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ABSTRACT

This thesis proposes a new State of Charge (SOC) estimation method for lithium-

based batteries, which offers a good trade-off between convergence and computation

times. Lithium-based battery packages are quite common in the automotive industry

and beyond because of their high-power density and dynamic response capabilities.

Per a given volume, lithium-based battery cells have much more capacity, higher C

rates, and lower internal resistance than other cell chemistries. However, this comes

at a cost because of lithium’s reactive nature. It is hard to preserve, monitor, cool,

and control lithium in a pack within a safe state. For these reasons, battery control,

or in other words, Battery Management Systems (BMS) is a major topic in the liter-

ature, and estimation of SOC, State of Health (SOH), and State of Power (SOP) are

considered as core subfunctions of BMS. This thesis focuses on improving SOC esti-

mation for lithium-based batteries. SOC estimation determines the remaining charge

level on the battery and is very critical for battery-powered devices. This process is

relatively straightforward when the battery is in the resting state. However, it can be

difficult while the battery-powered device is operating, due to process disturbances

and model uncertainties. The best performing SOC estimation methods in the lit-

erature are based on Kalman Filtering, and they are specifically Extended Kalman

Filter (EKF) and Adaptive Dual Extended Kalman Filter (ADEKF). While EKF of-

fers the shortest computation time, it results in a long convergence time. On the other

hand, ADEKF offers short convergence time and long computation time. We propose

PID-controlled EKF, which offers a mid-point in terms of convergence and computa-

tion times. The importance of convergence characteristics are also articulated in this

thesis, especially from an automotive perspective.
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ÖZETÇE

Bu tez Lityum tabanlı piller için yakınsama performansı ve hesaplama karmaşıklığı

dengelenmiş yeni bir SOC kestirim algoritması sunmaktadır. Lityum bazlı piller

yüksek enerji yoğunluğuna ve dinamik tepkilere sahip olduğu için endüstride oldukça

yaygın olarak tercih edilmektedir. Bu piller, belirli bir hacimde diğer hücre kimyalarına

göre daha yüksek kapasite, yüksek C oranlar ve düşük iç direnç sunmaktadır. Fakat

lityumun reaktif yapısı çeşitli problemlere yol açmaktadır. Bu kimyasal maddeyi

bir paket içerisinde muhafaza etmek, soğutmak, kontrol etmek ve takibini sağlamak

oldukça zordur. Bu sebeplerden ötürü Batarya Yönetim Sistemleri hakkındaki akademik

çalışmalarda pilin şarj, ömür ve güç durumunun takip edilmesine önemle yer verilmi-

tir. Bu tezde lityum tabanlı pillerin şarj durumunun yüksek hassasiyet ile takibine

odaklanılmştır. Bir pilin açık devre konumunda iken şarj durumu tespiti yapılması

oldukça kolaydır fakat yük altındaki bir pilin şarj durumunun kestirilmesinde çeşitli

zorluklar ortaya çıkar. Literatürde Kalman tabanlı filtreler, özellikle EKF ve ADEKF,

en iyi SOC kestirimi performansını sağlamaktadır. EKF düşük hesaplama karmaşıklığı

sunar fakat yakınsama zamanı uzundur. Diğer taraftan, ADEKF kısa yakınsama

zamanı sunarken yüksek hesaplama karmaşıklığına sahiptir. Bu tezde bu iki algorit-

manın güçlü yönlerini dengeleyen yeni bir PID kontrollü EKF algoritması sunulmuştur.

Ayrıca bu tez, yakınsama performansının önemini de vurgulamaktadır.
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CHAPTER I

INTRODUCTION

Lithium-based battery demand is rising in the last years especially after the electric

vehicles become popular. It can be seen in the daily life that lots of devices become

lithium-based battery powered. Due to the high energy density of lithium, it is highly

advantageous to use lithium as an energy source in mobile devices.

A lithium-based battery pack should be used with a Battery Management System

for optimizing the performance and life of the battery. Safety reasons are also con-

sidered for lithium-based battery packs. The position of lithium in the periodic table

is one above the sodium in the alkali metal column which means this chemical has a

reactive nature which can lead to critical failures while it is processed.

Increasing demand for lithium-based batteries leads fast developments in the Bat-

tery Management System research area. Lots of academical and industrial work is

done in this area to make sure that lithium-based batteries are used optimally in a

safe way.

A BMS can have lots of different functionalities depends on the application area.

State of Charge estimation is one of the important functions of a BMS. For electric

vehicle manufacturers, it is very important to estimate SOC accurately. To know

how long a device can be powered with the remaining charge, SOC should be known

precisely. However, it can not be directly measured with a sensor but, it can be

estimated with some mathematical approaches. This work is focused on improving

the performance of SOC estimation.

In the following sections, fundamentals of batteries and BMS are explained for

the next chapter topics.
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1.1 Battery Cell Chemistries

Storing energy is a critical problem in the design process of devices especially for

mobile ones. This problem causes some design limitations for engineers. Once the

power and energy requirements of a system is calculated, a satisfying energy source

should be determined to meet the demand. Volume, mass, and thermal properties

are some of the important concerns in this process. If the device is powered by a

battery like a drone, mobile phone, or an electric vehicle (EV) then some alternative

chemicals should be considered like lead-acid, nickel-cadmium (NiCd), nickel-metal

hydride (NiMH), lithium-ion (Li-ion), lithium-ion polymer, etc. as an energy source.

Even a supercapacitor can be considered as a main or secondary energy source in a

device. All these alternatives come with their pros and cons.

Differing from capacitors, in batteries, a chemical reaction should be triggered

to gather energy. According to the characteristics of these reactions, the dynamic

response of the battery cell takes form. Generally, chemical bond energy is exposed

in metal-based electrochemical cells while it is under load.

Four different rechargeable battery chemistries are used commonly in the industry.

1.1.1 Nickel-Cadmium Batteries (NiCd)

Comparing with other chemistries this type has much more life-time, higher instant

power release capabilities, and low prices. However, from an energy density point

of view, it is relatively weak and cannot store a high amount of energy in a given

volume. They are often used in alkaline AAA batteries.

1.1.2 Nickel-Metal Hydride (NiMH)

NiMH cells have much more capacity than NiCd. It can store up to two times more

energy than NiCd at the same volume. It also doesn’t contain toxic metals so that it

is more environmentally friendly. However, it has a reduced lifetime compared with

NiCd.
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1.1.3 Lead-Acid Batteries

Lead-Acid battery is one of the oldest types of battery but it is still very common

especially in automotive and renewable solar-panel energy storage (Fig. 1) [1]. It has

high instant power capability and lifetime with its low prices. However, it has a very

weak energy capacity in a given weight.

Figure 1: Lead-Acid Battery Diagram

1.1.4 Lithium-Based Batteries

Lithium-Based batteries are the most common type in Electric Vehicles. They can

store much more energy in given volume and mass than other chemistries. They also

have wide power bandwidth. A Li-ion cell can supply energy to low and high power

applications with a robust efficiency. However, well-designed protection hardware and

software should be used with these cells. Battery Management Systems are developed

for this reason.

18650 battery cell is very common in the industry (Fig. 2). Different versions of

this battery are used in wide product range like laptop batteries to electric vehicles.
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Figure 2: 18650 Li-ion Battery Cell

1.2 Lithium-ion Battery Packs

Li-ion battery packs are consist of individual cells. A cell, which can provide 3.3 V

nominal, is the smallest unit of a battery pack. To reach the required voltage level

cells are connected in series and to reach the required capacity and maximum current

they connected parallel. The reason for not producing the battery as a single cell is to

provide a modular design possibility. For example in an electric vehicle battery can

be divided and located at different positions for mechanical reasons. The production

and recycling process is also simplified. These cells are usually connected with a nickel

strip over spot welding (Fig. 3). Each module contains parallel cells and modules are

connected in series (Fig. 4). With this design, modules balance their self and balance

between the modules is done by BMS. Cell balancing is explained in Section 1.3.
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Figure 3: Connected Cells via Spot Welding

Figure 4: Circuit Diagram of a Battery Pack

1.3 Battery Cell Terminologies

This section explains the basic concepts and terminology about batteries.

1.3.1 C Rate

C rate defines the maximum current that a battery cell can give.

5



MaxCurrent = CRate ∗ Capacity (1)

A battery with 2C discharge rate and 2 ampere-hour capacity can give 4 amperes

maximum and it will last in a half-hour if it is used in 2C. A battery will last in 1

hour if it is used in 1C according to equation (1).

The discharge rate is not a physical limitation. A battery with a 1C discharge

rate may be discharged with 10C but it can cause serious problems and failures. The

discharge rate is determined by the manufacturer and the battery can be used safely

within this limitation.

1.3.2 Capacity

The capacity of a battery is measured with ampere-hours. A battery with 50Ah will

be finished after giving 50 amperes for 1 hour. The capacity of the same battery

can be changed in different conditions like C-rate, temperature, and the age of the

battery.

With a direct proportion, it can be said that 50Ah battery will last in a half-hour

if it is discharged with 2C which means 100 ampere instant current consumption.

However, it will last before a half-hour. In higher discharge rates the usable capacity

of a battery is reduced because of chemical reasons. The performance of a battery is

always reduced when limits are pushed. Datasheet of the Samsung 18650 cell shows

how cell capacity affected by the discharge rate (Fig 5).

6



Figure 5: Capacity Characteristics by Discharge Rate

Temperature is one of the most important variables that affect capacity. When

a cell has connected to a load, a chemical reaction starts between the anode and

cathode labels of the cell. Environment temperature has a catalytic effect on this

reaction. At lower temperatures capacity decreases by up to 20%. For these reasons,

electric vehicle manufacturers cover the batteries with heating pads of the vehicles

which are produced for north countries like Norway. Datasheet of the Samsung 18650

cell shows how cell capacity affected by the temperature (Fig. 6).
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Figure 6: Capacity Characteristics by Temperature

The characteristics of a battery always change because of the aging effect. The

simplest way of tracking the age effect is cycle counting. Every charging and dis-

charging period is counted as a cycle and the age of the battery is assigned by this

count. While a cell is aging capacity is reduced. Datasheet of the Samsung 18650 cell

shows how cell capacity affected by the aging effect (Fig. 7).
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Figure 7: Capacity Characteristics by Aging

1.3.3 Open Circuit Voltage

Open circuit voltage (OCV) is a function of State of Charge (SOC), temperature,

and State of Health(SOH). Like a capacitor, terminal voltage decreases as available

charge decreases in a lithium battery (Fig. 8) [2]. Similarly, OCV decreases at low-

temperature levels. This is the reason that the performance of an electric vehicle is

reduced perceptibly in winter. OCV is important because if temperature and SOH

are known, SOC can be exactly known if the battery is in open circuit condition. For

open-circuit condition, the battery should be rested for a while and cooled down after

an excitement.

9



Figure 8: OCV vs Discharge Capacity.

1.3.4 Internal Resistance

Like every other power source, batteries also have internal resistance. A simple cell

model can be constructed from a voltage source and a series resistance (Fig. 9).

Because of internal resistance, under higher loads, there will be a huge amount of

voltage drop across the internal resistance. This drop may affect the performance of

the system so that it should be considered in the design process. SOH and tempera-

ture also have an impact on this resistance. Under extreme cases, internal resistance

increases and according to ohms law maximum current that a cell can give decreases.

Also, it should be considered that generally cell producers write AC impedance to

datasheets. In this work, internal resistance refers to DC series resistance.

10



Figure 9: Cell Model with Internal Resistance

1.3.5 SOC

State of charge indicates how much charge remains in the battery. It is very critical for

electric vehicles to obtain that vehicle can go to a charge station with the remaining

charge. SOC should be distinguished from remaining energy. For energy consumption

both voltage and current should be considered however in SOC estimation, only

electric charge is evaluated. It indicates how much current capacity that the battery

can provide.

SOC is also important for tracking the balance between individual cells in a battery

pack. Cells that are close to the package are a bit cooler than the centrally located

ones because they can radiate their heat to the environment. That’s why middle

cells have higher temperatures and lower SOC. This situation should be detected and

protection functions like balancing and cooling should be activated.

In a battery cycle, generally, cells are not fully charged and discharged. This is

important for safety reasons and the lifetime of the cell. Pushing the limits is not

a good idea for a reactive chemical. Also in an unbalanced battery, some cells can

be degraded early from the other ones and discharging more in such a battery can

11



lead to current requests from a zero SOC cell (Fig. 10). To avoid unsafe situations

generally, cells are charged up to 90% and discharged to 10%.

Figure 10: An Unbalanced Battery Pack

1.3.6 SOH

State of health indicates how much life does battery still has. A brand-new battery

has 100% SOH and a dead cell has 0% SOH. A battery with 80% SOH has 20%

less capacity from its initial state and it has 80% available capacity. Other than the

capacity loss internal resistance of the cell also increases while the cell is aging and

according to ohms law maximum current that the cell can provide is decreased. Open

circuit voltage is also reduced and because of the voltage and current drop, the power

that the cell can provide decreases.

In electric vehicles generally, after 80% SOH, battery cant satisfy the vehicle’s

power demand and it should be changed. Before recycle these batteries are using in

power plants and other applications.

The simplest SOH estimation method is cycle counting, however, it should be

considered that every cycle does not affect the battery the same. A cycle with a

12



higher C rate and temperature can decrease more than 1 cycle from a battery.

Capacity monitoring is another conventional method that is used in electric ve-

hicles. The BMS monitors the battery and waits for a complete cycle that SOC

is decreased to 0% from 100%, by this way available capacity can be determined.

Model-based SOH estimation methods are also explained in the literature

1.3.7 Charging Procedure

Charging a lithium-based battery can be challenging. Other than different cell chemistries,

lithium cells cant be charged with a simple voltage source. Normally a constant volt-

age source connected to a battery and because of the internal resistance, battery

doesn’t take huge amounts of current at reasonable voltage levels. However, lithium

batteries have quite small resistance and a little voltage difference between charger

and battery leads to huge current flow. That’s why current control needed in the

charging procedure. Generally, lithium batteries charged with a 1C charge rate and

the charger’s voltage should be increased gradually according to satisfy 1C charge

rate because of the voltage rise of the battery while it is charging. After the max-

imum charge voltage level which is determined by the supplier reached, increasing

the voltage may cause serious failures. After that point voltage should be fixed until

the cut-off current reached. This method is called constant current, constant voltage

charging procedure (Fig. 11) [3].
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Figure 11: Constant Current Constant Voltage Charging

1.4 Battery Management Systems

The purpose of BMS depends on the application but generally, it protects the battery

and the battery-powered system. A BMS (Fig. 12) should prevent potential accidents

and failures by detecting risky events like short-circuit, reverse polarity, overcharge,

over-discharge, over-voltage, over current and over temperature. Regulation of charge

and discharge procedure also maximizes the life and performance of the battery. In

electric vehicles, generally, BMS provides an interface over CAN-BUS for other vehicle

control units. At the following section monitoring, thermal management, balancing,

and SoX estimation functions are explained.
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Figure 12: BMS with a Battery Pack

1.4.1 BMS Functions

A BMS has a wide range of functionality variations. However, monitoring, thermal

management, cell balancing, and SoX estimation are basic and common functionalities

of a BMS.

1.4.1.1 Monitoring

Monitoring is the basic functionality of the BMS. Voltage, temperature, and current

should be observed for other functions. BMS evaluates all modules as a single cell.

In a module, cells are connected parallelly (Fig. 4) and each module is separately

balanced and each cell has the same voltage in the same module because of the parallel

connection. In a battery pack cables should be connected from every battery module

pole head to BMS (Fig. 13) [4]. Generally, a multiplexer circuit is used for switching

between cells for cell voltage measuring. For temperature sensing generally, sensors

mounted to the middle cell which is the hottest one, of each module. For current

sensing generally, hall effect sensors are connected to the main bus of the battery.
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Figure 13: Basic Cell Monitoring Hardware Diagram for a BMS

1.4.1.2 Thermal Management

While charging and discharging a battery cell, chemical reactions make them heat

up. After a temperature offset cell stars to release poisonous gas. After that offset, if

it continues to heat up, it can be deflagrated or blow-up. Once these failures happen

battery should be completely cooled and discharged to stop this unwanted reaction.

It is very hard for a firefighter to extinguish these reactions. To prevent this a well

designed cooling system should be integrated into the battery if it is necessary. BMS

should track pack temperature to activate the cooling system or even completely shut

down the battery by opening contactors if it is needed. It is also important that using

the battery at the optimal thermal band for improving performance and lifetime.
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1.4.1.3 Cell Balancing

Because of production errors and environmental effects, two different battery cell

cannot be identical even they are produced in the same production line. These differ-

ences lead to some unbalanced conditions in a battery pack. SOC levels for cells are

diverse from each other over time. In charging procedure if a cell reaches full charge

before other cells, charging should be stoped to prevent overcharge. In this situation,

unused capacity occurs in other cells. Likewise, if a cell completely discharged while

other cells have some charge, battery cant used to prevent over-discharge and even

pack has the energy it is not available (Fig. 14) [5] . To maximize the capacity and

lifetime of a pack, cell balance is required. There are two common balance techniques

which are passive and active balancing used in the industry.

Figure 14: Unbalanced Cells

Passive balance is more common because of its simplicity. Cells that have more

charge, simply discharged over a resistor until the pack reaches to balance (Fig. 15)

[6]. This function can be activated on charging time to not waste the mobile energy

but this will increase the charge time. If it is activated on discharging, charge time is

not affected but mobile energy is wasted. This function can also be activated on idle

time.
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Figure 15: Passive Cell Balancing Diagram

Even active balancing is a smarter method it is not common as passive balancing

because of its manufacturing and maintaining complexity. In this method, a super-

capacitor or an extra battery module added to battery in order to transfer extra

capacity between cells.

1.4.1.4 SoX Estimation

SOC and SOH estimation is critical for battery-powered systems. It can be chal-

lenging because they cant be measured with a sensor directly. Somehow SoX should

be calculated or estimated because other BMS functions need SOC and SOH as an

input. It is also critical for electric vehicle drivers to know when to charge and obtain

the remaining range that the vehicle can go. Other than some conventional methods,

model-based approaches and machine learning algorithms used for estimation.
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CHAPTER II

MODELING

A mathematical representation is needed for model-based observers. Basically, mea-

sured and calculated states will be compared to figure out system uncertainties. A

model is also necessary for simulation purposes.

Even a battery pack contains multiple cells, modeling a single cell is enough for

simulations and observer algorithms. BMS algorithms generally track the cell that has

minimum and maximum SOC in a pack. In this work, the cell model is instantiated

over different cells in a pack.

2.1 Cell Modeling

In the literature, there are 3 main different modeling techniques which are electro-

chemical cell , neural network and equivalent circuit model are available.

Wei et al. [7], has modeled the reactions between anode and cathode terminals

(Fig. 16). This is a quite comprehensive and sophisticated model that can be used

from battery cell manufacturers in the design progress. Ahmad et al. [8] point

out, other than some corner cases equivalent circuit model is almost accurate as

an electrochemical model with lower complexity. A neural network, which has a

reasonable performance, is constructed by Wei et al. [9] for cell modeling. Inputs

of this network are temperature, voltage, and current (Fig. 17). Jiani et. al. [10]

proposed a machine learning algorithm that is reinforced with a model-based method,

which has high accuracy. They modeled the cell with a neural network that drives a

Kalman-based filter. However, training such a network requires a lot of data from a

battery that is not time and cost-effective. Therefore in this work machine learning

algorithms are not considered.
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Figure 16: Electrochemical Model

Figure 17: Neural Network for Cell Modeling
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2.2 Equivalent Circuit Modeling

In this work equivalent circuit modeling is used for it is simplicity (Fig. 18). This

equivalent circuit does not exist in the cell but it simulates the behavior of a cell which

helps to estimate system states in Kalman Filtering. All parameters are a function

of SOC, temperature, and SOH. Table 1 explains the meanings of the parameters.

Figure 18: 2RC Equivalent Circuit Model

Voc Open circuit voltage.

Rint Internal resistance of the cell.

Vbatt Terminal voltage of the cell.

C values Capacitance values that simulates delayed voltage response of the cell.

R values Leakage resistances of the capacitors

I Charge or discharge current

Table 1: Equivalent Circuit Model Parameters
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2.2.1 State Space Model of the Equivalent Circuit
˙VC1
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˙SOC

 =
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R1C1
0 0

0 −1
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0

0 0 0
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VC2

SOC

 +


1
C1

1
C2

1
BatteryCapacity

 I (2)

Vbattery = Voc +RintI + VC1 + VC2 (3)

2RC equivalent circuit equations were derived from Kirchhoff’s law and capacitor

voltage formula. Equation (2) shows the state matrix equation of the model and

equation (3) indicates the measurement function.

2.3 Parameter Identification

Figure 19: Cell Model I/O

Current is directly controllable and voltage changes according to current and system

states in a battery cell (Fig. 19). Shortly current is the input and voltage is the

output of the system. Model parameters should be identified for a specific cell in

order to compute the model.

A commercial battery that is used in hybrid vehicles with 51Ah capacity is used

for parameter identification to use reasonable values for simulations. Least squares

method is used to estimate system parameters. The battery is connected to a current

source to perform charge and discharge cycles. Hybrid Pulse Power Characteriza-

tion (HPPC) drive cycle is used for parameter identification (Fig. 20). This cycle is
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developed for battery characterization progresses. Battery is excited with constant

current to charge and discharge capacitors at the cell model. After constant current

periods, idle time periods performed. At that period battery is released and current

flow is stopped. Only measurement functions are performed to collect data to fit

curves and identify parameters at the idle time. Constant current and idle periods

are repeated to figure out parameters in different SOC, temperature and SOH con-

ditions. Equation (4) is the cost function that is minimized to find cell parameters.

MATLAB/SIMULINK parameter identification toolbox is used to converge to the

real parameter values.

J =
∑

(Vmeasured(t) − Vsimulated(t, I))2 (4)

Figure 20: HPPC Drive Cycle
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Figure 21: MATLAB/SIMULINK Parameter Identification Toolbox

Figure 22: Parameter Identification Block Diagram

Parameter identification toolbox computes the model (2RC cell model for this

work) with initial parameters and given input profile (Fig. 21). Then it computes an
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error value with subtracting real-life measurements and simulated outputs (Fig. 22).

According to this error, parameters are updated iteratively. In this work, battery is

excited under the HPPC cycle and the voltage of the battery is logged. For initial

parameters, different cell parameters are used. Model is simulated with the HPPC

drive cycle and voltage error is minimized iteratively.

Figure 23: HPPC Voltage Profile at 40 degrees (Volt vs Second)
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Figure 24: HPPC Voltage Profile at 25 degrees (Volt vs Second)

Figure 25: HPPC Voltage Profile at 0 degree (Volt vs Second)
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Figure 26: HPPC Voltage Profile at -20 degrees (Volt vs Second)

Voltage profiles under the HPPC cycle at 40, 25, 0, and -20 degrees after parame-

ters are optimized (Fig. 23-26). Simulated voltage is converged to measured one with

2% maximum error and Voc, Rint, R1, C1, R2, C2 parameters are identified.

2.4 Model Validation

For model validation, a new drive cycle should be used which is not used at the pa-

rameter identification process. Worldwide Harmonised Light Vehicles Test Procedure

(WLTP) drive cycle (Fig. 27) is performed at real-life battery and simulation with

identified parameters at 25 and 40 degrees (Fig. 28-29).
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Figure 27: WLTP Drive Cycle Current Profile (Ampere vs Second)

Figure 28: WLTP Drive Cycle Voltage Profile at 25 degrees (Volt vs Second)
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Figure 29: WLTP Drive Cycle Voltage Profile at 40 degrees (Volt vs Second)

Figure 30: WLTP Voltage Error at 25 degrees (Error% vs Second)
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Figure 31: WLTP Voltage Error at 40 degrees (Error% vs Second)

The model is validated with a maximum 3% error which is good enough for sim-

ulations and further algorithms (Fig. 30-31).
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CHAPTER III

SOC ESTIMATION

If observing the status of chemical bonds in a battery is possible in a feasible way

than SOC estimation is much more simpler however, SOC can not directly measured

with a sensor. It is also not possible to calculate the exact SOC because of the system

uncertainties. This chapter explains how to estimate SOC under these challenges.

3.1 Conventional Methods

Open Circuit Voltage - SOC Mapping and Ampere Hour Counter are basic approaches

for SOC estimation. They are commonly used because they are straightforward and

computationally cheap.

3.1.1 Open Circuit Voltage - SOC Mapping

The most reliable SOC estimation method is OCV - SOC mapping in the literature

[11, 12, 13]. OCV value is chemically related to SOC variance. Once the OCV

value of the cell is measured, SOC can be called from a look-up table which contains

OCV values for SOC labels (Fig. 8). However, this method cannot calculate precise

SOC value after excitation of battery or while the battery cell is under load. OCV-

SOC mapping is optimal for SOC estimation validation when essential conditions are

fulfilled.

3.1.2 Ampere-Hour Counter

Ampere-hour counter is very common for SOC estimation in the industry because of

its simplicity [14] . Output of the current sensor which is located one of the terminals

of a battery is integrated to calculate the consumed capacity. Then consumed capacity
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is subtracted from the initial capacity to find SOC. However, while the current sensor

is integrated, sensor noise drifts and after a while, estimations can become useless

(Fig. 32). This method can be reinforced with the OCV-SOC map to update SOC

while the battery is resting. In this way, sensor noise drift can be controlled.

Figure 32: Ampere-Hour Counter
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3.2 Model-Based Algorithms

Figure 33: Model-Based Algorithm Block Diagram

Model-based methods like Kalman Filter, H-infinity Filter, Luenberger Observer,

Sliding Mode Observer and Proportional Integral (PI) Observer can preserve their

performance over temperature and SOH changes if they are implemented with adap-

tive modeling features to handle cell parameter changes. These methods generally,

compare measurements with calculated states then updates filter parameters accord-

ingly (Fig. 33). Zou et al. [15], proposed a PI Observer with a 3% SOC estimation

error. This error can be reduced by combining model information and sensor data.

3.3 Kalman Filtering

Kalman Filter (KF) combines two data which have errors and tries to find a new

estimate with less error (Fig. 34) [10]. It has 2 stages with 5 equations (Fig. 35) [16].

Kalman gain (K) changes adaptively according to the state covariance matrix.
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Figure 34: Kalman Filter Block Diagram

Figure 35: Kalman Filter Equations

P matrix (state covariance matrix) is updated iteratively and holding state un-

certainties. It is assumed that states are varying in the range of the P matrix with a

Gaussian distribution.

Q matrix (process noise covariance matrix) holds modeling, discretization, ap-

proximation errors, and disturbances. It is adding to P Matrix at each time step.

Also, it forces the P to not become 0. P = 0 means that the system doesnt have
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any uncertainty and the algorithm will only depend on the model and do not use

measurements.

R matrix (measurement noise covariance matrix) holds average measurement er-

rors which can be easily obtained from the datasheet of the sensor.

First prediction equation simply computes the state equation.

Second prediction equation is simply Pnew = Pold + Q. A and A transpose comes

from the models matrix formation. Process noise covariance matrix is added to the

state covariance matrix at each step.

In the first correction equation, Kalman Gain is calculated. If this matrix was

constant, then this filter will become a state observer, but it is changing dynamically

in KF Equation (5) is the simplified form of the first correction equation.

StateUncertainty

StateUncertainty +MeasurementUncertainty
(5)

This ratio shows, what to depend on. If it is close to 1 then model uncertainty is

increased and measurements are more reliable. If it is close to 0 then measurements

are more reliable from the model. If it is exactly 0, then 2nd correction equation will

ignore measurements.

Second correction equation calculates the final states for the current time step.

Equation (6) is the simplified form of the second correction equation.

State = PredictedState+KalmanGain(Measurement− PredictedMeasurement)

(6)

If Kalman Gain increases, then the effect of the measurement will also increase.

Otherwise, the algorithm will depend more on the model.

Equation (7) is the simplified form of the third correction equation.

Pnew = (1 −KalmanGain)Pold (7)
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If Kalman Gain is close to 1, then KF depends on the measurement, which fixes

the uncertainties quickly, and error in the estimate decreases faster. If Kalman Gain

is close to 0, then K.F uses the model for estimation more and do not let the mea-

surement change states.

3.3.1 Extended Kalman Filter

KF does not work with nonlinear models because of the Gaussian assumption, which is

made in the state covariance matrix. If Gaussian function takes linear input, then the

result is still Gaussian. If it takes nonlinear input, then the output will be corrupted

(Fig. 36) [17].

Figure 36: Gaussian Function

Extended KF adds a linearization stage to KF For SOC estimation open-circuit

voltage at equation 3 is linearized with central difference approximation. Discretiza-

tion is done by the following equation;

X[k] = x(k − 1) + x(k)dt (8)

EKF is commonly used in the literature for SOC estimation[18, 19, 20, 21, 22, 23].
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3.3.2 Simulation Environment and Results

Figure 37: Simulation Block Diagram

A noise model is adapted between cell model and EKF (Fig. 37). In the MATLAB-

SIMULINK environment voltage, current and temperature sensors are modeled ac-

cording to their datasheets. Cell model takes input profiles directly and EKF. takes

input profiles and model output after the noise model. Comparing model outputs and

E.K.F output will indicate the performance of the algorithm. Worldwide Harmonized

Light Vehicles (WLTP) drive cycle was used for this simulation. 20% initial condition

error was compensated at 300 second , maximum SOC estimation error was 3.5% and

the estimated voltage error was a maximum of 20 mV (Fig. 38-40).

Figure 38: Real and Estimated SOC with 20% Initial Error
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Figure 39: SOC Estimation Error

Figure 40: Real and Estimated Voltage with 20% Initial Error

3.4 PID Controlled EKF (PEKF)

It can be seen from results that Kalman Filtering can handle initial condition errors

with model information (Fig. 38). In BMS point of view, SOC should be estimated
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without initial SOC and open circuit condition knowledge. In electric vehicles, micro-

controller of BMS should write the current SOC to the permanent memory to know

the initial conditions at the next startup. However, these memories have limited writ-

ing cycle number so that BMS can only write the SOC at the shutdown procedure. If

there is an electrical failure like voltage fluctuation at vehicles low voltage line, then

BMS could be shut down without writing the final SOC to the memory. Under this

condition, BMS should figure out the initial condition. Even without failure, this

procedure is required for diagnostic purposes. For these reasons, it is important to

increase convergence performance of the SOC estimation.

3.4.1 EKF with PID Controlled Process Noise Based-On Voltage

From equations 2 and 3, system states are SOC and voltage. SOC cant be measured

directly with a sensor but voltage is observable. A new method [24] which increases

the performance of the SOC estimation by using the difference between measured

voltage and estimated voltage is published within the scope of this thesis.

Figure 41: Q Matrix Adaptation

A PID controller is driven by the voltage error and the Q matrix (process noise

covariance matrix) is adapted according to the PID signal (Fig. 41). In KF this matrix

is constant. With changing this matrix adaptively SOC estimation converges faster.

This method also compensates modeling errors and provides disturbance rejection
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ability.

3.4.2 Results

Figure 42: SOC Estimation Convergence with Constant Q Matrix

Figure 43: SOC Estimation Convergence with Adaptive Q Matrix

The convergence time of EKF was 300 seconds (Fig. 42). With Q matrix adaptation

convergence time was decreased to 50 seconds (Fig. 43).
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3.5 Adaptive Dual KF vs PEKF Comparison

Hou et al. [25], proposed a sophisticated algorithm for the SOC estimation which

is Adaptive Dual Extended Kalman Filter (ADEKF). This algorithm computes two

Kalman-based filters, one for SOC estimation and one for online cell model parameter

estimation. For EKF implementation literature is scanned for papers that considered

computational and convergence time. According to these papers, EKF was imple-

mented. Table 2 shows a comparison between EKF, ADEKF, PEKF which is the

proposed method under constant current discharge with the same process noise co-

variances and measurement noise variances.

Max. SoC Error Convergence Time Computation Time

EKF [17] 3.5% 300 s 400 µs

ADEKF [24] 1.28% 10 s 400 + 400 = 800 µs

PEKF 3% 50 s 400 + 50 = 450 µs

Table 2: EKF & PEKF & ADEKF Comparison

Computation times in Table 2 are determined on an HP EliteBook laptop with an

i5 processor. PEKF provides better SOC estimation and convergence time than EKF

with a little extra computational time. For example, if a BMS designer cant uses

ADEKF because of computational complexity, this designer can use PEKF instead

of EKF with PEKF’s improved convergence performance.
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CHAPTER IV

CONCLUSION

In this thesis, battery terminology is explained in the BMS point of view. For BMS

functions a battery cell is modeled with 2RC equivalent circuit and its parameters

are identified according to the HPPC drive cycle with a 2% maximum error. This

model and parameters are validated according to the WLTP drive cycle with a 3%

maximum error.

A new Adaptive Extended Kalman Filter implementation which is called PID

Controlled EKF, proposed in this paper for SOC estimation. With a simple add-

on PID controller, convergence time is reduced 6 times compared with EKF. The

importance of convergence behavior is explained from the automotive point of view

in this work.

This method has better estimation performance from EKF and lower computation

time from ADEKF contributed to the literature. In BMS controllers, PEKF can be

used instead of EKF to improve convergence performance without increasing the

computational power a lot. Also in some cases BMS hardware cost can be reduced if

complicated algorithms should be used like ADEKF. Instead of ADEKF, PEKF can

be used if system requirements are satisfied.

Online parameter estimation is future work for this study. With Dual EKF method

parameters can be identified dynamically on the run time and this will reduce SOC

estimation error. However, this should be done in a computationally effective way to

not sacrifice the computation time advantage of the PEKF. SOH estimation is also

critical for a battery. To know the exact capacity of the cell SOH should be known.

For this reason, SOH estimation should be estimated accurately to estimate SOC.
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APPENDIX A

SIMULINK MODEL

Figure 44: Upper Block
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Figure 45: Cell Model
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Figure 46: Ampere-Hour Counter

Figure 47: PEKF
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Figure 48: Sensor Model
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