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Advisor
Department of Industrial Engineering
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ABSTRACT

Polarity classification is one of the most fundamental problems in sentiment analysis.

Our study strives to develop a new definition, extraction technique and utilization of

features based on the audio data for polarity classification on Twitter messages. The

background of work relies on a recent study which suggests that brain uses sound as

a part of language generation and words are comprehended as they are converted into

sound. Using sound is effective especially for social media messages which are likely to

contain misspelled or shortened words, where the sound is similar to the actual word

(e.g., thank u, b4). Our results show that one of our proposed feature set definitions

demonstrate an improvement in accuracy in comparison to existing studies.
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ÖZETÇE

Kutuplaşma sınıflandırması, duygu analizinin en temel problemlerinden biridir. Bizim

yaptığımız inceleme, Twitter mesajlarında kutuplaşma sınıflandırması yapmak için

ses verilerine dayanarak yeni bir tanım, çıkarım ve kullanım geliştirmeye çalışmaktadır.

Çalışmanın arka planı son dönemde yapılan bir incelemeye dayanmaktadır: beyin,

dil oluşturmak/üretmek için sesleri kullanır ve kelimeler sese dönüştükçe anlaşılır

hale gelir. Özellikle imlası bozuk olabilecek veya kısaltılmış kelimeler kullanılacak

olan sosyal medya mesajlarında ses kelime ile benzer ise, ses kullanmak etkili olur

(thank u, b4). Vardığımız sonuçlara göre önerdiğimiz bazı özellik tanımları mevcut

araştırmalara kıyasla doğruluk/kesinlik açısından ilerleme gösteriyor.

v



ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my advisor, Dr. Dilek Günneç for guiding
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CHAPTER I

INTRODUCTION

Social media is a platform where millions of people, with similar or different opinions

on matters, can come across and freely share their thoughts and express their opinions

about anything. As social networks become increasingly popular, companies start to

seek ways to utilize available content to their benefit. Information provided by indi-

viduals over online social networks allowed them to assess their own or competitor’s

brand image, identify business risks, evaluate marketing campaign effectiveness or

determine target audience.

These tasks are accomplished by processing the posted messages by a person or

a group of people and determining their emotions. Having a giant flow of messages

across a singe social media every day, it is impossible for a person to manually go over

each message and determine the emotion it expresses toward a specific subject. A field

of Sentiment Analysis addresses this problem and has developed a certain method-

ology to determine the emotion of the text automatically. This process is known as

Sentiment Analysis in Natural Language Processing [1]. More specifically it is named

as polarity classification when the goal is to determine whether the text expresses a

positive or negative opinion. However, the accuracy of automatic classification is yet

far from human in major domains.

1.1 Sentiment Analysis

Sentiment Analysis (SA) is part of Natural Language Processing (NLP) and focuses

on opinion mining which identifies and extracts subjective information from a source

to determine the active state such as polarity. Usually, besides identifying the polar-

ity, Sentiment Analysis aims to determine: Subject(the subject being talked about),
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Opinion Holder (the entity which expresses opinion), etc.

In general, sentiment analysis used to detect emotions. Emotion detection aims

to determine the polarity of a given text such as positive, negative or neutral. This

information can be used to evaluate the public emotions toward the product, company

or election campaign.

With the power of opinion mining, SA found its application in different areas such

as business, politics and sports. In business, Sentiment Analysis helps to answer many

questions including decision making by determining the polarity of the public toward

a particular subject; a business can make a decision to modify a particular product,

assess the performance of the marketing campaign, determine potential customers

and others. In politics, depending on the attitude of the population, the politicians

may switch their election plan or put more effort to justify the need for a particular

action.

1.2 Limitations of the existing methods

Sentiment analysis is a well-studied and active research area where models have been

developed [2] and tested over many applications. However, polarity classification is

still challenging for text obtained from online social media (such as Twitter) [3], since

such text does not carry rich contextual information and is most likely to contain

misspellings, shortened words.

First of all, Social Media (SM) usually have limitations on the message size and

some users do not want to write long texts to express their ideas in broad details.

This makes polarity classification task challenging since in such setting messages carry

limited contextual information [4].

In addition, SM permit free language and messages may be written on mobile

devices while doing another activity such as walking, i.e., they do not necessarily

have draft versions written earlier for editing, which is one of the sources of misspells.
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To address the problem of misspellings in SA, an additional normalization engine is

used to derive the correct word [3] or a specialized dictionary.

Moreover, limitation on message size forces a major fraction of users to use short-

cuts, for example: “u”-“you”, “4ever”-“forever”. The majority of this shortcuts

phonetically carry the same information as original words. Therefore, the readers

quickly understand what a shortcut means, unlike the machines. This problem usu-

ally solved by lookup in the specialized dictionaries that have a list of shortcuts and

associated formal word or expression with it [3]. However, no one knows when a new

shortcut might emerge and which structure it might have. Such dictionaries should

be continuously updated manually and millions of messages have to be processed to

determine whether there exists a shortcut that does not exist in the dictionary.

1.3 Sentiment Analysis using Audio Information

Recent research shows that when we read silently our brain shows neural activity that

is similar to when we read aloud, suggesting that the part of understanding happens

by reading the word inside our heads as we see the characters [5]. Brain processes

the letters or words by generating a sound in our head and finds the association with

the words we already know and then it becomes clear what a letter or word means.

In other words, what we read becomes clear in our minds after it is transformed

into sound. Moreover, the collection of sounds are merged and matched with our

experience to find and understand the meaning of the word. This suggests that the

way a human reads and understands a text may differ from the assumptions of the

tools used in existing Sentiment Analysis studies. It can be further improved with

audio features and without the need to keep specialized dictionaries, by implementing

a model which will mimic the human brain reading process. Audio processing is

relevant especially for messages that include misspellings (such as sorrry, haappy,

etc.) and short forms of words (such as, thank u, gr8, b4, etc.)
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1.4 Twitter Messages

This work focuses on analyzing the sentiment of messages on the Twitter social net-

work. Twitter was chosen because it contains data from different population segments

and imposes one of the most restrictive limitations on the message size. A particular

message can have academic style, contain slang, shortcuts or misspellings which cre-

ates difficulties for modern solution techniques since the model should handle each

writing style; as a result, may require more training data for more accurate results.

Research conducted in this study aims to define new feature sets for polarity clas-

sification on social media networks. Sentiment Analysis is a well studied area but

still needs improvements as the “language” of social networks continue to change and

develop. The main contribution of this work includes a new definition of feature

set designed using language theories and the procedure designed to decrease com-

putational time and complexity to derive them. The thesis is organized as follows:

Chapter 2 presents related works. Chapter 3 presents the methodology of deriving

and applying the proposed features. Chapter 4 defines the dataset used to evaluate

the performance of the classifiers with features used in the Bag-of-words model and

features proposed in this work and computational results, namely accuracy of the

classifiers with given feature sets. Chapter 5 draws some conclusions and presents

future extensions aiming to increase the classification accuracy and decrease the com-

putational time of extraction proposed features.
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CHAPTER II

LITERATURE REVIEW

Polarity classification is one of the most fundamental problems in sentiment analysis.

It allows for identifying whether a given text is positive or negative (in comparison

to identifying specific emotions or opinions). It can be completed at several levels

such as sentence (the polarity of a sentence) or document-level (the polarity of a large

text). Entity-based (sentiment based on a particular entity such as a company) are

also available [6]. There are two main techniques in the literature for polarity classifi-

cation of a text or document: lexicon-based models and machine learning models [7].

Lexicon-based models focus on text features such as words and characters and make

a polarity decision based on term-counting using existing vocabularies [8]. Machine

learning is a learning approach which does not differentiate features and can utilize

both semantic and other features. Machine learning techniques outperform lexicon-

based models in most of cases. Many recent work on machine learning relies on the

following classifiers as parts of their learning approach; Naive Bayes, Logistic Regres-

sion, Support Vector Machine and Neural Networks. These models are widely used

because they provide high accuracy and do not require any particular feature set (i.e.,

features are highly adaptable and can be adjusted based on application purposes) [9].

In this study, we take a machine learning approach and utilize all listed classifiers,

as all of them have their advantages and disadvantages in handling features, which

at the end affects the overall classification performance. This allows us to determine

the best suitable classifier that can handle the proposed features.

There are three streams of research that are relevant to our study. First two are
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related to polarity classification on Twitter messages mainly on tweet text character-

istics: feature set and Data Structure Construction and Text Normalization. Third

stream is related to the Language Theory. The first focus on identifying the set of

features and dataset dimensions for classification. The second relate on normaliz-

ing the text so that misspellings and short (and sometimes alphanumeric) words are

corrected. Recently, [10] provide a review on sentiment analysis and [11] present a

polarity analysis framework for Twitter messages together with a polarity analysis

overview. Third, the language theory, gives the foundation of language and the way

that humans brain learned to communicate. In the next three subsections, we cover

the most related literature in these areas and explain how our study differs from them.

2.1 Feature Set and Data Structure Construction

When a classifier is designed, feature selection can be seen as the critical step of

the process [12]. Classification models mentioned earlier require structured input as

features, i.e., the feature vector size should be fixed and have the same dimensions

for each input. Therefore, to perform sentiment analysis, text should be transformed

into a structured form as an input data vector where each entity in vector carries a

value defined by the feature set designer [13]. This stage creates the input for the

classification model.

Although feature selection is flexible, input vector construction is a challenging

problem in Natural Language Processing since determining meaningful features that

would help to increase model accuracy is difficult [14]. Feature sets may be determined

by a trial and error approach which, as expected, do not guarantee finding of an

optimal feature set for polarity classification. Forman et. al. [15] present an extensive

empirical study that compares twelve feature selection methods for text classification,

and there’s no common opinion on which attributes a feature set should contain

[16, 17, 18].
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Instead of using a predefined feature set, several studies address the systematical

feature set selection techniques [19, 20, 21]. They consider linguistic and statistical

measures to improve classification performance by including only features that con-

tribute the most to the accuracy [19]. Another approach is to filter out sentences or

words that are either not important or that can mislead the model, such as phrases

in quotations [21]. For sentiment analysis on textual data, problem domain plays an

important role. For example, online reviews are great sources for sentiment analysis.

Dave et. al. [22] present unique properties in this setting and propose a method

based on information retrieval techniques for feature selection. Gezici et. al. [23, 24]

introduce a feature set based on subjective sentence occurrence statistics, delta-tf-idf

weighting of word polarities and sentence-level features using online reviews on Tri-

pAdvisor data. An important observation is that such techniques do not provide a

universal feature set; each domain has its own most important features which should

be considered during sentiment analysis [20].

A simple and fundamental approach to build a feature vector is by using a Bag-

of-Words (BoW) model. This model utilizes all words in the training data referenced

as vocabulary [25]. Despite the name of the model, it is not limited to words. Vo-

cabulary can contain word combinations or n-grams. An n-gram simply refers to

the combination n words. For example, in the sentence “An example of n-grams”,

“An” is an example of a unigram, “An example” is an example of a bigram and “An

example of” is an example of a trigram. In general, BoW model uses a vocabulary of

n-grams. Classical feature definitions for this model would be the count of n-grams

observed in a given text and present in the vocabulary, or a binary definition which

implies the presence of the n-gram, in the input text and the vocabulary [26]. In our

work, we use a similar model. However, our vocabulary contains sound frames and

the feature vector is a binary vector indicating the existence of a particular sound

frame in our vocabulary or not. Having similarities between the approaches (vector
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definitions), we use the Bag-of-Words model with binary features as a benchmark

model for performance evaluation.

2.2 Text Normalization

Text collected from online social platforms is in unstructured data form type for

sentiment analysis. We can expect misspelled words and they should be considered

in their original forms as they may have a critical role in deciding the polarity of the

given text. Additionally, over time, networks have developed their “own languages”;

they are less formal and may contain shortened words or abbreviations, where several

different short versions may represent the same word. This creates a problem as

the majority of existing models rely on the language vocabulary. All short versions

should be determined and only the root word should appear in the vocabulary for

better classification [3]. Another common approach is to use dictionaries with the list

of short or misspelled words [27]. However, such dictionaries should be continuously

updated as language on social networks changes over time. Therefore, relevant data

preprocessing techniques should be applied and text domain should be included in the

process [28, 29] either in the feature vector generation step or inside the classification

model.

Unsupervised learning can be used to overcome such challenges and normalize

words. In particular, Cosine Similarity is used to determine the correct form of a

misspelled word by checking the similarity of the unlabeled word and word in the

vocabulary [30]. Another method to find similarity between two words is the Longest

Common Sub-Sequence Ratio [31]. Similarity approach decreases the influence of

the unknown words on the models because, in classical models, incorrect words are

marked as unknown words and do not contribute to the classification process. It also

increases the accuracy of the models regardless of the feature sets. The accuracy can

further be improved by using contextual information to determine the best match
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between the unknown word and the known correspondent in the vocabulary. Contex-

tual information discards the highest similarity between words in favor of the most

similar word within the context [32].

An alternative to similarity checking between words is transformation of text to

an abstract form which is then transformed back to the correct version of the word.

One of such abstract forms is the sound representation. It can be implemented using

a Text-To-Speech (TTS) engine (transforming text to sound) and a Speech-To-Text

(STT) engine (transforming sound to text) [33]. This approach demonstrates a high

performance by increasing model accuracy even when the same feature set definitions

are used. [33] is one of the first studies to benefit from audio to correct mistakes in text

in the preprocessing stage for sentiment analysis task. They successfully transform

the misspelled word into sound and convert it back to the correct text form of the

word. However, this approach potentially creates two error factors made during both

transformations: incorrect mapping to sound and back to text. This is especially true

if TTS and STT engines do not use compatible algorithms. This suggests that the

sound of a well-written text generated by TTS is not identical to the text obtained

by the SST engine. In our study, the text is converted into sound and all work is

done using the sound representation which reduces the error risk factor to one.

2.3 Language Theories

The language is the main form of communication for human beings. However, why

we mainly use vocal to transform the information instead of gestures or any other

form is not yet clear for science. Various theories are trying to explain the origin

of language and speech, but most of them agree that language carries information

that has associations which are transmitted to us biologically or gained by experience

(learning process). The Behaviorist Theory, where one of the basic tenants implies

that the primary medium of language is oral and written form is second, also share
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this statement [34]. Moreover, other language theories also rely on the theory that

humans learned to speak by mimicking animal voices, that was relatively easy to

mimic and associated with danger and in time different voices emerged with different

associations.

While we are reading, we have certain associations with shapes or sounds [35]. One

of the valid interpretations is that we see a shape which is associated with a sound

and as a sequence of this vision, the mind builds a full sound which is corrected by

the sound patterns that we have seen in the past from experience. One of the recent

studies showed that over 80% of participants reported that they hear inner voice

during reading, but this cannot be measured and validated or rejected [36].

In this work, we will have an assumption that the human brain does not directly

understand the characters but have associations, mainly with sound. Having a sound

representation of text (using Text-to-Speech Engine), we will develop a framework

that will derive features from the sound that can be used in the classification models.

The main reason to move toward this direction is that shortened or misspelled words

will have less changes on the sound representation, as their phonetic will be similar

to the target word phonetics.
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CHAPTER III

METHODOLOGY

Our feature set definitions are based on recent observations of how the human brain

processes text. In particular, feature extraction from the sound representation of the

text is derived using Text-To-Speech (TTS) engine. It is critical to have a proper

TTS transformation so that the phonetic structure of a set of characters (word, mis-

spellings, shorthands) is correctly transformed into the sound; meaning creates the

same phonetic structure as human while reading. One of the examples could be

mapping “you” and “u”, they are phonetically the same and have the same sound

representation. Having feature definitions, the following processes should be accom-

plished to train and learn the polarity of any input text.

The process of training models with a given dataset is summarized in Figure 1.

First of all, we need training data for the classifiers to learn the relation between

entries in the feature vector and polarity class. Here, the Training Data refers to the

collection of the Twitter messages with corresponding polarity class label. Training

data should be transformed into an abstract form called feature vector or feature set

to be used in a classifier. The entries of the feature vector can take any value type

depending on the definition of the features and not supposed to be of the same type;

one can be the count of a word occurring in the text, other can be the presence/absence

Figure 1: Polarity Classification Training Flowchart.
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of a particular punctuation mark. Having feature vector for each tweet in the database

and the corresponding polarity label, a classifier is trained to map the features into

the correct label (polarity).

The classification of a tweet that did not participate in the training data is shown

in Figure 2. Using the same feature set definition during the learning process, the

feature vector must be extracted so that the classifier can process a new tweet and

determine the polarity class. By feeding the feature vector into the trained classifier,

the polarity of the tweet is determined.

Figure 2: Polarity Classification Flowchart.

This chapter is organized as follows: Subsection 3.1 presents approaches consid-

ered in this work to convert text to speech; Subsection 3.2 describes features we have

developed and evaluated in this study; Subsection 3.3 introduces the data set used in

this study and describes data prepossessing and feature extraction mechanism; Sub-

section 3.4 provides background and a summary of the classification models used to

evaluate the performance of proposed feature sets.

3.1 Text-To-Speech (TTS)

While converting text into speech (sound representation of the text), the proper

transformation techniques should be applied to increase the accuracy of the models.

The focus of this section is to evaluate two techniques for turning text to sound. First,

a heuristic approach; mapping a letter character to its sound representation. Second,

using a TTS engine that implements complex transformation processes to generate

sound from a given text.
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3.1.1 Array Representation

This is the heuristic approach based on the assumption that each letter is fully read-

able in the word (letter by letter pronunciation). Creating a sound representation

of a word includes a simple search for each character in the database for its sound

representation and combining all results in the same sequence in which they appear

in the text. This creates the complexity of converting O(n), where n is the number

of characters in a given text.

A database includes all characters and numbers in the alphabet, of the given

language with their corresponding sound representations as shown in Table 1. In this

table column Letter corresponds to the character in the alphabet, Representation

holds pronunciation of the letter in the form of amplitude data, Phonetic carry the

phonetic form of the letter; for example, using a lookup table as shown in Table 1,

the word “absolute” will be formed as follows: [a’, b’, s’, o’, l’, u’, t’, e’] ([[eI],[bi:],...,

[i:]]

Table 1: Lookup table for building text array representation (amplitude array).
Letter Representation Phonetic

A’-a’ [0.3, -0.4, 0.5,.....,0.9] [eI]
B’-b’ [0.18, 0.1, -0.5,.....,-0.25] [bi:]
... [..., ........, ..., ] [...]
E’-e’ [0.41, -0.53, ..., 0.135, -0.24] [i:]
... [..., ........, ..., ] [...]
Z’-z’ [0.0, 0.23, ......, -0.23] [...]

It can be seen that this approach does not provide high-quality transformations.

Using this approach, the sound representations of “you” and “u” are not equal to

each other by looking on the phonetics: [waı][o0][ju :] 6= [ju :].)
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3.1.2 Software

Nowadays, Text-To-Speech engines provide high-quality transformations. Using well

established (commercial or open-source) engine, we can obtain sound representations

without adding bias to the sentiment of sound, as they do not enrich the sound with

the additional intonation based on the context. In our study, the open-source eSpeak

engine is used to transform data into the sound form.

The extraction of the sound amplitude performed using FFMPEG software that

allows extracting amplitude of target audio, which then will be used to generate

features for the classification models. The FFMPEG is an open-source multimedia

framework that allows working on audio and video data[37].

3.2 Feature Set

Having the text and the tool to extract sound representations, the next step is to

determine the features and the methodology to derive them for further use in clas-

sification models. Since there is no predefined methodology to follow to determine

the feature sets, we will focus on two concepts for the feature extraction from sound

data. First, statistical information of the sound amplitude where we will focus on

histogram and transition matrix will be used. Secondly, frequent sound sequences

appearing in the sound amplitudes of training data will be used.

3.2.1 Statistical Information

3.2.1.1 Histogram

The amplitude of the sound gives us complete phonetic data, and we need to derive

a standardized data summary of the data that can be used as a feature set. The

amplitude data is a sequence of floating-point values, and the histogram can be used

to summarize the full amplitude data which will provide a fixed number of features.

In the context of the histogram, features are defined to be bins for all audio samples
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generated regardless of the length of the amplitude data. The original range of val-

ues an entry in the sequence can take is (-1,1) in the continuous domain; therefore,

creating a bin for each unique value that cannot be fitted in the existing bins is not

practical, as in the worst case it will require an infinite number of bins.

Figure 3: Histogram with domain (0, 255).

We generate a finite number of bins, where each bin covers a range of the same

size in a continuous region. In our case, the range in the continuous space given by

(-1, 1) will be converted to the (0, 255) range in the discrete domain. This allows

splitting the data into intervals of the same size, where the length of the interval is

controlled by upper and lower bounds of the discrete region.

In Figure 3, a histogram with the discrete domain range from 0 to 255 is presented

15



Figure 4: Histogram with domain (0, 125).

for one positive (positive polarity) and one negative (negative polarity) data samples.

From the figure, we can see that the shape of the distribution is almost symmetric and

we can use half of the histogram for the classification purposes. However, in Figure

3 we can take a closer look at the slice of the histogram and see that histogram is

not symmetric for both positive and negative sentiment data samples; thus all bins

should be used. However, by changing the bounds of the discrete domain, we can

decrease the number of bins without losing the shape of the histogram and significant

changes in the bar structures. Comparing Figure 3 and Figure 4 (which is histogram

using domain range from 0 to 125), there is no significant change in the shape of the

histograms. Moreover, we can see that the bars in both figures do not significantly
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change and carry almost the same information as in the original histogram.

The empirical results show that having a histogram with domain range where

upper bound is greater then 100, does not change the shape and the bins information.

For the rest of the computations, we will focus on the histogram with the maximum

number of bins as 126 which is equivalent to the mapping to the discrete domain

between 0 and 125.

In Figure 4, we can see the difference for each bin value between the positive and

negative classes. For the most of the cases, difference barely exceeds 0.02% and even

decreases as we go toward the tails of the histogram, which makes calculations for

the computational machines harder and the final results may differ from machine to

machine. This is explained by the way the particular CPU and Operating System

(OS) can manage decimal places. A solution to this problem is to multiply each bar

by a large constant which helps to lower the impact of the decimal places by moving

them closer to tents.

Implementation

Feature extraction for each Twitter message is accomplished using Algorithm 1.

First, the message has to be converted into the audio representation from which the

amplitude array is extracted and supplied to the algorithm. Along with the amplitude

data, a discrete range should be defined for the algorithm; in our case, the lower bound

and upper bound are set to be 0 and 125 respectively. This allows mapping of the

amplitude data into discrete range by using corresponding lower and upper bounds

of the raw amplitude data and newly defined discrete range. Our histogram will

include a normalized count for each value that can be faced in the described domain

regardless of its appearance in the remapped amplitude data. Since the histogram

values of different Twitter messages might have different value counts in the histogram

(one value can appear much more frequently in one tween than in another one), and

the classifier might encounter a specific value of a particular bar that can appear
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during the classification of a particular tweet; therefore, we have to normalize bar

values so that the sum of the values adds up to 1 and are not negative .

Algorithm 1: Building Histogram Features.

1 function buildHistogramFeatures (a, lower bound, upper bound);
Input : Sound representation (amplitude array) a
Output: Histogram b

2 c← map(a, lower bound, upper bound);
3 histogram index← enumerate(lower bound, upper bound);
4 b← empty array of size |histogram index|;
5 for i← 0 to |histogram index| step 1 do
6 b[i]← c.count(histogram index)/|c| ;
7 end
8 return b ∗ 10000

3.2.1.2 N-Chunk Histogram

A single word may change the overall polarity of the sentence. Consider a sentence

“This is not a good choice.”. In such cases, a single histogram cannot reflect several

changes, so the classifier will not be able to understand that this proposal carries a

negative attitude. This problem can be solved by breaking the sound representation

into pieces of N size and generating a separate histogram for each chunk. The result

is demonstrated in Figure 5, where each histogram represents the consecutive 33.3̄%

slice of the amplitude data. This increases the feature set by N where N is the

number of chunks but will be able to detect the negative/positive sentiment at each

chunk (a portion of the sound) separately since now the feature set is more sensitive

to the changes by aggregating fewer data points.

Figure 5 represents the combined histogram for 3-Chunk, the chunk size value

at which the model showed its best performance. From the figure, we can see for

this particular instance, that the difference between positive and negative is majorly

determined by the first portion of the histogram (1st chunk) since values between the

two classes have the highest difference at this chunk.
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Figure 5: Histogram with 3-Chunks.

The first thing to notice is that in different sentences different histogram chunks

will have different influence on the overall sentiment and there is no direct and robust

relation between histograms which can create a struggle for most of the classifiers

that are built on the concept of probabilistic relation; in other words, each histogram

is independent.

Implementation

Feature extraction procedure of N -chuck histogram is similar to the previously

defined feature extraction method for the regular histogram. Instead of focusing on

complete data, we consider N -regions separately and create a histogram for each

region, as shown in the Algorithm 2. In this work we use 3-chunks. Before generating

a normalized histogram for each chunk we have to define the size and the boundaries

of the data that will be used to generate them. As a final step, we merge these

histograms into one to build a single vector which will be used by the classifiers.

3.2.1.3 Transition Matrix

The transition matrix is another way to create normalized input data for the clas-

sifier using audio amplitude data of different length size. The transition matrix is
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Algorithm 2: Building 3 Chunk Histogram Features.

1 function build 3chunk HistogramFeatures (a, lower bound, upper bound);
Input : Sound representation (amplitude array) a
Output: Histogram b

2 c← map(a, lower bound, upper bound);
3 histogram index← enumerate(lower bound, upper bound);
4 b← empty array;
5 chunk1← c[: |c| × 0.3̄];
6 chunk2← c[|c| × 0.3̄ : |c| × 0.6̄];
7 chunk3← c[|c| × 0.6̄ :];
8 foreach chunk as ch do
9 d← empty array of size|histogram index|;

10 for i← 0 to |histogram index| step 1 do
11 d[i]← ch.count(histogram index)/|ch| ;
12 end
13 b.append(d);

14 end
15 return b ∗ 10000

a square matrix used to describe the transitions of a Markov chain. In the context

of audio amplitude, the transition matrix shows the probability of observing the up-

coming amplitude value given the current value. The generalized probability matrix

represents the signature of the audio amplitude.

The probability matrix is generated for each audio separately by scanning all

transitions in the amplitude array and counting the number of transitions from state

i to state j. In Figure 6 we have two transitions matrix for two different audio

samples. Transition matrix shows the probability of a system moving from a state i

to state j, which is in our case moving from amplitude i to j. From the figure, we can

observe that the transition matrix generates the “signature” of the audio amplitude

data. However, we cannot conclude that in general, each transition matrix will be

unique, matrix only creates a summary of amplitude array and does not guarantee

uniqueness.

Transition matrix can be converted to a one-dimensional array where each tran-

sition from state i to state j will be treated as a feature. Before constructing a
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(a) Sample1 (b) Sample2

Figure 6: Transition Matrix representation of two audio samples.

transition matrix of audio amplitude, we have to map each value in the array to a

discrete space as in case of histogram described in the previous section. Assuming

the discrete space defined as 1, 2, . . . , N , the transition matrix will have dimensions of

NxN and the one-dimensional array, which is an input vector, has dimension 1xN2.

Implementation

Algorithm 3 is used to generate features based on the transition matrix. For

the transition matrix, it is required to define a state space. In this case, the values

encountered in the mapped amplitude array from continuous space to discrete are

used as states. To calculate the transition matrix of a given data, we have to count

the transitions from one state to another; as row values have to add up to one it is

necessary to divide the count by the total number of transitions from a given state.

To build a single feature vector, transition matrix is transformed into a single array,

by appending each row values in the same order into an empty array.

3.2.2 Frequent Sequences

Similar to existing Sentiment Analysis tools where words or sequence of words are used

as features [25], the n-grams are used in the Bag-of-words model to derive the binary

features which indicate the presence of the n-gram in the given text and vocabulary

[38]. In the case of text, the features can be easily generated using tokenization [39].
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Algorithm 3: Building Transition Matrix based Features.

1 function buildTransitionMatrixFeatures (a, lower bound, upper bound);
Input : Sound representation (amplitude array) a
Output: Transition Matrix (single vector representation) b

2 c← map(a, lower bound, upper bound);
3 matrix index← enumerate(lower bound, upper bound);
4 transitions matrix← zeros(matrix index,matrix index );
5 b← empty array;
6 foreach i ∈ matrix index do
7 foreach j ∈ matrix index do
8 transitions matrix[i][j]← c.count transitions(from i to

j)/(c.count transitions(from i to any )) ;

9 end

10 end
11 for i← 0 to |matrix index| step 1 do
12 b.append(transitions matrix[i]) ;
13 end
14 return b ∗ 10000

Depending on the problem, a vocabulary can represent a collection of a single word

(uni-gram) or two and more consecutive words (n-grams). The time complexity of

generating n-grams O(m), where m is the length of the pattern (using Knuth Morris

Pratt algorithm).

Since text is an unstructured data type, it is not known where and when a par-

ticular word (token) can be. Therefore, if we want to have a feature set (in a Bag-

Of-Words model) that will cover all possible token orderings that might be faced by

the model, the feature set should cover all possible words in the language. Processing

of such vector is computationally expensive. To overcome this complexity, the only

frequency appearing tokens can be included. Following the Zipf’s Law, if a word is

frequent in one document, it is most probable that it will be frequent in others. If we

look at the frequency distribution of words in any book, it will be similar to overall

words frequency distribution across all books and even language [40].

In the case of audio amplitude, we can use frequent sequences (frames) as fea-

tures. However, determining these frequent sequences set is another challenging task.
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Firstly, we need to determine all possible n-sized sequences. Secondly, all obtained

sequences have to be matched and compared to count the number of appearances of

each sequence; hence, the frequent sequences. Since we don’t know the boundaries or

size of the frames which will be frequent, we have to consider all possible sequence

lengths (i.e. from 1 to size of the array) which can be implemented using Sliding

Window Algorithm. It starts from the initial element of the array and moves by

one element. The procedure of obtaining all sequences include the repetitive call of

Sliding Window Algorithm with different window sizes. General application of the

Sliding Window Algorithm (SWA) is to find a maximum, minimum or sum of k con-

secutive elements in the array. The algorithm gets the maximum complexity value,

O(n), when the window size is equal to 1 where n is the length of the array. In our

setting, the algorithm will be run for window sizes S ∈ {1, 2, ..., |A|}, where A is the

given sound information array. Thus, the complexity of the complete algorithm is

O(n2), where n = |A|.

Table 2: All sequences generated for array [ 0, 1, 2, 3].
Window Size 1

Iteration Array Values
1 0 1 2 3
2 0 1 2 3
3 0 1 2 3
4 0 1 2 3

Window Size 2
Iteration Array Values

1 0 1 2 3
2 0 1 2 3
3 0 1 2 3

Window Size 3
Iteration Array Values

1 0 1 2 3
2 0 1 2 3

Window Size 4
Iteration Array Values

1 0 1 2 3

Consider the following example: Assume that we’re given an array of length 4:

[0, 1, 2, 3]. The minimum and maximum sequence lengths possible are one and four,

respectively. To obtain all possible sequences we need to run the SWA with the
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Table 3: Number of sequences generated form array of size n with a given window
size.

Window Size # of Sequences
1 n
2 n-1
3 n-2
... ...
n n-(n-1)

following set of window sizes [1,2,3,4]. The obtained sequences are presented in Table

2. We can see that as we increase the window size by one we obtain one less sequence.

The number of sequences generated by SWA for all possible window sizes is shown

in Table 3 where n is the length of array. It is directly dependent on the size of the

array and can be obtained by Equation (1).

n+ (n− 1) + (n− 2) + ...+ (n− (n− 1)) = n
2 −

n−1∑
i=1

i (1)

When a tweet is converted into audio, the size of the corresponding array is ap-

proximately 70,000. Figure 7 shows that computing sequences of an array of size, for

example, between 45,000 and 50,000 requires around 95 seconds. Assuming there are

about 50,000 tweets in our dataset, it would take around 55 days only to compute all

possible frames. This time does not include the time for comparing and determining

the frequent subsets to decrease feature set space.

To determine set frequencies we first tried using Sequential Pattern Mining (SPM).

SPM is a data mining approach specialized for analyzing sequential data and generally

applied to find frequent sets in the database. One of the most well known algorithms

that are applied in this field is Apriori Algorithm [41], which has both time and space

complexity O(2|D|), where |D| is the number of sets. However, a more advanced

filtering technique was required to decrease the number of frequent items since the

most frequent frames can be subsequences of other frequent sets as some frames might

be “too frequent”. It would require additional computational power to determine
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them. That means, a frame can appear in many other audio files, and will not play

a role in the sentiment.

Figure 7: Array size vs. computational time in seconds.

The overall computational time required can be decreased if we can determine

frequent audio frame boundaries or decrease the audio amplitude array representa-

tion size by mapping it into an abstract form. This abstract form is actually already

given in the form of the original text. Since Twitter messages are restricted to 280

characters, from Figure 7 we can see that there is a significant drop in the computa-

tional time and it will take almost 0.1 seconds to compute for one tweet. Therefore,

instead of the SPM approach, we determine frequent words or n-grams first and then

transform the obtained vocabulary into audio frame sets. We should still note that

using text will not help to handle misspelled or shortened words. We will give details

about it in the next part.

We do not have an efficient algorithm to derive frequent audio frames. Using

text will not help to handle misspelling and shorthand; our final vocabulary may also

contain a shorthand version and the original word when they are frequent. Reducing

such cases would allow to include more n-grams into a vocabulary that can increase
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the prediction accuracy to the model by adding more information, which will be done

using finding similarities between unknown tokens sound representation with sound

vocabulary.

To decrease the computational time of learning and classification, the n-grams

obtained from the text will represent their corresponding sound frames. If a particular

n-gram is not directly found in the vocabulary, its sound frame will be compared to

determine if there is a shortened or misspelled version. If there is a similarity above

a predetermined threshold comparing sound representations, we conclude that this

n-gram is present, otherwise, we do not consider this n-gram at all and decide that it

should not be in the frequent set.

Misspellings and Shorthands

Misspellings and shorthands are usually ignored because the main stream of re-

search focuses on formal texts where misspells and shorthands occur less frequently.

The social media, on the other hand, imposes the conditions where user unintendedly

makes mistakes during typing the text and does not correct them. Restriction on

message size also forces users to use shorthands. In classical text-based sentiment

analysis, some attempts that handle misspellings and shorthands have been devel-

oped. For the misspellings, the minimum edit distance is used to find the word a user

wanted to use. If an unknown word to the model is faced, the minimum edit distance

will be calculated concerning each word in the dictionary. It should be mentioned

that in the steamed dictionary version it is harder to determine the misspellings.

A general way to handle shorthands is to have a finite state machine or a separate

vocabulary to make lookup and obtain the original word or expression.

In this proposed model, when an unknown word is encountered, its sound rep-

resentation and the sound representations in the vocabulary will be compared using

cosine similarity. Cosine similarity is a metric used to measure the similarity between

two input vectors by measuring the cosine of the angle between them. In this study,
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the vectors correspond to the sound representation of the text, in particular words

including misspelled and shortened words. (Since two vectors have to be of the same

size, zero-padding will be applied to the shortest vector.) Cosine similarity is given by

Equation (2), where A and B are two vectors. The measure takes a value between -1

and 1, where -1 represents a perfect dissimilarity and 1 represents a perfect similarity.

similarity (A,B) =
AB

‖A‖ ‖B‖
(2)

Figure 8: Cosine similarity of the word “quarantine” and its misspelled version
“quarentine”.

Figure 8 demonstrates the cosine similarity of the word “quarantine” to it’s mis-

spelled version “quarentine” when their sound amplitude data are compared. In the

top, we have the amplitude data for both words. At the bottom, we can see the

overlay of both sound representations. The cosine similarity is calculated as 0.64.

The performance of an algorithm for correctly identifying misspelled or shortened

words is measured with a capture rate measure. We compute the capture rate using a

list of misspelled or shortened words and their correct forms (about 350 words) taken

from an online dataset [42]. Correct forms are transformed to sound representations
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and their cosine similarity to the misspelled words’ sound representations are mea-

sured. To increase fairness of the rate, two types of words are added: (i) words for

which misspelled versions are absent, and (ii) a list of shortened words together with

their target words. Using original sound forms, the capture rate of misspelled and

shortened words is 44%.

Algorithm 4: Framing Algorithm 1.

1 Function remap (a);
Input : Sound representation (amplitude array) a
Output: Modified sound representation (amplitude array) b

2 step← 10;
3 b← empty array;
4 for i← 0 to |a| − step step size step do
5 b.append (average (a[i:i+step]));
6 end
7 return b

To increase capture rate we propose implementing Algorithm 4 before using cosine

similarity. With consecutive frame steps of 10, we are calculating the average of the

sound signal within the obtained frame. This will make cosine similarity measure less

sensitive since the values between two vectors will be less fluctuating. Implementing

this algorithm increases the capture rate up to 59%.

The Algorithm 4 can further be extended to the Algorithm 5. It takes the original

sound amplitude data of a Twitter message as an input. The main idea behind

the algorithm is to switch all sound amplitude data to take positive values. From

Figure 8, we can observe that the positive and negative amplitude data are almost

symmetrical, so first, we convert all negative values in the amplitude data to positive.

This, in future steps, will provide more stable average values, since negative values will

not cancel positive values. Next, we compute window average values. For example,

if we have an amplitude data which has 40 entries (value of array at a given index),

and our window size is 10, our new amplitude will contain 4 entries where the first

takes the average value of the first 10 entries in the original amplitude data, and
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second entry takes the average of the second 10 (between 10 and 20) entries, etc.

The resulting array of average values will represent the modified amplitude data that

will be used to compute similarity. From Figure 10, we can see that the symmetry

provides a clear picture on the shape to compare two words and the cosine similarity

increases from 0.64 to 0.84. Mismatching is critical between times 1,500 and 2,000,

which is located near the middle of the sound array, which is the same place where

the misspelling occurred between the two words. In our application, the window size

is determined using preliminary results. Figure 9 show the change of capture rate

with respect to window size. The peak can be observed at window size 10, with a

steady decrease toward window size 0. This is caused by adding some fluctuation

noises. However, that noise becomes sharper as we move in the opposite direction.

Having a window size set to 10, we are able to achieve a higher capture rate of 66%

(in comparison to 44% as explained above).

Figure 9: Capture Rate vs Window Size.
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Algorithm 5: Framing Algorithm.

1 Function remap (a);
Input : Sound representation (amplitude array) a
Output: Modified sound representation (amplitude array) b

2 for i← 0 to |a| step 1 do
3 if a[i] < 0 then
4 a[i] = −a[i] ;

5 end
6 step← 10;
7 b← empty array;
8 for i← 0 to |a| − step step size step do
9 b.append (average (a[i:i+step]));

10 end
11 return b

Figure 10: Cosine similarity of words “quarantine” and “quarentine” after applying

Algorithm 5.

Inheriting Context Information

Inheriting contextual information could further increase the capture rate. This

can be obtained if neighbors (words before and after) of the misspelled or shortened

word could be included in the classification. If we can identify probabilities of two

words following each other, we can utilize this in identifying the correct sound match.
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For this purpose, we use Markov Chains and create a transition matrix. Markov

Chain is a stochastic model that describes the sequence of possible events where the

probability of observing a value in a sequence depends on the previous value in that

sequence.

The probabilities can be summarized in the square matrix, called the Transition

Matrix, where rows represent a preceding word in the text and columns represent the

word appeared after. Given a preceding and a current word, we can see the probability

(proportion of time) of observing such a transition between the words. The transition

matrix can be approximated using Algorithm 6. Having a vocabulary and training

data, transition matrix is estimated by counting the number of transitions in training

data from one word, word A, to another, word B in the vocabulary. Before applying

the algorithm, the training data should be preprocessed and stop words should be

removed. Then the counted value is divided over the total number of transitions from

word A. This process is repeated for all words in the vocabulary.

Using the Transition Matrix, we do not necessarily pick the most similar word

as the correct form, but instead we generate a list of candidates by setting a certain

threshold for cosine similarity. Any words in the vocabulary that passes this threshold

is added to a list of candidates. To make the best selection from the candidate list

we need the contextual information. In our case, we use the probability of seeing a

word in a matched set B̄ (composed of words whose cosine similarity is greater than

0.80) given A is the word that precedes the misspelled or shortened word. We can

determine the most probable correction by using Equation (3).

argmaxB∈B̄(P (B|A)) (3)

We cannot use the previous dataset [42] to determine the transition martix, since

it contains only single words. Therefore, we have modified around 200 tweets by

replacing two thirds of all correct words with misspellings and shortened words in

each tweet and kept the correct version for checking if matching was done correctly.
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Algorithm 6: Estimating Transition Matrix.

1 Function estimateTransitionProbablities (tweet messages, vocabulary);
Input : Tweet Messages tweet messages, Vocabulary vocabulary
Output: Transition Matrix transition matrix

2 transition matrix← zeros[|vocabulary|][|vocabulary|];
3 transition count← zeros[|vocabulary|][|vocabulary|];
4 for i← 0 to |vocabulary| step 1 do
5 for j ← 0 to |vocabulary| step 1 do
6 transition count[i][j]←

tweet messages.count transition(vocabulary[i], vocabulary[j]);

7 end

8 end
9 for i← 0 to |vocabulary| step 1 do

10 transition matrix[i][j]← transition count[i][j]/sum(transition count[i][:
]);

11 end
12 return transition matrix

Algorithm 7: Cosine Similarity Matching With Transition Probabilities.

1 FunctionCosineSimilarityMatchingWithTransitionProbabilities
(word, preceding word, vocabulary);

Input : Word to match word, Preceding Word preceding word, Vocabulary vocabulary,
transition matrix

Output: Matched word in the vocabulary matched
2 candidates← empty array;
3 word sound← remap(toSound(word));
4 matched← None;
5 max prob← 0;
6 foreach vocab word∈ vocabulary do
7 vocab word sound← remap(toSound(vocab word));
8 if cosine similarity(word sound, vocab word sound) > 0.80 then
9 candidates.append(vocab word);

10 if cosine similarity(word sound, vocab word sound) > max prob then
11 max prob← cosine similarity(word sound, vocab word sound);

matched← vocab word
12 end
13 if preceding word is None then
14 return matched
15 matched← None;
16 max prob← 0;
17 foreach candidate ∈ candidates do
18 if transition matrix[preceding][candidate] > max prob then
19 max prob← transition matrix[preceding][candidate]);
20 matched← candidate;

21 end
22 return matched
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Additional 300 tweets were randomly picked to compute the transition matrix. The

matching is done using Algorithm 7. If an unknown word is encountered, cosine

similarities of sound representations of the unknown word and the vocabulary are

calculated. If a word in the vocabulary passes the threshold it is added to a candidate

list. Given the preceding word and the candidate list, the best match is determined by

looking at the highest transition probability from the preceding word to a candidate.

If the preceding word does not exist, the best cosine similarity match is used. Using

the transition matrix approach, we reach a capture rate of 70% (in comparison to

66% for [42] dataset).

Implementation

Algorithm 8 is used to generate features based on the sound frame concept. Before

implementation, the transition matrix should be obtained using Algorithm 3 as it will

be used to detect the best match among the candidates for correction. Also, all data

should be preprocessed and stop words should be removed to build a solid vocabulary,

which will be described in the following section. The message for which we want to

build a feature set, is broken into the unigrams (tokens). Each token in the same order

as appeared in the message is checked for persistence in the vocabulary. If it exists,

then the corresponding entry in the vector attain binary value as True or 1. If not,

the cosine similarity of the current token’s sound representation and word’s sound

representation is checked. All words with similarities above a predefined threshold

are kept and then the best is selected using the transition matrix as the most probable

word. Keeping the previous unigram in memory allows us to use the transition matrix.

If the first token is processed, meaning no preceding word exists, the word with the

highest cosine similarity and above the threshold is chosen. If any of the candidates

get similarly as 1, regardless of preceding token, it is selected as the best substitution.

Having the best substitution, the corresponding entry in the feature vector is set to

1. This process continues until all tokens in the text are processed.
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Algorithm 8: Building Features Based On Frequent Sound Frames Concept.

1 function buildFeaturesUsingSoundFramesConcept

(text, vocabulary, transition matrix);
Input : Text text, Array vocabulary, Matrix transition matrix
Output: Feature vector features

2 unknown← empty array;
3 previous token← None;
4 foreach token ∈ tokens do
5 index=vocabulary.getIndex(token);
6 if index not None then
7 features[index]← 1 ;
8 previous token← token;

9 else
10 matched← empty array;
11 token sound← remapV 2(to sound(token)) ;
12 max sim← 0;
13 max index = None;
14 for index← 0 to |vocabulary| − 1 step 1 do
15 word sound← remapV 2(to sound(vocabulary[index]));
16 cos sim = cosine similarity(toke sound, word sound);
17 if cos sim == 1 then
18 features[index]← 1 ;
19 max sim← 1;
20 break;

21 else if cos sim ≥ 0.8 and previous token not None then
22 matched.append(vocabulary[i]);
23 else if cos sim ≥ 0.8 and max sim < cos sim) then
24 max index = index;

25 end
26 previous token← token;
27 if max indexNotNone then
28 features[max index]← 1 ;
29 if previous token not None then
30 matched word← None;
31 max prob← 0;
32 foreach candidate ∈ matched do
33 if transition matrix[preceding][candidate] > max prob then
34 max prob← transition matrix[preceding][candidate]);
35 matched word← candidate;

36 end
37 index← vocabulary.index(matched word);
38 features[index]← 1;

39 end
40 return features
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3.3 Dataset

We have used the “Sentiment140” dataset from Stanford University [43] for test and

training. This dataset contains 1.6 million tweets with corresponding sentiment labels.

Following six fields are present in the dataset: Target, which is the sentiment of the

message, represented with negative as 0, neutral as 2 and positive as 4. Ids, the ID

of the message in the Twitter database and Date, the date when the message was

posted.

This dataset is collected automatically using Twitter API and it was not human

labeled. The sentiment was decided on the “personal level” of the message, thus

based on the emoticons in the tweet. For example, if a tweet contained the sign “:)”

then it was labelled as a positive sentiment, and in case it contains “:(” it carried a

negative sentiment. Data contains only positive and negative sentiment labels with

no bias (800,000 words for positive and 800,000 words for negative sentiments).

3.3.1 Data Preprocessing

Digging into data, the first thing to notice is that data is not in traditional form.

Sentiment analysis techniques were focusing on the large texts, usually paragraphs

(IMDB movies review dataset is a perfect example). Twitter, on the other hand,

imposes limitations on the length of the message posted by the user, which is 140

characters, excluding links and other HTML attributes that might appear in the

message but not shown to the public, for example, non-breaking space is ′&nbsp; .′

So before moving to the feature generation, the data has to be cleaned from the raw

data into standard text format.

HTML Decoding

Since the data provided in the dataset is in the raw web format, it contains special

characters represented with specific sequences, so web compilers can understand where

actual HTML code and where plain text is. Following table provides some example
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of special characters and their activation that appear in the raw tweet format.

Result Description Entity Name
non-breaking space &nbsp;

< less than &lt;
> greater than &gt;
& ampersand &amp;
” double quotation mark &quot;
′ single quotation mark (apostrophe) &apos;

Hyperlinks

Some tweets emerge in the following pattern: a reference to video/photo and

comment on it. This is done by creating an external link in the background to the

video/photo which appears in the raw format of the tweet as HTML link. Such

hyperlinks are removed.

Hashtags

A hashtag is a form of “keyword” in social media. It helps to categorize posts

in a way other users can find and follow them which proceed by the # character.

In general, applications prefer to remove hashtags. In this work, we do not remove

hashtags but removing the proceeding # character. Most of the hashtags refer to a

place, action, characteristic or person. In some cases, the whole tweet can be written

with a set of hashtags. We remove all hashtag signs and keep the actual phrases.

Emoticons

The emoticon is a representation of an expression in a different form, usually

done by the various combination of the characters to generate a facial expression.

Nowadays, they transformed into the more complex form, mobile devices and social

media are providing their own set of emoticons that carry visual expressions, which

is not clear in the raw text form. Therefore, they are removed in the prepossessing

stage.

Character sequence
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In some cases, users express their emotions directly in the text using a sequence

of the same character, for example, “owsooooommmmmme”, that indicates a huge

surprise, or shock, etc. Since for a machine this is equivalent to a new word, such

sequences should be removed. In general, it is done using regular expressions in data

preprocessing stage.

3.3.2 Bag Of Word and Frequent Uni-Grams

The sound frame frequency model proposed in this thesis, with the assumption of

representing the frames in the form of text, brings us to the classical sentiment analysis

model known as a bag of words. The idea is to determine the frequently appearing

words and use them as the features. The resulting input vector for the classifier

would be have binary entry, indicating whether a word did appear in the text (tweet)

or not. Considering the same setting in the form of sound frames, the “word” will

represent our sound frame in the vector, because the comparison of the string is less

computationally expensive. In the case when text comparison did not find a match,

the sound representation of the word in the dictionary (bag of words) and the word

from the tweet we are trying to classify) will be used.

Having a minor difference in the application method, but the “similar” final dic-

tionary allows us to use the same procedure to generate an initial bag of words.

A naive way to generate the feature set is to include in our dictionary all words

(frames) that we have observed. However, having all observations as a feature in

our input vector will increase the complexity of our model which can decrease the

accuracy by creating contradictions in the data (when the same word appears equally

frequent in at least two classes), or the words rarely appear in general. This can

be seen in Figure 11, in the list of top frequent words across document we generally

observe stop words.
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Figure 11: Top 50 words (tokens) in dataset.

Moreover, the frequency distribution is similar but not exactly same to the distri-

bution of the words in the English documents, which is observed to follow the Zipf’s

distribution; i.e., the most frequent word will occur approximately twice as often as

the second most frequent word, etc. Removing the stop words, we observe the more

steady decrease in the frequency as the rank increases (we are ignoring the intermedi-

ate ranks and not changing the underlying distribution). In Figure 12 we can observe

this effect and can observe that remaining set of words occur less often thus might

have a higher impact on the model during classification.

From Figures 13 and 14 we can observe that the remaining vocabulary contains

words (frames) that can more frequently appear in the positive class than in the

negative class; for example, the word “love” appears more frequently in the positive

class than in negative, and word “like” is approximately equally likely to be present

in both classes. Moreover, we can observe that the frequency decay, except the first

three most frequent words in both sets, follows a similar pattern.

Extracting the stop words allowed to decrease dictionary size, but can it be de-

creased even more? By looking at the frequency of words in both classes, presented

in Figure 15 we can see that in general, words less frequent in both classes at the
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Figure 12: Top 50 words (tokens) in dataset (excluding Stop Words).

Figure 13: Top 50 words (tokens) in negative class.

same time does not carry much information individually about the sentiment of the

sentence they appear in. Therefore, we would like to include the most frequent items

in our dictionary and chop off the less frequent, by setting the minimum threshold

requirement to the frequency. The experiments showed that the best accuracy can

be achieved by setting the limiting dictionary to have a top 4,000 words.
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Figure 14: Top 50 words (tokens) in positive class.

Figure 15: Word frequency in positive and negative class.

To decrease the potential number of frames, the steamed forms of words are used

do define vocabulary. This allows capturing more words as frequent by removing
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the different forms of the same word and accounting its frequency to the root word.

Moreover, obtained vocabulary allows to compare the performance of the BoW model

in the literature and the proposed model by using the same word-based vocabulary.

3.4 Classifiers

For measuring the performance of the purposed features, we use classic classifiers in

the field of sentiment analysis: Naive Bayes Classifier, Logistic Regression, Support-

Vector Machine and Multi-Layer Perceptron.

3.4.1 Naive Bayes Classifier

The Naive Bayes classifier is a probabilistic classifier based on the Bayes theorem that

relies on the assumptions of independence between the features. It was introduced in

the 1960s, based on the works of Rev. Thomas Bayes (1702− 61), and remains as a

baseline method for the text categorization. Naive Bayes classifier is computationally

inexpensive and does require huge training data. However, it is often outperformed

by other techniques such as boosted trees, random forests, Max Entropy, Support

Vector Machines, etc.

Naive Bayes is a conditional probability model: given feature set represented by a

vector ~x = (x1, ..., xn) it assigns the probability of each instance to belong to a class

Cj where j is set of all classes (possible outcomes). Using independence assumption

and imposing a condition that we pick the most probable hypothesis, the Naive Bayes

Classifier is the function that assigns a class label ŷ = Ck for some k:

ŷ = argmaxj∈{1,...,K}P (Cj)
n∑
i=1

P (xi|Cj) (4)

3.4.2 Logistic Regression

Logistic Model is a statistical model using the logistic function to model binary de-

pendent variables. Logistic Regression is the process of estimating parameters of

41



the logistic model. It was developed by statistician David Cox in 1958 and found

application in many fields including medicine, politics, finance, etc.

The logistic function is a sigmoid function that takes input t ∈ R, and maps it

into 0/1 space.

sig(t) =
et

et + 1
=

1

1 + et
(5)

Assuming t is defined by the linear relationship of elements in vector ~x = (x1, ..., xn),

given by:

t(~x) = β0 + β1x1 + β2x2 + ...+ βnxn (6)

and corresponding logistic function:

sig(~x) =
1

1 + eβ0+β1x1+β2x2+...+βnxn
(7)

where β is a vector of logistic regression coefficients, usually estimated using max-

imum likelihood estimation method.

3.4.3 Support-Vector Machine

Support-vector machine (SVM) is a supervised learning model that is capable of han-

dling both classification and regression problems. It constructs a set of hyperplanes

that maximize the margin distance between data points or set of data points, and

can be used for outlier detection, classification, regression, etc. The SVM is usually

selected for its capability of handling non-linear data. Using Kernel-Trick, SVM able

to map non-linearly separable data to the dimension where data becomes separable.

The Support-Vector Classification (SVC) focuses on minimizing the expression of

the form [
1

n

n∑
i=1

max(0, 1− yi(wxi − b))

]
− λ ‖w‖2 (8)

where ~w is normal vector to the hyperplane, wxi − b = 1 when yi = 1 (belongs to

class 1), and wxi − b = 1 when yi = −1 (belongs to class -1)
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The optimization model is given by:

minimize
1

n

n∑
i=1

ζi − λ ‖w‖2 (9)

s.t. yi(wxi − b) ≥ 1− ζi ∀i (10)

ζi ≥ 0 ∀i (11)

where

ζi = max(0, 1− yi(wxi − b)) (12)

3.4.4 Multi-Layer Perceptron

Multi-Layer Perceptron is a supervised learning model that approximates a function

f(x) by training on a dataset. The simplest model consists of a minimum of three

layers: input layer, a hidden layer, output layer. The input layer is the input to

the neural network which has the same dimensions as ~x and takes the same value.

Next layer (hidden layer) takes a value defined by a linear combination of all nodes

in the previous layer. There might be more than one hidden layer depending on

the data complexity (linear/non-linear). The output layer uses results from the last

hidden layer and transforms them into the final output. The output range may differ

depending on the activation function; thus, the output layer may contain more than

one output which can be transformed to desired output externally.

For the binary classification, the sigmoid and softmax functions are usually se-

lected. The sigmoid function is given by the logistic function, this the output is given

in range (0,1) which is suitable for binary classification and require only one node in

the output layer. Softmax provides the index of a node where the maximum value is

obtained, thus the number of output nodes should be equal to the number of classes

trying to fit. In general form the complete network is summarized by the following
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equation:

y = ϑ(
n∑
i=1

wixi + b) = ϑ(wTx− b) (13)

where w the vector of weights, x is the vector of features, b is the bias, ϑ is any

activation function.
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CHAPTER IV

COMPUTATIONAL RESULTS

This section introduces computational results for the models discussed in this study,

namely: Classical Bag of Word, Sound Cosine Similarity, Histogram based, N-Chunk

Histogram based, Transition Matrix based models and Text Cosine Similarity. Text

Cosine Similarity is a BoW model which utilizes the same principle as in the frequent

frequencies approach, but if a word does not exist in the vocabulary, it is matched

using regular cosine similarity with a word in the vocabulary using the text form. We

use it for a fair comparison in our performance evaluations. The runs were taken on

the computer with processor Intel i7, 16GB of RAM, Ubuntu 16.04 OS.

Table 4: Data sizes used in computational experiments.
Number of messages Positive Negative Frequent words

2,000 1,000 1,000 2,000
10,000 5,000 5,000 4,000

100,000 50,000 50,000 4,000
200,000 100,000 100,000 4,000

Numerical results are obtained using four different subset sizes as shown in Table

4. The first three columns show the number of messages, number of positive and

negative messages. For example for the first row, 1,000 messages were randomly

chosen from positive words and another 1,000 were randomly chosen from the negative

word set. However, the random 30% of this data will be used for the validation,

therefore the training might not have exactly the same distribution of the training

data. The even distribution omits the bias during the training phase and removes

the probability of selecting all messages from the same class. For each dataset size,

20 different random instances are taken and the average accuracy is reported. The
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purpose of using different sizes of dataset is to test the model performance in term

of accuracy. By taking multiple instances, we increase the possibility of encountering

with a different frequent set of words, which can affect model performance. The

last column represents our choices for the size of the frequent words set used within

the approach determined after preliminary results; for each dataset size, models are

set to run at different vocabulary sizes, and the vocabulary size where the highest

accuracy is achieved is used in the computational results presented here. Moreover,

the limited dataset would result in a different set of vocabulary, depending on the

tweets it contains; for example, in one instance, the word “like” might be frequent

and in another, it might not appear as frequent. As dataset increases, by following

Zipf’s Law, we expect to the frequent word set to settle down and do not change.

Table 5: Average accuracy (%) with data set size 2,000 tweets (1,000 positive, 1,000
negative).

Classifier Bag Of Words Text Cosine
Similarity

Sound Cosine
Similarity

Naive Bayes Classifier 66.20 66.40 66.56
Logistic Regression 68.12 67.80 67.70
Support-Vector Machine 54.71 56.20 52.23
Multi-Layer Perceptron 66.00 67.00 65.76

Table 6: 95% confidence intervals of the mean accuracy (%) with data set size 2,000
tweets (1,000 positive, 1,000 negative).

Bag Of Words Text Cosine
Similarity

Sound Cosine
Similarity

Classifier
LB UB LB UB LB UB

Naive Bayes Classifier 64.34 68.06 62.87 69.93 64.18 68.93
Logistic Regression 66.08 70.15 64.62 70.98 64.83 70.56
Support-Vector Machine 48.04 61.37 53.30 59.10 44.19 60.27
Multi-Layer Perceptron 61.59 70.40 64.49 69.51 61.40 70.17

Table 5 shows average accuracy levels of 20 dataset instances obtained by three

methods: BoW, Text Cosine Similarity and Sound Cosine Similarity. We can see that

all models perform at similar levels for datasets of sizes 2,000. The best performance is
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achieved using Logistic Regression with the BoW model. Over the four classifiers, we

see that the features proposed in this study do not necessarily improve the accuracy of

the classifiers. Further, in two cases it worsens the accuracy. In theory, Sound Cosine

Similarity and Text Cosine Similarity approaches should not perform worse than the

BoW model, because the input vectors are the same at the beginning. However,

Sound Cosine Similarity model matches the unknown words to the known words in

the vocabulary, but since the capture rate is 70%, the model incorrectly matches some

of the words, which in the small dataset has higher influence. The small vocabulary is

more sensitive to the incorrect matching, which creates noise for the classifiers rather

then strengthening the results. The same holds for the Text Cosine Similarity as it

uses similar principles. (95% confidence intervals for the accuracy results in Table 5

are given in Table 6.)

Table 7: Average accuracy (%) with data set size 10,000 tweets (5,000 positive, 5,000
negative).

Classifier Bag Of Words Text Cosine
Similarity

Sound Cosine
Similarity

Naive Bayes Classifier 71.63 71.84 72.41
Logistic Regression 72.34 71.70 71.27
Support-Vector Machine 55.00 59.24 54.47
Multi-Layer Perceptron 71.71 72.16 72.45

Table 8: 95% confidence intervals of the mean accuracy (%) with data set size 10,000
tweets (5,000 positive, 5,000 negative).

Bag Of Words Text Cosine
Similarity

Sound Cosine
Similarity

Classifier
LB UB LB UB LB UB

Naive Bayes Classifier 70.59 72.67 71.31 72.37 71.41 73.41
Logistic Regression 71.34 73.34 71.14 72.26 70.23 72.31
Support-Vector Machine 44.44 65.56 46.26 72.22 43.19 64.81
Multi-Layer Perceptron 70.71 72.70 69.56 74.77 71.51 73.39

In Table 7, we can observe that our feature definition starts to help the classifiers,

and the accuracy is higher than in the classical definition of features used in BoW
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Table 9: Average accuracy (%) with data set size 100,000 tweets (50,000 positive,
50,000 negative).

Classifier Bag Of Words Text Cosine
Similarity

Sound Cosine
Similarity

Naive Bayes Classifier 75.20 76.70 78.10
Logistic Regression ME ME ME
Support-Vector Machine ME ME ME
Multi-Layer Perceptron 75.84 76.35 79.63

Table 10: 95% confidence intervals of the mean accuracy (%) with data set size
100,000 tweets (50,000 positive, 50,000 negative).

Bag Of Words Text Cosine
Similarity

Sound Cosine
Similarity

Classifier
LB UB LB UB LB UB

Naive Bayes Classifier 75.00 75.40 75.97 77.43 77.86 78.34
Logistic Regression ME ME ME ME ME ME
Support-Vector Machine ME ME ME ME ME ME
Multi-Layer Perceptron 75.57 76.11 75.63 77.08 79.43 79.83

model for three of the classifiers. Having a larger vocabulary, the mismatch during

comparison of unknown word sound representation with sound vocabulary damage

the features less, and the benefit starts to dominate and strengthens the results. We

can see this effect in tables 9 and 11 as well, where difference in accuracy with the

BoW model starts to have a larger value and becomes almost 5% in Table 11. Note

that as the data size increases some of the classifiers give memory errors (represented

with ME in the corresponding tables).

Figure 16 summarizes the accuracy behavior of BoW and our model as dataset

size increases. As the size grows, the accuracy increases for all models. However,

the rate of increase differs where the Sound Cosine Similarity model increases with a

higher rate. This can be explained by the ability of the model to capture and process

misspelled and shortened words using cosine similarity. The probability of observing

such words increases as data set size increases and it affects the classification. This

effect can also be seen in Tables 6, 8, 10 and 12 which provide 95% confidence intervals

(CI) for corresponding data sizes for 20 instances each. There it can be seen that as
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Table 11: Average accuracy (%) with data set size 200,000 tweets (100,000 positive,
100,000 negative).

Classifier Bag Of Words Text Cosine
Similarity

Sound Cosine
Similarity

Naive Bayes Classifier ME ME ME
Logistic Regression ME ME ME
Support-Vector Machine ME ME ME
Multi-Layer Perceptron 80.50 82.12 85.21

Table 12: 95% confidence intervals of the mean accuracy (%) with data set size
200,000 tweets (100,000 positive, 100,000 negative).

Bag Of Words Text Cosine
Similarity

Sound Cosine
Similarity

Classifier
LB UB LB UB LB UB

Naive Bayes Classifier ME ME ME ME ME ME
Logistic Regression ME ME ME ME ME ME
Support-Vector Machine ME ME ME ME ME ME
Multi-Layer Perceptron 79.42 81.58 81.86 82.38 84.27 86.15

the data size increases, intervals get tighter. This is explained by the features derived

at each instance. As we have large text data, Zipf distribution converges to the same

set; i.e., the same vocabulary.

It can be observed that the SVM has the highest accuracy variation among other

models. This is caused by the imbalance of the classes in the training data. As we

have the same number of classes in the training data the classifier does not create a

bias toward any class and aims to find a balance to maximize the accuracy.

Multi-Layer Perceptron provided the highest result, suggesting that it is more

suitable for the proposed feature set. The best accuracy achieved by our feature set

is 85.21% (dataset size = 200,000), in comparison to 83% on works based on the same

dataset [43].

Table 13 presents additional metric data for the Multi-Layer Perceptron for all

considered data sizes for both BoW and our model that utilizes sound cosine similarity.

The importance of each metric depends on the application. The Precision metric is

useful to evaluate the model when the classification of positives is more important.
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Figure 16: Average model accuracy with respect to data set size.

Table 13: Metrics Data (%) for Multi-Layer Perceptron.

Bag Of Word Sound Cosine Similarity
Data Size 2,000 10,000 100,000 200,000 2,000 10,000 100,000 200,000
Accuracy 66.67 71.77 75.52 79.01 66.00 72.40 79.08 84.48
Precision 76.04 72.28 76.34 79.30 65.69 86.56 76.65 85.50
Recall 48.67 71.85 73.96 78.50 67.00 71.97 77.99 84.00
F1 Score 59.35 71.65 75.13 78.90 66.34 78.59 77.31 84.74

Further, it is a good measure to use when the cost of False Positives is high, for

instance, email spam detection. In email spam detection, a false positive means that

a non-spam email (actual negative) has been identified as spam (predicted spam).

The email user might lose important emails if the precision is not high for the spam

detection model. The Recall metric is useful when classifying positive as negative is

not desirable. The F1-Score is a metric used to seek the balance between precision and

recall. Moreover, F1-Score is useful when test data contain an unbalanced number of

representatives of each class. By looking at F1-Score, it can be concluded that the

model does not have a strong bias toward any particular class.

Features based on the statistical summary do not provide the best results. As can

be seen in Table 14, the best classification accuracy at 100,000 data set size does not
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Table 14: Accuracy (%) with data set size 100,000 tweets (50,000 positive, 50,000
negative) For Statistical Models.

Histogram based N-Chunk His-
togram based

Transition Matrix
based

Accuracy 55.22% 57.03% 61.41%

exceed 65%, which is obtained using other features at 2,000 data set size. One of the

reasons for such pure performance is the ability of the computer to properly handle

floating points which does not allow classifiers to properly determine the relation

between features to derive the polarity.

From the results, we conclude that the proposed feature set (frequent frames) and

its generation technique provide high accuracy results in comparison to the classical

BoW model, especially for large-sized data. The Text Cosine Similarity model also

performs better than the regular Bag Of Word model, but it does not beat the Cosine

Similarity Model in terms of accuracy. Indeed, at the first steps of the proposed fea-

ture generation technique, the feature set within the BoW model and our feature set

are identical. The difference comes when we map misspelled and shortened words us-

ing cosine similarity. The lower performance at smaller sized dataset can be explained

by a higher rate of mismatch and small vocabulary size. As dataset size increases,

the capture rate of misspelled and shortened words increases, which strengthens the

importance of some features for the classification models. A similar effect can be seen

with Text Cosine Similarity. The best accuracy achieved by our feature set is 85.21%

(200,000 sentences), in contrast to 83% on works based on the same full sized dataset

[43].
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CHAPTER V

CONCLUSION

In this thesis, we tried to develop features for sentiment polarity classification in social

media which focuses on the text with a high probability of misspelling or shorthand

to occur. Proposed feature set is based on the frequent sound frequencies appearing

in the sound representation of text obtained using a Text-to-speech engine. Since

generating all possible sound frames is computationally expensive, without loss of

generality, the written words can be used to represent frequent sound frames following

the idea that if a word is frequent, then it’s sound representation is also frequent.

Moreover, the cosine similarity is able to match misspellings and shortened words,

which are frequent in social media, on the text sound representation level.

In general, Multi-Layer Perceptron provided the highest result, which implies that

it is more suitable for the proposed feature set. The largest average accuracy obtained

using this model is 85.21% using a limited data set, in contrast to the 83% found in

the literature.

An obvious extension of the proposed method of extracting feature set is to develop

a framework that will extract fingerprints of sounds. That would allow decreasing

matching complexity to O(1) since fingerprint will be unique for each word (even with

slight sound variations), it can be used as a table index.
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Üniversitesi Eğitim Fakültesi Dergisi, vol. 3, no. 3, 1988.

[35] S. Sutherland, “When we read, we recognize words as pictures and hear them
spoken aloud. [last accessed 2019-02-10],” 2015.

[36] R. P. Vilhauer, “Inner reading voices: An overlooked form of inner speech,”
Psychosis, vol. 8, no. 1, pp. 37–47, 2016.

[37] X. Lei, X. Jiang, and C. Wang, “Design and implementation of a real-time video
stream analysis system based on ffmpeg,” in 2013 Fourth World Congress on
Software Engineering, pp. 212–216, IEEE, 2013.

55



[38] G. Paltoglou and M. Thelwall, “More than bag-of-words: Sentence-based doc-
ument representation for sentiment analysis,” in Proceedings of the Interna-
tional Conference Recent Advances in Natural Language Processing RANLP
2013, pp. 546–552, 2013.

[39] J. Fürnkranz, “A study using n-gram features for text categorization,” Austrian
Research Institute for Artifical Intelligence, vol. 3, no. 1998, pp. 1–10, 1998.

[40] S. T. Piantadosi, “Zipf’s word frequency law in natural language: A critical
review and future directions,” Psychonomic bulletin & review, vol. 21, no. 5,
pp. 1112–1130, 2014.

[41] M. Hu and B. Liu, “Mining opinion features in customer reviews,” in AAAI,
vol. 4, pp. 755–760, 2004.

[42] “Commonly misspelled english words. [last accessed 2019-03-10].”

[43] A. Go, R. Bhayani, and L. Huang, “Twitter sentiment classification using distant
supervision,” CS224N Project Report, Stanford, vol. 1, no. 12, 2009.

[44] D. Bespalov, B. Bai, Y. Qi, and A. Shokoufandeh, “Sentiment classification
based on supervised latent n-gram analysis,” in Proceedings of the 20th ACM
international conference on Information and knowledge management, pp. 375–
382, ACM, 2011.

[45] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up?: sentiment classification
using machine learning techniques,” in Proceedings of the ACL-02 conference on
Empirical methods in natural language processing-Volume 10, pp. 79–86, Associ-
ation for Computational Linguistics, 2002.

[46] “Hootsuite. [last accessed 2019-08-10].”

[47] G. Yule, The study of language. Cambridge university press, 2016.

[48] B. Heredia, T. M. Khoshgoftaar, J. Prusa, and M. Crawford, “Cross-domain
sentiment analysis: An empirical investigation,” in 2016 IEEE 17th International
Conference on Information Reuse and Integration (IRI), pp. 160–165, IEEE,
2016.

56



VITA

Mihail Duscu graduated from Orizont High School, Republic of Moldova, in 2012.

He received his B.S. degree in Industrial Engineering from Özyeğin University in
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