
RISK-CALIBRATED EVIDENTIAL CLASSIFIERS

A Thesis

by

Maryam Saleki

Submitted to the
Graduate School of Sciences and Engineering
In Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in the
Department of Computer Science

Özyeğin University
January 2020

Copyright c© 2020 by Maryam Saleki

RISK-CALIBRATED EVIDENTIAL CLASSIFIERS

Approved by:

Assistant Professor Reyhan Aydoğan Advisor
Department of Computer Science
Özyeğin University

Associate Professor Murat Şensoy
Department of Computer Science
Özyeğin University

Assistant Professor Boray Tek
Department of Computer Engineering
Işık University

Date Approved: 17 January 2020

To my family

iii

ABSTRACT

In some applications, intelligent agents rely on classifiers in order to make their decisions

and accuracy of their predictions may play a significant role in performing their tasks

successfully. Although deep neural networks perform very well in many classification tasks,

they may sometimes fail in their predictions and the cost of all misclassification errors are

usually considered as the same, which is not true in practice. For instance, classifying a

pedestrian in a given image as a cyclist may cost significantly different from classifying it as

a car for a self-driving car application. The costs of errors can be asymmetric, vary from

agent-to-agent, and depend on context. Accordingly, this thesis proposes a novel approach

for uncertainty quantification and risk-awareness in deep neural networks for classification.

Our main intuition is that the predictive uncertainty can be quantified in a principled way;

hence, classifiers can associate high uncertainty with their predictions when these predictions

are more likely to be wrong. Furthermore, they incorporate the notion of misclassification

risk during training, which allows them to avoid making wrong predictions leading to higher

losses. To achieve this, the proposed risk-calibrated classifiers quantify the uncertainty in

predictions based on the mean and variance of the Dirichlet distribution, and increase the

uncertainty value for the predictions, which are more likely to be wrong. Furthermore, the

model increases the uncertainty for the classifications, which are more risky.

To validate the performance of our approach, we conducted experiments on a variety of

well-known data sets. The results show that the proposed risk-calibrated classifiers associate

high uncertainty with their misclassification. Furthermore, the risk minimization objective

of our loss function allows neural networks to make less risky decisions for classification.

iv

ÖZETÇE

Bazı uygulamalarda, akıllı etmenler kararlarını vermek için sınıflandırma algoritmalarına

güvenir ve tahminlerinin doğruluğu görevlerini başarıyla yerine getirmede önemli bir rol

oynayabilir. Derin sinir ağları birçok sınıflandırma görevinde çok iyi performans gösterse

de, bazen tahminlerinde başarısız olabilirler. Genellikle, tüm yanlış sınıflandırma hatalarının

maliyeti aynı kabul edilir; fakat bu pratikte doğru değildir. Örneğin, kendi kendini süren bir

araba uygulaması için, görüntüdeki yayayı bisikletli olarak tahmin edilmesi ile araba olarak

tahmin edilmesinin maliyeti önemli ölçüde farklı olabilir. Hataların maliyeti asimetrik

olabilir, etmenden etmene değişebilir ve içeriğe bağlıdır. Bu tez, derin sinir ağlarında

sınıflandırma için belirsizlik ölçümü ve risk farkındalığı için yeni bir yaklaşım önermektedir.

Ana sezgimiz, öngörücü belirsizliğin ilkeli bir şekilde ölçülebilmesidir; bu nedenle, bu

tahminlerin yanlış olma olasılığı daha yüksek olduğunda sınıflandırıcılar yüksek belirsizliği

tahminleriyle ilişkilendirebilirler. Ayrıca, eğitim sırasında yanlış sınıflandırma riski göz

önünde bulundurlar; bu da daha yüksek kayıplara yol açan yanlış tahminler yapmaktan

kaçınmalarını sağlar. Bunu başarmak için, önerilen risk kalibrasyonlu sınıflandırıcılar,

Dirichlet dağılımının ortalamasına ve varyansına bağlı olarak tahminlerdeki belirsizliği

ölçmekte ve yanlış olma olasılığı daha yüksek olan tahminler için belirsizlik değerini

arttırmaktadır. Ayrıca, model daha riskli olan sınıflandırmalar için belirsizliği arttırmaktadır.

Yaklaşımımızın performansını doğrulamak için, iyi bilinen çeşitli veri setleri üzerinde

deneyler yaptık. Sonuçlar, önerilen risk-kalibre edilmiş sınıflandırıcıların, yüksek belirsizliği

yanlış sınıflandırmalarıyla ilişkilendirdiklerini göstermektedir. Ayrıca, kayıp fonksiyonu-

muzun risk minimizasyon hedefi, sinir ağlarının sınıflandırma için daha az riskli kararlar

vermesini sağlar.

v

ACKNOWLEDGEMENTS

Completion of this master dissertation was possible with the support of several people. I

would like to thank all of them.

Foremost, I would like to express my gratitude to my thesis advisor Assist.Prof. Reyhan

Aydoğan for guiding and supporting me during three years of my Master’s studies. She

convincingly guided and encouraged me to be professional and do the right thing even when

the road became tough. I admire her work ethics and discipline.

I would also like to pay my special regards to Assoc.Prof.Murat şensoy for his continuous

support, motivational advice and immense knowledge. He has been a tremendous mentor

for me. Without his persistent help, the goal of this thesis would not have been realized.

I would also like to thank my committee member Assist.Prof. Boray Tek for spending

time reading this thesis and providing useful feedback regarding the content.

I would like to say a heartfelt thank you to my family and all my friends for always

believing in me and encouraging me to follow my dreams and helping me in whatever way

they could during this challenging period.

I want to thank Artificial Intelligence laboratory members because of their warm friend-

ship. They were all kind; and it was fun to work together in the laboratory.

This research is supported by the Newton Fund and the Scientific and Technological

Research Council of Turkey (TUBITAK) under grant number 116E918.

This work has significantly benefited from the discussions and collaboration with a

number of great researchers including Dr Simon Julier from the University College London

(UCL) and Dr John Reid from Blue Prism AI Labs. I would like to thank them for their

support and contribution to this work.

vi

TABLE OF CONTENTS

DEDICATION . iii

ABSTRACT . iv

ÖZETÇE . v

ACKNOWLEDGEMENTS . vi

LIST OF TABLES . ix

LIST OF FIGURES . x

I INTRODUCTION . 3

II BACKGROUND . 5

2.1 Deep Neural Networks . 5

2.1.1 Activation Functions . 8

2.1.2 Loss Functions . 11

2.1.3 Training Neural Networks . 12

2.2 Theory of Probability . 13

2.2.1 Random Variables . 14

2.2.2 Conditional Probability . 14

2.2.3 Bayes Theorem . 15

2.2.4 Probability Distributions . 15

2.2.5 Maximum Likelihood Estimation and Maximum A Posteriori . . . 15

2.2.6 Dirichlet Distribution . 17

III RISK-CALIBRATED CLASSIFIERS . 21

3.1 Problem Statement . 21

3.2 Learning to Predict Pseudocounts . 22

3.3 Decision Making Under Uncertainty . 25

IV EVALUATION . 30

vii

V RELATED WORK . 39

5.1 Cost-sensitive Learning by Altering the Distribution of Training Data . . . 40

5.1.1 Re-sampling . 40

5.1.2 Weighting . 42

5.1.3 Re-labeling and Thresholding . 42

5.1.4 Adversarial Perturbations . 42

5.2 Cost-sensitive Learning by Modifying the Learning Algorithm 43

5.2.1 Decision Tree Algorithms . 44

5.2.2 K-nearest Neighbor Algorithm 44

5.2.3 Support Vector Machine Algorithms 45

5.2.4 Neural Network Algorithm . 46

5.2.5 Bayesian Deep Learning . 47

5.2.6 Evidential Deep Learning . 48

5.2.7 Cost-sensitive Learning and Imbalanced Data 49

VI CONCLUSION . 51

REFERENCES . 53

viii

LIST OF TABLES

1 LeNet5 architecture for MNIST and FashionMNIST. 31

2 Prediction cost . 33

3 Test accuracy . 33

4 Misclassification percentages for area under the PR curve 34

5 Misclassification percentages for area under the ROC curve 34

6 Area under the PR curve for out-of-distribution samples 35

7 Area under the ROC curve for out-of-distribution samples 35

8 A cost matrix representation for a binary classification. 40

9 Comparison matrix for related work on cost-sensitive learning 50

ix

LIST OF FIGURES

1 An Example Neural Network. 6

2 Deep neural network with three hidden layers. 7

3 Convolutional Neural Network Architecture.1 8

4 Neural Network Activation Functions.2 11

5 At the top, density plots (blue = low, red = high) for the Dirichlet dis-
tributions over the probability simplex in R3 for various values of the α
parameters and, at the bottom, 500 categorical distributions sampled from
each of these Dirichlet distributions. 19

6 A graphical representation of a model for generative evidential networks
using plate notation. 23

7 An overview of the proposed approach. 26

8 The risk matrices in the experiments and the percentage of misclassification
for each category for the proposed approach. 29

9 Some sample images from the MNIST data set, which are labelled as 2, 3,
4, 6, 7, and 9, respectively. 30

10 ROC and PR curves for misclassification detection. 32

11 Empirical entropy CDFs of the predictions for the out-of-distributions samples. 36

12 ROC and PR curves for out-of-distribution detection. 38

x

Nomenclature

fθ(·) Output of logits layer

α Dirichlet distribution parameter

β Beta distribution

γθ(x) Redistribution of uniform prior counts

f ′
θ(x) Input of the logits layer

gθ(·) Neural network parameterised by θ

p Pignistic probability

L Base loss

µ Mean of Gaussian distribution

µMLE Maximum likelihood estimation for Gaussian distribution mean

� Element-wise product

σ Variance of Gaussian distribution

σMLE Maximum likelihood estimation for Gaussian distribution variance

a Neural network activation function

b Neural network bias

c Evidence vector for dirichlet distribution

D Kullback-Leibler Divergence distance

E Probability event

1

H Cross entropy loss

H Probability hypothesis

KL Kullback-Leibler Divergence

MAP Maximum A Posterior

MLE Maximum Likelihood Estimation

P (A,B) Joint probability of A and B

P (A | B) Conditional probability of A given B

p(x) Probability of x

PDF Probability Density Function

PMF Probability Mass Function

w Weight

E Expected cross entropy loss

C Cost matrix

R Risk matrix

var(πk) Variance of dirichlet distribution

πk Mean of dirichlet distribution

2

CHAPTER I

INTRODUCTION

Deep learning has drawn a lot of attention in recent years because of its overwhelming

success and flexibility in various learning tasks like classification and regression. Deep

learning models exceeded human performance in some tasks such as image recognition,

video games, voice generation and medical diagnoses. However, unlike humans, they do

not reason about the consequences of their possible mistakes. These models are mostly

based on loss functions that do not take into account the distribution of probability mass

over the wrong categories. For instance, the most widely used loss metric in classification in

deep learning is the cross entropy, which is formalized as the negative log likelihood of the

predicted probability for the true category. It only rewards the true category and completely

ignores how the remaining probability mass is distributed over the wrong categories and

the associated risk of choosing these categories. This means that a classifier trained with

this loss may be completely ignorant of the agent’s risk of making wrong classification

decisions, where wrong decision may pay the high cost for these models. For example, on

7th May 2016, a car operating with automated vehicle control systems crashed with a truck

near Williston, Florida, USA. Unfortunately, the car driver died due to the severe injury. The

car manufacturer reported that the car’s vision system classified the white side of the truck

as the sky.

In order to incorporate the cost of misclassification into the training of neural network

classifiers, one can use cost-sensitive learning [1], that aims to minimize the cost of misclas-

sification errors by avoiding predictions placing high probabilities for high-risk categories,

in addition to increasing the classification accuracy. Cost-sensitive learning is not able to

quantifying the uncertainity in their predictions. This means that an autonomous agent

3

using these classifiers cannot estimate if it can depend on their predictions for making a

decision or taking action. Hence, the main advantage of these classifiers for the agent

would be limited to decreasing the cost of classification errors due to their tendency to

predict less risky categories. Few different methods have been proposed for quantifying

the uncertainty in deep neural network classifiers in recent years. [2] proposed evidential

deep neural network classifiers for uncertainty quantification. However, none of the models

considered the risk of classification errors on their predictions. In this works, we propose

the risk-calibrated deep classifiers by reformulating the evidential deep learning within the

Bayesian learning framework by placing the prior distribution on the generated evidence

using misclassification risk. Our proposed model trained using two main objectives in

mind: (i) their predictive uncertainty can be quantified in a principled way; hence, they can

associate high uncertainty with their predictions when these predictions are more likely to

be wrong, (ii) they incorporate the notion of misclassification risk during training, which

allows them to avoid making wrong predictions leading to higher losses. To achieve this, our

risk-calibrated classifiers do two things. First, it quantifies the uncertainty in its predictions.

It refuses evidences that lead to high wrong predictions, and second, it tries to make rational

decisions under the cases that contain uncertainty.

The remaining of the thesis is organized as follows. In Chapter 2, we briefly describe

the main concepts related to deep neural networks. In Chapter 3, we introduce the research

problem. In Chapter 4, we describe the evidential deep learning and uncertainty quan-

tification in detail and propose a novel approach for learning how to make decisions with

uncertain predictions by extending the evidential deep learning. In Chapter 5, we evaluate

our approach concerning other methods using well-known data sets. In Chapter 6, we

discuss the related work and the proposed approach.

4

CHAPTER II

BACKGROUND

Machine learning is one of the fundamental areas of the Artificial Intelligence. It aims to

explain the observed data, find out the patterns/regularities in the data and accordingly build

models to achieve various tasks [3]. It mainly benefits from the theory of statistics. There

are a variety of machine learning applications. While we can use machine learning to guess

whether it is risky to give credits for a given customer (classification) or to predict the rent

of a particular house based on its features (regression), we can find out the similar customers

based on their shopping behaviour (clustering). The former is an example of supervised

learning and the latter example is unsupervised learning.

In supervised learning, the training data is labelled using discrete or continuous values.

If the labels are discrete, the learning problem is called classification, where the labels

are usually mutually exclusive categories. When the labels are real-valued, the learning is

called regression. In this thesis, we focus on classification problems and more specifically

the classifiers based on deep neural networks. In this chapter, we first provide required

background for deep neural networks (Section 2.1) and then present the fundamental theories

of probability (Section 2.2).

2.1 Deep Neural Networks

The powerhouse of human intelligence is the brain. Human brain is composed of 100

billions of neurons, which are interacting with one another through dense connections [4].

Artificial neural networks is based on the idea of simulating how human brain works to

solve complicated computational problems [5]. Each neuron in the human brain consists of

different parts such as dendrites, axons, and synapses, and interact with other neurons by

passing messages through biochemical and electrical signals (see Figure 1). The artificial

5

neural networks, as similar to human brain, aim to learn patterns in sensory data (e.g.,

images) to solve tasks such as classification. The computation in neural networks is based

on matrix operations and learning is performed usually by means of gradient descent based

methods. In neural networks (see Figure 1), each neuron is parametrized by a weight vector

w and a scalar b, which is called bias. Given an input vector x, the output of the neuron for

this input is calculated as Equation (1) where the output y could have any range between

−∞ and +∞, which is feed into a non-linear function, called an activation function.

y = wTx+ b. (1)

Figure 1: An Example Neural Network.

When a neural network has multiple hidden layers as shown in Figure 2, it is called deep

neural networks. Figure 2 shows a deep neural network architecture with three hidden layers

between the input and output layers. As the number of hidden layers increases, a more

complicated function can be learnt by the model. In this thesis, we use a special type of deep

neural network called convolutional neural networks, which is widely used on computer

vision applications [6].

6

Figure 2: Deep neural network with three hidden layers.

In convolutional neural networks as shown in Figure 3, the hidden layers consist of

convolutional layers, pooling layers and also fully connected layers as explained follows.

• Convolutional layers: They are used to extract features to be used in the following

layer by using filters (i.e., kernels). These filters are m × m square matrices and

contain numeric values called weights. The value of each pixel is multiplied by this

matrix; which results in a new matrix called “feature map”.

• Pooling layers: Pooling layers reduce the size of input image by discarding the

useless information while preserving the important ones. For instance, the special

types of pooling which is called Max pooling, transforms the given feature map of

the image into several windows with certain size (e.g., 2 × 2 matrix) by sliding it

continuously from the left to the right through the entire image and maps each window

to a single value by choosing the largest value in the window.

• Fully connected layers: The feature map constructed by previous layers flattens into

a vector and given as an input to the fully connected layers. Based on the classification

model (e.g., binary or multi-class), these layers output the values for each class label.

Similar to the standard neural networks, in convolutional neural networks we also use

activation function in order to increase the non-linearity of the model. According to Figure

3 , we can use activation functions before pooling layers as well as after the pooling layers.

7

Figure 3: Convolutional Neural Network Architecture.1

2.1.1 Activation Functions

The activation functions in neural networks have the same responsibility as axons in the

human brain; it plays a significant role in the process of learning in neural networks. The

neural network without activation function, no matter how many layers embedded between

the input and output layer, acts as a single layer perceptron, and its output will be a linear

transformation of the input, which is not enough for a network to learn complex nonlinear

functions. There are a variety of activation functions defined for neural networks in the

literature as follows:

• Step function: It is a binary activation function, which is used in two-class classifi-

cation problems (e.g., when the outcome of a classifier is yes or no). The output of

this function depends on a threshold value. If the input value exceeds the threshold,

then the function outputs 1; otherwise, it outputs 0. One of the drawbacks of this

function is that its gradient is always zero, which made it useless for back-propagation

[8]. Since neural networks tune their parameters such as weight and biases using a

1Figure is taken from [7]

8

gradient; therefore, step function would not be the right choice.

• Sigmoid Function: It is a non-linear activation function that is used for binary classi-

fication. Its output is in the range of [0, 1]. Sigmoid activation function formulated

as Equation (2). According to this formula, negative numbers approaches to 0 and

positive numbers approaches to 1 as their magnitude increases. Derivative of sigmoid

function can be calculated easily. That’s why it is commonly used in neural networks.

Since the value of the probability is always between zero and one, sigmoid activation

function is suitable for predicting the probability of target classes.

sigmoid (x) =
1

1 + e−x
(2)

One of the drawbacks of sigmoid activation function is that the large change in the

input values has insignificant effect on it’s output which means the large positive

and large negative inputs will have derivative near to zero. As the number of layers

with sigmoid activation function increase, we will have many small derivatives that

multiplied with each other which decrease the gradient. In this situation the parameters

of network such as weights and biases do not update properly which decrease the

accuracy of the learning algorithm.

• Tanh Function:

One of the drawbacks of sigmoid activation function is that it causes neural network

to get stuck during the training phase. This happens when large negative inputs pass

to the sigmoid, and sigmoid outputs the values that are very close to the zero. It causes

to produce the same output. In tanh activation function, the output is zero centered

as shown in Figure 4 (c) and it maps inputs to the values between -1 and +1. Tanh

activation function specified in Equation (3).

tanh (x) =
2

1 + e−2x
− 1 (3)

9

• ReLU Function: It stands for rectified linear unit and easy to implement. That is, if

the value of x is positive it outputs the value of x itself; otherwise, it outputs zero as

shown in Equation (4). One of the advantages of Relu activation function is that it

does not activate all the neurons. Since Relu has gradient 1 for the outputs greater than

0 and 0 otherwise, then it’s derivative bounded by the range (0,1) and it can solves

vanishing gradient problem [8]. The range of this function is [0, inf)

relu (x) = max (0, x) (4)

• Leaky Relu Function: This function is also a piece-wise linear function of the input

x. Here, the negative values of the input is not mapped to zero; instead, they are

multiplied by a small positive constant, α as denoted in Equation (5). By adding alpha

term to the equation, it solves the vanishing gradient problem of ReLU function for

negative input values.

LReLU (x) =


x if x > 0

αx if x ≤ 0

(5)

• Softmax Function: This function is the generalization of sigmoid function. While

the sigmoid is used for binary classification, the softmax is suitable for multi-class

classification problems. It converts logits to the probabilities over a number of

categories. The softmax function can defined as Equation (6).

f (xi) =
exi∑k
j=0 e

xj
i = 0, 1, 2, ..., k (6)

Figure 4 (See url [9]) demonstrates the different activation functions and their derivative

which are described above.

10

(a) Step (b) Sigmoid

(c) Tanh (d) Relu

(d) LeakyRelu
Figure 4: Neural Network Activation Functions.2

2.1.2 Loss Functions

The neural networks are trained using gradient decent algorithm or its variants to find the

optimal values for the network parameters. In order to evaluate how well the neural network

trained, we need a performance measurement. In classification problems, we use loss

functions (i.e., cost functions) to measure classification errors. The objective is typically to

minimize the loss function in order to find the parameters of neural network that best fits the

data. There are different loss functions for binary and multi-class classification algorithms.

In this thesis we focus on cross entropy and KL divergence losses.

2The Figure is taken from [9]

11

• Cross Entropy: Given inputs, the model tries to make a prediction near to the

distribution of the target classes. In other words, the cross entropy loss function

measures to what extents the probability distribution of the predicted values is

similar to the probability distribution of the target classes. Equation (7) shows

how to calculate the cross entropy where p(x) denotes the true distribution of

target classes and q(x) denotes the predicted distribution. The true distribution

p(x) is always 1 for true classes and 0 for wrong classes.

H (p, q) = −
∑
x

p (x) log q(x) (7)

It is worth noting that this formula only cares about the probability of the

prediction belongs to the true class. To illustrate this, consider the image classifier

with outcome probabilities for the following three classes: cat, dog and horse

such as [0.8,0.8,0.3]. Their corresponding true distribution is [0,1,0] denoting

that the given instance is a dog. Since the cross entropy loss only regards true

class distribution, the probabilities of cat and horse is ignored.

• Kullback-Leibler (KL) Divergence: It is a metric for measuring the distances

of two probability distributions and computed as Equation (8).

D (p|q) =
∑
x

p(x)log
p(x)

q(x)
=
∑
x

p (x) log p(x)︸ ︷︷ ︸
negative entropy

−
∑
x

p (x) log q(x)︸ ︷︷ ︸
cross entropy

(8)

From the point of information theory, KL divergence represents the difference between the

cross entropy and the entropy. It can be interpreted as the number of extra bits required to

encode information if the actual distribution of the data (p) is different from the prediction

distribution (q).

2.1.3 Training Neural Networks

The modern artificial neural networks for supervised learning problems are trained usually

using gradient based methods and the backpropagation algorithm [10]. In this process,

12

all the data samples feed to the network in batches (or mini-batches) and the value of

network parameters such as weights and biases are adjusted based on the gradient of the

loss function. The goal of training in neural network is to find the parameters that decrease

the difference between predicted and actual labels, and thus minimize the loss. Training the

neural networks is divided into two phases:

• Forward Propagation: In forward propagation, once all training samples in the

batch are feed to the network and the output of the network is computed based on

the existing network parameters (i.e., weights and biases). In each forward pass, the

outputs of individual layers in the network are also stored for later use. Lastly, the

output of the network is used to calculate the loss function. Then, the back propagation

is performed for adjusting the network parameters using the loss function.

• Back Propagation: In this phase, the derivative of the loss with respect to the parame-

ters of each layer in the network is calculated using the chain rule of derivatives. While

doing so, the stored forward pass values are also used for efficient calculation of the

gradient values with respect to each network layer. Once the gradients are calculated,

variant of the gradient descent algorithm is used to update network parameters to

minimize the loss. Equation (9) shows how to calculate the new value of each weight.

In this formulate, η is a learning rate that indicates the speed of updating the network

parameters using gradient and £ (W) is the lost function of the parameters.

wnew = wold − η.5w £ (W) (9)

2.2 Theory of Probability

The probabilities are used to represent the uncertainty in the outcomes of stochastic events.

The probability theory provides a powerful framework for building machine learning models

and interpreting their predictions. In this section, we cover some basic concepts which are

related to our approach.

13

2.2.1 Random Variables

Random variables play significant role in the theory of probability. They act like a function

that maps the outcome of a probabilistic event (e.g., having head or tail when flipping a

coin) to the real values. A random variable can be discrete or continuous. The outcome of

the flipping a coin is a discrete random variable X , which can be represented as integers 0

(head) and 1 (tail). The probabilities for this random variable X is represented as P (X = 0)

and P (X = 1) such that P (X = 0)+P (X = 1) = 1. As a short-hand notation, we usually

use P (A) instead of P (X = 1), where A represents the random variable X = 1. Similarly,

P (X = 0) is referred to as P (¬A) = 1− P (A).

2.2.2 Conditional Probability

The conditional probability of an event A given B is referred to as P (A|B) and represents

the probability that the event A will occur given the information that the event B has already

occurred. For example, suppose the probability of raining in a usual day is P (rain) = 0.4.

Now, suppose you picked the random day and you are given extra information that the

weather is cloudy, so our belief about the probability of having a rainy day is maintained

as P (rain | cloudy), which is called conditional probability. The value of this probability

is greater than the probability of raining without knowing that it is cloudy (i.e., the prior

probability of raining).

For two independent variables A and B, their conditional probability are equal to their

prior probabilities, i.e., P (A|B) = P (A) and P (B|A) = P (B). The probability of two

event to occur at the same time is called joint probability and represented as P (A,B). We

have the following relationships between probabilities according to Equations (10) and (11)

respectively.

P (A | B) =
P (A,B)

P (B)
(10)

P (A,B) = P (A)P (B|A) (11)

14

2.2.3 Bayes Theorem

Bayes theorem is known as a tool for computing the conditional probability [11]. Given

hypothesis H and event E, the Bayes theorem gives the information about the relation

between the probability of hypothesis H before and after getting the evidence E. The Bayes

theorem for hypothesis H and event E is shown in Equation (12).

P (H|E) = P (E|H)P (H)

P (E)
(12)

Let us assume that H and E represents taking an umbrella and weather situation,

respectively. Then, P (H
∣∣E) can be calculated using the Bayes theorem in Equation (12),

where P (H) represented the prior, which is equal to the probability of taking an umbrella

regardless of an information about the weather; P (H
∣∣E) represents the posterior, which is

the probability of hypothesis H after observing event E; P (E
∣∣H) is called likelihood and

represents the conditional probability of the event E given H; and P (E) is the marginal

probability of E.

2.2.4 Probability Distributions

A probability distribution is a function that maps all the possible outcomes for a random

variable to their likelihood values. The probability distribution for discrete random variables

are called probability mass function (PMF) and the probability distribution of continues

random variables are called probability density function (PDF).

2.2.5 Maximum Likelihood Estimation and Maximum A Posteriori

Maximum likelihood estimation is used to find the parameters of the model that maximizes

the likelihood of data. In order to compute the maximum likelihood estimation, first we

have to define a probability distribution for the modeled data therefore, we assume our

data generated by Gaussian distribution which is formulated as Equation (13). Gaussian

distribution specifies by two parameters mean µ and variance σ. The probability density of

15

observing a data x that follows Gaussian distribution is given by Equation

P (x;µ, σ) =
1

σ
√
2π
exp

(
−(x− µ)2)

2σ2

)
(13)

In order to computing the maximum likelihood estimation we need to find the good estimate

for both the parameters of Gaussian distribution according to Equation (14)

µMLE = argmax
µ

N (x | µ, σ)

σMLE = argmax
σ

N (x | µ, σ)
(14)

Since solving the above equations is difficult, we use log likelihood function as our evalua-

tion. For a data set X we assume θ = [µ, σ]. Let us assume that the data has n samples and

is represented as X = {x1, . . . ,xn}. Then, the model parameters θ are computed using

MLE according to Equation (15). In MLE, we do not take into account the prior probability

of model parameters.

θMLE = argmax
θ

[
log
(
P (X | θ)

)]
= argmax

θ

[
log
(n∏
i=1

P (xi | θ)
)]

= argmax
θ

[n∑
i=1

logP (xi | θ)
] (15)

On the other hand, this information is important and should be taken into account in some

situations. We can maximize the posterior probability of model parameters by taking into

account both the likelihood and the prior for the model parameters. This techniques is called

maximum a posterior (MAP) and defined formally as Equation (16)

θMAP = argmax
θ

[
log
(
P (X | θ)P (θ)

)]
= argmax

θ

[
log
(
P (θ)

n∏
i=1

P (xi | θ)
)]

= argmax
θ

[
logP (θ) +

n∑
i=1

logP (xi | θ)
] (16)

16

2.2.6 Dirichlet Distribution

The Dirichlet distribution is the conjugate prior of the categorical and multinomial dis-

tributions. It is a probability density function (pdf) for possible values of the probability

mass function (pmf), π = [π1, . . . , πK] over K categories. It is characterized by follow-

ing parameters: α = [α1, · · · , αK] and is calculated as specified in Equation (17) where

SK is the K-dimensional unit simplex and B(α) is the K-dimensional multinomial beta

function [12].

Dirichlet(π|α) =


1

B(α)

∏K
i=1 π

αi−1
i for π ∈ SK ,

0 otherwise,
(17)

A Dirichlet distribution can be used to model the probability density of categorical distri-

butions, which can be interpreted as probability distributions for assigning a sample to one of

K categories as in the classification problems. Figure 5 demonstrates Dirichlet distributions

over three categories. In this case, each Dirichlet distribution has three parameters (K = 3),

i.e., one parameter for each category. When all parameters are one (i.e., α = [1, 1, 1]), the

Dirichlet distribution is uniform, which means that all categorical distributions over these

three categories are equally likely.

The parameters of a Dirichlet distribution are considered as real-valued pseudocounts.

The parameters of the uniform Dirichlet distribution is usually taken as the prior counts β to

which observations or evidences for the training data is added. The resulting parameters

(pseudocounts) define the updated (posterior) Dirichlet distribution. In a classification

problem, for each input x (e.g., an image), we want to predict a latent evidence vector

c, which is used to calculate the Dirichlet distribution with parameters α = [α1, . . . , αK],

where αi = ci + βi. This distribution represents the probability density of all possible

categorical distributions π = [π1, . . . , πK] over the predefined K categories for the sample.

Let [1, 4, 14] be the evidence (e.g., observations) to be added to the prior counts β = [1, 1, 1],

then the posterior Dirichlet distribution will have the parameters α = [2, 5, 15], which

indicates that categorical distributions placing more mass on the third category are more

17

likely than others, as shown in Figure 5(b). Similarly, if the evidence vector is [9, 9, 9], the

resulting Dirichlet distribution parameters become α = [10, 10, 10], which indicates that

the categorical distributions placing similar amount of mass on all categories become more

likely, as shown in 5(c).

According to the Figure 5 (a), alpha with small value α=[1,1,1] forms the symmetrical

distribution. Dirichlet distribution with all parameters 1 also called uniform distribution,

which means it assigns equal masses to the all samples. As the values in alpha vector

increase symmetrically see Figure 5(b) Dirichlet puts its mass on the center of the simplex.

For alpha parameter with asymmetric values, Dirichlet assigns high mass to the highest

parameter. According to Figure 5(c), as the value of third element is more than others

Dirichlet puts it mass on top right side of simplex.

The mean and variance of the Dirichlet distribution for πk, i.e., the probability of the

category k, are computed as Equation (18)

π̂k =
αk∑K
i=1 αi

V ar(πk) =
αk(α0 − αk)
α2
0(α0 + 1)

where α0 =
K∑
i=1

αi.

(18)

The mean of the posterior Dirichlet distribution for a sample can be used as the predictive

categorical distribution for classification tasks and its variance can be used to quantify

the uncertainty of the prediction. For example, the predictive categorical distribution for

the Dirichlet distributions with parameters α = [1, 1, 1] and α = [10, 10, 10] are both

[1/3, 1/3, 1/3], which is the uniform categorical distribution and has the maximum entropy.

On the other hand, the variance of the latter is much smaller than that of the former. The

uniform Dirichlet distribution with parameters α = [1, 1, 1] represents the case that we

are totally uncertain about the classification of the input while the predictive uncertainty

decreases as the sum of the pseudocounts increases.

In Subjective Logic [13], given a Dirichlet distribution over possible categories, the

uncertainty of predictive distribution over these categories are calculated as u = K/
∑K

i=1 αi.

18

(a) α = [1, 1, 1] (b) α = [2, 5, 15]

(c) α = [10, 10, 10] (d) α = [0.1, 0.9, 2]

Figure 5: At the top, density plots (blue = low, red = high) for the Dirichlet distributions
over the probability simplex in R3 for various values of the α parameters and, at the bottom,
500 categorical distributions sampled from each of these Dirichlet distributions.

19

Similar to the variance of a Dirichlet distribution, this uncertainty metric for a Dirichlet

distribution is inversely proportional to the sum of Dirichlet parameters, i.e., αi. On the

other hand, one nice property of this uncertainty metric is its ease of interpretation, since

it takes values between zero and one. For α = [1, 1, 1], the uncertainty is calculated as

1.0; however, it decreases to 0.1 for α = [10, 10, 10]. Hence, while the corresponding

Dirichlet distributions have the same mean (i.e., the uniform categorical distribution), they

have significantly different level of uncertainty, which is also evident in Figure 5 (a) and (c).

Having Dirichlet distributions as an output of a classifier instead of a single softmax

output, we can exploit uncertainty of the predictive categorical distribution to avoid making

possibly wrong decisions based on vague predictions.

20

CHAPTER III

RISK-CALIBRATED CLASSIFIERS

In this section first, we discuss the problem statement and the classification model we used.

Then we describe our approach in detail using concepts from the probability theory and

neural networks.

3.1 Problem Statement

In this thesis, all matrices and vectors are represented in bold face such asR and x, where

the kth row of the matrix R and kth element of the vector x are given by Rk and xk,

respectively.

We consider a setting where an agent has a task of making a classification decision for a

given sample, e.g., An image of an object, by assigning it into one of K disjoint categories

that is known as a multi-class classification problem. For this purpose, it trains a neural

network in a supervised way using pairs 〈x,y〉 ∈ D, where x and y represent a training

sample and one-hot encoding1 of its true category, respectively. The agent’s classification

decision for a given sample may involve some cost if it is wrong. This cost is referred

to as risk in the rest of the thesis. The risk of misclassification may be task-specific and

agent-specific. It is encoded compactly into an asymmetric non-negative square risk matrix,

which is referred to asR ∈ [0,∞)K×K . The kth row of this matrix is the vectorRk, whose

each element Rki indicates the cost of classifying a sample from the category k to the

category i. The risk of correct classification is zero, i.e., Rkk = 0 for any k. The agent

wants to minimize the overall risk of its classification decisions by properly learning how to

classify samples given its risk matrix.

1One-hot encoding of the category k is a vector y s.t. yk = 1 and yi = 0 for all i 6= k.

21

In neural networks, the softmax function is frequently used to compute a predictive cate-

gorical distribution over possible categories for an input sample. Since Dirichlet distribution

is prior for categorical distribution, it can be used as a distribution over all possible softmax

outputs for the classification of a given sample. This allows us to represent uncertainty

of predictions for the classification of a sample through the variance of the corresponding

Dirichlet distribution as motivated by Example 1.

Example 1: For the sake of simplicity for explaining the relation between the Dirichlet

distributions and labels of samples in a data set, let us formalize the process of labeling a

sample into one of three categories (red, green, and blue) as drawing balls with these colors

from an urn. If we know exact numbers of balls with each color (nr, ng, and nb) or their

ratios, we can precisely compute the categorical distribution π = [πr, πg, πb] for assigning

the sample into one of these categories, i.e., πr = nr/(nr + ng + nb). However, if we do

not know it, we cannot know exactly what π is, but we can still model its density p(π) as a

Dirichlet distribution. When we do not know any thing about nr, ng, and nb, then any π

is equally likely. In this case, p(π) is the uniform Dirichlet distribution, which has high

variance (high uncertainty about π); however, when we exactly know these numbers or their

ratio, p(π) is a Dirichlet distribution with zero variance, i.e., it places all probability mass

on a single π value, so we have zero uncertainty about π.

3.2 Learning to Predict Pseudocounts

In this work, we consider classification tasks with fixed K categories and predict a Dirichlet

distribution for each sample. The predicted Dirichlet distribution represents both the

predictive categorical distribution and its uncertainty in a principled way.

We formally describe our approach using a generative model, which is demonstrated as

a plate diagram in Figure 6. This model indicates that each sample is generated by drawing

c from a latent prior distribution parametrized by ν. We call c as an evidence vector, where

each element 0 < ci < ∞ represents evidence for the corresponding category i. Let us

22

consider a binary classification task with two categories: cat and dog. Then, the evidence for

the cat and dog correspond to how much the sample will look like a cat and dog, respectively.

If the evidence is much higher for the cat category, the sample would look like a cat rather

than a dog. On the other hand, if the total evidence is zero, the generated sample looks like

neither a cat nor a dog. The label of the generated sample, i.e., y ∈ {1, . . . , K}, is drawn

from a latent categorical distribution π = [π1, . . . , πK], which is defined by a Dirichlet

distribution parametrized by β and c, where β represents the prior counts and is updated

with c to have parameters of the Dirichlet distribution for π. Let us note that, πk represents

the probability that the sample has label k.

β

ν c

π y

x

N

Figure 6: A graphical representation of a model for generative evidential networks using
plate notation.

The prior distribution of the evidence can be formalized as Equation (19) unnormalized

exponential distribution [14].

p(c|ν) ∝ exp
(
−
∑
i

νici

)
, where ∀i νi > 0. (19)

Given the evidence vector c and the prior counts β = [1, . . . , 1], the Dirichlet distribution

for the categorical distribution π computes as Equation (20)

p(π|c,β) = Dirichlet(π|[c1 + 1, . . . , cK + 1]). (20)

The cross-entropy is frequently used to train deep classifiers, whose output is an esti-

mation of the categorical distribution π. In this thesis, we consider a classifier predicting

a distribution for π, i.e., p(π|c,β), instead of its point estimate using the softmax func-

tion. However, given the predicted Dirichlet distribution, we can calculate the expected

23

cross-entropy for category k as Equation (21)

Eπ∼p(π|c,β)[−log(p(y = k|π))] =
∫
−log(πk)p(π|c,β)dπ

= ψ(K +
K∑
i=1

ci)− ψ(1 + ck),

(21)

where ψ is the digamma function. In this work, we aim to predict a Dirichlet distribution for

each sample x using a neural network estimating the evidence for the sample. The predicted

distribution is used as p(π|c,β) and written as Equation (22)

qθ(π|x) = Dirichlet(π|gθ(x) + 1) (22)

where 1 = [1, . . . , 1] is a vector for prior counts β and gθ(·) is a neural network

parameterised by θ, which takes a sample x as input and returns an evidence vector c =

[c1, . . . , cK], where ci = gθi(x).

Let fθ(·) be the output of the penultimate layer (i.e., logits layer) of any neural network

for classification with arbitrary architecture. Instead of applying softmax activation function

to fθ(x) for predicting a single categorical distribution for the sample x, we propose to

apply another activation function a(·) to calculate gθ(x) = a(fθ(x)), which will then be

interpreted as evidence to update the prior counts. For any input −∞ < z < ∞, this

activation function should take values 0 < a(z) < ∞. We used the exponential function,

i.e., a(z) = ez; however, others such as the softplus function log(ez + 1) can also be used.

For any input sample x, having total predicted evidence very close zero implies that the

resulting distribution qθ(π|x) is very similar to the uniform Dirichlet distribution, so we

have a very uncertain predictive categorical distribution for the sample.

We can use the maximum likelihood estimation (MLE) to train the neural network to

predict an evidence vector for each sample x. For this purpose, we select a base loss function

L(x, y|π) conditioned on the latent categorical distribution; then, we calculate the overall

loss by aggregating individual sample losses and integrating out the latent π values using the

predicted Dirichlet distribution. Let Dk represent an empirical distribution for the samples

24

from the category k in the training data. If the cross-entropy loss is used as the base loss, we

have the following loss function:

L(θ) =
K∑
k=1

(∑
x∈Dk

[
ψ(K +

K∑
i=1

gθi(x))− ψ(1 + gθk(x))
])

(23)

During training, to encourage the neural network to keep the evidence for the correct

category as much as possible while minimizing the evidence for the wrong categories, we

use the Kullback–Leibler (KL) divergence2 between the predicted Dirichlet distribution and

a desired Dirichlet distribution. For a sample x and its one-hot label y, this regularization

term is written as KL[p(π|gθ(x)+ 1)‖p(π|gθ(x)� y + 1)], where � represents element-

wise product, and gθ(x)� y + 1 is the parameters of the desired distribution. The desired

Dirichlet distribution agrees with the predicted Dirichlet distribution for the correct category,

but it places zero evidence in all other categories.

3.3 Decision Making Under Uncertainty

In decision theory, the notion of pignistic probabilities is introduced to represent the proba-

bility that a rational agent will assign to an option when required to make a decision. The

pignistic probabilities p = [p1, . . . , pK] are mathematically equivalent to the Shapley value

in game theory [15] and inherently incorporate the decision maker’s uncertainty for choosing

one of K options (i.e., the uncertainty related to π) and the incurred cost of choosing each

one. Hence, while calculating the expected risk of choosing one category as the label of a

sample, the pignistic probabilities (p) replace the categorical probabilities (π) to account

for the risk of misclassification. In the settings where there is no cost for misclassification

or each misclassification has the same cost, p should be equal to π. However, in our

setting, we have an explicit risk matrix, which may lead some divergence between these two

probabilities.

We also model the pignistic probabilities for the classification decision for the sample x

2KL[p(π|α)‖p(π|β)] =
∑K

i=1

[
(αi − βi)

(
ψ
(
αi

)
− ψ

(
α0)
)]
− log

(B(α)
B(β)

)

25

Network Layer

Logits Layer

Network Layer

Network Layer

Evidence Pignistic prior
counts

Input Layer

Network Layer

Figure 7: An overview of the proposed approach.

as a Dirichlet distribution according to Equation (24)

qθ(p|x) = Dirichlet(p|gθ(x) + γθ(x)) (24)

where γθ(x) is basically the redistribution of uniform prior counts over categories and

calculated as γθ(x) = Ksoftmax(Wf ′
θ(x) + b), whereW and b are the additional weight

and bias variables, respectively, to calculate γθ(x) based on f ′
θ(x), which represents the

input of the logits layer of the neural network. Here, γθ(x) serves as prior counts for the

pignistic probabilities for the sample. We avoid setting it to some fixed constant manually

for all samples, since the risk of misclassification may change from sample to sample (e.g.,

based on its true category). By doing so, we aim neural network to learn the less risky

categories and increase its prior count through the softmax output. Let us note that we still

have
∑

i γθi(x) = K. Hence, the total prior counts for the pignistic probabilities p is same

as that of the categorical probabilities π. This allows us to keep the evidence predicted by

the network for the categorical probabilities (i.e., gθ(x)) to be commensurate with the prior

counts for the pignistic probabilities. Figure 7 presents an overview of our approach.

Figure 5 (d) shows the resulting Dirichlet distribution after redistributing the counts in the

uniform Dirichlet distribution in Figure 5 (a), using [0.033, 0.3, 0.667] as the softmax output

to calculate γθ(x). The resulting Dirichlet distribution generates almost no probability mass

26

for the first category while placing more probability mass on the third category. This is a

desired prior for the pignistic probabilities of a sample if the misclassification cost for the

sample is inversely proportional to the redistributed counts.

Given its pignistic probabilities, the average risk of misclassifying a sample from the

category k can be calculated as risk(x) =
∑K

i=1Rkipi. We can integrate out the pignistic

probabilities using their Dirichlet distribution parametrized by α with αi = gθi(x) + γθi(x),

and calculate the expected risk as Equation (25)

Eqθ(p|x)[risk(x)] =
∫ (K∑

i=1

Rkipi

) 1

B(α)

K∏
i=1

pαi−1i dp

=
K∑
i=1

Rkip̂i =

∑K
i=1Rkigθi(x)

K +
∑K

j=1 gθj(x)
+

∑K
i=1Rkiγθi(x)

K +
∑K

j=1 gθj(x)

(25)

Hence, to minimize the risk of misclassification and increase the uncertainty for the misclas-

sified samples, we combine the loss with the expected risk of misclassification as Equation

(26)

Ltotal(θ) = L(θ) +
∑
〈x,y〉∈D

(
KL[p(π|gθ(x)+ 1)‖p(π|gθ(x)� y + 1)]

+
K∑
i=1

[
κ(Rki + ε)gθi(x)︸ ︷︷ ︸

(1)

+κRkiγθi(x)︸ ︷︷ ︸
(2)

])
(26)

where ε is a very small positive number (e.g., 1e−6) and κ ∈ [0, 1] is the weight of the

expected risk in the loss. In this loss, we neglect the denominator of the expected risk to avoid

neural network to produce high evidence for less risky categories when it cannot predict the

correct category. Also, by excluding the denominator in the loss and including ε, the term (1)

in Equation(26) acts as the negative logarithm of the prior for the evidence in Equation (19),

where the prior distribution for the evidence has the parameters νi = κ(Rki + ε). During

training, it regularizes the evidence generated for each sample and helps avoiding fictitious

evidence for wrong categories. This is equivalent to learning evidence using maximum a

posteriori (MAP), instead of maximum likelihood estimation. Furthermore, the term (2) in

the loss serves as an objective to optimize prior counts for the pignistic probabilities, which

27

influence the classification decisions only when the predictive uncertainty is high.

Let us note that the evidence regularization in this way is separate from the L1 or L2

regularization methods, which are used to regularize network parameters, not directly the

output of the network. Through the redistributed prior counts of the pignistic probabilities,

the loss function reduces the expected risk for misclassification when π is highly uncertain.

If the categorical probabilities were used to calculate the risk of misclassification, the

expected risk in the loss would encourage more evidence for the wrong categories with

lower risk to reduce the expected risk when the correct category cannot be predicted correctly.

However, the formulation of pignistic probabilities encourages zero evidence for the wrong

categories if the redistributed prior counts reduce the expected risk sufficiently.

28

(a) MNIST risk mat. (b) MNIST misclass.

(c) FashionMNIST misclass (d) CIFAR10 risk mat

(e) CIFAR10 misclas.
Figure 8: The risk matrices in the experiments and the percentage of misclassification for
each category for the proposed approach.

29

CHAPTER IV

EVALUATION

In this section, we evaluate how agents may use our approach (i) to minimizing their cost

when making classification decisions based on the predictions of deep neural networks

and (ii) to determine if these predictions are wrong based on their uncertainty. For this

purpose, we use the LeNet5 neural network architecture [16] with three well-known datasets:

MNIST1, FashionMNIST2, and CIFAR103. Figure 9 shows some sample images from the

MNIST dataset. These images indicates that some digits may be very confusing and it is

very likely that a classifier may classify a handwritten digit incorrectly.

Figure 9: Some sample images from the MNIST data set, which are labelled as 2, 3, 4, 6, 7,
and 9, respectively.

In our evaluations, we choose LeNet5 as a neural network architecture, because it has

recently been used to evaluate uncertainty quantification in deep neural networks [2, 17]

and it is a simple convolutional neural network architecture, which cannot achieve the

state-of-the-art performance in terms of accuracy. It fits very well to our purpose, since

we do not aim to achieve high classification accuracy, but we desire to equip even simple

neural networks with the ability of estimating their uncertainty when making mistakes and

choosing less costly categories when they are uncertain. The configuration of the network

architecture used for MNIST and FashionMNIST is presented in Table 1. For CIFAR10,

we used the same architecture; however, we use 192 filters for Conv1 and Conv2, also used

1In MNIST, samples are 28× 28 images of handwritten digits between 0− 9.
2FashionMNIST contains MNIST-like samples representing fashion products.
3In CIFAR10, samples are low-resolution images of 10 animal and vehicle categories.

30

Layer Filters/Neurons Patch Size Stride Activation
Conv1 20 5 × 5 1 ReLU
Max Pool - 2 × 2 2 -
Conv2 50 5 × 5 1 ReLU
Max Pool - 2 × 2 2 -
FC1 500 - - ReLU
FC2 10 - - -

Table 1: LeNet5 architecture for MNIST and FashionMNIST.

1000 neurons in FC1 as described in [17]. We used L2 regularization with coefficient 0.005

in the fully-connected layers.

We compare our approach with three different approaches: the standard learning, which

uses the cross-entropy loss; cost-sensitive learning [18], which incorporates the risk matrix

into the standard loss to minimize the cost of misclassifications; and, evidential deep

learning (EDL) [2], which uses the regularized loss in Equation (23). We name our model

as risk-calibrated evidential deep learning, which is referred to as Risk EDL. It uses the

expectation of the predicted Dirichlet distribution for pignistic probabilities (i.e., qθ(p|x))

as the predictive distribution for classification. All these models uses the same LeNet5

architecture, but with different loss functions.

In our experiments, we used two different matrices forR as shown in Figure 8 (a) and

(d), and set κ = 1/max(R). For MNIST and FashionMNIST, we used the category indices

to create the risk matrix. Let i refers to the true category index of a sample and j refers

to the index of the predicted category for the sample. We set R[i, j] = (i− j)2 if j > i;

otherwise, it is set to i− j.

For MNIST, this risk matrix implies that overestimating the value of the digit in an

image incurs much higher cost than under estimating it. For CIFAR10, we divided the

categories into two groups: animals and vehicles. In this case, we set R[i, j] = 1 if i and j

are from the same group. If the true index i is animal, but the predicted index j is not, we

set R[i, j] = 10; otherwise, we set it to 50 as shown in Figure 8 (d).

MNIST and FashionMNIST datasets contain 60 and 10 thousands training and test

31

(a) MNIST ROC (b) MNIST PR

(c) FashionMNIST ROC (d) FashionMNIST PR

(e) CIFAR10 ROC (f) CIFAR10 PR
Figure 10: ROC and PR curves for misclassification detection.

32

Model MNIST Fashion CIFAR10
Cross-entropy 11.16 8.42 5.8
Cost-sensitive 5.9 6.1 4.7

EDL 11.0 10.04 6.1
Risk EDL 3.44 3.48 3.54

Table 2: Prediction cost

Model MNIST Fashion CIFAR10
Cross-entropy 99.0 90.0 73.0
Cost-sensitive 99.1 90.0 73.1

EDL 98.8 89.4 73.6
Risk EDL 99.3 91.3 75.0

Table 3: Test accuracy

samples, respectively, while the number of training and test samples are 50 and 10 thou-

sands for CIFAR10 dataset. We train the models for 50 epochs and evaluated the trained

models using the test samples. Table 2 and 3 present our results for the prediction cost and

accuracy on the test samples. Our results indicates that cost-sensitive training achieves lower

misclassification cost than standard or evidential deep learning. This is reasonable, since

these methods do not consider the risk matrix during training. Our model achieves signif-

icantly lower misclassification cost than the cost-sensitive training, while also enhancing

the accuracy of the model on the test samples in all datasets. That is, when compared with

cost-sensitive training, our approach reduces the cost of misclassification by 42%, 43%, and

25%, for MNIST, FashionMNNIST, and CIFAR10, respectively. This is a very significant

improvement.

However, an important problem that should be addressed is the detection of misclassified

samples. If an agent can detect misleading classification predictions of a classifier (instead

of blindly following these predictions), it can actively reduce the cost of misclassification

by avoiding making classification decisions when possible. In the literature on uncertainty

quantification for deep classifiers [17], the entropy4 of a prediction is used as a proxy for its

4The entropy of a predicted categorical distribution p is defined as
∑K

i=1−pi log pi.

33

Model MNIST Fashion CIFAR10
Cross-entropy 0.938 0.79 0.71
Cost-sensitive 0.942 0.83 0.69

EDL 0.967 0.87 0.76
Risk EDL 0.992 0.92 0.85

Table 4: Misclassification percentages for area under the PR curve

Model MNIST Fashion CIFAR10
Cross-entropy 0.945 0.82 0.71
Cost-sensitive 0.945 0.85 0.71

EDL 0.979 0.90 0.81
Risk EDL 0.996 0.94 0.85

Table 5: Misclassification percentages for area under the ROC curve

uncertainty. We also evaluate different approaches using the entropy of their predictions and

measure how well we can separate the misclassified and correctly classified samples using

the entropy. Ideally, when it is unable to correctly classify a sample, a model should say I do

not know by providing a very uncertain prediction (i.e., a prediction with maximum entropy).

We used the area under the Precision-Recall (PR) and Receiver Operating Characteristic

(ROC) curves5 to measure the successful detection of misclassified samples using the entropy

of predictions for these samples. Figure 10 shows PR and ROC curves for misclassification

detection. The area under curve (AUC) for PR and ROC curves are presented in Table 4

and 5; they indicate that our approach allows much better misclassification detection and

separation of misclassified samples from others for all datasets.

Figure 8 (b) and (c) demonstrate misclassification matrices of our approach for the

MNIST and FashionMNIST datasets. The rows of this matrix represent the true category

indices and columns represent indices of the predicted categories. The value at index [i, j]

represents what percentage of the misclassified samples from category i are predicted as

belong to category j. Similarly, Figure 8 (e) represents the misclassification matrix for

CIFAR10. These matrices indicate how our approach avoid classifying samples to high-risk

5ROC curves are not suitable for analysing imbalanced data. That is why we used oversampling to balance
the data before computing the ROC curves.

34

Model MNIST Fashion CIFAR10
Cross-entropy 0.975 0.77 0.76
Cost-sensitive 0.965 0.8 0.76

EDL 0.970 0.91 0.98
Risk EDL 0.993 0.97 0.98

Table 6: Area under the PR curve for out-of-distribution samples

Model MNIST Fashion CIFAR10
Cross-entropy 0.972 0.78 0.78
Cost-sensitive 0.961 0.81 / 0.81 0.78

EDL 0.97 0.89 0.99
Risk EDL 0.993 0.96 0.99

Table 7: Area under the ROC curve for out-of-distribution samples

categories and explain lower cost of misclassification for our approach.

Recent studies indicate that deep classifiers are very vulnerable to out-of-distribution

(OoD) samples [19]. In other words, the deep classifiers are usually very confident when

they classify samples that are not from their training set distribution. Ideally, classifiers

should give a very uncertain prediction in such settings. If the entropy is taken as a measure

of uncertainty, their predictions should be a uniform probability distribution over possible

categories, which indicates highest predictive uncertainty. To evaluate our approach for the

predictive uncertainty for OoD samples, we use samples from the notMNIST and CIFAR100

datasets. The notMNIST dataset [17] contains images of letters from A to J on various

typefaces. It is used to evaluate classifiers trained with MNIST and FashionMNIST datasets.

CIFAR100 contains images similar to images from CIFAR10, but from 100 different cate-

gories. We used it to evaluate classifiers trained with CIFAR10 dataset. Figure 11 shows

the empirical entropy CDF of the predictions for the OoD samples for each dataset. An

ideal classifier should give the near maximum entropy predictions for OoD samples, so the

entropy CDF curve should be very close to the bottom right corner. The figure indicates that

our approach is closer to the ideal; the entropy of its predictions for OoD samples are much

more closer to the maximum entropy than others.

We also compare the uncertainty of in- and out-of-distribution samples to see how easy to

35

(a) MNIST

(b) FashionMNIST

(c) CIFAR10
Figure 11: Empirical entropy CDFs of the predictions for the out-of-distributions samples.

36

separate these two using the predictive uncertainty. For this purpose, we use predictions for

the correctly classified samples from the training distribution, i.e., in-distribution samples,

and predictions for the OoD samples. We calculate their entropy and use the PR and ROC

curves to see how easy to separate these two using only the entropy of predictions. Our

results are shown in Figure 12, which clearly indicates that our approach allows much

better separation between in-distribution and out-of-distribution samples using the predictive

uncertainty. We also summarized our results also in Table 6 and 7 for all datasets.

In this section, we carefully and comprehensively evaluated our approach and showed

that (i) it allows an agent to minimize the cost of misclassification by learning and exploiting

pignistic probability distributions, and (ii) it allows an agent to detect misclassified and

out-of-distribution samples through predictive uncertainty.

37

(a) MNIST ROC (b) MNIST PR

(c) FashionMNIST ROC (d) FashionMNIST PR

(e) CIFAR10 ROC (f) CIFAR10 PR
Figure 12: ROC and PR curves for out-of-distribution detection.

38

CHAPTER V

RELATED WORK

In this chapter, we comprehensively discuss related works in cost-sensitive learning and

applied techniques in two different categories, such as (i) altering the distribution of training

data, (ii) manipulating the learning algorithm.

Deep neural networks, in general, are becoming a fundamental component in intelligent

systems. They are deployed to many fields, such as face and speech recognition, medical

diagnosis and autonomous systems (e.g.,self-driving vehicles). Although these models can

exceed human performances in some tasks, they can make mistakes in their predictions. The

main problem with these models is that they consider the same cost for all the prediction

errors where in real-life issues the cost of misclassifications are not same, and sometimes

leads to irreversible consequences. For example, in medical diagnosis, if a patient with

a cancer disease mistakenly is classified as a healthy person; thus, required treatment is

delayed because of the wrong diagnosis, the patient may lose his life. Rather than standard

classifiers that assign equal importance to all types of errors, cost-sensitive learning treats

distinct classification errors differently.

Cost-sensitive learning algorithms incorporate with a cost matrix [1]. The cost matrix C

is a square matrix here each element C[i, j] of this matrix represents a cost of classifying a

sample as class i, where actually it belongs to class j. The diagonal of this matrix is always

zero, which means the sample is correctly classified. Cost matrix for a binary classification

(i.e., having two class labels) is defined in Table 8. The rows in the cost matrix represent

the predicted labels while the columns represent the actual labels in the classification task.

Since the cost of the wrong prediction should be greater than the cost of the true prediction,

it is expected to have C[1, 0] >C[0, 0] and C[0, 1] >C[1, 1].

39

actual negative actual positive
predict negative C[0,0] C[0,1]
predict positive C[1,0] C[1,1]

Table 8: A cost matrix representation for a binary classification.

The goal of the classifier is to make the predictions that minimizing the total expected

cost calculated according to Equation (27). where P (j | x) denotes the probability of data

instance x belongs to j, C[i, j] denotes the cost of classifying a data instance x to class i

and n is the number of classes. By aiming to minimize this cost, the classifier is inclined to

make the wrong predictions with the lowest cost (less risky) when it is not possible to make

the correct predictions.

L(x, i) =
n∑
j=1

P (j | x)C[i, j] (27)

Cost sensitivity can also be applied to the normal error-based classifiers in two different

ways: (i) such as altering the class distribution of training data [20, 21, 22, 23, 24, 18, 25, 26]

(ii) altering the learning algorithm directly [27, 28, 29, 30, 31, 32, 33]. In following sections,

we give brief explanation of different cost-sensitive methods that used in literature for both

categories.

5.1 Cost-sensitive Learning by Altering the Distribution of Training Data

One of the approaches in cost-sensitive learning is changing the class distribution of the

training data by applying methods such as meta-learning [34], re-balancing [1], re-weighting

and re-sampling [20, 35, 36, 37, 38], expanding data space, and gradient boosting [35]. We

briefly review proposed cost-sensitive methods separately in the following sections.

5.1.1 Re-sampling

In the real-world applications, most of the classifiers face with the class imbalanced problem

where the class distribution is not balanced in the given dataset. It can influence the overall

accuracy significantly. For instance, if the data set includes inadequate number of instances

40

for a particular class label, a classifier may fail in predicting that class correctly. In order to

increase the accuracy of the classifiers in such situations, changing the distribution of the

data for generating more balanced distribution is required. One of the simple ways is using

methods such as sampling and weighting.

Cheng et al. [39] proposed two approaches called Balanced Random Forest (BRF) and

Weighted Random Forest (WRF) to deal with highly-skewed class distribution. The first

method under-samples the majority class and over-sample the minority class in order to

provide balanced distribution. The second method uses the idea of cost-sensitive learning, it

over-samples the examples belong to the high cost classes and under-samples the examples

belong to the low cost classes. Weighted random forest decreases the overall cost by

improving the performance of minority class. Zadronzy et al. [20] point out that standard

sampling techniques do not have any effect in dealing with class-imbalanced problem. They

suggest cost-proportion reject sampling method. This method is able to draw samples from

the given data distribution independently. Weiss et al.[26] tested the performance of the

sampling methods and observed that for the class-imbalanced problems, incorporating the

cost information into the learning algorithm directly, performs better than methods such

as under-sampling and over-sampling. Charles [1] advocates that cost-sensitive classifiers

should learn from balanced data set and be able to compute optimal decision based on

probability estimation given by classifier. To achieve this idea, he changed the proportion of

negative and positive examples using re-balancing technique.

Domingos [34] stated that over-sampling may increase the training time while under-

sampling may decrease the number of data samples. It is claimed that these models are

suitable for binary classification but would not work in multi-class cases, so they proposed a

new technique called meta-cost. According to this technique, if we have information about

the probability that the sample x belongs to any particular class then the Bayes optimal

prediction is the class i that minimizes the conditional risk according to Equation (28).

R(i|x) = p(j|x)c(i, j) (28)

41

Meta cost re-labels training data samples with their estimated minimum cost according to

Equation (28). It builds a new training set by duplicating the training examples automatically

and learns the classifier for each one to calculate the class probabilities as a fraction of votes

that come from each classifier.

5.1.2 Weighting

One of the other techniques that used for balancing the data samples distribution is weighting,

which is widely applied to the decision trees and Bayesian classifiers. In this technique [1,

20], different weights are assigned to training samples proportional to their misclassification

costs. In iterative weighting [35], this process is repeated iteratively and weights are updated

until they converge.

5.1.3 Re-labeling and Thresholding

Re-labeling and thresholding are known as the non-sampling techniques for changing the

distribution of the training examples. Re-labeling technique is divided into the two categories

such as re-labeling training data samples and re-labeling test data-samples. In this approach,

the classes of instances are re-labeled by using minimum expected cost. Thresholding

technique refers to the process of choosing the probability as a threshold and uses this

threshold in future predictions.

Zhou et al. [25] use thresholding technique on their work. The best probability estimation

of the training samples is considered as a unit threshold and overall misclassification is

computed as a function of that threshold. The local minima of overall misclassification cost

and threshold curve represent the lowest misclassification cost.

5.1.4 Adversarial Perturbations

Zhang [37] implemented the classifier that is robust against the adversarial perturbation by

considering the harm of all adversarial transformation of each class. Adversarial perturbation

is known as manipulating the pixels of training image samples in a way that the model

42

considers it as a different example. In this approach, they encoded the results of each

perturbation transformation into a cost matrix, where each element in the cost matrix

represents the cost of the adversary that caused the class i misclassified as class j by

perturbation. The value of the cost matrix depends on the adversarial transformation,

where if the adversarial transformation is crucial, the value of the cost matrix becomes one;

otherwise, it becomes zero. The generated cost matrix combines with the objective function

in the training phase. In order to detect sample robustness, they consider the l norm bound

for each example, where if there is no adversarial perturbation around the example in a

specific radius, then that example said to be certified robust. They defined robust cost as

the ratio of the sum of all adversarial examples to the total number of examples. Zhao [40]

proposed a method called Cost-sensitive feature selection using L1 and L2 norm. L1 norm,

which is known as the least absolute error minimizing the sum of the absolute differences

between the actual and predicted value. Respectively L2 norm refers to the least square, and

it minimizes the sum of squares of differences between actual and predicted value. L1 and

L2 norms known as the regularizer that add to loss function in order to avoid over-fitting in

machine learning models. Zhao defined the joint L2,1 norm minimization of the loss function

with misclassification cost. Misclassification cost for false negative and true positive denoted

by CFN and CFP respectively and calculated as given Equation (29) where C represents the

number of features, α represents the ratio of the number of minority classes to the number of

samples, and β denotes the ratio of the number of majority classes to the number of samples.

CFN = (1 + α)× µ× |C|

CFP = β × µ× |C|
(29)

5.2 Cost-sensitive Learning by Modifying the Learning Algorithm

Cost-sensitive learning is also achieved by modifiying the learning algorithm such as

decision trees, neural networks and support vector machines. In the following subsections,

we mentioned some of the related work that fits in this category. [27, 29, 28].

43

5.2.1 Decision Tree Algorithms

Decision tree algorithms can be modified to support cost-sensitive learning by using the

following methods such as : (i) Embedding cost information into decision tree during

construction, (ii) Embedding cost information into decision tree after constructions, (iii)

Boosting technique , and bagging technique.

Constructing the decision tree involves two phases such as growing and pruning. One of

the traditional ways of applying costs-sensitivity to decision tree algorithms is embedding

the cost information into the growing phase of trees using a cost-sensitive splitting criteria.

Splitting refers deciding the test attributes (i.e., branching nodes). Sahin [32] presented

a novel cost-sensitive decision tree algorithm that minimizes the sum of misclassification

costs while picking the splitting feature at each non-terminal node. Saidi [41] compared

different techniques such as binary decision tree (CART), boosting and bagging techniques

with each other. Their results indicated that boosting ensemble technique achieved better

trade-off between misclassification cost and total accuracy. In the boosting ensemble, a

group of classifier algorithms are combined. The performance of combined classifiers has

significant improvements in comparison with base classifiers.

Lomax [42] introduced a new version of decision trees called non-linear decision tree

algorithm that takes the misclassification cost into account. They believed that non-linear

decision nodes are more suitable for the basis of cost-sensitive induction than other parallel

nodes. Decision tree pruning also is one of the techniques used to minimize the misclassifi-

cation cost through improved probability estimation whereas Elkan [1] stated that it is better

to do no pruning when using the decision tree to predict probabilities.

5.2.2 K-nearest Neighbor Algorithm

K-Nearest-Neighbor algorithm is a memory based learning method where the class of a new

example is determined based on its similarity to the existing training examples.

Zhang [40] introduces two cost-sensitive extensions of K-nearest algorithm namely

44

Direct-CS-KNN and Distance-CS-KNN. In Distance-CS-KNN algorithm, after selecting

all neighbors in the training set, the class probabilities are computed as the ratio of class

neighbor i, to the number of neighbors k, which is usually constant integer in the range of

(1, 12). In Direct-CS-KNN algorithm, they compute the distance weights between the test

and train samples using a function called distance-weighted voting.

They injected cost-sensitivity by combining distance-weighted voting function with the

k-nearest neighbor algorithm. In their approach, the cost of choosing a positive nearest

neighbor Cp is computed as FP × Wn and the cost of choosing the negative nearest

neighbor Cn computes as FN × Wp. Therefor, if Cp > Cn , then the test sample is

classified as negative and the probability of this prediction computes according to the

following relation
Cp

(Cp+ Cn)
. Otherwise, the test data sample is classified as positive, and

it’s probability is computed as
Cn

(Cp+ Cn)
.

5.2.3 Support Vector Machine Algorithms

Support vector machine is a supervised learning algorithm used in classification task. Given

labeled training data samples, the model outputs the hyperplane, which can categorize and

classify new examples. Support vector machines have proven to be impressive in real-world

applications.

The most recent research in cost-sensitive support vector machine is related to the

Iranmehr [43]. They introduced a new method in which, instead of directly manipulating the

algorithm, they extended the support vector loss (hinge loss), which minimizes the Bayes

risk considered as a metric for measuring the performance of the binary classifier. The

proposed loss function can enforce cost sensitivity to the both separable and non-separable

training data.

Brefeld et al. [44] introduced a cost-sensitive support vector machines that consider

Bayes rule for example-dependent costs. Since the Bayes rule only depends on the differ-

ences between the real and predicted classification cost, they assigned zero cost for the

45

correct classifications. Masandi [45] proposed a new cost-sensitive support vector machine

by extending the support vector loss to the cost-sensitive loss, which can minimize the

risk and probability. Their approach is associated with the Bayes Rule and this association

guarantees implementing the Bayes-optimal cost-sensitive classification boundary.

5.2.4 Neural Network Algorithm

Studies in cost-sensitive learning with neural networks divided into different categories

such as (i) modifying probability estimation of network outputs, (ii) altering outputs of the

network directly, (iii) modifying the learning rate and (iv) replacing error minimization

function.

The first technique states to leave the training phase unchanged and only manipulates

the probabilities of test samples by considering the expected cost of misclassification. In

the second technique, the actual output of the network is manipulated to give a higher

misclassification cost. The third technique changes the back-propagation by assigning a

higher rate to the examples with high cost (high misclassification cost), which means high

cost examples will have higher weighs. In the fourth technique, rather than minimizing

the square error in a classification problem, the gradient descent algorithm reduces the

misclassification cost [46].

Kukar and Kononenko [46] for the first time in 1998 introduced the first work on cost-

sensitive artificial neural networks. Their approach enables the neural network to decrease

the misclassification cost by back-propagation. Since standard back-propagation algorithms

try to decrease the classification error rather than minimizing cost of errors, they are not

suitable for cost-sensitive learning. One of the approaches for modifying back-propagation

is to change the error function by embedding cost factor C[i, j] to it. The main problem

with the back-propagation algorithm is that it causes over-fitting of the training data samples.

Over-fitting happens typically when the model learns the details and noises of the training

data-samples, which decreased the model accuracy. For avoiding this problem, there are

46

techniques such as early stopping weight decay and dropout.

Kukar and Kononeko introduced a new model regularizing the weights using Bayesian in-

ference, which is similar to the Back-propagation. Rather than traditional Back-propagation

that considers the constant value for the weights in neural networks, the Bayes by back-prob

method considers the distribution over the weights, and weights are computed using maxi-

mum likelihood estimation. Weights are regularized by defining the prior distribution and

computing maximum posterior.

Chung et al. [47] implemented the cost-sensitive deep neural network. They proposed

the loss function that incorporates the cost information into both training and pre-training

stage. They used the stacked denoising autoencoder for initializing the parameters of the

network in the pre-training stage. The stacked autoencoder is an extended version of the

standard autoencoder. It is considered as a multi-layer neural network in which each layer

consists of an auto-encoder. So several auto-encoders form a stack, and the input of each

stack autoencoder is the output of the last layer. Using denoising auto-encoder in the

pre-training phase means first to train the autoencoder and compute the loss. Then the

decoder part of the auto-encoder is removed and new auto-encoder embedded; therefore, the

input of the new encoder is the latent representation of the previous one. And this process

repeats until the algorithm converges. In unsupervised learning, pre-training is a way to

initialize the weights of the neural network, so using stacked denoising autoencoder in the

pre-training phase helps initialize the weights with strong properties rather than initializing

them randomly.

5.2.5 Bayesian Deep Learning

Bayesian deep learning has emerged as a field combining deep neural networks with

Bayesian probability theory, which provides a principled way of modelling uncertainty of

machine learning models by employing prior distribution on their parameters and inferring

the posterior distribution for these parameters using approximations such as Variational

47

Bayes [48, 49]. Then, the posterior predictive distribution is approximated with sampling

methods, which brings a significant computational overhead and leads to noise in predictive

uncertainty estimates. In these models, predictive uncertainty is modelled by taking samples

from the posterior distributions of model parameters and using the sampled parameters to

create a distribution of predictions for each input of the network. However, modelling uncer-

tainty of network parameters may not necessarily lead to good estimates of the predictive

uncertainty of neural networks [50].

5.2.6 Evidential Deep Learning

Sensoy et al. [2] proposed the evidential deep learning (EDL) in order to quantify uncertainty

in classification task. They proposed a neural network classifier which is able to say "I don’t

know" when it is uncertain about its prediction. In order to achieve it, they used softmax as

the output of the classifier. Since softmax converts the logits to the probabilities between

zero and one, they interpreted them as the parameters of a categorical distribution and

replaced them with parameters of Dirichlet distribution. In order to compute the uncertainty,

they assigned belief mass to the whole frame. The belief mass bk for class label k computed

using the evidence for the class labels as follows bk = ek/S . The prior distribution for the

class with zero belief masses is corresponded to the uniform Dirichlet distribution. Any

opinion corresponded to the uniform Dirichlet distribution does not contain any information

and implies total uncertainty. In this case, the belief masses for classification become

b = [0, . . . , 0], since the uniform Dirichlet distribution does not contain any evidence.

Sensoy et al. proposed three different loss functions for predicting Dirichlet distributions

for classification tasks, i.e., the expected mean square error, the expected cross-entropy, and

the expected negative log-likelihood, where the expectations are calculated with respect to

the predicted Dirichlet distributions. In this work, we extended the expected cross-entropy

loss of EDL with the risk of misclassification.

48

5.2.7 Cost-sensitive Learning and Imbalanced Data

Class imbalance problem refers to the unequal proportion of class data, where some classes

have abundant data that make them an over-represented majority, and some others have rare

data, which makes them an under-represented minority. Imbalanced classes lead classifiers

to be unable to predict proper boundaries for distinguishing between minor and major

classes.

Khan [18] proposed the cost-sensitive deep neural network classifier with the ability to

learn robust feature representations for the majority and minority classes. To achieve this,

they modified the outputs of the neural network (logit layer) using the cost matrix. Their

proposed cost matrix is an all-ones matrix rather than a 1− I matrix with all positive values

in a range of (0, 1]. The diagonal of the proposed matrix represented the utility for correct

predictions. They used cost-sensitive mean error shown in Equation (30).

E (θ, ξ) =
1

M

M∑
i=1

l
(
d(i), y

(i)
θ,ξ

)
(30)

In this formula, d(i) denotes the desired output, and y denotes predicted output. Their

proposed loss parametrizes the predicted outputs by θ (theta is the neural network parameter)

and proposed cost matrix ξ — both the network parameters and cost matrix optimized

by gradient descent and back-propagation. Their learning model’s objective is to find the

optimum values for network parameters and cost matrix that gives the minimum possible

cost E. They defined the loss function as shown in Equation (30). They modified cross-

entropy loss l(d, y) by incorporating the class-dependent cost (ξ) in predicted values yn

that is related to the output on through the softmax function according to Equation (31).

Modified cross-entropy loss is cost calibrated and guess aversive.

l(d, y) = −
∑
n

(dnlogyn)

yn =
ξp,nexp(on)∑
k ξp,kexp(ok)

(31)

Table 9 shows the comparison matrix of the related work.

49

Cost-sensitive Learning
Learning
Method

Modifying
the Distribution

Modifying
Learning Algorithm

Cost
Sensitivity

Risk
Quantification

Elkan[1]
Binary

classifier

Re-balancing
Growing
Pruning

-
Cost

matrix -

Domingo[34]
Binary-multiclass

classifier
Re-labeling

Over-sampling -
Cost

matrix -

Kukar[46]
Multi-class
Neural nets -

Back-propagation
modification

Cost
matrix -

Zhou[28]
Binary-multiclass

classifier

Over-sampling
Under-sampling

Thresholding
-

Cost
matrix -

Zadrozny[20]
Binary

classifier
Sampling
Weighting - - -

Abe[35]
Multi
class

classifier

Data space
expansion

Iterative weighting
-

Cost
matrix -

Chung[47]
Multi-class

Deep neural net -
Loss function
modification

Cost
matrix -

Tu[29]
Multi-class

support vector
regression

-
One-side

support vector
Loss

Cost
matrix -

Zadronzy[24]
Decision-tree
Naive Bayes

classifier
Smoothing -

Cost
matrix -

Zheng[23]
Support vector

classifier -
Support-vector

loss
modification

Cost
matrix -

Zhou[22]
Multi-class
classifier

re-scaling
re-weighting -

Cost
matrix -

Chen[39]
Random-forest

classifier
balancing
weighting -

Cost
matrix -

Zhang[37]
Multi-class

Convolutional
Neural net

Adversarial
Perturbation -

Cost
matrix -

Weiss[21]
Multi-class
classifier Sampling -

Cost
matrix -

Khan[18]
Multi-class

Deep neural net
classifier

-
Cost-sensitive

Loss
Cost

matrix -

Sheng[25]
Binary

classification Thresholding -
Cost

matrix -

Mccarthy[26]
-Multi-class
- classifier Sampling -

Cost
matrix -

Jing[30]
Binary

Bayesian classifier Instance weighting -
Cost

matrix -

Chai[31]
Naive Bayes

classifier Naive bayes - - -

Risk-aware
Evidential
Deep-learning

Multi-class classifier - Expected Cross-Entropy
Cost

matrix
Risk

matrix

Table 9: Comparison matrix for related work on cost-sensitive learning

50

CHAPTER VI

CONCLUSION

As a result of striking success of deep learning in recent years, deep classifiers are now

an indispensable part of autonomous systems. However, these black-box models may be

very confident when their predictions are wrong and lead agents to make mistakes in their

decisions. Furthermore, standard training of deep models neglects that different mistakes

involve in different level of risk for the agents depending them. In this thesis, we significantly

extend the evidential deep learning to address this problem.

Our approach allows agents to incorporate their own risk for classification mistakes

into the training of evidential classifiers [2]. We borrow ideas from decision theory and

integrated the notion of pignistic probabilities into neural networks in a novel way using

the predictive uncertainty. Our usage of pignistic probabilities in making classification

decisions are similar to the usage of pignistic probabilities in Dempster–Shafer theory

(DST) of evidence [51] and Subjective Logic [13]. By incorporating the notion of risk

and pignistic probabilities into the loss function, our approach improves the uncertainty

quantification of evidential networks and, at the same time, significantly minimizes the

cost of misclassification for autonomous agents. It is worth noting that we learn these

probabilities using gradient descent as a part of the training of deep neural networks. We

believe that the link between the pignistic probabilities and making classification decisions

using deep neural networks should be explored further in future.

Our experimental results showed that we do not only decrease the overall cost of incorrect

predictions, but also increase the uncertainty of wrong predictions so that these predictions

can easily be discriminated from the correct predictions. Hence, our approach allows a

more accurate detection of classification errors and creates an opportunity for avoiding the

51

undesirable consequences of them. In other words, our approach can quantify predictive

uncertainty,which makes it possible to associate high uncertainty with predictions that are

more likely to be wrong and incorporate risk in training phase which makes it possible to

avoid making wrong predictions.

We would like to extend our approach in future to enhance robustness of neural networks

against adversarial perturbations, which are engineered to result in the maximum damage

through misclassification of samples into high-risk categories.

52

Bibliography

[1] C. Elkan, “The foundations of cost-sensitive learning,” in International joint conference
on artificial intelligence, vol. 17, pp. 973–978, Lawrence Erlbaum Associates Ltd,
2001.

[2] M. Sensoy, L. Kaplan, and M. Kandemir, “Evidential deep learning to quantify classifi-
cation uncertainty,” in Advances in Neural Information Processing Systems, pp. 3179–
3189, 2018.

[3] E. Alpaydin, “Introduction to machine learning/ethem alpaydin,” 2014.

[4] R. E. Cytowic and D. M. Eagleman, Wednesday is indigo blue: Discovering the brain
of synesthesia. MIT Press, 2011.

[5] M. H. Hassoun et al., Fundamentals of artificial neural networks. MIT press, 1995.

[6] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification with deep convo-
lutional neural networks,” in NIPS, 2012.

[7] “ConvolutionalNeuralNet architecture.” https://towardsdatascience.
com/a-comprehensive-guide-to-convolutional-neural-
networks-the-eli5-way-3bd2b1164a53. Accessed: 2020-01-17.

[8] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation functions:
Comparison of trends in practice and research for deep learning,” arXiv preprint
arXiv:1811.03378, 2018.

[9] “Activation functions. architecture.” https://towardsdatascience.
com/comparison-of-activation-functions-for-deep-neural-
networks-706ac4284c8a. Accessed: 2020-01-17.

[10] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning, vol. 1. MIT
Press, 2016.

[11] J. Joyce, “Bayes’ theorem,” 2003.

[12] S. Kotz, N. Balakrishnan, and N. Johnson, Continuous Multivariate Distributions,
vol. 1. New York: Wiley, 2000.

[13] A. Josang, Subjective Logic: A Formalism for Reasoning Under Uncertainty. Springer,
2016.

[14] S. Lefkimmiatis, P. Maragos, and G. Papandreou, “Bayesian inference on multiscale
models for poisson intensity estimation: Applications to photon-limited image de-
noising,” IEEE Transactions on Image Processing, vol. 18, no. 8, pp. 1724–1741,
2009.

53

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/comparison-of-activation-functions-for-deep-neural-networks-706ac4284c8a
https://towardsdatascience.com/comparison-of-activation-functions-for-deep-neural-networks-706ac4284c8a
https://towardsdatascience.com/comparison-of-activation-functions-for-deep-neural-networks-706ac4284c8a

[15] D. Dubois, H. Prade, and P. Smets, “A definition of subjective possibility,” International
Journal of Approximate Reasoning, vol. 48, no. 2, pp. 352–364, 2008.

[16] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al., “Gradient-based learning applied to
document recognition,” In the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[17] C. Louizos and M. Welling, “Multiplicative normalizing flows for variational bayesian
neural networks,” in ICML, 2017.

[18] S. H. Khan, M. Hayat, M. Bennamoun, F. A. Sohel, and R. Togneri, “Cost-sensitive
learning of deep feature representations from imbalanced data,” IEEE transactions on
neural networks and learning systems, vol. 29, no. 8, pp. 3573–3587, 2017.

[19] E. Hüllermeier and W. Waegeman, “Aleatoric and epistemic uncertainty in machine
learning: A tutorial introduction,” arXiv preprint arXiv:1910.09457, 2019.

[20] B. Zadrozny, J. Langford, and N. Abe, “Cost-sensitive learning by cost-proportionate
example weighting.,” in ICDM, vol. 3, p. 435, 2003.

[21] G. M. Weiss, K. McCarthy, and B. Zabar, “Cost-sensitive learning vs. sampling:
Which is best for handling unbalanced classes with unequal error costs?,” Dmin, vol. 7,
no. 35-41, p. 24, 2007.

[22] Z.-H. Zhou and X.-Y. Liu, “On multi-class cost-sensitive learning,” Computational
Intelligence, vol. 26, no. 3, pp. 232–257, 2010.

[23] E.-h. Zheng, P. Li, and Z.-h. Song, “Cost sensitive support vector machines,” Control
and decision, vol. 21, no. 4, p. 473, 2006.

[24] B. Zadrozny and C. Elkan, “Learning and making decisions when costs and probabili-
ties are both unknown,” in Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 204–213, ACM, 2001.

[25] V. S. Sheng and C. X. Ling, “Thresholding for making classifiers cost-sensitive,” in
AAAI, pp. 476–481, 2006.

[26] K. McCarthy, B. Zabar, and G. Weiss, “Does cost-sensitive learning beat sampling
for classifying rare classes?,” in Proceedings of the 1st international workshop on
Utility-based data mining, pp. 69–77, ACM, 2005.

[27] M.-Z. Tang, C.-H. Yang, W.-H. Gui, and Y.-F. Xie, “Cost-sensitive probabilistic neural
network with its application in fault diagnosis,” Control and Decision, vol. 25, no. 7,
pp. 1074–1078, 2010.

[28] Z.-H. Zhou and X.-Y. Liu, “Training cost-sensitive neural networks with methods
addressing the class imbalance problem,” IEEE Transactions on knowledge and data
engineering, vol. 18, no. 1, pp. 63–77, 2005.

[29] H.-H. Tu and H.-T. Lin, “One-sided support vector regression for multiclass cost-
sensitive classification.,” vol. 2, no. 4, p. 5, 2010.

54

[30] L. Jiang, C. Li, and S. Wang, “Cost-sensitive bayesian network classifiers,” Pattern
Recognition Letters, vol. 45, pp. 211–216, 2014.

[31] X. Chai, L. Deng, Q. Yang, and C. X. Ling, “Test-cost sensitive naive bayes classifica-
tion,” in Fourth IEEE International Conference on Data Mining (ICDM’04), pp. 51–58,
IEEE, 2004.

[32] Y. Sahin, S. Bulkan, and E. Duman, “A cost-sensitive decision tree approach for fraud
detection,” Expert Systems with Applications, vol. 40, no. 15, pp. 5916–5923, 2013.

[33] B. Krawczyk, M. Woźniak, and G. Schaefer, “Cost-sensitive decision tree ensembles
for effective imbalanced classification,” Applied Soft Computing, vol. 14, pp. 554–562,
2014.

[34] P. Domingos, “Metacost: A general method for making classifiers cost-sensitive,” in
KDD, vol. 99, pp. 155–164, 1999.

[35] N. Abe, B. Zadrozny, and J. Langford, “An iterative method for multi-class cost-
sensitive learning,” in Proceedings of the tenth ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 3–11, ACM, 2004.

[36] X.-Y. Liu and Z.-H. Zhou, “The influence of class imbalance on cost-sensitive learning:
An empirical study,” in Sixth International Conference on Data Mining (ICDM’06),
pp. 970–974, IEEE, 2006.

[37] X. Zhang and D. Evans, “Cost-sensitive robustness against adversarial examples,”
arXiv preprint arXiv:1810.09225, 2018.

[38] H.-T. Lin, “A simple cost-sensitive multiclass classification algorithm using one-versus-
one comparisons,” National Taiwan University, Tech. Rep, 2010.

[39] C. Chen, A. Liaw, and L. Breiman, “Using random forest to learn imbalanced data.
2004,” University of California, Berkeley, 2015.

[40] S. Zhang, “Cost-sensitive knn classification,” Neurocomputing, pp. 112–131, 2019.

[41] M. Saidi, M. E. H. Daho, N. Settouti, and M. E. A. Bechar, “Comparaison of ensemble
cost sensitive algorithms: Application to credit scoring prediction.,” in ICAASE, pp. 56–
61, 2018.

[42] S. Lomax and S. Vadera, “A survey of cost-sensitive decision tree induction algorithms,”
ACM Computing Surveys (CSUR), vol. 45, no. 2, p. 16, 2013.

[43] A. Iranmehr, H. Masnadi-Shirazi, and N. Vasconcelos, “Cost-sensitive support vector
machines,” Neurocomputing, vol. 343, pp. 50–64, 2019.

[44] U. Brefeld, P. Geibel, and F. Wysotzki, “Support vector machines with example
dependent costs,” in European Conference on Machine Learning, pp. 23–34, Springer,
2003.

55

[45] H. Masnadi-Shirazi, N. Vasconcelos, and A. Iranmehr, “Cost-sensitive support vector
machines,” arXiv preprint arXiv:1212.0975, 2012.

[46] M. Kukar, I. Kononenko, et al., “Cost-sensitive learning with neural networks.,” in
ECAI, pp. 445–449, 1998.

[47] Y.-A. Chung, H.-T. Lin, and S.-W. Yang, “Cost-aware pre-training for multiclass
cost-sensitive deep learning,” arXiv preprint arXiv:1511.09337, 2015.

[48] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wiestra, “Weight uncertainty in
neural networks,” in ICML, pp. 1613–1622, 2015.

[49] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning,” in ICML, pp. 1050–1059, 2016.

[50] D. Hafner, D. Tran, A. Irpan, T. Lillicrap, and J. Davidson, “Reliable uncertainty
estimates in deep neural networks using noise contrastive priors,” arXiv preprint
arXiv:1807.09289, 2018.

[51] A. Dempster, “A generalization of Bayesian inference,” in Classic works of the
Dempster-Shafer theory of belief functions, pp. 73–104, Springer, 2008.

56

	Titlepage
	Signatures
	Dedication
	Abstract
	Özetçe
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1 — Introduction
	Chapter 2 — Background
	Deep Neural Networks
	Activation Functions
	Loss Functions
	Training Neural Networks

	Theory of Probability
	Random Variables
	Conditional Probability
	Bayes Theorem
	Probability Distributions
	Maximum Likelihood Estimation and Maximum A Posteriori
	Dirichlet Distribution

	Chapter 3 — RISK-CALIBRATED CLASSIFIERS
	Problem Statement
	Learning to Predict Pseudocounts
	Decision Making Under Uncertainty

	Chapter 4 — EVALUATION
	Chapter 5 — RELATED WORK
	Cost-sensitive Learning by Altering the Distribution of Training Data
	Re-sampling
	Weighting
	Re-labeling and Thresholding
	Adversarial Perturbations

	Cost-sensitive Learning by Modifying the Learning Algorithm
	Decision Tree Algorithms
	K-nearest Neighbor Algorithm
	Support Vector Machine Algorithms
	Neural Network Algorithm
	Bayesian Deep Learning
	Evidential Deep Learning
	Cost-sensitive Learning and Imbalanced Data

	Chapter 6 — Conclusion
	References

