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Department of Industrial Engineering
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ABSTRACT

Health care expenditures are expected to grow every year, and more than 40% of a

hospital’s total expenses and revenues are generated by surgical surgeries. One of

the major resources required during surgeries are reusable medical devices (RMDs).

RMDs are surgical instruments utilized during surgeries which have to be reprocessed

by thorough cleaning followed by high-level disinfection or sterilization after each use.

RMDs have to be planned with operating rooms (ORs) concurrently since insufficient

RMDs may cause delays in surgery starting times. However, management of RMD

sterilization stage is nontrivial. First, RMDs are sent to sterilization service at dif-

ferent times due to different finishing times of surgeries during a day. Second, the

decision of how to load the sterilization machines, i.e., how to batch RMDs, is a

complicated one. Lastly, time spent during sterilization has to be considered dur-

ing scheduling of ORs since an surgery cannot start without the required number of

RMDs. In this thesis, we study the integrated scheduling of ORs and sterilization

of RMDs under stochastic surgery durations. We propose a simulation optimization

approach to tackle with this problem, and through numerical studies show that our

approach could lead to significant (15% on average) cost savings in compare to de-

terministic approaches for a hospital.

Keywords: Scheduling, Health Care, Simulation Optimization
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ÖZETÇE

Sağlık hizmeti harcamalarının her yıl artması beklenmektedir. Hastanelerin harcama

ve gelirlerinin 40%ı da ameliyatlar sonucunda oluşur. Ameliyatlar sırasında ihtiyaç

duyulan en önemli kaynaklardan biri tekrar-kullanımlık tıbbi cihazlardır(reusable

medical device, RMD). Ameliyatlar sırasında kullanılan RMD’ler, her işlem son-

rasında detaylıca temizlenmek ve sonrasında da dezenfekte veya sterilize eldilmek

zorundadır. RMD’lerin yetersizliği, ameliyatların başlama zamanlarının gecikme-

sine sebep olacağından RMD’lerin sterilizasyonu ameliyathanelerle eşzamanlı olarak

planlanmalıdır. Ancak, RMD’lerin sterilizasyon aşamasının yönetimi kolay değildir.

İlk olarak, gün boyunca farklı ameliyatlarda kullanıldıklarından, RMD’ler steriliza-

syon servisine farklı zamanlarda gönderilir. İkinci olarak, sterilizasyon makinalarına

RMD’lerin nasıl yükleneceği (ör. RMD’lerin nasıl gruplanacağı) kararı zor bir karardır.

Son olarak da yeterli sayıda RMD olmadan ameliyata başlanamayacağından, ster-

ilizasyonda harcanacak zaman ameliyathanelerin çizelgelenmesiyle birlikte dikkate

alınmalıdır. Bu tezde, stokastik ameliyat süreleri altında ameliyathanelerin entegre

planlanması ve RMD’lerin sterilizasyonu incelenmiştir. Bu problemin çözümü için

bir simülasyon optimizasyon yaklaşımı önerilmiştir ve sayısal araştırmalar yoluyla

yaklaşımımızın deterministik yaklaşımlarla karşılaştırıldığında bir hastane için önemli

(ortalama 15%) maliyet tasarrufu sağlayabileceği gösterilmiştir.
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CHAPTER I

INTRODUCTION

Health care expenditures are expected to grow every year, and more than 40% of a

hospital’s total expenses and revenues are generated by surgical surgeries Erdogan and

Denton (2011). By planning and scheduling of operating rooms (ORs) with improved

efficiency and quality, healthcare service providers aim at decreasing the costs and

maintaining the quality of patient care. However, in scheduling ORs, service providers

always face impediments and because of that quality of scheduling decreases and lead

to a decrease in revenue, a bad experience for patients and in some cases health

problems for patients. For these reasons, ORs scheduling has become one of the

important and productive research areas for researchers.

In the scheduling of operating rooms, researchers should consider different factors

in their research. Factors like patient characteristics, performance measures, deci-

sion level, solution technique, and uncertainty (Cardoen et al. (2010)). Each of these

factors is combined and become a new filed. Patient characteristics can be simply

divided into elective (inpatient or outpatient) or non-elective (urgency or emergency).

In performance measures, we discuss criteria like utilization, financial values or pref-

erences. decision level focuses on what kind of decision we want to make like time,

room, capacity or if our decision is acceptable for operating team or patient. Besides,

solution techniques can differ based on our previous factors, such as using mathemat-

ical programming methods, simulation or constructive heuristics. Another important

factor that has the most effect in the scheduling of ORs is uncertainty that can be

implanted in the arrival of patients, duration of surgeries or in resources like surgeons,

operating rooms or medical devices. Uncertainty has the most effect on selecting the
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solution techniques, stochastic approach or deterministic approach. In this thesis, we

focused on uncertainty in the duration of surgeries and the availability of resources.

There are several approaches for scheduling of ORs. For example, scheduling

surgeries with a smaller duration at the beginning of day and surgeries with a higher

duration through the end of the day, or assigning special rooms for each department

in the hospital. In some approaches, hospitals keep one of the operating rooms empty

for non-elective (urgency or emergency) patients. The main factor affecting these

decisions is the level of uncertainty and location of uncertainty(arrival, duration or

resource). In this thesis, we considered the arrival of patients and resources as deter-

ministic and only addressed the uncertainty in surgery duration.

Knowing the duration of surgeries in advance (deterministic case), can help the

service providers to make a better decision, on the other hand, in the real world, the

durations of surgeries have a stochastic behavior. An uncertain environment and in

our case stochasticity in the duration of surgeries makes the scheduling of surgery

difficult and reduces the quality of our decisions. For example, if an surgery finishes

before its planned time, it leads to idle time in operating rooms and on the other

hand, if the surgeries take more than its planned schedule, we will have overtime in

operating rooms and higher waiting time for upcoming surgeries. It also can affect

the availability of resources needed for upcoming surgeries.

During OR planning and scheduling, there are various required resources. One

of the major resources required during surgeries is reusable medical devices (RMDs).

RMDs are surgical instruments, such as, clamps, forceps, and endoscopes, utilized

during surgical surgeries which have to be reprocessed by thorough cleaning followed

by high-level disinfection or sterilization after each use. RMDs have to be planned

with ORs concurrently since insufficient RMDs may cause delays in surgery starting

times.
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An extensive reprocessing of RMDs is required to prevent possible nosocomial in-

fections (Ozturk et al., 2010) since one of the reasons for surgical site infections is the

inadequate sterilization of surgical instruments (Spagnolo et al., 2013). Sterilization

is a complicated process consisting of several stages. However, management of RMD

sterilization stage is nontrivial. First, RMDs are sent to sterilization service at differ-

ent times due to different starting times and finishing times of surgeries during a day

(Ozturk et al., 2014). Second, the decision of how to load the sterilization machines,

i.e., how to batch RMDs, is a complicated one. Lastly, the time spent during ster-

ilization has to be considered during the scheduling of ORs since an surgery cannot

start without the required number of RMDs.

While planning and scheduling ORs considering RMDs, inherent uncertainties

in surgery durations cannot be ignored and create another challenge. Because the

duration of surgeries is unknown in advance to surgery, we can not be sure that

the sterilization schedule will be on time, and in some instances because the surgeries

finish after the schedule of sterilization machine, dirty RMDs cannot be sterilized and

it can lead to cancellation of upcoming surgery. To overcome these problems, several

mathematical models have been introduced, but there is still a need for improvement

and an extension that covers all aspects of operating room scheduling. To this aim, we

developed a simulation optimization method to deal with uncertainty in the duration

of surgeries and effective scheduling of sterilization machines to increase the efficiency

and utilization of ORs.

The remainder of this study is organized as follows: Chapter 2 provides a brief

review of the literature related to OR scheduling and Simulation methods. Chapter 3

presents the problem definition and presented solution approaches. Chapters 4 and 5

contain our data sets, numerical analysis, and extension. Chapter 6 concludes the

thesis providing directions for future research.
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CHAPTER II

LITERATURE REVIEW

We categorize the related work as OR scheduling, Simulation in Scheduling and Sim-

ulation Optimization in OR scheduling.

2.1 OR scheduling

ORs are considered as one of the most expensive resources in hospitals (Cardoen et al.,

2009). Surgical sector expenses account approximately 33% of the projected hospital

budget (Macario, 2006). Thus, hospital administration aims to utilize this costly

resource efficiently and consequently OR planning and scheduling has been the focus

for a large body of literature for the last half-century. For a more complete review

of recent literature on operating room planning and scheduling we refer the works of

Gupta and Denton (2008), Cardoen et al. (2010), Erdogan and Denton (2011), and

Ahmadi-Javid et al. (2017). Cardoen et al. (2010) states that there are 247 papers

published in this area during the past sixty years and categorize them along six

dimensions related to modelling assumptions, solution methods, and implementation

results. In this section, we will briefly review this vast literature with a particular

focus on (i) deterministic approaches, (ii) stochastic problems, and (iii) simulation-

optimization as the solution methodology.

A major concern of OR planning and scheduling problems is to find when and at

which operating room surgery will start for a given short planning horizon and a set

of surgeries. The papers that attempt to solve this problem while ignoring any uncer-

tainty tend to model the problem as a job shop scheduling extension called multi-mode

blocking job shop. Practical sized instances are solved by the proposed mixed-integer
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linear program (Pham and Klinkert, 2008). A three-phase approach considering over-

time, throughput, and the waiting list is studied by Testi et al. (2007). Another study

assigning OR blocks to surgeons minimizing the shortfalls between a surgical group’s

target and actual assignment is explained by Blake et al. (2002). A master surgical

schedule is generated by an integer programming model for a real-life hospital (Blake

and Donald, 2002). In addition, a weekly OR scheduling problem maximizing the

utilization of ORs and minimizing the overtime of ORs and the unexpected idle time

between surgeries is modelled as a set-partitioning integer-programming model and

solved by a column-generation-based heuristic procedure (Fei et al., 2010).

Various performance measures are defined in the literature to evaluate the quality

of the OR schedule. Main ones can be summarized as waiting time, throughput, uti-

lization, levelling, makespan, surgery cancellations, financial measures and preferences

(Cardoen et al., 2009). Makespan, the completion time of the last patient’s recovery,

is minimized in the works of Marcon and Dexter (2006). Decreasing the makespan

often results in a dense schedule. OR staffing costs are minimized by Dexter et al.

(2000). A multiple objective surgical case scheduling problem is solved by both ex-

act and heuristic algorithms based on integer programming and branch-and-bound in

Cardoen et al. (2009). The authors prove that this optimization problem is NP-Hard.

Additionally, solving the deterministic OR scheduling problem with identical waiting

and overtime costs is shown to be strongly NP-hard (Kong et al., 2016).

In addition, other important surgical resources, such as surgical nurses, medi-

cal devices, are also considered during OR planning and scheduling problems since

mishandling these resources may hinder efficiency, such as delaying surgery starting

times. Nonrenewable resources are checked whether the aggregate demand of such

resources is satisfied throughout the time horizon (Meskens et al., 2013), whereas, re-

newable resources have to be scheduled similarly to ORs. Wang et al. (2015); Xiang

et al. (2015) integrate multiple nurse roster constraints into OR scheduling problem
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and solve the problem using ant colony optimization. Guo et al. (2016) formulates

an integrated elective surgeries and surgical nurses scheduling problem and uses a

genetic algorithm to solve the resulting integer programming model. Similarly, Rath

et al. (2017) studies integrated anesthesiologist and OR scheduling problem.

Workforce resources like nurses or anesthesiologists are usually assumed to be

available just after the surgery finishes in the works mentioned above. RMDs are an-

other type of renewable resources utilized during OR scheduling, and unlike nurses’

or anesthesiologists’ rescheduling during a day, RMDs cannot be reused immediately

when the surgery is over. Coban (2018) shows that integrating OR planning and

scheduling problem and RMD sterilization scheduling problem improves the perfor-

mance of OR and decreases total costs. van de Klundert et al. (2008) study steriliza-

tion logistics in hospitals while minimizing the total cost, the sum of transportation

cost linear in the number of transports to OR, OR storage cost linear in storage space

the instruments (RMDs) contain, and sterile equipment cost linear in the number of

times the equipment is used. Standardization of net decomposition, a pile of instru-

ments sorted in pouches, and pull logistics for a limited set of surgery types are shown

to result in over 500, 000 Euro in annual savings. Ozturk et al. (2010) study washing

surgeries of RMDs to minimize makespan when RMD nets have different release times

and different sizes. They model this problem by a mixed-integer linear programming

model and develop heuristics based on classical bin packing algorithms. A branch-

and-bound based heuristic is proposed for the same problem studied by Ozturk et al.

(2010) but larger instances (up to 40 jobs) can be solved (Ozturk et al., 2014).

Inherent uncertainties in surgery durations create another challenge for solving

OR scheduling problems. Most of the papers in this stream consider a single OR,

whereas there are a few recent papers that model multiple ORs (see, for example,

Batun et al. (2011) and Gul et al. (2015)). Weiss (1990) is the first paper that for-

mulates the optimal scheduling problem and offers ”newsvendor-type” critical fractile
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solution as a heuristic. Efficient computations of optimal solutions under specific con-

tinuous distributions (Wang (1993), Wang (1997)) and discrete distributions (Begen

and Queyranne (2011)) are proposed for single OR problems as well. Denton and

Gupta (2003) study the single server appointment scheduling problem to determine

optimum starting times for each surgery. They model the problem as a two-stage

stochastic linear program. Since the exact solution is not possible beyond three surg-

eries, various heuristics are suggested in the literature (Robinson and Chen (2003),

Khaniyev et al. (2018)).

From a practical viewpoint, it is critical to solving sequencing and scheduling

problems simultaneously. However, this problem is extremely difficult: Solving the

stochastic version of this problem using the sample average approximation method

is NP-complete (Mancilla and Storer (2012)). Hence, papers in this stream either

develop and/or analyze heuristics (such as sequencing surgeries in order of increasing

variation (SVF)). Denton et al. (2007) simultaneously study the effect of sequencing

and scheduling start times of surgeries. They formulate a two-stage stochastic mixed-

integer programming model and find that sequencing surgery in order of increasing

variance is optimal under certain cases. Mancilla and Storer (2012) considers the

similar problem. They argue that as the number of scenarios used in the sample

average approximation method increases, the difference between the optimality gaps

of SVF rule and using the more advanced Benders-based heuristics decreases when

costs are identical between surgeries. Under certain cases, other sequencing rules

could provide better performance (see Kong et al. (2016) for cases where SVF is sub-

optimal, Mak et al. (2014b) for another sequencing heuristic, ordering by increasing

order of variance to waiting cost ratio).
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2.2 Simulation in Scheduling

Apart from the stochastic optimization methodology, simulation-based approaches are

also proposed in the literature as an effective way to deal with uncertainty. Lu Zhen

(2014) suggested a simulation optimization method to solve ambulance deployment

and relocation problems using genetic algorithm under the arrival of service calls and

service times are random. Safa Bhar Layeb (2018) studied the use of Simulation

Optimization Model to find optimal services schedule ina real-world case study for

stochastic multimodal freight transportation systems. Lien Vanbrabant (2019) did a

comprehensive review on the use of simulation methods in healthcare and use of Key

performance indicators as a performance measurement. Min and Yih (2010) proposed

a sample average approximation method to solve a model with uncertainties in surgery

duration and available resources. Molina-Pariente et al. (2018) suggested solving the

scheduling problem by combing the greedy local search method and Monte Carlo

simulation. They considered uncertainty in the duration of surgeries and arrival of

emergency patients with an objective to minimize the undertime and overtime costs

of ORs and the cost of exceeding the capacity constraints of the system. Saremi et al.

(2013) considered limited availability of multiple resources to minimize the waiting

time of the patients, compilation time of surgeries and number of cancellations by

introducing simulation-based Tabu search and integer programming enhanced tabu

search. Patients are categorized into different types, where each type has different

stochastic service time.

Lamiri et al. (2008) suggested a Monte Carlo optimization method combining

Monte Carlo simulation and mixed-integer programming to minimize the sum of

surgery cost and operating room overtime costs where both elective and non-elective

patients exist. In addition, according to Jorge Haddock (1992) simulation annealing

can be used as a simulation optimization method to find optimal or near-optimal so-

lutions. Rym M’Hallah (2019) used Sample average approximation to approximately
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solve the stochastic integer model of scheduling elective surgeries where the uncer-

tainty is in surgery times, intensive care unit times and post-surgery lengths of stays.

Jorge Haddock (1992) integrated SAA method with robust linear programming to

select and schedule next–day surgeries from list of candidate patients with considera-

tion of stochastic surgery duration, and they reported that their suggested method’s

competition time is approximately one-quarter of that of SAA. Baesler et al. (2015)

offered a simulated annealing algorithm connected to the simulation model to solve

stochastic operating room scheduling problem, which is found to improve hospital

schedule by 18%.

2.3 Simulation Optimization in OR scheduling

Satyajith Amaran (2016) did a review of algorithms and applications of simulation op-

timization and divided application of SO to discrete-event simulations and stochastic

differential equation system. Ping-Shun Chen and Che (2015) solved the appointment

scheduling problem with stochastic patient treatment time using SO algorithm. Their

objective was to minimize the expected value of doctors total idle time and patients

total waiting time.

Several papers tried to solve both the scheduling and sequencing of surgeries si-

multaneously with simulation-optimization based solutions. Landa et al. (2016) di-

vided the problem into two sub problems to increase OR utilization and decrease

the number of cancelled surgeries. First, they assigned each surgery to a day and

room, then they decide in which sequence the surgeries will be done under stochastic

surgery durations. For this propose they develop a hybrid two-phase optimization al-

gorithm by combining Monte Carlo simulation and neighbourhood search techniques.

Saadouli et al. (2015) aimed to minimize the makespan of operating rooms in two

phases considering both ORs and recovery beds where surgery duration is uncertain.

They propose a knapsack model to select surgeries for a day coupled with an integer

9



programming model to assign surgeries to different rooms. Then a discrete event

simulation model was suggested to evaluate the solutions.

To the best of our knowledge, integrated scheduling of ORs and sterilization of

RMDs under stochastic surgery durations has not been studied in the literature. This

thesis fills that gap in this research problem and offers simulation-optimization as a

solution technique.
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CHAPTER III

PROBLEM DEFINITION AND SOLUTION

APPROACHES

3.1 Problem Definition

In the traditional scheduling of ORs, hospital management and relevant hospital staff

construct the operating table (OT) for upcoming surgeries. OT contains the sequence

and schedule of surgeries and the schedule of the sterilization machine. OT aims to

satisfy certain criteria: minimizing the idle time of ORs, decreasing the closing time

and overtime of ORs, reduce the number of the possible cancellation of surgeries

and decrease costs related to sterilization of RMDs. Management constructs the OT

based on their previous experiment of the duration of each surgery, after that, they

create a schedule for the sterilization machine to support clean RMD requirements

of each surgery. In each period, based on sequence and schedule of each surgery if

the number of available clean RMD met the requirement of that surgery, the surgery

begins, otherwise, they postpone the surgery until RMD requirements are met or they

may cancel the surgery. In this thesis, we made the following assumptions:

• Surgery duration is uncertain and following the log-normal distribution

• Only one sterilization machine is available

• All RMDs at the beginning of the day are clean

• Different types of Surgeries can be done in any of the rooms

• There is no need to clean RMDs at the end of the day

• All Surgeries are elective and there is no out-patient
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• Only next day’s Surgery is scheduled

• Surgeries are different by the number of their RMD requirement and process

time

• There is no cancellation in the time of scheduling

• Number of RMD requirements and distribution of surgery duration are known

in advance

In this Chapter, we present a simulation optimization approach to determine the

optimal surgery duration by minimizing the costs of key performance indicator (KPI).

In our approach, we assumed that the quality of our solution can be measured by

KPI. For the deterministic model, this quality is being measured by weighted sum

of using sterilization machines, sterilization of each RMD (α1), OR idle time (α2),

and makespan of surgeries (α3). In the simulation stage of our approach, KPI is the

weighted sum of costs related to sterilization (unit cost of 150), idle time (unit cost

of 10), over time (unit cost of 10) and number of cancellation (unit cost of 50,150).

3.2 Simulation Optimization Approach

As we mentioned in Chapter 1 it is important to schedule the ORs considering the

availability of other resources and uncertainty in surgery duration. For this purpose,

we developed a simulation optimization algorithm given a set of surgeries, schedules

the ORs based on presuming duration of surgeries and their RMD requirements. In

the proposed approach, ORs and sterilization machines are scheduled simultaneously

to decrease the over time, idle time of operating rooms and cancellations of surg-

eries related to unavailability of RMDs. After constructing the operating table, to

overcome the uncertainty in surgery duration, our approach simulates the schedule

with different scenarios related to the possible duration of surgeries and calculates the

KPIs related to the current schedule. By repeating this process, we determine the
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best duration for each surgery to schedule the ORs, knowing uncertainty will have

the least effect on this schedule. The flow chart of the proposed solution approach is

represented in Figure-1.

No

Yes

Initialization:

Set duration of 

each surgery equal 

to its mean 

duration

Solve the deterministic 

scheduling problem
Simulate the 

schedule and obtain 

average total cost

Stop

?
End

Duration Updates

Figure 1: Flowchart of the proposed simulation optimization approach.
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3.2.1 Deterministic Model

We model the integrated scheduling problem of OR and sterilization of RMDs by

an integer linear programming model. All information required about the surgeries,

including the duration of each surgery, is given before scheduling, however, surgery

durations may vary due to uncertainty prevalent during surgeries. Transfer times of

RMDs between OR and sterilization services are assumed to be negligible. Once the

surgery starts, it cannot be interrupted. Lastly, we assume that all surgeries require

the same type of RMDs, but required numbers of RMDs vary concerning surgeries.

Table 1: Nomenclature
Indices

o surgery, o ∈ O
t Time, t ∈ T
r Operating room, r ∈ R
Parameters

no number of RMDs required for each surgery o
po duration of each surgery o
ster time required for sterilization of one batch of RMDs
cap capacity of sterilization machine
mach number of sterilization machines
costster cost of sterilizing a RMD for one time unit
costmach cost of using sterilization machine for one time unit
αi weights used in objective function, i ∈ {1, 2, 3}
c0 number of clean RMDs at time 0
d0 number of dirty RMDs at time 0

Decision Variables

xo,t,r 1 if surgery o starts at time t at operating room r; 0 otherwise
ir idle time of operating room r
er makespan of operating room r
ct number of clean RMDs at the beginning of time t
dt number of dirty RMDs at the beginning of time t
st number of RMDs that starts to be sterilized at the beginning of time t
mt number of sterilization machines that starts sterilization at the beginning of time t
M makespan
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min
∑
t

α1(costmachmt + coststerst) + α2

∑
r

ir + α3M

s.t. ct−1 −
∑
r∈R

∑
o∈O

noxo,t,r + st−ster = ct ∀t ∈ T, t ≥ 1 + ster (1)

ct−1 −
∑
r∈R

∑
o∈O

noxo,t,r = ct ∀t ∈ T, t ≤ ster (2)

dt−1 − st +
∑
r∈R

∑
o∈O:t−po≥1

noxo,t,r = dt ∀t ∈ T (3)

st ≤ cap mt ∀t ∈ T (4)

t−1∑
t̄=t−ster

mt̄ ≤ mach ∀t ∈ T : t ≥ ster (5)

∑
o∈O

∑
t̄∈T̄ :t−po≥1

xo,t̄,r ≤ 1 ∀r ∈ R, t ∈ T, T̄ = {t− po, .., t− 1} (6)

∑
t∈T

∑
r∈R

xo,t,r = 1 ∀o ∈ O (7)

er ≥
∑
t∈T

(t+ po)xo,t,r ∀o ∈ O, r ∈ R (8)

M ≥ er ∀r ∈ R (9)

ir ≥ er −
∑

o∈O,t∈T

po xo,t,r r ∈ R (10)

xo,t,r ∈ {0, 1} ∀o ∈ O, t ∈ T, r ∈ R (11)

M ≥ 0 and er, ir ≥ 0 ∀r ∈ R (12)

ct, dt, st,mt ≥ 0 and integer ∀t ∈ T (13)

The objective function is to minimize the total cost, which comprises using ster-

ilization machines, sterilizing each RMD, OR idle time, and makespan of surgeries.

The first and the second constraints are inventory balance equations for clean RMDs,

whereas, dirty RMDs’ inventory balance equation is satisfied by constraint (3). Ca-

pacity of sterilization machines is satisfied by constraint (4). Constraint (5) ensures

that total number of busy sterilization machines at every time period is less than or
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equal to the number of sterilization machines. Constraint (6) guarantees at most one

surgery can be processed at an OR at a given time, and constraint (7) ensures that

every surgery should be processed. Constraints (8), (9), and (10) define the makespan

of each operating room, the makespan, and the OR idle time, respectively. Lastly,

non-negativity and binary variables are stated by constraints (11)-(13) ( α1 is 0.1 and

for α2 and α3 the value of 10 is selected).

3.2.2 Simulation

In the proposed simulation-optimization procedure, we first solve the mathematical

model introduced in Section 3.2.1 developed for integrated scheduling of ORs and

sterilization of RMDs. Then, we evaluate the performance of the solution computed

by the mathematical model under uncertain surgery duration. The pseudocode of

our proposed aproach is shown in Algorithm 1 and the steps of algorithm is as follow:

1. First, Set the duration of surgeries equal to the mean of duration, the standard

deviation is also equal to the standard deviation of surgeries

2. Solve the deterministic model

3. Extract the sequence of surgeries and schedule of the sterilization machine from

the deterministic solution

4. Generate scenarios based on mean and standard deviation of each surgery using

log-normal distribution

5. Using the sequence of surgeries and schedule of machine simulate the solution

6. Calculate the KPIs

7. Update the best KPI if needed

8. Increase/Decrease the duration of all the surgeries at the same time, return to

step 2, if no improved KPI found, go to step 9

9. For each operation, update its duration to mean + 2*SD, return to step 2
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10. Reduce the duration of the surgery by 1 in each iteration

11. Stop if duration of all surguries are updated in step 9, else move to next oper-

ation

Predicting and generating the duration of surgeries are an important part of any

simulation approach. Base on Strum et al. (2003), we assumed that the duration of

surgeries is following the log-normal distribution. In addition, in this thesis, ster-

ilization itself has several stages and different costs. For the sake of simplicity, we

considered all the stages of sterilization as one stage. In addition, we divided the costs

related to sterilization into fixed cost of using the sterilization machine, and variable

cost of sterilizing of each RMD.

We assumed two conditions for cancelling a surgery: 1. no surgery can start after

the closing time of the OR, or, 2. If the number of clean RMDs is less than the

requirement of surgery and there is no schedule for sterilization machine in upcoming

periods. We also assigned a cost to OR’s overtime and idle time in which by min-

imizing these costs we can increase the utilization of ORs. As shown in Figure 70,

overtime happens by keeping the ORs open after its scheduled closing time and idle

time is the periods that ORs are open but not being used for surgery.

G.pdf

 Closing 
time 

 

1 2 3 4 5 6 7 8 

Surgery A  Surgery  B 

 Idle 
Time 

 Over time 

 

 

Figure 2: Idle time and Over time
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Algorithm 1: Our proposed simulation optimization approach

1 Step 0: Initialize KPIbest = M , Os = O, and Oc = {}, iteration = 1
2 po:= duration of surgery o used while solving the deterministic mathematical

model introduced in Section 3.2.1
3 Step 1: Solve the deterministic mathematical model and compute KPId
4 S:= Set of surgeries sequenced according to ascending starting times

5 Ssm:= Staring times of working sterilization machines
6 Generate K scenarios for surgeries’ durations
7 Step 2: Simulation
8 for s=1:1:K do
9 pso:= duration of surgery o in scenario s

10 t= 1; initialize ct, dt, and st
11 while t ≤ T do
12 if sterilization machine works at time t according to Ssm then
13 if dt > 0 then
14 Start sterilization and update dt, st, and ct+ster−1

15 end

16 end
17 if there is an available OR then
18 Pick the first surgery o from S
19 if ct ≥ no then
20 Start surgery o, update ct and dt+po−1

21 S = S \ {o}
22 end

23 end
24 Update t := t +1

25 if S = ∅ then
26 break
27 end

28 end

29 if S 6= ∅ then
30 Cancel all remaining surgeries in S
31 end
32 Compute KPIs
33 end

34 Compute KPIave
35 Set KPIbest = min

{
KPIave, KPIbest

}
36 Step 3: Performance Comparison
37 while po 6= 1 ∀o and iteration = 1 do
38 Set po = po ± 1, ∀o
39 Repeat Steps 1 and 2
40 if KPIave < KPIbest then
41 Update KPIbest = KPIave
42 else
43 break
44 iteration = iteration+ 1

45 end

46 end
4848 if KPIave > KPIbest then
49 for o = 1 : 1 : |O| do

50 pdo = pdo
5252 for pdo = µ+ 2σo : −1 : pdo + 1 do
53 Repeat Steps 1 and 2
54 if KPIave < KPIbest then
55 Update KPIbest = KPIave
56 else
57 break
58 end

59 end

6161 for pdo = µ− σo : 1 : pdo − 1 do
62 Repeat Steps 1 and 2
63 if KPIave < KPIbest then
64 Update KPIbest = KPIave
65 else
66 break
67 end

68 end

69 end

70 end
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CHAPTER IV

COMPUTATIONAL RESULTS

To assess the performance of the proposed SO approach, a series of numerical exper-

iments is performed. In section 4.1, we describe the generation of data sets used in

numerical experiments. In section 4.2, the SO algorithm is tested on 16 types of prob-

lem instances. Results are compared with the solutions of the initial iteration. All

algorithms are implemented in Java. To solve the deterministic formulation, ILOG

Cplex 12.7 is used with a runtime limit of 2 minutes. Cplex and Java are run on a

machine with Intel Core i7-8559U CPU @ 1.80 GHz processor and 8 GB RAM.

4.1 Data Generation

In order to test the proposed simulation optimization approach, a total of 432 in-

stances are generated. The instances differ in the number of the operating room,

initial available clean RMDs, RMD requirement of surgeries, cost of cancellation and

standard deviation in the duration of each surgery in simulation. The number of

ORs varies between 1 and 3. We study two cases for RMD requirement: (i) identical

RMD requirement for all surgeries (2 RMDs per surgery), and (ii) different RMD

requirement where required number of RMDs are generated randomly from the set

{1, 2, 3, 4}. In addition, we studied two case for the initial number of available RMD,

Scarce (40% of the average total required RMDs) and ample (80% of the average total

required RMDs). The cost of cancellation is selected from the set {50, 150}. We also

consider 1 hour to be equal to 4 periods in our instances. First, we assumed that

the surgery durations are identified with mean 1 hour (4 time periods) and standard

deviation 30 minutes (2 time periods), and then with mean of 1 hour and standard de-

viation randomly generated from {15, 30, 45} minutes. For cases with heterogeneous
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Table 2: Percentage KPI improvement for varying ORs.
Case # of Duration Initial Cancella- RMD # of ORs

Instance RMD tion Cost need 1 2 3

1 1 4,2 Scarce 50 2 7.51% 4.23% 11.09%
2 5 4,random Scarce 50 2 14.28% 8.94% 12.44%
3 1 4,2 Scarce 150 2 2.39% 4.67% 7.58%
4 5 4,random Scarce 150 2 4.16% 6.61% 8.11%
5 1 4,2 Ample 50 2 41.92% 15.49% 13.59%
6 5 4,random Ample 50 2 47.53% 18.05% 13.56%
7 1 4,2 Ample 150 2 8.80% 2.93% 4.07%
8 5 4,random Ample 150 2 8.18% 6.45% 4.82%
9 5 4,2 Scarce 50 diverse 16.77% 19.41% 8.12%
10 25 4,random Scarce 50 diverse 16.96% 18.84% 8.61%
11 5 4,2 Scarce 150 diverse 5.76% 8.46% 4.12%
12 25 4,random Scarce 150 diverse 7.31% 9.61% 4.96%
13 5 4,2 Ample 50 diverse 47.26% 12.88% 8.30%
14 25 4,random Ample 50 diverse 50.78% 17.37% 8.32%
15 5 4,2 Ample 150 diverse 12.76% 8.95% 15.39%
16 25 4,random Ample 150 diverse 12.87% 9.79% 15.52%

Average 21.12% 12.95% 9.43%

duration, for each case, a total of 5 instances with different standard deviations are

generated, and for the ones with different RMD requirement, for each case, 5 instances

with different RMD requirements are generated considering the average number of

RMD’s to be 2.

All RMDs are assumed to be clean at the beginning of the day, and there is only

one sterilization machine with a capacity of 8 RMDs and sterilization duration of 2

hours (8 time periods). The number of surgeries per OR is 5. In the case of the cost

related to sterilization, a fixed cost of 150 is set for each time the machine works and

a cost of 15 for each RMD in the machine. For idle time and overtime, the cost of 10

unit is considered for each period the system is idle or doing overtime.

4.2 Numerical Analysis

We generate a total of 432 instances as introduced in 4.1. Key performance indi-

cator (KPI) is defined as the total cost of RMD sterilization (including sterilization

machine cost), idle time, overtime, and cancellation. After the mathematical model
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introduced in Section 3.2.1 is solved, 10,000 samples are simulated given the sequence

of surgeries and the schedule of sterilization machines computed by the mathematical

model. Before updating the duration of surgeries that are given as input to the math-

ematical model, we record the KPI of this first iteration as initial KPI value. Then,

durations are updated in the next iteration and the steps are repeated as introduced

in Algorithm 1 unless a stopping criterion is met. The best value obtained during the

iterations is recorded as the best KPI value. Percentage KPI improvement is defined

as (best KPI value - initial KPI value)/ initial KPI value. The results are shown in

Table 2.

Table 2 shows the average percentage KPI improvement for varying ORs. By

not using the mean of surgury duration for scheduling the ORs, KPI improvement

percentage increases for all of the instances. This shows us that the state-of-the-

art approach usually utilized in the literature, using the mean values for surgery

durations, may perform poorly. Thus, one should search for better initial durations

instead of using the mean values, while solving the deterministic mathematical model

For the purpose of comparison of parameter’s effect on total KPI, we used R soft-

ware to construct a decision tree. We compared the KPI improvement percentage

based on the number of ORs, initial RMDs, cost of cancellation and RMD require-

ments of surgeries. The result is shown in Figure 3. From the decision tree, we

observe that on average we have 15% improvement, and if we divide the instances to

2 group of cases with cancellation cost of 50 and 150, we can see that in instances with

lower cancellation cost the average KPI improvement is 20%, however, with higher

cancellation cost, average KPI improvement decreases to 9.3%. Based on the decision

tree, cancellation cost has the highest effect on the KPI, followed by the number of

initial RMD and ORs.

In the case of cancellation cost, it has the most significant effect on KPI im-

provement. By tripling the cancellation cost, both the deterministic mathematical
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model and our simulation optimization approach decrease the number of surgery can-

cellations and it is shown in Figure 4. However, the KPI improvement percentage

decreased from 20% to 9.3%. The reason for this is that by increasing the cancella-

tion cost to 150, it becomes the highest cost in our model and to reduce its effect on

the total KPI, our simulation optimization approach increases the operating room’s

make-span by increasing the duration of surgeries to postpone the closing period of

operating rooms to avoid cancellation, and this increase will lead to higher total KPI

and lower improvement. To do that, the SO approach schedules the sterilization ma-

chine after the arrival of the second dirty patch of RMDs to make sure of not missing

the schedule of the machine and having clean RMDs for all surgeries, and this comes

with the increase of make-span of operating rooms. In state of the art approach,

on the other hand, the objective of minimizing idle time and overtime of operating

rooms, and in addition, the constraint that pushes the model to do all surgeries, does

not consider the uncertain nature of surgery durations.

As the initial RMD becomes ample from scarce and cancellation cost is 50, per-

centage KPI improvement increases up to 50 percent, however, by tripling the cancel-

lation cost when the initial RMD is ample, KPI improvement reduces. The effect of

CancelCost >= 100

InitialRMD = S

RMDReq = H1,S

Room >= 2

Room >= 3 InitialRMD = S

15
100%

9.3
50%

6.9
25%

12
25%

5.9
8%

14
17%

20
50%

13
33%

9.3
17%

17
17%

33
17%

16
8%

50
8%

yes no

Figure 3: Comparison decision tree of KPI improvement
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the number of initial RMDs shows us that the state of art approach cannot utilize am-

ple RMDs correctly. In instances with ample RMD, the state of art approach schedule

the sterilization machine to start after the first batch of dirty RMDs arrive, however,

if the duration of surgeries takes longer than expected, it will miss the sterilization

schedule or having less dirty RMDs in the machine than expected. By missing the

schedule of sterilization the upcoming surgeries will not have enough clean RMDs to

start. However, the SO approach postpones the schedule of the sterilization machine

to avoid this problem. This will affect the make-span of operating rooms and increase

the idle time, but on the other hand, it guarantees the sterilization of all dirty RMDs

and the hospital will not miss the schedule of the machine.

Another factor in percentage improvement of KPI is the number of operating

rooms. Increasing the number of ORs comes with the increase inthe number of surg-

eries and higher uncertainty in the model. Poor scheduling of surgeries or sterilization

machines can lead to higher KPI in case of idle time, overtime or cancellation. The

reason for that is the objective of deterministic model is to minimize all the costs, but

OR 1 OR2 OR3 OR 1 OR2 OR3

50 150

Figure 4: Effect of cancellation cost on KPI improvement and number of cancellation
in cases with different number of ORs
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in order to do that it cannot consider the effect of uncertainty in durations and as we

discussed before missing the sterilization schedule will increases the total KPI. In our

experiments, in instances with 1 OR, the KPI improvement is 21 percent, however

increasing the number of OR’s, decreases the improvement by half. This effect is

more critical in instances with low cancellation cost, in which increase in the number

of ORs, decreases the KPI improvement from 33 to 9.3 percent.

RMD requirements per surgery may vary in real life. However, due to nonexis-

tent real data about exact RMD usage during surgeries, we capture varying RMD

requirements of surgeries by generating RMD requirements not only as the same for

all surgeries but also differing a cross surgeries. When the RMD requirement per

surgery is the same, the percentage KPI improvement is at most 55%, however, when

the RMD requirement per surgery varies, the percentage KPI improvement goes up

to 89%. This shows that as RMD requirements vary, integrated scheduling of ORs

and RMDs becomes a more vital task as one can benefit more from diverse RMD

requirements while scheduling surgeries. For instance, instead of scheduling surgery

A requiring 2 RMD sets, one may prefer to schedule both surgery B and C both

requiring 1 RMD set or vice versa.

Another outcome is related to the optimality GAP and computational time of

the cases. For solving the deterministic model, 2 minutes time limit is set for Cplex.

In cases with 1 operating room, the algorithm found the optimal solution, however,

for cases with more than 1 operating room, only in cases with ample initial RMD

the algorithm found optimal or near-optimal solutions. Besides, by increasing the

number of operating rooms, the combinational time increases significantly. On the

other hand, the increase in the number of initial RMD decreases the computational

time by half. Furthermore, we run the algorithm with an increase in the time limit

for Cplex (3 minutes). There was an improvement in optimality Gap, but it did not

affect the best solution KPI. The results are shown in Table 3
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Table 3: CPU time of instances and average GAP percentage

1 OR 2 OR 3 OR

Instance CPU Time GAP CPU Time GAP CPU Time GAP

(min) (min) (min)

1 1.92 0 % 31.41 29.16 % 240.89 61.42 %

2 2.72 0 % 49.64 20.38 % 251.21 41.12 %

3 2.61 0 % 32.50 51.8 % 241.90 72.01 %

4 2.79 0 % 46.32 37.4 % 249.62 70.16 %

5 0.77 0 % 19.91 0 % 141.99 0 %

6 0.89 0 % 20.91 0 % 140.80 0 %

7 0.81 0 % 19.44 0 % 139.42 0 %

8 0.86 0 % 22.45 0 % 141.83 0.47 %

9 1.79 0 % 72.22 27.03 % 254.23 42.32 %

10 1.77 0 % 62.44 22.62 % 254.20 46.18 %

11 2.00 0 % 78.51 32.95 % 240.90 21.98 %

12 1.90 0 % 67.55 35.19 % 252.42 28.77 %

13 0.82 0 % 21.49 0 % 140.42 0 %

14 0.85 0 % 22.05 0 % 140.55 3.62 %

15 0.82 0 % 23.30 0 % 141.92 0.7 %

16 0.81 0 % 22.88 0 % 141.92 0 %
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CHAPTER V

EXTENSION: DYNAMIC RESCHEDULING

5.1 Model development

For solution approach, we proposed a simulation optimization framework in which

beside the sequence and schedule of surgeries, we take the schedule of sterilization

machine from deterministic model and simulate the instance to find KPI of this

instance. However, in some of the hospitals, the management may prefer to have a

more dynamic schedule for surgeries or sterilization machine. To meet this demand,

we considered 2 extensions that finds the optimal surgery and sterilization schedule

in a dynamic environment. In section 5.1.1, we explain dynamic rescheduling of

surgeries, section 5.1.2 is related to dynamic rescheduling of the sterilization machine.

finally, in section 5.2 we will compare the quality of results of these approaches and

the main approach and discuss when each approach should be used.

5.1.1 Dynamic Rescheduling Of Surgeries

In the main approach, the deterministic model gives us the sequence of surgeries and

in addition the assignment of surgeries to ORs. However, even if a surgery finishes

before its schedule (due to uncertainty in surgery duration) and OR becomes idle,

we cannot start another surgery if the surgery is not assigned to that room. To test

the effect of this assumption on our approach, we suggest an alternative assignment

system in which the assignment of surgeries could be changed during the day (in

our approach, in the simulation stage). All the stages of the main approach are

applied except using the assignment found in the deterministic model. In dynamic

rescheduling of surgeries (DRR), the assignment of surgeries to ORs could be changed

in each period by checking the availability and remaining capacity of each OR. This
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approach aims to decrease the idle time of operating rooms considering the fact that

we assumed that OR’s can support any type of surgeries. The steps of dynamic

rescheduling of surgeries are as follow:

Algorithm 2: Dynamic Rescheduling Of Surgeries

22 for each period do
44 if have empty room or an surgery is done then
66 for each room do
88 if room is empty then
9 Availability = closing period current period

10 end
1212 if room is in use then
13 Availability = closing time - expected finishing of current surgery
14 if passed the expected finishing time then
15 Availability = closing period next period
16 end

17 end

18 end

19 end
2121 Sort availability of rooms in non-decreasing order
2323 Find expected surgery assignment
2525 if room with highest availability is empty then
26 Start assigning surgeries to ORs from highest in decreasing order
27 end
2929 if room with highest availability is currently busy then
30 Move to next OR with highest availability and assign
31 end

32 end

5.1.2 Dynamic Rescheduling Of Sterilization Machines

In dynamic rescheduling of sterilization machines (DRSM) approach, the schedule of

sterilization machine is based on the number of dirty RMDs at each period. For this

approach we calculate a threshold in each period and if the criteria is satisfied, we

start the sterilization process. Threshold itself can be calculated with two methods .

In the first method, threshold criteria depends on cancellation cost of surgeries, the

algorithm is as follow:
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Algorithm 3: Dynamic Rescheduling Of Sterilization Machines, method 1

22 dt: number of dirty RMDs at time t
44 n: number of RMDs
66 for each period do
88 if cancellation cost is less than 100 then
9 if dt

n
< 0.8 then

10 Start the sterilization machine
11 else
12 Move to next period
13 end

14 end
1616 if cancellation cost is higher than 100 then
17 if dt

n
< 0.5 then

18 Start the sterilization machine
19 else
20 Move to next period
21 end

22 end

23 end

For the second method, we first introduce the following parameters:

lt: number of remaining surgeries in period t

K: sterilization machine fixed cost

k: variable cost of a unit RMD in sterilization machine

Idle: cost of an operating room being idle for one period of time

Du: expected duration of an surgery

R: RMD requirement of an surgery

C: cancellation cost of a surgery
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And the algorithm is as follow:

Algorithm 4: Dynamic Rescheduling Of Sterilization Machines, method 2

1 for each period do

2 Calculate total sterilization cost for rest of the surgeries

3 Calculate cancellation and idle time cost for the rest of the surgeries

4 if K+(k∗R∗lt)
(lt∗C)+(lt∗Idle∗Du)

< 1 then

5 Start the sterilization machine

6 else

7 Move to next period

8 end

9 end

5.2 Computational Analysis

To see the effect of dynamic rescheduling approaches, we test the approaches with

the data set in Chapter 4.1. The results for dynamic rescheduling of sterilization

machines and surgeries are represented in Table 4, 5 and 6. Also, Table 7 represents

the number of cases for each approach in which the approach found a better solution

in comparison to others.

Table 4 is representing results when the threshold is only based on the cost of

cancellation (DRSM-1). On the other hand, Table 5 represents the second approach

where the threshold is a function of the number of cancellation, cost of cancellation

and cost of idle time generated by the cancellation (DRSM-2). Also, Table 6 repre-

sents the KPI and improvement of our dynamic approach when surgeries assignment

can be dynamically changed.

In the case of dynamic rescheduling of sterilization machines, DRSM-2 show better

improvement in comparison to DRSM-1. DRSM-2’s threshold is a function of can-

cellation cost and idle time related to each surgery cancellation and because of this
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Table 4: KPI and Percentage improvement of DRSM-1
1 OR 2 OR

Instance Initial KPI Best KPI Improvement GAP Initial KPI Best KPI Improvement GAP
1 551.47 507.77 7.92 % 0 % 739.53 736.98 0.34 % 29.16 %
2 553.28 506.03 8.54 % 0 % 742.39 727.00 2.06 % 24.79 %
3 651.47 608.58 6.58 % 0 % 886.43 875.07 1.28 % 30.66 %
4 653.56 608.00 6.97 % 0 % 889.03 866.31 2.54 % 29.97 %
5 86.89 80.36 7.52 % 0 % 165.45 150.81 8.85 % 0 %
6 86.50 78.75 8.90 % 0 % 169.21 148.96 11.95 % 0 %
7 189.79 188.19 0.84 % 0 % 367.25 358.64 2.34 % 0 %
8 190.10 185.07 2.63 % 0 % 372.15 356.51 4.19 % 0 %
9 534.23 488.82 9.20 % 0 % 714.96 671.58 5.93 % 30.65 %
10 535.74 490.59 9.16 % 0 % 716.61 666.85 6.83 % 27.97 %
11 645.87 594.06 7.86 % 0 % 864.96 824.95 4.54 % 33.34 %
12 647.48 591.33 8.38 % 0 % 867.81 823.90 5.02 % 27.25 %
13 86.54 80.47 7.01 % 0 % 170.59 141.77 17.03 % 0 %
14 88.90 80.86 9.02 % 0 % 173.52 140.64 19.05 % 0 %
15 189.96 188.16 0.95 % 0 % 376.95 313.24 17.09 % 0 %
16 193.50 187.51 3.09 % 0 % 380.82 316.01 17.21 % 0 %

Average 6.54 7.89

Table 5: KPI and Percentage improvement of DRSM-2
1 OR 2 OR

Instance Initial KPI Best KPI Improvement GAP Initial KPI Best KPI Improvement GAP
1 380.88 259.72 31.81 % 0 % 622.19 567.84 8.74 % 57.78 %
2 224.16 145.87 31.70 % 0 % 624.37 567.93 9.03 % 21.93 %
3 680.88 559.72 17.79 % 0 % 886.43 875.07 1.28 % 30.66 %
4 680.73 560.24 17.70 % 0 % 884.29 866.64 1.99 % 24.99 %
5 86.89 80.36 7.52 % 0 % 288.65 286.43 0.77 % 0 %
6 86.39 78.67 8.88 % 0 % 290.41 287.13 1.13 % 0 %
7 189.79 188.19 0.84 % 0 % 477.74 448.72 6.07 % 0 %
8 190.10 185.07 2.63 % 0 % 476.81 433.89 8.96 % 0 %
9 383.16 261.23 31.60 % 0 % 572.50 442.98 22.10 % 24.45 %
10 383.26 262.91 31.14 % 0 % 572.82 451.06 20.61 % 23.13 %
11 703.16 541.23 22.63 % 0 % 864.96 826.68 4.36 % 18.56 %
12 703.27 558.95 19.88 % 0 % 867.81 821.65 5.28 % 27.66 %
13 86.54 80.47 7.01 % 0 % 314.82 163.17 48.17 % 0 %
14 88.90 80.74 9.16 % 0 % 316.31 182.40 42.20 % 0 %
15 189.96 188.16 0.95 % 0 % 488.44 398.56 18.62 % 0 %
16 193.50 187.51 3.09 % 0 % 492.23 402.96 17.78 % 0 %

Average 15.27 13.57
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Table 6: KPI and Percentage improvement of DRR
1 OR 2 OR

Instance Initial KPI Best KPI Improvement GAP Initial KPI Best KPI Improvement GAP
1 490.30 453.77 7.45 % 0 % 1273.19 678.78 46.69 % 15.46 %
2 491.51 421.42 14.25 % 0 % 1263.97 650.15 48.56 % 19.96 %
3 560.30 554.79 0.98 % 0 % 1551.19 1078.68 30.46 % 6.49 %
4 562.47 537.53 4.43 % 0 % 1542.13 1045.58 32.20 % 33.44 %
5 218.97 130.64 40.34 % 0 % 532.30 390.16 26.70 % 0 %
6 218.41 120.51 44.82 % 0 % 535.82 378.17 29.41 % 0 %
7 245.57 219.03 10.81 % 0 % 1041.80 998.91 4.12 % 0 %
8 244.51 219.86 10.05 % 0 % 1044.26 975.59 6.57 % 0 %
9 501.04 416.79 16.81 % 0 % 1054.92 654.26 34.06 % 25.64 %
10 501.40 414.15 17.32 % 0 % 1051.93 661.37 33.04 % 31.54 %
11 601.78 564.96 6.20 % 0 % 1381.28 934.52 30.79 % 43.60 %
12 602.11 555.14 7.61 % 0 % 1380.94 882.49 34.68 % 45.72 %
13 227.15 127.49 43.75 % 0 % 506.63 388.49 22.87 % 0 %
14 231.14 116.07 49.58 % 0 % 513.50 379.25 25.51 % 0 %
15 257.03 219.14 14.62 % 0 % 1053.39 877.61 16.53 % 0 %
16 260.97 224.47 13.86 % 0 % 1059.96 866.54 18.07 % 0 %

Average 18.93 27.52

function, it performs better than DRSM-1 in case of percentage improvement, where

this percentage is 7.21 and 14.42 percent for DRSM-1 and DRSM-2. DRSM-2’s show

better improvement in cases with scarce RMD. Besides, when the cost of cancellation

is high, both DRSM-1 and DRSM-2 show lower improvement. This effect is more

significant in DRSM-2.

For dynamic rescheduling of surgeries approach, the pattern of results are different

from DRSM. DRR works better in cases with ample initial RMD and the reason is that

DRR can change the surgery’s room assignment without considering the availability of

RMDs. Moreover, in instances with a lower cost of cancellation, DRR’s improvement

is notably higher. However, this change in assignment could increase the number of

cancellations.

To compare all the approaches, we compared the best KPI found in each instance

for all approaches and count the number of cases in each instance when an approach

founds better KPI. The results are shown in Table 7. In instances with 1 OR, DRSM-

2 in comparison to other approaches found more solutions with lower KPI. DRSM-1

follows DRSM-2 with 70 good solutions, however, DRSM-1 and DRSM-2 share 61 of

these solutions. When the number of ORs is increased to 2, our initial approach founds

a higher number of solutions with lower KPI. When the cost of cancellation is high,
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Table 7: Comparison of approaches
1 OR 2 OR

Instance of instance Main DRSM-1 DRSM-2 DRR Main DRSM-1 DRSM-2 DRR
1 1 0 0 1 0 0 0 1 0
2 5 0 0 5 0 0 0 5 0
3 1 1 0 0 0 1 0 0 0
4 5 4 0 0 1 5 0 0 0
5 1 0 1 0 0 0 1 0 0
6 5 0 3 3 0 0 5 0 0
7 1 0 1 1 0 1 0 0 0
8 5 0 5 5 0 5 0 0 0
9 5 0 0 5 0 0 0 5 0
10 25 0 0 25 0 1 0 24 0
11 5 2 1 1 1 5 0 0 0
12 25 12 4 6 3 25 0 0 0
13 5 0 5 5 0 0 5 0 0
14 25 1 22 24 0 0 25 0 0
15 5 1 4 4 0 3 2 0 0
16 25 1 24 24 0 15 10 0 0

Sum 22 70 109 5 61 48 35 0

our main approaches perform better in instances with identical surgery durations SD,

however in instances with heterogeneous surgery durations and low cancellation cost,

DRSM approaches are work better. The reason for this behaviour is that DRSM

can react to heterogeneous RMD requirement in each scenario and decide to cancel

the surgery or start the sterilization machine, however, the main approach has a fix

sterilization schedule and because of uncertainty in duration of surgeries, in cases

when the surgury takes more than expected, we may fail to do the sterilization and

it may lead to increase in number of cancellation. To avoid this problem, it schedules

the machine to a period that the change in duration will not affect the sterilization.

In the case of the number of cancellations, our main approach performes better

than other approaches in both single and multiple ORs. In instances with single OR

DRSM-1 has a much better performance than DRSM-2, however, when the number

of ORs increases, both DRSM-1 and DRSM-2 show the same performance. On the

other hand, the DRR approach has the highest number of cancellations in instances

with multiple ORs. The average number of cancellation for each approach is shown

in Table 8.

For instances with 1 OR, as expected, instances with a higher cost of cancellation

show a lower number of cancellation in the main approach and this effect is more
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Table 8: Number of cancellation in approaches
1 OR 2 OR

Instance Main DRSM-1 DRSM-2 DRR Main DRSM-1 DRSM-2 DRR
1 0.92 1.01 3.00 1.01 1.61 1.41 3.56 4.03
2 1.05 1.02 3.00 1.13 1.68 1.45 3.84 3.85
3 0.85 1.01 3.00 0.95 0.59 1.37 1.37 4.00
4 0.91 1.01 3.00 0.99 0.50 1.33 1.33 3.69
5 0.90 1.13 1.13 1.63 0.82 2.07 0.95 6.16
6 0.90 1.09 1.09 1.41 0.97 2.08 0.95 6.41
7 0.25 1.05 1.05 0.27 0.21 2.03 0.52 5.48
8 0.28 1.05 1.05 0.28 0.08 2.05 0.61 4.78
9 1.40 1.05 2.80 1.44 1.88 1.78 3.23 3.34
10 1.33 1.07 2.96 1.35 1.87 1.79 3.19 3.47
11 0.61 1.03 2.80 0.67 0.99 1.43 1.51 2.57
12 0.82 1.15 2.96 0.79 1.04 1.46 1.45 1.93
13 0.94 1.09 1.09 1.68 1.04 1.82 1.66 5.33
14 1.04 1.08 1.08 1.57 1.25 1.81 1.72 5.52
15 0.58 1.05 1.05 0.38 0.17 1.72 0.69 4.44
16 0.68 1.05 1.05 0.38 0.13 1.72 0.70 4.33

Sum 13.42 16.94 32.12 15.94 14.83 27.32 27.25 69.34
Average 0.84 1.06 2.01 1.00 0.93 1.71 1.70 4.33

significant in instances with ample initial RMD. However, there is slight difference

between this number from identical to heterogeneous surgery durations. For DRSM-1,

the number of cancellation is close in all the instances, on the other hand, DRSM-

2’s cancellation has a direct relation with initial RMD, scarce cases show higher

cancellations and vice versa. The increase in the number of ORs has no effect on

the number of cancellations in the main approach. DRSM-1 reduces the number of

cancellation for instances with scarce RMDs and has a higher number of cancellations

for instances with ample initial RMDs. Also, we can say that the cost of cancellation’s

effect on DRSM-1 is too small. DRSM-2 finds better solutions in comparison to 1 OR

instances. Besides the effect of initial available RMDs, with 2 ORs, DRSM-2 show

a significant decrease in the number of cancellations when the cost of cancellation is

high. For DRR, instances with identical surgery duration hast less cancellation than

heterogeneous instances, besides, instances of ample RMDs have a higher number of

cancellations in comparison to scarce RMD instances.
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CHAPTER VI

CONCLUSION

In this thesis, we propose a simulation-optimization approach to reduce the effect of

uncertain surgery duration on the schedule of operating rooms and sterilization ma-

chines which can be used by hospital management and service providers for decision-

making purposes.

Towards this goal, we introduce 4 approaches. To analyze the approaches, 432

instances were generated and tested on each approach. The instances differ in the

number of the operating room, initial available clean RMDs, RMD requirement of

surgeries, cost of cancellation and standard deviation in the duration of each surgery

in simulation. The quality of the solutions is measured by key performance indicator.

In our approaches, KPI is the sum of cost of idle time, overtime, cancellation and

sterilization. Based on KPIs found, hospital managers can select a desirable approach

to increase their profit and patient satisfaction.

After analyzing the results from all approaches, our main approach in which simu-

lates the sequence and schedule of the surgeries and schedule of sterilization machines

found in the deterministic model, shows results of good quality in case of the num-

ber of cancellation for both OR1 and OR2 and KPI found in instances with 1 OR.

For instances with cancellation cost lower than sterilization cost, the main approach

shows an average of 20% improvement, and an average of 15% improvement in all

instances.

DRSM-1 and DRSM-2 dynamically reschedule the sterilization machines and DRR

dynamically reschedules the operating rooms. DRSM-2 found 75% of the best solution

in instances with single OR and 25% for instances of 2 OR. Besides. it shows an
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average of 14.42% as a KPI improvement. DRSM-1 and DRSM-2 share 20% of best

solutions for instances with single OR, however, in case of KPI improvement, an

average of 7.21% is seen in DRSM-1. As a result, we can suggest DRSM-2 for the

hospitals with dynamic sterilization machine schedule. DRR approach shows poor

results in case of KPI in all the instances, however as an improvement approach

it results in 18.93% improvement for OR1 and 27.52% for OR2, and if the service

providers decide to allow reassignment of surgeries during the day DRR is a good

choice.

In this thesis, we studied the scheduling of sterilization machines and surgeries

with uncertainty in the duration of surgeries. As a future research direction, we can

suggest working on uncertainty in the resources. RMDs availability and sterilization

duration can be consider uncertain or the possibility of break down in sterilization

machines can be added to the problem. In addition, the arrival of emergency patients

can be added to the problem. Another avenue of research can be dynamic weights for

KPIs, considering that the cost of idle time and overtime were fixed. Furthermore,

we can study the effect of changing the values of alpha in the objective function of

deterministic model. We can also investigate the instances that each operating room

can only do certain types of surgeries.
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