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ABSTRACT

The purpose of this study is to maximize the area under Receiver Operating Char-

acteristic curve for binary classification problems using a scoring-based mixed inte-

ger linear programming formulation. We investigate exact approaches using a refor-

mulation, combinatorial Benders cuts, and heuristic bounding methods. Our study

presents computational results on benchmark datasets and paves the way for future

studies on scoring-based approaches.
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ÖZETÇE

Bu çalışmanın amacı ikili sınıflandırma problemleri için Alıcı İşletim Karakteristiği

(ROC) eğrisi altındaki alanı (AUC) puanlamaya dayalı bir karışık tamsayı izlenceleme

gösterimi kullanarak doğrudan maksimize etmektir. Çalışmamızda pekin yöntemleri;

yeniden gösterimleri, sezgisel sınırlama yöntemlerini ve birleşi Benders kesilerini kul-

lanarak inceledik. Çalışmamız, denektaşı veri setleri üzerindeki sayısal hesaplama

sonuçlarını sunar ve puanlamaya dayalı yaklaşımlarla ilgili gelecek çalışmaların yol-

unu açar.
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CHAPTER I

INTRODUCTION

Supervised learning is one of the two fundamental paradigms of machine learning

(ML). In contrast to unsupervised learning, which is another type of ML, labels

for data instances are known in supervised learning. In supervised learning, data

instances are represented by pairs of (xi,yi) where xi stands for the set of features

and yi is corresponding label to those features for each data instance. When the labels

are continuous, the task is called regression. If the labels take discrete values, the

task is called classification. In both types of supervised learning the ultimate goal is

to learn a mapping function from xi to output yi [1].

Classification is one of the tasks that is most frequently carried out by intelligent

systems and a large number of techniques have been developed in order to achieve

well-designed classification. Some of the best-known supervised classification tech-

niques are support vector machines (SVMs), decision trees, discriminant analysis and

instanced-based learning methods [2]. In supervised learning, classification is divided

into binary, multi-class, multi-labelled, and hierarchical tasks. Amongst them, binary

classification is the most popular classification type, where the data instances are clas-

sified into one, and only one, of two non-overlapping classes [3]. In addition, binary

classification is currently being applied in numerous fields such as medical diagnosis,

fraud detection, credit risk categorization, and text retrieval in real life [4, 5, 6, 7].

A classifier’s correctness can be evaluated by using the number of the correctly

classified as positives (True Positives), correctly classified as negatives (True Nega-

tives), incorrectly classified as positives (False Positives) and incorrectly classified as

negatives (False Negatives). These four numbers constitute the confusion matrix as
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shown in Table 1.

Table 1: Confusion matrix for binary classification

Actual Class Classified as Positives Classified as Negatives

positive True Positives (TP) False Negatives (FN)

negative FP Positives (FP) True Negatives (TN)

There are several measures for binary classification based on the confusion matrix.

Most often used measures are Accuracy, Precision, Recall, F-Score, Specificity and

area under Receiver Operating Characteristic (ROC) Curve (AUC) [3]. We do not

delve into details of calculation methods of these metrics. On the other hand, it

is important to emphasize that simple classification accuracy is often a poor metric

[8, 9], and among all others, AUC appears to be one of the best ways to measure

a classifier’s performance [10]. Furthermore, using AUC for selecting classification

models provides better accuracy in validation set than using accuracy for selecting

models [11].

Algorithms with loss functions and designed for error rate minimization such as

neural networks do not necessarily lead to the best AUC possible [12, 13, 14]. However,

AUC represents the probability of correctly ranking a randomly chosen pair of positive

and negative instances [15]. Therefore, AUC can be maximized, by maximizing the

number correctly ranked pairs.

Moreover, maximizing the AUC by pairwise ranking further leads to maximum fea-

sible subsystem (MAX FS) problem since satisfying maximum number of constraints

is aimed, and a scoring-based mixed integer linear programming formulation as a

variation of maximum feasible subsystem problem already exists in literature. This

thesis focuses on maximizing area under Receiver Operating Characteristic Curve

for binary classification problems by investigating a scoring-based mixed integer op-

timization model using a reformulation, combinatorial Benders cuts, and heuristic

2



bounding methods.

The remainder of this study is organized as follows: Chapter 2 provides a brief

review of the literature related to binary classification and AUC maximization. Chap-

ter 3 presents the problem definition and presented solution approaches. Chapter 4

contains our computational results on benchmark data sets. Chapter 5 concludes the

thesis providing directions for future research.
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CHAPTER II

LITERATURE REVIEW

2.1 Motivation

Machine Learning has several applications and the most significant one is predictive

data mining. The datasets for ML algorithms are built up by data instances and each

data instance is represented by a set of features. Features of data instances may be

binary, continuous or categorical [16]. If the data instances are given with the corre-

sponding known labels (outputs), the task is called supervised learning, if the labels

are not know, then it is called unsupervised learning [17]. In supervised learning, if

the labels of data instances take discrete values and the goal is to splitting up data

instances so that each is assigned to one of number mutually exhaustive and exclu-

sive categories known as classes (i.e., they cannot be assigned more than one class),

the task is called classification. Classification occurs significantly frequently in our

everyday life and many decision-making processes can be formulated as classification

problems [1, 18]. Some real life examples of classification are such as categorization

of people if they are possible customers of a specific product or not depending on

their previous shopping choices and dividing up the credit card applicants into those

in who has high-risk, medium-risk and low-risk depending on their salaries and credit

scores. There are several types of classification approaches and the binary classifica-

tion, where data instances are classified in to one of two classes, is the most popular

type of classification [3].
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2.2 Related Work

We categorize the related work as binary classification algorithms, performance met-

rics of binary classification, MAX FS problem, and AUC maximization problem.

2.2.1 Binary Classification

There are numerous algorithms to solve binary classification problems such as support

vector machines, decision trees, discriminant analysis and instanced-based learning

methods. SVMs and decision trees also involves mathematical programming and are

stated in this study, the readers who are interested on binary classification methods

can find further information in [16].

Decision trees classify data instances based on the sorted values of data instances’

attributes. Each node in decision trees represents an attribute-based tests and con-

tains a branch for every possible outcome of the test. Leaves of decision trees represent

the corresponding classes that the data instance belongs. Starting from the root node,

attribute based tests are evaluated. Algorithm continues until a leaf node is encoun-

tered. The feature that best divides the data should be root node of the decision tree

and constructing an optimal binary decision tree is NP-complete problem, therefore

efficient heuristics and constructing near optimal trees have been a search for many

researchers [2, 19]. Some of the well-know algorithms for constructing decision trees

are proposed in [20, 21, 22]. In addition, linear programming is utilized for deter-

mining linear combination splits within binary decision trees in [23] and for finding

optimal multivariate splits at the nodes of decision trees in [24]. However based on

the multi-disciplinary survey in [25], there is no single best method for constructing

decision trees.

Support Vector Machines classify data instances based on their distance to sep-

arating hyperplane and is proposed as a maximum-margin classifier [26, 27]. SVM

maximizes the margin on each side of separating hyperplane data instances. If the
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dataset is linearly separable, then there exists a pair (w, b) such that

wTxi + b ≥ 1 ∀i ∈ P (1)

wTxi + b ≤ −1 ∀i ∈ N (2)

where w is normal to the hyperplane, |b|/||w|| is perpendicular distance from origin to

hyperplane, and P and N are the set of positive and negative instances respectively.

Data points, which lies on the one of the hyperplanes H1 : wTxi + b = 1 and H2 :

wTxi + b = −1 are called as support vectors and the pair of hyperplanes H1 and

H2 which gives the maximum margin can be found by minimization of ||w||2 [28,

29]. SVM have wide range of applications, they are used in identification of diseases

[30, 31], text categorization [7], object recognition [32] and in many other fields [33].

There are also some studies that combines SVMs with metaheuristic methods such

as particle swarm optimization [34].

2.2.2 Performance Metrics

In order to be able to compare classification algorithms, a performance metric for

comparison is needed. Therefore, performance metrics have fundamental role on as-

sessing the quality of classification algorithms. There are several performance metrics

and classified into three main groups as metrics based on a threshold and a qualitative

understanding of error, metrics based on a probabilistic understanding of error and

metrics based on how well the model ranks the examples in [13]. An example for each

group can be given by accuracy, cross-entropy and area under ROC curve respec-

tively. Performance measures are also classified into two main groups such as metrics

represented by scalar values which includes accuracy, sensitivity and specificity and

metrics based one graphical assessment methods that contains area under ROC curve

and Precision-Recall (PR) curve [35]. Most common used measures for binary clas-

sification and their formulas based on confusion matrix in Table 1, are presented in

Table 2 [36]. Analysis of these performance metrics in order to decide which one is
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Table 2: Binary classification measures

Measure Formula

Accuracy TP+TN
TP+FN+FP+TN

Precision TP
TP+FP

Recall TP
TP+FN

Fscore TP+TN
TP+FN+FP+TN

Specificity (β
2
+ 1)×TP

(β
2
+ 1)×TP+ β2×FN + FP

AUC 1
2

(
TP

TP + FN + TN
TN + FP

)
best for comparing classification algorithms has been a topic many studies. Classifi-

cation accuracy is investigated in [9] and shown that it is not a sufficient metric for

classifier performance. Superiority of metrics are also investigated when the data is

imbalanced [37] and it is proved that the metrics which use values from both columns

of confusion matrix, such as accuracy and precision, are significantly sensitive to the

imbalanced data as stated in [38]. A deep analysis of AUC is also presented in [8] and

shown that the AUC of a classifier is equal to probability of a randomly chosen posi-

tive instance to be ranked higher than the randomly chosen negative instance. This

shows the equality between Wilcoxon-Mann-Whitney statistic and AUC in discrete

cases. Another intense investigation of AUC as a measure of classifier performance

is also made in [10]. They utilize two decision trees (C4.5 and Multiscale Classifier);

two neural networks (Perceptron and Multi-layered Perceptron); and two statistical

methods (K-Nearest Neighbors and a Quadratic Discriminant Function) on six differ-

ent real world datasets to compare AUC with accuracy and report that AUC should

be preferred to accuracy.
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2.2.3 MAX FS Problem and AUC Maximization

Since AUC does not confound with imbalanced datasets accuracy or precision, it is a

more general and robust measure of classifiers’ performance [12]. Therefore there has

been many studies to improve the AUC of classifiers. Several approaches are based

on error rate minimization, however they do not necessarily optimize the AUC [14].

In [39], the authors propose a characterized SVM that maximizes the AUC and there

are also some studies tries to maximize the AUC by metaheuristic methods, such as

Simulated Annealing (SA) in [40]. However, non of these methods directly maximizes

the AUC and exactly guarantee that the AUC they obtain is the optimal.

AUC is not easy to compute, however, is exactly equal to Wilcoxon-Mann-Whitney

(WMW) statistic [14, 15, 41]. Maximization of an approximation of WMW statistic

is proposed in [12]. An exact maximization of AUC through WMW statistic by

mixed integer programming technique is proposed in [42]. Their formulation tries to

satisfy as many inequality as possible from the WMW statistic set, and is a special

structured version of maximum feasible subsystem problem where all inequalities are

in same shape and the infeasibility of linear set is unknown.
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CHAPTER III

PROBLEM DEFINITION AND SOLUTION

APPROACHES

3.1 Problem Definition

In this study, we focus on maximizing the area under ROC curve for binary clas-

sification problems, by utilizing Wilcoxon-Mann-Whitney statistic that leads to a

maximum feasible subsystem problem. MAX FS problem is considered to determine

a feasible subsystem containing as many inequalities as possible from a given infeasi-

ble set of constraints. It has been proved to be an NP-hard problem and also difficult

to approximate [43]. Mathematical optimization model of our problem is formulated

as a special case of MAX FS problem in [42]. This model cannot be solved to opti-

mality in many data sets in reasonable time, and our aim is to solve the problem to

optimality if possible or obtain a smaller optimality gap in a given time limit.

3.1.1 Maximizing the Area Under ROC Curve

The ROC curve was first developed in the 1950s to detect signals [15]. The curve

consists of False Positive Rate (FPR) on the x axis and True Positive Rate (TPR) on

the y axis. By shifting the threshold from most positive (i.e. classifying all instances

as negatives) to most negative (i.e., classifying all instances as positives), the points

on the curve are obtained. For a random classification, it is expected to obtain a

straight line from (0,0) to (1,1). Therefore, a classifier, which performs better than

random classification, should provide an ROC curve which is above this straight line.
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Figure 1: An example of ROC Curve

There is an example of ROC curve in Figure 1 and the AUC is defined as the

area under this curve. AUC value is exactly the probability P(X>Y) where X is

the random variable corresponding to the distribution of the outputs for the positive

examples and Y is the one corresponding to the negative examples [44]. Aforemen-

tioned probability, the AUC, is equal to Wilcoxon-Mann-Whitney (WMW) statistic

(1) in discrete cases [15]. ∑k
i=1

∑l
j=1 1mi>nj

kl
(1)

Where m1,...,mk and n1,...,nl are the outputs of a fixed classifier for positive and

negative data points respectively. 1mi>nj
denotes a binary indicator that takes value

1 if the score of positive instance (mi) is grater than the score of negative instance

(nj) and 0 otherwise.

3.1.2 Maximum Feasible Subsystem Problem

MAX FS problem finds a feasible subsystem containing as many inequalities as possi-

ble from a given infeasible system [45]. This problem can also be considered as finding

the minimum number of constraints to remove, in order to resolve infeasibility [46, 47],

which is known as minimum unsatisfied linear relation problem (MIN ULR) [48]. An

infeasible set of constraints can be feasible by deleting at least one member of every
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irreducible infeasible subsystem (IIS) it contains. One other complementary problem

is the minimum-cardinality IIS set-covering problem (MIN IIS COVER), in which

the smallest set of constraints looked for covering all IISs of infeasible system [49].

Similarly, in our problem, in order to obtain the best AUC possible, a classifier

(scoring function) should yield outputs that satisfy the following linear program for

the maximum number of (i, j) pairs.

mi > nj ∀i ∈ S+ , ∀j ∈ S− (2)

Where S+ and S− are the set of positive and negative data points respectively. If

the data set is not linearly separable, then (2) is an infeasible system. This study

differs from MAX FS problem inasmuch as the fact that the infeasibility of set 2 is

not known beforehand. Our objective is to find a classifier which provides output

values that can satisfy the maximum number of constraints in set 2.

3.1.3 Mixed Integer Linear Programming Formulation

MIP model below is formulated in [42] to maximize AUC for the binary classification

problems. We will refer to this model as original MIP model in this study. The idea

is to find a linear scoring function which yields the highest value through WMW

statistic. The parameters in the proposed mathematical model are xi, xk and ε.

xi and xk represents the attribute vectors of positive instance i where i ∈ S+ and

negative instance k where k ∈ S− respectively and ε is a small user-specified constant.

The decision variables are as follows:

11



vi The score of positive instance i

vk The score of negative instance k

wj Coefficients of linear scoring function

zik =


1, if instance i scores greater than instance k

0, otherwise

Using these decision

variables, the problem is modelled as follows:

max
∑
i∈S+

∑
k∈S−

zik (3a)

subject to zik ≤ vi − vk + 1− ε ∀i ∈ S+, ∀k ∈ S− (3b)

vi = wTxi ∀i ∈ S+ (3c)

vk = wTxk ∀k ∈ S− (3d)

− 1 ≤ wj ≤ 1 ∀j ∈ 1..d (3e)

zik ∈ {0, 1} ∀i ∈ S+, ∀k ∈ S− (3f)

Constraint (3b) is the condition of WMW statistic and this assures that the binary

decision variable zik is 1 if vi > vk, and 0 otherwise. That is, the associated binary

variable takes 1 if the positive instance has greater score than the negative instance.

Constraints (3c) and (3d) let the scores of corresponding positive and negative in-

stances to be equal to associated output values from the scoring function. Above

MIP model, that is directly maximizing AUC, is known to outperform state-of-the-

art classification techniques in terms of AUC performance. However, problem cannot

be solved to optimality in a reasonable time for many data sets. It means the AUC

values obtained through this model could even be further improved in terms of time

or best solution found. This is our main motivation to solve the problem to optimality

if possible, if not, accelerate the optimization process and obtain smaller optimality

12



gap within a specified time limit.

3.2 Solution Approaches

As mentioned before, original MIP model cannot be solved to optimality for many

datasets. We tackle this problem with three different methods, two heuristic methods

and one exact method with it’s variations. In the first heuristic method, our only

intention is to obtain a fast initial feasible solution, which can be used later on. In

our second heuristic method, we utilize reformulation techniques to come by with a

better initial solution and also to use it iteratively in our third method. In our last

method and it’s variations, we aim to solve the problem to optimality if we can or

reduce the optimality gap within a specified time limit.

3.2.1 Heuristic 1, Based on Linear Relaxation

Original MIP model cannot be solved optimality due to the large number of binary

variables. Therefore, we start by solving the associated linear relaxation (LP) of

the corresponding MIP problem. We allow binary variables (zik) to take continuous

values in [0,1]. When a positive instance, say i, cannot score greater than a negative

instance, say k, zik can still take fractional values, even though Wilcoxon-Mann-

Whitney statistic provides 0 for that zik. In this case, the objective function gets a

higher value than it can feasibly attain. Therefore, the objective function value of

this relaxation is not necessarily the AUC but a very optimistic approximation and

an upper bound.

Then, as a second step of this method, in the original MIP problem, we set the

coefficients of the scoring function, w, to the values obtained in linear relaxation form.

By doing this we get a feasible solution. As w was obtained in the linear relaxation

form, it does not provide an optimal solution, but a lower bound, for the original MIP

problem.

13



3.2.2 Heuristic 2, Based on the Reformulation Linearization Technique

Remember that a binary variable zik corresponding to a pair of positive-negative

instances (i, k), such that vi < vk, can take fractional value. This is the reason why

solving the linear relaxation of original MIP model does not provide AUC exactly. We

can solve the linear relaxation of the original problem in a very short amount of time.

However we need to tighten the bounds of this linear relaxation to avoid some of the

fractional values for zik. In the first step of this method, we employ a reformulation

trick on the original MIP model in order to force the ziks to take binary values when

solving the linear relaxation. Consider the constraint (3b).

zik ≤ vi − vk + 1− ε ∀i ∈ S+ , ∀k ∈ S− (4)

We first write it in a more compact form

zik ≤ wT (xi − xk) + 1− ε ∀i ∈ S+ , ∀k ∈ S− (5)

then we multiply the both sides of inequality by zik and obtain

zik × zik ≤ zik × (wT (xi − xk) + 1− ε) ∀i ∈ S+ , ∀k ∈ S− (6)

We know that the square of any binary variable is equals either to 1 if the variable

take the value of 1 or to 0 if variable take the value of 0. Therefore, the square of

a binary variable always equals to itself. Using this well-known property of binary

variables, we rewrite the left hand side (LHS) of the inequality as only zik instead of

zik × zik.

zik ≤ zik × (wT (xi − xk) + 1− ε) ∀i ∈ S+ , ∀k ∈ S− (7)

Then using the distributive property, we have

zik ≤ zik ×wT (xi − xk) + zik − zik × ε ∀i ∈ S+ , ∀k ∈ S− (8)

14



after some algebra, we have the following inequality.

zik × ε ≤ zik ×wT (xi − xk) ∀i ∈ S+ , ∀k ∈ S− (9)

At this point, there is still nonlinearity at the right hand side (RHS) of the inequality

(9). We reformulate the constraint by substituting the bilinear term zik×w with ηik

and obtain

ε× zik ≤ ηT
ik(xi − xk) ∀i ∈ S+ , ∀k ∈ S− (10)

We know that both w and zik have upper and lower bounds such that, wj ≤ wj ≤ wj

and zik ≤ zik ≤ zik. To make above reformulation valid, we make use of McCormick

inequalities [50] and add following constraints to problem.

ηikj ≥ zik ×wj + zik ×wj − zik ×wj ∀i ∈ S+∀k ∈ S−∀j ∈ 1...d (11a)

ηikj ≥ zik ×wj + zik ×wj − zik ×wj ∀i ∈ S+∀k ∈ S−∀j ∈ 1...d (11b)

ηikj ≤ zik ×wj + zik ×wj − zik ×wj ∀i ∈ S+∀k ∈ S−∀j ∈ 1...d (11c)

ηikj ≤ zik ×wj + zik ×wj − zik ×wj ∀i ∈ S+∀k ∈ S−∀j ∈ 1...d (11d)

15



Then the final form of the reformulated problem with all newly added constraints is

as follows:

max
∑
i∈S+

∑
k∈S−

zik (12a)

subject to zik ≤ wT (xi − xk) + 1− ε ∀i ∈ S+ , ∀k ∈ S− (12b)

wj ≤ wj ≤ wj ∀j ∈ 1...d (12c)

zik ≤ zik ≤ zik ∀i ∈ S+∀k ∈ S− (12d)

ε× zik ≤ ηT
ik(xi − xk) ∀i ∈ S+∀k ∈ S− (12e)

ηikj ≥ zik ×wj + zik ×wj − zik ×wj ∀i ∈ S+∀k ∈ S−∀j ∈ 1...d

(12f)

ηikj ≥ zik ×wj + zik ×wj − zik ×wj ∀i ∈ S+∀k ∈ S−∀j ∈ 1...d

(12g)

ηikj ≤ zik ×wj + zik ×wj − zik ×wj ∀i ∈ S+∀k ∈ S−∀j ∈ 1...d

(12h)

ηikj ≤ zik ×wj + zik ×wj − zik ×wj ∀i ∈ S+∀k ∈ S−∀j ∈ 1...d

(12i)

− 1 ≤ wj ≤ 1 ∀j ∈ 1...d (12j)

zik ∈ {0, 1} ∀i ∈ S+∀k ∈ S− (12k)

At this point, when we solve the linear relaxation of reformulated model (LP-RLT)

above, we have only two outcomes for zik. Consider that, the RHS of the inequality

(12b), is greater than or equal to 1 (i.e., wT (xi − xk) + 1− ε ≥ 1 ) then zik can get a

value of 1. If RHS of the inequality is less than 1, then thanks to our reformulation

(12e), any of the ziks cannot get fractional value but a value of 0. However, there is still

a potential issue caused by linearization. Linearization of product of two continuous

variables with McCormick inequalities does not yield an exact linearization. They

are shown to be envelopes in [51]. That is why we cannot force all of the ziks to not
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take fractional values but rather some of them. Therefore, the optimal solution of

this problem is not equal to AUC.

In the second step of this method, to obtain a feasible solution, reflecting exactly the

AUC, we use the same approach with Heuristic 1 in 3.2.1. We set the coefficients of

scoring function, w, to the ones obtained in linear relaxation of reformulated original

MIP model. Even though there are still fractional values on the optimal solution of

linear relaxation of reformulated original MIP model, the number of fractional values

is significantly less than the number obtained in the first step of Heuristic 1. Since

it has a tighter formulation than Heuristic 1, the solution of this problem provide a

better (lower) upper bound for the original problem; hence, it is clearly more realistic

than the Heuristic 1.

3.2.3 An Exact Approach Based on Benders Decomposition

Benders decomposition is an exact solution method to solve large-scale optimization

problems. Instead of considering all of the decision variables and constraints of a

large-scale problem at the same time, Benders decomposition divides problem into

multiple relatively easily solvable problems (Master problem and subproblem(s)) [52].

Original MIP model has only one set of constraints which contains both binary and

continuous variables, while solving the problem with classical Benders decomposition,

we might have to visit all corner points. Therefore, application of the classical Benders

decomposition does not work effectively for our problem. In order to tackle this

issue, we modify the classical Benders decomposition with respect to our problem’s

structure.

3.2.3.1 Classical Benders Decomposition

Integer variables are generally considered to be complicating variables. In a sense

that if these variables are fixed to some specific values, remaining part of the problem

is an easy to solve linear problem with non-complicating variables. Consider the
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optimization problem 13, where x is a set of non-negative continuous variables and y

is a set of integer variables.

max cTx + fTy (13a)

subject to Ax +By ≤ b (13b)

x ≥ 0 (13c)

y ∈ Y (13d)

The algorithm is initialized with a lower bound (LB) and an upper bound (UB) equal

to −∞ and +∞ respectively. Initially master problem (MP) is maximization of a

newly introduced variable, say z, subject to the constraints where integer variables

restricted to be in the same domain as original problem only. Then the MP is,

max z (14a)

subject to LB ≤ z ≤ UB (14b)

y ∈ Y (14c)

When y is fixed to some y∗ with respect to the constraint (14c), the subproblem (SP),

which contains only continuous variables, is obtained as following:

max cTx (15a)

subject to Ax ≤ b−By∗ (15b)

x ≥ 0 (15c)

(15d)

In the following steps of Benders decomposition, the dual of SP is solved. If the dual

is unbounded, then the primal (SP) is infeasible, therefore the original problem 13 is

infeasible for such y∗. In this case, by using the extreme ray (u∗) of the dual of SP,

a feasibility cut (16) is added to MP.

[b−By]Tu∗ ≥ 0 (16)
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If the dual of SP is solved to optimality, according to strong duality, SP has the same

objective function value. In this case, LB is updated as follows:

LB = max{LB, fTy∗ + [b−By∗]Tu∗} (17)

When u∗ is acquired, the objective function value of problem 13 can be written as a

function of y. Then an optimality cut (18) is added to the MP.

z ≤ fTy + [b−By]Tu∗ (18)

After both cases, the MP is solved with added cuts, y∗ is set to y values in MP’s

solution, and UB is updated, such as UB = z∗. These steps are followed until a given

convergence criteria (e.g: UB − LB ≤ ε) is met.

3.2.3.2 Benders Decomposition with Modified Combinatorial Cuts

While solving the original MIP model, algorithm takes too long to converge if the

classical steps of Benders decomposition are followed. Therefore we modify the algo-

rithm. We first choose our LB and UB more wisely. Instead of setting them to −∞

and +∞, we set UB to the optimal objective function value of the linear relaxation

of reformulated model (12) and LB to the objective function value of Heuristic 2.

Then we initialize the algorithm by directly solving MP (19) without any cuts from

subproblems and obtain z∗ik.

max Q (19a)

subject to
∑
i∈S+

∑
k∈S−

zik ≤ UB ∀i ∈ S+ , ∀k ∈ S− (19b)

∑
i∈S+

∑
k∈S−

zik ≥ LB ∀i ∈ S+ , ∀k ∈ S− (19c)

∑
i∈S+

∑
k∈S−

zik ≥ Q ∀i ∈ S+ , ∀k ∈ S− (19d)

zik ∈ {0, 1} ∀i ∈ S+ , ∀k ∈ S− (19e)

Q ≥ 0 (19f)
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Then, in each iteration, in contrast to classical Benders decomposition, we do not

solve MP to optimality and add cuts by solving subproblem, instead, we never stop

solving the MP, only interrupt it by using callbacks and adding lazy constraints.

While solving the MP, whenever Gurobi finds a feasible integer solution (MIP Node),

our algorithm invokes a predefined callback function. In our callback function, we

first set up and solve the SP (20) with given z∗ik values.

max 0 (20a)

subject to z∗ik ≤ wT (xi − xk) + 1− ε (u∗) ∀i ∈ S+ , ∀k ∈ S− (20b)

− 1 ≤ wj ≤ 1 ∀j ∈ 1..d (20c)

Due to the structure of original MIP model, where there is no continuous variables

in the objective function, our SP does not have an objective function. Basically we

seek a feasibility in the SP. Considering the objective function of MP, MP would

always set maximum number zik’s to 1. Therefore, in contrast to classical Benders

decomposition, in any iteration, if the z∗ik set is feasible for the SP, then it is guaranteed

that same set of z∗ik is also optimal for the original problem. If the given z∗ik from

MP is not feasible for the SP, then we the dual of SP has extreme rays. This is the

case in each iteration until an optimal solution for original problem found. For this

reason, in each iteration, we add a classical feasibility cut, in the shape of (16), to

MP by using the associated dual variables (u∗) of SP. However we do not continue to

solve the MP just after feasibility cut is added. Adding only this cut is not enough

for problem to converge in a reasonable time. Therefore, we continue to solve some

other subproblems, in order to generate better cuts for MP. We first solve the same

SP for a subset (S) of data instances. For example, we randomly choose p positive

instances and n negative instances. Solve the SP only for fixed z∗ik, taken from the

solution of MP, where i ∈ P, k ∈ N, |P | = p, |N | = n, P ⊆ S and N ⊆ S. If SP

is feasible for S, then we continue without adding cut. If it is infeasible, we add a
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classical feasibility cut first. Then, we solve original MIP model only for this subset.

As we select relatively small numbers for p and n, this restricted original MIP model

(ROP) is solved in seconds. ROP is solved without considering any other instances

but S, hence, in any solution, summation of zik where i, k ∈ S, cannot be greater than

the objective function value of ROP (o-ROP). Thus, the cut generated by solving the

ROP for S (Subset Cut) is as follows;

∑
i∈P

∑
k∈N

zik ≤ o−ROP (21)

We add this subset cut not only to MP but also to LP-RLT. We solve the LP-

RLT with added cuts and corresponding Heuristic 2 then update the UB and LB

according to their objective function values respectively. We follow these steps until a

given convergence criteria is met or a prespecified time limit is reached. Fig. 2 shows

a flowchart representing our algorithm.
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Figure 2: Modified Benders Decomposition Algorithm (MBD)

In each iteration we randomly choose positive and negative instances to generate

subsets. We further improve this procedure by choosing the instances wisely. For a
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given scoring function w, taken from the solution of LP-RLT in previous iteration,

we sort all instances according to their scores. We take p1 of lowest scored positive

instances and n1 of highest scored negative instances. We know that zik where vi ≤ vk

is going to be 0 in the optimal solution. For this reason a cut, generated by considering

these type of (i, k) pairs, would be a better cut than the one generated by randomly

chosen pairs. However, if we solve ROP with only low scored positive and high scored

negative instances, model would overfit to this subset and provide an unrealistic

scoring function (w). To eliminate overfitting, we also add p2 high scored positive and

n2 low scored negative instances, such as p1 + p2 = p and n1 +n2 = n. Consequently,

we select which instance to include in subsets in a more promising way and we will

refer to MBDs with wise selection as wise modified Bender decomposition (w-MBD)

in this study.
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CHAPTER IV

COMPUTATIONAL RESULTS

In this chapter, we present our computational results and compare the performance of

our methods against original MIP model on benchmark datasets. It is already known

that original MIP model outperform the state-of-the-art classification techniques in

terms of AUC performance [42]; thus, we do not split the datasets into training

and test sets and delve into cross-validation. Since we do not split the datasets, we

normalize each of them as a whole in preprocessing using min-max scaling. We solve

the original MIP model, Heuristic 1, Heuristic 2, and modified Benders decomposition

methods using 7 datasets. FourClass is from LIBSVM Collection [53] and all others

are from UCI Machine Learning Repository. The number of instances in some of the

datasets varies due to deleted duplicate rows as suggested by the provider of dataset

[54, 55, 56, 57]. The description of datasets is given in Table 3. MBD is solved for 8

different subset sizes depending on the number of positive and negative instances. 1

of these subsets is also solved with the w-MBD in order to investigate the contribution

of wise selection method. This experiment is conducted using ε = 10−4 to solve all

LPs and ε = 10−6 to solve all MIPs and all computations are performed using Python,

calling Gurobi 8.0 to solve optimization problems, on a 3.5 GHz Intel Xeon (E5-1650

v2) computer with 16 GB DDR3 ECC (1866 MHz) RAM and the macOS HighSierra

operating system.
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Table 3: Description of datasets
Dataset Number of Attributes Number of Instances Number of Positives Number of Negatives

Banknote Authentication 5 1372 610 762

Blood Transfusion Service Center 5 748 178 570

Caeserian Section 5 80 46 34

Cryotherapy 7 90 48 42

FourClass 2 862 307 555

Liver Disorders 7 341 142 199

Vertebral Column 6 310 210 100

Since our aim is to maximize area under ROC curve, we choose AUC as a per-

formance metric while comparing the solution approaches including mixed integer

programming, heuristic algorithms and Benders decomposition. We also compare the

methods based on the amount of time it takes reach similar level of AUC values.

We first compare the performance of our heuristic methods with original MIP

model. Table 4 shows the AUC values on each dataset for original MIP model,

Heuristic 1 and Heuristic 2; bold indicates the value is the highest AUC on corre-

sponding dataset. Each dataset is solved with a time limit of 1 hour. In each dataset,

our second heuristic finds better or almost same AUC value in a very short amount

of time.
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Table 4: AUC (%) value (top) and runtime (seconds) of methods (bottom)

Dataset Original MIP Heuristic 1 Heuristic 2

Banknote Authentication
0.9996 0.9995 0.9998

3600.5986 8.0161 1795.2400

Blood Transfusion Service Center
0.7500 0.4151 0.759

3600.7774 4.6879 263.5333

Caeserian Section
0.7615 0.4092 0.7519

3600.0172 0.0717 0.3499

Cryotherapy
0.9653 0.9067 0.9623

3600.0180 1.1467 0.5416

FourClass
0.8320 0.6180 0.8333

3600.0686 5.0060 41.4492

Liver Disorders
0.6563 0.3873 0.7506

3600.9770 1.3812 15.3527

Vertebral Column
0.9400 0.8568 0.9410

3600.0839 4.0622 8.2558

Heuristics are fast, however they do not carry any information about the upper

bound of the problem, thus, we do not have information on proximity to optimality.

In Table 5 AUC values obtained by modified Benders decomposition with different 8

different subset sizes. MBD with a (p, n) pair in each column represents the selected

number of positive and negative instances respectively, in each iteration of MBD for

subset cuts. Due to 1 hour time limit in each method, we do not state runtimes

repeatedly.
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There is always a modified Bender decomposition method that performs better

than original MIP model in terms of obtained AUC values. Overall, MBD (8-15)

performs better than all other MBDs and MBD (12,12) is the second best. With

respect to this outcome, we can say that, the higher the subset size, the better AUC

values on MBD methods.

As the objective function value of an exact algorithm in a maximization problem

is always a lower bound for the optimum objective function value, a method which

provides higher AUC value may still have greater optimality gap than others due

to larger upper bound. Therefore, we initially compare the AUC values and the

optimality gaps of utilized methods separately then investigate the relation between

AUC values and optimality gaps. Table 6 shows the optimality gaps corresponding

to each method after 1 hour of computation.
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Considering the Table 5 and Table 6, even though original MIP model can provide

better AUC value, it might still has larger optimality gap with respect to MBD meth-

ods. Surprisingly, in some datasets, original MIP model provides smaller optimality

gap even though its AUC is less than the MBD methods. Consider MBD(8-15) in

Caeserian Section and Cryotherapy datasets, it provides a clear example for stated

situation. The reason behind this outcome can be explained by the effectiveness of

subset cuts on MP. They might provide cuts that make MP to have smaller upper

bound than original MIP model when MP does not have better lower bound than

the original MIP, which results in better optimality gap and worse AUC for modified

Benders decomposition. On the other hand, subset cuts may not work effectively

when the lower bound of MP is greater than original MIP model and consequently,

higher lower bound and greater optimality gap for MP.

We solve the w-MBD only for subset pair (12-12), therefore we compare its results

only with MBD (12-12) for each dataset. Table 7 shows the AUC performances and

optimality gaps of w-MBD (12-12) and MBD (12-12) for each dataset.

Table 7: AUC (%) values (top) and optimality gaps (bottom) of MBD (12-12) and
w-MBD (12-12) methods in 1 hour.

Dataset
MBD w-MBD

(12-12) (12-12)

Banknote Authentication
0.9998 0.9998
0.0002 0.0002

Blood Transfusion Service Center
0.7593 0.7598
0.3043 0.3054

Caeserian Section
0.7583 0.7570
0.1129 0.1121

Cryotherapy
0.9639 0.9648
0.0165 0.0149

FourClass
0.8334 0.8335
0.1969 0.1972

Liver Disorders
0.7506 0.7512
0.3151 0.3155

Vertebral Column
0.9414 0.9429
0.0565 0.0576
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We utilize w-MBD method to see how the selection of specific instances affects

the performance of the algorithm. In Table 7, it is clear to see that w-MBD (12-12)

dominates MBD (12-12) in terms of AUC performances in 6 of 7 datasets, however

it does not show the same superiority on optimality gaps. That shows w-MBD is

successful in improving the LB but not UB.
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CHAPTER V

CONCLUSION

In this study, we have investigated the mixed integer optimization model which di-

rectly maximizes the area under Receiver Operating Characteristic curve for binary

classification problems. We have shown that the mathematical model, the original

MIP model, is a special case of MAX FS problem, which is proved to be an NP-Hard

problem, where it has the same structure for all constraints and infeasibility of linear

system is unknown, and it cannot be solved to optimality in reasonable time.

We have introduced several solution approaches including the reformulation of

original MIP model, heuristic bounding methods that utilize McCormick inequalities

and Benders decomposition approach with combinatorial cuts for original MIP model.

Our solution approaches do not also provide optimal solutions, however they generally

provide better objective function values and smaller optimality gaps than the original

MIP model.

As a conclusion, there exists several potential research directions such as generat-

ing non-linear solution approaches for the reformulated model in 3.2.2 instead of the

substitution of bilinear term in (9) and (10), and improving the quality of Benders

cuts and subset selection to tighten the feasible region of master problem in order to

reach optimality in a more reasonable time.
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June 2017. After graduation, he joined Master of Science program in Industrial
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