
ENHANCING DEEP LEARNING MODELS FOR
CAMPAIGN PARTICIPATION PREDICTION

A Dissertation

by

Demet Ayvaz

Submitted to the
Graduate School of Sciences and Engineering
In Partial Fulfillment of the Requirements for

the Degree of

Doctor of Philosophy

in the
Department of Computer Science

Özyeğin University
September 2019

Copyright c© 2019 by Demet Ayvaz

ENHANCING DEEP LEARNING MODELS FOR
CAMPAIGN PARTICIPATION PREDICTION

Advisor: Assoc. Prof. Murat Şensoy
Co-Advisor: Asst. Prof. Gonca Gürsun

Approved by:

Associate Professor Murat Şensoy,
Advisor
Department of Computer Science
Özyeğin University

Assistant Professor Furkan Kıraç
Department of Computer Science
Özyeğin University

Associate Professor Ali Fuat Alkaya
Department of Computer Science
Engineering
Marmara University

Assistant Professor Boray Tek
Department of Computer Engineering
Isik University

Professor M. Tolga Akçura
Department of Business
Administration
Özyeğin University

Date Approved: 31 July 2019

ABSTRACT

Companies engage with their customers in order to establish a long-term relation-

ship. Targeting the right audience with the right product is crucial for providing

better services to customers, increasing their loyalty to the company, and gaining

high profit. Therefore, companies make huge investments to build campaign man-

agement systems, which are mostly rule-based and highly depend on business insight

and human expertise. In the last decade, recommendation systems usually use mod-

eling techniques such as deep learning to understand and predict the interests of

customers. Classic deep neural networks are good at learning hidden relations within

data (generalization); however, they have limited capability for memorization.

Wide & Deep network model, which is originally proposed for Google Play App.

recommendation, deals with this problem by combining Wide & Deep network models

in a joint network. However, this model requires domain expert knowledge and man-

ually crafted features to benefit from memorization. In this thesis, we advocate using

Wide & Deep network models for campaign participation prediction, particularly in

the area of telecommunication. To deal with the aforementioned issue with that

model, this thesis introduces the idea of using decision trees for automatic creation

of combinatorial features (cross-product transformations of existing features) instead

of demanding them from human experts. A set of comprehensive experiments on

campaign participation data from a leading GSM provider has been conducted. The

results have shown that automatically crafted features make a significant increase in

the accuracy and outperform Deep and Wide & Deep models with manually crafted

features.

Furthermore, since a limited number of access to the customers is allowed, making

iii

well-targeted offers that are likely to be acceptable by the customers plays a crucial

role. Therefore, an effective campaign participation prediction require to avoid false-

positive predictions. Accordingly, we extended our research towards classification

uncertainty to build network models that can predict whether or not they will fail.

Consequently, we adopt evidential deep learning models to capture the uncertainty in

prediction. Our experimental evaluation regarding prediction uncertainty has shown

that the proposed approach is more confident for correct predictions while it is more

uncertain for inaccurate predictions.

iv

ÖZETÇE

Firmalar müşterileri ile uzun vadeli ilişkiler geliştirebilmek adına iletişim kurarlar.

Doğru kitleyi doğru ürünle hedeflemek, müşterilere daha iyi hizmet sunarak şirkete

olan bağlılıklarını artırma ve dolayısıyla şirket gelirlerini artırma noktasında kritik

önem taşır. Bu nedenle şirketler, çoğunlukla kural bazlı çalışan ve insan uzmanlığına

dayalı kampanya yönetim sistemleri oluşturmak için büyük yatırımlar yapmaktadır.

Son on yılda öneri sistemleri genellikle müşterilerin beklentilerini anlamak ve tahmin-

lemek amacıyla derin öğrenme gibi modelleme tekniklerini de kullanmaktadır. Klasik

derin sinir ağları veri içindeki gizli ilişkileri öğrenmede oldukça başarılıdır (genelleme)

ancak hatırlama noktasında daha sınırlı yetkinlikleri vardır.

Aslen Google Play uygulaması için tasarlanan Wide & Deep öğrenme modeli Wide

ve Deep ağ modellerini tek bir model içerisinde birleştirerek bu soruna çözüm sun-

maktadır. Bununla birlikte, bu model, uzman bilgisine ve uzmanlar tarafından bir-

den fazla verinin bir araya getirilmesi ile hazırlanmış girdilere ihtiyaç duyar. Bu

tezde, özellikle telekomünikasyon alanında, kampanya katılımı tahmini için Wide &

Deep ağ modellerini kullanmayı öneriyoruz. Tez kapsamında, modellerde uzman bil-

gisine duyulan ihtiyacı ortadan kaldırmak amacıyla, bağımsız değişkenler arasındaki

çapraz ilişkileri otomatik olarak oluşturmak için karar ağaclarını kullanan bir yöntem

geliştirilmiş ve GSM müşterilerinin kampanya katılımını içeren gerçek veri setleri

üzerinde kapsamlı bir değerlendirme yapılmıstır. Yapılan karşılaştırma sonucunda

önerilen yöntem ile Wide & Deep model performansının önemli oranda artırılabildiği

ve Deep, Wide & Deep modellerden daha iyi sonuçlar elde edildiği gözlemlenmiştir.

Ayrıca, kampanya sistemlerinde sadece sınırlı sayıda müşteri erişime izin ver-

ildiğinden, kabul edilme ihtimali en yüksek olan tekliflerin müşteriye sunulması kritik

v

önem taşımaktadır. Dolayısıyla, kampanya katılımının başarıyla tahminlenebilmesi

hatalı tahminlerden kaçınmayı da gerektirmektedir. Bu nedenle başarısız olup ol-

mayacaklarını tahmin edebilecek ağ modelleri oluşturmak amacıyla araştırmamızı

sınıflandırma belirsizliği konusunda genişleterek kanıta dayalı derin öğrenme mod-

ellerini çalışmamıza dahil ettik. Sonuçlar, önerilen modelin doğru sınıflandırılmış

öğeler üzerinde en düşük belirsizlik değerine sahip olduğunu, yanlış sınıflandırdıgı

öğeler üzerinde ise daha yüksek belirsiklikle karar vermiş olduğunu göstermektedir.

vi

ACKNOWLEDGEMENTS

First of all, I would like to thank Associate Professor Murat Şensoy and Assistant

Professor Reyhan Aydoğan for their support, guidance, and motivation throughout

the thesis work and especially giving time and helping me constantly. I also want to

thank them for their contribution to my education during my graduate years.

I thank Professor M. Tolga Akçura, Assistant Professor Furkan Kıraç, Associate

Professor Ali Fuat Alkaya, Assistant Professor Boray Tek for participating in my

thesis jury and giving me feedback.

I also want to thank my friends Assistant Professor Reyhan Aydoğan and İbrahim

Ersin Öziş for their support, motivation and the unique friendship that we shared

throughout these years.

Finally, I should express my gratefulness to my family, especially to my mother

Ayşe Semra Ayvaz and my father Bilal Bekir Ayvaz for their love, support, self-

sacrifice, and endless-thrust in me. Special thanks to my first teacher, my father, for

his guidance and support throughout my life. Without him, none of these would be

possible.

vii

TABLE OF CONTENTS

ABSTRACT . iii

ÖZETÇE . v

ACKNOWLEDGEMENTS . vii

LIST OF TABLES . xi

LIST OF FIGURES . xii

I INTRODUCTION . 1

II BACKGROUND . 5

2.1 Deep Learning . 5

2.1.1 Convolutional Neural Network (CNN) 7

2.1.2 Recurrent Neural Network (RNN) 8

2.1.3 Long Short-Term Memory (LSTM) 9

2.1.4 Gated Recurrent Units(GRU) 9

2.1.5 Auto-Encoder (AE) . 11

2.1.6 Deep Belief Network (DBN) 11

2.1.7 Generative Adversarial Network (GAN) 12

2.2 Wide & Deep Learning Models . 13

2.2.1 Model Architecture . 13

2.2.2 Feature Columns . 14

2.3 Feature Generation Methods . 16

2.3.1 DeepFM: A Factorization-Machine based Neural Network . . 17

2.3.2 Deep Crossing . 20

2.4 Recommender Systems . 21

2.4.1 Collaborative Filtering . 22

2.4.2 Content Based Filtering . 23

2.4.3 Hybrid Filtering . 23

2.5 Decision Tree Classification . 24

viii

2.5.1 Decision Tree Learning Algorithms 24

2.5.2 Decision Tree Metrics . 25

2.5.3 Gini Index . 26

2.5.4 Entropy and Information Gain 26

2.5.5 Chi-Square . 27

2.5.6 Variance reduction . 27

III ENHANCING DEEP MODELS FOR CAMPAIGN PARTICIPA-
TION PREDICTION . 28

3.1 Methodology for Campaign Participation Prediction 28

3.2 Data Collection and Preprocessing 30

3.2.1 Campaign Management System for Telecommunication . . . 30

3.2.2 Campaign Participation Dataset 33

3.3 Decision Tree Based Cross Feature Generation 37

3.4 Networks with Automatically Generated Features 46

3.5 Uncertainty-aware Predictions . 48

3.5.1 Uncertainty and the Theory of Evidence 48

3.5.2 Evidential Deep Learning (EDL) 50

IV EXPERIMENTS AND RESULTS 54

4.1 Campaign Participation Dataset . 56

4.1.1 Experimental Setup for Campaign Participation Datasets . . 56

4.1.2 Results on Randomly Selected Campaign Participation Datasets 57

4.1.3 Results on Mutually Exclusive Campaign Participation Datasets 59

4.1.4 Uncertainty Results on Random Split Campaign Datasets . . 61

4.1.5 Uncertainty Results on Mutually Exclusive Campaign Datasets 67

4.1.6 Training and Evaluation Time Comparison 75

V DISCUSSION AND CONCLUSIONS 78

APPENDIX A — ADULT INCOME DATASET 81

APPENDIX B — CRITEO DATASET 91

ix

REFERENCES . 100

VITA . 104

x

LIST OF TABLES

1 Offer attributes . 35

2 Response attributes . 36

3 Examples of subscriber attributes . 37

4 Accuracy values of different models on random split datasets 57

5 Accuracy values of deep models on mutually exclusive datasets 60

6 Accuracy and uncertainty results on campaign participation datasets
for Wide & Deep model with automatically crafted features 62

7 Accuracy and uncertainty results on random split moderately accepted
offers dataset (acceptance rate between 2% and 7%) 62

8 Accuracy and uncertainty results on mutually exclusive campaign par-
ticipation datasets for Wide & Deep model with automatically crafted
features . 69

9 Accuracy and uncertainty results on random split moderately accepted
offers dataset (acceptance rate between 2% and 7%) 70

10 Income dataset attributes . 82

11 Accuracy and uncertainty results on income dataset 84

12 Accuracy and uncertainty results on Criteo dataset 94

xi

LIST OF FIGURES

1 The conceptual diagram of Convolutional Neural Network [1] 8

2 The conceptual diagram of Recurrent Neural Network [1] 9

3 The conceptual diagram of Long Short-Term Memory network [1] . . 10

4 The conceptual diagram of Gated Recurrent Units [1] 10

5 The conceptual diagram of Auto-Encoders [1] 11

6 The conceptual diagram of Generative Adversarial Networks [1] . . . 12

7 Wide, Deep and Wide & Deep network models [2] 13

8 A mapping from string values to vocabulary columns [3] 15

9 A representation of data with hash buckets [3] 15

10 A representation of data with crossed column [3] 16

11 Wide & Deep architecture of DeepFM [4] 18

12 The architecture of FM [4] . 19

13 The architecture of DNN [4] . 19

14 Deep Crossing model architecture [5] 21

15 Classification of recommender system approaches [6] 22

16 Overview of the methodology . 29

17 High-level architecture of campaign management system 31

18 Relations among subscriber, offer and response data 36

19 Flow diagram for the tree traversal processes 39

20 Sample tree model for feature generation 39

21 Flow diagram for automatic feature generation 41

22 Pseudo-code for automatic feature generation 43

23 Decision tree model example . 45

24 Sample representation for feature map 45

25 Sample representation for path list 46

26 Sample categorical & cross features 46

27 Accuracy comparison on highly accepted (Over 7%) dataset 59

xii

28 Accuracy comparison on moderately accepted (Between 2% and 7%)
dataset . 59

29 Accuracy comparison on rarely accepted (Less Than 2%) dataset . . . 60

30 The change of evidence per epoch on campaign participation dataset
for Wide & Deep model with automatically crafted features 63

31 The change of accuracy and uncertainty on correctly classified samples
and misclassifications on campaign participation dataset for Wide &
Deep model with automatically crafted features 64

32 The change of evidence per epoch on campaign participation dataset
for Wide & Deep model . 65

33 The change of accuracy and uncertainty on correctly classified samples
and misclassifications on campaign participation dataset for Wide &
Deep model . 65

34 The change of evidence per epoch on campaign participation dataset
for Deep model . 66

35 The change of accuracy and uncertainty on correctly classified samples
and misclassifications on campaign participation dataset for Deep model 66

36 The change of accuracy with respect to uncertainty threshold on cam-
paign participation dataset for Wide & Deep model with automatically
crafted features . 67

37 The change of accuracy with respect to uncertainty threshold on cam-
paign participation dataset for Wide & Deep model 68

38 The change of accuracy with respect to uncertainty threshold on cam-
paign participation dataset for Deep model 68

39 The change of evidence per epoch on mutually exclusive campaign par-
ticipation dataset for Wide & Deep model with automatically crafted
features . 71

40 The change of accuracy and uncertainty on correctly classified samples
and misclassifications on mutually exclusive campaign participation
dataset for Wide & Deep model with automatically crafted features . 71

41 The change of evidence per epoch on campaign participation dataset
for Wide & Deep model . 72

42 The change of accuracy and uncertainty on correctly classified samples
and misclassifications on campaign participation dataset for Wide &
Deep model . 73

xiii

43 The change of evidence per epoch on mutually exclusive campaign
participation dataset for Deep model 73

44 The change of accuracy and uncertainty on correctly classified samples
and misclassifications on mutually exclusive campaign participation
dataset for Deep model . 74

45 The change of accuracy with respect to uncertainty threshold on mutu-
ally exclusive campaign participation dataset for Wide & Deep model
with automatically crafted features 74

46 The change of accuracy with respect to uncertainty threshold on mu-
tually exclusive campaign participation dataset for Wide & Deep model 75

47 The change of accuracy with respect to uncertainty threshold on mu-
tually exclusive campaign participation dataset for Deep model 76

48 Evaluation time per item . 76

49 Total training time for each model . 77

50 Overview of the methodology for income dataset 83

51 The change of accuracy per epoch for deep, Wide & Deep and Wide
& Deep with automatically crafted features 85

52 The change of evidence per epoch on Income dataset for Wide & Deep
model with automatically crafted features 87

53 The change of accuracy and uncertainty on correctly classified samples
and misclassifications on Income dataset for Wide & Deep model with
automatically crafted features . 87

54 The change of accuracy with respect to uncertainty threshold on in-
come dataset for Wide & Deep model with automatically crafted features 88

55 The Change of accuracy with respect to uncertainty threshold on In-
come dataset for Wide & Deep model 89

56 The change of accuracy with respect to uncertainty threshold on In-
come dataset for Deep model . 89

57 Evaluation time per item and total training time per model on income
dataset . 90

58 Overview of the methodology for Criteo dataset 92

59 The change of accuracy per epoch for deep, Wide & Deep and Wide
& Deep with automatically crafted features on Criteo sample dataset 95

60 The change of evidence per epoch on Criteo sample dataset for Wide
& Deep Model with automatically crafted features 96

xiv

61 The change of accuracy and uncertainty on correctly classified samples
and misclassifications on Criteo sample dataset for Wide & Deep Model
with automatically crafted features 97

62 The change of accuracy with respect to uncertainty threshold on Criteo
sample dataset for Wide & Deep model with automatically crafted
features . 97

63 The change of accuracy with respect to uncertainty threshold on Criteo
sample dataset for Wide & Deep model 98

64 The change of accuracy with respect to uncertainty threshold on Criteo
sample dataset for Deep model . 99

65 Evaluation time per item and total training time per model on Criteo
sample dataset . 99

xv

CHAPTER I

INTRODUCTION

Understanding the needs and preferences of customers can create new opportunities

for companies and enable them to establish long-term relations with their customers.

Using the gathered knowledge over time by means of their interactions with their cus-

tomers, companies can make well-targeted recommendations and personalized offers

(e.g., providing some discounts for particular items) with the aim of increasing their

sales.

Companies, especially telecommunication companies, interact with their customers

via a variety of access channels such as email, SMS, MMS, Web forms, and so on.

During explicit and implicit interactions with their customers, they have the oppor-

tunity to monitor and analyze the behavior of their customers; consequently, well-

targeted offers can be made. For instance, by detecting the location of its customers,

a telecommunication company may infer that they are abroad; accordingly, it can

suggest roaming offers. For this purpose, Complex Event Processing tools [7] are

mostly used. Briefly, such tools rely on a vast amount of offline and streaming data

and make offers based on predefined business rules. However, the process of selecting

which offer to be made to the current customer is not personalized. That is, the

same offers are made to all customers satisfying the same rules irrespective of their

preferences/taste, although they might have different interests; thus, prefer different

offers.

Furthermore, rules and regulations limit the number of access per customer; there-

fore, it is crucial to make offers more likely to be acceptable by the customers – which

1

we refer to as “campaign participation prediction problem”. It requires understand-

ing and learning preferences of customers over time. Consequently, companies can

make well-targeted recommendations with a high acceptance rate.

This thesis formulates this problem as a classification problem which aims to pre-

dict whether or not the customer is likely to accept the offer to be made by the

campaign management team of the company. Recent studies have demonstrated that

deep learning models achieve substantial performances in the field of recommenda-

tion systems [8]. On the one hand, their ability to find the hidden relations among

attributes (i.e., features) makes them strong candidates in finding what properties

of offers make them acceptable for the customers. They are also good at capturing

general patterns in the given training samples. However, they may fail in memorizing

the data (i.e., “learning the frequent co-occurrence of items or features and exploiting

the correlation available in the historical data”) [2]. For instance, the model may

misclassify an example, which is already in the training set. On the other hand,

recommendation systems can benefit from memorization.

To deal with aforementioned memorization issue, Cheng et al. propose Wide &

Deep Learning for Recommender Systems, where a deep neural network is used to

extract hidden features automatically from the data for generalization while manually

crafted features are fed into the wide network (i.e., single-layer neural network) to

increase memorization capability of the joint model. Here, manually crafted feature

(i.e., cross feature) denotes the combination of some existing features that are more

meaningful when used together. Those features are added by a domain expert to the

input features. For instance, a domain expert in a telecommunication company may

consider using “age” and “income” together more meaningful rather than processing

them separately.

However, one important limitation of this approach is the necessity of expert

knowledge to craft combinatorial features for the wide part manually. This thesis

2

proposes to use a decision tree to create those cross features instead of eliciting them

from a domain expert while adopting Wide & Deep Learning models in recommen-

dation systems for particularly enhancing campaign participation prediction. The

motivation for using decision trees is based on the fact that they rely on selecting the

most informative features and construct rules consisting of several features such as

“if x and y then”. Accordingly, the combination of features in the constructed rules

correspond to the cross features, and we suggest replacing the hand-crafted features

with them in the Wide & Deep model.

To evaluate the performance of the proposed approach, we focus on a telecom-

munication use case where GSM operators aim to recommend offers targeting their

customers’ communication needs and preferences. Since GSM companies usually have

an excessive number of customers with diverse backgrounds, preferences, and behav-

ioral characteristics, it is already a challenge to learn what kind of offers/campaign

that can be acceptable by each customer. Our evaluation results on this use case

show that the proposed approach using decision trees outperforms Deep and Wide &

Deep Neural Networks with handcrafted features.

Furthermore, while aiming to make the correct predictions, we avoid false-positive

classification – classifying an offer as a potentially acceptable offer that is in fact not

acceptable for the customer. In this domain, false-positive prediction affects the

campaign management process negatively due to the limited number of access to

customers available. Therefore, it is important to know how certain we are about

our prediction. Accordingly, we incorporate prediction uncertainty to our model

based on the methodology described by Şensoy et al. [9]. Associated uncertainty

may let the decision-maker avoid an offer, which has a high risk of being rejected

by the customer. Our experimental results show that the proposed approach with

uncertainty extension assigns high confidence for true positive predictions while low

confidence for false-positive predictions. When decision-maker considers the offers

3

with only high confidence, its performance in terms of acceptance rate is 99 percent

for campaign participation use case.

Our main contribution in this thesis can be summarized as follows:

• To best of our knowledge, it is the first study applying deep learning in the

problem of campaign participation prediction for GSM customers.

• Using decision trees for hand-crafted features enable us to alleviate the neces-

sity of feature engineering and domain knowledge expertise required for Wide

& Deep model. The idea of automatically deriving cross features for this model

is novel. In an experimental setup, we show that the proposed approach signif-

icantly outperforms existing approaches.

• We incorporate the classification uncertainty to our model by adopting the

methodology proposed by Şensoy et al. [9]. Considering the uncertainty enabled

us to avoid offers that are likely to be rejected by the customers.

The rest of this thesis is organized as follows: Section 2 provides background infor-

mation on related areas such decision tree classification, deep network architectures,

Wide & Deep network model [2], which is the base model for this work and other

feature generation techniques which aims to eliminate the need for expert knowledge.

Section 3 provides details of the proposed decision tree-based feature creation method

and describes our methodology in solving the campaign participation prediction task,

including data collection and uncertainty prediction details. Section 4 evaluates our

approach and provides results of our experiments on campaign participation datasets.

Appendix A provides details and results on the adult income dataset, while Appendix

B includes our results on the Criteo sample dataset. Lastly, Section 5 concludes the

report with an overview of contributions.

4

CHAPTER II

BACKGROUND

In this chapter, we overview the background information on deep learning in general

as well as more specific topics such as wide and deep models, feature generation

techniques, which aim to eliminate the need for expert knowledge, and decision tree

classifiers.

2.1 Deep Learning

Deep Learning, also known as deep neural learning or deep neural networks, is a

subset of Machine learning which is based on artificial neural networks. The main

idea behind artificial neural networks is to mimic the behavior of the human brain

as it learns or make deductions out of data. The basic building block of artificial

neural networks is artificial neurons, which take input from external sources, make

calculations with some internal parameters (such as weight and bias) and produce

output. Artificial neurons are also known as node (or unit) or perceptron. The

fundamentals of artificial neural networks are discussed in References [10, 11].

The deep term here is a technical term and refers to the number of layers. A

shallow neural network has at most one hidden layer while a deep neural network

has more than one. Additional layers enhance the capability of the neural network

to learn features of data and also the feature hierarchy. Simple features in one layer

recombine from one layer to the next and forms more complex features.

In a recent survey of deep learning, Alom et al. lists advantages of deep learning

as generalization, scalability, robustness and universal learning capability [1].

1. Universal Learning: The DL approach is sometimes called universal learning

5

because it can be applied to almost any application domain.

2. Robust: Deep learning approaches do not require the precisely designed fea-

ture. Instead, optimal features are automatically learned for the task at hand.

As a result, the robustness of natural variations of the input data is achieved.

3. Generalization: The same DL approach can be used in different applications

or with different data types.

4. Scalability: The DL approach is highly scalable. Microsoft invented a deep

network known as ResNet [12]. This network contains 1202 layers and is often

implemented at a supercomputing scale.

Based on the data available and the learning problem at hand, deep learning

approaches can be categorized into three main learning models, which are supervised,

semi-supervised, or partially supervised, and unsupervised. There is also the deep

reinforcement learning approaches, which are often discussed under the broader scope

of semi-supervised and unsupervised approaches.

Supervised learning is a learning approach that uses labeled data. Every sample

in the dataset has a related label associated with it so that learning models can

calculate the exact loss for each decision. The models can update model parameters

to minimize the loss and learn a mapping function from input to output. Deep Neural

Networks (DNN), Convolutional Neural Networks (CNN), Recurrent Neural Networks

(RNN) are some examples of network architectures frequently used in supervised deep

learning.

The semi-supervised learning approach uses partially labeled data. As in the case

of medical images like CT scans or MRIs, a radiologist can go through some of the

images and label them as tumors, and other deceases. Labeling all of the images is not

possible since it takes a long time for most manual labeling cases. Semi-supervised

deep learning models are good at assigning labels and increasing their accuracy on

6

unlabelled data in comparison to unsupervised models. Deep Reinforcement Learning

(DRL) can be considered as an example of semi-supervised learning techniques.

In unsupervised learning, the training dataset is a collection of samples without

a label or correct answer. The goal of an unsupervised learning model is to learn

the internal representation or important features to discover unknown relationships

or structures within the input data. Clustering, dimensionality reduction techniques,

and generative models can be listed under this category. There are also members of

the deep learning family that are used for clustering or dimensionality reduction such

as Autoencoders, Restricted Boltzmann Machines (RBM), and Generative Adversar-

ial Networks (GAN).

There are a number of Deep Network Architectures, which are shortly described

in the following sections.

2.1.1 Convolutional Neural Network (CNN)

Convolutional Neural Networks are the popular choice for different computer vi-

sion tasks such as image recognition. This network structure was first proposed

by Fukushima in 1988 [13]. Due to limits of computation hardware, it is not widely

used until LeCun et al. [14] applied a gradient-based learning algorithm to CNNs and

obtained successful results for the handwritten digit classification problem.

The overall architecture of a convolutional neural network classifier consists of

2 main parts, which are (i) feature extractor and (ii) the last layer, i.e., logistic

classification layer. The future extractor part consists of a combination of convolution

and max-pooling layers. In the feature extraction layers, each layer of the network

receives the output from its immediate previous layer as its input and passes its

output as the input to the next layer. Higher-level features are derived from features

propagated from lower-level layers. As the features propagate to the highest layer or

level, the dimensions of features are reduced depending on the size of the kernel for

7

the convolutional and max-pooling operations respectively. The output of the last

layer of the CNN is used as the input to a fully connected network which is called

the classification layer. Figure 1 is the conceptual diagram of a convolutional neural

network [1].

Figure 1: The conceptual diagram of Convolutional Neural Network [1]

2.1.2 Recurrent Neural Network (RNN)

Recurrent Neural Networks are unique due to their ability to remember or persist

information. Traditional network models do not have a memory since they operate

on fixed-size input, output vectors, and they have a fixed number of layers or steps

in their network structure. In other words, they do not include loops. So traditional

networks as CNNs or DNNs make their decisions only based on their current input.

While recurrent neural networks are good at predicting what is coming next, due

to their ability to operate over a sequence of data through time. Their ability to

remember important things about the input they received enables them to be very

precise in predicting the next value in the sequence. This is the reason why they

are the preferred model for sequential data like time series, speech, text, financial

data, audio, video etc. An example of RNN use-cases is language modeling in which

RNNs are used for language understanding. RNN structure can hierarchically capture

the sequential nature of the text and predict the set of words or sentences based on

8

previous ones. Figure 2 is conceptual diagram of an RNN network [1].

Figure 2: The conceptual diagram of Recurrent Neural Network [1]

2.1.3 Long Short-Term Memory (LSTM)

LSTM network architecture is an extension to Recurrent Neural Networks and en-

hances their ability to remember for longer sequences. Therefore they are well suited

for problems in which important experiences have a long-time period in between.

LSTMs can remember their memory for a long time since they use an enhanced ver-

sion of memory on which they can perform read, write, and delete operations. Their

memory can be seen as a gated cell, where gated means that the cell decides whether

or not to store or delete information. In an LSTM, you have three gates: input,

forget, and output gate. These gates determine whether or not to let new input in

(input gate), delete the information because it isn’t important (forget gate) or to

let it impact the output at the current time step (output gate). Figure 3 shows a

conceptual diagram of an LSTM [1].

2.1.4 Gated Recurrent Units(GRU)

GRU is simpler than LSTM but more effective in terms of computation cost. GRU

replaces forget and input Gates of LSTM with a single update gate and merges the

9

Figure 3: The conceptual diagram of Long Short-Term Memory network [1]

cell state. Even though the GRU requires fewer network parameters, which makes

the model faster and less prone to overfitting. On the other hand, LSTM provides

better performance if you have enough data and computational power [15]. Figure 4

shows a conceptual diagram of a GRU [1].

Figure 4: The conceptual diagram of Gated Recurrent Units [1]

10

2.1.5 Auto-Encoder (AE)

Auto-encoders are a specific type of neural network where the input is equal to the

output. AE networks have efficient encoding and decoding capabilities and used for

unsupervised feature learning. The main objective of an auto-encoder is to learn and

represent input data, typically for data dimensionality reduction and compression.

An auto-encoder is a deep network with two main components: encoder and decoder.

During the encoding phase, the input is mapped into a lower-dimensional space, which

is also called the latent space. Encoding can be repeated with multiple layers until

the desired dimensional space is reached. In the decoding phase, original futures

are regenerated from encoded ones. The conceptual diagram of auto-encoder with

encoding and decoding phases is shown in Figure 5 [1].

Figure 5: The conceptual diagram of Auto-Encoders [1]

2.1.6 Deep Belief Network (DBN)

A deep belief network (DBN) is a sophisticated type of unsupervised machine learning

model. In general, Deep Belief Networks consists of smaller restricted Boltzmann

machines (RBMs) or Autoencoders stacked on top of one another. In this network,

architecture connections only exist between layers and not within the layers. The

11

stacked RBMs provides a system that can be trained greedily and extract a deep

hierarchical representation of training data. Deep belief nets have been used for

generating and recognizing images, video sequences, and motion-capture data. If the

number of units in the highest layer is small, deep belief nets perform a non-linear

dimensionality reduction.

2.1.7 Generative Adversarial Network (GAN)

Generative Adversarial Networks are first proposed by Ian Goodfellow in 2014 [16].

GAN network architecture is very promising due to its ability to generate new sam-

ples. Basically, the proposed model is capable of learning any probability distribution

and sample from the learned distribution. The network architecture consists of two

networks competing against each other in a zero-sum game. In the case of an image

generation problem, the generator synthesizes samples from Gaussian noise while the

discriminator classifies each sample as a true sample from the training set or fake one

generated by the generator. The training process continues until the generator’s sam-

ples become close to the original samples in the training set. GAN is in the family of

unsupervised learning algorithms. Figure 6 is a conceptual diagram for a generative

adversarial network [1].

Figure 6: The conceptual diagram of Generative Adversarial Networks [1]

12

2.2 Wide & Deep Learning Models

Wide & Deep shown in Figure 7 is initially introduced for App recommendation in

Google play [2]. It is inspired by human learning process, which is a complicated

process including both memorization and generalization.

Wide Models Deep ModelsWide & Deep Models

Hidden Layers

Sparse Features

Output Units

Dense
Embeddings

Figure 1: The spectrum of Wide & Deep models.

linear model with feature transformations for generic
recommender systems with sparse inputs.

• The implementation and evaluation of the Wide &
Deep recommender system productionized on Google
Play, a mobile app store with over one billion active
users and over one million apps.

• We have open-sourced our implementation along with
a high-level API in TensorFlow1.

While the idea is simple, we show that the Wide & Deep
framework significantly improves the app acquisition rate
on the mobile app store, while satisfying the training and
serving speed requirements.

2. RECOMMENDER SYSTEM OVERVIEW
An overview of the app recommender system is shown

in Figure 2. A query, which can include various user and
contextual features, is generated when a user visits the app
store. The recommender system returns a list of apps (also
referred to as impressions) on which users can perform cer-
tain actions such as clicks or purchases. These user actions,
along with the queries and impressions, are recorded in the
logs as the training data for the learner.

Since there are over a million apps in the database, it is
intractable to exhaustively score every app for every query
within the serving latency requirements (often O(10) mil-
liseconds). Therefore, the first step upon receiving a query
is retrieval. The retrieval system returns a short list of items
that best match the query using various signals, usually a
combination of machine-learned models and human-defined
rules. After reducing the candidate pool, the ranking sys-
tem ranks all items by their scores. The scores are usually
P (y|x), the probability of a user action label y given the
features x, including user features (e.g., country, language,
demographics), contextual features (e.g., device, hour of the
day, day of the week), and impression features (e.g., app age,
historical statistics of an app). In this paper, we focus on the
ranking model using the Wide & Deep learning framework.

3. WIDE & DEEP LEARNING

3.1 The Wide Component
The wide component is a generalized linear model of the

form y = wT x + b, as illustrated in Figure 1 (left). y is the
prediction, x = [x1, x2, ..., xd] is a vector of d features, w =
[w1, w2, ..., wd] are the model parameters and b is the bias.
The feature set includes raw input features and transformed

1See Wide & Deep Tutorial on http://tensorflow.org.

Figure 2: Overview of the recommender system.

features. One of the most important transformations is the
cross-product transformation, which is defined as:

�k(x) =
dY

i=1

x
cki
i cki 2 {0, 1} (1)

where cki is a boolean variable that is 1 if the i-th fea-
ture is part of the k-th transformation �k, and 0 otherwise.
For binary features, a cross-product transformation (e.g.,
“AND(gender=female, language=en)”) is 1 if and only if the
constituent features (“gender=female” and “language=en”)
are all 1, and 0 otherwise. This captures the interactions
between the binary features, and adds nonlinearity to the
generalized linear model.

3.2 The Deep Component
The deep component is a feed-forward neural network, as

shown in Figure 1 (right). For categorical features, the orig-
inal inputs are feature strings (e.g., “language=en”). Each
of these sparse, high-dimensional categorical features are
first converted into a low-dimensional and dense real-valued
vector, often referred to as an embedding vector. The di-
mensionality of the embeddings are usually on the order of
O(10) to O(100). The embedding vectors are initialized ran-
domly and then the values are trained to minimize the final
loss function during model training. These low-dimensional
dense embedding vectors are then fed into the hidden layers
of a neural network in the forward pass. Specifically, each
hidden layer performs the following computation:

a(l+1) = f(W (l)a(l) + b(l)) (2)

where l is the layer number and f is the activation function,
often rectified linear units (ReLUs). a(l), b(l), and W (l) are
the activations, bias, and model weights at l-th layer.

3.3 Joint Training of Wide & Deep Model
The wide component and deep component are combined

using a weighted sum of their output log odds as the pre-

Figure 7: Wide, Deep and Wide & Deep network models [2]

Memorization refers to the learning from previously seen examples, and general-

ization refers to applying previous knowledge to understand unseen examples. The

key idea behind Wide & Deep Neural Networks is to combine the benefits of both

memorization and generalization in one model. Wide & Deep jointly trains a wide

linear model (for memorization) alongside a deep neural network (for generalization),

and combines the strengths of both.

2.2.1 Model Architecture

The wide model is a single layer perceptron, which has the capability of catching the

direct features from historical data. Deep model is a multilayer perceptron, which

catches the generalization by producing more general and abstract representations.

The model is proved to be useful for large scale regression and classification problems

with sparse inputs such as recommender systems, search, and ranking problems.

Input for wide model is a manually crafted combination of raw features and trans-

formed features (cross product transformation of raw features to capture correlation

between them). The input vector is formally represented as {x, φ(x)}. {φ(x)} repre-

sents the cross product transformations of the original features x. Using this input,

the output of the wide model is formulated as y = W T
wide
{x, φ(x)} + b. Each layer

13

of deep model computes a(l+1) = f(W (l)a(l) + b(l)) where f is the activation function

(i.e., ReLU); and W (l), a(l), b(l) are models weights, activations, and bias for the lth

layer. Combining these two models, the prediction of Wide & Deep model for binary

classification is

P (Y = 1|x) = σ(W T
wide

[x, φ(x)] +W T
deepa

(lf) + b) (1)

where σ is the sigmoid function, and the symbols W T
wide

, W T
deep, and b are weights of

the wide and deep models, and the bias, respectively.

2.2.2 Feature Columns

Feature columns are intermediary transformers between estimator models and raw

data. The set of future columns are rich enough to make it possible between a wide

range of row features to data formats that models can use. We list types of different

columns as follows:

1. Numeric Column: Numeric Columns are used to feed numerical attributes into

learning models. The numeric column also has a shape attribute which makes

it possible to feed numerical vectors or matrixes into the model.

2. Bucketized Column: Bucketized column is an extension to the numeric column

and is used to discretize a numeric column. In other words, a bucketized column

is a way to convert a numerical column into a categorical one. An example

can be a numerical column which holds the year a house is built. With a

bucketized column it is possible to set boundaries like < 1960, >= 1960 but <

1980, >= 1980 but < 2000, >= 2000 and place each year into one of these

buckets. The resulting feature will be four digits one-hot encoding of year

values. The advantage is that the model can learn four weights instead of one

and has a better understanding of data.

14

3. Categorical Identity Column: Categorical Identity Column is a special version

of Bucketized column. For this column type, each bucket represents an integer

instead of intervals. The output is again a one-hot encoding vector.

4. Categorical Vocabulary Column: Categorical Vocabulary Column is used to

feed string attributes into the model. Categorical vocabulary columns provide

a good way to represent strings as a one-hot vector. Estimator API supports

two types of categorical vocabulary columns based on how the set of strings are

introduced to the model which are categorical column with vocabulary list and

categorical column with vocabulary file namely.

Figure 8: A mapping from string values to vocabulary columns [3]

5. Hashed Column: The hashed column is used to map attributes with a large

number of possible values. The raw values are passed through a hash function

and forced to map a smaller set of values limited by hash bucket size. Figure 9

shows a representation of this mapping procedure [2]

Figure 9: A representation of data with hash buckets [3]

15

6. Crossed Column: The crossed column is a way of feeding combinatorial features

into the model. To create cross features, corresponding values of selected fea-

tures are combined and passed through a hash function. The resulting values

are mapped to a smaller set of values limited by hash bucket size.

Figure 10: A representation of data with crossed column [3]

7. Indicator Column: Indicator columns never work on raw input but takes other

categorical columns as input and covert to one-hot encoding representation. So

that the resulting features can be fed as input to deep modols

8. Embedding Column: Indicator columns are used when the set of possible values

is small. Embedding columns on the other hand is used when the data has high

variation and using one-hot encoding is not efficient.

Instead of representing the data as a one-hot vector of many dimensions, an

embedding column represents that data as a lower-dimensional, ordinary vector

in which each cell can contain any number, not just 0 or 1.

2.3 Feature Generation Methods

In this thesis, we explore methods to improve the performance of Wide & Deep

learning models by eliminating the need for expert knowledge. There are some other

methods in the literature that are specialized to find cross features without feature

engineering. The two outstanding examples are DeepFM [4] and Deep Crossing[5].

16

2.3.1 DeepFM: A Factorization-Machine based Neural Network

DeepFM [4], which is short for Deep Factorization Machine, is an end-to-end model,

which seamlessly integrates Factorization Machine (FM) and Multi-layer Perceptron

(MLP). It is designed to work with highly sparse data as in Click Through Rate

(CTR) prediction problem. CTR prediction is basically the problem of predicting

whether the user will click to an online advertisement or not.

For CTR prediction models, it is important to learn underlying relations within

the data. The key requirement is effectively modeling feature interactions. Some

interactions like “male teenagers like shooting games and RPG games” are easy to

understand since they can be observed by human experts. This observation is an

order-3 relation between age, gender, and product category. However, there are many

other feature interactions hidden in the data and impossible to be observed by experts.

DeepFM is one of the deep learning models dealing with feature detection problem.

DeepFM architecture is an alternative to Wide & Deep models from Google [2]

since it combines wide and deep models in one architecture. The main difference is

that the DeepFM model uses the power of factorization machines to learn low-order

interactions, so input to both deep part and the wide part are the same, which is the

raw input. In comparison to Wide & Deep model, DeepFM does not require costly

feature engineering. It replaces the wide component with a neural interpretation of

the factorization machine. Figure 11 [4] illustrates the structure of DeepFM.

It can model the high-order feature interactions via deep neural network and low-

order interactions via a factorization machine. The factorization machine utilizes

addition and inner product operations to capture the linear and pairwise interactions

between features.

As in Figure 11, the architecture consists of two components, Deep component,

and FM component. Each input feature i has a scalar weight wi and a latent vector

Vi associated with it. The scalar wi is used to weigh its order-1 importance while

17

Figure 11: Wide & Deep architecture of DeepFM [4]

latent vector Vi is used to measure its impact of interactions with other features. The

latent vector Vi is fed to both wide and deep components to learn order-2 relations

and higher-order relations, respectively.

Each input feature is either categorical or numerical. Each categorical feature is

fed into model as one-hot encoding while each numerical field is fed as itself or one

hot-encoding after discretization.

All parameters, including wi, Vi, and the network weighs and bias parameters are

trained jointly for the combined prediction model:

y = sigmoid(yFM + yDNN) (2)

The wide part of the model is a factorization machine, which is proposed by

Rendle [17] to learn feature interactions for the recommendation. The FM component

learns both order-1 and order-2 relations within the data. Order-2 relations are

modeled as the inner product of latent vectors.

Figure12 [4] shows the architecture for FM Part of deepFM model. As Figure12

shows, the output of FM is the summation of an Addition unit and a number of Inner

Product units:

18

Figure 12: The architecture of FM [4]

yFM = 〈w, x〉+
d∑

j1=1

d∑
j2=j1+1

〈Vi, Vj〉xj1.xj2 (3)

The Addition unit 〈w, x〉 reflects the importance of order-1 features, and the Inner

Product units represent the impact of order-2 feature interactions.

The deep component is a feed-forward neural network that is used to learn higher-

order relations. The latent vectors in FM are used to create embedding features in

deep part by compressing original features. Even if the dimensionality of all input

features is different, the size of all embedding features is equal.

Figure 13: The architecture of DNN [4]

19

2.3.2 Deep Crossing

Deep Crossing is a model proposed by Shan et al. [5] as a solution to the problem of

prediction with highly sparse heterogeneous inputs without manual feature genera-

tion. The original method is discussed as a solution to the sponsored search problem

but can be generalized to other web-scale problems. Sponsored search is the problem

of showing the most relevant advertisements which match the user intends the best.

Intend here depends on the user’s search query.

The proposed method has been used with a variety of raw (i.e., minimal processing,

no combining/crossing features into more complex representations) dense, sparse, and

text features to produce a model that provides superior performance to a state of the

art model which used manual tuning. To motivate this, consider the problem that

Deep Crossing seeks to solve: training in the presence of heterogeneous (especially

textual) inputs.

Deep Crossing can be conceptually thought of as four separate operations com-

bined into one. The model has four types of layers which are the Embedding, the

Stacking, the Residual Unit, and the Scoring Layers namely. Figure 14 shows model

architecture for deep crossing [5]. The objctive function is log loss. Log Loss is defined

as below:

logloss = − 1

N

N∑
i

(yilog(pi) + (1− yi)log(1− pi)) (4)

where N is the number of samples, i is the index for the training samples, yi is the

actual label per sample and pi is the output of scoring layer.

Since Deep Crossing treats each input individually, the embedding step of Deep

Crossing is only concerned with high-dimensional inputs. Inputs that are low dimen-

sional are given an identity embedding and passed directly through to the stacking

layer. Inputs that are high dimensional (most notably text, however other high di-

mensional inputs are also considered here) are converted into low dimensionality via

an embedding layer. Embedding is applied to per individual feature if the feature

20

Figure 14: Deep Crossing model architecture [5]

is high dimensional or sparse. The embedding layer consists of single-layer neural

networks with Relu activations. The size embedding layer has a significant impact

on the resulting model size.

The stacking step is a pseudo-step in Deep Crossing. Its purpose is to combine

the results of the embedding layer for each input into a single vector that can be used

in the remainder of the network.

Residual units are powerful building blocks in neural networks. As the name

suggests, the goal of a residual unit is to learn the residual between the (given) input

and the (learned) output. This is accomplished by adding the input to the output of

the last layer before the activation function. In this way, the identity transformation

is explicitly encoded (by adding the input), and thus the layers must only learn the

difference between the input and the ”true” output.

2.4 Recommender Systems

Recommender systems are information filtering systems whose goal is to filter out

irrelevant data and present information on items and products that are likely to

21

be of interest to the reader. Recommender systems are widely being used by e-

commerce sites to improve user experience by predicting the preferences of the user

and presenting the most relevant products. Many example applications can be listed

as recommendations in web search, books, movies, music, restaurants, food, apparel,

vehicles, targeted advertisements, medicines, news, potential customers for companies

and many more.

A broad classification of recommender system classifies it into three categories,

namely, Collaborative filtering, Content-based filtering, and Hybrid filtering. Fig-

ure 15 gives an outline of the classification [6]

Figure 15: Classification of recommender system approaches [6]

2.4.1 Collaborative Filtering

Collaborative filtering is a method of making automatic predictions about the inter-

ests of a user by collecting preferences or ranking information from many users.

Collaborative filtering approaches can be grouped into two main categories: memory-

based and model-based. Memory-based approaches make heavy use of user database

to find customers with similar tastes. These methods use some explicit indicators

22

such as ranks given by the users or implicit information such as items bought by the

user, page visits, and so on. The memory-based system can be either an item-item

or a user-user system.

The item-item collaborative filtering systems focus on relations between items

that are bought together. If items A, B, and C usually enter in the shopping cart

together, the system recommends product C to users who added or bought item A

and B.

In user-user collaborative systems, the focus shifts from item to the user, and the

system detects similarities between purchase behaviors and rankings of users. If users

A, B, and C have similar rankings or buying history, an item bought by A and B can

be found interesting by user C.

Model-based collaborative filtering methods use a user database to learn a model

that can predict user preferences. Deep learning models and clustering models also

fall into this category.

2.4.2 Content Based Filtering

Content-based filtering methods focus on the preferences of a single user and model

recommendation task as a user-centered classification problem. The system uses

discretized, pre-tagged attributes of items and users which are item profiles and user

profiles namely. In these systems, user profiles have the same attributes as item

profiles and indicate user’s preferences. The system decides based on the similarity

between the user profile and item profiles.

2.4.3 Hybrid Filtering

Both content-based filtering and collaborative filtering have their limitations and

strengths. Hybrid filtering methods combine the advantages of both approaches and

can avoid their limitations. Collaborative filtering and content-based filtering can

be combined by building two systems separately and later combining their results or

23

by adding content-based capabilities into the collaborative filtering system and vice

versa.

Netflix movie recommender system is an example of such hybrid systems. The

system makes recommendations based on the searching and watching behavior of

similar users and also recommends movies that share common characteristics with

the movies which are rated highly by the user.

2.5 Decision Tree Classification

In this thesis, we use decision tree models as base models to create cross features

automatically. This section gives some background information on decision tree clas-

sification.

Decision trees are one of the most commonly used supervised predictive modeling

approaches in machine learning. The idea is to use a tree-structured model to go

from observations (branches in the nodes) about a sample to conclusions about the

item’s target value (labels in the leaves).

A tree structure starts with a root node. Each internal node denotes a test on an

attribute, and each branch denotes an outcome of the test, and each leaf node holds

a class label.

2.5.1 Decision Tree Learning Algorithms

Decision tree learning is the process of constructing a decision tree from labeled data

samples. There are different algorithms proposed to construct decision trees. Some

of the decision tree learning algorithms are listed below.

• ID3 (Iterative Dichotomiser 3)

• C4.5 (an extension of ID3)

• CART

24

• Chi-square automatic interaction detection (CHAID)

ID3 algorithm, which is developed by J. R. Quinlan [18], is the core algorithm for

building decision trees. This algorithm employs a top-down, greedy search through

the space of possible branches. ID3 uses Entropy and Information Gain to construct

a decision tree.

C4.5 [19] builds decision trees from a set of training data in the same way as ID3,

using the concept of information entropy. The splitting criterion is the normalized

information gain (difference in entropy). The attribute with the highest normalized

information gain is chosen to make the decision. C4.5 made a number of improvements

to ID3 such as handling both continuous and discrete attributes, handling training

data with missing attribute values and pruning trees after creation

Chi-square Automatic Interaction Detector is proposed by G. V. Kass [20]. The

algorithm stops sub-tree creation if not statistically significant by the chi-square test.

CART stands for Classification and Regression Trees is proposed by Breiman [21].

The algorithm uses the Gini index to measure the quality of each split.

2.5.2 Decision Tree Metrics

Decision tree learning algorithms usually work top-down and at each step find the

variable which splits the data best. They measure homogeneity on subsets to decide

the best split, and they use different homogeneity metrics to decide. To calculate

the average homogeneity of a split, the metrics are applied to each subset, and the

resulting values are combined. Some of the metrics used to measure homogeneity are

listed below:

• Gini impurity

• Information gain

• Chi-Square

25

• Variance reduction

2.5.3 Gini Index

Used by the CART (classification and regression tree) algorithm for classification

trees.

Gini Index is a metric to measure how often a randomly chosen element would

be incorrectly identified. It means an attribute with a lower Gini index should be

preferred. Gini index performs only binary splits and CART (Classification and

Regression Tree) uses the Gini method to create binary splits.

The Formula for the calculation of the of the Gini Index is given below:

GiniIndex = 1−
c∑
i

p2
i (5)

where c is the number of classes and pi is the probability that an arbitrary sample

belongs to class i

2.5.4 Entropy and Information Gain

Information gain is used by the ID3 , C4.5 and C5.0 tree-generation algorithms and

it is based on the concept of entropy from information theory.

Entropy is a measure to calculate the homogeneity or impurity of a sample. If the

sample is completely homogeneous the entropy is zero and if the sample is equally

divided then its entropy becomes log2(c). The formula for entropy is as follows:

Entropy(S) =
c∑

i=1

−pilog2pi (6)

where c is the number of classes and pi is the probability that an arbitrary sample

belongs to class i

The information gain is based on the amount of decrease in entropy after the data

is split based on an attribute. The learning methodology is to find the attribute that

26

returns the highest information gain. The information gain is calculated as follows:

Information Gain = entropy(parent)− [average entropy(children)]

Gain(S,A) = Entropy(S)−
∑

v∈values(A)

‖Sv‖
‖S‖

Entropy(Sv)
(7)

Where A is the selected attribute, v is one the possible values of A and Sv denotes

set of all samples with value v on their A attribute.

2.5.5 Chi-Square

It is a measure to find out the statistical significance between the differences of sub-

nodes and parent node. It is measured as the sum of squares of standardized dif-

ferences between observed and expected frequencies of the target variable. The chi-

square algorithm can make binary or higher splits. Higher Chi-Square values imply

higher the statistical significance of differences between sub-node and Parent node.

The formula for chi-square is as follows

X2
c =

∑
i

(Oi − Ei)
2

Ei

(8)

Where Ei is the expected value before split based on the parent node and Oi is the

observed value after the split.

2.5.6 Variance reduction

Reduction in variance is an algorithm used for continuous target variables (regression

problems). This algorithm uses the standard formula of variance to choose the best

split. The split with lower variance is selected as the criteria to split the population:

V ariance =

∑
(X − X̄)

n
(9)

Where X̄ is the mean of the values, X is the actual, and n is the number of values.

Introduced in CART, [4] variance reduction is often employed in cases where the

target variable is continuous (regression tree).

27

CHAPTER III

ENHANCING DEEP MODELS FOR CAMPAIGN

PARTICIPATION PREDICTION

In order to predict whether customers are likely to accept the given offers, we propose

the idea of using Wide & Deep network models with cross features due to their ability

to combine generalization and memorization in one model. Furthermore, we propose

to adopt decision trees for cross features required for that model instead of generating

them manually. This chapter describes our methodology elaborately and also the

evidential deep learning concept and its use in the campaign participation prediction

task for quantifying prediction uncertainty.

3.1 Methodology for Campaign Participation Prediction

This section describes our general methodology to train and test models with the

proposed cross feature creation method to predict the campaign participation behav-

ior of customers. Figure 16 illustrates the steps taken in the process of campaign

participation prediction. The first phase (i.e., task 1 in the figure) of our work is to

collect data from a variety of data sources such as Campaign Management, Billing,

and Real-Time Marketing systems. After collecting data, the second phase (i.e., task

2–5) is preprocessing the data for prediction task described as follows:

• Parsing offer messages automatically by using a set of regular expressions to

obtain offer attributes (i.e., raw features of offers).

• Constructing the dataset for deep learning models.

• Balancing dataset using undersampling [22] so that the resulting datasets are

28

not biased towards any decision.

• Employing the proposed method in order to create cross features to be used by

the wide model. The details of cross feature generation methodology have been

explained in Section 3.3.

Figure 16: Overview of the methodology

The last phase (i.e., task 6–8) is the learning process in which the model for pre-

dicting campaign participation behavior of customers is built. Here, we construct

Wide & Deep network models, which takes customer and offer attributes as inputs

and outputs its prediction in terms of a probability distribution over the possible re-

sponses of the customer: accept or reject. It is worth noting that this model requires

cross features provided by domain experts as input features for the wide network. For

the case of campaign participation prediction, expert knowledge might be insufficient

since it is not straightforward to capture the relations from the given data. To over-

come this problem, we design and implement a decision tree based method, which

automatically constructs interpretable cross features (i.e., task 5).

29

As usual, the learning process involves tuning hyper-parameters (i.e., task 6) such

as the number of layers, the number of neurons in each layer, learning rate, regular-

ization rate are selected. After finalizing the most suitable parameter set, the model

is trained and tested with each dataset separately (task 7). For evaluation purposes,

we train and test the Deep Network and Wide & Deep Networks with different feature

sets (i.e., manually crafted cross features and automatically crafted cross features) so

that we can observe the effectiveness of automatically crafting features in comparison

to manually crafted cross features (task 8).

Apart from making accurate prediction, this thesis also focuses on the confidence

of learners in order to prevent the consequences of false positive in campaign par-

ticipation prediction. Therefore, we also extended Deep and Wide & Deep models

in Estimator API with the methodology described by Şensoy et al. [9] and created

Evidential Deep, Evidential Wide & Deep models in order to prevent failure cases and

make more confident decisions. The details of these models and uncertainty concept

are shared in Section 3.5

3.2 Data Collection and Preprocessing

In this thesis, we focus on the process and enhancement of campaign management for

leading telecommunication companies. Such companies serve millions of customers

with voice, data, TV and value-added consumer and enterprise services on mobile

and traditional networks. This chapter describes how we collect and preprocess data

obtained from a leading telecommunication service provider.

3.2.1 Campaign Management System for Telecommunication

We collected campaign participation data from Campaign Management, Billing, and

Real-Time Marketing systems as described before. This section includes an overview

of the campaign management and marketing platform of the selected provider. Fig-

ure 17 shows an overview of the campaign management system, which provides the

30

required participation dataset.

Figure 17: High-level architecture of campaign management system

The system described in Figure 17 consists of two main sub-systems: outbound and

inbound campaign management systems. Outbound campaign management refers to

any kind of marketing where a company initiates the conversation and sends messages

out to an audience while inbound campaign management is the part where the conver-

sation is initiated by the customer. Campaign management in total is a combination

and coordination of these two systems. In this architecture, outbound marketing is

responsible for making offers and sending advertisement messages to customers so

that customers initiate another conversation to buy the advertised offers via inbound

channels such as dealers, web site or applications.

The outbound campaign management system also consists of two sub-systems:real-

time and bulk (or offline) campaign management systems. The real-time marketing

system executes some scenarios (i.e., set of rules), listen for specific events (e.g.,

change of tariff), and executes some predefined eligibility conditions to detect target

31

customers for related campaigns before accessing customers with predefined methods.

For instance, when a customer exceeds the data limit in his/her package, the system

may make an offer to the customer to increase his/her data limit in exchange for an

additional payment. The offer is decided and delivered to the customer based on the

rules and instructions defined in the related campaign.

The offline system, on the other hand, takes bulk customer lists as input and apply

some predefined offline checks and access the customers via specified channels, e.g.,

through call center representatives. Each list in this system is a set of target customers

selected for a specific offer and an input for a predefined campaign strategy, which

includes checks and access channels to deliver the offer to the target customer. To find

the best match among customers and offers, these lists are composed by taking into

account information about customers and offers, such as offer price, max sales limit,

access limitations (daily, weekly and monthly allowed access counts per customer),

and customer permissions. The company uses those data in order to maximize the

revenue of the company under given constraints and limitations.

Offers and campaigns are put forwarded to customers via one of the access channels

(text, email, web, etc.). Note that an offer is basically a recommendation to customers

to increase both product or service sales and customer satisfaction. In order to

participate in a particular campaign or accept an offer, they may send a text message

to a specific short number (Inbound channel) or take a predefined action to attend

the related campaign (outbound channel). Besides inbound and outbound channels,

they may also participate via one of many sales channels such as dealers.

Whenever a customer is accessed via one of the access channels, this is called

campaign extended response. If the user accepts the offers via inbound, outbound or

one of other sales channels, this is called campaign accepted response. The percentage

of the campaign accepted response to the campaign extended response defines the

success ratio of the related campaign in targeting.

32

3.2.2 Campaign Participation Dataset

We performed a detailed analysis of campaign participation data of the GSM service

provider and observed that the acceptance rates of offers differ significantly. Some

offers have acceptance rates as high as 10% while some other offers are accepted only

by 1% of the advertised customers. To make a fair evaluation and in-depth analysis

of machine learning algorithms, we divided our offer dataset into three subsets based

on the acceptance rates of the offers as follows:

1. Rarely accepted offers: This dataset contains data from offers whose accep-

tance rate is lower than 2%.

2. Moderately accepted offers: This dataset contains data from offers whose

acceptance rate is between 2% and 7%.

3. Highly accepted offers: This dataset contains data from offers whose accep-

tance rate is higher than 7%.

The main intuition for the given percentages above relies on our data analysis.

Our analysis has shown that only 10% of all offers lay below 2% acceptance rate

and 10% of the offers lay above 7% acceptance rate. Thus, we defined the interval

between 2% and 7% as the expected acceptance rate range for offers. An offer has

a high likelihood of having an acceptance rate between those rates. Our goal here is

to examine campaigns with similar acceptance rates together and to compare them

with other groups based on acceptance behavior.

We picked 25 offers from each aforementioned category. An example offer sent to

the customers as a text message is shown below:

“Get 500 minutes and 500MB only for 21 TL/month. You can join this campaign

by texting ‘MONTHLY 500MIN’ to 1111 and start to benefit from this special offer”

33

These offers cannot be processed directly by machine learning algorithms. There-

fore, we need to vectorize them to represent the content of the offers in a way that

these algorithms can process. For this purpose, we selected offer attributes listed in

Table 1 and implemented an algorithm to extract that information from the offer text

using a number of regular expressions. More complicated methods such as using word

embeddings with recurrent neural networks or self-attention mechanisms can be used

to vectorize this data [23]. However, it requires significantly more offer samples; and

more importantly, these methods are not in the scope of this work, and we preferred

to keep the vectorization part simple to focus on evaluating the performance of the

different models with respect to our main contributions.

Every offer in our dataset has a price and validity duration. These features can

be thought of as mandatory features. All the other features extracted out of offer

text are optional, and their existence depends on the offer type. For instance, an

offer promoting a specific package has DATA, SMS, VOICE attributes, while an offer

promoting a digital application has MEMBERSHIP, APP DATA, or DISCOUNT

attributes. Once, the offers are vectorized using these attributes; we can use various

machine learning approaches to process the data.

After gathering and processing the data regarding offers/campaigns, we gathered

the offers which are made to the customers and their responses accordingly. The

response can be explicit, i.e., the customer accepts it, or implicit the customer does

not do any action in response, meaning an implicit reject. Attributes of response data

are listed in Table 2

The response data includes the campaign participation information of the cus-

tomers and is originally imbalanced since the number of customers accepting each

offer is much smaller than the number of customers not accepting it. To obtain bal-

anced datasets, for each offer category, we randomly sampled 60000 records in a way

that half of them are accepted while half of them are rejected. The response dataset

34

Table 1: Offer attributes
PRICE (TL) Sales Price

DURATION(DAYS) Amount of time during which

offer can be used

DATA (MB) Data allowance

DATA NIGHT (MB) Data allowance, which can only

be used at night time

VOICE (MINS) Voice amount in minutes

SMS (#) Sms Amount

DOUBLE OFFER (BOOL) Offer which duplicates

bought credits

DOUBLE LIMIT Min. Amount of credit to be

bought to activate doubling offer

INTRENATIONAL ROAMING data/sms/voice in offer can be

used in foreign countries or not

FREE DATA (MB) Data allowance given as a gift

with an offer

FREE VOICE (MINS) Minutes given as a gift

with an offer

FREE SMS (#) Minutes given as a gift

with an offer

CANCELATION (BOOL) Offer message includes

how to cancel info or not

DISCOUNT (BOOL) Applies promotion on

sales price or invoice

ADVANCE (TL) Allows to use extra credit

(negative balance)

EXCLUSIVE (BOOL) Offer message includes

”just for you” text

MEMBERSHIP (BOOL) Offer gives membership to

services and applications

APP DATA (MB) Data allowance that can only be

used with a specific application

OFFER (BOOL) Offer requires a specific

application to get activated

and recommends the application

WEEKEND ONLY (BOOL) data/sms/voice in offer can

only be used at the weekend

is also the core dataset that connects offer data and subscriber data (i.e., customer).

Each response record includes the offer id which uniquely identifies offer made to

customer and subscriber id which uniquely identifies the subscriber who received the

35

Table 2: Response attributes
RESPONSE HISTORY ID Unique id of response in

Response collection System

SUBSCRIBER ID Unique id of subscriber in

Response collection System

RESPONSE TYPE Type of campaign

(Offline or Real-time)

RESPONSE DATE (DATE) Date of response

RELATED OFFER ID Unique id of offer

RELATED RESPONSE ID Unique id of response in

Campaign Management System

RELATED CAMPAIGN ID Unique id of campaign

offer. Figure 18 shows the relation between response, subscriber, and offer data.

Figure 18: Relations among subscriber, offer and response data

Subscriber dataset basically includes features of those customers which have at

least one response in our response dataset. These features include personal informa-

tion such as age, gender, bill city, tenure as well as information regarding their usage

habits such as average revenue per user (ARPU), voice usage, data usage, and so

on. There are 146 attributes in the subscriber dataset. Some example attributes are

listed in Table 3. The complete list of 146 attributes is not shared in this thesis due

to confidentiality limitations. In the prediction process, we use those attributes to

train the underlying models.

The output of our data collection process is three different campaign participation

datasets. Each of these datasets contains customer usage behavior, demographic

information, offer information, and users’ campaign response (accepted and extended

36

Table 3: Examples of subscriber attributes
AGE Subscriber age

AVG DATA USAGE M3 Avg. Data usage

for last three months

AVG DATA USAGE M6 Avg. Data usage

for last six months

GENDER Subscriber gender

AVG VOICE USAGE M3 Avg. voice usage

for last three months

AVG VOICE USAGE M6 Avg. voice usage

for last six months

BILL CITY Billing city

TENURE Subscription age in months

AVG INVOICE M3 Avg. invoice

for last three months

responses) for a different acceptance rate interval.

User preferences and privileges are also taken into account during the data col-

lection process; only the data of users who granted data processing permission is

included in datasets.

3.3 Decision Tree Based Cross Feature Generation

The success of machine learning models strongly depends on the input features. Even

though deep learning models are strong candidates to find hidden relations among

attributes, they may fail in memorizing the data (i.e., “learning the frequent co-

occurrence of items or features and exploiting the correlation available in the historical

data”) [2]. Wide & Deep learning models deal with this problem by combining Wide

& Deep networks in a single model. However, they need manually crafted features

requiring domain expertise knowledge.

campaign participation dataset, whose details are shared in Section 3.2.2, is a

highly complex dataset with around 170 features and expert knowledge on this dataset

is nearly absent. Even though human experts have information on the meaning of

each feature in the dataset, they are unable to detect relations among features. This

37

is the main challenge we encountered while building efficient deep learning models

for campaign participation prediction. To cope with this issue, we propose to detect

cross relations automatically by using decision trees. Cross features are basically

cross-product transformations of the original raw features and are used to represent

these cross relations among features. The idea is to combine raw features so that the

resulting feature is more informative than a feature itself. A more detailed explanation

of cross features can be found in Section 2.2.2. This section includes details of the

method for generating those features automatically.

The proposed method uses decision tree models to create cross features which

requires also constructing the categorical features for continuous features automat-

ically. Decision trees are good at finding the most important/informative features

or feature sets and also finding boundaries for continuous features. For example, if

the data has a continuous value such as age, the decision tree algorithm can find

some boundaries such as (e.g., < 20, 20<x<50, >50) for classification rules. Those

boundaries can be used for the generation of categorical features (i.e., discretization

of continuous values) effectively. Furthermore, rules generated by decision trees can

be used to construct cross features. In other words, the branching structure in the

decision tree can help us to find out the hidden relations among the features. This

property makes decision tree a good candidate for generating cross features.

The proposed feature creation process consists of two sub-processes: (i) tree

traversal and (ii) feature generation. The tree traversal process is basically the pre-

processing step of the proposed method. The output of tree traversal process is a list

of paths in the decision tree, which we will name as path list, and a map of continuous

features with their discretized boundaries, which we will name as features map for

the rest of this section. The output of this phase will be used in feature generation

step. Figure 19 is the flow diagram for the tree traversal process.

The first step of the flow diagram in Figure 19 is to build a decision tree for the

38

Figure 19: Flow diagram for the tree traversal processes

given dataset. Figure 20 is a conceptual tree model, which we will use as an example

for the rest of this section to describe our approach. In this example, the sample

dataset involves five features: f1,f2,f3,f4,f5 and we have three possible classes: A,

B, and C. In the given representation, circle nodes denote leaf nodes capturing the

associated class label. Note that the class label is determined by the majority rule

on the dataset bounded by the path. For example, when the path is “f1 < 50 and

f2 < 100 and f1 > 15”, the example is classified as “A”. The rectangular nodes

represent branching conditions such as “f1 < 50”.

Figure 20: Sample tree model for feature generation

39

After building the decision tree, pre-order traversal is applied to visit every node

in the tree. For each node visited, it is checked to see whether it is a test node with a

branching condition or a leaf node with a class label. If the node is a test node then

it is added to features map; otherwise, it is added to path list. In other words, when

it reaches the leaf node, it considers the pre-ordered sequence of visited nodes as a

path and accordingly adds it to the path list.

Adding a node to features map does not mean adding the actual node but it

means updating the features map content according to branching condition on the

node. The keys of features map are the feature names such as f1, f2 and the values

of features map are the list of decision values such as [15, 50, 70], [100] respectively.

While adding a node to features map, first we check if the map already has the current

feature key. If it includes the key, we get the corresponding list and add the decision

value to the list; otherwise, we add a new list with the feature name as key and add

value to the newly created value list. As an example, the features map for the decision

three model in Figure 20 is as follows:

features map =
{
f1 : [15, 50, 70], f2 : [100], f3 : [20], f4 : [30], f5 : [10]

}
As mentioned before, if the visited node is not a test node, which means it is a

leaf node with a target class label; then the pre-order visit sequence of the nodes

up to that node is added to path list. Let’s assume the case of our previous exam-

ple with the decision tree model in Figure 20. The pre-order traversal of the whole

tree is a linear representation of the tree and equal to: {f1, f2, f1, ClassA,ClassB,

f3, ClassC,ClassA, f4, f5, classB,ClassC, f1, classA, classB}. A similar tree lin-

earization method is used before to apply LSTM-based networks on tree-structured

data [24], while here we are using it to extract new features of the data.

The pre-order traversal first visits branching nodes f1 < 50, f2 > 100, f1 > 15 in

this order and then visits a leaf node, which is Class = A. Once Class = A node is

visited, pre-order visit sequence f1, f2, f1 is added to path list. After Class = A is

40

visited, Class = B leaf node is visited but this visit does not add a new path to the

list, since f1, f2, f1 is already in the list. The pre-order traversal continues visiting

f3, and then again a leaf node which is Class = C is visited. Once Class = C node

is visited, the pre-order visit sequence f1, f2, f1, f3 is added to path list. The process

continues to visit every node in the tree and adds every new path to the path list.

The resulting path list for the sample tree is as follows:

path list = [[f1, f2, f1]

[f1, f2, f1, f3],

[f1, f2, f1, f3, f4, f5],

[f1, f2, f1, f3, f4, f5, f1]]

The outputs of tree traversal process, which are features map and path list, are

inputs of the feature generation process. The goal of feature generation process is to

generate categorical features and cross features that can directly be used by Wide &

Deep models. Figure 21 is the flow diagram for the tree traversal process.

Figure 21: Flow diagram for automatic feature generation

The first step of the flow diagram in Figure 21 is to read path list. The feature

generation process iterates over each path in the path list in order. During these

iterations, the difference of each path from the previous one is found in a way similar

41

to the delta encoding method. Delta encoding is a way of storing or representing

sequential data in the form of differences, and it is also known as data differencing.

In order to transform path list into delta encoding format, we keep track of two

variables, current and prev for the current path and previous path respectively. The

difference of the current from the prev is called as delta. After finding delta, we check

whether or not the length of the delta is greater than one. If the difference between

two items is a single node, this delta value is skipped; otherwise, the delta value is

added to the cross features list. Each delta value is a set of features, which will later

be used to create cross features.

As an example, if we take the sample path list above as input, the delta encoding

for this path list will be
[
[f1,f2,f1],[f3],[f4,f5],[f1]

]
. Since the length of the second and

fourth delta items in the list is one, they are ignored during calculation. The resulting

feature sets for cross feature generation is
[
[f1,f2,f1], [f4,f5]

]
. Since we use one-hot

encoding in our learning methods, size of the possible values for each cross feature

may play a crucial role. The designer may avoid large sized cross features due to the

performance of learning algorithms. Therefore, in our system, we can determine the

maximum value size for cross features by setting a hash bucket size and accordingly

cross features are created for each feature set in the list.

To create a informative cross feature, we also need to set a reasonable hash bucket size

for each delta (i.e., a set of features used for cross feature generation). Selecting small

hash bucket size values results in high amounts of data collisions (i.e., different values

resulting the same bucket) thus, data loss while picking very large values results in

highly sparse and inefficient input features. We determine the hash bucket size by

multiplying the number of possible values for each feature as shown in in Figure 22,

which presents the pseudo-code for the whole process for automatic creation of cross

features with decision tree models. More detailed explanation of pseudo-code is as

follows:

42

Figure 22: Pseudo-code for automatic feature generation

• Lines 1–2: Pre-processing and initialization of training data and model pa-

rameters such as the number of levels for the decision tree model.

• Line 3: Decision tree model training

• Line 6: Generation of features map and path list with depth first traversal.

The details for the creation of features map and path list are explained previ-

ously in this section.

• Lines 7–9: Initialization of temporary variables such as cross features, prev,

current and delta and upper limit for hash bucket size.

• Lines 10–12: Detection of unique, non-repeating paths with a methodology

like delta encoding of the decision tree paths. At this step, every decision path is

43

subtracted from the next path in the list so that only the newly discovered paths

added to the cross feature list and the repeating paths within cross features are

eliminated.

• Lines 13–15: For each cross feature generated from each path of the decision

tree, hash bucket size is calculated by multiplying the number of possible values

for each feature in this path.

• Lines 16–18: If hash bucket size value is very large (e.g., over 100000), the

list of features is split into smaller feature sets as long as they are separable and

the list contains at least four features. The rule of thumb while splitting cross

features is to split them in such a way that hash bucket size for each feature

set is less than a reasonable value such as a ten thousand or less. For our

datasets, we applied this extra split operation for one or two cross features, and

the experimental results have shown that cross features with very large hash

bucket size give worse results in terms of efficiency in comparison to the ones

with smaller hash bucket size.

• Lines 19–21: If hash bucket size value is within allowed limits, the cross

feature is added to the list with the calculated size value.

• Line 24: At this step, the calculated output is used to create feature columns

that can be used by the neural network models in the estimator API. This is the

point where the proposed method integrates with the neural network model.

Figure 23 is another example of decision tree models, which are being used to

create cross features on campaign participation dataset. Note that this example is

simplified for demonstration purposes. Figure 24 shows a sample representation of

features map with some example values created based on the decision tree model in

Figure 23. Let’s consider SUM REFILL M1 and PRICE TL features. According

44

to the decision tree in Figure 23, raw feature SUM REFILL M1 is used in five test

nodes and each test node checks with a different boundary value such as 1, 2.5,

5.5, 46 and 57.5 while PRICE TL feature is used in two nodes and these nodes

make checks on values 19.5 and 29.5. As a result, the resulting features map includes

SUM REFILL M1 and PRICE TL as keys and the values are the corresponding

value lists for these features: [1, 2.5, 5.5, 46, 57.5] and [19.5, 29.5].

SUM_REFILL_M1<=2.5

PRICE_TL <=19.5

SUM_GPRS_USAGE_KB_M12
<=2500000

SUM_REFILL_M1
<=1.0

SUM_GPRS_USAGE_KB_M6
<=450000

SUM_ARPU_M1
<=7.99

SUM_OUT_NAT_
NR_TOT_SMS <=5

DURATION_DAYS
<=15.5

HEDIYE_DATA<=512

SUM_REFILL_M1
<=46

AVG_OUT_NR_DATA_USG_M3
<=60.4

SUM_REFILL_M1
<=57.5

SUM_REFILL_M1
<=5.5

PRICE_TL
<=29.5

AVG_OUT_NR_DATA
_USG <=60.4

Figure 23: Decision tree model example

Figure 24: Sample representation for feature map

Sample representation of path list with three initial sample paths is shown in

Figure 25. If we transform this path list into delta encoding format, we end up with

the differencing list
[
[SUM REFILL M1, PRICE TL, SUM GPRS USAGE KB

M12, SUM GPRS USAGE KB M6], [SUM ARPU M1], [SUM REFILL M1,

SUM OUT NAT NR TOT SMS]
]

which is also shown with red color in Figure 25.

The final output of the proposed method is a set of categorical features and

cross features, as shown in Figure 26. As seen from this figure, the first path

[SUM REFILL M1, PRICE TL, SUM GPRS USAGE KB M12, SUM GPRS

USAGE KB M6] is considered as a cross feature while SUMARPU M1 is taken as

a categorical feature.

45

Figure 25: Sample representation for path list

Categorical
Feature

Examples

Cross
Feature
Example

PRICE_TL_CAT = tf.feature_column.bucketized_column(
PRICE_TL,
boundaries=[19.5, 29.5])

SUM_REFILL_AMT_M1_CAT = tf.feature_column.bucketized_column(
SUM_REFILL_AMT_ M1,
boundaries=[1.0, 2.5, 5.5, 46.0, 57.5])

tf.feature_column.crossed_column(
[SUM_REFILL_AMT_M1_CAT,PRICE_TL_CAT,
SUM_GPRS_USAGE_KB_M12_CAT,
SUM_GPRS_USAGE_KB_M6_CAT], hash_bucket_size=162)

Figure 26: Sample categorical & cross features

3.4 Networks with Automatically Generated Features

This section explains how we combine the proposed method with Wide & Deep net-

work models to eliminate the need for manually crafted features. Wide & Deep

network models are joint networks consisting of a wide part and a deep part. Orig-

inal network model feeds categorical features and manually crafted cross features as

input to wide part and feeds numerical features and categorical features to deep part.

In other words, categorical features are used in cross features and fed into the wide

part of the network to increase memorization capabilities. They are also fed into the

deep network to learn hidden relations and to increase the generalization capability

of the network. As a result, generating efficient categorical features is as important

as generating efficient cross features.

The outputs of the cross feature generation process, namely numeric column (i.e.

46

a single numeric feature), bucketized column, crossed column and indicator column

(i.e., a single categorical feature), are used by the neural network. For each key value

in features map, we create categorical features (bucketized column) based on the value

lists in features map. For example, consider our previous example. For feature f1,

the boundary list [15, 50, 70] splits numerical column f1 into 4 mutually exclusive

areas which are f1 ≤ 15, 15 < f1 ≤ 50, 50 < f1 ≤ 70 and 70 < f1. The resulting

feature is a one-hot encoded 4 digit categorical column, which can take one of four

possible values. The model learns four weights instead of one for this specific example.

Consequently, we enhance learning capability from data by increasing the number of

learned weights per feature. The categorical features for the sample decision tree in

Figure 20 is listed as follows.

categorical f1 = tf.feature column.bucketized column(f1, boundaries = [15, 50, 70])

categorical f2 = tf.feature column.bucketized column(f2, boundaries = [100])

categorical f3 = tf.feature column.bucketized column(f3, boundaries = [20])

categorical f4 = tf.feature column.bucketized column(f4, boundaries = [30])

categorical f5 = tf.feature column.bucketized column(f5, boundaries = [10])

These newly created categorical features (bucketized column) are used with orig-

inal categorical features to create cross features (crossed column). The generated

code for cross features are used within the model without any modification. The

cross feature list for the sample decision tree in Figure 20 includes two values which

are [f1, f2, f1] and [f4, f5]. As mentioned before cross features are cross product trans-

formations of the categorical features. While generating cross features we use corre-

sponding categorical features instead of numerical ones. Cross features generated for

47

the sample decision tree in Figure 20 is listed as follows.

cross feature1 = tf.feature column.crossed column(

[categorical f1, categorical f2, categorical f1],

hash bucket size = [32])

cross feature2 = tf.feature column.crossed column(

[categorical f4, categorical f5],

hash bucket size = [4])

The hash bucket size values 32 and 4 are calculated based on the methodology

described in pseudo-code in Figure 22. We multiply possible number of values for

each categorical feature in the generated cross feature. As an example, cross feature1

consists of three categorical features which are categorical f1, categorical f2, categor-

ical f1 and the hash bucket size is the multiplication of maximum possible values for

each feature which is 4× 2× 4 = 32.

The categorical and cross features generated by the proposed method are added

to the original feature set in campaign participation data.

3.5 Uncertainty-aware Predictions

In order to prevent false positives in predictions and to make more reliable decisions,

uncertainty-aware network models are used for this work instead of standard network

models. The section provides details on uncertainty concept and their extension for

evidential deep learning models.

3.5.1 Uncertainty and the Theory of Evidence

Dealing with uncertainty is a fundamental issue for AI. There are many potential

sources of uncertainty that AI systems must be able to cope with; the reason may be

imperfect domain knowledge, imperfect case data (errors in sensor data), and so on.

48

Several alternative logics that take uncertainty and ignorance into consideration have

been proposed and successfully applied to practical problems.

The theory of belief functions also referred to as evidence theory or Dempster-

Shafer theory (DST) [25], which is a general framework for reasoning with uncer-

tainty. Rather than computing probabilities of propositions, it computes probabilities

that evidence supports the propositions. This measure of belief is called a belief func-

tion, written Bel(X). A binomial opinion applies to a single proposition and can

be represented as a Beta distribution. A multinomial opinion applies to a collec-

tion of propositions and can be represented as a Dirichlet distribution. Through the

correspondence between opinions and Dirichlet distributions, Subjective Logic [26]

provides an algebra for these functions. If there are K possible outcomes or class

labels for a sample, Subjective Logic assumes K mutually exclusive singletons and

assigns a belief mass to each of them and expresses “I do not know” as an opinion for

the truth over possible states. K mass values and an uncertainty value for “I do not

know” are all non-negative and sum up to one as represented in Equation 10. In other

words, the sum of all belief masses for the assignment of a sample to K categories

in classification tasks does not necessarily add up to one, due to the existence of a

non-zero uncertainty.

u+
K∑
k=1

bk = 1 (10)

A belief mass bk for a singleton k (i.e., corresponding class) is computed using

the evidence. Belief, uncertainty and the Dirichlet strength (S) are calculated in

Equation 11 where the evidence ek for a singleton is the amount of support for the

classification of a sample; belief mass bk for a singleton is directly proportional to

the evidence collected for class k; sum of all evidences plus number of categories

(K) is the Dirichlet Strength and uncertainty is inversely proportional to it. Note

that according to formulation, if all evidences are zero, the belief for each singleton

49

becomes zero as well and uncertainty becomes 1. The reverse interpretation is also

possible. If evidence for at least one class is very large, Dirichlet strength gets very

large and uncertainty approaches to zero.

bk =
ek
S
, u =

K

S
, S =

K∑
k=1

(ek + 1) (11)

3.5.2 Evidential Deep Learning (EDL)

The Dempster–Shafer Theory of Evidence (DST) assigns belief masses to the set of

exclusive possible states, e.g., categories in classification tasks, [25] so that “I do not

know” can be mapped as an opinion for the truth over possible states. Subjective

Logic (SL) formalizes DSTs notion of belief assignments as a Dirichlet Distribution

[4]. Sensoy et al. indicates that a neural network is also capable of forming opinions

for classification tasks as Dirichlet distributions [9]. The proposed model deals with

uncertainty estimation problem and approaches the problem from a theory of evidence

perspective [25, 26]. The standard output of a classification problem is logits, which

are fed to softmax function to calculate a categorical distribution for the sample.

On the other hand, EDL converts the logits into evidence for each category using

a non-negative activation function. By doing so, it creates a Dirichlet distribution

over possible softmax outputs, instead of a single point estimation of the categorical

distribution for the sample.

Evidential neural networks for classification are very similar to classical neural

networks. The model differs from the original model with its output layer and the

loss function. In these models, the softmax layer is replaced with a non-negative

activation layer such as relu, exponent, or softplus to create non-negative output.

Then, the output of the network model for each target class is taken as evidence

for that class. The evidence ek derived for the kth class for a given sample is, then,

computed as ek = relu(logitsk), where logitsk is the output of kth neuron in the output

layer of the neural network for the sample. The derived evidence is used to calculate

50

parameters of a Dirichlet distribution, which is indeed a probability distribution over

all possible categorical distributions for labels. While classical softmax output of a

neural network is a point estimation of a categorical distribution, the derived Dirichlet

distribution is its prior.

Let yi be the ground-truth for observation xi in one-hot encoding format, ei be the

output evidence vector of the network for the same sample xi and αi be the parameter

vector of the Dirichlet density on the predictors, i.e., αi = ei + 1. yi encodes the

ground-truth for observation xi with yij = 1 and yik = 0 for all k 6= j. Then, the

means of the corresponding Dirichlet distribution αij/Si is taken as an estimate of

the probability that the sample belongs to the jth class.

The loss function used in the original paper depends on the sum of squares loss

and calculated with the following formula, where Γ is gamma function, ψ is digamma

function, and λt is annealing parameter.

lossi =
K∑
j=1

(yij − αij/Si)
2

︸ ︷︷ ︸
data fit

+
αij(Si − αij)

S2
i (Si + 1)︸ ︷︷ ︸

Dirichlet variance

+ λt log

(
Γ(
∑K

k=1 α̃ik)

Γ(K)
∏K

k=1 Γ(α̃ik)

)
+

K∑
k=1

(α̃ik − 1)

[
ψ(α̃ik) + ψ(

K∑
k=1

α̃ik)

]
︸ ︷︷ ︸

KL divergence with the uniform Dirichlet distribution

(12)

where t is the current training epoch and λt is the annealing coefficient and calculated

according to equation λt = min(1.0, t/10) ∈ [0, 1]. In this formula, α̃i represents the

Dirichlet parameters after removal of evidence for the true label of the sample and

calculated with equation α̃i = yi + (1− yi)�αi.

The first term in Equation 12 aims to minimize the prediction error; the second

term aims to increase the certainty by decreasing the variance, and the last term

minimizes the evidence for the wrong labels. By combining these three terms, the

loss function aims to achieve the joint goals of minimizing the error and the variance

51

while being uncertain in its wrong predictions.

The loss function is optimized to generate more evidence for the correct class

labels for each sample and avoid misleading evidence. The loss also tends to shrink

the variance of its predictions on the training set by increasing evidence, but only

when the generated evidence leads to a better data fit.

During training, the proposed model may discover patterns in the data and gen-

erate evidence for specific class labels based on these patterns to minimize the overall

loss. The model assigns evidence to each class as long as the evidence assigned to the

correct class is higher than the evidence for other classes. However, the loss tends

to reduce evidence to zero for incorrectly classified samples through the Kullback-

Leibler (KL) divergence term in the loss function. That is, the KL divergence term

regularizes predictive distribution by penalizing those divergences from the “I do not

know” state that do not contribute to data fit.

To prevent the consequences of false positive in campaign participation prediction,

we extended Deep and Wide & Deep models in Estimator API with the methodology

described by Şensoy et al. [9] and created Evidential Deep, Evidential Wide & Deep

models.

Original Deep and Wide & Deep models in estimator API uses cross-entropy

loss function and sigmoid function at their final layer for binary classification. In

other words, they have a single output in their final layer and generate a single value

between 0 and 1 for binary classification. For multi-class classification tasks, on the

other hand, they have multiple outputs in the output layer, i.e., one output for each

class label. Thus, the first step of building uncertainty-aware models is to change the

last layer so that it will give two outputs, one for each Dirichlet parameter. Then,

instead of using a sigmoid function to predict class probabilities, we convert logits

(i.e., the output of the network) to evidence using relu activation functions, so that

the output of Evidential Deep and Evidential Wide & Deep models is an evidence

52

vector instead of a point estimate of categorical distribution.

The third step of our adaptation is to replace cross-entropy loss function in the

Tensorflow’s estimator API with the loss function described above [9]. With the

change of loss function, the resulting model optimizes the α parameters of a Dirichlet

distribution and outputs prediction uncertainty besides predicted class values. For

each observed sample i uncertainty is calculated with the following formula as in [9]:

ui =
K∑K

k=1 αik

(13)

where K is the number of classes.

53

CHAPTER IV

EXPERIMENTS AND RESULTS

This section evaluates and compares our approach with other deep learning models

and provides results of our experiments on campaign participation datasets. We also

performed experiments on other datasets such as adult income (See Appendix A for

details) and Criteo datasets (See Appendix B for details) to see the effectiveness of

the proposed method on different problems. Details for additional experiments are

shared in Appendix A and B.

The following network models are trained and tested to evaluate the performance

of the proposed feature generation method.

• Deep: Deep model is the base model for our performance evaluation.

• Wide & Deep: Wide & Deep model is the original model proposed by Cheng

et al. This model uses manually crafted cross features from human experts.

• Wide & Deep with Decision Tree based columns: Wide & Deep Model

with Decision Tree based columns is our proposed model and uses automatically

created cross and categorical features which are generated by the proposed cross

feature generation method.

• Wide & Deep with Decision Tree based columns + manually crafted

columns: This model is a modification over Wide & Deep with Decision Tree

based columns model and uses both automatically created features which are

generated by the proposed feature generation method and also the manually

crafted ones. We include this model in our experiments to see whether there is

still a need for expert knowledge besides automatically crafted features.

54

• DeepFM: Deep Factorization Machines is a model proposed by for CTR pre-

diction by Guo et al. This model also eliminates the need for expert knowledge.

We include this model in our experiments to compare the proposed model with

an existing model dealing with the same problem.

For each experiment, we define a parameter set including the model parameters

such as the number of levels, learning rate, and type of activation functions and use

the same settings for all models to make a fair evaluation. The parameters for each

experiment are shared in the corresponding experimental setup section.

Tensorflow’s estimator API supports some performance metrics such as AUC (area

under curve) and accuracy but does not support metrics to measure uncertainty such

as evidence. We also added metrics listed below to evaluate our models in terms of

uncertainty and generated evidence.

• Mean evidence: Average evidence measured on all samples

• Mean evidence fail: Average evidence measured on incorrectly classified sam-

ples.

• Mean evidence success: Average evidence measured on correctly classified

samples.

• Mean uncertainty: Average uncertainty measured on all samples

• Mean uncertainty fail: Average uncertainty measured on incorrectly classi-

fied samples.

• Mean uncertainty success: Average uncertainty measured on correctly clas-

sified samples.

55

4.1 Campaign Participation Dataset

4.1.1 Experimental Setup for Campaign Participation Datasets

To evaluate effectiveness of our cross feature generation methodology, we ran two set

of experiments on campaign participation datasets.

1. Random Split: For this set of experiments, we split our datasets into training

and test datasets randomly to see the effectiveness of created features when both

test and training data include samples of all offers.

2. Mutually Exclusive: For this second set of experiments we selected some

offers as test offers for each dataset and split their data as test dataset so that

training data does not include any sample test offers. The goal of the second

experimental setup is to see the effectiveness of created features on a set of

unseen, possibly out-of-distribution offers.

For both experiments, we applied 1/3 ratio between test and training data.

We used accuracy as an evaluation metric and evaluated seven different models in

total. The results indicate that the proposed cross feature generation methodology

improves the performance of Wide & Deep models and produce more efficient results

when compared to models with manually crafted features.

We also measured evidence and uncertainty values of predictions to check whether

the model decides based on evidence or randomly in lack of evidence. We measured

mean uncertainty values over all successful and unsuccessful predictions separately to

obtain the threshold levels for the models in which models are confident.

To find a common parameter setting that gives the best performance on all models,

we performed a careful parameter evaluation step. The resulting parameter settings

are listed below:

1. Network Structure: 100-75-50-25-10

56

2. Learning rate: 0.01

3. L1 regularization rate: 0.01

4. dropout rate: 0.05

5. Activation function: relu

6. Optimizer: adam

For the campaign participation dataset, decision tree models with 70 − 75 %

accuracy are used to find fieldsets which are more distinctive when used together.

The decision trees used for all six campaign participation experiments are built based

on this rule. Trees with 70− 75 % accuracy and seven levels are used to create cross

features.

4.1.2 Results on Randomly Selected Campaign Participation Datasets

The efficiency of different models with different set of input attributes are evaluated

on randomly split campaign participation datasets of GSM customers. The results

are shown in Table 4

Table 4: Accuracy values of different models on random split datasets
Model Less Than 2% Between 2% and 7% Over 7%

Decision Tree 0.75 0.7 0.7
Random Forest 0.75 0.73 0.7

Deep 0.74 0.91 0.88
Wide & Deep

(with manually crafted columns) 0.74 0.92 0.90
Wide & Deep with

Decision Tree
based columns 0.792 0.981 0.971

Wide & Deep with

Decision Tree
based columns

+
manually crafted

columns 0.785 0.98 0.96
DeepFM 0.71 0.68 0.67

One observation out of this data is that none of the models achieves above 80%

accuracy for the least participated dataset which is “Less Than 2%” namely. This may

57

be due to customer diversity in this dataset. Those campaigns with low acceptance

rates are the ones that are not commonly accepted by their target audience but

accepted by a group of customers with different characteristics. It may be more

difficult to find common characteristics or patterns within data for this dataset.

The results also indicate that Wide & Deep network with manually crafted features

improves the performance of Deep model by 1 or 2% while the proposed model with

automatically created features improves performance from 5% on least participated

dataset up to 9% on most participated dataset. Note that Wide & Deep model

with Decision Tree based columns + manually crafted colums model shows similar

performance to proposed Wide & Deep model with automatically crafted features for

all datasets. This result indicates that using expert knowledge besides automatically

created features is not needed.

DeepFM [4] seems to be the least successful model in terms of accuracy when

compared to other Wide & Deep models. For rarely accepted (less than 2%) dataset,

it has relatively better accuracy when compared to the other two datasets. This may

be due to the dense nature of campaign participation datasets. As sparsity in data

increases, the performance of deepFM increases, since it is built on the sparsity as-

sumption in the data. Again Wide & Deep model with automatically created features

has better performance on all datasets, which proves the success of automatically cre-

ated features.

Figure 27, Figure 28 and Figure 29 show change of accuracy per epoch for com-

pared neural network models on highly accepted (Over 7%), moderately accepted

(between 2% and 7%) and rarely accepted (less than 2%) datasets, respectively. The

models with automatically created features seem to have a steeper learning curve in

initial steps when compared to other models. One possible reason is that starting

with more discriminative or ready to use features helps those models to learn faster

than others in initial steps.

58

Figure 27: Accuracy comparison on highly accepted (Over 7%) dataset

Figure 28: Accuracy comparison on moderately accepted (Between 2% and 7%)
dataset

4.1.3 Results on Mutually Exclusive Campaign Participation Datasets

In the previous section, we use data for training and testing from the same set of

offers. However, in this section, we train our model on data from one set of offers and

59

Figure 29: Accuracy comparison on rarely accepted (Less Than 2%) dataset

tested it on data from another set of offers. Hence, we measure how well our model

generalize on completely different and possibly diverse offers. For each dataset, seven

offers (33 % of offers) selected to create test set and the remaining offers are used

to create training set. The offers are selected in such a way that accept and reject

ratio of each dataset remains around 50 % so that the test set is not biased towards a

decision. Models with different set of features are trained and tested on all datasets

and results are listed in Table 5

Table 5: Accuracy values of deep models on mutually exclusive datasets
Model Less Than 2% Between 2% and 7% Over 7%
Deep 0.63 0.70 0.69

Wide & Deep 0.67 0.70 0.71
Wide & Deep with

Decision Tree
based columns 0.70 0.85 0.86

Wide & Deep with

Decision Tree
based columns

+
manually crafted

columns 0.7 0.85 0.84
DeepFM 0.62 0.63 0.59

The results indicate that all models perform around 10 % less in terms of accuracy

60

when compared to the previous experiment. This may be due to the reduced amount

of similarity between the training and test samples. Since offer sets in training and

test datasets are mutually exclusive, learning from previously seen patterns is less

likely on this second set of experiments. The results also indicate that manually

crafted features increase model performance around 1 or 2 % while automatically

created features are more successful and improve performance of models between 7

% and 15 %. DeepFM again seems to have less accuracy when compared to Wide &

Deep models on campaign participation datasets.

4.1.4 Uncertainty Results on Random Split Campaign Datasets

In this set of experiments, we evaluated the performance of different models in terms

of confidence and uncertainty. We also performed threshold analysis to examine

the change of accuracy for different models if model rejects to predict for samples

above a varying uncertainty threshold. The results indicate that Wide & Deep model

with automatically crafted features makes better assignment and use of uncertainty

measures when compared to others. As a result, it is possible to obtain significant

improvement in accuracy by using a reasonable uncertainty threshold.

Table 6 lists evidence and uncertainty values measured on all random split datasets

with proposed Wide & Deep model with automatically crafted features. The results

indicate that on all datasets neural network model assigns much higher evidence

to successfully classified samples in comparison to incorrectly classified ones. As a

result, average uncertainty on failed samples is much higher than average uncertainty

on correct classifications. In other words, for all datasets, the model is also able to

predict whether it will fail or not.

In addition to evaluating proposed Wide & Deep model on all 3 datasets, we also

evaluated performance of different models such as Deep, Wide & Deep and Wide &

61

Table 6: Accuracy and uncertainty results on campaign participation datasets for
Wide & Deep model with automatically crafted features

LessThan2% Between2%and7% Over7%

accuracy 0.77 0.967 0.945
evidence fail 14.87 34.14 24.30

evidence 72.20 190.27 92.81
evidence success 90.26 195.46 96.79
uncertainty fail 0.491 0.43 0.387

uncertainty 0.30 0.06 0.093
uncertainty success 0.24 0.05 0.085

Deep model with automatically crafted features on the same dataset which is “Mod-

erately Accepted Offers” dataset (Acceptance rate between 2% and 7%). Table 7

lists evidence and uncertainty values measured for different models on the same cam-

paign participation dataset. The results indicate that the proposed model generates

more evidence when compared to other models on the same dataset and has the least

uncertainty value on correctly classified samples.

Table 7: Accuracy and uncertainty results on random split moderately accepted
offers dataset (acceptance rate between 2% and 7%)

Deep Wide&Deep DtreeBasedWide&Deep

accuracy 0.89 0.91 0.967
evidence fail 5.73 10.67 34.14

evidence 43.10 55.71 190.27
evidence success 47.95 60.11 195.46
uncertainty fail 0.65 0.59 0.43

uncertainty 0.25 0.20 0.06
uncertainty success 0.20 0.16 0.05

Figure 30 and Figure 31 display evidence and uncertainty metrics measured during

execution of Wide & Deep model with automatically crafted features. Figure 30 plots

change of evidence for correctly classified and incorrectly classified samples separately

while Figure 31 shows change of uncertainty on correctly classified and incorrectly

62

classified samples besides the change of accuracy on all test samples. Figure 30 indi-

cates that the neural network generates much more evidence for correctly classified

samples, and evidence tends to increase throughout the run while it generates much

less evidence for incorrectly classified ones. As a result, it has a very low uncer-

tainty on correctly classified samples which is around 0.05. Uncertainty measured for

incorrectly classified samples is very high, nearly around 0.43. In other words, the

network is able to predict whether it will classify correctly for a sample or not based

on evidence.

Figure 30: The change of evidence per epoch on campaign participation dataset for
Wide & Deep model with automatically crafted features

Figure 32 and Figure 33 display evidence and uncertainty for Wide & Deep model

while Figure 34, Figure 35 shows results for Deep Model. The results support the

findings we observed on Figure 30 and Figure 31 for Wide & Deep model with auto-

matically crafted features. Both models generate high evidence for correctly classified

samples and fails when evidence is low. Evidence has a tendency to increase for

correctly classified samples between successive epochs while evidence for incorrectly

63

Figure 31: The change of accuracy and uncertainty on correctly classified samples
and misclassifications on campaign participation dataset for Wide & Deep model with
automatically crafted features

classified samples remain low. As a result all models have low average uncertainty

on correctly classified samples and high average uncertainty on incorrectly classified

samples.

Figure 36 plots how test accuracy changes if the model rejects making predictions

above a varying threshold. According to Figure 36, model accuracy increases and

reaches nearly to 100% as uncertainty threshold decreases. For each threshold value,

we calculate accuracy only using the test samples whose predictive uncertainty is less

than the threshold. In other words, we try to measure if the neural network also

predicts when it fails by assigning high uncertainty to its wrong predictions and this

information can be used to increase model accuracy on a subset by preventing failure

cases.

Labels on Figure 36 are the percentage of samples the network model is willing

to predict for each uncertainty threshold. The results indicate that by setting a

64

Figure 32: The change of evidence per epoch on campaign participation dataset for
Wide & Deep model

Figure 33: The change of accuracy and uncertainty on correctly classified samples
and misclassifications on campaign participation dataset for Wide & Deep model

65

Figure 34: The change of evidence per epoch on campaign participation dataset for
Deep model

Figure 35: The change of accuracy and uncertainty on correctly classified samples
and misclassifications on campaign participation dataset for Deep model

66

Figure 36: The change of accuracy with respect to uncertainty threshold on campaign
participation dataset for Wide & Deep model with automatically crafted features

threshold of 0.1, the model will make predictions for 89% of all test samples, but

nearly all predictions will be correct with around 99% accuracy.

Figure 37 and Figure 38 show change of accuracy with a varying uncertainty

threshold for Wide & Deep and Deep models, respectively. The results indicates that

Wide & Deep model with automatically crafted features is more accurate than other

models for any threshold point and covers more test samples for each threshold.

4.1.5 Uncertainty Results on Mutually Exclusive Campaign Datasets

In this section, we repeated the experiments we have done on random split cam-

paign participation dataset in Section 4.1.4 with mutually exclusive offers. In these

experiments, we evaluated performance of different models in terms of evidence and

uncertainty and performed some threshold analysis to examine the change of accuracy

for different models if model rejects to predict for samples above a varying uncertainty

threshold. The results support our findings on the random split dataset and indicate

67

Figure 37: The change of accuracy with respect to uncertainty threshold on campaign
participation dataset for Wide & Deep model

Figure 38: The change of accuracy with respect to uncertainty threshold on campaign
participation dataset for Deep model

68

that Wide & Deep model with automatically crafted features makes better assignment

of predictive uncertainty when compared to others on the mutually exclusive dataset.

As a result, it is possible to obtain significant improvement in accuracy by using a

reasonable uncertainty threshold.

We trained and tested the proposed model, which is Wide & Deep model with au-

tomatically crafted features, on all mutually-exclusive campaign participation datasets

and list the evidence and uncertainty results in Table 8. The results indicate that

the neural network model generates much higher evidence for correctly classified sam-

ples in comparison to incorrectly classified ones. As a consequence, all models assign

high uncertainty to their failed classifications while they assign very low uncertainty

to correct classifications. In other words, for all datasets, the model is also able to

predict whether it will fail or not.

Table 8: Accuracy and uncertainty results on mutually exclusive campaign partici-
pation datasets for Wide & Deep model with automatically crafted features

LessThan2% Between2%and7% Over7%

accuracy 0.743 0.839 0.848
evidence fail 9.67 31.30 24.57

evidence 35.77 102.22 64.88
evidence success 43.37 130.81 72.06
uncertainty fail 0.51 0.34 0.27

uncertainty 0.33 0.15 0.12
uncertainty success 0.27 0.12 0.1

As in previous experiment, we also evaluated performance of different models such

as Deep, Wide & Deep and Wide & Deep model with automatically crafted features on

the same dataset which is “Mutually exclusive Moderately Accepted Offers” dataset

(Acceptance rate between 2% and 7%). Table 9 lists evidence and uncertainty values

measured for different models on the same campaign participation dataset. The

results indicate that the proposed model generates the highest evidence on the same

69

data and has the least uncertainty on correctly classified samples.

Table 9: Accuracy and uncertainty results on random split moderately accepted
offers dataset (acceptance rate between 2% and 7%)

Deep Wide&Deep DtreeBasedWide&Deep

accuracy 0.71 0.73 0.839
evidence fail 20.86 24.3 31.30

evidence 35.85 59.9 102.22
evidence success 41.98 73.15 130.81
uncertainty fail 0.45 0.36 0.34

uncertainty 0.34 0.24 0.15
uncertainty success 0.29 0.19 0.12

Figure 39 and Figure 40 display evidence and uncertainty metrics measured during

the execution of Wide & Deep model with automatically crafted features. Figure 39

plots change of evidence for correctly classified and incorrectly classified samples sep-

arately while Figure 40 shows change of uncertainty on correctly classified and incor-

rectly classified samples besides the change of accuracy on all test samples. Figure 39

indicates that the neural network generates much more evidence for correctly clas-

sified samples, and evidence tends to increase throughout the run while it generates

much less evidence for incorrectly classified ones. As a result, it has a relatively low

uncertainty on correctly classified samples which is around 0.12. Uncertainty mea-

sured for incorrectly classified samples is much higher when compared to correctly

classified samples and around 0.34. In other words, the network is able to predict

whether it will classify correctly for a sample or not based on evidence.

Figure 41 and Figure 42 displays evidence and uncertainty metrics measured dur-

ing Wide & Deep model execution while Figure 43, Figure 44 shows same metrics

for Deep model. The results support the findings we observed on Figure 39 and

Figure 40 for Wide & Deep model with automatically crafted features. Both models

generate high evidence for correctly classified samples and fails when evidence is low.

70

Figure 39: The change of evidence per epoch on mutually exclusive campaign par-
ticipation dataset for Wide & Deep model with automatically crafted features

Figure 40: The change of accuracy and uncertainty on correctly classified samples
and misclassifications on mutually exclusive campaign participation dataset for Wide
& Deep model with automatically crafted features

71

Evidence has a tendency to increase for correctly classified samples between successive

epochs while evidence for incorrectly classified samples remain low. As a result all

models have low average uncertainty on correctly classified samples and high average

uncertainty on incorrectly classified samples.

Figure 41: The change of evidence per epoch on campaign participation dataset for
Wide & Deep model

Figure 45 plots how test accuracy changes if the model rejects making predictions

above a varying threshold. According to Figure 45 model accuracy increases and

reaches over 0.92 as uncertainty threshold decreases. For each threshold value, the

neural network rejects to predict for a set of samples with the assumption that samples

above a predefined uncertainty threshold will be classified incorrectly. In other words,

the neural network also predicts when it fails by assigning high uncertainty to its

wrong predictions, and this information can be used to increase model accuracy on a

subset by preventing failure cases.

Labels on Figure 45 are the percentage of samples the network model is willing

to predict for each uncertainty threshold. The results indicate that by setting a

72

Figure 42: The change of accuracy and uncertainty on correctly classified samples
and misclassifications on campaign participation dataset for Wide & Deep model

Figure 43: The change of evidence per epoch on mutually exclusive campaign par-
ticipation dataset for Deep model

73

Figure 44: The change of accuracy and uncertainty on correctly classified samples
and misclassifications on mutually exclusive campaign participation dataset for Deep
model

Figure 45: The change of accuracy with respect to uncertainty threshold on mutually
exclusive campaign participation dataset for Wide & Deep model with automatically
crafted features

74

threshold of 0.2, the model will make predictions for 77% of all samples with nearly

90% accuracy.

Figure 46 and Figure 47 show change of accuracy with a varying uncertainty

threshold for Wide & Deep and Deep models respectively. The results indicates that

Wide & Deep model with automatically crafted features is more accurate than other

models for any threshold point and covers more test samples for each threshold.

Figure 46: The change of accuracy with respect to uncertainty threshold on mutually
exclusive campaign participation dataset for Wide & Deep model

4.1.6 Training and Evaluation Time Comparison

Figure 48 shows average evaluation time per item measured during test executions

for each model. The results indicate that all models are time efficient enough to be

used in real time. DeepFM has the least evaluation time and it is nearly 10 times

faster than Wide & Deep models. The maximum measured average value belongs to

Wide & Deep model with automatically crafted features + man. crafted features and

it is around 1.5 milliseconds. The overall picture shows that there is not a difference

75

Figure 47: The change of accuracy with respect to uncertainty threshold on mutually
exclusive campaign participation dataset for Deep model

or trend among different datasets, model evaluation time only increases as number of

features used by the model increases.

Figure 48: Evaluation time per item

Figure 49 shows training time measured for each model during experiments. Sim-

ilar to evaluation time comparison, training time also increases as the number of

76

features used by the model increases.

Figure 49: Total training time for each model

77

CHAPTER V

DISCUSSION AND CONCLUSIONS

In this dissertation, we applied deep learning to the campaign participation prediction

problem of GSM customers for the first time and used Wide & Deep learning models

to predict the acceptability of a given offer by the customers. Those models require

domain expert knowledge and well-designed combinatorial features, namely cross fea-

tures in order to have effective memorization capabilities. We propose a decision tree

based method for generating those features automatically and consequently alleviate

the necessity of feature engineering.

To evaluate the performance of the proposed method, we used three different cam-

paign participation dataset with different user acceptance rates and performed both

in-distribution (i.e., random split) and out-of-distribution (i.e., mutually exclusive)

queries to predict campaign participation behavior of GSM customers. We also eval-

uated the proposed method on different datasets such as adult income and Criteo

sample datasets. The details of this evaluation study are provided in Appendix A

and Appendix B. The results on all datasets showed that the proposed approach

significantly outperforms existing approaches in all of these settings.

Marketing is one of the most challenging areas when it comes to adapt to the

changing needs of customers. Companies continuously update their product portfolio

and make different campaigns, including new products and new offerings to address

the changing needs of customers. For this reason, the neural network models which

we build for campaign participation prediction problem are not specific to a static set

of offers and can make predictions for any offer which means previously unseen offers

are also in the scope of these models. The models take customer attributes and offer

78

attributes as input and predict whether the customer will accept the offer or not.

We performed experiments on out-of-distribution campaign participation datasets

and verified that the neural network models are capable of making predictions for

previously unseen offers. Even if the models with automatically crafted features

acquire reasonable accuracy on previously unseen offers, there is still a need to detect

whether the models decide with evidence or in lack of evidence. As long as previously

unseen offers are considered, there is always a possibility that the learning models

predict one of the possible outputs randomly since they cannot say “I do not know”.

That is one of the reasons which makes uncertainty-aware networks necessary for

solving campaign participation prediction problem.

Another important aspect of campaign participation prediction is the cost of fail-

ures (i.e., false positives). In such an environment, access to customers is limited by

the nature of the environment or regulations and rules. More importantly, there is

the risk of customer dissatisfaction if too many irrelevant offer messages are sent to

customers. Therefore, companies aim to target the right audience with the right offer

by keeping customer access at a minimum. A neural network model, which can mea-

sure its risk in making prediction, can prevent failure cases by not making decisions in

lack of evidence. Therefore, this thesis advocates using uncertainty-aware networks

(i.e., evidential deep neural networks) described by Şensoy et al. [9] for campaign

participation prediction.

Using uncertainty-aware network models, we evaluated different neural network

models in terms of evidence and uncertainty and performed some threshold analysis

by querying if the models reject to predict for the given samples above a varying un-

certainty threshold. The results indicate that Wide & Deep models with automatically

crafted features are more confident in their correct classifications since they are able

to generate more evidence out of the same data. Consequently, it is possible to ob-

tain significant improvement in accuracy by using a reasonable uncertainty threshold.

79

Those models can be used to make predictions for unseen offers as far as uncertainty

is concerned.

As future work, we can use identity-preserved transformations [27] to enable our

models to generate offers and advertisements that will produce a positive response

when sent to the customers or GSM users. The idea is basically keeping model param-

eters such as weights, and bias values and model output fixed and using a Gradient

Descent Optimizer to shift input vector in the latent space so that it generates target

output value, which is ACCEPT in our problem. Identity preserving transformation

is one way of generating input. Other candidate methods for input generation such

as VAE or GAN networks can also be used, but the important requirement here is

having accurate network models with an awareness of uncertainty.

80

APPENDIX A

ADULT INCOME DATASET

Adult dataset, also known as Census income dataset, is one of the widely used datasets

in machine learning to evaluate the performance of classification models. It was

originally extracted by Berry Baker from 1994 Census database and publicly available

in the UCI machine learning repository.

The dataset consists of 48,842 records, each of which has a binary label indicating

whether the yearly income of an individual is over 50K or less than 50K. 76% of the

records have ≤50K label while 24% has >50K label. Each record also includes 8

categorical and 6 continuous attributes, 14 attributes in total. Attribute details and

statistics are listed in Table 10

The dataset is shared in 2 files containing the test set and training set records. The

training set consists of 32,561 records, while the test set consists of 16,281 records.

A.1 Methodology

This section describes the methodology to train and test the resulting model on the

income dataset. Figure 50 shows the steps taken in this work. Income dataset is a

publicly available dataset on the UCI machine learning repository. As a first step, we

get the test and training data fro the repository in CSV format.

Second, we use the proposed method to create cross features to be used by the

proposed model. Besides Wide & Deep model with automatically crafted features, we

also trained and tested Wide & Deep model with manually crafted features for com-

parison. For this experiment, we selected attributes like age, education, occupation,

workclass, which are known to affect an individual’s income and created cross features

81

Table 10: Income dataset attributes

AttributeName Type V alues

work-class categorical Private, Self-emp-not-inc,
Self-emp-inc, Federal-gov,

Local-gov, State-gov,
Without-pay, Never-worked

education categorical Bachelors, Some-college, 11th,
HS-grad, Prof-school,

Assoc-acdm, Assoc-voc,
9th, 7th-8th, 12th,

Masters, 1st-4th, 10th,
Doctorate, 5th-6th, Preschool.

marital-status categorical Married-civ-spouse, Divorced,
Never-married, Separated,

Widowed, Married-spouse-absent,
Married-AF-spouse.

occupation categorical Tech-support, Craft-repair,
Other-service, Sales, Exec-managerial,

Prof-specialty, Handlers-cleaners,
Machine-op-inspct, Adm-clerical,

Farming-fishing, Transport-moving,
Priv-house-serv, Protective-serv,

Armed-Forces.
relationship categorical Wife, Own-child, Husband,

Not-in-family, Other-relative,
Unmarried.

race categorical White, Asian-Pac-Islander,
Amer-Indian-Eskimo, Other,

Black
sex categorical Female, Male

native-country categorical 54 countries
age number min:17, max:90, mean:38.6

fnlwgt number min:12285, max:1490400
education-num number min:1, max:16

capital-gain number min:0, max:99999
capital-loss number min:0, max:4356

hours-per-week number min:1, max:99

by combining 2 or 3 of those features randomly. We ran a few experiments and select

the best set of cross features that gives the highest accuracy to build a Wide & Deep

82

Figure 50: Overview of the methodology for income dataset

model with manually crafted features for the experimentation purpose.

As third step, hyper-parameters such as number of layers, number of neurons in

each layer, learning rate, regularization rate, are selected.

Fourth and Fifth steps are model training and testing steps. Different architec-

tures with different set of features such as Deep, Wide & Deep with manually crafted

features, Wide & Deep with automatically crafted features are trained and tested to see

effectiveness of cross features with respect to models which does not use automatically

generated features.

A.1.1 Experimental Setup for Income Datasets

For this set of experiments, we used the original income test and training data, which

are already shared in separate data files.

We used accuracy,evidence and uncertainty as an evaluation metrics and evaluated

3 models which are Deep, Wide & Deep and Wide & Deep model with automatically

crafted features.

To find a common parameter setting that gives the best performance on all models,

we performed a careful parameter evaluation step. The resulting parameter settings

are listed below:

83

1. Network Structure: 100-50-25-10

2. Learning rate: 0.005

3. Droppout Rate: 0.05

4. Activation function: relu

5. Optimizer: adam

For income dataset, trees with four or more levels achieve over 80% accuracy. So

a tree structure with four levels and 82% accuracy is used to create cross features

automatically.

A.2 Results on Adult Income Dataset

In this set of experiments, we trained and tested 3 network models which are Deep,

Wide & Deep and proposed Wide & Deep model with automatically crafted features

on income dataset. With this experiment our goal is to see if the proposed cross

feature generation methodology improves model accuracy on different datasets.

We use classification accuracy as a comparison metric for this part. The accuracy

values obtained with each model are listed in Table 11. Table 11 also includes mean

evidence and uncertainty values for each network model.

Table 11: Accuracy and uncertainty results on income dataset

Deep Wide&Deep DtreeBasedWide&Deep

accuracy 0.845 0.848 0.862
evidence fail 4.96 4.54 3.43

evidence 32.51 33.94 36.43
success evidence 37.57 39.16 42.12
uncertainty fail 0.60 0.62 0.57

uncertainty 0.31 0.33 0.28
uncertainty success 0.26 0.26 0.22

84

The highest accuracy value observed in this experiment is around 86% and belongs

to Wide & Deep model with automatically crafted features while the lowest accuracy

observed is around 84% and belongs to Deep model. Wide & Deep model, on the

other hand, performs slightly better than the Deep model, which shows adding expert

knowledge and wide component also improves the performance.

Even though the proposed model improves the accuracy of Deep model, the

amount of improvement is less than the improvement we observed on other datasets,

which are campaign participation and Criteo datasets. The overall results show that

the effectiveness of the proposed method increases as data complexity increases.

Figure 51 shows the change of accuracy for all three models during 100 epochs.

In Figure 51, it is seen that all three models have similar accuracy change trends. All

models show a rapid increase in accuracy for the first 4 to 12 epochs and slightly im-

proves afterward. Proposed decision tree based cross feature generation methodology

seems to have higher accuracy throughout the run except for a few initial epochs.

Figure 51: The change of accuracy per epoch for deep, Wide & Deep and Wide &
Deep with automatically crafted features

85

Besides deep models, we trained and tested logistic regression and decision tree

models to see the performance of other models on income dataset. We trained decision

tree models from 2 levels up to 17 levels. The highest accuracy obtained with these

decision tree models is around 85%. This accuracy is achieved by a tree model with 8

levels. The accuracy of the logistic regression model is around 84%. For this dataset,

the performance of simpler models such as Logistic Regression and Decision Trees are

close to the more complex models, such as neural network models, possibly due to

the low dimensionality of the dataset.

Figure 52 and Figure 53 display evidence and uncertainty metrics measured during

the execution of Wide & Deep model with automatically crafted features. Figure 52

plots change of evidence for correctly classified and incorrectly classified samples

separately and shows that the neural network generates much more evidence for

correctly classified samples and evidence tends to increase throughout the run while

it generates much less evidence for incorrectly classified ones. Figure 53 plots change

of uncertainty on correctly classified and incorrectly classified samples besides the

change of accuracy on all test samples. Figure 53 shows that the model has a very

low uncertainty on correctly classified samples which is around 0.2, and uncertainty

measured for incorrectly classified samples is very high at nearly around 0.6.

Figure 54 plots how test accuracy changes if the model rejects making predictions

above a varying threshold. Similar to the previous cases, model accuracy increases and

reaches nearly to 100% as the uncertainty threshold decreases. Labels on Figure 54 are

the percentage of samples the network model is willing to predict for each uncertainty

threshold. The results indicate that by setting a threshold of 0.4, the model can

classify 73% of the samples with an accuracy of 94%. By setting a threshold of 0.1,

the model will only make predictions for 43% of all samples, but nearly all predictions

will be correct with 99% accuracy.

Figure 55 and Figure 56 show change of accuracy with a varying uncertainty

86

Figure 52: The change of evidence per epoch on Income dataset for Wide & Deep
model with automatically crafted features

Figure 53: The change of accuracy and uncertainty on correctly classified samples
and misclassifications on Income dataset for Wide & Deep model with automatically
crafted features

87

Figure 54: The change of accuracy with respect to uncertainty threshold on income
dataset for Wide & Deep model with automatically crafted features

threshold for Wide & Deep and Deep models respectively. The results indicates that

Wide & Deep model with automatically crafted features is more accurate than other

models for any threshold point and covers more test samples for each threshold.

A.3 Training and Evaluation Time Comparison

Figure 57 shows both training time and average evaluation time per item measured

during test and training executions. According to Figure 57, Deep model has the

least evaluation time and it is nearly 2 times faster than Wide & Deep models. The

maximum measured average evaluation time belongs to Wide & Deep model with

automatically crafted features and it is around 0.47 milliseconds. The results indicate

that all models are time efficient enough to be used in real-time. The overall picture

shows that model evaluation and training time only increases as the number of features

used by the model increases.

88

Figure 55: The Change of accuracy with respect to uncertainty threshold on Income
dataset for Wide & Deep model

Figure 56: The change of accuracy with respect to uncertainty threshold on Income
dataset for Deep model

89

Figure 57: Evaluation time per item and total training time per model on income
dataset

90

APPENDIX B

CRITEO DATASET

Internet advertising is a multi-billion dollar business and one of the challenging prob-

lems in the area of machine learning. CRITEO dataset is a public click-through rate

(CTR) prediction dataset, which includes click records of 45 million users during 24

days period. We selected this dataset to evaluate the performance of the proposed

method on a relatively sparser dataset, which has different dataset characteristics

when compared to income and campaign participation datasets.

Each record in Criteo dataset includes a LABEL column which indicates whether

the user clicked the advertisement or not and 39 attribute columns. The dataset

consists of 13 numerical, 26 categorical columns and a label column. All attribute

columns are anonymized. Numerical columns are named from num1 through num13

based on order while categorical columns are all hashed and named like char1 through

char26. Since all columns are hashed and anonymized, it is even harder or impossible

to create cross features based on expert knowledge for this dataset.

Since original dataset includes 4.3 billion click records and it is not possible to

process this data with current processing power we have, we performed a sampling

on the dataset and selected 60000 accept and 60000 reject click records, which do not

have any unknown values and performed our experiments on this subset dataset.

B.1 Methodology

This section describes the methodology to train and test the resulting model on

Criteo sample dataset. Figure 58 shows the steps taken in this work. Criteo dataset

is a publicly available dataset in UCI machine learning repository. First we get the

91

Figure 58: Overview of the methodology for Criteo dataset

data from the repository in csv format. The original data includes click records of

45 million users during 24 consecutive days which results billions of records. Since

processing the original dataset would require high amounts of processing power, as

a second step we sampled 120000 records from the original data. In order to keep

data unbiased we keep accept and reject record ratios equal, 60000 from each type of

record is selected.

Third, we use the proposed method to create cross features to be used by the

proposed model. As in our previous experiments we also created cross features man-

ually to build a Wide & Deep model with manually crafted features for comparison

purposes. For this dataset, any kind of expert knowledge is absent since data is

totally anonymized. In the dataset, categorical fields are named as char1 through

char23 while numerical fields are named from num1 through num13. All categorical

fields are also hashed so that it is impossible to create cross features based on hu-

man experts. To create cross features for Wide & Deep model, we selected features

randomly and created cross features by combining 2 or 3 of those features randomly.

We ran a few experiments and select the best set of cross features that gives the

highest accuracy to build a Wide & Deep model with manually crafted features for

the experimentation purpose.

As the fourth step, hyper-parameters such as number of layers, number of neurons

92

in each layer, learning rate, and regularization coefficient are selected. After finding

the most efficient parameter set, the models are trained and tested with the Criteo

dataset.

B.1.1 Experimental Setup for Criteo Datasets

To evaluate the effectiveness of our cross feature generation methodology, we ran a

set of experiments on the Criteo dataset. For this set of experiments, we randomly

split 33% of data as a test set and make sure that both train and test sets include

50% accept and 50% reject records.

We used accuracy as an evaluation metric and evaluated 3 models which are Deep,

Wide & Deep and Wide & Deep model with automatically crafted features. We also

measured evidence and uncertainty values of predictions to obtain the threshold levels

for the models in which models are confident.

To find a common parameter setting that gives the best performance on all models,

we performed a careful parameter evaluation step. The resulting parameter settings

are listed below:

1. Network Structure: 200, 100, 75, 50, 10

2. Learning rate: 0.01

3. Droppout Rate: 0.05

4. Activation function: relu

5. Optimizer: adam

For the Criteo dataset, the problem becomes more complex, and a decision tree

needs to have at least 13 levels to achieve above 70% accuracy. Larger tree structures

increase the number of categorical and cross features created. The hash bucket size

values also grow larger than desired, since decision paths become too long.

93

For sparse datasets like Criteo, we made a minor change on the proposed method

and applied a filter based on the Gini importance values of features while selecting

features. For our sample Criteo dataset, we set this threshold as 0.01 and eliminate

features, which has less importance in comparison to the threshold value. With this

small modification, we can find cross features as good as previous dense datasets.

B.2 Results on Criteo Dataset

In this section, we trained and tested 3 network models which are Deep, Wide &

Deep and proposed Wide & Deep model with automatically crafted features on Criteo

dataset. With this experiment our goal is to see if the proposed cross feature gen-

eration methodology improves model accuracy on a different problem with different

characteristics.

The accuracy values obtained with each model are listed in Table 12, which also

includes mean evidence and uncertainty values for each network model.

Table 12: Accuracy and uncertainty results on Criteo dataset

Deep Wide&Deep DtreeBasedWide&Deep

accuracy 0.753 0.748 0.798
fail evidence 42.32 36.69 41.59

evidence 60.20 55.93 69.84
success evidence 66.05 62.04 76.97
fail uncertainty 0.23 0.28 0.24

uncertainty 0.14 0.17 0.13
success uncertainty 0.12 0.13 0.10

The highest accuracy value observed in this experiment is around 79.5% and

belongs to Wide & Deep model with automatically crafted features while the lowest

accuracy observed is around 74.8% and belongs to Wide & Deep model. Deep model,

on the other hand, performs slightly better than Wide & Deep model, which indicates

that adding cross features randomly without any expert knowledge may even degrade

94

the performance.

Figure 59 shows the change of accuracy for all three models during 100 epochs.

In Figure 59, it is seen that all three models have similar accuracy change trends. All

models show a rapid increase in accuracy for the first 20 epochs and slightly improves

afterward. Proposed decision tree based cross feature generation methodology seems

to outperform others in terms of accuracy throughout the run.

Besides deep models, we also trained and tested logistic regression and decision

tree models to see the performance of other models on the Criteo sample dataset.

We trained decision tree models from 2 levels up to 30 levels. The highest accuracy

obtained with decision tree models is around 72%. This accuracy is achieved by a

tree model with 27 levels. The accuracy of the logistic regression model is around

67%.

Figure 59: The change of accuracy per epoch for deep, Wide & Deep and Wide &
Deep with automatically crafted features on Criteo sample dataset

Figure 60 and Figure 61 display evidence and uncertainty metrics measured during

the execution of Wide & Deep model with automatically crafted features. Figure 60

95

plots change of evidence for correctly classified and incorrectly classified samples

separately and shows that the neural network generates much more evidence for

correctly classified samples and evidence tends to increase throughout the run while

it generates much less evidence for incorrectly classified ones. Figure 61 shows change

of uncertainty on correctly classified and incorrectly classified samples besides the

change of accuracy on all test samples. Figure 61 shows that the model has a lower

uncertainty (around 0.10) for correctly classified samples and uncertainty measured

for incorrectly classified samples is twice as high as correct classifications (around

0.24).

Figure 60: The change of evidence per epoch on Criteo sample dataset for Wide &
Deep Model with automatically crafted features

Figure 62 plots how test accuracy changes if the model rejects making predictions

above a varying threshold. According to Figure 62 model accuracy increases as un-

certainty threshold decreases. For each threshold value, the neural network rejects

to predict for a set of samples with the assumption that samples above a predefined

uncertainty threshold will be classified incorrectly.

96

Figure 61: The change of accuracy and uncertainty on correctly classified samples
and misclassifications on Criteo sample dataset for Wide & Deep Model with auto-
matically crafted features

Figure 62: The change of accuracy with respect to uncertainty threshold on Criteo
sample dataset for Wide & Deep model with automatically crafted features

97

Figure 63 and Figure 64 show change of accuracy with a varying uncertainty

threshold for Wide & Deep and Deep models, respectively. The results indicates that

it is not possible to abtain 99% accuracy on criteo dataset due to nature of this data

but it is still possible to increase model accuracy with uncertainty-aware networks.

Figure 63: The change of accuracy with respect to uncertainty threshold on Criteo
sample dataset for Wide & Deep model

B.3 Training and Evaluation Time Comparison

Figure 65 shows average execution time per sample measured during testing and train-

ing time for each model. The results indicate that all models are time efficient enough

to be used in real time. Deep model has the least evaluation time and it is nearly

2 times faster than Wide & Deep models. The maximum measured average value

belongs to Wide & Deep model with automatically crafted features and it is around

0.31 milliseconds. The overall picture shows that model training and evaluation time

increases linearly as number of features used by the model increases.

98

Figure 64: The change of accuracy with respect to uncertainty threshold on Criteo
sample dataset for Deep model

Figure 65: Evaluation time per item and total training time per model on Criteo
sample dataset

99

Bibliography

[1] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin,
M. Hasan, B. C. Van Essen, A. A. S. Awwal, and V. K. Asari, “A state-of-the-
art survey on deep learning theory and architectures,” Electronics, vol. 8, no. 3,
2019.

[2] J. H. T. S. T. C. H. A. G. A. G. C. W. C. M. I. Heng-Tze Cheng, Levent Koc,
“Wide deep learning for recommender systems,” in 1st Workshop on Deep Learn-
ing for Recommender Systems, pp. 7–10, ACM, 2016.

[3] TensorFlow, “Feature columns — tensorflow core — tensorflow,” 2017.
https://www.tensorflow.org/guide/feature columns, (Last accessed 17 June
2019).

[4] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He, “Deepfm: A factorization-machine
based neural network for ctr prediction,” in Proceedings of the 26th International
Joint Conference on Artificial Intelligence, pp. 1725–1731, AAAI Press, 2017.

[5] Y. Shan, T. Ryan Hoens, J. Jiao, H. Wang, D. Yu, and J. Mao, “Deep crossing:
Web-scale modeling without manually crafted combinatorial features,” pp. 255–
262, 08 2016.

[6] A. P V, “A survey of recommender system types and its classification,” Interna-
tional Journal of Advanced Research in Computer Science, vol. 8, pp. 486–491,
09 2017.

[7] L. Fulop, G. Flp, R. Tth, J. Rcz, T. Pnczl, A. Gergely, and . Beszdes, “Survey
on complex event processing and predictive analytics,” 08 2010.

[8] S. Zhang, L. Yao, and A. Sun, “Deep learning based recommender system: A
survey and new perspectives,” CoRR, vol. abs/1707.07435, 2017.

[9] M. Sensoy, L. Kaplan, and M. Kandemir, “Evidential deep learning to quantify
classification uncertainty,” in Advances in Neural Information Processing Sys-
tems 31 (S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, eds.), pp. 3179–3189, Curran Associates, Inc., 2018.

[10] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Net-
works, vol. 61, pp. 85 – 117, 2015.

[11] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and
new perspectives,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, pp. 1798–
1828, Aug. 2013.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

100

[13] K. Fukushima, “Neocognitron: A hierarchical neural network capable of visual
pattern recognition,” Neural Networks, vol. 1, no. 2, pp. 119 – 130, 1988.

[14] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, pp. 2278–2324, Nov
1998.

[15] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration of re-
current network architectures,” in Proceedings of the 32Nd International Confer-
ence on International Conference on Machine Learning - Volume 37, ICML’15,
pp. 2342–2350, JMLR.org, 2015.

[16] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neu-
ral Information Processing Systems 27 (Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger, eds.), pp. 2672–2680, Curran Associates,
Inc., 2014.

[17] S. Rendle, “Factorization machines,” in Proceedings of the 2010 IEEE Interna-
tional Conference on Data Mining, ICDM ’10, (Washington, DC, USA), pp. 995–
1000, IEEE Computer Society, 2010.

[18] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, pp. 81–106,
Mar. 1986.

[19] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1993.

[20] G. V. Kass, “An exploratory technique for investigating large quantities of cat-
egorical data,” vol. 29, no. 2, pp. 119–127, 1980.

[21] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and
Regression Trees. Monterey, CA: Wadsworth and Brooks, 1984.

[22] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory undersampling for class-
imbalance learning,” IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), vol. 39, no. 2, pp. 539–550, 2008.

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
 L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in neural
information processing systems, pp. 5998–6008, 2017.

[24] O. Vinyals, L. Kaiser, T. Koo, S. Petrov, I. Sutskever, and G. Hinton, “Grammar
as a foreign language,” in Advances in neural information processing systems,
pp. 2773–2781, 2015.

[25] A. P. Dempster, A Generalization of Bayesian Inference. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008.

101

[26] A. Jøsang, Subjective Logic: A Formalism for Reasoning Under Uncertainty.
Springer Publishing Company, Incorporated, 1st ed., 2016.

[27] J. Engel, M. Hoffman, and A. Roberts, “Latent constraints: Learning
to generate conditionally from unconditional generative models,” CoRR,
vol. abs/1711.05772, 2017.

[28] K. Oflazer and H. C. Bozsahin, “Turkish natural language processing initiative:
An overview,” in East Technical University, 1994.

[29] C. A. Gomez-Uribe and N. Hunt, “The netflix recommender system: Algorithms,
business value, and innovation,” ACM Trans. Manage. Inf. Syst., vol. 6, pp. 13:1–
13:19, Dec. 2015.

[30] L. B. M. K. K. K. R. Collobert, J. Weston and P. Kuksa, “Natural language
processing (almost) from scratch,” The Journal of Machine Learning Research,
vol. 12, pp. 2493–2537, 2011.

[31] C. A. Gomez-Uribe and N. Hunt, “The netflix recommender system: Algorithms,
business value, and innovation,” ACM Trans. Manage. Inf. Syst., vol. 6, pp. 13:1–
13:19, Dec. 2015.

[32] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for youtube
recommendations,” in Proceedings of the 10th ACM Conference on Recommender
Systems, pp. 191–198, ACM, 2016.

[33] J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet, U. Gargi, S. Gupta,
Y. He, M. Lambert, B. Livingston, and D. Sampath, “The youtube video rec-
ommendation system,” in Proceedings of the Fourth ACM Conference on Rec-
ommender Systems, RecSys ’10, pp. 293–296, ACM, 2010.

[34] S. Okura, Y. Tagami, S. Ono, and A. Tajima, “Embedding-based news rec-
ommendation for millions of users,” in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 1933–
1942, 2017.

[35] D. Billsus, C. A. Brunk, C. Evans, B. Gladish, and M. Pazzani, “Adaptive
interfaces for ubiquitous web access,” Commun. ACM, vol. 45, pp. 34–38, May
2002.

[36] W. Hill, L. Stead, M. Rosenstein, and G. Furnas, “Recommending and evaluating
choices in a virtual community of use,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pp. 194–201, ACM Press/Addison-
Wesley Publishing Co., 1995.

[37] G. Linden, B. Smith, and J. York, “Amazon.com recommendations: Item-to-
item collaborative filtering,” IEEE Internet Computing, vol. 7, pp. 76–80, Jan.
2003.

102

[38] B. N. Miller, I. Albert, S. K. Lam, J. A. Konstan, and J. Riedl, “Movielens
unplugged: Experiences with an occasionally connected recommender system,”
in Proceedings of the 8th International Conference on Intelligent User Interfaces,
pp. 263–266, ACM, 2003.

[39] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, “Grouplens: An
open architecture for collaborative filtering of netnews,” in Proceedings of the
1994 ACM Conference on Computer Supported Cooperative Work, pp. 175–186,
ACM, 1994.

[40] U. Shardanand and P. Maes, “Social information filtering: Algorithms for
automating “word of mouth”,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 210–217, ACM
Press/Addison-Wesley Publishing Co., 1995.

[41] D. H. Park, H. K. Kim, I. Y. Choi, and J. K. Kim, “A literature review and clas-
sification of recommender systems research,” Expert Systems with Applications,
vol. 39, no. 11, pp. 10059 – 10072, 2012.

[42] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, “Evaluating
collaborative filtering recommender systems,” ACM Trans. Inf. Syst., vol. 22,
pp. 5–53, Jan. 2004.

[43] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recom-
mender systems,” Computer, vol. 42, pp. 30–37, Aug. 2009.

[44] J. Wei, J. He, K. Chen, Y. Zhou, and Z. Tang, “Collaborative filtering and deep
learning based recommendation system for cold start items,” Expert Systems
with Applications, vol. 69, pp. 29 – 39, 2017.

[45] Y. Bengio, “Learning deep architectures for ai,” Found. Trends Mach. Learn.,
vol. 2, pp. 1–127, Jan. 2009.

[46] Q. Zhang, L. T. Yang, Z. Chen, and P. Li, “A survey on deep learning for big
data,” Information Fusion, vol. 42, pp. 146 – 157, 2018.

[47] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A survey of deep
neural network architectures and their applications,” Neurocomputing, vol. 234,
pp. 11 – 26, 2017.

[48] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based recommender sys-
tem: A survey and new perspectives,” ACM Comput. Surv., vol. 52, pp. 5:1–5:38,
Feb. 2019.

103

VITA

Demet Ayvaz received her B.Sc. degree in Computer Engineering from Marmara Uni-

versity in 2004. Later in 2006, she received her M.Sc. degree in Computer Engineering

from Boğaziçi University. She started her professional career in the area of Telecom-

munications in 2006 and joined Turkcell Technology in June 2011. Prior to her current

position, she worked as Postpaid Solutions Specialist at Avea İletişim Hizmetleri A.Ş.

Currently, she is working as a Senior Expert Data Analytics Developer at Artificial

Intelligence & Analytic Solutions department of Turkcell Technology.

104

