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Özyeğin University
August 2019

Copyright © 2019 by O. Furkan Kınlı



CLOTHING IMAGE RETRIEVAL WITH TRIPLET
CAPSULE NETWORKS

Approved by:

Asst. Dr. M. Furkan Kıraç, Advisor
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ABSTRACT

Clothing image retrieval has become more important after some major developments

in Computer Science and the emergence of e-commerce. Recent studies generally

attack this problem by using Convolutional Neural Networks (CNNs). Despite their

popularity, CNNs, by nature, have some intrinsic limitations such as losing the hier-

archical spatial relationship between the parts of an image, and not being robust to

affine transformations. Most recently proposed network architecture, namely Capsule

Networks, has the ability to overcome these limitations by preserving the part-whole

relationship and pose information in the images. In this thesis, we investigate in-shop

clothing retrieval performance of densely-connected Capsule Networks with dynamic

routing. To achieve this, we propose Triplet-based designs of Capsule Network ar-

chitecture with two different feature extraction methods: Stacked-convolutional (SC-

CapsNet) and Residual-connected (RCCapsNet) Capsule Networks. Experimental

results of our proposed designs on in-shop clothing retrieval show that SCCapsNet

achieves 32.1% Top-1, 81.8% Top-20, and 90.0% Top-50 recall-at-K scores; whereas

RCCapsNet has even better performance with 33.9% Top-1, 84.6% Top-20, and 92.6%

Top-50 recall-at-K scores. These figures demonstrate that both of our designs outper-

form the baseline study and the earlier approaches by a wide margin without using

any extra supportive information besides to the images. Moreover, when compared to

the SOTA architectures on clothing retrieval, our proposed Triplet Capsule Networks

achieve comparable recall rates with only half of the parameters used in the SOTA

architectures. In the future, our designs may inherit extra performance boost due to

advances in the relatively new Capsule Network research.
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ÖZETÇE

Kıyafet resmi erişimi Bilgisayar Bilimleri’ndeki bazı önemli gelişmelerden ve e-ticaret’in

doğuşundan sonra daha da önemli hale gelmiştir. Yakın dönemdeki çalışmalarda

bu problemin çözümü için genel olarak Evrişimli Sinir Ağları (ESA) kullanılmıştır.

Popülaritesine rağmen, ESAlar, doğaları gereği, parçalar arası hiyerarşik konumsal

bilgi kaybı ve afin dönüşümlerine dayanıklı olmama gibi bazı yerleşik sınırlamalara

sahiptir. Yeni önerilen Kapsül Ağları mimarisi, resimlerdeki parça-bütün ilişkisini

ve poz bilgisini koruyarak bu sınırlamaları ortadan kaldırabilme özelliğine sahip-

tir. Bu tezde, dinamik yönlendirme algoritması ile çalışan, nöronları yoğun bağlı

Kapsül Ağları’nın vitrin kıyafet resimlerine erişim performansını araştırdık. Buradan

yola çıkarak, iki farklı öznitelik çıkartma metoduyla tasarlanmış Triplet-bazlı Kapsül

Ağ mimarileri önerdik: İstifli-evrişimsel (SCCapsNet) ve Artık-bağlı (RCCapsNet)

Kapsül Ağları. Vitrin kıyafet resmi erişimine yönelik önerilen mimari tasarımlarımızın

deneysel sonuçları, SCCapsNet’in %32.1 en-yüksek-1, %81.8 en-yüksek-20 ve %90.0

en-yüksek-50 recall-at-K skorlarına ulaştığını gösterirken; RCCapsNet ise %33.9 en-

yüksek-1, %84.6 en yüksek-20 ve %92.6 en-yüksek-50 recall-at-K skorlarıyla daha da

iyi bir performans ortaya koymuştur. Bu rakamlar referans çalışmasının ve daha öncül

yaklaşımların performanslarıyla karşılaştırıldığında, resimlere ek olarak hiçbir ilave

destekleyici bilgi kullanmayan her iki tasarımımız da önemli bir farkla daha önde bir

performans sergilemiştir. Ayrıca, önerdiğimiz Triplet Kapsül Ağları, modern mimaril-

erde kullanılan parametre sayısının sadece yarısı kadar parametre kullanarak, modern

mimariler ile kıyaslanabilir sonuçlar elde etmiştir. İlerleyen dönemde, tasarımlarımız,

nispeten yeni Kapsül Ağları araştırmalarındaki gelişmelerden yola çıkarak ekstra per-

formans artışı alabilir.
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CHAPTER I

INTRODUCTION

1.1 Motivation

Online shopping is a highly growing market. In-store sales were the leading arms for

the profit margin of companies in the previous years. However, with the impact of

digital transformation, e-commerce recently becomes a new trend, and in-store sales

start to lose the leading share of market volume to online sales. Online retail sales

worldwide are expected to reach 3.5 trillion dollars by the end of 2019 [7], and clothing

sales provide a significant portion of this volume. According to a research conducted

by Statista in 2018 [8], 57% of global internet users had purchased fashion-related

products through the Internet. In addition, the global fashion e-commerce market

has a volume of approximately 480 billion dollars, and it is expected to almost double

in the next 4 years [9].

In such an emerging market, one of the most prominent priorities of a company

that wants to take part in the competition is to improve the shopping experience of

its customers. At this point, one of the most significant problems that customers

may encounter when shopping online is that they cannot find the desired product in

stock by searching through the company’s search engine. Traditional fashion search

engines allow to search by only the words that describe the products. In principle,

this is simply a similarity ranking mechanism that matches the textual input from the

customer to the meta-data of the product such as title, label and category information.

However, to accurately rank the products with this mechanism, it is required to have

fully-defined meta-data information and an unbiased vocabulary. Therefore, online

retailers have to provide their products by combining with richly annotated meta-data
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and diverse catalog information, so that their customers can find the product they

are looking for. Although having complete meta-data and catalog information leads

to increase the conversion rate, it can be exhaustive to collect for the companies.

Next, competitors in the fashion market attempts to add a value to the shopping

experience of their customers by adapting the developing technologies to the sales

process. Incorporating visual information of the products through the search engines

enhances the shopping experience of the customers in a sophisticated way. In other

words, the fact that search engines have the ability to measure the similarity between

query images taken by customers and in-shop product images helps the customers to

find what they are exactly looking for. As a consequence, this leads to increase the

conversion rates for the companies. Due to the limitations of the existing machine

learning approaches, it was difficult to acquire this feature in search engines up to a

few years ago. In the last couple of years, it becomes easier to solve with the help of

novel techniques combining Computer Vision and Deep Neural Networks.

In regard to the previous studies, the problem of learning the similarity between

images is attacked with several different techniques in different domains [10, 11, 12,

13, 14]. In recent years, as in the case of almost all image-related tasks [15, 16, 17, 18],

convolution-based neural network architectures achieved most of the SOTA perfor-

mances in image retrieval tasks [19, 20, 21]. However, convolutional neural networks

(CNNs) have some limitations by their nature, and most recently proposed neural

network architecture [4], called Capsule Networks, claims to overcome these limita-

tions. To the best of our knowledge, nobody attacks to in-domain image retrieval

task by using Capsule Networks up to now. In this thesis, we mainly investigate

the performance of Capsule Networks on clothing image retrieval task, and propose

Triplet-based [13] design of Capsule Networks which learns how similar the images in

fashion domain are.
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1.2 Definition

The main objective of this thesis is to observe the similarity learning performance of

Triplet-based Capsule Network architecture on more realistic, diverse and rich data

sets. Our study has five goals following the thesis hypotheses.

1.2.1 Goals

The goals of this thesis can be expressed as follows:

• Studying the brand-new deep learning architecture called Capsule Networks to

understand how it internally functions

• Designing a novel Triplet-based Capsule Network architecture by adjusting the

original architecture for similarity learning task

• Seeking more powerful feature extraction recipe than a 1-layer convolutional

network for the input of Capsule Networks

• Performing experiments by using our proposed Capsule Network architecture

on in-shop partition of DeepFashion data set [1]

• Combining all above, and investigating the SOTA research on clothing image

retrieval and Capsule Networks

1.2.2 Hypotheses

• Capsule Networks can be designed as Triplet-based to solve similarity learning

of the clothing images.

• Capsule Networks can achieve even better performance than CNN-based archi-

tectures without using any side information for in-shop image retrieval task.

• Capsule Networks can get comparable results to the SOTA methods that utilize

different side information and extra modules during their training phase.

3



1.2.3 Summary

In this thesis, it is mainly aimed to design a novel Triplet-based Capsule Network

architecture, and to investigate its performance on in-shop clothing image retrieval

task. To achieve this, our design should be capable of measuring the similarity be-

tween two image embeddings produced by a network that shares its weights for each

embedding. Moreover, since a shallow CNN falls short of extracting features from

more realistic images like clothing images, more complex methods are employed for

feature extraction phase such as stacked-convolutional blocks and residual blocks. In

this design, our model is not supported by any side information (i.e. landmarks and

attributes) that helps to fill the deficiency of pose configuration in CNN-based archi-

tectures since Capsule Networks are capable of learning the pose configuration of the

objects by itself.

1.3 Contributions

This thesis introduces Triplet-based design of Capsule Networks for measuring the

similarity between the latent capsule vectors. Our proposed architecture is employed

for in-shop image retrieval task. At this point, while this study can be considered as

a benchmark for clothing image retrieval, also it is an experimental study of Capsule

Networks on a more realistic, diverse and rich data set.

This study mainly shows that Capsule Networks are capable of getting promising

results on in-shop image retrieval, even without receiving any extra support as in

the case of the SOTA CNN-based methods to mitigate the limitations of CNNs.

In addition, in this study, we extract the features in real-like clothing images by

more powerful structures in order to figure out better training strategy for Capsule

Networks.

To the best of our knowledge, this thesis is the first research that employs Capsule

Networks for a similarity learning task in fashion domain.
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1.4 Thesis Outline

The outline of this thesis can be shown as follows:

In Chapter 2, we will recall the previous studies related to our research on Simi-

larity Learning (2.2), Clothing Image Retrieval (2.3) and Capsule Networks (2.4).

Chapter 3 investigates technical background behind well-known CNN architec-

tures (3.2), and gives a brief explanation of the capsule idea and routing mechanism

(3.3). Moreover, Triplet-based objective functions and the performance metrics that

we employ for this study (3.4) are presented in this chapter.

Chapter 4 introduces the baseline study (4.2), reveals our proposed Triplet-based

Capsule Network architectures in details (4.3), shows up in-shop partition of Deep-

Fashion data set (4.4), and explains the implementation details of our work (4.5).

In Chapter 5, we will show the experimental results of our proposed architectures

on in-shop image retrieval task (5.2). At the end of this chapter, we will compare

the performances of our proposed architecture, the baseline study utilizing landmark

information and attributes to recover the pose configuration, and the existing SOTA

methods using in-shop partition of DeepFashion data set in their studies (5.3).

Chapter 6 gives a brief summary of overall approach and the contributions, and

concludes this thesis with revealing the possible improvements on this research.
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CHAPTER II

LITERATURE REVIEW

2.1 Introduction

In this chapter, we concisely review the previous studies on similarity learning and

clothing image retrieval tasks, and indicate the similar approaches to our study and

the distinctive techniques in the literature. In addition, we demonstrate some recent

works on the brand-new deep learning architecture, namely Capsule Networks, in a

wide variety of domains.

2.2 Similarity Learning

The task of finding how similar two images are is one of the challenging tasks in

Computer Vision. Most of the SOTA methods have attacked to similarity learning

by measuring the similarity of the images with various distance metrics, and trying

to optimize the objective functions with several different strategies. In recent studies,

Nguyen et al. [10] (2010) shows that cosine similarity can be considered as an effective

alternative of Euclidean distance for metric learning problems. With the help of

the regularization term on the objective function, measuring the distance between

the manifold vectors with cosine similarity significantly improves the generalization

ability of the model. As a result, this study achieves the SOTA performance on face

verification domain.

Wang et al. [11] (2014) demonstrates that deep learning architectures are capable

of learning to rank fine-grained image similarities directly from images, and perform

better than the architectures based on hand-crafted feature descriptors. The proposed

multi-scale network model is designed for finding out the relationship between triplets
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that contain an anchor image, a similar image (positive), and a dissimilar image

(negative) by ranking the relative distance between the anchor and the others in

Euclidean space.

In analogy to above cited study, Zagoruyko et al. [12] (2015) investigates several

CNN-based architectures to learn a general similarity function from directly anno-

tated pairs of raw images without utilizing any manually-designed features. In this

study, as a result of the comparison among different combinations of dual-channel-

based [12], Siamese-based [22] and 2-stream-based [12] architectures, it is indicated

that extracting the features jointly from pairs has notable impact on matching the

similar images.

Schroff et al. [13] (2015) presents a system, called FaceNet, that directly learns to

map face images to embeddings as feature vectors in Euclidean space. The distance

between feature vectors directly corresponds to how dissimilar these images are. This

approach achieves the SOTA performance in face recognition and face verification

domains by encoding the images with only 128-bytes in Euclidean space.

Gordo et al. [14] (2016) focuses on learning deep representations of the images

for retrieval tasks by aggregating different region of interests in the images into com-

pact feature vectors that are robust to scaling and translation. This is an effective

method of similarity learning by packing Siamese Network [22] and Regional Pro-

posal Network [23] architectures together to generate the encodings. In the view of

such combination of different deep learning architectures, it is possible to compare

the compact global representations by projecting them onto a different sub-space. To

extend this study, Gordo et al. [24] (2017) discusses possible reasons for getting un-

derwhelming results on image retrieval tasks when using deeper architectures. At this

point, it is claimed that cleaning noisy samples from training data, intentive selection

of network architecture and optimal strategies during training lead to achieve better

results on image retrieval tasks.
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2.3 Clothing Image Retrieval

To survey remarkable image retrieval studies in fashion domain, Kiapour et al. [25]

(2015) introduces an excessively challenging task, namely Exact Street to Shop where

the goal is to match street photos that are captured in uncontrolled settings to the

same item in online shop photos that are captured by professionals. In this study, it

is experimentally shown that learning the similarity between street and online shop

photos directly is the best way to solve cross-domain image matching task when com-

pared to the existing methods that learn the embedded representations by traditional

deep learning approaches.

Huang et al. [26] (2015) seeks another solution for the cross-domain image match-

ing task as in the case of aforementioned study. In this study, Dual Attribute-aware

Network (DARN) is proposed to address this problem. This architecture consists of

two sub-networks that are structurally similar, yet extract the feature representations

for street photos and online shop photos separately. The main objective of this ap-

proach is to create a powerful and domain-specific semantic representations of clothes

with the help of the fine-grained clothing attributes.

Liu et al. [1] (2016) introduces a new data set, namely DeepFashion, which has

a vast amount of large-scale clothing images annotated with numerous attributes,

landmark information and cross-domain image correspondences. Moreover, in this

comprehensive study, FashionNet [1] is proposed for clothing category and attribute

classification, in-shop and consumer-to-shop retrieval tasks. In this design, first, Fash-

ionNet simultaneously predicts landmarks and attributes. Thereafter, it employs the

estimated landmark locations to pool the learned features so that the discriminative

features can be brought to the forefront.

Corbière et al. [27] (2017) demonstrates that it is possible to achieve promising re-

sults on image retrieval tasks on fashion domain by integrating bag-of-words approach

to weakly supervised learning process. In this method, the proposed model encodes
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weakly-annotated noisy data using the bag-of-words descriptors to generate separa-

ble visual concepts, and also to provide meaningful similarity between images. Along

with that, the learned representations are suitable for both classification and retrieval

tasks, and this study essentially addresses the issue of finding a large, rich-annotated

and clean-labeled data set for training of deep neural networks.

Wang et al. [28] (2017) proposes a Visual Attention Model (VAM) and a novel

Dropout-like connection between attention layers and the main network. To reduce

the dependency of having massive amount of side information on getting more accu-

rate results, VAM is employed to extract the attention maps from clothing images.

These attention maps are gated to intermediate feature maps extracted by main net-

work by performing randomized Dropout-like operation on the feature maps. The

main goal of utilizing attention-based design is to simplify focusing on important

regions in the images and to diminish the effect of the background clutter.

Yuan et al. [29] (2017) addresses the issue of defining a model with right com-

plexity and choosing hard samples carefully during training. To alleviate this, a novel

framework, namely Hard-aware Deeply Cascaded Embeddings (HDC), is proposed

in this study. This framework ensembles a set of models with different complexities

in cascaded manner, and figures out hard samples at multiple complexity levels for

training phase. After the forward pass, the main model is back-propagated only if

the sample is considered as a hard case.

Opitz et al. [20] (2018) shows how to improve the robustness of the feature

embeddings by exploiting the independence within ensembles. To achieve this, a new

ensemble learning approach for metric learning problem, called Boosting Independent

Ensembles Robustly (BIER), is presented in this study. In this approach, the last

layer of the embeddings is divided into multiple non-overlapping groups, and each

group is considered as a separate metric learning network that shares the features in

the previous layers of the main network.
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Ge et al. [19] (2018) introduces hierarchical triplet loss (HTL) to address the

random sampling issue during training a triplet loss. The main idea behind this

study is to learn the hierarchical class structure of the images in order to encode

global context in the images. The class-level hierarchical tree controlled by a violate

margin that dynamically changes with the structure of the hierarchical tree guides

the sampling operation for training data by comparing the data distribution on a

manifold sphere.

Kim et al. [21] (2018) proposes multiple-way attention-based ensemble architec-

ture that learns the feature embeddings with multiple attention masks. In this design,

each learner contributes to the generation of the feature embeddings by attending to

different parts of the objects. This framework encourages diversity in the feature

embeddings with the help of divergence loss that differentiates this embeddings from

different learners.

2.4 Capsule Networks

Capsules are defined as local entities of a neural network which encapsulate the results

of some complicated internal computations between neurons into more informative

vector-formed output. The preliminary idea related with capsules is suggested by Hin-

ton et al. [30] (2011). The key part of the capsule idea is that Convolutional Neural

Networks (CNNs) output single scalar neuron activation to deliver the viewpoint in-

variance after several sub-sampling stages, but high-level features extracted by CNNs

are incapable of solving certain tasks that require to reason the spatial relationship

between high-level parts of an instance. To address this, Hinton et al. [30] indi-

cates that neural networks containing capsules, instead of neurons, can learn feature

representations as a whole feature vector of instantiation parameters of an instance.

Therefore, the capsule idea introduces an unprecedented approach to overcome the

variations in pose information of the instance.
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Sabour et al. (2017) [4] proposes a novel Capsule Network architecture that uses

dynamic routing mechanism to route the vector-formed capsule output to an appro-

priate capsule (parent capsule) in the next layer. In principle, the capsule computes

the prediction vector for each possible parent by multiplying its output with a weight

matrix, and this gives a feedback about the coupling coefficient of the parent cap-

sules. The coupling coefficients can be considered as the votes of a child capsule for all

parent capsules, and the parent capsule with the largest coefficient value is activated.

In this study, it is experimentally shown that Capsule Networks have considerably

better performance than CNNs on tasks of recognizing hand-written digits (MNIST

[2]) and segmenting highly overlapping digits (MultiMNIST [4]).

Zhao et al. (2018) [31] investigates the performance of Capsule Networks with

dynamic routing for text classification on several well-known benchmarks by using

three different implementation strategies. To alleviate some disturbance factors of

noisy capsule outputs, first, an additional category that represents the stop words

or unrelated words is added to the network. Moreover, the softmax operation while

assigning the coupling coefficients between child capsule and possible parent capsules

is transformed into leaky form. Lastly, the coupling coefficients are weighted by the

probability of the existence of child capsule. These manipulations on dynamic routing

leads to notable boost on the performance of Capsule Networks for text classification.

LaLonde et al. (2018) [32] demonstrates that Capsule Networks can be effectively

exploited in object segmentation task by altering the architecture and dynamic rout-

ing algorithm. This study extends the capsule idea with locally-connected routing

mechanism and the concept of deconvolutional (transposed-convolutional) structure

to be able to operate on large-sized images with the less number of parameters than

the original architecture. The performance of this modified version of Capsule Net-

works is observed on an application of pathological lung segmentation from computed

tomography (CT) images.
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Hinton et al. (2018) [33] introduces matrix capsules which have activation units

that refer to the presence of an entity; and 4x4 matrix, namely pose matrix, to learn

the relationship between the entity and pose information. At this point, instead of

dynamic routing algorithm, Expectation-Maximization (EM) [34] is applied to the

coefficients in an iterative manner to route the output of each capsule to parent

capsule in the next layer. Matrix capsules with EM routing significantly outperforms

the SOTA on the smallNORB benchmark [35], and also it is experimentally shown

that this new version of capsules is more robust to white box adversarial attacks than

CNNs and fully-connected capsules.

Rawlinson et al. (2018) [36] demonstrates that the distinctive features of Cap-

sule Networks disappear when the last capsule layer (latent capsules) is not masked

with a supervision for specializing an identity on each latent capsule. In addition,

supervised capsule architecture is constraint to be designed in shallow form since the

aforementioned degenerate capsule behaviour without masking would even occur in

deeper designs of Capsule Networks. To mitigate the negative effects of these limi-

tations, unsupervised sparsening method for capsules is proposed in this study. The

main objective of this study is to recover the distinctive features of capsules (e.g.

equivariances) through the instrument of fully unsupervised capsules.

Zhang et al. (2018) [37] proposes Capsule Projection Network (CapProNet) that

learns an orthogonal projection matrix for capsule subspaces where each is updated

until the input feature vector refers to corresponded class. In this approach, the

capsule projection is used for multi-dimensional weight normalization in capsule sub-

spaces, instead of normalizing the capsule projections onto 1-d subspaces. This study

has better performances on well-known benchmark data sets with the same level of

computational and memory expenses as in the SOTA methods.

Lenssen et al. (2018) [38] introduces guaranteed equivariance and invariance prop-

erties to the Capsule idea with two main contributions. The first one is that providing

12



provable equivariance properties under transformations by grouping the elements, and

the latter is that connecting the outputs of Capsule Networks to combine the strengths

of both ideas of Capsule Networks and grouping the elements in a single deep neural

network architecture. As a result, this structure allows to generate sparse evalua-

tion of groups of the elements and to control particular equivariance and invariance

properties of an instance.

Zhang et al. (2018) [39] addresses the problem of expensive computational process

during dynamic routing which creates the bottleneck preventing widespread applica-

tions of Capsule idea. In this study, the framework of weighted kernel density estima-

tion is exploited by two fast routing methods with different optimization strategies

in order to generalize the existing routing methods. With the help of these methods,

it leads to construct a Capsule Network architecture that handles larger-sized images

in a time-efficient manner.

In analogy to above cited study, Wang et al. (2018) [40] formulates routing mecha-

nism as in [4] in optimization perspective, and combines an agglomerative clustering-

like loss and KL regularization term between the distribution of current coupling

coefficients and its previous form. According to its results, this idea improves the

convergence behavior of Capsule layers, and allows to use more routing iterations be-

tween Capsules in each step. At the end, it leads to get better results on unsupervised

perceptual grouping task.

Jaiswal et al. (2018) [41] presents a framework that uses Capsule Network ar-

chitecture as discriminator within the Generative Adversarial Networks (GANs) [18],

instead of CNNs. To achieve this, Capsule design guides the images, and the objec-

tive function for GANs is updated by margin loss for the discriminator part. This

study shows that GANs with Capsule discriminators can achieve better results than

convolutional-GANs for modelling the image data distribution on MNIST and CIFAR

data sets.
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Xinyi et al. (2019) [42] presents a framework that adapts the capsule idea to Graph

Neural Networks (GNNs) to mitigate the problems on GNN-based graph embeddings

algorithms. Basic node features are extracted by a capsule-formed GNN, thereafter,

high-quality graph embeddings are produced by routing mechanism and attention

module. In principle, attention module leads to eliminate the issue of various-sized

graphs. The proposed framework achieves the SOTA performance on 6 out of 10

benchmark data sets in domains of biology and social network.

Kosiorek et al. (2019) [43] presents an unsupervised version of Capsule Networks

where a neural encoder looks at all parts of an instance, and infers the presence and

pose configuration of the instance. Moreover, a decoder predicts the pose configu-

ration by using a mixture of pose predictions. By packing the encoder and decoder

parts together, this framework has the capacity for learning the inference of the ob-

jects and their parts without any supervision. As a results, it achieves SOTA and

comparable results for unsupervised classification on SVHN and MNIST data sets,

respectively.

Kınlı et al. (2019) [44] compares the performances of CNNs and Capsule Networks

with dynamic routing on more realistic, diverse and rich data set in fashion domain.

In this design, convolutional layers are stacked without any pooling operation before

Capsule layers for extracting low-level features and routing them to the Capsules

as input. The result of this experimental study on DeepFashion data set [1] shows

evidence of that Capsule Networks trained only on images, not supported by any

side information, can perform better than CNN-based deep learning architectures

supported by a kind of side information such as landmarks and attributes.
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CHAPTER III

BACKGROUND INFORMATION

3.1 Introduction

Convolutional Neural Networks (CNNs) are one of the most commonly used architec-

tures for image-related deep learning studies [45, 6, 46, 23, 47, 18]. Although CNNs

have outstanding performances in different domains, due to the nature of CNNs and

pooling operations following the convolutional layers, most CNN-based architectures

have some limitations such as losing the hierarchical spatial relationship in the im-

ages and not being robust to affine transformations. On the other hand, Capsule

Networks are composed of groups of neurons, and with the help of its novel routing

algorithms, they have the capability for learning high dimensional pose configuration

of the objects as well. In this thesis, we investigate the performance of brand-new

Capsule Networks using dynamic routing algorithm on in-shop image retrieval task.

In this chapter, before revealing the details of our work, we concisely review the basic

structure of CNNs frequently used in many Computer Vision tasks, the capsule idea

and the structure of Capsule Networks.

3.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) is a very specialized class of Neural Networks

(NNs). As in the case of all kinds of NNs, they are composed of neurons with trainable

weights and biases, and each neuron in the first layer takes some signals coming from

some inputs (e.g. image, audio, 1-dimensional array). These signals are multiplied

with the weights of the neurons, and then flows throughout the hidden layers by

this way. Before transmitting the output of a neuron to the next layer, a non-linear
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Figure 1: Single layer activation work flow.

activation function is applied to the sum of all weights in this layer in order to

produce a nonlinear decision boundary on non-linear combinations of the weights

and the inputs. The formula of the output of a single neuron (i.e. perceptron) can

be shown as

f(x) = σ(Wx+ b) (1)

where x represents the input signal, W and b are the weights and biases respectively,

and σ is a non-linear activation function. In regular NNs, each neuron is fully con-

nected to all neurons in the previous layer, and where the neurons in a single layer

take completely independent actions from the other neurons in the same layer and

does not share any connections between them. At the end, the network predicts class

labels or some continuous values for the raw inputs with the help of a differentiable

loss function.

CNNs have a different structure than regular NNs, which generally contain a

certain number of convolutional layers followed by a non-linear activation function and

down-sampling layers (e.g. max-pooling). In this design, all neurons in a particular

layer are locally connected to a region of the input volume. At this point, convolution

operation extracts the features by sliding the weight kernels (i.e. filters) over the

local regions of the input. After applying a non-linearity to the output, the spatial
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Figure 2: The architecture of LeNet-5 [2].

connections between the region of the input and corresponding pixels on the output

compose the receptive fields [48]. In this design, each single pixel in the output

essentially represents a large region centered roughly the same part of the input, and

thus, the next convolution operation on the current output will substantially operate

on the pixels that represent larger region of the original input. For that matter,

this mechanism, called effective receptive fields, can propagate their information to

the output in more sophisticated way, so that CNNs can extract the features from

higher-dimensional data better than regular NNs. Moreover, due to the consecutive

convolutional layers in this architecture, low-level features such as corner, texture

and edge are extracted from the input data by sharing the weights. Then, these

features are combined in deeper layers to compose higher level features. Therefore,

this architecture has the capacity for extracting more powerful features from high-

dimensional inputs (e.g. images). The representation of one of the earliest CNN

architectures in the literature, namely LeNet-5 [2], can be seen in Figure 2.

3.2.1 Convolution Operation

In purely mathematical context, convolution is a function derived from two functions

f and g by integration that represents how the shape of one is transformed by the

other. In linear systems, this operation is used to explain the relationship between

three signals of interest: the input signal, the impulse response, and the output signal.
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The formula of convolution operation as follows:

(f ∗ g)(t) =

∫ ∞
−∞

f(τ)g(t− τ)dτ (2)

2-dimensional space, convolution operation incorporates a 2-dimensional input

data and a small matrix of weights, namely kernel, to produce a new matrix derived

from these two matrices. This kernel basically slides over the local parts of the input

data. During this process, an element-wise multiplication is applied to the overlapping

parts of the input data and the kernel, and then the results of this multiplication

are summed up to a single output value. By this way, after completing the sliding

process, the input data is transformed into another 2-dimensional sub-space by using

the kernel matrix. In the context of machine vision, the input data and the kernel

matrix correspond to the image and a feature extraction filter respectively, and the

feature maps as output are essentially the weighted sum of the input features that

are located at the same region of the image.

Figure 3: Performing convolution operation by sliding the kernel over the input data
to form the receptive fields.

There are two techniques commonly used in order to improve the quality of the

features extracted by convolution operations. First, in the original convolution opera-

tion, the edge pixels on the input cannot be a center when sliding the kernel, and this
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Figure 4: Convolving a 3×3 kernel over a 5×5 input data with padding 1 and stride
2 [3]

leads to lose some information at borders. Padding can be applied to alleviate this

problem. In this method, the input data is extended beyond the edges by a certain

number of the extra fake pixels which is usually zero, so that the edges in the original

input can be now a center, and it is possible to keep the information that may be

important for the context, yet at borders. Secondly, the common approach for de-

signing a CNN architecture is to reduce the size of spatial dimensions, and to increase

the depth of the layer throughout the network. One of the methods to achieve it is

to increase the gap between the slide steps of the kernel. This is called as stride. In

most of modern CNN architectures, increasing the stride is one of the methods to

apply for reducing the size of spatial dimensions, in addition to the other methods

such as using pooling operations between each two consecutive convolutional layers.

3.2.2 Pooling Operation

Pooling is an operation that contains fixed-size window, namely pooling kernel, sliding

over all regions in the input data, and computing an output for each region traversed

by the pooling kernel. During this process, it makes some computations with all

elements in a region overlapped with the kernel in order to route the output to the

next layer. In most well-known CNN-based architectures, it is preferred to take the

maximum or the average of the values of all elements in the region, and they are

called as maximum pooling (as shown in Figure 5) and average pooling, respectively.
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Figure 5: Performing maximum pooling on a 6 × 6 input data by a 2 × 2 pooling
kernel with stride 1.

Pooling operators are deterministic, and do not contain any parameters. The main

objective of pooling operations is to aggregate the information from the input data

by reducing the size of spatial dimensions of hidden representations in the network.

Therefore, the network can learn a translation and rotation invariant global represen-

tation of the input data. As a side effect of reducing the size of spatial dimensions,

the number of parameters computed in the following layers dramatically decreases

since the total size of the input data is nearly halved after pooling operations.

Although there are indisputable advantages of applying one of the pooling op-

erations between successive convolutional layers, as aforementioned before, pooling

has two main negative effects on the performance of CNN-based architectures. First,

pooling operations are kinds of rudimentary routing methods, where the neurons are

picked by a heuristic (e.g. maximum, average) without considering the relationship

between pixels. As a result of this inherent limitation of pooling operations, CNNs

classify an image by joining some components of the object in the image regardless of

the spatial relationship between them. Therefore, CNNs can easily confuse an object

with the fake one that contains some components of the object with improper align-

ment. Secondly, CNNs are not robust to affine transformations since the output of

pooling operations completely throws away pose information that may be important
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for recognizing the object. In other words, CNNs are not able to capture different

pose information of the images if this information is not seen on the training set.

3.2.3 Activation Functions

Activation function is basically a mathematical gate that determines whether a neuron

is activated for the next layer or not. In Artificial Neural Networks (ANNs), the main

objective of the activation functions is to introduce non-linearity into the output

of neurons. These functions have major effects on the computational efficiency of

training process and the convergence behaviour of the objective functions.

As mentioned in Section 3.2, the input is fed into the neurons in the current layer,

and each neuron has weights W and biases b. The output is formed by multiplying the

input and weights, then adding the bias term to it, as shown in Equation 1. This form

can be considered as the weighted linear combination of the input. Without applying

a function that injects non-linearity to this output, the network is essentially a linear

regression model. However, to transfer the information to the next layers in such a

way may cause a problem on training, and the network may not perform well when

the task contains more complex input representations, or in other words, it is closer

to the real-world scenarios. Therefore, ANNs need to append the activation functions

to the end of their layers to generate non-linear transformation of the initial output

of the neurons in each layer. This makes the network capable to learn more complex

representations in the data.

Being differentiable is one of the most important features which activation func-

tions should have. Note that it is assumed that being at least one-sided differentiable

at a certain point is sufficient for training process (e.g. ReLU [49]). For training of

ANNs, due to the chain rule, being able to compute the gradients of the objective

function with respect to the weights during backpropagation rests upon the constraint

of that the activation functions are differentiable.
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Table 1: Various forms of non-linear activation functions.

Name Formula Derivative

Identity f(x) = x f ′(x) = 1

Binary Step f(x) =

{
0 x ≤ 0

1 x > 0
f ′(x) =

{
0 x 6= 0

? x = 0

Logistic f(x) =
1

1 + e−x
f ′(x) = f(x)(1− f(x))

Hyperbolic Tangent f(x) = tanh(x) f ′(x) = 1− f(x)2

ReLU [49] f(x) =

{
0 x < 0

x x ≥ 0
f ′(x) =

{
0 x < 0

1 x ≥ 0

Leaky ReLU [50] f(x) =

{
0.1x x < 0

x x ≥ 0
f ′(x) =

{
0.1 x < 0

1 x ≥ 0

ELU [51] f(x) =

{
α(ex − 1) x < 0

x x ≥ 0
f ′(x) =

{
f(x) + α x < 0

1 x ≥ 0

SoftPlus [52] f(x) = ln(1 + ex) f ′(x) =
1

1 + e−x

Swish [53] f(x) =
x

1 + e−x
f ′(x) =

(e−x(x+ 1) + 1)

(1 + e−x)2
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Figure 6: The plots of different activation functions. (a): Identity, (b): Binary Step,
(c): Logistic, (d): Hyperbolic Tangent, (e): ReLU, (f): Leaky ReLU, (g): ELU, (h):
SoftPlus, (i): Swish.
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While Table 1 demonstrates the formulas and the derivatives of different activations

functions used for ANNs, the plots of aforementioned functions are shown in Figure

6.

3.2.4 Regularization Methods

In the domain of Machine Learning, one of the most challenging issues in the design

of a model is to find the best possible fit not only to the training data, but also to

the test data that is not seen by the model during training. This issue is called as

over-fitting. The model is over-fitted on the training data when the model performs

well on the training data while it performs poorly on the test data. To reduce the

over-fitting, the model has to be designed in such a way that it generalizes over the

training data by using several different regularization methods.

Regularization is a collection of strategies that is employed to a ML model in

order to reduce the generalization error of the model. These strategies lead to a better

learning process for the model without memorizing the training data by penalizing the

objective functions or constraining the decision boundaries of the objective functions.

One of the most common approach to regularize the model is to add a parameter

norm penalty to the objective function. As shown in Equation 3, the objection

function is denoted as J , the regularizer function as Ω, and α is a hyper-parameter

for adjusting the impact of the norm penalty on the weights. The regularizer function

Ω is commonly picked as L1-norm to scale the gradients by a constant, or L2-norm

to decay the weights gradually. To have stronger regularization effect on the model,

α should be increased, and setting it to 0 means no regularization on the model.

J(Θ;X, y) = J(Θ;X, y) + αΩ(Θ) (3)

The other useful regularization method is Dropout [54]. For each training step, it

randomly drops out some hidden units in the network, and different combinations of
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Figure 7: Basic representation of Dropout mechanism.

the hidden units generate different sub-networks during training in order to prevent

complex co-adaptations of the hidden units. Therefore, the model have the capacity

to learn more generalized representations in the input data. This method is com-

putationally inexpensive, but very powerful to regularize the model. In principle,

dropping out a unit can be considered as multiplying the activation of this unit by 0.

NNs are starve for the data. The larger amount of data provided for training

mostly improves the performance of the model. However, in most of time, it is not

possible to collect task-specific data, and to annotate it manually since this is an ex-

haustive process to complete. Augmenting the training data is another regularization

method of training a neural network model. Especially for Computer Vision tasks,

samples in the training set may have enormous variety of factors of variation, and by

this way, the model can be generalized on the training data by fitting the augmented

samples applied many different transformations. Some examples of these transfor-

mations can be considered as rotating the images by a certain degree, cropping the

images randomly, and shifting the pixels in a particular direction.
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3.3 Capsule Architecture

CNNs are applicable for a wide range of Computer Vision tasks such as image clas-

sification [45, 6, 46], object detection [23, 47], object localization [55, 56], synthetic

image generation [18]. This popularity stems from the fact that they can automati-

cally learn by deriving the identical properties of the data without needing any prior

knowledge about the domain. However, due to the pooling operations and the nature

of CNNs, this architecture has two significant intrinsic limitations which are referred

as losing the hierarchical spatial relationship in the images and not being robust to

affine transformations.

Recently, an alternative Deep Learning approach called Capsule Networks (Cap-

sNets), with a novel routing algorithm between capsules, has been proposed by Sabour

and Hinton et al. [4]. In this design, it is supposed to learn the information about

the object and the intrinsic spatial relationship between the parts of the object by

harnessing the routing-by-agreement algorithm. Thus, CapsNets are able to recognize

the objects regardless of the viewing angle and without needing different transforma-

tions of them during training.

3.3.1 Fully-connected Capsule Networks

Basically, a capsule could be considered as a group of neurons who together pack a

high dimensional information. This information refers to the existence of the entity

and pose configuration describing the underlying behavior of the entity in a more

refined way. The activation vector within a capsule represents several features of a

specific entity such as position, size, orientation, deformation and texture, while the

overall length of this vector states the probability of the existence of that specific

entity. Capsule output in a layer is routed to the capsules in the next layer by

multiplying it with the weight matrix (i.e. transformation matrix). The magnitude

of the coupling coefficient represents the strength of a parent capsule to be routed.
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Figure 8: Capsule Network architecture proposed by Sabour and Hinton et al. [4].

In other words, this algorithm is kind of a top-down feedback mechanism where the

predictions in lower levels determine which capsule in the higher level is activated.

This is called ”routing-by-agreement” [4]. This algorithm is a far more powerful

routing algorithm than pooling variants that pick the neurons by a heuristic.

3.3.2 Dynamic Routing between Capsules

Considering ui as the output of capsule i, and Wij as trainable transformation matrix

ûj|i = Wijui (4)

where ûj|i is the vector that predicts the output of the parent capsule j by capsule

i. The relationship between capsules in the previous layer and the possible parent

capsule is encoded to a coefficient cij as routing soft-max whose initial logits bij are

the log prior probabilities of routing ith capsule in the previous layer to jth capsule

in the next layer. The logits of all capsules in each layer are initialized to 0 at the

beginning of the routing-by-agreement algorithm.

cij =
ebij∑
ebij

(5)
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The input for the parent capsule j is calculated as weighted sum over all prediction

vectors from the capsules in the previous layer.

sj =
∑
i

cijûj|i (6)

A non-linear function called squashing is applied to the input for the parent capsule

j to ensure that the values in this vector are compressed in a range between 0 and

slightly below 1. Note that epsilon value (10−7) is added to the denominator of unit

scaling of the input vector since we observed that the gradients vanish at the early

stage of our experiments. The final version of squashing formula is calculated as

follows.

vj =
‖sj‖2

1 + ‖sj‖2
sj

‖sj‖+ ε
(7)

Therefore, the magnitude of the dot product of vj and ûj|i decides which capsule

in the next layer is likely to route (agreement).

aij = vjûj|i (8)

For Capsule Networks, the loss is the sum of the losses of all category capsules

that are calculated as separate margin loss Lk, for each category capsule k

Lk = Tkmax(0,m+ − ‖vk‖)2 + λ(1− Tk)max(0, ‖vk‖ −m−)2 (9)

where Tk represents the existence of the instantiation in category capsule k; and m+,

m− and λ hyper-parameters that control the loss value by the existence, and set to

0.9, 0.1 and 0.5 respectively as proposed in [4].
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Figure 9: Illustration of the intuition behind routing-by-agreement algorithm [5]

3.3.3 Comparison of CNNs and Capsules

CNNs are capable of learning some different representations directly from sample

images by obtaining regional spatial information with local receptive fields [48]. Al-

though CNNs have outstanding performance on image-related deep learning tasks,

in real life, there are some intrinsic limitations of this architecture. First, Pooling

layer is used for down-sampling the output of the previous layer and routing it to

the next layer. With the help of this layer, CNNs are translation-invariant. How-

ever, this operation leads to lose significant information during routing the output of

a layer to the next layer by ignoring the spatial relationship between some parts of

the image. Moreover, when the network goes deeper, the information loss gradually

increases throughout the network. For this reason, CNNs cannot gather the hierar-

chical information between important pieces that identify the object. At this point,

it ends up with the loss of the spatial information, and regional information can only

be learned by the network. As a result, CNNs does not perform well on the data that

contains more complex representations of the objects without supporting the data

by an additional side information such as landmarks (i.e. the location information of

specific parts of an object)
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Likewise, CNNs are not robust to affine transformations. Due to pooling opera-

tions, this architecture cannot employ pose information for recognizing the objects

(i.e. position, size, orientation). An image with pose configuration that is not encoun-

tered during training could be misclassified by CNNs on testing phase. Therefore, the

training data has to include different kinds of transformations of the sample images

to get better performances in CNN-based architectures. Based upon these reasons, a

new deep learning architecture called Capsule Networks is proposed by Sabour and

Hinton et al. [4]. The idea behind this approach [30] goes back decade ago, but it

recently starts to work well after inventing dynamic routing algorithm.

Capsule Networks can also perform well by using only small amount of data that

provides limited amount of transformation information of the data to feed the net-

work. The main reason behind this is that the weights of transformation matrix Wij

are back-propagated to learn the affine transformation of the entity represented by ith

capsule in the primary capsule layer. This means that Wij learns the rotational trans-

formations for a given entity. In addition, in contrast to scalar activations flowing on

the other types of NNs, Capsule Networks allows to apply sophisticated calculations

that consider more details (i.e. pose, deformation, velocity, albedo, hue, texture) of

more complex images with the help of flowing vectors between layers. Therefore, it is

possible to emphasize the underlying linear relationship between visual entities that

have many different geometric variations.

There are some shortcomings of Capsule Networks. This brand-new Deep Learn-

ing architecture just has not been engineered enough to be able to achieve CNN-like

performances. Moreover, due to the dynamic routing algorithm, to train a Capsule

Network needs much more memory, and it is completed in longer time when compar-

ing CNN-based networks with the same number of parameters. Despite all, Capsule

idea has a ton of potential, and the further research on this architecture may directs

to much more improvements than its potential.
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3.4 Triplet-based Design

A Triplet Network [13] inspired by Siamese Networks [22] is a design of learning the

similarity between the pairs. In this design, there are 3 instances for the same feed-

forward Neural Network that shares the weights throughout the network, and they

are denoted as anchor instance x, positive instance x+ and negative instance x−. The

main idea behind designing triplets is to learn to generate such embedded represen-

tations of these instances that minimizes the distance between the embeddings l and

l+, both of which have the same identity, and maximizes the distance between the

embeddings l and l− that has a different identity. The formula of Triplet-based design

of a Neural Network as follows

Network(x, x+, x−) = L(d(l, l+), d(l, l−)) (10)

where d(l1, l2) is the distance metric that measures the distance between the em-

bedding representation of two instances, and L(d1, d2) is the objection function that

learns to minimize d1 and to maximize d2.

The embeddings generated by the network is represented by f(x) ∈ Rd. This

function projects the instance x onto d-dimensional Euclidean space. Herewith, the

embeddings are constraint to be confined in d-dimensional hyper-sphere by normal-

izing them [57]. As illustrated in Figure 10, in a Triplet-based design, it makes the

positive instance close as much as possible to the anchor instance while discriminating

the negative instance at least a certain distance in Euclidean space. This distance is

defined as margin α. The mathematical representation of this relationship is shown

in Equation 11.

d(l, l+) = ‖f(x)− f(x+)‖22

d(l, l−) = ‖f(x)− f(x−)‖22

d(l, l+) + α < d(l, l−)

(11)
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The objective function that learns to separate the instances in a triplet into Eu-

clidean space in such a way is formalized as follows

∑
i

[d(li, l
+
i )− d(li, l

−
i ) + α] (12)

The most critical part of training a Triplet Network is to select triplets that

obey the constraint in Equation 11. Generating all possible triplets that obey this

constraint does not contribute to the training phase at all, and it leads to slower

convergence behavior of the objective function [13]. Therefore, there is a need for

more clever idea to generate triplet set. For that matter, triplets have to be selected

as hard, so that they can improve the learning process. Selecting the furthest one of

the positive instances to the anchor instance is one of the triplet selection strategies,

and called as hard positive sampling. The opposite idea, selecting the closest one

of the negative instances to the anchor instance, can be considered more powerful

method to sample triplets, namely hard negative sampling.

Figure 10: Learning phase of Triplet Networks.
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Figure 11: Triplet Network structure. x: anchor, x+: positive, x−: negative, d(x1,
x2): the distance metric and L(d1, d2): the objective function.
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CHAPTER IV

EXPERIMENTAL STUDY

4.1 Introduction

In this thesis, the main objective is to observe the similarity learning performance of

Capsule Networks designed Triplet-based on realistic, diverse and large-sized cloth-

ing images. To achieve this, we propose two different Capsule Network architectures

using the dynamic routing algorithm. In these architectures, it is tried to improve

the feature extraction of the network structure in the original design, which is not

suitable for larger-sized images. We used both N-layer stacked convolutional lay-

ers and N-layer residual blocks to extract more complex features from the images.

Thereafter, we train our proposed architectures on in-shop image retrieval partition

of DeepFashion [1] data set, which has 25k training images, 14k query images and 12k

gallery images. Finally, we examine the best performance of our Triplet-based Cap-

sule Network architectures on in-shop image retrieval task, and compare the results

both the baseline study (i.e. FashionNet) [1] and the other SOTA methods trained

on the same partition of DeepFashion data set.

As an ablation study, we modify our proposed architectures according to the clas-

sification task, and train them on 210k training images on the category classification

partition of DeepFashion data set. Along the same line, we compare the category

classification performance of Capsule Networks with more advanced feature extrac-

tion strategies with both the baseline study (i.e. FashionNet) and the other SOTA

studies attacked to the same task.
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4.2 Baseline: FashionNet

We picked FashionNet proposed in Liu et al. [1] as the representative of CNN-based

architectures. The limitations of traditional CNN architectures are addressed in Fash-

ionNet [1] by taking advantage of hand-crafted landmark information.

FashionNet is built on VGG-16 model [45] by ramifying the last layer into 3

different branches. The first branch in the intermediate layer, named as pose branch,

is responsible for learning the location value and the visibility of the key-points on the

structure of clothes from the images. Separately, local branch is the second branch

that captures the local features by passing over the output of pose branch. The last

branch in this design directly learns the global features from images. At the end,

as shown in Figure 12, these branches are concatenated into a single output layer in

order to predict the clothing category and attributes, as well as to learn the pair-

wise relationships between clothing images. In addition, there are several different

variants of FashionNet utilizing different number of attributes (100, 500 or 1000) to

create comprehensive profiles of different clothing variations. Liu et al. [1], first, pre-

train FashionNet by using a large subset of DeepFashion as training and validation

data. Thereafter, another (smaller) subset of DeepFashion is used for fine-tuning the

pre-trained FashionNet model, where any item in the smaller subset overlaps with

the larger one.

Figure 12: FashionNet [1] model architecture.
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FashionNet is optimized by weighted sum of four different loss functions with

iterative training strategy. In the first step of this strategy, the location and visibility

information for landmarks is estimated with the help of local and global features of

the images. Then, by utilizing the estimated landmark locations to gate the local

features, the clothing category and attributes are predicted, and the clothing image

pairs are retrieved accordingly. At this point, it clearly shows that FashionNet tries to

cope with the lack of pose information in CNN-based models by supporting the model

with the extra information extracted from the hand-crafted landmark annotations.

4.3 Proposed Architectures

In this study, we design a novel Triplet-based Capsule Network architecture to inves-

tigate the image retrieval performance of Capsules in fashion domain. In this design,

we modify the original Capsule Network structure to a Triplet-based version, so that

the network can learn the similarity between two images by feeding the objective

function with the embedded representations of the images extracted by Capsules.

The input of this structure is a triplet that has 3 images denoted as anchor image

x, positive image x+ and negative image x−. Moreover, we have 3-stream Capsule

Networks sharing the weights along the whole network. The images in the triplet

are fed into each Capsule Network stream one by one, and the network generates

368-dimensional embeddings for each stream that represent the images in Euclidean

sub-space. During forming these embeddings, we normalize all Capsules by L2-norm,

and then we masked all Capsules but the one that belongs to the correct class in

order to generate sparse encodings, and lastly flattening out them to 368-dimensional

vector representation. The embeddings are respectively denoted as anchor embedding

l, positive embedding l+ and negative embedding l−.

As shown in Figure 8, Capsule Networks essentially contain two main blocks: fea-

ture extraction block and Capsules. In the default methodology proposed by Sabour
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and Hinton et al. [4], the feature extraction block has a single convolutional layer

with 64 filters. Extracting the features by such a shallow structure may be enough for

1-channel handwritten digit images with the size of 28 × 28 [4]. However, Capsules

need more complex features as the input to achieve better results on the data sets with

3-channel larger-sized images. Therefore, we design two different feature extraction

blocks to generate the Capsule input formed by more powerful features. The first idea

is to stack a number of convolutional layers with different number of filters without

using any pooling operation between these layers. In this way, it is mainly aimed to

use the power of convolutional layers in extracting the features from the images, and

to combine these features by preserving the hierarchical spatial relationship between

pixels in the higher levels. Moreover, adding residual blocks [6] before Capsules is

the other idea to extract more powerful features from the images. Residual blocks

are basically 2-layer stacked-convolutional blocks with residual connections between

the input and the output of the blocks. In certain circumstances (e.g. going too

much deeper), non-linearity may cause vanishing or exploding the gradients. These

connections allow the gradients to flow through the network directly, without passing

through non-linear activation functions, and it leads to propagate larger gradients to

the earlier layers, so that they can learn as fast as the layers at the end.

Figure 13: Illustration of 2-layer stacked-convolutional structure.
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Figure 14: Simple residual block [6]

Between convolutional layers in both design, it is used leaky rectified linear unit

(Leaky ReLU) [50] as activation function that allows for a small, non-zero gradient

(when the unit is saturated and not active) and batch normalization [58] between

convolutional layers for regularization purposes. As a side effect, adding more con-

volutional layers before capsules reduces the number of trainable parameters of fully-

connected Capsule layers, so that it can provide feasible training of such a large data

set within limited computational resources.

Furthermore, Capsule structures are identical in both designs. There are two

fully-connected Capsule layers which are called Primary Capsule and Class Capsule

respectively. Primary Capsule layer has 32 channels of 16-dimensional fully-connected

Capsules, and the feature extraction block is connected to this layer. In this layer,

Capsules are activated by squashing function as shown in Equation 7. Activated Cap-

sule outputs are routed to 16-dimensional Class Capsule layer after iterating dynamic

routing algorithm 3 times. Any kind of reconstruction methods, as in the original

architecture [4], is not applied to our Capsule Network design. Stacked-convolutional

(i.e. namely SCCapsNet) and residual-connected (i.e. namely RCCapsNet) architec-

tures are shown in Figure 15 and Figure 16, respectively.
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Figure 15: Triplet-based stacked-convolutional Capsule Network architecture (SC-
CapsNet).
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Figure 16: Triplet-based residual-connected Capsule Network architecture (RCCap-
sNet).
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Figure 17: Example images from DeepFashion [1] data set.

4.4 Data set

DeepFashion [1] is a data set of 800K high or mid-resolution images that belong to

50 fine-grained categories. The images in this data set are collected by Multimedia

Laboratory of The Chinese University of Hong Kong, from two representative online

shopping Web pages and user-generated contents on blogs and forums by querying

from Google Images. Sample images of DeepFashion data set with category labels

can be seen in Figure 17.

DeepFashion is an extensively annotated clothing data set that contains numerous

attributes, localization parameters and correspondence of images shot under different

scenarios ranging from well-posed online shopping photos to unstructured customer

photos. For image retrieval task, there are 25k training images, 14k query images

and 12k gallery images with 23 different categories in in-shop partition of this data

set. Moreover, the attributes form five groups: texture, fabric, shape, part, and style,

and an image can have +8 landmark locations. We specifically did not include these

hand-crafted landmarks or attribute information in the data set (shown in Table 2)

to our training process since our proposed architectures have the capacity for learning

pose information by itself.
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(a) (b)

(c) (d)

Figure 18: Example images from DeepFashion [1] data set with (a) and without (b)
landmarks employed; with (c) human joints and with (d) poselets, a part of pose.
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Table 2: Forming five main attribute groups, and the examples of the attributes in
each group.

Groups Attributes

Texture Floral, Stripe, Paisley, Distressed, Dot, Plaid, Panel, Raglan, ...
Fabric Lace, Denim, Chiffon, Pleated, Woven, Leather, Cotton, Linen, ...
Shape Crop, Maxi, Fit, Longline, Boxy, Mini, Skinny, Midi, Pencil, ...
Part Sleeveless, Pocket, V-Neck, Hooded, Racerback, Peplum, Strappy, ...
Style Graphic, Muscle, Tribal, Peasant, Surplice, Polka, Retro, Yoga, ...

Triplet selection on the data set is one of the most crucial parts of training a

triplet-based model to ensure fast convergence [13]. In our design, we did not apply

any hard positive sampling method (using all possible positive images in the data

set)— to our design; whereas the negative samples are picked in accordance with the

distance to the anchor image. In other words, the closest image to the anchor image

in Euclidean space provided that it belongs to different category is selected as the

negative instance of triplet. The logic of selecting hard samples for the triplets as

follows

argmin
x−

‖f(x)− f(x−)‖22 (13)

(a) (b) (c)

Figure 19: An example of a triplet [1] that contains an anchor image (a), a positive
image (b) and a negative image (c).
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4.5 Implementation Details

Our experiment environment includes Intel Core i7-8700K CPU with 3.70GHz, 32

GB RAM and 2 MSI GTX 1080 Ti Armor OC 11GB GPUs. Our proposed architec-

tures are implemented in Keras framework with Tensorflow backend. Source code is

published on GitHub1.

In hyper-parameter settings, we pick Adam [59] to optimize our objective function

with the learning rate 10−3, and decay rate 5× 10−4. Image batch for each gradient

step contains 32 different samples. Dynamic routing algorithm is iterated three times

between Capsule layers in each step. Pixel-wise normalization is applied to all images

in the data set. Moreover, we apply some data augmentation techniques to the images

after generating the triplets. All hyper-parameter settings is shown in Table 3, and

all augmentation techniques used in our design is shown in Table 4.

We use in-shop partition of DeepFashion data set for our experiments, and recall-

at-K metric for our evaluation. During testing, we compute the feature embeddings

from our network for all images in both query and gallery sets. For each image in

query set, we then retrieve top-K similar images from the gallery set. Recall score for

each query is 1 if at least one image out-of-K retrieved images has the same clothing

identity number as the gallery images. Finally, we compute the average overall score

(recall-at-K) on query set.

1https://github.com/birdortyedi/image-retrieval-with-capsules
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Table 3: Hyper-parameters settings in our design.

Hyper-parameter Value

Optimizer Adam [59]
Learning Rate 0.001

Decay Rate 5× 10−4

Batch Size 32
Routings 3

Normalization Pixel-wise

Table 4: Data augmentation methods applied to our design.

Augmentation Methods Applied Range

Feature-wise Centering 7 None
Sample-wise Centering 7 None

Feature-wise STD Norm. 7 None
Sample-wise STD Norm. 7 None

ZCA Whitening 7 None
Rotation X [0°-30°]

Width Shifting X [0-0.1]
Height Shifting X [0-0.1]

Channel Shifting 7 None
Brightness X [0.5-1.5]
Shearing X [0-0.1]

Zoom X [0-0.1]
Horizontal Flipping X None

Vertical Flipping 7 None
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 20: Example augmented images from DeepFashion data set. (a): Original
image, (b): Horizontal Flipping, (c): Rotation, (d): Brightness, (e): Height Shifting,
(f): Width Shifting, (g): Zooming.
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CHAPTER V

RESULTS AND DISCUSSION

5.1 Introduction

Although CNNs have a proven track record of accomplishments in Computer Vision

tasks, as a matter of fact, CNNs neglect pose configuration of the objects, and they

are not robust to affine transformations. To try to mitigate these negative effects, in

the literature, several different studies attacked to clothing retrieval problem by using

different approach such as using semantic attributes [25, 26], textual image descrip-

tors [27], alternative objective functions [19, 20], different sampling strategies [29],

network ensembling [20, 21] and attention-based mechanisms [28, 21]. However, Cap-

sule Networks inherently learn pose information without needing any side information

or extra modules. Therefore, we attack to the same problem by using Triplet-based

design of Capsule Networks.

In our design, we train our both architectures on 25k training samples of in-

shop partition of DeepFashion data set [1]. For triplet selection process, we pick

the closest image with different category to the anchor image in Euclidean space

as the negative image; whereas we pick each possible positive image in the data

set as the positive image. As mentioned in Schroff et al. [13], applying negative

hard sampling to the triplet training improves the convergence behavior of the model

significantly. Moreover, this task is an information retrieval task, hence we measure

the performances of our models by recall-at-K metric, where K is 1 or multiplies of

10 up to 50. Lastly, we test our models on 14k query and 12k gallery sets of in-shop

clothing images in DeepFashion data set. Some examples of retrieved images from

gallery set are shown in Table 5.
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Table 5: Some examples of retrieved images from gallery set.

Query Retrieved Images
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Table 6: The details of our architectures, the baseline study and the other SOTA
methods.

Model Backbone Side Information (SI) # of (M)
Name Architecture Extra Module (EM) Params

WTBI [25] AlexNet [60] Category-specific Similarity (SI) 60
DARN [26] Custom NiN [61] Visual Similarity (SI) 105

FashionNet [1] VGG-16 [45] Landmark Information (SI) 134
Corbiére et al. [27] ResNet50 [6] Bag-of-words Descriptors (EM) 25
SCCapsNet (ours) CapsNet [4] No SI/EM Used 2.5
RCCapsNet (ours) CapsNet [4] No SI/EM Used 4.5

HDC [29] GoogLeNet [46] Hard-Aware Cascaded 5
Embedding (EM)

VAM [28] GoogLeNet [46] Attention with Impdrop 6
Connection (EM)

BIER [20] GoogLeNet [46] Embedding Boosting (EM) 5
HTL [19] GoogLeNet [46] Hierarchical Triplet Loss (EM) 5

A-BIER [20] GoogLeNet [46] Embedding Boosting with 5
Adversarial Loss (EM)

ABE [21] GoogLeNet [46] Attention-based 10
Ensembling (EM)

In this chapter, we examine the results of our proposed architectures on in-shop

clothing retrieval. First, we report the performances of Stacked-convolutional and

Residual-connected Triplet Capsule Networks on in-shop partition of DeepFashion

data set [1], and then we compare our results with the baseline study, namely Fash-

ionNet [1], and the other SOTA methods trained on the same data set. Furthermore,

we examine the category-specific retrieval performances of our models for six clothing

categories containing most of samples in the data set (i.e. Dresses, Blouses/Shirts

for Women, Tees/Tanks for Women, Shorts for Women, Sweaters for Women, and

Jackets/Coats for Women). Finally, we present the classification scores of slightly

modified version of our proposed architectures as an ablation study. The backbone

architectures and the number of parameters of all studies included ours are repre-

sented in Table 6.
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5.2 Experimental Results

As a result of our experiments on in-shop clothing retrieval task, we report that

Stacked-convolutional design (i.e. SCCapsNet) achieves 32.1% Top-1, 81.8% Top-

20, and 90.9% Top-50 recall-at-K scores, whereas Residual-connected design (i.e.

RCCapsNet) has unsurprisingly better performance than SCCapsNet. The figures

for RCCapsNet as follows: 33.9% Top-1, 84.6% Top-20, and 92.6% Top-50 recall-

at-K scores. The main observation for our results is that the residual connections

between convolutional layers in the feature extraction blocks improve the overall

retrieval performance by 2%. As explained in [6], the residual connections lead to

efficiently propagate the gradients to the earlier layers, and prevent the degradation

of the training accuracy. Thus, from here we can say that Capsules are enriched by

more complex feature extraction methods in order to be suitable for training on more

realistic and diverse data sets.

5.2.1 Comparison with the Baseline

In the course of the second experimental comparison, we discuss the results of our

proposed Capsule Network architectures, and the baseline study, namely FashionNet

[1]. Table 7 summarizes the performances of SCCapsNet, RCCapsNet, and the vari-

ants of FashionNet. As in the case of all studies mentioned in Section 2, all results

are compared based on Top-20 recall-at-K performances.

As shown in Table 7, both of our designs outperform all variants of FashionNet

including building blocks that employ a smaller number of attributes, and use human

joints or poselets instead of landmarks. RCCapsNet gets 5%, and SCCapsNet 3%,

better Top-20 recall-at-K scores when compared to the best variant of FashionNet,

which utilizes 1000 attributes and the landmark information during training. This

result shows that Capsule Network model seeing only the images during training

have better performance than, CNN-based architectures supported by hand-crafted
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landmarks and attributes. At this point, CNNs may utilize various kinds of side in-

formation to deal with the lack of pose information, however, Capsules can inherently

learn pose configurations of the images with the help of the activation vectors flowing

in the network.

Table 7: Recall-at-K performances of the variants of the baseline study [3] and our
proposed models. FashionNet has different building blocks where the model has
different numbers of attributes (A) (i.e. 100, 500 and 1000), or fashion landmarks (L)
are replaced with human joints (J) or poselets (P). SCCapsNet and RCCapsNet do
not use any extra side information during training.

Models Top-1 Top-10 Top-20 Top-30 Top-40 Top-50
(%) (%) (%) (%) (%) (%)

FashionNet+100A+L 36.0 53.0 57.3 60.0 62.0 62.5
FashionNet+500A+L 37.0 59.0 64.6 67.5 69.0 69.5
FashionNet+1000A+J 41.0 64.0 68.0 71.0 73.0 73.5
FashionNet+1000A+P 42.0 65.0 70.0 72.0 72.5 75.0
FashionNet+1000A+L 53.2 72.5 76.4 77.0 79.0 80.0

SCCapsNet (ours) 32.1 72.4 81.8 86.3 89.2 90.9
RCCapsNet (ours) 33.9 75.2 84.6 88.6 91.0 92.6
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5.2.2 Comparison with the SOTA

In this section, we show the next comparison for results of our proposed models with

the other SOTA methods in the literature. Table 8 summarizes in-shop clothing

retrieval results of SCCapsNet, RCCapsNet, and the SOTA methods. These figures

indicate how successful our proposed models are, and what the main limitations of

them are when compared to the SOTA CNN-based architectures. First, both of our

designs outperform the earlier methods (i.e. WTBI [25] and DARN [26]) which both

disparately use semantic attributes to improve the overall performance, but neglect

pose configurations of the images during training. According to Top-20 recall-at-K

scores, while SCCapsNet improves their scores by 31% and 14%, RCCapsNet achieves

these improvements with a margin of 34% and 17% respectively.

Moreover, as aforementioned in Section 5.2.1, our proposed architectures get bet-

ter retrieval scores than the best variant of FashionNet (i.e. supported by 1000

attributes and 8 landmarks) on in-shop clothing retrieval task. Although FashionNet

tries to recover pose configuration thrown away by the nature of CNNs by employ-

ing landmark information to their training process, Capsule Networks perform better

by using only images with less complex feature extraction parts, since they can in-

herently learn pose configuration by preserving the hierarchical spatial relationship

between pixels. Next, the other approach whose the performance is worse than ours

is the method of leveraging weakly-annotated textual descriptors of the images for

resolving clothing image retrieval proposed by Corbiere et al. [27]. In this design,

these textual descriptors (i.e. bag-of-words) represent different coarse semantic con-

cepts such as texture information, color and shape. Capsules can directly learn these

concepts from the images in a more sophisticated way, hence, SCCapsNet and RC-

CapsNet can achieve higher recall-at-K scores than this approach without taking

advantage of bag-of-words descriptors.
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In addition to all these, our proposed architectures cannot achieve the perfor-

mances of more advanced CNN-based architectures. In these designs, there are vari-

ous techniques applied to CNNs to boost the overall performances, which are different

hard sampling strategies [29], more advanced objective functions [19, 20], ensembling

the networks [20, 21] and attention-based mechanisms [28, 21]. Although these tech-

niques may significantly improve the overall performance in CNNs, in principle, they

increase the model complexities by a wide margin, or increase training time con-

siderably. First, the numbers of trainable parameters in our proposed architectures,

SCCapsNet and RCCapsNet, are respectively ∼2.5 and ∼4.5 million, while the SOTA

methods have twice as many trainable parameters in their models. Moreover, Capsule

Networks need more time for training than CNNs since dynamic routing algorithm is a

relatively slow routing mechanism when compared to the pooling variants. Therefore,

within limited computational resources, these techniques are not applied to our mod-

els to boost the overall performance of Capsule Networks, and left as future research

ideas.

Capsule idea [30] is not a new notion in Machine Learning, but the first working

implementation of this idea [4] includes a novel routing mechanism flowing the infor-

mation between Capsule layers. However, encapsulating the neurons as a densely-

connected layer is completely different, but not a complex structure. Therefore,

Capsules in this form have such structural limitations. On the other hand, there

are some remarkable improvements on Capsule Networks (i.e. Matrix-formed Cap-

sules [33] and Stacked Capsule Auto-Encoders [43]), but densely-connected Capsule

Network architecture is the only version whose achievements have been reproduced

in the literature. In the future, our proposed models, SCCapsNet and RCCapsNet,

may inherit extra performance boost on in-shop clothing retrieval, due to advances

in the relatively new Capsule Network research.
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Table 8: Experimental results of in-shop image retrieval task on DeepFashion data
set.

Models Top-1 Top-10 Top-20 Top-30 Top-40 Top-50
(%) (%) (%) (%) (%) (%)

WTBI [25] 35.0 47.0 50.6 51.5 53.0 54.5
DARN [26] 38.0 56.0 67.5 70.0 72.0 72.5

FashionNet [1] 53.2 72.5 76.4 77.0 79.0 80.0
Corbiére et al. [27] 39.0 71.8 78.1 81.6 83.8 85.6
SCCapsNet (ours) 32.1 72.4 81.8 86.3 89.2 90.9
RCCapsNet (ours) 33.9 75.2 84.6 88.6 91.0 92.6

HDC [29] 62.1 84.9 89.0 91.2 92.3 93.1
VAM [28] 66.6 88.7 92.3 - - -
BIER [20] 76.9 92.8 95.2 96.2 96.7 97.1
HTL [19] 80.9 94.3 95.8 97.2 97.4 97.8

A-BIER [20] 83.1 95.1 96.9 97.5 97.8 98.0
ABE [21] 87.3 96.7 97.9 98.2 98.5 98.7
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5.2.3 Category-specific Comparison

This section demonstrates the category-specific results of our proposed architec-

tures on in-shop clothing retrieval task. Table 10 summarizes the results of SCCap-

sNet and RCCapsNet under six different clothing categories. These categories are

Blouse/Shirts, Tees/Tanks, Dresses, Shorts, Sweaters and Jackets/Coats, and they

are picked based on sample intensity of each category in the data set.

First, RCCapsNet gets more accurate results than SCCapsNet on all specific cat-

egories. This is unsurprisingly in line with the overall performances. The next ob-

servation is that the categories containing much more samples are more sensitive to

the change in feature extraction block than the categories with less samples. For

example, the maximum change observed on Top-20 recall-at-K performances of both

of our designs appears in Dresses category, which is third most intense category, by

9% margin. On the other hand, the difference between our designs for less intense

categories is little if any (e.g. for Sweaters, it is only 0.4%; for Jackets/Coats, it is

0.6%). This indicates that picking more powerful feature extraction block lets the

model perform better for more diverse categories.

Table 9: The number of samples for each category in query set.

Category Name Number of Number of
Unique Items Total Items

Blouse/Shirts 697 2.094
Tees/Tanks 673 2.955

Dresses 624 1.091
Shorts 246 988

Sweaters 212 735
Jackets/Coats 195 545
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Table 10: Category-specific results of in-shop image retrieval task on DeepFashion
data set. Table is ordered by sample intensity of each category.

Models Category Top-1 Top-10 Top-20 Top-30 Top-40 Top-50
(%) (%) (%) (%) (%) (%)

SCCapsNet

Blouse/Shirts 36.3 74.8 82.5 86.4 88.6 90.6
Tees/Tanks 20.0 64.1 75.9 82.7 86.3 88.5

Dresses 24.8 65.4 75.4 81.8 85.9 88.0
Shorts 25.4 66.1 78.5 83.8 88.3 90.5

Sweaters 27.5 69.3 80.4 84.2 86.5 88.6
Jackets/Coats 34.5 75.2 84.2 87.7 89.7 92.3

RCCapsNet

Blouse/Shirts 39.7 79.5 86.8 89.5 91.3 92.9
Tees/Tanks 35.1 75.5 83.3 86.8 89.0 90.8

Dresses 31.9 73.3 84.9 89.0 91.2 92.4
Shorts 27.3 69.2 80.4 86.6 89.7 92.5

Sweaters 27.6 69.8 80.8 85.0 88.3 89.8
Jackets/Coats 36.5 75.2 84.8 90.5 92.8 94.5
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5.2.4 Ablation Study: Category Classification

In this section, we mainly investigate the performance of our Capsule Network designs

on category classification partition of DeepFashion data set [1]. To achieve this, we

modify our proposed architectures slightly to adjust the overall structure for a clas-

sification task. For this task, the related partition of DeepFashion data set contains

210k training images, 40k validation images and 40k test images with 46 different

categories. Moreover, this task is fine-grained category classification (i.e. 46 classes),

hence the performance is measured by top-K accuracy metric, where K equals to 3

or 5.

In this design, feature extraction blocks remain same, but Capsule layers differs

from our proposed architectures for some certain aspects. First, we use 32 channels of

8-dimensional fully-connected Capsules in Primary Capsule layer. In the meantime,

we change the number of Capsules in Class Capsule layer to 46, instead of 23, since

each category should be represented by one Capsule, intuitively. Next, the other

difference is that the output of Class Capsule is normalized on dimension axis, instead

of number of classes axis, so that the length of each Capsule can represent the presence

of an instance for each category as a probability. Modified versions of our proposed

architectures, namely SCCapsNet-CLS nad RCCapsNet-CLS are shown in Figure 21

and Figure 22, respectively.

As in proposed in [4], the classification loss for Capsule Networks is the sum of

the losses of all category capsules that are calculated as separate margin loss Lk, for

each category capsule k

Lk = Tkmax(0,m+ − ‖vk‖)2 + λm(1− Tk)max(0, ‖vk‖ −m−)2 (14)

where Tk represents the existence of the instantiation in category capsule k; and m+,

m− and λm hyper-parameters that control the loss value by the existence, and set to

0.9, 0.1 and 0.5 respectively as in [4].
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Figure 21: Stacked-convolutional Capsule Network architecture for classification task
(SCCapsNet-CLS).
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Figure 22: Residual-connected Capsule Network architecture for classification task
(RCCapsNet-CLS).

60



Furthermore, we masked the activity vector of the correct capsule, and used it

for reconstructing the images. To achieve this, the output of this design is fed into

a decoder network that contains 4 transpose-convolutional layers followed by Leaky

ReLU activation function [50] and batch normalization [58]. The mean-squared dif-

ference between the original images and the reconstructed ones is added to double

margin loss in order to create a regularization effect [4]. Final loss L is calculated as

follows:

Lr =
1

N

N∑
i

(xi − ri) (15)

L = Lk + λrLr (16)

In the course of the first experimental comparison, we discuss the results of our

proposed Capsule Network architectures, and our baseline study FashionNet [1]. We

report that SCCapsNet-CLS achieves 83.81% top-3 accuracy and 89.83% top-5 accu-

racy, and RCCapsNet-CLS achieves 85.12% top-3 accuracy and 91.41% top-5 accuracy

on clothing category classification. As shown in Table 11, these figures demonstrate

that our designs outperform all FashionNet variants including different building blocks

that employ a smaller number of attributes, and use human joints or poselets instead

of landmarks.

Table 11: Top-K accuracy of the variants of the baseline study [1] and our proposed
models.

Models + the required Top-3 Top-5
side information (if any) (%) (%)

FashionNet + 100 A + L 47.38 70.57
FashionNet + 500 A + L 57.44 77.39
FashionNet + 1000 A + J 72.30 81.52
FashionNet + 1000 A + P 75.34 84.87
FashionNet + 1000 A + L 82.58 90.17

SCCapsNet-CLS (ours) 83.18 89.83
RCCapsNet-CLS (ours) 85.12 91.41
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Table 12 summarizes the clothing category classification results of our proposed

models and the SOTA methods with the information of applied techniques (i.e. back-

bone, side information and extra module). SCCapsNet-CLS and RCCapsNet-CLS

outperform WTBI [4] and DARN [18] which both use semantic attributes disparately

to improve the classification performance, but neglect pose configuration during train-

ing. Moreover, as aforementioned before, our proposed architectures and the best vari-

ant of FashionNet (i.e. supported by 1000 attributes and +8 landmarks) have closely

contested classification performances on DeepFashion data set. At this point, while

FashionNet employs landmark information to recover pose configuration thrown away

due to pooling operations, our designs can learn pose information by preserving the

hierarchical spatial relationship between pixels. However, our proposed architectures

cannot achieve the performance of more advanced CNN-based architectures. The

underlying reason for this is that encapsulating the neurons as a densely connected

layer is completely different, but not a complex structure. On the other hand, the

SOTA CNN-based methods referred in Table 12 adopt different techniques (e.g. bag-

of-words descriptors, dynamic branching and attention mechanisms) to their models

to improve the overall clothing classification performance. In the future, our pro-

posed models may inherit extra performance boost on the clothing classification, due

to advances in the relatively new Capsule Network research.

Figure 23: Examples for DeepFashion test reconstructions of RCCapsNet
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Table 12: Experimental results on DeepFashion data set for the clothing category
classification.

Side Information (SI) Top-3 Top-5
Architectures Backbone Extra Module (EM) (%) (%)

WTBI [25] AlexNet [60] Category-specific 43.73 66.26
Similarity (SI)

DARN [26] Custom NiN [61] Visual Similarity (SI) 59.48 79.58

FashionNet [1] VGG-16 [45] Landmark 82.58 90.17
Information (SI)

SCCapsNet-CLS CapsNet [4] No SI / EM Used 83.18 89.83
(ours)

RCCapsNet-CLS CapsNet [4] No SI / EM Used 85.12 91.41
(ours)

Corbiére et al. [27] ResNet50 [6] Bag-of-words 86.30 92.80
Descriptors (EM)

Lu et al. [62] VGG-16 [45] Dynamic 86.72 92.51
Branching (EM)

Wang et al. [63] VGG-16 [45] Two Attention 90.99 95.78
Modules (EM)

Liu et al. [64] VGG-16 [45] Single Attention 91.16 96.12
Module (EM)
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CHAPTER VI

CONCLUSION AND FUTURE WORK

In this thesis, we aim to observe the similarity learning performance of Capsule Net-

work architecture. To achieve this, we design Triplet-based version of Capsule Net-

works by adjusting the original architecture proposed in [4]. Instead of employing this

novel design to a toy problem, we perform some experiments on more realistic, diverse

and rich data set, hence we use in-shop clothing retrieval partition of DeepFashion

data set proposed in [1]. Moreover, Capsule Networks are in need of more powerful

feature extraction methods to be able to perform well on this diverse data set. There-

fore, we seek for more powerful feature extraction recipes than a 1-layer convolutional

network for the input of Capsules. At this point, we investigate the SOTA research

that combines in-shop clothing retrieval and densely-connected Capsule Networks to

prove the hypotheses in Section 1.2.2.

Next, the results of our proposed architectures on in-shop clothing retrieval show

that Stacked-convolutional design achieves 32.1% Top-1, 81.8% Top-20, and 90.0%

Top-50 recall-at-K scores; whereas Residual-connected design gets 33.9% Top-1, 84.6%

Top-20, and 92.6% Top-50 recall-at-K scores. Both of our designs outperform the ear-

lier approaches [25, 26, 27] and all variants of FashionNet [1] by a significant margin

without using any extra supportive information besides to the images. In addition,

although these may be evaluated as comparable results according to the number of

parameters used in the network, eventually, our designs cannot achieve such per-

formances as in more advanced CNN-based architectures where various techniques

[29, 28, 19, 20, 21] are applied to boost the overall performances.
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Finally, Capsule Networks have a great potential for improving their performances,

in spite of the structural limitations of densely-connected Capsules. There are some

remarkable improvements [33, 43] on Capsule Networks, and in the future, our pro-

posed models (i.e. SCCapsNet and RCCapsNet) may inherit extra performance boost

on in-shop clothing retrieval, due to these improvements. Moreover, the techniques

used in the SOTA methods of clothing retrieval task (i.e. different hard sampling

strategies [29], more advanced objective functions [19, 20], ensembling the networks

[20, 21] and employing attention-based mechanisms to the network [28, 21]) may

be applied to Capsule Networks after providing that the computational burden on

training process is eliminated.
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APPENDIX A

SCCAPSNET MODEL SUMMARY

Table 13: Model summary (part 1) of SCCapsNet.

Layer Name Layer Type Output shape Param #

input 2 InputLayer (None, 256, 256, 3) 0
input 3 InputLayer (None, 256, 256, 3) 0
input 4 InputLayer (None, 256, 256, 3) 0

sccapsnet Model (None, 23, 16) 2,425,536
l2 norm 1 Lambda (None, 23, 16) 0
input 5 InputLayer (None, 23) 0

anchor mask Mask (None, 368) 0
positive mask Mask (None, 368) 0
negative mask Mask (None, 368) 0
concatenate 1 Concatenate (None, 1104) 0

Total Parameters 2,425,536
Trainable Parameters 2,425,024

Non-trainable Parameters 512
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Table 14: Model summary (part 2) of SCCapsNet.

Layer Name Layer Type Output shape Param #

input 1 InputLayer (None, 256, 256, 3) 0
conv block 1 Conv2D (None, 128, 128, 64) 9,472
batch norm 1 BatchNormalization (None, 128, 128, 64) 256
leaky relu 1 LeakyReLU (None, 128, 128, 64) 0

spatial dropout2d 1 SpatialDropout2D (None, 128, 128, 64) 0
conv block 2 Conv2D (None, 64, 64, 128) 401,536
batch norm 2 BatchNormalization (None, 64, 64, 128) 256
leaky relu 2 LeakyReLU (None, 64, 64, 128) 0

spatial dropout2d 2 SpatialDropout2D (None, 64, 64, 128) 0
conv block 3 Conv2D (None, 32, 32, 64) 401,472
batch norm 3 BatchNormalization (None, 32, 32, 64) 256
leaky relu 3 LeakyReLU (None, 32, 32, 64) 0

spatial dropout2d 3 SpatialDropout2D (None, 32, 32, 64) 0
primarycaps conv Conv2D (None, 16, 16, 512) 1,606,144

primarycaps reshape Reshape (None, 8192, 16) 0
primarycaps squash Lambda (None, 8192, 16) 0

fashioncaps FashionCaps (None, 23, 16) 5,888
Total Parameters 2,425,536

Trainable Parameters 2,425,024
Non-trainable Parameters 512
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APPENDIX B

SCCAPSNET TRAINING LOGS
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APPENDIX C

RCCAPSNET MODEL SUMMARY

Table 15: Model summary (part 1) of RCCapsNet.

Layer Name Layer Type Output shape Param #

input 2 InputLayer (None, 256, 256, 3) 0
input 3 InputLayer (None, 256, 256, 3) 0
input 4 InputLayer (None, 256, 256, 3) 0

rccapsnet Model (None, 23, 16) 4,845,952
l2 norm 1 Lambda (None, 23, 16) 0
input 5 InputLayer (None, 23) 0

anchor mask Mask (None, 368) 0
positive mask Mask (None, 368) 0
negative mask Mask (None, 368) 0
concatenate 1 Concatenate (None, 1104) 0

Total Parameters 4,845,952
Trainable Parameters 4,840,448

Non-trainable Parameters 5,504
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Table 16: Model summary (part 2) of RCCapsNet.

Layer Name Layer Type Output shape Param #

input 1 InputLayer (None, 256, 256, 3) 0
conv block 1 Conv2D (None, 128, 128, 64) 9,472
batch norm 1 BatchNormalization (None, 128, 128, 64) 256

relu 1 LeakyReLU (None, 128, 128, 64) 0
spatial dropout2d 1 SpatialDropout2D (None, 128, 128, 64) 0

conv2d 1 Conv2D (None, 64, 64, 128) 73,856
batch norm 2 BatchNormalization (None, 64, 64, 128) 512
leaky relu 1 LeakyReLU (None, 64, 64, 128) 0

conv2d 2 Conv2D (None, 64, 64, 128) 147,584
conv2d 3 Conv2D (None, 64, 64, 128) 8,328

batch norm 3 BatchNormalization (None, 64, 64, 128) 512
batch norm 4 BatchNormalization (None, 64, 64, 128) 512

add 1 Add (None, 64, 64, 128) 0
leaky relu 2 LeakyReLU (None, 64, 64, 128) 0

spatial dropout2d 2 SpatialDropout2D (None, 64, 64, 128) 0
conv2d 4 Conv2D (None, 32, 32, 256) 295,168

batch norm 5 BatchNormalization (None, 32, 32, 256) 1,024
leaky relu 3 LeakyReLU (None, 32, 32, 256) 0

conv2d 5 Conv2D (None, 32, 32, 256) 590,080
conv2d 6 Conv2D (None, 32, 32, 256) 33,024

batch norm 6 BatchNormalization (None, 32, 32, 256) 1,024
batch norm 7 BatchNormalization (None, 32, 32, 256) 1,024

add 2 Add (None, 32, 32, 256) 0
leaky relu 4 LeakyReLU (None, 32, 32, 256) 0

spatial dropout2d 3 SpatialDropout2D (None, 32, 32, 256) 0
conv2d 7 Conv2D (None, 16, 16, 512) 1,180,160

batch norm 8 BatchNormalization (None, 16, 16, 512) 2,048
leaky relu 5 LeakyReLU (None, 16, 16, 512) 0

conv2d 8 Conv2D (None, 16, 16, 512) 2,359,808
conv2d 9 Conv2D (None, 16, 16, 512) 131,584

batch norm 9 BatchNormalization (None, 16, 16, 512) 2,048
batch norm 10 BatchNormalization (None, 16, 16, 512) 2,048

add 3 Add (None, 16, 16, 512) 0
leaky relu 6 LeakyReLU (None, 16, 16, 512) 0

primarycaps reshape Reshape (None, 8192, 16) 0
primarycaps squash Lambda (None, 8192, 16) 0

fashioncaps FashionCaps (None, 23, 16) 5,888
Total Parameters 4,845,952

Trainable Parameters 4,840,448
Non-trainable Parameters 5,504
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APPENDIX D

RCCAPSNET TRAINING LOGS
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