’s F-measure for gross error classification is 0.867 ≤

F ≤ 0.989. The F-measure achieved by KNN are 0.836 ≤ F ≤ 0.984 as shown in

Table 6. The lowest F-measure values belong to Failure and Bias which is related

to the overlaps between these two types due to their similar behavior. Table 7 also

compares the GEC results, but reports the precision and recall details. Lower preci-

sion values can be attributed to FPs or “misdetections”, whereas lower recall values

can be attributed to FN or “missed detections”. While it is desirable to have higher

values in both precision and recall, having low recall values may have worse outcomes

for oil refineries. As seen in Table 7, KNN may achieve a recall of 83.3% for Failure

and 82.1% for Bias type errors. This means that the operators won’t be informed 16-

17% of the time when those sensor errors are happening, which is not acceptable. In

comparison, the highest F-measure, precision and recall values are obtained by CDT.

Also, the model’s performance is an important concern in stream data processing. As

a result, we trained and applied the CDT classifier on CEP engine because of its high

accuracy and relatively lower time complexity (i.e. O(logn)).

Figure 12 shows classification of errors detected by IMB vs. KF-based GED

methods. We observe in both Figures 12(a)-(b) that water/vapor flow rates cluster

around 45-70 ton/hour creating a concentrated green region, which we will refer to as

the normal range; GED methods detect and mark gross errors on top of this cluster.
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IMB works as a sharp, multi–linear classifier for error detection, where values above

and below the normal ranges are declared as errors. CDT classifies those above the

normal range as Drift, Bias, PD and errors below normal range as Failure. As seen

in Figure 12-(b), KF-based models also detect the same Failure types, as detected

by IMB in the lower region of cluster, but do not agree in most of the Drift, Bias,

PD types (FPs) declared by IMB in the upper region; They agree on a few of the

Bias types on this upper region. However, Drift and PD errors detected by KF-

based models are more dispersed among the normal values. This is because KF and

DREDGE can track Drifts and PDs that are a part of the dynamic system behavior

even inside normal ranges.

The validated sensor data that is de-noised through DR-GED process can be used

in modeling and other analysis process of the refinery and results of GEC is used for

identification of sensor malfunction or system anomaly.

CDT was modeled and evaluated by 5-fold cross–validation technique and Gini’s

diversity index for the split criterion. NN was trained and tested using scaled conju-

gate gradient backpropagation, which was a two–layer feed–forward network, with sig-

moid hidden and softmax output neurons. Similar to CDT, KNN model was trained

and evaluated by 5-fold cross–validation technique, and the Euclidean distance metric

for 1 nearest neighbor. Over synthetic data CDT has the highest F-measure values

0.994 ≤ F ≤ 1.0 and the lowest values are achieved by KNN 0.965 ≤ F ≤ 0.995. This

shows that the classifiers can learn the labeled data and they have high predictive

power. These classification algorithms were then validated over real data obtained

from the oil refinery.

3.3.3 Computational Performance Evaluation

We learned that with careful selection of system analysis model (DREDGE, KF, or

IMB), we can accurately detect and simultaneously classify gross errors. However,
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the question is whether these methods are sustainable over fast data streams. This

section aims to provide an answer by detailed observation of performances for each

method. The performance evaluation is done using an open-source CEP engine for

Event Stream Processing, called ESPER. The system specifications are ESPER v.4.6.0

installed on RedHat Enterprise Linux Server 5.4 64-Bit OS, Java 1.7.0-05 and JRE v7

on an IBM HS22 Blade Server with Intel Xeon E5530 CPUs (8 cores, 2.40 GHz) and

24 GB DRAM. Data used in these experiments are 200,000 records from (Water, DSH,

Vapor) flow sensors sampled every 60 seconds for about 5 months in the TÜPRAŞ

power plant. This data was replicated 5 times to form 1 million lines to better

represent the real sensor loads. Every line has records of 3 flow sensors in power

plant dataset and 17 flow sensors in the petrochemical dataset. Therefore, we have 3

million sensor “events” in the first and 17 million “events” in the second dataset. We

publicly provided a 1-month sample of this real data at OpenML datasets site [98]

for academic use. Performances of four representative continuous queries (a, b, c, d

described below) were evaluated at different window sizes [100, 250, 500, 1000] using

tumbling windows. Tumbling window is a sliding window, where the slide–size is

equal to the window size. Continuous queries are:

(a) Select(*) from Boiler: This query returns all sensor data for Boilers Water,

DSH, and Vapor sensors. It is implemented as a reference query with the lowest

computational and reference I/O loads.

(b) GEC: We measured the impact of our GEC method that primarily uses statis-

tical (stddev and average) library functions inside ESPER.

(c) - (d) GED (IMB, KF-based, and DREDGE) methods using the JBLAS linear

algebra library for matrix computations.

We start with performance (memory and CPU usage) analysis of queries using the

water/vapor dataset from the refinery’s power plant. Each experiment is repeated
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Figure 13: Power Plant: computational loads of reference queries and GED algorithms
with respect to total memory usage (MB) for different window sizes over streaming
data.

Figure 14: Power Plant: total processing time (sec) for different window sizes over
streaming data.
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Figure 15: Petrochemical Plant: computational loads of reference queries and GED
algorithms with respect to total memory usage (MB) for different window sizes over
streaming data.

Figure 16: Petrochemical Plant: total processing time (min) for different window
sizes over streaming data.
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5 times for each window size and the average values (as well as min and max) are

depicted in Figure 13-14. Figure 13 shows the total memory used by different window

sizes. For the Select(*) and GEC queries the memory usage is almost constant w.r.t

the growth of window length as the data is quickly moved in and out of the window.

However, for KF-based and IMB GED methods, memory consumption increases lin-

early w.r.t window size. Figure 14 shows the total CPU time consumed for GED by

different methods over the power plant data. We see that it is possible to process 1

million rows on average in 30 secs with a single core mapping to a rate of 100,000

events/sec (1 Million events/30sec = 3 events/row × 33,333 rows/sec). The to-

tal time consumed for processing all data with Select(*) and GEC methods shows

a slight growth w.r.t. window size. IMB time increases almost exponentially w.r.t.

window size, whereas KF-based only increases linearly. IMB method executes high–

dimensional matrix computations for GED. At window size 1000, IMB takes 43 secs to

complete the task (50% slower than for window size 100). Therefore, we conclude that

large window sizes are less preferable for GED since we do not want to miss impor-

tant events due to delays in response. In Figure 15-16, we continue with performance

(memory usage and CPU time) analysis of queries tested with petrochemical process-

ing plant (17-lines) dataset and for different sliding window sizes. In Figure 15, we

see that the memory consumption of Select(*), Classification, and KF-based increase

slightly w.r.t. windows size, but these memory loads are not demanding compared

to the memory capacity of our server. Similarly, their CPU processing times show a

slight linear increase Figure 16 from 2 to 3 mins. However, the processing time of

the IMB algorithm grows exponentially as the window size increases from 5 mins to

310 mins for the 1000 window size; beyond our charts limits. Again, we conclude

that smaller window sizes and use of KF-based for GED algorithms are preferable.
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Table 9: Values are average of RMSE, comapring two model over real data, using 1-4
days data for modeling.

1 2 3 4

Holt-Winters 4.7603 3.860467 3.4932 3.3099
ARMA 3.26 2.05 1.07 1.47

3.4 Holt-Winters vs. ARMA

Exponential smoothing and ARMA models are the two most widely–used approaches

to time–series forecasting, and provide complementary approaches to time–series

problem. While exponential smoothing models were based on a description of trend

and seasonality in the data, ARMA models aim to describe the autocorrelations in

the data. Holt-Winters is a special case of ARMA model for forecasting time–series.

ARMA(p,q), p is the number of lagged values which represents the autoregressive

(AR) [a weighted sum of past values] nature of the model, q is the number of lagged

values of the error term which represents the moving average (MA). For online and

batch processing two methods: Holt-Winters and ARMA model is applied on data

and two approaches are compared. For online processing, Holt-Winters and ARMA

models are applied on epochs of 1 to 4 days long and validated on the next day (24

hours). The RMSE values of forecasting are then compared. As shown in Table 9,

the RMSE values of ARMA model is less than Holt-Winters for all window lengths.

We can conclude that ARMA model fits on data more accurately and it is because

of taking autocorrelation between attributes into account. The forecasted values are

closer to real values and consequently, the RMSE value of ARMA is less than Holt-

Winters.

As shown in Figure 17–18, the predicted values of ARMA model are closer to real

value in comparison to Holt-Winters.
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Figure 17: ARMA model: Real Data Results.

Figure 18: Holt-Winters Smoothing: Real Data Results.
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3.5 Complexity of Algorithms

Algorithms developed for data stream processing must process data under certain

time and space restrictions. Three algorithms were used in this thesis in GED and

GEC approaches. The ARMA model is constructed on input–output data and the

extracted characteristics of the system is then passed to KF-based algorithm for GED.

If the gross error is detected then a classification algorithm is activated to classify

the detected anomalies. The classification algorithm can be described as a decision

tree, whose worst–case complexity is Ω(logn) similar to binary trees, where n is the

number of items in the tree. KF-based algorithm for tracking system dynamicity and

GED is Ω(n3) [102] in worst–case, where n is the matrices dimension. As we used the

packaged JBLAS matrix multiplication and this package is an optimized library for

Java, the complexity is close to Ω(mn2).
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CHAPTER IV

SYSTEM OPERATIONAL MODE IDENTIFICATION

AND MODEL UPDATES

This section’s focus is on analyzing underlying system behavior using state parame-

ters of the system by applying learning techniques on IIoT stream data in real–time.

In general, a system’s functionality model is either in steady–state or dynamic, and

it is crucial to select suitable models. On stream data, parameters extracted from

these models frequently vary and operational conditions drift among steady–state

modes [103]. Consequently, variations cause inefficiency in the decision making pro-

cesses. Accordingly, the model is required to be reconstructed and time–varying

parameters updated, which explains the emergence of sub–model analysis to be more

reliable than batch models [104].

4.1 Sub–model Analysis and Parameter Estimation

Regression is a well known statistical data analysis technique that is applicable for

system mode identification and operational sub–model construction on sensor data.

Zheng, et al. [105] proposed parameter estimation with multi–operating conditions for

data reconciliation in steady–state and Nadungodage, et al. [20] presented an Incre-

mental Mathematical Stream Regression (IMSR) method for recomputing regression

function online. Zhu, et al. [106] proposed a “multi-scenario” parameter estimation

for dynamic systems. As the industrial systems consist of multi–operating conditions,

the measurements collected change and identifying new states is useful in anomaly

detection and data reconciliation [107]. Clustering methods such as K-means can be

used for detecting the states of the system in comparison to RM, where data points
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grouped in one cluster as one state and split in cluster estimates formation of new

cluster which is interpreted as a drift to new operating condition in an emerging set of

pattern. Accordingly, when a change in operating mode occurs and parameters vary,

the anomaly properties of the new mode will be different than other mode. As such,

a locality–based outlier detection approach is beneficial for each state of the system.

Density–based clustering methods are suitable for this evaluation and DBSCAN [108]

is applied on the sub–models in this thesis.

Another aspect of real–time stream analysis and parameter estimation is the fre-

quency of sub–model update. In stream data analysis the entire data is not available

at all time, the past data may have a large volume, and the cyber model needs to

be constructed in real–time by using sub–models. Yet, it is challenging to detect the

system’s operational changes when the process is in a transient or drift mode from

one operational state to another [109]. In model reconstruction, selecting an optimal

window size is also critical, a window should neither be too large to miss the patterns

and operational modes, not too small to make frequent, unnecessary updates. This

window size is computable using historical data analysis, but it does not necessarily

require a fixed length and can change over time based on system behavior.

In Section 4.2 and 4.3, we construct and evaluate a linear regression model for real

sensor stream data obtained from TÜPRAŞ power plant, and compare the results with

K-mean respectively and applied DBSCAN clustering method for outlier detection

in window–based approach. In Section 4.4, we demonstrate how to also adapt the

model by tuning window size based on TCP’s congestion control algorithms and model

errors.

4.2 Operational Mode Identification Methodology

Three mode identification techniques are discussed for sub–model analysis, starting

with regression analysis and continuing with K-means and DBSCAN clustering.
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4.2.1 Regression Analysis Method

Regression is a widely used technique that is applicable to time–varying systems

for operational mode identification. Sensor measurements in industrial plants may

be interdependent and fluctuations on one measurement may have effect on other

measurements (i.e. input and output of a system). This information can be extracted

from estimated parameters and used for operating mode analysis when conditions drift

from a known state of the system.

The linear model is explained by Equation 20 where ŷi is the predicted response.

It is clear that the predicted values will contain “prediction error” or “residual error”.

For measuring the fitness of a model RMSE and R2 values are commonly used

factors. The best line that fits the data minimizes the “sum of squared errors” by

applying the least squares criterion as shown in Equation 31. RMSE value for linear

mode is calculated according to this prediction error.

RMSE =

√√√√ 1

N

n∑
i=1

(yi − ŷi)2 (31)

R2 value explained in Equation 32 is a normalized measure of how well a model

can predict the data and is valued as 0 < R2 < 1. The smaller RMSE value means

the predicted model fits better to observed data, and the higher the R2 value means

the model can predict the data better. The variations of these two values are used

here for operational mode identification in a window–based approach.

R2 = 1−

n∑
i=1

(yi − ŷi)2

n∑
i=1

(yi − ȳ)2
(32)
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4.2.2 K-means Clustering

For operational mode identification, an unsupervised cluster analysis in a window–

based approach using K-means algorithm is also applied on sensors data. With K-

means, n sensor observations are partitioned into K clusters, where each observation

belongs to a cluster with the closest mean. The centroid c is chosen by minimiz-

ing the objective function described in Equation 33 based on the squared Euclidean

distance [110].

J =
K∑
j=1

n∑
i=1

|| x(j)i − cj ||2 (33)

When a change occurs in data, the pattern and clusters will vary as well. A

division in clusters can either be interpreted as mode change, or the system is in a

transient state. This approach can be used for validation of RM analysis.

4.2.3 DBSCAN Clustering

Real–time clustering methods can be used for detecting the system’s operating states,

where data points would be grouped in one cluster denoting the steady–state and for-

mation of new clusters are interpreted as drift to new operating conditions or emerg-

ing patterns. Note that the anomaly properties of transients will be different than

steady–state modes. As such, a locality–based outlier detection approach, without

specifying cluster numbers in advance is beneficial. Density–based clustering methods

are suitable for this evaluation, therefore we employed DBSCAN.

The application for sub–model identification in real–time stream analysis are op-

erating state identification and local outlier detection.

For all series of points q, that are density–reachable from p one cluster is formed

from connected points described in Equation 21 and points that are not reachable are

detected as outliers in a window–based analysis [42].
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4.2.4 System Operational State Analysis in Real–time

Another aspect of real–time stream analysis and parameter estimation is the frequency

of model update. In stream analysis the entire data is not available at all time, the

past data may have a large volume, and the cyber model needs to be constructed using

a window–based approach, a.k.a. sub–model identification. Yet, it is challenging to

detect a system’s operational changes when the process is in a transient or drift mode

from one state to another. In model reconstruction, a window should neither be too

large to miss the patterns and operational modes, not too small to make frequent,

unnecessary updates. The performance evaluation shows that smaller windows sizes

are preferable because of lower CPU time and memory usage. Optimal window size

can be computed using historical data analysis, but it does not necessarily require a

fixed length and can be changed over time based on the system’s behavior [111].

Algorithm 2 SystemModeTracker

1: procedure
2: W : initial window size
3: offline:
4: M=Model(W ) //predict model on steady-state data
5: online: DREDGE
6: for all windows W over stream do
7: GED(W )
8: RMSEcurrtModel = RMSE(M)
9: cluster = DBSCAN(W )

10: if (RMSEcurrtModel) > (RMSEprevModel) & cluster > 2 then
11: detectNewMode
12: M = updateModel(W )
13: RMSEprevModel = RMSEcurrtModel

14: end if
15: GEC(W )

16: end for

Stream data context fluctuations in industrial systems is a critical indicator for

system modeling and the necessity for model updates. This information is extracted

using the cleaned, high quality data obtained form DR-GED process. Here, the

system is modeled using the analysis described for GED and GEC in a window–based
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Figure 19: Model evaluation of pressure/temperature data.

fashion, with a fixed window size of 180 data points (6 hours) in consecutive tumbling

windows. By applying the model from the previous window to the current window

and measuring the RMSE from the predicted model, the RMSE value is evaluated for

operating state identification. We observe that when there is a drift in data context

the RMSE increases dramatically as shown in Figure 19 window #9. When the system

works in one steady–state, the previous model is applicable to the current window;

for example between window #6→#8. But when the RMSE increases suddenly,

the system goes into a transient state and is an indication of state change. This

extracted knowledge is interpreted as a requirement for a model update as described

in Algorithm 2. The validation of this extracted knowledge is tested using DBSCAN

clustering method as described next. Note that in SystemModeTracker Algorithm,

offline models were used to get the sensor stream started; after that models are trained

and tuned online.
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4.3 Experiments and Results

In our experiments, we used a set of real data collected from sensors in power plant

of an oil refinery. This power plant has 80 megawatts electric generation capacity. It

consists of 8 boilers, converting hot water into high–pressure vapor at a maximum

capacity of 100 ton/hour. The vapor is fed into steam turbine to convert thermo–

kinetic energy to electricity. Hot water (input) and high pressure vapor (output) flow

rates measured by the flow sensors are the main measurements for streaming sensor

data analysis. The changes in modes can be due to operator-driven switching among

the desired vapor pressure levels (low, high, very high) or system–driven and auto–

controlled modes for heating, cooling, recycling, and condensing. By offline analysis,

it was discovered that the system is time–varying, its operation is composed of several

steady–states and the input/output values of the boiler have a correlation of about

90%.

This sensor data is modeled using linear regression in a window–based approach,

a fixed–window size of 360 data points (sampled every minute over 6 hours) and used

for sub–model construction. In linear time–varying systems, the underlying model

requires to be reconstructed when the pattern and operational functions’ parameters

change. The main challenge is detecting the time for sub–model update. In addition,

the amount of information from past data to be used in current window plays an

important role in accurate system analysis. The approach used in this study follows

the construction of an optimal linear regression sub–model for the current window.

For the next window, the same RM from the previous window is applied first, and the

RMSE is calculated, if the RMSE value is increasing, the sub–model is reconstructed

and state parameters are updated according to current window observations. The

RMSE and R2 variation values used together for detecting the operational mode and

the need for model update. Otherwise, the same model is retained. In summary,

the sub–model trained for the previous window is tested with the current window to
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Table 10: R2 values of fixed-window size for regression model prediction performance.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Current RM 74.98% 75.03% 74.54% 92.74% 88.45% 25.95% 89.35% 99.64% 41.64% 78.44%
Previous RM 0% 74.01% 11.27% 0% 38.26% 59.42% 0% 81.39% 0% 89.56%

decide whether to maintain the model or update it.

4.3.1 Regression Model Evaluation

In Figure 20(a)-(d) RM trained on input vs. output flow sensor data from one boiler

are depicted. Figure 20-(a) shows distributions of two adjacent time window (6 hours)

readings that have a high overlap and the sub–model for window #1 is applicable on

window #2 since the RMSE values shown in Figure 21-(a) are very close. In Fig-

ure 20-(b) a new set of data are received and applying RM from the previous window

increases the RMSE and R2 decreases dramatically from 74.01% to 11.27% as shown

in Table 10, column #2→#3. This change indicates that the current window readings

are not represented well by the previous sub–model, a reconstruction is required and

the system is in a transient state, therefore a drift from existing operational mode

is detected. Receiving new data from window #4, Figure 20-(c), the system has

clearly drifted into a new operational mode, the slope of the fitted line has varied and

previous RM does not fit the current window. This transition in operational mode

is extracted by the RMSE value evaluation where a local maxima is observable in

Figure 21-(a) and the previous sub–model does not fit the data. R2 is also decreased

as shown in Table 10, columns #3→#4, where R2 value 0% refers to unfitting RM.

In Figure 21-(a), the RMSE values of RM from the last observed window is com-

pared to the current window. This analysis shows that when the RMSE value is

growing or has a sudden deviation, a new operational mode is identified. The global

maximum at window #9 shows the formation of new operational mode and local

maxima are related to the transitions or drifts among operational modes inside the

system. In Figure 21-(b) around 3000 minutes and windows #8→#9 this drift is
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(a) RM: 1st, 2nd window (b) RM: 3rd window

(c) RM: 4th window (d) RM: 5th window

Figure 20: Regression model on streaming sensor data, (a) in windows #1→#2 RM
models are close and system works in the same operational mode, but in (b) window
#3 data requires a new RM sub–model since the distribution is changed and shows
a transition among system’s operational modes, (c) system clearly drifted to a new
operational mode with updated RM in window #4, and (d) window #5 stays in the
new operational mode.

69



(a) RMSE (b) Stream data

Figure 21: (a) Comparison of RMSE values of regression sub–model from previous
window and current streaming window, (b) window–based stream data used for op-
erational modes identification analysis depicted for windows #1→#10.

observable, while simultaneously R2 shows a very low prediction performance and is

decreased to 0% in Table 10 window #9. The steady–state and transient states are

depicted in Figure 21-(b).

4.3.2 K-means Clustering vs. RM Mode Identification

The observations used for this experiment are the same stream data used in RM.

The goal is to compare the formation of sub–models in transient states, and how an

unsupervised clustering method reacts to drift in system state without knowing the

underlying relations among variables. We used K = 2 for this experiment since the

system is either in steady–state or transient mode drifting into a new steady–state.

In Figure 22, windows #1→#2 (green and yellow colors) are clustered with very close

centroid points, which confirms the results of RM where the previous window model

was applicable to the current window according to RMSE, R2 values. Similar to RM

method on arrival of window #3, the observations are divided into two partitions

with distant centroids as shown in Figure 22-(a). The window #4 approves this
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(a) K-means: 3rd window (b) K-means: 4th window

Figure 22: K-means clustering is also used for operational mode identification, in
(a) window #3, observations are clustered into two partitions in a transient mode,
(b) window #4 observations consist of two clusters where one centroid has a close
distance to previous centroid from window #3.

transient mode by clustering data into two partitions by K-means shown in Figure 22-

(b). Clusters formed in the successive windows are plotted on top of each other for

reference, which matches the results of RMSE value in window #4 that reaches a

local maxima and the R2 value decreases to zero. In all cases, we also have a minimal

number of outliers outside any clusters.

4.3.3 Density–Based Clustering

This algorithm is used on fixed–size window stream data. As data stream arrives

DBSCAN algorithm is applied for outlier detection of the current window. As shown

in Figure 23-(a) in window #1 data points are clustered into 2 clusters of inlier and

outlier, on arrival of window #2 Figure 23-(b) the data is still in the steady–state as

2 clusters are detected. However, in window #3 the data split into 3 clusters, which

indicates a transient in the system that is confirmed by RM and K-means algorithm

depicted in Figure 23-(c). The window #4 stays in the new steady mode as shown in

Figure 23-(d).

71



The benefit of using DBSCAN on top of sub–model identification is that it enables

detecting the outliers within the window and that the system is working under a

steady–state operational mode. If a transient in mode happens, DBSCAN can detect

the drift by partitioning data into more than one cluster of inliers and outliers. In

comparison, a fixed–count K-means with K = 2, would not be able to show us more

than 2 clusters, yet DBSCAN would be able to detect multi–steady–states as shown in

Figure 23-(c), where 3 clusters are formed in 1 window. For the modeled boiler device,

still, DBSCAN did not remain in 3 clusters (2 + outlier) for too long and stabilized

in another steady–state mode. Also, the parameters and outliers change nonlinearly

between multi–operating states, thus clustering helps to decrease its chaotic effects.

4.3.4 Using DBSCAN for Mode Change Detection

As the data stream arrives, DBSCAN algorithm is applied for operating state iden-

tification and outlier detection of the current window. In Figure 24, the behavior of

the system is studied for water/vapor relation. As shown in the figure, until window

#8, there is only one main cluster, but outliers are beginning to show the emergence

of a second cluster. However, in window #9 the data split into 3 clusters, which

indicates a transient in the system. The data received in window #10→#11 stay in

the new steady–state mode. DBSCAN clearly enables detecting the outliers without

any prior assumption about the distribution of data or any relationship among vari-

ables, and whether the system is working under a steady–state operational mode. If

a transient happens, DBSCAN can detect the drift by partitioning data into more

than one cluster of inliers and outliers.

In the meantime, the operation of the system is evaluated from other sensor mea-

surements of the boiler, pressure and temperature values. As shown in Figure 24, the

behavior of the system using flow rate measurement is evaluated for operating state

identification. However, using other sensor data such as pressure and temperature as

72



(a) DBSCAN: 1st window (b) DBSCAN: 2nd window

(c) DBSCAN: 3rd window (d) DBSCAN: 4th window

Figure 23: DBSCAN clustering, (a) in window #1 two clusters are identified in
steady–state mode outliers and inliers, in (b) window #2 the system is under same
operational state as window #1, but in (c) window #3 data points are partitioned
into 3 separate clusters since the distribution is changed and a transient in system
operational mode has occurred, (d) system clearly drifted to a new operational mode.
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(a) DBSCAN: 8th window (b) DBSCAN: 9th window

(c) DBSCAN: 10th window (d) DBSCAN: 11th window

Figure 24: DBSCAN model on streaming sensor data water/vapor flow rate: (a) in
window #8 (refer to Figure 19), DBSCAN model shows formation of one cluster of
inliers indicating one operational state, (b) as new data samples are recieved from
window #9, data gets split into 2 main clusters and some outliers that indicates a
drift in data context and that the system is in a transient mode. (c)-(d) Windows
#10→#11 show that the system is operating under a new steady–state mode.
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(a) DBSCAN: 8th window (b) DBSCAN: 9th window

(c) DBSCAN: 10th window (d) DBSCAN: 11th window

Figure 25: DBSCAN model on streaming sensor data water/vapor, pressure/ temper-
ature: similar to flow rate, (a) in window #8 DBSCAN model shows formation of one
cluster of inliers indicating one operational state, (b) in window #9, data split into 2
main cluster and some outliers that is a distinctive indication of drift in data context
and the system goes into transient mode, requiring a model update. (c)-(d) Windows
#10→#11 show that the system is operating under a new steady–state mode.
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(a) (b)

Figure 26: Comparison of regression model result on (a) batch analysis, (b) window–
based analysis. Although a single regression model describes the data, operational
modes of the system are not distinguished by batch analysis.

shown in Figure 25 we can observe the same behavior with more distinction. In win-

dow #8 the system is operating under one steady–state, and by receiving the new set

of data in window #9 a transient is observable since the data is split into 3 different

clusters. Windows #10→#11 approve this transition and the system is observed to

stay in the new operating state.

For online data analysis all the streaming data is not available at a certain time,

consequently window–based, sub–model construction is required. If a model is con-

structed on a relatively large window size, or batch data offline, the underlying model

may not represent local phenomena accurately and some critical information about

the system will never get extracted. In batch data analysis shown in Figure 26-(a) a

large cluster of data points is formed by the accumulation of several small windows

and the operational sub–modes may not be detected using one RM. However, in

window–based or streaming analysis 26-(b), previously hidden information about the

time–varying system behavior is revealed which is important for real–time decision

making. In addition, processing large volumes of data is neither timely nor efficient.
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Figure 27: Histogram of input and output flow rates (ton/hour).

The frequency of running model updates and sub–model identification depends on the

computational complexity of the algorithms and the computational power at hand.

In modern distributed data mining approaches, all the data may not be available in

one computational node and algorithms may need to be applied locally to summarize

the results and share among the nodes. It is desirable for these approaches to be

efficient and scalable. Moreover, the amount of information from past data to be

used in current window plays an important role in accurate system analysis.

From Figure 21-(a), we observed that system changes states and operates under

several operational modes, while the distribution of data clearly change during these

drifts. This extracted knowledge from streaming data analysis on the same fraction

of data is approved by studying the distribution as shown in Figure 27 where data

distribution is a combination of several Normal distributions.
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Table 11: Gaussian parameter analysis in fixed–window size for sub–model detection.

window # peak 1 peak 2 std RMSE R2

1 59.28 47.95 6.32 1.5784 0.3525
2 57.32 49.51 10.43 1.7209 0.2997
3 63.38 54.54 34.5 4.7573 0.3152
4 64.82 51.15 30.82 3.7044 0.0874
5 64.59 59.72 2.976 1.4312 0.15

4.3.5 Using Two–Term Gaussian Function for Mode Change Detection

For mode change detection Gaussian Distribution Function is applied on sensor data

using the same window–based approach, a fixed–window size of 360 data points and

utilized for sub–model construction. In this experiment a two–term Gaussian Dis-

tribution Function is applied on data. The Gaussian functions are often used to

represent the probability density function of a normally distributed random variable

with expected value µ = b and variance σ2 = c2. The parameter a is the height of the

curve’s peak, b is the position of the center of the peak and c (the standard deviation)

controls the width of the bell curve. This function is formulated as follows:

f(x) = ae−(
x−b
c

)2 (34)

As shown in Figure 28 according to change in data distribution, the sub–models are

recognizable. This information is also obtained by analysis of Gaussian model param-

eters provided in Table 11. In window #1→#2 the peak of both Gaussian functions

are close and the standard deviations (std) do not fluctuate, but on the arrival of

window #3→#4 the peaks shift and stds and RMSE values increase dramatically

as shown with red color. This information is useful for sub–model identification and

similar to RM, DBSCAN and K-means approaches, the drift in operational mode is

extracted by applying this approach.
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(a) Gaussian: 1st window (b) Gaussian: 2nd window

(c) Gaussian: 3rd window (d) Gaussian: 4th window

Figure 28: Gaussian distribution model on streaming sensor data, (a)-(b) in windows
#1→#2 Gaussian curves are close and system works in the same operational mode,
but in (c) window #3 data requires a new Gaussian sub–model since the distribution
is changed and shows a transition among system’s operational modes, (d) system
clearly drifted to a new operational mode with updated curve in window #4.
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4.3.6 Discussion: Sensor Error or System Anomaly

One crucial question to answer is whether an outlier measurement would occur due to

a sensor malfunction or system anomaly. The identification of these correlated high-

level events could be difficult [112], [113]. However, due to redundant sensors and laws

of mass and energy preservation, the system can be monitored in multiple locations (in

& out) as well as in multiple dimensions (flow, temperature, pressure) to differentiate

sensor vs. system issues. In our experiments, we observed that the system will

sometimes shift among regular operational modes and go through transient states,

which get detected as gross errors in our scenarios. Consequently, in “Bias” and

“Drift” types of gross errors, the system goes through a transient state until it reaches

a new steady–state operation. In “Precision Degradation” type there is no steady–

state and in “Failure” type there is no sensor or system operation at all.

The system is declared as operating in a steady–state when the model from the pre-

vious window that is applied on new window data fits well by RMSE value evaluation.

However, a new operational mode formation can be identified when prediction error

of the previous model on the current window increases dramatically. The operational

mode identification compared and is confirmed by DBSCAN clustering method.

4.4 Adaptive Window Size Tuning

Until now, fixed–size windows were used for regression–based operational mode iden-

tification. However, the window size doesn’t need to stay the same; yet finding an

optimal size is also challenging. For time–varying data, based on the system behavior

and received patterns, the window size may be updated. In this section, we propose

and test an adaptive–window based regression model update schema. We utilize the

time–tested TCP (Transfer Control Protocol) Congestion Control algorithm [114].

This algorithm uses slow–start and congestion avoidance phases for reliable data
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Algorithm 3 :Adaptive window size tuning

1: procedure AWST (S)
2: minWin : Minimum window size
3: maxWin : Maximum window size (cwnd)
4: win : Initial window size
5: s = Swin : Sub-model window

#Slow-start
6: for each sub−model(s) do
7: if (RMSEs < threshold) then
8: win = win ∗ 2

#Congestion avoidance & Fast recovery
9: elseif (RMSEs > threshold)

10: win = win/2

11: if (win > maxWin||win < minWin) then
12: win = minWin
13: s = Swin

perform #Slow-start

transmission, but we utilize the methods for adapting the streaming window size se-

lected for model updates. The RMSE values of consecutive windows are evaluated

by applying the algorithm for tuning the window size as follows:

• Slow-start: doubles the window size each round RMSE variation value is less

than threshold,

• Congestion avoidance: enters the linear growth phase,

• Fast recovery: during congestion avoidance mode, the congestion window size is

reduced to slow-start threshold (ssthresh) rather than the much smaller initial

value.

The proposed adaptive window size tuning algorithm is explained in the Algorithm 3

pseudo code.

The window is initialized with a length of 180 minute readings (3 hours). As

shown in the Figure 29, when the RMSE value of the model is less than a threshold,

the window size is doubled following slow–start. In contrast, if the obtained RMSE

value of the current window is higher than the threshold value, the window length
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Figure 29: Adaptive window size tuning over data.

is decreased to half the size. Consequently, using adaptive window tuning algorithm

has a significant positive impact on R2 values shown in Table 12. The R2 values

obtained from adaptive-window based regression model update schema has increased

in comparison to fixed-size window described in Table 10 which shows that adaptation

can improve the model prediction performance and operational mode identification.

As shown in Table 12 when RMSE values are less than the threshold the window size

grows #2→#3 and #4→#7 meaning that the system is in steady–state but, when

it has high variation, transition among operational modes is occurring. In window

#7 the algorithm goes to fast-recovery phase as window size decreases to minWin.

In window #3 and #13 the RMSE value has increased dramatically and according

to fast–recovery, the window is decreased to half size. Meanwhile increasing RMSE

values are interpreted as a transition to a new mode. As shown in Figure 29 dataset of

length 186 hours is covered with 20 adaptive–sized windows vs. 31 fixed-sized (i.e. 6

hour) windows. The proposed adaptive algorithm therefore reduces modeling related

computational costs by ∼35% (11/31 updates).
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Table 12: R2 , RMSE values of adaptive–window size for regression model prediction
performance.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

R2 98.04% 72.60% 74.54% 92.61% 88.46% 83.63% 13.60% 98.42% 41.64% 96.67%
RMSE 1.36 1.66 4.92 1.34 1.44 1.55 1.91 0.96 2.63 1.30

4.5 Summary and Conclusions

We showed that by evaluating the fluctuation of error values mode changes are de-

tectable. The results were also verified by real–time K-means clustering. This ap-

proach provides information about steady–state, drifts and transient states of time–

varying industrial systems and the requirement for real–time model updates. An

outlier detection algorithm using windows–based DBSCAN clustering was also used

as a novel strategy for multi–state operational mode identification. Finally, the pro-

posed TCP congestion control–based adaptive window size tuning for streaming re-

gression analysis resulted in reductions in RMSE values as well as saving modeling

computational costs of frequent updates.
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CHAPTER V

A CLOUD–BASED BIG DATA PROCESSING

ARCHITECTURE FOR INDUSTRY 4.0

Industry 4.0 revolution manifests that IoT, Cloud, and Big Data Analytics technolo-

gies should be used together to deliver a digital transformation and establish smarter

operation for all sectors including Oil & Gas industry. However, transforming existing

industries at levels 2.0 and 3.0 to level 4.0 will entail all of the Big Data challenges:

volume, velocity, variety, and veracity (4V) to be addressed, simultaneously. For-

tunately, both of the manufacturing industries and digital technologies are ready to

make this transformation. Yet, everyone is looking for quick and effective ways to

complete the task. In this Section, we propose a cloud–based big data “Lambda”

architecture based on the GED, GEC tools developed in the previous Sections. Re-

fineries have already implanted thousands of sensors inside and around their physical

systems. IoT and IIoT, sensor networks, digital media, and business transactions

generate large amounts of data that continuously stream in via DCS and SCADA

systems’ measurements and should get extracted, transformed, and processed effi-

ciently. Knowledge discovery and decision making from such data are challenging

when there are millions of various measurements feeding in [77], [115].

Industrial data–intensive computation and storage have been considered as an

important paradigm for science: vast amount of data obtained from applications

and the infrastructures are stored, shared and processed collaboratively [13]. Fur-

thermore, rapid collection of big data everywhere introduced open–source distributed

frameworks such as Apache Hadoop [55], which is a powerful framework for parallel

computing of data gathered from scientific, industrial and business processes [116].
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Hadoop runs MapReduce jobs [117] over the data stored in Hadoop Distributed File

System (HDFS) [118], object-based systems (Ceph) [119] and even NoSQL databases

(MongoDB, Cassandra) by creating parallel algorithms [120]. Hadoop framework cre-

ated an opportunity for designing a completely open-source “data architecture” for

processing Big Data coming from real–world resources and improve decision support

processes (HBase [121], Hive [122]). Apache Mahout was the first project to enable

running Machine Learning algorithms on top of MapReduce. More recently, Apache

Spark [89] was introduced as an in–memory distributed alternative to MapReduce,

which also boosted the ML algorithms to be executed with 100x performance. The

ML library that runs over Apache Spark is simply called MLlib [123].

5.1 Cloud Computing

Cloud Computing is defined by National Institute of Standards and Technology

(NIST) as: “a model for enabling ubiquitous, convenient, on–demand network ac-

cess to a shared pool of configurable computing resources” (e.g., servers, storage,

network, services at all layers, and applications) “that can be rapidly provisioned and

released with minimal management effort or service provider interaction” [124]. It

also provides features needed for massive data streaming applications. This trend

is in large part due to the development of new processes that allowed IT depart-

ments and data centers to ETL (Extract, Transform and Load) massive amounts of

data efficiently and inexpensively. Examples of popular Public Cloud Services include

Amazon AWS (https://aws.amazon.com), Microsoft Azure [125], Google Cloud [126],

IBM Bluemix [127], and many more.

The Cloud architecture includes three layers as shown in Figure 30.

Software as a Service (SaaS): refers to end–user software provided via a

browser and the Internet. It may be layered on top of public PaaS and IaaS or

completely private data centers of the service provider. Examples of SaaS include:
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Figure 30: Three cloud service layers.

Microsoft Azure Office360, SalesForce [128], Dropbox, and many more of Email sys-

tems, and business data processing systems such as Customer Relationship Manage-

ment (CRM), Enterprise Resource Planning (ERP) [129] and accounting services.

Platform as a Service(PaaS): this layer has the middleware software compo-

nents on top of which other end–user software can be developed by programmers or

SaaS service developers. The analogy made for PaaS, SaaS and IaaS in Figure 30

is that PaaS is the CD player platform, whereas SaaS are the different albums, and

IaaS is the electricity that powers it all.

Infrastructure as a Service (IaaS): is about suitable computing, storage and

networking hardware that is required on which the software could be run properly.

Cloud is also our medium for running Industry 4.0 big data solutions in scal-

able way. The industrial data used in this work is a streaming data that has to be

processed in real–time, besides being stored for offline analysis as well. Algorithms
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for pattern matching, anomaly detection using K-means clustering, dimension reduc-

tion procedures (PCA, SVD), etc. can be applied after the data preprocessing and

reconciliation phases. These algorithms can be performed on either Apache Spark

or Hadoop on top of a real cluster. We use Apache Spark [130] and integrate ML

algorithms using Scala programming language.

We propose to use Lambda architecture as the unified data and analytics archi-

tecture for industrial plants specifically for Oil & Gas plants, which consists of three

layers: batch processing layer for offline data, serving layer for preparing indexes and

views, and speed layer for real–time processing [131]. In the following subsections,

we introduce Lambda architecture implementation alternatives in private and public

clouds.

5.2 Private Cloud Implementation

We propose to use Big Data processing architecture including a PaaS named in this

thesis as DREDGE. Operations running inside an organization’s data center is an

example of a private cloud. An important advantage of private clouds is higher

security, easier maintenance, and direct control over the deployments [132]. In Oil

& Gas sector, data and applications may require a higher level of security and these

companies can afford to build their own private cloud.

To manage data storage, processing, and analytics at scale Oil & Gas indus-

try recently started experimenting with open–source distributed frameworks such

as Apache Hadoop, Apache Spark and Apache Ignite [133]. Apache Hadoop con-

sists of HDFS, MapReduce, HBase, Hive, and other system management modules.

Apache Spark solves online processing problems of disk–based Hadoop by imple-

menting MapReduce layer entirely in–memory [134], but its Resilient Distributed

Datasets (RDDs) are immutable. Apache Ignite provides shared, mutable in–memory

RDDs [135], called data grid, which is a NoSQL key–value store (partitioned hashmap)
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that can be employed for providing distributed caching or complementing Apache

Spark. While these technical developments in distributed systems and their ease of

availability are useful for the Oil & Gas sector, there are tens of open–source data

processing & mining projects with no unified view about how to leverage them co-

herently, because:

• Oil & Gas industry has not developed a comprehensive data architecture to

complete its digital transformation neither in the drilling nor refining businesses,

and,

• the integration with private and public clouds is not discussed clearly.

The proposed architecture is depicted in Figure 31 for a private cloud [6]. Apache

Kafka [136] is an open–source publish–subscribe engine for building real–time data

pipeline and stream processing applications. Sources of data streams such as sensors,

log files, and IoT act as the publishers. Applications in the speed and batch layers

subscribe to Kafka for pulling the data and processing them in real–time. Spark

Streaming [89] receives live data streams and divides them into smaller batches. This

data is also stored in a distributed database management systems such as Apache

Cassandra [137], which also replicates it internally to several nodes to ensure reliabil-

ity. Distributed algorithms can now have access to replicas via MapReduce framework

of Apache Spark API. Complex analytics such as pattern recognition, classification,

rule extraction, and fault detection are performed in the serving layer. MlLib [138] is

an open–source machine learning library which works on top of Apache Spark as well

as Cassandra. The resulting real–time (online) models in speed layer and precom-

puted (offline) models in the batch layer are merged for visualization and prediction

purposes.

The private cloud data system can be integrated with public cloud services such as

Amazon Web Services (AWS) [10]. Each open–source project shown in Figure 31 has

a public cloud version, AWS–Kinesis is cloud version of Kafka, AWS–EMR (Elastic
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MapReduce) is data processing framework for MapReduce. AWS–S3 (Simple Storage

Service) is for storing batches and log files similar to Cassandra.

5.2.1 Spark Cluster

For high–speed computation, Zaharia et al. [139] designed Spark which improved

MapReduce for Interactive Queries and Stream Processing efficiently. Spark clus-

ter design allows several types of workloads such as batch applications, interactive

streaming and query processing. There are three different Spark deployments, Stan-

dalone, Hadoop Yarn, Spark in MapReduce. In this work, Standalone deployment

is used which means Spark is built on top of HDFS and it runs beside MapReduce

for the batch jobs in the cluster. Spark components depicted in Figure 32 [135] are

explained as follows:

• Spark Core is the general execution engine of spark platform that provides in–

memory computation and access to external storage.

• Spark SQL is a component that supports data abstraction for structured and

semi-structured data analysis.

• Spark Streaming is for the streaming data analysis and uses Spark Core’s

scheduling capabilities. It breaks the streaming data to mini-batches for con-

verting to RDD and performing the demanded process.

• MLlib is a distributed and high speed machine learning framework in Spark.

• GraphX provides graph-processing in Spark [135].

5.2.2 Machine Learning Library: MLlib

MLlib [123] is developed as part of the Apache Spark project and is Sparks machine

learning (ML) library. Its goal is to make practical machine learning scalable and easy.

It provides tools for supervised and unsupervised learning algorithms like classifica-

tion, clustering, regression and provides feature extraction, selection, and dimension

reduction [138]. It also provides constructing and evaluating pipelines for ML and,
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Figure 32: The different components of Spark.

saving, loading of trained models and algorithms. This library utilizes linear algebra

and statistics packages and is included in Apache Spark.

5.2.3 Kafka Streaming Platform

Apache Kafka is a distributed platform for stream processing in real–time with three

capabilities:

• It provides to publish/subscribe to streaming records, and is similar to messag-

ing queue.

• It provides the possibility of storing the streaming records.

• As records happen, Kafka lets applications to process the streams.

Kafka is used for two classes of applications: (1) building pipelines for real–time

streaming data for reliable interaction between systems or applications and; (2) build-

ing real–time application for taking action in presence of stream data [140]. Kafka

is capable of running on one or more servers called broker and stores records of data

streams in specific categories called topics, and each record consists of a key, a value,

and a timestamp [141]. Topics are maintained in partitioned logs, distributed in the

Kafka cluster where servers handle data and requests to logs. The log partitions are

replicated on the cluster for fault tolerance purpose. Kafka has four main application

programming interfaces (APIs) for automating tasks shown in Figure 33 [136]:
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Figure 33: Kafka cluster’s core API.

• The Producer API allows applications to publish messages to Kafka topics.

• The Consumer API sends notification messages to subscribing and matching

applications.

• The Streams API allows applications to operate as a stream processor, consum-

ing topics and producing output streams and, transform streams.

• The Connector API allows applications to run reusable producers/consumers

that connect Kafka topics to existing applications [136].

Kafka stores data reliably by replicating logs in distributed servers and provides

very low-latency pipelines. Kafka uses Zookeeper [142], which provides coordination

of distributed services that maintains configuration information, naming, distributed

synchronization, and group services.

5.3 Fault Detection and Classification Modules

The DREDGE approach that is introduced in this thesis, integrates prior information

of system to plant model using statistical pattern recognition to detect anomalies

and error types in the industrial system. We have used statistical pattern recognition

techniques including LSE, ARMA, and DREDGE to extract system properties and
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develop fault detection models over real and synthetically–generated industrial data.

Locating which sensor makes what type of error improves overall system reliability for

the refinery and improves predictive maintenance performance [143]. Modeling the

time–varying refinery plants, the anomalies can be detected with statistical hypothesis

tests (Chi-squared test) for fault detection and noise removal.

In this section, again the ARMA model integrated to KF-based tracking model

for online system identification and GED is used, over streaming sensor data. The

selected techniques are based on the performance and accuracy evaluations in chapter

3. As mentioned in this chapter Apache Spark is an in-memory distributed alternative

to MapReduce, which also boosted the ML algorithms to be executed with 100x

performance. The Lambda architecture [131] that is proposed in this chapter is

used for unified stream data processing and analytics for Oil & Gas industry. These

techniques are implemented in Scala for “stream mining” in real–time and to be used

in the proposed private cloud. The data stream into the applications that are running

on top of Spark cluster through Kafka topics and the application subscribes to these

topics for processing the sensor data for fault detection. Running these applications

on Spark cluster are much faster than local machines. The jobs are distributed on

the cluster with 1 master and 8 working nodes. Once this application is started, the

master will print out a spark://HOST:PORT URL for itself, which can be used to

observe workers performance via the masters web UI. In Figure 34 the execution of

this application is depicted, which shows the successfully completed jobs on Spark

cluster.

5.4 Public Cloud Implementation

The best definition for public cloud presented from NIST is: “The cloud infrastructure

is provisioned for open use by the general public. It may be owned, managed, and

operated by a business, academic, or government organization, or some combination
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of them. It exists on the premises of the cloud provider” [124]. Public cloud’s main

properties are that it is a service allowing users to access the cloud by using their web

browsers, by a payment policy of pay–per–use. Only amount of time a user spends for

using a service is calculated for payment. This concept helps users reducing the costs

of their IT expenditure by taking benefits of an almost infinite computing resources

and pay only the amount used. The main disadvantage of public clouds are lower

security and being prone to malicious attacks. Vendors and clients can implement

security checks on both sides for validation and boundaries of operations [144].

5.4.1 Spark on Amazon EMR

Apache Spark is an open–source, distributed processing system used for big data

processing. Using this service we can easily create Apache Spark clusters and use fast

connectivity to other AWS services such as AWS-Kinesis for stream data processing

and AWS-S3 [145].

Streaming data analytics is becoming more popular in large industries as the

technology has become more user–friendly to implement. Spark–Streaming connected

to an Amazon Kinesis stream processing is a typical model for real–time analytics

that is available and easy to use. Combining Amazon Kinesis, Spark on Amazon

EMR, and S3 together provides all the requirement for real–time stream processing.

Amazon EMR clusters can read and process Amazon Kinesis streams directly, using

familiar tools in the Hadoop such as Hive, Pig, MapReduce, the Hadoop Streaming

API. We can join real–time data from Amazon Kinesis with existing data on Amazon

S3, Amazon DynamoDB, and HDFS in a running cluster and directly load the data

from Amazon EMR to Amazon S3 or DynamoDB for post–processing activities as

well. A sample architecture is depicted in Figure 35 which are equivalent public

services introduced for private cloud versions in the previous section.
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Figure 35: AWS architecture for stream processing.

5.4.2 AWS–Kinesis and AWS–S3

Amazon Kinesis provides collecting, processing, and analyzing streaming data in real–

time. It offers cost–effective processing capabilities at scale with the flexibility to

select tools according to requirements for applications. AWS Kinesis digests real–time

data for analysis and machine learning processes. The benefits of using this service

are processing streaming data in real–time, minimum infrastructure management,

and handle the massive amount of data with low latency.

Amazon S3 is a storage object to store and access any amount of data from any-

where from different applications. It provides flexible data management and query–

in–place functionality on data. In Figure 36 a sample execution of the distributed job

on AWS-EMR is depicted, where the cluster consists of 1 master and 2 worker nodes.

5.5 Summary and Conclusion

Oil & Gas industry demands effective methods to complete its Industry 4.0 digital

transformation. Open–source big data tools and their cloud counterparts provide us

with distributed processing capabilities. Our proposed Lambda architecture utilizes
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Figure 36: Running application on AWS-EMR.
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open–source software to solve Big Data problems for building analytical models using

machine learning techniques.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

In this thesis, problems associated with erroneous sensor readings in oil refineries and

we proposed a real–time data validation, gross error detection (GED) and classifica-

tion (GEC) service are addressed, leveraging tools from statistics, signal processing,

data mining and a CEP engine integrated with cyber–physical systems. For compar-

ison of GED and GEC accuracies as well as computational performances, time–series

data from the power and petrochemical plants of an oil refinery are obtained. We

found that our proposed DREDGE method has accurate error detection (99.1-100%)

and sustainable performance at smaller window sizes. IMB method had lower ac-

curacy results and its performance degraded exponentially with increasing window

size. After comparison of three gross error classification (GEC) methods, Complex

Decision Tree (CDT) is found to have the highest precision and recall values (95.8-

100%), where KNN had the lowest recall values (e.g. 82.1%) that would be unfit for

oil refineries and their safety requirements. Therefore, CDT technique is implemented

into CEP engine for real-time GEC.

The proposed approach combines data cleaning via gross error detection, steady–

state system modeling, real–time operational mode identification and model updates,

all at once. This study is applicable to many data–driven systems dealing with

sensor streams to ensure data quality and improve system modeling. Devices in

interconnected CPS can communicate for more accurate system monitoring and avoid

total failure by predicting and detecting abnormal behavior of the system. We believe

that our study has the potential to bridge the gap between generic big data software

available in the market and real challenges faced by oil refineries: detecting erroneous
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data and sensors with high accuracy (no false positives or negatives) over high volume

stream data. Error detection and classification such as ours provide a data quality

improvement for better system modeling and isolation of faulty processes.

To identify a system’s operational mode, regression analysis is applied on a time–

varying industrial system. It was shown that by evaluating the fluctuation of error

values mode changes are detectable. The results were also verified by real–time K-

means clustering. This approach provides information about steady–state, drifts and

transient states of time–varying industrial systems and the requirement for real–

time model updates. An outlier detection algorithm using windows–based DBSCAN

clustering was also used as a novel strategy for multi–state operational mode identi-

fication. Finally, the proposed TCP congestion control–based adaptive window size

tuning for streaming regression analysis resulted in reductions in RMSE values as

well as saving modeling computational costs of frequent updates. We believe that

DREDGE service has the potential to bridge the gap between generic big data soft-

ware available in the market and the challenges faced by oil refineries: detecting

erroneous data and sensors with high accuracy (no false positives or negatives) and

speed.

In future work, integration of models from our system into the real refinery, tech-

niques from deep learning [146] will be studied and the proposed architecture will

be applied to other production plants. In recent studies on complex and dynamic

patterns that appear in time–series, Recurrent Neural Network (RNN) which are

building blocks of Long Short–Term Memory (LSTM) structure is used for capturing

long–term dependencies/correlations of data [147]. In our future work, this structure

will also be tested for prediction and classification of multivariate time–series.
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[98] “TÜPRAŞ, Boiler Data,” https: // www. openml. org/ d/ 41170 , Accessed
On: 20/11/2018.

[99] L. Zhang and X. Peng, “Time series estimation of gas sensor baseline drift using
arma and kalman based models,” Sensor Review, vol. 36, no. 1, pp. 34–39, 2016.

[100] A. Khodabakhsh, I. Ari, M. Bakir, and A. O. Ercan, “Multivariate sensor data
analysis for oil refineries and multi-mode identification of system behavior in
real-time,” IEEE Access, vol. 6, pp. 64389–64405, 2018.

[101] D. G. Luenberger, Introduction to dynamic systems: theory, models, and appli-
cations, vol. 1. Wiley New York, 1979.

[102] V. Vaidehi and C. N. Krishnan, “Computational complexity of the kalman
tracking algorithm,” IETE journal of research, vol. 44, pp. 125–134, 1998.

[103] J. D. Kelly and J. D. Hedengren, “A steady-state detection (ssd) algorithm to
detect non-stationary drifts in processes,” Journal of Process Control, vol. 23,
no. 3, pp. 326–331, 2013.

[104] D. Dochain, “State and parameter estimation in chemical and biochemical pro-
cesses: a tutorial,” Journal of process control, vol. 13, no. 8, pp. 801–818, 2003.

[105] Z. Zhang, Y.-Y. Chuang, and J. Chen, “Methodology of data reconciliation
and parameter estimation for process systems with multi-operating conditions,”
Chemometrics and Intelligent Laboratory Systems, vol. 137, pp. 110–119, 2014.

[106] Z. Zhu, G. Geng, and Q. Jiang, “Multi-scenario parameter estimation for syn-
chronous generation systems,” IEEE Transactions on Power Systems, vol. 32,
pp. 1851–1859, 2017.

[107] X. Jiang, P. Liu, and Z. Li, “Data reconciliation and gross error detection for
operational data in power plants,” Energy, vol. 75, pp. 14–23, 2014.

108



[108] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based algorithm
for discovering clusters in large spatial databases with noise.,” in KDD, vol. 96,
pp. 226–231, 1996.

[109] D. Hodouin, “Process observers and data reconciliation using mass and energy
balance equations,” in Advanced control and supervision of mineral processing
plants, pp. 15–83, Springer, 2010.

[110] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern recognition
letters, vol. 31, no. 8, pp. 651–666, 2010.

[111] A. Khodabakhsh, I. Ari, M. Bakir, and S. M. Alagoz, “Stream analytics and
adaptive windows for operational mode identification of time-varying indus-
trial systems,” in 2018 IEEE International Congress on Big Data (BigData
Congress), pp. 242–246, IEEE, 2018.

[112] A. Akbar, G. Kousiouris, H. Pervaiz, J. Sancho, P. Ta-Shma, F. Carrez, and
K. Moessner, “Real-time probabilistic data fusion for large-scale iot applica-
tions,” IEEE Access, vol. 6, pp. 10015–10027, 2018.
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