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ABSTRACT

Despite powerful advances in interest rate curve modeling for data-rich countries in

the last 30 years, comparatively little attention has been paid to the key practical

problem of estimation of the term structure of interest rates for emerging markets.

This may be partly due to limited data availability. However, emerging bond markets

are becoming increasingly important and liquid. It is, therefore, important to under-

stand whether conclusions drawn from developed countries carry over to emerging

markets. I estimate model parameters of fully flexible Nelson Siegel Svensson term

structures model which has become one of the most popular term structure model

among academics, practitioners, and central bankers. I investigate four sets of bond

data: U.S. Treasuries, and three major emerging market government bond data-sets

(Brazil, Mexico and Turkey). I found that gradient and direct search methods per-

form poorly in estimating term structures of interest rates, while global optimization

methods, particularly the hybrid particle swarm optimization, do well. Results are

consistent across countries, both in- and out-of-sample, and for perturbations in prices

and starting values. Another asset class I used the Nelson Siegel model is FX op-

tions where volatility smile for both emerging and developed markets is consistent

with factor analysis in which three factor explains almost 100 % of the variation. I

examine a number of models from literature to test whether they are consistent on

the trading of options on the currencies from the over-the-counter market. I examine

the in-sample and out-of-sample performance of the Nelson-Siegel model and found

it has a superior performance when compared with benchmark models on FX options

data set.
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ÖZETÇE

Son 30 yılda gelişmiş ülkelerde faiz eğrisi modellemesinde çok önemli gelişmeler ol-

masına rağmen, gelişmekte olan ülkelerde faiz eğrisi modellemesine çok az önem ver-

ilmiştir. Kısmen bunun nedeni sınırlı veriye sahip olunmasıdır. öte yandan, gelişmekte

olan ülkelerin tahvil piyasaları önem kazanmakta ve daha likit hale gelmektedir.

Dolayısıyla, gelişmiş ülke piyasalarındaki sonuçların gelişmekte olan ülke piyasalarına

taşınıp taşınmadığının anlaşılması önemlidir. Bu çalışmada akademisyenler, pratisyen-

ler ve merkez bankacıları arasında en popüler faiz eğrisi modellerinden biri olan

Nelson-Siegel-Svensson modelinin parametrelerini hesaplıyorum. Dört farklı veri se-

tini inceliyorum : Amerikan hazine tahvilleri ve üç ana gelişmekte olan ülkenin devlet

tahvilleri (Brezilya, Meksika ve Türkiye). Gradyan tabanlı yöntemler ve doğrudan

arama yöntemlerin faiz eğrisi modeli hesaplamasında zayıf performans gösterdiğini,

öte yandan global optimizasyon yöntemlerinin, özellikle hibrid parçacık sürü opti-

mizasyonun daha iyi sonuç verdiği saptanmıştır. örneklem içi ve dışı ve perturbasyon

sonuçlarının ülkeler arasında tutarlı olduğu gözlemlenmiştir. Nelson-Siegel modelini

kullandığım diğer bir varlık sınıfı da döviz kuru opsiyonlarıdır. Burada hem gelişmiş

hem de gelişmekte olan ülkelerde oynalık eğrisinin tüm varyasyonunun neredeyse %

100’ünün üç faktörle açıklandığı faktör analizi ile tutarlı olduğu gözlemlenmiştir. Lit-

eratürdeki birçok modelin tezgah üstü döviz kuru opsiyonlarının alım satımında tu-

tarlı olup olmadığı incelenmiştir. Nelson-Siegel modelinin döviz kuru opsiyon verisi

ile örneklem içi ve dışı performanslarını inceledim ve benzer modellere göre üstün

performansı olduğunu tespit edilmiştir.
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CHAPTER I

TERM STRUCTURE ESTIMATION : EMERGING VS

DEVELOPED MARKETS

1.1 Introduction

The term structure of interest rates is one of the most important empirical constructs

in financial economics and in the practice of finance. It is a fundamental concept not

only in economic and financial theory, but also to pricing and risk management of

fixed income securities and interest rate contingent claims, and long-dated liabilities

such as pensions and life insurance. The term structure of interest rates, and forecasts

derived from the term structure are critical to monetary policy. It is also the basis

for all theoretical models of interest rates and bond pricing. Such theoretical models

are validated using empirical term structures.

However, the term structure of interest rates is not usually directly observable.1

It must be estimated from coupon bond prices. Unfortunately, rarely in financial

economics is the contrast between theory and reality more troublesome than in the

problem of the term structure estimation. While conceptually straightforward, the

estimation of zero coupon or spot rates from observed coupon bond prices creates

various theoretical and numerical obstacles. This is important as slight differences in

the estimated term structures may result in significant differences when pricing bonds

or fixed income portfolios, in forecasts, or hedging solutions.

1Zero coupon bonds are available in the form of Treasury Bills with maturities limited to one
year, and Treasury STRIPS (Separate Trading of Register Interest and Principal Securities) out to
30 years.
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The problems inherent in estimating term structures of interest rates from coupon

bond prices include the distribution of maturities of bonds used in the estimation pro-

cess, and the resulting distribution of cash flows to be discounted. These give rise to

optimization problems with objective functions with multiple local minima (leading

to false convergence). Numerical problems may also arise from the high sensitivity of

the optimization algorithm to the initial starting values which can cause great vari-

ability in the estimated parameters. Another potential source of difficulty can be the

properties of the functions used to fit the term structure. The Nelson-Siegel (NS) and

Nelson-Siegel-Svensson (NSS) functional forms have become two of the most popular

models among academics, practitioners, and central bankers. 2 , 3 These functional

forms are widely used in the management of pension liabilities and life insurance

policies, both to discount liabilities and to fit longevity curves. 4 However, these

functions, which I employ in this study, are known to be difficult to estimate. All

these factors combine to make the fitted term structure sensitive to the numerical

methods applied in the estimation process. These issues are not unique to estimating

the term structure model employed in this study. My exploration of these problems

in the context of the NSS model may therefore shed light on dealing with similar

difficulties in other contexts.

The objective of this study is to understand why the NS and NSS functions, which

2Central banks report their term structure estimates and methodologies to the Bank for Inter-
national Settlements (BIS). Most of them use the NS or NSS functional forms to estimate term
structure. (BIS, 2005)

3Term structure estimation (or fitting) models are to be distinguished from models of interest rate
dynamics. The latter begin with assumptions as to the stochastic processes driving interest rates
and then frequently derive analytic formulas for the theoretical term structure. These theoretical
models are then fitted to zero coupon curves to derive parameter estimates for the underlying term
structure process. See for example Brown and Dybvig (1986).

4Valuation of such long dated liabilities is particularly sensitive to small variations in the discount
rates employed. For example, the present value of a $1 billion, 20-year defined benefit liability valued
at five percent would be $377 million. At 5.10 percent the present value would be $370 million, a 1.8
percent change. Ten basis points is well within the measurement error I find for some optimization
methods in my tests.
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otherwise have many desirable properties, are so difficult to employ in practice, and

to systematically document the link between optimization methods employed and

the resulting problems in the estimated spot rates. I explore a number of alternative

optimization algorithms, including a new algorithm, which I call the “Hybrid Particle

Swarm Optimization (Hybrid PSO)” method.5

I investigate four sets of bond data: U.S. Treasuries, and three major emerg-

ing market sovereign bond data-sets (Brazil, Mexico and Turkey). These emerging

sovereign bond markets share three important features: (i) they have large and liq-

uid Eurobond markets in which search and trading costs are low; (ii) they belong to

JPMorgan EMBI Global Index, an investable index for emerging market bonds and

account 30% of the index which is quite representative of the emerging market as a

whole; (iii) they are among the most frequently traded external debt markets (ac-

cording to volume surveys conducted by the Emerging Market Trading Association).

My data set covers the time period between July 2005 and December 2015. The

advantage of using this longer sample period for the fixed income markets is that it

covers three major financial crises (the U.S. subprime crisis, the European sovereign

debt crisis and FED tapering tantrum) rather than just the relatively uneventful

period. This provides us an unusual laboratory to study relative performance of op-

timization algorithms where interest rates fluctuate so widely that large fluctuations

in the parameters are most likely. By including both the very dense U.S. data and

the comparatively sparse emerging market data, it is ensured that are results are not

specific to a particular data-set.

5Manousopoulos and Michalopoulosa (2007) also tests a variety of optimization methods to esti-
mate the NSS functional form and so is most similar to my study in the existing literature. My study
differs from theirs in using multiple data-sources, extensive robustness tests, and a new optimization
method which I find to be superior the alternatives. I also reach a different conclusion as to which
method is recommended for estimating NS and NSS term structures.
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I began by showing why the NS and NSS functional forms were attractive and

widely used for estimating the term structure of interest rates from bond prices. I

then noted that the NS and in particular the NSS functions could lead to poten-

tial degeneracy that would make parameter estimation challenging. However, not all

optimization methods are equally susceptible to these problems. The types of de-

generacy that the NSS function is prone to create greater problems for gradient and

direct search methods then for methods based on global optimization methods. The

relative immunity of global optimization algorithms to problems inherent in the NS

and NSS functions was confirmed repeatedly in my in-sample, out-of-sample, and ro-

bustness tests. I find that the global optimization methods, and in particular Hybrid

PSO algorithm, generally showed the best in and out-of-sample goodness-of-fits. My

findings also reveal that Hybrid PSO is quite robust to perturbations of initial start-

ing values and bond prices, validating that the superior performance of the Hybrid

PSO methods lies in their using multiple starting values, employing a randomized

search process, and keeping track of past best solutions (i.e., having memory). Thus,

I demonstrate that with the appropriate choice of algorithm the NS and NSS models

can be reliably employed.

It is found that for this important computational problem, gradient-based meth-

ods are generally unsatisfactory. Among the particle swarm or global optimization

algorithms, I find that Hybrid PSO achieves a better in-sample solution to the op-

timization problem than other methods, while producing stable solutions that are

computationally efficient. In out-of-sample fit tests, the best test of whether the esti-

mated term structure is reliable, the Hybrid PSO also outperformed the alternatives.

PSO is also quite robust to perturbations of initial starting values and bond prices.

Thus, it is demonstrated that with the appropriate choice of algorithm the NS and

NSS models can be reliably employed.
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1.2 Literature Survey

There are two distinct approaches for modeling the yield curve. The first approach

is based on curve-fitting techniques – a direct specification of the bond prices as a

function of some parameters and the time to maturity (the cross-sectional dimen-

sion). The second approach is based on models which make explicit assumptions

about the dynamics of state variables (the time-series dimension) and asset pricing

methods (using either equilibrium or arbitrage arguments), which in turn result in

cross-sectional models for bond prices. Furthermore, curve-fitting techniques can be

classified into two groups: (i) spline-based models and (ii) function-based models. In

this study I focus on function-based models. Discussion of spline-based and function-

based models can be found in Appendix 4.1.

Within the class of the function based models, Nelson and Siegel (1987) were the

first to use an exponential polynomial functional form. Svensson (1994) extended

Nelson and Siegel’s function by adding a fourth term with two additional parameters,

aiming at increasing the flexibility of the model and improving the fit. This latter

model, called as the NSS yield curve, has become one of the most popular yield curve

models among the central bankers (BIS, 2005) and practitioners, due to the fact that

it gives a good estimate of the yield curve and its parameters provide estimates for

a number of factors which are interpreted as level, slope, and curvature. Studies by

Bliss (1997a),Bliss (1997b),Seppala and Viertio (1996) suggested that practitioners

requiring a reliable and parsimonious representation of the yield curve should use an

exponential polynomial approach, in preference to the spline-based approaches.
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There is a vast selection in the curve fitting techniques. A wide number of var-

ious techniques caused by two reasons: (i) lack of theoretical foundations and (ii)

the trade off between smoothness and goodness of fit. Since there is no theoretical

explanations for huge gaps between the spot rates, discount factors or forward rates

of close maturities, the smoothness of the curve is a important criterion for a model.

Such fluctuations especially in long end of the curves are completely unreasonable.

The closer the fit to data, the less smooth the curve. Trying a better fit for prices

always result in fluctuating forward or spot rates. An ideal model should keep balance

between these to factors(Bolder and Gusba, 2002).

Spline-base models are adaptations of the spline methods used in statistics to the

yield curve concepts. In McCulloch (1971), McCulloch proposed a spline based ap-

proach to yield curve modeling. He fitted a linear combination of basis functions to

the discount factor. As a result of the linear relationship, the parameters are simply

estimated by linear regression. As basis functions he used piecewise quadratic func-

tions. However it results in ”knuckles” in the forward rate curve. To overcome such

a problem, he used cubic basis functions in McCulloch (1975).

After McCulloch’s pioneering works, other spline based models has been devel-

oped by Vasicek and Fong (1981), Shea (1984). In general spline based models results

a better goodness of fit, however they lack smoothness. In most instances, the im-

plying spot rate and forward rate curves are not stable (Fisher et al., 1994). To

overcome such adversities, Fisher et al. (1994) developed a technique which adds a

penalty for ”excess roughness”. They tried to fit their model to discount factor, spot

rate, forward rate and capitalization function. Experiments shows the model fitted

to forward rates results best. However Bliss (1997b) found out the model performs

poorly. Details of the spline-based models can be found in the Appendix 4.1.
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1.3 The Estimation Procedure

In this study I will be comparing eight different optimization methods in the context

of an identical term structure estimation problem. I will be using the same starting

values (where appropriate), the same objective function, the same constraints, and

the same metrics for evaluating the results. Before introducing the eight optimization

methods in the next section I will cover the common elements just enumerated of the

estimation problem.

1.3.1 Bond math

The term structure of interest rates, also referred to as the spot rate or the zero

coupon yield term structure, is defined as a function, r(m), mapping the interest rate

used a discount any single cash flow from time, m, of that cash flow back to the

present, giving the present value of that cash flow under the current term structure of

interest rates. The theoretical price for a bond, P , is then the sum of the individual

cash flows, c(t), each discounted at the interest rate, r(m), applicable to the time, m,

when the cash flow occurs:

P =
T∑
t=1

c(m)e−r(m)m. (1)

Estimating the term structure of interest rates reverses the process. Observing a

series of bond prices I wish to infer the underlying values of the term structure of

interest rates that gives rise to those prices. To do this the functional form r(m,Θ) is

used that the term structure conforms to. Then, using a nonlinear optimization pro-

cess, arrive at the parameter values for the term structure that best fits the observed
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data. If I know the observed bond prices on a given observation date, Pi, and the fit-

ted bond prices, P̂i(Θ) conditional on particular set parameter values, Θ, are given by

P̂i(Θ) =

Mi∑
m=1

ci(m)e−r(m,Θ)m, i = 1, ..., N. (2)

then the term structure estimation problem becomes one of minimizing some function

of the aggregate fitted price errors, Pi − P̂i(Θ) :

min
Θ

N∑
i=1

f(Pi − P̂i(Θ)). (3)

A number of functions have been used for aggregating fitted price errors including

weighted and unweighted squared and absolute values, and several different weight-

ing approaches. Given the choices of function to be used in the fitting and weighting

scheme, the term structure estimation problem then becomes a non-linear optimiza-

tion problem.

1.3.2 Nelson-Siegel and Svensson functions

Term structure estimation models can be classified into two groups: (i) spline-based

models and (ii) parametric functional form-based models. The choice between them

will be dictated by the trade-off between the goodness-of-fit to the set of observed

government coupon prices and the smoothness of the corresponding zero-coupon rate

function. A number of functional forms have been used in the past. 6 These include

piecewise linear splines, cubic splines, and polynomials. 7 However, the form first

proposed by Nelson and Siegel (1987) and extended by Svensson (1994) has been

widely adopted by practitioners because of its parsimonious and intuitively appealing

6For prior comparisons of yield curve estimation techniques using alternative specifications of the
functions to be fitted and the methods used, see Bliss (1997b) and Ioannides (2003)

7More Details can be found in Appendix 4.1
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structure.

Not only do the NS class of models provide plausible estimates of the yield curve,

they also provide estimates for the parameters which can be interpreted as corre-

sponding to the level, slope, and curvature of the spot rate curve. This breakdown

of the term structure and the estimated parameters are invaluable for practitioners

hedging the risk of complex bond portfolios such as butterfly and ladder portfolios.8

The original Nelson and Siegel (1987) model, in its spot rate form, is given by:

r(m,Θ) = β0 + β1
1− e(−m/τ)

m/τ
+ β2

(
1− e(−m/τ)

m/τ
− e(−m/τ)

)
. (4)

For ease of discussion, I will rewrite this in terms of its component functions as follows:

r(m,Θ) = β0 + β1g(m|τ) + β2h(m|τ) (5)

g(m|τ) =

(
1− e−m/τ

m/τ

)
(6)

h(m|τ) =

(
1− e−m/τ

m/τ
− e−m/τ

)
(7)

Both g(m|τ) and h(m|τ) are defined for m ≥ 0 and τ ≥ 0. As m and τ always

appear as a ratio, m
τ

can be thought of as a time-scaling parameter. The function

g(m|τ) has a fixed range (0, 1] and declines monotonically as time horizon increases.

It is associated with the overall “slope” of the term structure. The parameter β1 con-

trols both the size of the rise or fall of interest rates between the short (m = 0) and

long (m → ∞) ends of the term structure and whether the term structure is rising

8NSS based fixed income relative value models are increasingly popular in the investment com-
munity because they are more suitable for cheap/rich analysis since this class of models focuses on
the actual cash flows of the underlying securities rather than using the yield-to-maturity measure,
which is subject to a number of shortcomings. (Martellini et al. (2003))
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Figure 1: Slope and hump component functions of the Nelson-Siegel function, ex-
cepting the constant term.
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(β1 > 0) or falling (β1 < 0). The function h(m|τ) also has a fixed range [0,≈ 0.298].

The point where the maximum occurs varies with τ in the time dimension, but occurs

at a constant value of the ratio m
τ

(≈ 1.793). The function h(m|τ) rises from zero

and then falls exponentially back down to zero. For this reason, it fits humps or dips

in the term structure. The parameter β2 scales the range of h(m|τ) and determines

whether it contributes a concave “hump” to the term structure (β2 > 0) or a convex

“dip” (β2 < 0).

The Nelson Siegel function has several attractive properties. It is parsimonious

while still being flexible. The flexibility is greatest at the short end of the term

structure where I observe the greatest empirical variation in interest rates. Most

importantly it is able to capture, through its “hump” component, the occasional non-

monotonicity of the term structure. It is also asymptotically flat. This means that

forward rates implied by the term structure do not become unbounded.9

The level, slope, and hump (curvature) breakdown of the Nelson-Siegel functional

form coincides with an observed empirical regularity of changes in the term structure

of interest rates. Litterman and Scheinkman (1991, 1994), using a factor decom-

position of movements in U.S. money market and U.S. Treasury zero coupon term

structures, observed that the factors were characterized by 1) approximately equal

shifts in interest rates across all maturities, this became known as the “level” factor;

2) a “twist” with short rates moving in one direction and long rates in the other,

this became known as the “slope” factor; and 3) a factor that had little impact on

very short or very long maturities, but did effect intermediate values, this became

known as the “curvature” factor. Numerous studies have confirmed the persistence of

9This condition and imposed on spline-based methods through appropriate constraints, but occurs
naturally with the Nelson-Siegel functional form. It cannot be achieved using polynomial forms.

11



Figure 2: The effect of small and large values of τ on the two non-linear components
of the NS function.
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Figure 3: Selected fitted yield curves fitted to Brazilian eurobond data using the
hybrid PSO optimization method. Circles indicate spot rates obtained using a simple
bootstrap applied to the same data.
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Figure 4: Selected fitted yield curves fitted to Mexican eurobond data using the
hybrid PSO optimization method. Circles indicate spot rates obtained using a simple
bootstrap applied to the same data.
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Figure 5: Selected fitted yield curves fitted to Turkish eurobond data using the
hybrid PSO optimization method. Circles indicate spot rates obtained using a simple
bootstrap applied to the same data.

15



this factor structure, both through time and across currencies.10 Other authors have

linked the factors to macro-economic variables or characteristics of interest rates, such

as volatility.11 Krippner (2012) has shown that the NS functional form can arise from

the popular affine class of theoretical term structure models.

While intuitively appealing and consistent with both the observed shapes of the

term structure and its changes, the NS functional form has not always been easy to fit

to the data. A number of studies have reported numerical difficulties when working

with the NSS model.12 This is not surprising. As Figure 2 shows, when τ is very

small the g(m|τ) and h(m|τ) functions are nearly identical over most of their span.

This makes it difficult for certain optimization methods to resolve β1 and β2.13 This

problem increases as the smaller τ becomes. When τ becomes large then g(m|τ) is

very close to the 1−h(m|τ) at shorter maturities where most of the cash flows occur.

When the term structure is monotonically increasing over the range of available data,

it is difficult for optimization routines to decide whether to set β2 to zero or to use

extreme values of τ to improve fit if the monotonic curvature is not quite exponen-

tial. If τ1 ≈ τ2, then only β2 + β3 is meaningful and their individual values cannot be

determined.

When estimating zero-coupon spot rates within the range of underlying bond ma-

turities, the estimates obtained for zero-coupon spot rates are usually reasonable,

though not necessarily accurate. I show the numerical problems can translate into

10Some authors, such as Lekkos (2001), have shown that this factor structure can be replicated
with random forward rates and a fairly simple correlation structure. Be that as it may, the level–
slope–curvature view of the term structure has now become standard.

11See, for example, Afonso and Martins (2012); Diebold et al. (2005a,b).
12See, for example, Bolder and Streliski (1999), Gimeno and Nave (2006), Gurkaynak et al. (2007),

De Pooter (2007), and Annaert et al. (2010).
13Gilli et al. (2010) also commented on this potential degeneracy. They argue, I believe correctly,

that the NSS function is ill-conditioned; a point I shall return to later.
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unstable, that is noisy, estimated values for the zero-coupon rates depending on the

optimization algorithm employed. Noisy estimates of values later used as inputs for

other purposes necessarily degrades the reliability of subsequent analysis.

The traditional optimization methods such as direct search, gradient-based, and

quasi-Newton algorithms, which may be used for solving the associated optimization

problem, carry the risk of numerical problems of false convergence and severe sub-

optimality (see Bolder and Streliski, 1999). Nelson and Siegel (1987), Diebold and Li

(2006), Annaert et al. (2010) finesse these problems by linearizing the NS functional

form.14 They do this by simply fixing τ at a reasonable level before estimating the

β coefficients by ordinary least squares. This solves the numerical problems, but at

the expense of an ad hoc procedure for selecting τ , which does not lead to a globally

optimum set of parameter values. The alternative of a full grid search is not feasible.

The time required to refine the solution and increase the confidence of having an ac-

curate global optimum increases exponentially with the number of different starting

values chosen for each parameter. For example, estimating the six parameters of the

NSS model, with five different starting values for each parameter, requires a grid size

of 56 = 15, 625 for the first pass alone.15

One problem that cannot be resolved by judicious choice of empirical methods,

arises in extrapolating beyond the range of available bond maturities. This is, of

course a general problem in estimation, but because the parameters of the NS and NSS

lend themselves to economic interpretations, the danger may be particularly acute.

14Nelson and Siegel (1987), Diebold and Li (2006), and Gilli et al. (2010) fit the NS or NSS
functions to zero coupon rates instead of coupon bond prices. This is a numerically easier problem.
Nelson and Siegel use Treasury Bill yields; Diebold and Li and Gilli et al. use the Unsmoothed
Fama-Bliss term structures, which are available from Robert Bliss.

15Annaert et al. (2012) linearize the NSS function by performing a 2-dimensional grid search over
values for τ1 and τ2.
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Fitting a monotonically increasing term structure with NS or NSS can produce a fitted

term structure that either asymptotes or peaks well beyond the range of maturities

in the sample and at levels not observed in the data. For this reason, one has to be

careful interpreting fitted NS functions when they are extrapolated beyond the range

of maturities from which they are derived.

The Nelson-Siegel-Svensson (NSS) variant adds a second h(m|τ) with an addi-

tional scaling parameter and a distinct τ resulting in a function with six parameters,

Θ ∈ {β0, β1, β2, β3, τ1, τ2}:

r(m|Θ) = β0 + β1g(m|τ1) + β2h(m|τ1) + β3h(m|τ2). (8)

This addition is ad hoc and does not correspond to observed factor decomposi-

tions. It does however, add an additional degree of flexibility and allows for two

inflection points along the term structure so that it may rise, fall and then rise again

before approaching its long term level.

In summary, both the NS and NSS functions have attractive properties in terms

of shape flexibility, congruence with observed behavior of interest rate changes (NS

only), and being norms in industry and academia. Their downside lies in the numer-

ical problems its empirical implementations are prone to.

1.3.3 The estimation framework

In this study I minimize the sum of inverse-duration-weighted squared fitted-price

errors.

min
Θ
J(Θ) =

N∑
i=1

wi(Pi − P̂i(Θ))2 (9)
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where wi =
1
Di∑N
i=1

1
Di

, Di is the ith bond’s Macaulay duration computed at its yield-to-

maturity, and P̂i(Θ) is defined by Eq. (2) and (8). Inverse duration weighting has the

effect of down-weighting fitted price errors for long maturity bonds where large fitted

price errors are more frequently observed. Such large errors can become influential

and distort the estimated term structure function at short and intermediate maturi-

ties, resulting in systematic mispricing of short and intermediate maturity bonds.16

Bliss (1997b) reports tests of several weighting schemes, using out-of-sample fit.

Empirically, both inverse duration and inverse maturity weighting are superior to

equal and spread weighting. However, inverse duration weighting is theoretically

more correct as price sensitivity to interest rates changes is related to duration, not

maturity. Bolder and Streliski (1999) have also employed inverse duration weighting.

1.3.3.1 Constraints

The NS and NSS functions give rise to several constraints on the parameters that must

be imposed if the resulting fitted term structure is to make economic sense. The term

structure has to be non-negative throughout. This means that the short (m = 0)

and long (m → ∞) rates must also be non-negative. As g(0|τ) = 1, h(0|τ) = 0 and

g(∞|τ) = h(∞|τ) = 0, the short rate r(0,Θ) = β0 + β1, the long rate r(∞,Θ) = β0.

Therefore, my first two constraints are:

c1(β0) = β0 ≥ 0 (10)

c2(β0, β1) = (β0 + β1) ≥ 0. (11)

16By systematic mispricing I mean long runs of over- and under-pricing for adjacent maturities
by the fitted term structure.
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The τ1 and τ2 cannot be negative as this would completely change the behavior of

the component functions. Also, τ1 and τ2 have to be bounded away from zero else m
τ

would be undefined. Therefore, my second pair of constrains are:

c3(τ1) = τ1 > 0 (12)

c4(τ2) = τ2 > 0 (13)

These constraints apply to both the NS and NSS functional forms.

1.3.3.2 Starting values

Identical starting values were used for the six optimization methods that begin with

a single starting point. To obtain these starting values, I adapt the procedure pro-

posed in Diebold and Li (2006). As Diebold and Li (2006) were working with the

Unsmoothed Fama-Bliss yields, rather than coupon bond prices, I first apply a simple

bootstrap to the data to generate similar set of zero coupon yields using the zbtprice

function in the MATLAB Financial Toolkit. Then following Yallup (2012), I calcu-

late τ1 as the maturity that maximizes the loading on the curvature factor which is

the numerical second derivative of the yield curve to estimate initial values of β0, β1,

and β2 with ordinary least squares. Since I are deriving these four parameter values

from an approximation of the yield curve, I expect the starting values to be close to

the final solution, an unusual advantage when conducting non-linear optimizations.17

Finally, to avoid collinearity I set τ2 = τ1 + 1 and β3 = β2 + 1 . I denote this vector

of starting values, derived from Diebold and Li (2006), as ΘDL. 18

17The MATLAB bootstrap routine lacks the internal filter of the Fama-Bliss method (Fama and
Bliss (1987)), and neither produce yield curves that are smooth or lend themselves to economic
interpretation, as does the NS model.

18As starting point may be biased against gradient methods, alternatively I search for different τ2
values with τ2 = τ1 + γ1 where γ1 set from 1 to 10. I find that the results hold robust with respect
to choice of γ1.
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1.3.4 Performance metrics

I analyze the performance of the different optimization algorithms in four dimensions:

goodness-of-fit, computational time, distance traveled, and stability of parameters.

My first performance measure is goodness-of-fit, for which I use the Mean Abso-

lute Error (MAE) and the Root Mean Square Error (RMSE). Clearly, the method

that generates smaller fitted-price errors is to be preferred. Secondly, I calculate the

CPU time taken by each of the algorithms. An algorithm that yields smaller errors

with less computational time would be preferable over one that takes greater time to

achieve comparable results. Thirdly, I approximate the amount of parameter space

scanned. Algorithms that are able to scan more space will have an obvious advantage

searching for the global optimum. Finally, I present graphical illustrations of how the

NSS parameters evolution over the time, to observe their stability, my fourth measure.

1.3.4.1 Goodness-of-fit

The performance statistics MAE, and RMSE can be calculated as: MAE = 1
N

∑N
i=1 |Pi−

P̂i|, RMSE =
√

1
N

∑N
i=1(Pi − P̂i)2.

where N represents the number of bonds. RMSE places a greater weight upon larger

errors and, therefore, gives a better indication as to how well the models fit the data

at each particular observation. A low value for the RMSE indicates that the model

is flexible and, on the average, is able to fit the yield curve fairly accurately. MAE

is the average distance between the theoretical bond prices and observed bond prices

in absolute value terms. This measure is not as easily influenced by extreme obser-

vations as RMSE. Therefore, these two measures are complementary.
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1.3.4.2 Computation time and distance traveled

For day-to-day estimation of NSS parameters in an applied setting, computation time

could be important as large numbers of term structures repeatedly need to be gener-

ated. Total CPU time taken to estimate term structures for all observation periods

is recorded for each optimization algorithm.

Average distance traveled from the starting parameter values to the final solution

provides an approximation of the size of the space scanned.19 Distance traveled needs

to be evaluated in conjunction with goodness-of-fit. A large distance traveled that

is associated with a poor goodness-of-fit may indicate that the optimization method

is jumping too far from the starting values and then getting hung up on a local

minimum. Similarly, a small distance traveled combined with a poor goodness-of-fit

might indicate an optimization algorithm that converges to readily to the first local

minimum it finds. For each observation period, the average distance traveled from

the starting values to the final solution is calculated as ||Θmin − Θ0|| where Θmin is

the solution obtained in the optimization process.

1.3.4.3 Inter-temporal stability of parameters

Past researchers employing the NSS model have mainly focused on the in-sample

goodness-of-fit fit and have paid little attention to parameter stability. I examine

the stability of the estimated term structures in three ways. The β0, β1, and β2 pa-

rameters correspond to components of the shape of the term structure. As these are

estimated at weekly intervals, it is reasonable to expect that these will not show great

variation from week to week. Consider for instance, the first parameter of NSS model,

19For the optimization methods which begin with multiple starting values, the distance traveled
was measured from the mean of the multiple starting values, computed parameter by parameter, to
the final solution.
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β0. This is interpreted as the long-run level of interest. From one day to the next,

jumps of several percentage points for the estimates of this parameter would suggest

that the results are economically implausible, even if the goodness-of-fit is good. To

this end, I plot these parameters as time series, together with their “empirical prox-

ies” computed according to the study of Diebold and Li (2006) and compare them

across optimization methods.20 The literature does not suggest empirical proxies for

β3, and τ2.

1.3.4.4 Robustness tests

I test the sensitivity of the optimization methods to the starting values and to po-

tential measurement error in the. I first randomly perturb the starting values and

reestimate the fitted parameters. This process is repeated 100 times. For each itera-

tion, I then compute the three-month, two-year and 10-year estimated spot rates. I

then plot their distributions and compare across optimization methods.

Returning to the original fixed starting values, I perturbed the observed prices

with in the quoted bid-ask spreads using uniformly distributed random numbers and

re-estimate, again generating distributions of three-month, two-year and 10-year es-

timated spot rates for each optimization method.

The in-sample goodness-of-fit statistics were generated using all available data for

each observation. For my robustness tests, I generated out-of-sample goodness-of-fit

statistics by taking the available bonds in an observation period, ordering them by

maturity, and then alternately assigning them to estimation- and test-subsamples.

20As described in Diebold and Li (2006), the empirical proxy for β0 (level) is defined as the 10-
year yield, the empirical proxy for β1 (slope) as the difference between the 10-year and 3-month
yields, and the empirical proxy for β2 (curvature) as the twice the 2-year yield minus the sum of the
3-month and 10-year yields.
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The optimization algorithms were then applied to the estimation-subsample and the

estimated parameters were used to obtain the goodness-of-fit for bonds in the test-

subsample. The two subsamples were then reversed in the process repeated.

For the price perturbation and starting value perturbation tests the random num-

ber generator was reset before each optimization method was applied to ensure that

the results were comparable. The out-of-sample tests were structured so that all op-

timization methods were applied to identical subsamples.

1.4 Optimization Algorithms

To comparatively evaluate the performance of the PSO algorithm, I implemented

several well-known numerical optimization algorithms from the literature. My focus

in this paper is not only which optimization algorithm ‘wins the horse race,’ but also

how one could solve the numerical problems reported in the literature. The selected

algorithms are classified into three categories: global optimization algorithms, direct

search algorithms and gradient based algorithms.21 I can also distinguish optimization

methods on two other dimensions: those that follow a single point from starting value

to solution and those that begin with a population of many starting values and then

converge these to a single solution point (denoted “single point” or “multiple point”

methods); and those that do not or do employ random numbers during the search

(denoted “deterministic” or “randomized” methods). The multi-point methods begin

by randomly selecting a population of starting points, but then can proceed either

deterministically or employing random numbers during the process.

The gradient-based class of algorithms require computation of the gradient of

21The most common approach by far is to use gradient-based methods. Authors using solely
gradient-based methods include Csajbók (1999) and Gurkaynak et al. (2007) who used Gauss-
Newton; and Bliss (1997b) and Ioannides (2003) use Broyden-Fletcher-Goldfarb-Shanno (BFGS).
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the objective function with respect to each parameter at each step in the search.

Some gradient-based methods require computation or approximation of the Hessian as

well. I use two popular and efficient gradient based optimization algorithms, namely

Broyden-Fletcher-Goldfarb-Shanno Algorithm (BFGS) and the Gauss-Newton. All

gradient-based methods are deterministic, single point algorithms.

Our direct search methods include Powell’s Method which is a single point, de-

terministic algorithm, and the Nelder-Mead Method which begins with a population

of randomly selected starting points, and then proceeds deterministically to a single

solution. Global optimization algorithms include Simulated Annealing which follows

a single point with random perturbations along the way to a solution, and the PSO,

which begins with a population (swarm) of randomly selected starting points and em-

ploys random values in determining how the population converges toward a common

solution.22

Finally, all of these methods I investigate, except PSO, only use information from

the current position value(s). That is they have no “memory” of where they have

been, how previous points in the search have performed, and no means to “go back”

if they advance to a worse solution from a better one, unless their algorithm happens

to do so based on information at the new, inferior, point. The PSO algorithm on the

other hand retains “best solutions so far” for individual particles as they evolve and

the global best across all particles as they converge to the solution.

In the following subsections, I describe in greater detail than is usual the optimiza-

tion methods I are testing. I do this in order to lay the groundwork for the discussion

of why I believe these methods perform as they do, and to provide transparency as

to how results were obtained. 23

22Gimeno and Nave (2006) use a genetic algorithm to fit the NSS function to Spanish government
bond prices. They then compare this method with what they call the “traditional” method.

23The code for the algorithms is available upon request from authors.
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1.4.1 Global Optimization Algorithms

The objective of global optimization is to find the globally best solution of (possibly

non-linear) models, in the presence of multiple local optima.

1.4.1.1 Particle Swarm Optimization

PSO is a population-based metaheuristic technique.24 It is a fast converging algo-

rithm, is easy to implement, and has been successfully applied to optimizing various

continuous nonlinear functions in other applications. 25 PSO has not previously

been applied to term structure estimation. PSO is essentially inspired from the social

behaviour of the individuals. In a simple social setting, decision process of each in-

dividual is affected by his own experiences and other individual’s experiences. Every

individual keeps a memory of their best choice, as well as the overall best choice of the

population. In my PSO setting, for each observation day, dataset a set of particles

search for good solutions to the NSS term structure fitting optimization problem as

described in Sections 1.3.2 and 1.3.3. Each particle is a solution of the NSS opti-

mization problem and uses its own experience and also the experience of neighbour

particles to choose how to move in the search space to find a better fitting term struc-

ture.

The PSO algorithm is initialized with a population of random candidate solutions,

called particles. Each particle is assigned a random location and a random velocity,

and is iteratively moved through the problem space. Every particle is attracted to-

wards the location of the best solution achieved by the particle itself and towards the

location of the best solution achieved across the whole population. At each iteration,

24A metaheuristic is a method that make few assumptions about the structure of the problem
and combines heuristic techniques in an efficient way to solve general classes of problems. These
techniques cannot guarantee convergence to an optimal solution, but then neither can more formal
approaches when their underlying assumptions are violated.

25See Clerc and Kennedy (2002); Pedersen and A.J. (2010); Trelea (2003).
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velocity vector (vi) and position (parameter) vector (Θi) of a particle is updated as

follows:

vk ← vk−1 + U(0, φ1)× (pbk−1 −Θk−1) + U(0, φ2)× (gb−Θk−1) (14)

Θk ← Θk−1 + vk−1 (15)

where the U(0, φi) are scalars uniformly distributed in the interval [0, φi], pbi is the

best known position of particle i, and gb is the best known position across the en-

tire population. The parameters φ1 and φ2 denote the magnitude of the random

forces in the direction of personal best pbi and swarm best gb. The components

U(0, φ1)⊗ (pbi −Θi) and U(0, φ2)⊗ (gb−Θi) can be interpreted as attractive forces

produced by springs of random stiffness.

PSO is an unconstrained optimization algorithm, which required us to handle the

constraints in the objective function. To this end I added a penalty function that is

a scalar value times the square of the violation of constraint ci to the objective i.e

Di(Θ) =


0 , ck(Θ) ≤ 0,

C(ck(Θ))2, ck(Θ) > 0.

(16)

where C is large scalar value. Thus, the optimization problem becomes:

min
Θ
f(Θ) = J(Θ) +

4∑
k=1

Dk(Θ) (17)

There are several variants of the original PSO algorithm. Shi and Eberhart (1998)

developed a variant which I call PSO-W. They modify the updating of the velocity

vector to place decreasing weight on the last value, and thereby increasing weight on
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the individual and global bests as the iteration count increases:

vk ← ωvk−1 + U(0, φ1)× (pbk−1 −Θk−1) + U(0, φ2)× (gb−Θk−1) (18)

Θk ← Θk−1 + vk (19)

ω ← ωp × ω (20)

where ω is termed the inertia weight, and 0 < ωp < 1 is the decay factor. Effectively,

the inertia weight preserves the initial random search direction, the magnitude of

which decreases over iterations.
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PSO-W Algorithm

Initialization. Choose parameters ωp, φ1, and φ2, and stopping criteria kmax

and ε. Initialize ω, particle population i = 1, ..., imax, Θ
(i)
0 ∼ U(ΘMin,ΘMax)

and corresponding velocity vectors v
(i)
0 ∼ U(ΘMin,ΘMax).a Set pbi = Θ

(i)
0

and gb = pbk, where k = argminif(pbi).

Step 1. Update Θ
(i)
k and v

(i)
k :

v
(i)
k ← ωv

(i)
k−1 + (U(0, φ1)× (pbi −Θi)) + U(0, φ2)× (gb−Θi)

Θ
(i)
k ← Θ

(i)
k−1 + v

(i)
k

ω ← ωp × ω

Step 2. For all i, if f(Θ
(i)
k ) < f(pbi), then pbi ← Θ

(i)
k . If f(pbi) < f(gb), then

gb← pbi

Step 3. If k > kmax or ||Θ(i)
k −Θ

(i)
k+1|| < ε(1 + ||Θ(i)

k ||), then RETURN gb and

f(gb), and STOP; else increment k and go to step 1.

aThe elements of Θ correspond to the parameters [β0, β1, β2, β3, τ1, τ2]′ of the NSS
function. The upper and lower bounds for the uniformly drawn initial values are ΘMin =
[0,−1,−1,−1, 0, 0]′ and ΘMax = [1, 1, 1, 1, 30, 30]′

Another variant of PSO was proposed by Pedersen and A.J. (2010). This variant,

named as PSO-G, disregards the personal best values and focuses on the neighbor-

hood of the population best.

Our computational experiments show that the best results were obtained when

PSO-W and PSO-G were applied sequentially. This method will be referred to as
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Hybrid PSO for the rest of the study.

PSO-G Algorithm

Initialization. Choose parameters ωp, φ2, and stopping criteria kmax and ε.

Initialize ω, particle population i = 1, ..., imax, Θ
(i)
0 ∼ U(ΘMin,ΘMax) and

corresponding velocity vectors v
(i)
0 ∼ U(ΘMin,ΘMax). Set pbi = Θ

(i)
0 and

gb = pbk, where k = argminif(pbi).

Step 1. Update Θ
(i)
k and v

(i)
k :

v
(i)
k ← ωv

(i)
k−1 + U(0, φ2)× (gb−Θi)

Θ
(i)
k ← Θ

(i)
k−1 + v

(i)
k

ω ← ωp × ω

Step 2. For all i, if f(Θ
(i)
k ) < f(pbi), then pbi ← Θ

(i)
k . If f(pbi) < f(gb), then

gb← pbi.

Step 3. If k > kmax or ||Θ(i)
k −Θ

(i)
k+1|| < ε(1 + ||Θ(i)

k ||), then RETURN gb and

f(gb), and STOP; else increment k and go to step 1.
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Hybrid PSO Algorithm

Initialization. Choose parameters ωp, φ1, φ2, and stopping criteria kmax and

ε. Initialize ω, particle population i = 1, ..., imax, Θ
(i)
0 ∼ U(ΘMin,ΘMax)

and corresponding velocity vectors v
(i)
0 ∼ U(ΘMin,ΘMax).Set pbi = Θ

(i)
0 and

gb = pbk, where k = argminif(pbi).

Step 1. Update Θ
(i)
k and v

(i)
k :

If k ≤ kg, then the algorithm is PSO-W,

v
(i)
k ← ωv

(i)
k−1 + U(0, φ1)× (pbi −Θi) + U(0, φ2)× (gb−Θi)

If k > kg, then the algorithm is PSO-G,

v
(i)
k ← ωv

(i)
k−1 + U(0, φ2)× (gb−Θi)

Θ
(i)
k ← Θ

(i)
k−1 + v

(i)
k

ω ← ωp × ω

Step 2. If f(Θ
(i)
k ) < f(pbi), then pbi ← Θ

(i)
k . If f(pbi) < f(gb), then gb← pbi.

Step 3. If k > kmax or ||Θ(i)
k −Θ

(i)
k+1|| < ε(1 + ||Θ(i)

k ||), then RETURN gb and

f(gb), and STOP; else increment k and go to step 1.

1.4.1.2 Simulated Annealing

Simulated Annealing (SA) algorithm, proposed by Kirkpatrick et al. (1983), is a prob-

abilistic local search algorithm that looks for the minimum of an objective function

using the neighborhood information of a point in the search space. The name and
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inspiration of the algorithm come from annealing in metallurgy, a technique involving

heating and controlled cooling of a material to increase the size of its crystals and

reduce their defects. The heat causes the atoms to become unstuck from their initial

positions (a local minimum of the internal energy) and wander randomly through

states of higher energy; the slow cooling gives them more chances of finding configu-

rations with lower internal energy than the initial one. By analogy with this physical

process, each step of the SA algorithm replaces the current solution by a random

“nearby” solution, chosen with a probability that depends both on the difference be-

tween the corresponding function values and also on a global parameter T (called the

temperature), that is gradually decreased during the process.

Local search algorithms usually start with a random initial solution. A neigh-

bour of this solution is then generated by some suitable mechanism and the change

in cost is calculated. Neighbors are chosen as a network topology where the local

optima are shallow or a similar topology where there are many deep local minima. If

a reduction in cost is found, the current solution is replaced by the generated neigh-

bour, otherwise the current solution is retained. The process is then repeated until

no further improvement can be found in the neighbourhood of the current solution

and the algorithm terminates at a local minimum. In SA, sometimes a neighbour

that increases the cost is accepted, to avoid becoming trapped in a local optimum.

A move that does not improve the solution is accepted with a probability that de-

creases with iterations. Usually, the probability is selected as e−δ/T where δ is the

increase in the objective function value at each iteration and T is a control parameter.
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Simulated Annealing Algorithm Initialization. Initialize Θ0 =

ΘDL
0 and T . Set k=1 and fbest = f(Θ0).

Step 1. Set Θ′ = trim(Θk−1 + φ̄(0, 1)).a

Step 2. If f(Θ′) < fbest, then set fbest = f(Θ′), Θbest = Θ′, Θk = Θ′, k = 1,

and go to step 5.

Step 3. Set σ = f(Θ′) − f(Θk−1) and p = U(0, 1). If p ≤ e−σ/T , then set

Θk = Θ′; else set Θk = Θk−1.

Step 4. If k > kmax, then RETURN Θbest and fbest, and STOP; else increment

k and go to step 1.

aWhere φ̄(0, 1) is a vector of standard normal random numbers and trim() truncates
the elements of resulting vector sum to lie in the range (ΘMin,ΘMax) where ΘMin =
[0,−1,−1,−1, 0, 0]′ and ΘMax = [1, 1, 1, 1, 30, 30]′
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1.4.2 Direct Search Algorithms

Direct search is a class of methods for solving optimization problems that does not

require any information about the gradient of the objective function. Direct search

algorithms search a set of points around the current point, looking for one where the

value of the objective function is lower than the value at the current point.

1.4.2.1 Nelder-Mead Method

Nelder-Mead method is based on the idea of a “simplex”, which refers to the gener-

alized form of a triangle in n ≥ 2 dimensions. The algorithm is initialized with n+ 1

solutions, which form a simplex in Rn. The midpoint of all initial solutions excluding

the worst one, is computed first. The reflection of the worst solution with respect to

this midpoint is then determined as a candidate solution. Based on the parameters

of the algorithm, expanded and contracted points on the line connecting the worst

point and the midpoint are also determined as candidate solutions. Finally, n more

candidates are generated by shrinking the simplex towards the best solution, and

determining the new corners of the simplex. The best solution among all candidates

then replaces the worst solution, and the algorithm is iterated until the worst solution

cannot be improved.

The Nelder-Mead method (Lagarias et al. (1965); Nelder and Mead (1965)) uses

four scalar parameters: ρ (reflection), χ (expansion), γ (contraction), σ (shrinkage).

Let the vertices are denoted as Θ(1),Θ(2), ...Θ(n+1) where n is the number of parame-

ters to be estimated.
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Algorithm for Nelder-Mead’s method

Initialization. Determine vertices Θ(1),Θ(2), ...,Θ(n+1) and parameters ρ, χ,

γ, σ which satisfy ρ > 0, χ > 1, χ > ρ, 0 < γ < 1, 0 < σ < 1, and

ε ≥ 0. Set k = 1.

Step 1. Sort the vertices as f(Θ(1)) < f(Θ(2)) < ... < f(Θ(n+1)).

Step 2. Θr
k = Θ̄k + ρΘ̄k − Θ

(n+1)
k where Θ̄ =

N∑
i=1

Θ(i)

n
If f(Θ

(1)
k ) ≤ f(Θr

k) ≤

f(Θ
(n)
k ), then Θ

(n+1)
k ← Θr

k, and go to step 1

Step 3. Θe
k = Θ̄k + χ(Θr

k −Θ
(n+1)
k ). If fe < fr, then Θ

(n+1)
k ← Θe

k, and go to

step 4. Else Θ
(n+1)
k ← Θr

k, and go to step 1.

Step 4. Θc
k = Θ̄k + γ(Θr

k− Θ̄k). If fc ≤ fr, then Θ
(n+1)
k ← Θc

k, and go to step

1. Else go to step 5.

Step 5.
{

Θ
(1)
k ,Θ

(2)
k , ...,Θ

(n+1)
k

}
=
{

Θ
(1)
k , v

(2)
k , ..., v

(n+1)
k

}
where v

(i)
k = Θ

(1)
k +

σ(Θ
(i)
k −Θ

(1)
k )

Step 6. If k > kmax or ||Θ(i)
k − Θ

(i)
k+1|| < ε(1 + ||Θ(i)

k ||), then STOP; else

increment k and go to step 1.

1.4.2.2 Powell’s Method

Powell’s algorithm (Powell (1964)) is a generalization of a straightforward and intu-

itive optimization algorithm, called the “taxi-cab” algorithm. The taxi-cab algorithm

has n search directions, usually the unit vectors in every dimension. The algorithm

starts with an initial solution and search directions are evaluated sequentially. The

best possible improvement is found in a search direction (through line minimization

methods such as Golden section search), and is applied before moving on to the next

search direction. The innovation of the Powell’s algorithm over the taxi-cab algorithm
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is the idea of updating the search directions based on the history of the search. Every

time an improving solution is found, one of the search directions is replaced by the

vector connecting the current solution and the improving solution, as it proved to be

a good search direction.

Algorithm for Powell’s method

Initialization. Choose stopping parameters kmax and ε. Initialize Θ0 = ΘDL
0 .

Set k = 1.

Step 1. For i = 1, ..., n find λi that minimizes f(Θk + λiui) where ui =

(0, ..., 1i, ..., 0).

Step 2. Set uj+1 = uj for j = 1, ..., n− 1 and un = Θn −Θ0.

Step 3. Θk+1 = Θk + λiuk for i = 1, ..., n.

Step 4. uk+1 = λuk.

Step 5. If k > kmax or ||Θk−Θk+1|| < ε(1+||Θk||), then STOP; else increment

k and go to step 1.
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1.4.3 Gradient Based Algorithms

Gradient based optimization algorithms iteratively search for a minimum by comput-

ing (or approximating) the gradient of the objective function. I use two popular and

efficient gradient based optimization algorithms, namely Broyden-Fletcher-Goldfarb-

Shanno Algorithm (BFGS) and Generalized Reduced Gradient (GRG). One of the

key advantage of these algorithms compared to global and direct search algorithms

is their theoretical capability of using the geometry of NSS parameters space via its

function gradient information.

1.4.3.1 Broyden-Fletcher-Goldfarb-Shanno Algorithm

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (see Judd (1998)) is a

quasi-Newton algorithm which is an iterative procedure with a local quadratic approx-

imation of the function. An approximation of the Hessian of the objective function is

used instead of the function itself, which decreases the complexity of the algorithm.

As all variants of Newton’s methods, the idea behind them is to start at a point Θ0

and find the quadratic polynomial J0(Θ) that approximates J(Θ) to its second degree

Taylor expansion evaluated at Θ0:

J0(Θ) ≡ J(Θ0) +∇J(Θ0)′ (Θ−Θ0) + 1
2
(Θ−Θ0)′∇2J(Θ0)(Θ−Θ0), (21)

where ∇ is the gradient operator, such that:

∇J(Θ0) =

(
∂J

∂β0

(Θ0),
∂J

∂β1

(Θ0),
∂J

∂β2

(Θ0),
∂J

∂β3

(Θ0),
∂J

∂τ1

(Θ0),
∂J

∂τ2

(Θ0)

)
(22)

and H = ∇2J(Θ0) is the Hessian matrix of J(Θ0), that is the symmetric matrix

containing the second-order derivatives of J :

H =

(
∂2J

∂Θ∂Θ′
(Θ0)

)
. (23)
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Quasi-Newton methods specify dk (the direction vector) as:

dk = −H−1
k ∇J(Θk)

T, (24)

The step size αk is obtained by line minimization, where the direction Hk is a positive

definite matrix, Hk may be adjusted from one iteration to the next so that dk tends

to approximate the Newton direction.

1.4.3.2 Generalized Reduced Gradient Algorithm

The idea behind the Generalized Reduced Gradient (GRG) algorithm (Lasdon et al.

(1978)) is to build a derivative matrix that contains the derivatives of the function

with respect to each variable. After the first iteration, the algorithm modifies the

values of the initial guess, as the optimization process goes on the variable values are

updated after each iteration, until the algorithm reaches a satisfactory value (from

the point of view of the operator) or the error reaches its pre-defined limit. One of the

necessity of the GRG requires the function derivative and its calculation. In the NSS

estimation process, the functional form is suitable for calculation of the derivative.

GRG formulates a local linearization of the nonlinear constraints and performs

variable elimination. The optimization problem is solved by line minimization along

a direction obtained by the gradient of the reduced objective function. Gradient is

computed in the same manner as explained in Section 1.4.3.1 (BFGS). At each iter-

ation, a search direction d is generated and a one dimensional search begins. If the

search finds an improved point, a new iteration is started. If the search fails and

dk 6= P∇J(Θk), then dk is set to P∇J(Θk) and a new search is started. Otherwise

the program stops.
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Algorithm for BFGS method. Initialization. Initialize Θ(0) =

ΘDL
0 , initial positive definite Hessian guess H0 (usually the identity matrix),

and stopping parameters δ and ε > 0.

Step 1. Solve Hkdk = −∇J(Θk) for the search direction.

Step 2. Solve αk = arg minα J(Θkk + αdk).

Step 3. Θk+1 = Θk + αkdk.

Step 4. Update Hk :

zk+1 = Θk+1 −Θk,

sk+1 = ∇J(Θk+1)−∇J(Θk),

uk = skHkzk,

vk =
zk
z′ksk

− Hksk
uk

,

Hk+1 = Hk −
zkz
′
k

z′ksk
− Hksks

′
kHk

s′kHksk

Step 5. If ||Θk − Θk+1|| < ε(1 + ||Θk||), then go to step 6, else increment k

go to step 1.

Step 6. If ||f(Θk)|| < δ(1 + ||f(Θk)||), then STOP; else increment k and go

to step 1.
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Algorithm for GRG method Initialization. Initialize Θ(0) = ΘDL
0 ,

and stopping parameters δ and ε > 0.

Step 1. Compute dk = P ∇J(Θk): P = QT
2Q2 satisfying NTPw = 0 and

QT
2 =

−N−1
1 N2

I

. a

Step 2. Solve αk = arg minα J(Θk + αdk).

Step 3. Θk+1 = Θk + αkdk.

Step 4. If ||Θk −Θk+1|| < ε(1 + ||Θk||), then go to step 5, else go to step 1.

Step 5. If ||f(Θk)|| < δ(1 + ||f(Θk)||), then STOP; else increment k and go

to step 1.

aNT = [N1 N2] (Columns of N are the gradients of constraints) N1 is the transpose
of r linearly independent rows of N . The matrix Q2 consists of the last n− r rows of the
Q factor in the QR factorization of N and w is an arbitrary vector. Namely,

QN =

[
Q1N
Q2N

]
=

[
R
0

]
(25)

where R is an r × r upper triangular matrix.

1.4.4 Implementation details

The algorithms were coded in MATLAB, except for the GRG algorithm, for which

I used the Solver module that is bundled with Microsoft Excel Fylstra (1998). For

Nelder-Mead, Powell, SA and PSO algorithms the constraints have been embed-

ded in objective function with a penalty constant C = 1000, whereas they have

been explicitly stated for BFGS. Stopping criterion for the algorithms has been

chosen as ε = 10−8. Parameter set for the Nelder-Mead algorithm is chosen as

ρ = 1, χ = 2, γ = 0.5, σ = 0.5. For the SA algorithm, initial value of T is cho-

sen as 1.
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1.5 Empirical Results

In this section, I present the properties of my dataset, performance measures for my

algorithms and details of my computational experiments.

1.5.1 Data

I collected week end (i.e., Friday) quotations for government bonds from three emerg-

ing countries—Brazil, Mexico and Turkey—and the U.S. The emerging market sovereign

debt was in the form of U.S. dollar Eurobonds. 26 I exclude all the bonds with spe-

cial characteristics (e.g. callable, puttable, structured, convertible, and Brady Bonds)

in order to ensure that a homogeneous and reliable sample is used in my analysis.

The three emerging market countries were selected because of the relative liquidity

of the markets for these bonds and their increasing popularity among investors. The

emerging market bond bid- and asked prices data were obtained from Bloomberg and

Datastream and the characteristics of emerging market bonds were collected from

Reuters 3000 Extra. The U.S. bond bid and asked prices and bond characteristics

were obtained from the CRSP Government Bond files. My data set covers the time

period between July 2005 and December 2015. The advantage of using this longer

sample period for the fixed income markets is that it covers three major financial

crises (the U.S. subprime crisis, the European sovereign debt crisis and FED tapering

tantrum) rather than just the relatively uneventful period. This enables us to see how

robust is the optimization algorithms during the most turbulent markets conditions.

The number of issues included in the market varies considerably across countries

as shown in Table 1. This allows us to test the optimization methods on both dense

26 I consider only dollar denominated Eurobonds issued by these countries because U.S. dollar
denominated bonds have longer maturity and more liquidity relative to Euro denominated bonds
for the same countries.
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and sparse data sets.

Table 1: Numbers of quotations per observation period
Brazil Mexico Turkey U.S.

Min 18 8 23 156
Mean 23.2 11.5 24.5 199.4
Max 26 14 26 262

Figure 6 plots the actual maturities of bonds in four country datasets for each

observation period. All countries, provide a number of bonds of more than 10 years

maturity. While there are not many such bonds, they do help to anchor the long rate,

β0.

Table 2: Brazil, Mexico and Turkey bonds in the dataset

Turkey

# of bonds per day Maturity : 0-3 Maturity : 3-5 Maturity : 5 All maturities
Average 12 4 16 31

Min 8 1 13 25
Max 14 5 20 36

Brazil
# of bonds per day Maturity : 0-3 Maturity : 3-5 Maturity : 5 All maturities

Average 9 3 11 22
Min 6 1 2 16
Max 13 5 16 29

Mexico
# of bonds per day Maturity : 0-3 Maturity : 3-5 Maturity : 5 All maturities

Average 10 3 13 26
Min 6 1 5 14
Max 15 5 18 33
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Figure 6: Maturities of bonds used by observation data and country
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1.5.2 In-sample results

The in-sample goodness-of-fit statistics are given in Table 3.27 The most striking

result is the poor performance of the BFGS optimization method. This is consis-

tently true across countries and whether I measure goodness-of-fit with RMSE and

MAE. Differences among the remaining methods are less striking. However, while

the Hybrid PSO method is only marginally better than the remaining methods, it

consistently has the smallest RMSE and MAE, which suggests that this result is not

random. This suggests that the global optimization algorithms may be better at find-

ing the global minimum of the NSS function in the presence of multiple local minima.

Computation time results are mixed across the optimization algorithms. Table 4

clearly shows that the Nelder-Mead is by and far the fastest algorithm. As can be

seen from description in Section 1.4.2.1, the Nelder-Mead algorithm applies simple

operations to the simplex (reflection, contraction, expansion) and also does not eval-

uate gradient information, which makes it quite fast. This might be expected due

to nature of the direct search algorithms, however, the Powell method does not do

nearly as well. The BFGS method is far and away the slowest. The PSO variants are

materially quicker than all but the Nelder-Mead method. Interestingly, the remaining

global optimization algorithm, the SA, is much slower than the PSO-based methods.

I note that Hybrid PSO is slowest of the PSO-based methods for all countries.

The solution quality also depends on the initial starting point, as I argued in Sec-

tion 1.4.4, I believe the starting values I use are reasonably good ones. However, the

distance traveled statistics reported in Table 4 have to be evaluated in conjunction

27The lowest values for each column are shown in bold face in Tables 3 through 7.
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with the goodness-of-fit achieved. I find that the BFGS algorithm travels much fur-

ther than the other methods, with one notable exception, the Powell method applied

to the Mexican data. However, the BFGS goodness-of-fit statistics are the worst of

any of the methods. So instead of traveling a greater distance to find a better solu-

tion, the BFGS method shows a tendency to lose its way and move away from the

better solutions nearer to the starting point that the other methods are able to find.

As I shall show in the next section, the BFGS algorithm also has severe problems

converging to a solution on many observation days. When combined with the slow-

ness of the BFGS, these other results suggest that the BFGS is unsuited to this type

of problem, or at least to estimating a functional form with the problems that I noted

in Section 1.3.2.

In contrast to the BFGS algorithm, the SA algorithm does not travel very far

to find a solution for the emerging markets data. However, the solutions obtained

were slightly worse than those obtained by the PSO-W and Hybrid PSO algorithms

that have traveled much farther. For the U.Ss data, I see the SA algorithm travel-

ing much farther only to find a worse solution, particularly when looking at MAE,

then, the Hybrid PSO algorithm. The very large distance traveled by the Powell

algorithm when applied to the Mexican data, taken together with the only moder-

ately worse goodness-of-fit for that case, is indicative of the flatness of the objective

function surface and, therefore, of the difficulty that this estimation problem presents.

Table 5 presents the deviations of individual parameter estimates from their start-

ing values for the different countries and different optimization methods. The statis-

tics reported are the root mean squared differences. This allows us to see whether the

distance traveled results in Table 4, which apply to the entire 6-parameter starting
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point and solution vectors, carry over to the individual parameters in which I are pri-

marily interested when interpreting the term structure. I can see that the individual

parameter distances traveled are roughly consistent with the explanatory power of the

corresponding factors; the distance traveled is largest when the corresponding factor

explanatory power is lowest. The level factor is greatest power for explaining shifts

in the term structure, varies between 60 and 90 percent (see Bliss (1997a)) and the

corresponding β0 has the least individual parameter distance traveled. The explana-

tory power of the slope factor varies between six and 20 percent. The corresponding

β1 parameter shows a slightly further individual distance traveled than β3. The cur-

vature factor explains only between two and 10 percent of term structure movements.

Where a factor has little explanatory power, changes in the corresponding parameter

may have less effect on the objective function value. This may be the reason for the

pattern I observe in the individual parameters distances traveled, observed by opti-

mization method and country while comparing the values for the three parameters.

Finally, I plot the time series of the estimated β0, β1, and β2 parameters, which

capture the size of level, slope and curvature factors, together with their empirical

proxies. To save space, I present the results only from one country, Brazil, and for

the four optimization algorithms that produced the lowest RMSE statistics for that

country. 28

Figures 7, 8, and 9 first show that the empirical proxies for these three parameters

do show some variation from week to week.29,30 However, they do not show evidence

28The results for other countries are similar, and for the remaining optimization algorithms are
worse than those shown here, with the exception of the PSO-G algorithm, which behaves much like
the other global optimization algorithms in this respect. The results omitted here are available from
the authors on request.

29To save the space, I only provide the results for Brazil. Results are very similar for other
countries as well and are available from the authors on request.

30 I have performed this analysis with daily observations as well. The results were similar.
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of instability as I see, for instance, in the three Powell algorithm-estimated parameter

time series. The Hybrid PSO- and SA-estimated β0 and β1 parameters follow their

empirical proxies very closely, while the PSO-W-based estimates show some slight

problems for these parameters. Only the Hybrid PSO is free of evident problems

for β2. The PSO-W- and SA-estimated parameters show large deviations from their

empirical values, while Powell algorithm is clearly having problems estimating this

parameter.

Hybrid PSO algorithm’s superior performance might be due to the uniquely dis-

tinguishing characteristic of PSO—that knowledge of good solutions is retained by

all the particles. Each particle has memory and keeps track of its previous best po-

sition and the corresponding value of the objective function. Although this leads to

a number of local optima for the respective particles in the swarm, the global best of

the swarm is given special weight in converging the individual particles towards the

algorithm’s solution. This constructive cooperation between particles; that is, parti-

cles in the swarm share information among themselves, leads to stable parameters for

yield curve. This study demonstrates that PSO algorithm can differ markedly from

other optimization algorithms in terms of smoothness of estimated NSS parameters.
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Table 3: Comparison of optimization algorithms in terms of total RMSE and MAE
Total RMSE Total MAE

Method Brazil Mexico Turkey U.S. Brazil Mexico Turkey U.S.
Gradient Based Algorithms

BFGS 0.507 0.523 0.491 0.559 0.440 0.407 0.810 0.407
GRG 0.239 0.234 0.248 0.234 0.281 0.146 0.187 0.146

Direct Search Algorithms
Nelder-Mead 0.282 0.241 0.271 0.246 0.275 0.198 0.222 0.198
Powell 0.234 0.198 0.236 0.224 0.282 0.232 0.220 0.232

Global Optimization Algorithms
SA 0.224 0.215 0.230 0.235 0.171 0.171 0.178 0.171
PSO-W 0.214 0.179 0.204 0.217 0.166 0.145 0.153 0.145
PSO-G 0.236 0.201 0.238 0.227 0.186 0.164 0.185 0.164
Hybrid PSO 0.212 0.178 0.203 0.196 0.165 0.143 0.149 0.107
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Table 4: Comparison of optimization algorithms in terms of CPU time and average distance of the solution from the starting
point

CPU Time (sec) Avg. Distance
Method Brazil Mexico Turkey U.S. Brazil Mexico Turkey U.S.
Gradient Based Algorithms
BFGS 3156.2 2450.3 2747.9 2450.3 2.842 7.112 5.210 8.574
GRG 312.7 320.7 290.6 783.7 2.012 2.563 2.466 3.773
Direct Search Algorithms
Nelder-Mead 6.5 5.6 6.4 12.5 1.732 1.950 1.916 3.012
Powell 207.8 212.5 269.7 343.2 1.139 19.505 2.420 3.558
Global Optimization Algorithms
SA 451.4 398.5 438.5 562.6 0.263 0.249 0.238 4.275
PSO-W 117.1 76.9 107.3 115.8 2.665 3.122 2.810 4.200
PSO-G 106.4 68.8 97.5 103.5 3.065 3.248 2.588 4.439
Hybrid PSO 164.7 107.2 151.7 172.8 2.722 3.217 3.024 1.260
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Table 5: Deviation of three factors from their empirical proxies
β0

Method Brazil Mexico Turkey U.S.
Gradient Based Algorithms

BFGS 2.596 69.609 11.593 3.941
GRG 0.283 1.529 0.252 0.329

Direct Search Algorithms
Nelder-Mead 1.120 1.263 0.818 1.026
Powell 3.108 6.235 3.559 3.402

Global Optimization Algorithms
SA 0.915 0.455 0.403 0.408
PSO-W 1.037 1.117 0.879 0.325
PSO-G 1.143 1.061 0.863 0.288
Hybrid PSO 0.949 1.110 0.911 0.255

β1

Gradient Based Algorithms
BFGS 76.137 76.491 46.624 6.575
GRG 2.309 3.050 3.877 2.050

Direct Search Algorithms
Nelder-Mead 2.414 2.491 2.629 3.261
Powell 5.656 7.785 43.478 5.082

Global Optimization Algorithms
SA 1.261 1.565 1.200 0.722
PSO-W 2.398 1.795 2.035 0.829
PSO-G 1.746 1.708 1.628 0.808
Hybrid PSO 1.676 1.705 1.682 0.650

β2

Gradient Based Algorithms
BFGS 66.093 114.659 73.855 31.057
GRG 849.774 5.379 220.904 6.379

Direct Search Algorithms
Nelder-Mead 30.748 34.618 35.094 26.582
Powell 122.262 11312.762 160.978 80.857

Global Optimization Algorithms
SA 6.461 3.883 4.755 3.792
PSO-W 4.450 5.178 6.261 3.787
PSO-G 4.258 4.254 4.290 4.305
Hybrid PSO 4.232 4.104 4.341 3.229
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Figure 7: Evolution for level (β0) in Brazil
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Figure 8: Evolution for slope (β1) in Brazil
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Figure 9: Evolution for curvature (β2) in Brazil
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Figure 10: Evolution for level (β0) in Turkey
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Figure 11: Evolution for slope (β1) in Turkey
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Figure 12: Evolution for curvature (β2) in Turkey
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Figure 13: Evolution for level (β0) in Mexico
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Figure 14: Evolution for slope (β1) in Mexico
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Figure 15: Evolution for curvature (β2) in Mexico
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Figure 16: Evolution for level (β0) in US
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Figure 17: Evolution for slope (β1) in US
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Figure 18: Evolution for curvature (β2) in US
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1.6 Robustness

As discussed in Section 1.3.4.4, I apply four different checks to diagnose the robustness

of the nonlinear optimization algorithms in the context of this term structure estima-

tion problem: out-of-sample goodness-of-fit, to ensure that the in-sample results are

reliable; sensitivity to starting values; sensitivity to pricing errors and application of

the algorithms to local currency bonds.

While conducting the out-of-sample tests, I tracked the number of convergence

failures for each method. The reported results are computed across both the original

and reversed division of the data into estimation and hold-out sub-samples using the

Brazil data. The relatively small number of data points in the Brazilian data sub-

samples increases the difficulty in converting to a solution, and therefore highlights

the relative performance of the methods. As I can see, the BFGS and Nelder-Mead

have particular difficulty finding a solution in this situation. Only the PSO variants

invariably converge to a solution.

Table 6: Percentage of convergence failures
Method %Failures

Gradient Based Algorithms
BFGS 52.1%
GRG 39.1%

Direct Search Algorithms
Nelder-Mead 54.5%
Powell 46.3%
Global Optimization Algorithms
SA 21.2%
PSO-W 0.0%
PSO-G 0.0%
Hybrid PSO 0.0%
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1.6.1 Perturbation of bond prices

To test the sensitivity of the optimization algorithms to possible measurement error

in the bond prices, I generate bond prices (uniformly) randomly selected from within

the bid-asked range rather than the mean of the bid and asked quotes. I next fit the

term structures using each optimization method and then generate three-month, two-

year, and 10-year spot rates from the fitted term structures. The spot rates generated

by the unperturbed data (using bid-asked mean prices) are then subtracted from the

perturbed-price values. The experiment is then repeated 100 times to generate a dis-

tribution of the fitted spot rate deviations that result from the price perturbations.

Figures 19 to 22 presents these distributions each of the three spot rates and for each

of the eight optimization methods using box-and-whiskers (Tukey) plots. 31 Results

are very similar for other countries as well and are available from the authors on

request.

1.6.2 Out-of-sample tests

Table 7 presents the out-of-sample goodness-of-fit results. It is to be compared with

Table 3 in Section 1.5.2. In general, the out-of-sample goodness-of-fit statistics are

slightly worse than their in-sample equivalents.

The intra-quartile ranges for all the optimization methods are reasonably similar

and small. Where the methods differ significantly is in the number and size of the out-

liers. The Powell method appears to be particularly sensitive to price perturbations

in a large number of instances. The Hybrid PSO shows the smallest distributions.

31Each “box” shows the inter-quartile range of the data. The line inside the box is the median
value. The “whiskers” are 1.5 times the inter-quartile range in length. The individual points outside
of the whiskers are individual “outliers” defined as points greater than q3 + 1.5(q3− q1) or less than
q1 − 1.5(q3 − q1).
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These results need to be qualified because I have the distribution only in those cases

where the algorithms converge. Since I know that some algorithms have a high rate

of convergence failure, the relatively small interquartile ranges that I see see here are

not representative of the true distribution of outcomes.

1.6.3 Sensitivity to initial values

Another robustness measure is the sensitivity of the optimization algorithm for the

changes in the initial values. I randomly changed initial value of each NSS parame-

ter using using normally distributed perturbations with mean zero and the standard

deviation of the observed week-to-week changes of these parameters observed in full

sample tests. I next fit the term structures using each optimization method and then

generate three-month, two-year, and 10-year spot rates from the fitted term struc-

tures. The spot rates generated with the original starting values are then subtracted

from the perturbed starting value results. Figure 19 presents these distributions each

of the three spot rates and for each of the eight optimization methods. The results

are similar to price perturbation tests.
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Table 7: Total RMSE and MAE when one half of the data is chosen randomly and NSS model is fitted to the data and the
same process is applied to other half of the data, and vice versa. Goodness-of-fit statistics are combined for the two hold-out
samples.

Total RMSE Total MAE
Gradient Based Algorithms

Method Brazil Mexico Turkey U.S. Brazil Mexico Turkey U.S.
BFGS 0.994 0.903 0.912 0.878 0.591 0.617 0.540 0.639
GRG 0.299 0.247 0.309 0.281 0.272 0.134 0.182 0.175

Direct Search Algorithms
Nelder-Mead 0.293 0.278 0.302 0.272 0.256 0.210 0.239 0.219
Powell 0.347 0.218 0.259 0.283 0.292 0.244 0.287 0.293

Global Optimization Algorithms
SA 0.234 0.237 0.248 0.271 0.171 0.188 0.199 0.197
PSO-W 0.227 0.184 0.213 0.259 0.176 0.155 0.162 0.173
PSO-G 0.255 0.215 0.249 0.261 0.196 0.172 0.193 0.189
Hybrid PSO 0.219 0.180 0.199 0.208 0.144 0.149 0.160 0.152
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Figure 19: Price and starting values perturbation results of Brazil for 3 month, 2 year and 10 year spot rate respectively.
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Figure 20: Price and starting values perturbation results of Turkey for 3 month, 2 year and 10 year spot rate respectively.
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Figure 21: Price and starting values perturbation results of Mexico for 3 month, 2 year and 10 year spot rate respectively.
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Figure 22: Price and starting values perturbation results of U.S. for 3 month, 2 year and 10 year spot rate respectively.

70



1.6.4 Local Currency Bonds

A foreign investor has two options when it comes to investing in emerging market

debt. The first option is to invest in dollar-denominated debt (eurobonds as ex-

plained in the previous sections) and the second type of emerging debt is bonds that

are denominated in local currencies. During the last decade, local currency bonds in

emerging market economies were looked over by investors. Nowadays, these bonds are

getting more attention as time passes. However, the liquidity of these local currency

bonds are still low and they have a more sparse structure which can be depicted in

23. Being more challenging to estimate, it would be a perfect laboratory for us to test

the optimization algorithms. I have used weekly mid-price data for the fixed coupon

paying local currency bonds of Brazil, Mexico, and Turkey in the time period from

July 2005 to December 2015, retrieved from Bloomberg (2010) and Datastream.

Similar to the eurobond results, goodness-of-fit statistics given in 8 show that

global optimization algorithms clearly outperform gradient based and direct search

algorithms. Among global optimization algorithms, PSO-W/G algorithm achieves

the smallest error both in terms of RMSE and MAE in comparison to the other al-

gorithms. In Figures 24, 25, and 26 I have also provided sample yield curve fits for

Turkey, Brazil and Mexico local currency yield curves which are estimated with the

PSO-W/G algorithm. As it can be observed from the figures, the NSS model is also

capable of replicating a variety of yield curve shapes for local currency bonds despite

their sparse behavior.

Graphical representation of level, slope and curvature factors (β0, β1, β2) of the

best four optimization algorithms for Turkey, Brazil and Mexico local bonds are de-

picted in Figures 27, 28, and 29. Potential problem of parameter instability for highly
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parametrized NSS functional form is obvious from the figures. Deviation from empiri-

cal proxies (RMSE) for three factors are given in table 8. The optimization algorithms

tested differ greatly in their degree of parsimony. Results hold robust for Mexico, and

Turkey local currency bond portfolios. Evolution of parameters for Brazil is given in

Figures 30, 31, and 32. Parameter evolution for Mexico is depicted in Figures 33, 34,

and 35.

As it can be observed from the results, global optimization algorithms are capable

of generating smoother and more realistic level, slope, and curvature factors when

compared to gradient based and direct search algorithms similar to eurobond results. I

also tested the robustness of the algorithms for the local bond data. First, I accounted

for the perturbation of bond prices by adding a random term to each bond price as

a uniform random value in the interval of bid-ask spread. Second, I compared in-

sample and out-of sample results. Third, I tested the sensitivity of the optimization

algorithms to the initial values by randomly selecting the initial values. They are

shown in 36, 38, and 37.
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Figure 23: Maturities of local currency bonds used by observation data and country
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Figure 24: Selected fitted yield curves fitted to Brazilian local bond data using the
hybrid PSO optimization method. Circles indicate spot rates obtained using a simple
bootstrap applied to the same data.
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Figure 25: Selected fitted yield curves fitted to Mexican local bond data using the
hybrid PSO optimization method. Circles indicate spot rates obtained using a simple
bootstrap applied to the same data.
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Figure 26: Selected fitted yield curves fitted to Turkish local bond data using the
hybrid PSO optimization method. Circles indicate spot rates obtained using a simple
bootstrap applied to the same data.
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Figure 27: Evolution for level (β0) in Turkey local bonds
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Figure 28: Evolution for slope (β1) in Turkey local bonds
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Figure 29: Evolution for curvature (β2) in Turkey local bonds
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Figure 30: Evolution for level (β0) in Brazil local bonds
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Figure 31: Evolution for slope (β1) in Brazil local bonds
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Figure 32: Evolution for curvature (β2) in Brazil local bonds
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Figure 33: Evolution for level (β0) in Mexico local bonds
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Figure 34: Evolution for slope (β1) in Mexico local bonds
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Figure 35: Evolution for curvature (β2) in Mexico local bonds
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Table 8: Table summarizes the comparison of optimization algorithms in terms of total RMSE and MAE using local bond
data.

Total RMSE Total MAE
Gradient Based Algorithms

Method Brazil India Mexico SOAF Turkey Brazil India Mexico SOAF Turkey
BFGS 1,49 0,81 1,48 1,33 2,29 1,13 0,66 1,17 1,08 1,64
GRG 2,38 1,13 2,31 1,50 3,80 0,87 0,98 2,28 0,61 0,44

Direct Search Algorithms
NM 0,40 0,62 1,51 0,77 1,46 0,33 0,49 1,15 0,55 1,11
Powell 1,20 0,93 4,80 4,35 6,38 1,09 0,81 4,38 4,21 6,15

Global Optimization Algorithms
PSO-W 0,27 0,55 1,71 0,65 1,52 0,22 0,44 1,34 0,44 1,14
PSO-G 0,30 55,45 1,62 23,01 1,58 0,24 54,29 1,27 22,33 1,19
H-PSO 0,32 0,51 1,47 0,63 1,67 0,26 0,40 1,12 0,42 1,30
SA 0,34 0,53 1,44 0,67 1,45 0,28 0,42 1,11 0,45 1,09
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Figure 36: Price and starting values perturbation results of Brazilian local bonds for 3 month, 2 year and 10 year spot rate
respectively.
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Figure 37: Price and starting values perturbation results of Turkish local bonds for 3 month, 2 year and 10 year spot rate
respectively.
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Figure 38: Price and starting values perturbation results of Mexican local bonds for 3 month, 2 year and 10 year spot rate
respectively.
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1.6.5 Simulated Data

In order to compare different optimization methods, they are applied to identical

term structure estimation problem by setting the same starting values and same ac-

tual market data. However, in order to ensure that the above results are not an

artifact of the actual datasets used, some simulation exercises (repeated a number of

times K) with known data generating processes are needed. By simulating data and

repeating this simulation exercise, robustness of the hybrid-PSO algorithm is checked

to confirm that the superior performance is not due to original data sets used.

In this section, spot rate term structures are generated using a combination of Cox

et al. (1985) and Vasicek (1977) models with assumed parameters which are chosen

to generate various yield curves. For every cross-section, Vasicek model is used by

changing the instantaneous rate, r, and the initial stochastic volatility, V . So that, I

obtain different shapes of the term structure (upward sloping, flat or inverted). In-

stantaneous rate r is simulated by CIR short-rate model.

The spot rates are calculated at 0.25 years and at 6-month intervals from 0.5 to

10 years. Two coupons are assumed at each maturity. The yields on the par coupon

bonds with maturities of 0.25, 0.5, 1, 2, 3, 5, and 10 years are then put into the on-

the-run estimation methods to generate estimated spot rates. From these estimated

spot rates, I calculate estimated bond prices for all bonds. The error analysis con-

sists of comparisons of the estimated rates and prices with the ”true”, or simulated,

rates and prices. Afterward, I add a random error to the generated bond prices. The

results obtained using the simulated data are similar to the eurobond and local bond

results as it can be observed by 9 and 10.
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1.6.5.1 Vasicek Model

Vasicek (1977) assumes that the term structure of interest rates has the dynamics

described from the following SDE (namely Ornstein-Uhlencbeck process):

dr = α(γ − r)dt+ ρdWt (26)

where the mean reversion rate α, long-run mean γ and volatility σ are positive

constants, and Wt is a Brownian motion. 32 The price P (t, T ) of a bond is deter-

mined by using the probability distribution of the short rate path during the life of

the bond. It is assumed that the market is efficient and the market price of risk due to

Wt, denoted by q, is constant. According to the assumptions, Vasicek (1977) derives

the following bond-pricing formula :

P (t, T ) = eAτ−Bτ r

where Bτ =
1

α
(1− e−ατ )

and Aτ = (Bτ − τ)R(∞)− ρ2

4α
B2
τ

R(∞) = γ +
ρq

α
− ρ2

2α

Then, the yield curve is readily derived as :

R(t, τ) = − ln(P (t, T ))

T − t
=
Bτr − Aτ

τ
(27)

32For a more detailed information, please see Shimko (1992), Baxter and Rennie (1996) or Mikosch
(1998)
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Using the Vasicek model, the yield curve can take three category of shapes de-

pending on the level of state variable (here it is r): upward-sloping (when r is low),

inverted (when r is high) and slightly humped (when r is close to R(∞)). Figure 39

gives a sample of yield curves generated by Vasicek model. In this example, the long-

run average short rate is 0.07, represented by the dashed line. The long-run mean

is 0.5, and the volatility is 0.04. The market price of interest rate risk is selected as

q = 1. The starting point of a curve represents the short rate, which in the Vasicek

model is normally distributed.

Figure 39: Yield curves generated by the Vasicek model at parameter values α = 0.5,
γ = 0.04, ρ = 0.07. for various values of r
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The yield curves depicted in 39 are quite realistic since the model is subject to

some observations. The first one is; volatility of long-term yields is unrealistically low,

a realistic range cannot be achieved without allowing an excessively broad range for

the short rate. Second one is that the rates on all maturities are perfectly correlated.

This is inconsistent with what is actually observed. So in my data generation process,

I randomly perturbed all the zero coupon yields in the bid-ask bound, after they are

generated by the Vasicek model.

1.6.5.2 CIR Model

Cox et al. (1985) assumes the following SDE for the short rate process:

dr = κ(θ − r)dt+ σ
√
rdWt (28)

It is similar to Vasicek’s, but the volatility of the short rate is proportional to

the square root of its level, which implies that the short rate cannot go negative; the

closer it gets to zero, the more its fluctuation abates, and the more the pull to mean

dominates. The CIR model is derived from an underlying general equilibrium model

of economic fundamentals, including a model of how investments in various stochas-

tic production processes are turned into output; a model of how these production

processes themselves develop over time; a model of how individual agents engage in

investing, trading and consuming the production output, maximizing the expected

value of an intertemporal utility function. From this equilibrium model, the authors

derive a partial differential equation which all asset prices in the economy must sat-

isfy. The solution of the equation depends on the functional forms and parameter

values of the underlying economic model.

The general framework developed in Cox et al. (1985) specifies the functional

forms for the underlying economic processes; from these, a dynamic term structure
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Figure 40: Selected fitted yield curves fitted to simulated bond yield data using the
hybrid PSO optimization method. Circles indicate spot rates generated by Vasicek
model.
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model is derived. The resulting yield curves and their time-paths look very much like

those produced by the Vasicek model, except that the distribution of rates is skewed

upwards as a result of the introduction of
√
r into the volatility term. Thus, the

CIR model is more consistent with the facts that the conditional volatilities of yield

changes are time-varying, persistent and positively correlated with the level of yields.

Figure 41 gives an illustration of various interest rate paths up to 1 year time

period with parameter values S = 0.4, L = 0.15, V = 0.05. In my data generation

process, consistently with CIR rate paths, yield curves are generated by the Vasicek

model.

Figure 41: C.I.R. short rate paths at parameter values S = 0.4, L = 0.15, V = 0.05.
Showing 100 paths, with one singled out.
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Figure 42: Graphical representation of yield curves generated consistently with Va-
sicek and CIR models

Table 9: Table summarizes the comparison of optimization algorithms in terms of
total RMSE and MAE using simulated data

Method Total RMSE Total MAE CPU Time Space Scanned
Gradient Based Algorithms

BFGS 0,39 0,24 833,06 418,43
GRG 0,47 0,39 967,10 482,58

Direct Search Algorithms
Nelder-Mead 0,49 0,34 8,14 703,86

Powell 0,65 0,51 271,83 3429,63
Global Optimization Algorithms

PSO-W 0,37 0,22 435,04 1696,75
PSO-G 0,36 0,21 415,18 1267,29

Hybrid PSO 0,37 0,22 569,44 509,37
SA 0,40 0,24 715,37 96,97
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Table 10: Deviation of three factors from their empirical proxies based on simulated
data

Method β0 β1 β2 τ1

Gradient Based Algorithms
BFGS 0,15 0,23 5,36 73,60
GRG 0,21 0,25 7,80 74,98
Direct Search Algorithms

Nelder-Mead 0,33 0,56 6,10 18,49
Powell 0,09 205,76 221,18 45,77

Global Optimization Algorithms
PSO-W 0,03 0,09 0,31 2,13
PSO-G 0,06 0,09 0,36 2,09

Hybrid PSO 0,02 0,16 0,22 1,86
SA 0,05 0,08 0,05 10,57
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1.7 Applied Application: Model Based Trading

In an efficient market, a correctly specified term structure of interest rate estimation

model is expected to exactly explain the observed bonds prices for all maturities.

Thus, estimated interest rates should accurately explain the market prices of bonds

in use. However, reported results show significant pricing errors e.g. Duarte et al.

(2007), Jankowitsch and Nettekoven (2008), Svensson (1994), Subramanian (2001),

and Jankowitsch and Pichler (2002) report significant pricing errors in their sample.

Important question remained to be answered is whether the deviation of particular

bond prices from estimated yield curve is caused by a model misspecification or or

insufficient market efficiency.

In this section, I compare different methods of estimating the term structure of

interest rates on weekly emerging bond data sample. I examined the Nelson and

Siegel and Svensson functions, McCulloch’s cubic spline, the linear, exponential and

B-splines. Details of spline methods and estimation techniques can be found in the

Appendix 4.1. I provide empirical evidence for the EM sovereign bond markets that

risk-adjusted NSS based trading strategies based on bond pricing errors has a supe-

rior performance and can yield about 360 basis points p.a. abnormal return, implying

that pricing errors contain economic information.

Among these term structure estimation models, linear splines have some funda-

mental issues. For instance, due to the fact of linear splines being continuous but not

smooth, the yield curve slope may change at the knot points. The cubic spline form

not only allows for a more flexible shape for the yield curve between knots,but also

fixes the smoothness problem by imposing the continuity conditions on the curve as

well as its first and second derivatives. In cubic spline estimation, each cubic equation

is unique, so the entire curve is unique due to the constrained end points. Generally,
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the yield curve is constrained to have a constant slope for the short-term, but the long

end is close to flat. However, I found that cubic spline (hermite, B-splines) generate

forward rates which are rather unstable which does not provide meaningful rich/cheap

analysis because it would not be possible to tell if the valuations had changed due to

a change in the model or a genuine change in the valuation of the bond. McCulloch

(1971) solved this problem by introducing a quadratic polynomial to estimate the

discount function. This approximation to the discount function is defined as a family

of cubic functions which are object to being continuous and smooth around each knot.

Details about the cubic functions can be found in the Appendix 4.1.3.

1.7.1 Bond Pricing

As explained in the first chapter, term structure estimation methods fall into two cat-

egories: function-based models and spline-based models. Among spline based models,

I sticked to McCulloch and B-spline models due to their superior performance. De-

tails and estimation of spline based models can be found in the Appendix 4.1. In this

section, I give some details about theoretical background for bond pricing related to

calculation of pricing errors.

The theoretical price P̂i,t for a bond i is the sum of individual cash flows. So, for

a bond market with n coupon bonds, each bond i is characterized by its market price

Pi (quoted price plus accrued interest), its cash flow vector Ci , and its vector of cash

flow dates Ti . The the market price Pi is

Pi,t =

Ti∑
t=1

Ci(t)e
−ri(t)t + εi (29)

where εi denotes the pricing error of bond i. Thus, the general estimation problem

is to define the discount factors as a continuous function of time, which is dependent
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on a specified number of free parameters, and to calibrate this function to the observed

bond prices such that the pricing errors are minimized given a certain norm, e.g. sum

of squared errors. In this setting, the discount factor is taken as e−ri(t)t

Therefore the pricing error for bond i at time t is :

εi,t = Pi,t − P̂i,t

1.7.2 Pricing Errors

For comparison of pricing errors and trading strategies Svensson (1994), cubic splines

model by McCulloch (1971)and B-Splines are used to estimate the term structure

of interest rates. For McCulloch to avoid the effect of over parameterization, I use

equidistant knots to estimate the term structure. Please see Appendix 4.1.8 for im-

plementation details. 33 The pricing errors for each bond, are defined as the market

price (clean price plus accrued interest) minus the model price (sum of discounted

cash flows using the estimated term structure). Table 11 presents the statistics of the

resulting pricing errors.

For NSS estimation, the mean absolute pricing error observed on each day is on

average 8.3, 3.9 and 2.1 bps for Turkey, Brazil and Mexico respectively. And it is

between the intervals 0-61.7, 0-20.6 and 0-35.9 bps in the whole sample. The maxi-

mum pricing error observed on each day is on average 175.8, 259.7 and 167.5 and the

minimum pricing error is -209, -156 and -202 bps respectively for Turkey, Brazil and

Mexico. Compared to the average bid-ask spread of around 40 bps, these numbers

can be considered to be economically significant. An important question is, whether

the mean absolute pricing error is only driven by some large pricing errors or most

of the bonds have significant pricing errors. Therefore, the hitting rate is calculated,

33 I also implemented more sophisticated cubic spline as described at 4.1.8. However, I observe
that there is no improvement in the resulting pricing errors.
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see Bliss (1997b), which represents the percentage of pricing errors within the bid-ask

spread. These errors could be seen as insignificant and might not contain economic

information. In my sample the hitting rate is 20 %. Thus, for 80 % of the bonds, I

observe significant pricing errors. The observed pricing errors can be due to model

misspecification, e.g. poor functional form, or economic reasons.

Table 11: Pricing error statistics for NSS

Turkey Average Std. Dev. Max Min

Mean absolute pricing error 8,3 9,5 61,7 0,0
Max pricing error 175,8 80,0 524,1 22,9
Min pricing error -209,2 169,9 -35,8 -1.397,9

Brazil Average Std. Dev. Max Min
Mean absolute pricing error 3,9 5,0 20,6 0,0

Max pricing error 259,7 315,4 1.401,0 0,6
Min pricing error -156,1 162,6 -0,4 -918,6

Mexico Average Std. Dev. Max Min
Mean absolute pricing error 2,1 3,3 35,9 0,0

Max pricing error 167,5 199,0 1.103,6 0,1
Min pricing error -202,8 249,5 -0,1 -2.079,1

For McCulloch model, the mean absolute pricing error observed on each day is

on average 9.6, 4.0 and 2.3 bps for Turkey, Brazil and Mexico respectively. And it

is between the intervals -0,1-72.2, 0-20.6 and 0-35.9 bps in the whole sample. The

maximum pricing error observed on each day is on average 175.8, 259.7 and 167.5 and

the minimum pricing error is -209, -156 and -202 bps respectively for Turkey, Brazil

and Mexico.

1.7.3 Trading Strategy

If the pricing errors are at least partially caused by the deviation of individual bond

prices from general market conditions, then trading strategies based on these pricing

errors can yield abnormal returns, otherwise they can be just called noise. In the bond

data sample that is used, the pricing errors show high auto-correlation and sometimes
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Figure 43: Time series of pricing errors for two representative Brazilian, Mexican
and Turkish eurobonds using NSS model
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Table 12: Pricing error statistics for McCulloch

Turkey Average Std. Dev. Max Min

Mean absolute pricing error 9,6 11,0 72,2 -0,1
Max pricing error 201,4 91,4 608,0 27,1
Min pricing error -219,2 193,5 -36,2 -1.515,8

Brazil Average Std. Dev. Max Min
Mean absolute pricing error 4,0 5,3 20,8 -0,2

Max pricing error 311,0 339,1 1.559,6 0,5
Min pricing error -156,6 184,0 -0,5 -939,9

Mexico Average Std. Dev. Max Min
Mean absolute pricing error 2,3 3,8 37,3 -0,2

Max pricing error 179,4 228,4 1.130,0 0,0
Min pricing error -236,6 287,8 -0,1 -1.987,0

oscillate consistently around non-zero levels. Therefore, focusing on relative mispric-

ing of bonds would be more sensible. To focus just on the level of the pricing error,

i.e. a positive (negative) pricing error is seen as an overpricing (underpricing) like in

Sercu and Wu (1997), Flavell et al. (1994) and Ioannides (2003), does not turn out

to be the optimal choice, because a bond with higher or lower liquidity can produce

consistent overpricing or underpricing.

The trading rule is designed as follows: Simply the bonds that are undervalued

(overvalued) are bought (sold). Trading signals are focused on the mean reversion

effect of the pricing errors. The trading rule is tested to detect possible sub-periods

where the rule worked better than average and to avoid problems with event-time tests

when there are long runs of under- or overpricing. I employ the study of Wu (1995)

and Sercu and Wu (1997), who propose three alternative benchmarks of ARs (abnor-

mal returns) to verify whether the competing functions allow any profitable trading

strategies. The first benchmark measures ARs as the difference between the market

holding period return, HP i,t and the expected holding period, Et[HP i,t|φt−1, φt] for

the NS function :
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ARi,t = HP i,t − Et[HP i,t|φt−1, φt] (30)

where

Et[HP i,t|φt−1, φt] =
P̂i,t − P̂i,t−1 + Coupon

P̂i,t
(31)

For every trading week, a portfolio of underpriced bonds (subscript p, for pur-

chase), and overpriced bonds (subscript s, short for sale), is formed, weighted by the

size of the mispricing RESi,t−1). If the number of underpriced bonds on day t is Np,t,

then the mean abnormal return for day t on the purchase portfolio is:

ĀRp,t =

Np,t∑
i=1

RESi,t−1∑Np,t
i=1 RESi,t−1

(32)

¯CARy,t =

Ny,t∑
i=1

¯ARi,t (33)

Trading strategy can be summarized as follows :
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Trading Strategy

Step 1. Calculate the pricing error for bond i at time t as εi,t = Pi,t − P̂i,t

Step 2. Calculate the deviation of the actual pricing error from the moving

average computed over last k trading weeks for each bond i :

µi,t =
1

k

t−1∑
j=t−k

εi,t

σi,t =

√√√√ 1

k − 1

t−1∑
j=t−k

εi,t − µi,t

Step 3. Trading rules :

if εi,t > µi,t +mσi,t , then bond i is overpriced;

if εi,t < µi,t +mσi,t , then bond i is underpriced;

Here m is the multiplier. A trading signal is observed when the actual pricing

error is above (below) the price plus (minus) a certain threshold. In this setup, m for

the threshold is taken as the width of the confidence interval. A multiplier of 1.96

would define a 95 %, one of 1.65 a 90 % confidence interval. I preferred to choose m

as 1.96 which corresponds to the 95 % confidence interval. The time window k is se-

lected as 20 weeks. (The same trading exercise is done by chancing the window from 4

weeks to 100 weeks and I have found that a window of 20-week gives the best results).

1.7.4 Trading Results

In this section, I present the results of the annualized abnormal returns, i.e. the excess

returns of the different trading strategies compared to the returns of the benchmarks,

for the time period from January 2005 to November 2015. I analyze whether the

strategies can outperform the buy-and-hold market portfolio (which are simulated
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using Bloomberg country specific bond indices).

Against the benchmark, strategies based on all three term-structure estimation

models have performed remarkably well as can be seen in 13, 14 and 15. Hence, model-

yield spread mean-reverting and betting on the persistence of the spread strategies

can outperform a bond investment strategy, on a risk-adjusted basis. For various

reasons, some bonds are cheap or rich for long periods in emerging markets, so bet-

ting on the existence of persistence may yield better results in terms of trading. The

results of the Svensson (1994) are compared with the McCulloch (1971) by applying

the same strategy to verify whether the errors are driven by the particular choice of

the model. And I observed that the NSS model has a superior performance in terms

of profit and loss which can be depicted from tables 13 and 14. As it can be observed

from 15 abnormal returns from trading using the B-spline method uniformly under-

performs the McCulloch model, therefore the NSS model.

Graphical representation for abnormal returns using NSS estimation for Brazil,

Turkey and Mexico can be observed from figures 44, 48, 46 respectively. The charts

show that the trading strategy has positive skewness. Cumulative abnormal return

charts can be depicted from figures 45, 49 and 47 respectively. Here it can be ob-

served that NSS model has a superior performance to McCulloch cubic spline model

and McCulloch is superior to B-spline for all three countries.

106



Table 13: Profits and losses from contrarian trading strategies for each of the emerging bond markets using NSS model

Lag (Weeks) Brazil Mexico Turkey

Buy Sell Both Buy Sell Both Buy Sell Both
0 4,769 4,645 4,311 5,191 4,440 3,780 2,721 3,975 2,953

5,040 3,829 2,612 2,327 2,445 3,229 3,113 6,087 5,076
1 3,164 3,092 2,363 2,263 3,966 3,408 2,246 4,387 3,261

4,875 6,292 5,098 1,057 1,854 4,455 5,429 6,485 9,518
4 4,808 2,678 2,793 2,772 5,833 4,204 2,789 4,132 2,906

2,941 1,868 1,963 1,010 1,093 1,001 0,792 1,766 1,148
8 2,767 2,437 3,519 5,355 4,147 5,276 2,651 3,630 3,519

2,753 10,328 0,124 0,765 0,499 0,624 0,973 1,719 1,203
12 5,795 5,121 5,508 3,781 6,120 4,145 5,907 3,955 4,727

3,154 7,115 3,727 5,739 4,725 6,355 4,182 2,251 3,707
24 4,110 5,576 4,599 2,916 3,455 4,642 3,242 4,227 4,198

5,181 7,288 5,286 3,664 4,809 3,606 4,149 2,586 3,379
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Table 14: Profits and losses from contrarian trading strategies for each of the emerging bond markets using McCulloch method

Lag (Weeks) Brazil Mexico Turkey

Buy Sell Both Buy Sell Both Buy Sell Both
0 2,965 3,323 2,722 3,607 2,859 2,949 1,761 2,719 1,636

2,531 2,429 1,929 1,371 1,659 1,771 2,103 4,267 2,664
1 1,804 1,753 1,284 1,376 2,674 2,098 1,440 2,556 2,342

3,082 3,954 2,762 0,731 1,335 3,308 3,549 3,633 5,651
4 3,232 1,630 1,463 1,738 3,106 2,697 1,759 2,895 1,744

2,145 1,009 1,078 0,566 0,819 0,521 0,486 1,028 0,654
8 2,011 1,377 2,321 3,620 2,713 3,602 1,758 2,580 2,443

1,690 5,244 0,089 0,383 0,266 0,356 0,529 0,966 0,795
12 3,809 3,792 3,417 2,672 3,307 2,806 3,514 2,311 2,683

1,974 4,031 2,627 4,081 3,310 3,628 2,229 1,530 2,749
24 3,057 3,642 2,791 1,636 2,291 3,304 1,766 3,015 2,716

3,757 4,045 3,250 2,023 2,781 2,140 2,742 1,579 2,047
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Table 15: Profits and losses from contrarian trading strategies for each of the emerging bond markets using B-Splines

Lag (Weeks) Brazil Mexico Turkey

Buy Sell Both Buy Sell Both Buy Sell Both
0 2,330 2,892 2,312 2,647 1,921 1,968 1,526 2,637 1,617

2,388 1,924 1,821 1,160 1,226 1,575 2,058 3,043 1,904
1 1,448 1,657 1,190 1,269 1,931 1,847 1,358 2,310 2,051

2,347 3,533 2,684 0,720 1,194 2,331 3,208 2,438 5,184
4 2,455 1,279 1,268 1,713 2,832 2,148 1,579 2,490 1,541

1,895 0,845 0,719 0,543 0,634 0,432 0,433 0,799 0,475
8 1,754 1,088 2,056 2,675 2,381 2,640 1,412 2,050 1,669

1,638 3,678 0,068 0,347 0,188 0,300 0,520 0,801 0,534
12 3,045 3,088 3,382 2,348 2,282 2,058 3,327 2,144 2,626

1,553 3,819 2,231 3,493 2,236 2,551 2,169 1,068 2,286
24 2,735 2,551 2,710 1,290 1,984 2,638 1,705 2,717 2,040

2,661 3,593 2,815 1,831 2,683 2,047 2,025 1,453 2,001
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Figure 44: Time series of abnormal returns for Brazil government bonds using NSS
model

Figure 45: Time series of cumulative abnormal returns for Brazil government bonds

110



Figure 46: Time series of abnormal returns for Mexico government bonds using NSS
model

Figure 47: Time series of cumulative abnormal returns for Mexico government bonds
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Figure 48: Time series of abnormal returns for Turkish government bonds using NSS
model

Figure 49: Time series of cumulative abnormal returns for Turkish government bonds
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CHAPTER II

CROSS ASSET APPLICATION : OPTION MARKETS

2.1 Introduction

There are large numbers of optimization problems in theoretical and applied finance

that are difficult to estimate as they exhibit multiple local optima. Being very popular

among academics, practitioners, and central bankers, NSS term structure of interest

rate model sets a perfect example for multiple local optima estimation problems. In

the first section of my thesis, I provide clear evidence of the noise that injudicious

choice of optimization method can introduce in the estimated values, as well as sug-

gesting and validating a method (Hybrid PSO) that works well for the NSS interest

rate model. However, for researchers interested in optimization methods, it is also

important to show that my findings are robust to different sets of asset classes. Thus,

in this section, I extend the analysis to option markets to investigate whether Hybrid

PSO algorithm is powerful enough to handle different asset classes under the same

objective functions.

The foreign exchange options market is the most liquid and the largest deriva-

tive market. Therefore, economic interpretation of FX option dynamics has a critical

importance. The most important factor in option pricing is implied volatility and

usually forms a smile shape. On the other hand, very little is known about the con-

struction and forecasting of the implied volatility smile regarding the literature. The

volatility smile describes a function relating the implied volatility of an option to the

degree of ”moneyness”. It is shown that the three time-varying parameters may be

interpreted as factors corresponding to the level, slope and curvature.
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Black and Scholes (1973) model assumes that the asset prices follow a geometric

Brownian motion with constant volatility. Therefore, all options on the same asset

should have the same implied volatility. In practice, in contrast to Black-Scholes

model, implied volatilities tend to differ across exercise prices (or option delta) and

time to expiration. For example, S&P 500 option-implied volatilities form a ”smile”

pattern after the 1987 market crash. Usually, in emerging market currency options,

due to a devaluation expectation, a ”sneer” appears-the implied volatility which in-

creases monotonically as the exercise price rises relative to the spot level.

For describing the structure of the option prices, the main drawback of the Black-

Scholes model arises from its constant volatility assumption. Dealing with non-

constant volatility within an option valuation framework, however, is no easy task. In

this manner, financial literature follows two different schools : the stochastic volatility

models and the deterministic volatility functions. With stochastic volatility, option

valuation generally requires a market price of risk parameter, which presents a dif-

ficulty of its own. On the other hand, when volatility is a deterministic function of

asset price and/or time, option valuation based on the Black-Scholes partial differen-

tial equation remains possible even it is not by means of the Black-Scholes formula

itself. Dumas et al. (1998) refers this case as the ”deterministic volatility function”

(DVF) hypothesis. Previously, Derman et al. (1996), Dupire (1994), and Rubinstein

(1992) develop variations of the DVF approach. They search for a binomial or trino-

mial lattice that achieves an exact cross-sectional fit of reported option prices rather

than positing a structural form for the volatility function.

Within the class of the function based models, I apply a version of Nelson and

Siegel (1987) model which is an exponential polynomial functional form. The model
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gives a good estimate of the curve and has the ability to decompose the smile func-

tion as level, slope and curvature which means that it generates an economically

interpretable parameter set. I would like to exploit this aspect of the function based

models, and extend its usage to the pricing of FX options, particularly for emerging

markets. The main objective of this study is to model and forecast implied volatility

smile, with the ultimate aim of producing relevant information for option traders.

The goal of the model-building is to find a model that would reliably capture the

dynamics of the implied volatility smile and forecast the future direction of IV, thus

providing an economically interpretable model with valuable signals for trading and

hedging.

I proceed in the following steps. First, principal component analysis is used to

identify the number of factors that explains the variation of implied volatility for both

developed and emerging market currency options. Second, the Nelson-Siegel model,

Malz (1996), Dumas et al. (1998), Daglish et al. (2007) and methodologies to estimate

the smile are applied to 10 different currency option data. Thirdly, a forecasting and

stability comparison among the models is applied. Finally, the success of the fore-

casts are tested with their directional accuracy by simulating option trades with true

market prices and calculating the profitability of the trades.

2.2 Literature Survey

Implied volatility literature has two directions. One school of methods starting from

Heston (1993) works with the problem under the framework of modeling the volatility

of the underlying asset as a stochastic process. Another school has worked within the

framework of deterministic volatility functions described in Dumas et al. (1998).
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The first approach involves the calibration of a stochastic volatility model to

available prices. Once you have the model parameters in such a stochastic volatility

model, then you can build the whole volatility surface. A widely adopted choice is

the Heston model, Heston (1993). You can use this model either with constant or

time-dependent parameters, Hull and White (1987). Another choice that has been

used is the SABR model that is proposed by Hagan et al. (2002). Although this is

not widely used in the FX options market, it can be used to generate volatility smile

curves for a given expiration date. The model is quite attractive in the sense that

the implied volatilities can be expressed as explicit, but very complicated, functions

of the Black-Scholes implied volatilities. The reason behind the fact that it is not

generally used for the FX option data, it requires many prices available for stable

calibration of all stochastic volatility models, Castagna (2010).

An exception occurs when volatility is a deterministic function of an asset price

and/or time. In this case, option valuation based on the Black-Scholes partial differ-

ential equation remains possible, although not by means of the Black-Scholes formula

itself. It is done via deterministic volatility functions. There is only a few data points

available in the FX option market whereas there is a wider data set for the currencies

of emerging markets. Due to this fact, I will not consider the stochastic volatility

models in my study and focus on the functional forms which have been used to fit

the volatility smile for a given expiration date directly.

Methods for estimating implied risk-neutral probability distributions can be cat-

egorized into several different groups, such as implied binomial trees, PDF approxi-

mating function methods, and volatility smoothing methods. Although these last two

classes go hand-in-hand since there is a quite close connection between the implied

distribution of the volatility for a given expiration date and the implied volatility
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smile for the same expiration date. For a detailed explanation for this connection,

please see Appendix 4.2.

The implied binomial tree method was first started in Rubinstein (1992). The

tree is constructed in such a way that minimizes the deviations from a log-normal

process fitting the observed option prices. Hence, the implied binomial tree is a

non-parametric Bayesian technique related to stochastic process methods, focusing

on modeling the evolution of the underlying asset’s price. Their methodology is in-

deed a variation of the deterministic volatility function approach of Rubinstein (1992).

The smoothed implied volatility smile method was originally developed by Shimko

(1993). The method is an approximating function applied to the volatility smile

rather than to the probability distribution function. Option prices are first converted

to implied volatilities using the Black-Scholes options pricing formula. A continu-

ous approximating (smoothing) function is then fitted to the implied volatilities and

the associated strike prices. This continuous implied volatility function is converted

back into a continuous call price function and then equation (54) is used to obtain

the PDF. The Black-Scholes model is used here simply as a transformation or map-

ping from one measurement space to another. The smoothed implied volatility smile

method does not assume that the underlying price process is log-normal. Malz (1997)

used delta, ∆ = ∂C
∂S

, rather than strike price as the input variable when fitting the

implied volatility smile smoothing function. Both Shimko and Malz used low-order

polynomial functional forms to fit the implied volatility smile. Campa et al. (1997)

introduced the use of smoothing splines to fit the implied volatility function in their

case as a function of the strike price.

Several other methods in the literature have been proposed towards producing
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a volatility smile, considering the availability of a limited number of option prices.

Some of them are really simply very general interpolation and smoothing schemes

capable of fitting almost perfectly all available data, provided that no-arbitrage con-

dition of the resulting surface is held. For a detailed description of the no-arbitrage

condition in the volatility surface, one can look at Fengler (2006) and the references

therein. These tools produce good results assuming that there are many prices that

you can work with.

A simple interpolation method that gained a lot of popularity in the academic lit-

erature is the second order polynomial function (in deltas) proposed by Malz(1996).

This study has been a basic model to explain stylized movement in the volatility

smile for a lot of academic studies that has come afterward, e.g. Dumas et al. (1998),

Daglish et al. (2007).

There is also Vanna-Volga method that is known as an empirical model that can

be used to infer an implied volatility smile from the three available quotes for a given

maturity. It is based on the construction of locally replicating portfolios whose re-

lated hedging costs are added to the corresponding Black-Scholes prices so that one

can have smile consistent values. The methodology has been wonderfully explained

in Wystup (2003). Although this methodology work well empirically, the model pa-

rameters lack of the financial interpretations as other interpolation techniques.

However, implied volatility models depend on a wide variety of possible state vari-

ables. One example is modeling the implied volatility via the proportional moneyness

(K/St − 1). This was used in Skiadopoulos et al. (2000) in a principal components

analysis. They were able to identify two factors which explain about 60% of the vari-

ance in S&P 500 data. Their results were consistent across years. But to implement
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a smile-consistent no-arbitrage stochastic volatility model for the pricing and hedging

of futures options, they need three factors. One was required for the underlying asset

and the other two for the implied volatility.

Rubinstein (1992) and Jackwerth and Rubinstein (1996), among others, show that

the implied volatilities of stock and stock index options exhibit a pronounced ”skew”

(that is, the implied volatility is a decreasing function of strike price). For foreign

currencies, this skew becomes a ”smile” (that is, the implied volatility is a U-shaped

function of strike price).

The first attempts to model the volatility smile were by Rubinstein (1992), Derman

et al. (1996) and Dupire (1994). These authors show how a one-factor model for an

asset price, known as the implied volatility function (IVF) model, can be developed

so that it is exactly consistent with the current volatility surface.

2.3 Data Description

In this section, data sets are described in detail. The dataset contains the weekly

currency option prices traded in the over-the-counter (OTC) market over the period

September 2005 to April 2013, retrieved from Bloomberg. The options are European-

style and they are written on both emerging markets currencies (Brazil, Mexico,

Turkey, India, and South Africa) and developed markets currencies (Europe, Switzer-

land, U.K., Japan, and Canada) for four constant times to maturity (1 month, 3

months, 6 month and 1 years). The constant time-to-maturity feature of the OTC

currency option market is useful as it allows us to interpolate the volatility of the

options with adjacent maturities. Note that liquidity of options is quite important

to have a robust analysis. In the analysis, five emerging countries which have very

liquid currency option markets, due to their increasing popularity among investors,
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are used. Characteristics of the options are collected from Reuters 3000 Extra. In

order to assure that a homogenous and reliable sample is used in my analysis all the

options on certain deltas are excluded which are illiquid. 10 delta call, 25 delta call,

ATM, 10 delta put and 25 delta put options written on the given currencies are used

in order to meet the criteria discussed above.

The OTC currency option market has very specific trading conventions. Unlike

bond or equity options that are typically traded in terms of option premiums at

different strike prices, currency options trade in terms of implied volatilities. More

specifically, implied volatility quotes are most commonly available in the form of three

types of option combinations: the delta-neutral straddle, the risk reversal, and the

strangle. A straddle σSTR is a portfolio of a call option and a put option with the

same strike price and maturity.1 The risk reversal (RR) measures the difference in

implied volatility between an out-of-the-money call option and an out-of-the-money

put option. The moneyness level is defined in terms of the Black-Scholes delta of

the option and is conventionally set at 25-delta. The strangle (STR) corresponds

more precisely to a butterfly spread and measures the difference between the average

volatility of the two 25-delta options and the delta-neutral straddle implied volatility.

In summary:

σATM = σ50∆Call (34)

σRR = σ25∆Call − σ25∆Put (35)

σSTR =
σ25∆Call + σ25∆Put

2
− σATM (36)

1For the straddle to be delta-neutral, the strike price needs to be sufficiently close to the forward
price to make the implied volatility quote of the straddle an at-the-money implied volatility (ATM).
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Equations 34 show that the straddle is a measure of the level of the implied

volatility, the risk reversal is a measure of the slope of the implied volatility smile,

and the strangle is a measure of the curvature of the implied volatility smile. From

the three quotes, I can derive the level of implied volatilities at the three levels of

delta:

σ25C = σATM +
1

2
σ25−RR + σSTR (37)

σ25P = σATM + σSTR −
1

2
σRR (38)

FX Implied Volatility Data: Table 16 contains summary statistics for the sample

of currency options related to the three option combinations defined by equations 34.

The sample averages for at-the-money implied volatilities show that EM currencies

are the most volatile currency pair in my sample, followed by developed ones. The

average term structure of at-the-money implied volatility is upward-sloping for all the

underlying assets.

I have used weekly quoted at-the-money, risk reversal and strangle implied volatil-

ity data for USD/TRY, USD/BRL, USD/MXN, USD/INR, USD/ZAR, EUR/USD,

GBP/USD, USD/CHF, USD/JPY and USD/CAD currencies in the time period from

September 2005 to April 2011, to derive call and put volatilities. See Appendix 4.2 for

the conventions for market quotations. Summary statistics for the data sets are re-

ported in 17. It can be observed from the table that emerging markets have more risk

premia and standard deviation of implied volatilities in emerging markets is higher

than that of developed markets.
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Table 16: Sample statistics for implied vol. of emerging market currencies

Delta Mean Median Max Min Std. Dev. Skewness Kurtosis
USDTRY 10 12.78 11.84 43.87 5.65 4.59 2.23 11.19

25 12.87 11.77 45.90 5.63 4.89 2.28 11.48
50 13.96 12.64 49.77 6.20 5.41 2.23 10.97
75 16.32 14.86 55.90 7.61 6.29 2.09 9.71
90 18.88 17.14 62.87 8.64 7.22 2.06 9.14

USDBRL 10 12.78 11.84 43.87 5.65 4.59 2.23 11.19
25 12.87 11.77 45.90 5.63 4.89 2.28 11.48
50 13.96 12.64 49.77 6.20 5.41 2.23 10.97
75 16.32 14.86 55.90 7.61 6.29 2.09 9.71
90 18.88 17.14 62.87 8.64 7.22 2.06 9.14

USDMXN 10 11.41 9.59 67.67 3.88 6.73 3.06 20.07
25 11.57 9.65 66.53 4.73 7.26 3.15 17.97
50 12.45 10.33 71.43 4.90 8.26 3.16 16.99
75 14.31 11.83 77.03 5.53 9.75 2.89 14.20
90 16.71 13.80 86.57 6.18 11.18 2.69 12.50

USDINR 10 8.90 8.63 22.78 4.06 3.18 1.02 4.89
25 8.77 8.34 26.22 3.89 3.58 1.52 6.99
50 9.08 8.65 30.00 3.80 4.05 1.94 9.25
75 10.20 9.58 35.78 4.15 4.87 2.18 10.38
90 11.41 10.76 33.16 4.81 5.05 1.47 6.08

USDZAR 10 16.56 15.15 57.69 10.16 5.49 3.63 23.43
25 16.86 15.28 61.40 10.93 5.76 3.65 22.86
50 17.93 16.28 65.70 11.25 6.36 3.39 20.34
75 20.44 18.43 71.40 12.21 7.31 2.96 16.19
90 23.24 20.97 75.69 13.23 8.14 2.67 13.68
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Table 17: Sample statistics for implied vol. of developed market currencies

Delta Mean Median Max Min Std. Dev. Skewness Kurtosis

EURUSD 10 12.32 11.76 30.75 5.13 4.76 1.00 4.28
25 11.45 10.91 28.64 4.84 4.24 1.07 4.63
50 10.83 10.32 27.00 4.68 3.88 1.24 5.28
75 10.75 10.16 26.75 4.81 3.83 1.49 6.02
90 11.03 10.37 28.77 4.95 4.05 1.72 6.74

USDGBP 10 11.63 10.59 34.98 5.14 5.10 1.89 7.26
25 10.72 9.73 31.15 4.81 4.50 1.87 7.11
50 10.02 8.98 28.50 4.55 4.07 1.93 7.28
75 9.85 8.71 27.45 4.64 3.91 1.99 7.33
90 10.07 8.85 28.50 5.03 4.02 2.11 7.77

CHFUSD 10 11.92 11.36 28.89 5.61 3.73 1.29 5.65
25 11.32 10.86 26.27 5.45 3.40 1.22 5.30
50 10.99 10.53 24.55 5.25 3.25 1.13 4.95
75 11.19 10.79 24.29 5.35 3.37 1.08 4.56
90 11.71 11.34 25.29 5.49 3.68 1.04 4.31

USDJPY 10 13.68 12.48 46.08 6.62 5.93 2.16 9.47
25 12.19 11.11 40.59 6.39 4.83 2.14 9.94
50 11.09 10.29 35.53 6.13 4.01 2.08 10.20
75 10.58 10.08 30.84 5.88 3.32 1.84 9.51
90 10.81 10.56 29.02 5.83 3.12 1.56 8.14

USDCAD 10 10.76 9.67 28.07 6.00 4.29 1.74 6.42
25 10.54 9.51 27.44 5.88 4.12 1.68 6.30
50 10.62 9.74 28.25 5.75 4.12 1.64 6.32
75 11.20 10.21 30.44 5.83 4.34 1.60 6.36
90 11.92 10.90 33.17 5.99 4.70 1.60 6.42
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2.4 Theoretical Framework

In this section, first general overview of econometric and factor models are presented.

Then, theoretical background of volatility smile is explored. Finally, the performance

metrics discussed and the models tested are described.

2.4.1 Principal Component Analysis

The advantage of using factor based models is that they can deal with high number

of parameters reducing them to a few number. Secondly, factor models can eliminate

idiosyncratic movements which possibly include measurement error and local shocks.

Hence, the factor models yield a more reliable signal for policy makers and prevents

them from reacting to idiosyncratic movements. Finally, factor modelers can remain

agnostic about the structure of the economy and do not need to rely on overly tight

assumptions as it is sometimes the case in structural models.

In order to determine the existence and the number of common factors affecting

the movements in implied volatilities across different currencies, it is first assumed

that the variance of changes in the volatility smile of any given currency can be de-

composed into common variance and unique variance. Common variance is shared

by movements of all volatility term structures included in the system whereas unique

variance is specific to a particular currency and includes also an error component. In

this section, I explore the interactions of the IVS dynamics between different currency

pairs. We are interested in whether changes in the IVS of all currency pairs follow

some systematic factors that need not (necessarily) be orthogonal.
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2.4.2 Volatility Smile

Options traded in financial markets have a rather flat volatility structure before the

1987 market crash, but rules of the game have changed one afterward. After the 1987

crash, people realized that extreme events were more likely than the log normal distri-

bution suggests (See Appendix 4.2). The implied volatilities of the options often have

a skewed structure, commonly called ’the volatility smile’. One of the long-standing

problems in options pricing has been how to reconcile this structure with the Black-

Scholes model usually used by options traders. In this study, the Black-Scholes model

is extended to make it consistent with the smile.

The Black-Scholes model takes the volatility constant across different strikes and

the index distribution at any option’s expiration is lognormal, and all options on the

index have the same implied volatility. But, ever since the ’87 crash, the market’s

implied Black-Scholes volatilities for FX options have shown a negative relationship

with strike prices while out-of-the-money puts trade at higher implied volatilities than

out-of-the-money calls.

Now, I will define the volatility smile and examine how it typically appears in the

market. A brief summary is given in Appendix 4.2.

Definition:Volatility Smile: For an expiry T , the volatility smile maps the im-

plied volatilities to a given function P = f(K) of the strike price. Hence, the smile

indicates the volatility parameter to plug into the Black-Scholes formula struck at the

level K = f−1(P ).

Description of the data used will be explained in detail in the data section. For

the moment, I only mention that all data used is obtained from Bloomberg, where
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the implied volatility quotes are in terms of forward deltas.

2.4.3 Performance Metrics

Performance measures of the volatility smile models are analyzed in three dimensions:

goodness-of-fit, forecasting capability, and stability of parameters. First performance

measure is goodness-of-fit, for which the Mean Absolute Error (MAE) and the Root

Mean Square Error (RMSE) are used. Clearly, the fitting quality is higher for the

model that generates smaller errors. Secondly, MAE and RMSE of models for out-

of-sample data are compared. Finally, parameter stability of the models is compared

by evaluating the deviation in parameter sets and graphical illustrations for the evo-

lution of model parameters over the time are presented to observe their stability.

Goodness-of-fit The performance statistics MAE, and RMSE can be calculated

as:

MAE =
N∑
i=1

|σ̂i − σi|
N

,

RMSE =

√√√√ N∑
i=1

(σ̂i − σi)2

N
.

where N represents the number of selected deltas or moneyness levels. RMSE places

a greater weight upon larger errors and therefore better indicates how well the models

fit the data at each particular observation. A low value for the mean is assumed to

indicate that the model is flexible and, on average, is able to fit the volatility smile

fairly accurately. MAE is the average distance between theoretical and observed

implied volatilities in absolute value terms. This measure is not as easily influenced

by extreme observations as RMSE. Therefore, these two measures are complementary.

Forecasting A good approximation to volatility smile dynamics should not only

fit well in-sample, but also should forecast well out-of-sample. The prediction errors
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are calculated as the difference of forecasted implied volatility and observed implied

volatility in terms of RMSE and MAE. Namely, implied volatility values for each

delta at a certain time point (weekly, daily or monthly) are forecasted using previous

implied volatilities on a selected time window. The time window is iterated for each

time point in the data sample. My model’s one-period-ahead forecasting results are

reported in Table 23 and 24.

Stability Past research have mainly focused on the performance of the volatility

smile fit and have paid scant attention to parameter stability. Knowing that NS pa-

rameters are estimated on a daily basis and each of these parameters have a specific

financial interpretation, it is expected to generate smooth parameters over the time.

For instance, consider, the first parameter of NS model (β0), which is interpreted

as the long-run at-the-money level of implied volatility. From one day to the next,

jumps of several percentage points for the estimates of this parameter will be totally

unacceptable, even if the smile curve fit is quite good. To this end, I depicted the

parameters obtained by the NS model and other compared models together with the

day-to-day values of the parameters.

2.4.4 Models Tested

Castagna (2010) points out three criteria for the representation of the volatility sur-

face: parsimony, consistency and intuitiveness :

• Parsimony: The representation contains the smallest amount of information

needed to retrieve the entire volatility smile.

• Consistency: The information contained in the representation is along expiries

and strikes so as to make the integration of missing easily possible, either by

interpolation or extrapolation.
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• Intuitiveness: The information provides the user a clear picture of the volatil-

ity surface. Volatilities on different deltas move dependently. From principal

component analysis exercises, one may reasonably assume that the degrees of

freedom are only three: level, slope, and curvature.

Four different methods were used to extract the implied volatility smile curve

from the same option price data of different currencies. Three estimation meth-

ods, Malz(1997), Dumas(1998) and Hull(2007) were taken from the literature. The

remaining Nelson-Siegel methodology were developed for this research. These four

estimation methods represent a broad variety of volatility smile fitting and estimation

methods. The use of broadly differing estimation methods is useful for distinguishing

method-specific results from those due to the common pricing equations and data

sets. The details of the models can be found in Appendix 4.2.

Models Tested

1. Malz : σ(∆) = b0atmt + b1rrt(∆− 0.5) + b2strt(∆− 0.50)2

2. Dumas et. al. : σ(∆) = max(0.01, a0 + a1∆ + a2∆2)

3. Daglish et. al. : σ(∆) = c1,tlog(∆) + c2,tlog(∆)2 + c3,tlog(∆)3 +

c4,tlog(∆)4

4. Nelson Siegel : σ(∆) = β0,t+β1,t
1−e(−∆/τ)

∆/τ
+β2,t

(
1−e(−∆/τ)

∆/τ
− e(−∆/τ)

)
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Figure 50: Actual and implied volatility curves fitted according to the suggested
version of Nelson-Siegel methodology and two other benchmark methods. The data
used is the BRL/USD option data with maturity 1 month for the date 03 January
2006

2.4.4.1 Malz

A continuous volatility smile is constructed by interpolating a particular functional

form through the observed market prices of options. Malz assumes the specification

σ(∆) = b0atmt + b1rrt(∆− 0.5) + b2strt(∆− 0.50)2

In this specification, the volatility smile has three components: a linear function of the

at-the-money volatility, a linear function of the risk reversal price and the deviation

of delta from 0.5, and a quadratic function of the strangle price and the deviation of

delta from 0.5.
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This functional form is the simplest one that captures the basic information about the

smile which the three option prices express. The at-the-money or straddle volatility

gives the general level of implied volatility; it is a measure of location for the volatility

smile. The risk reversal price indicates the skew in the volatility smile. The strangle

price indicates the degree of curvature of the volatility smile, that is the degree to

which the volatilities of out-of-the-money options exceed the at-the-money volatility.

2.4.4.2 Dumas

Dumas estimates the volatility function, σ(X), by fitting the implied volatility levels

to reported option prices at time t. Because σ(X) is an arbitrary function, they post

a number of different structural forms including:

σ(∆) = max(0.01, a0 + a1∆ + a2∆2)

The quadratic functional form given in this equation may seem questionable for two

related reasons. First, the use of the parabolic form, for which there is no basis in fact

and which are purely extrapolative in nature, may influence the results. Of course,

the probability weights received by values of the underlying asset far from the current

value become extremely small very quickly, so they may or may not play a negligible

role in the analysis.

Second, it is questionable, mathematically speaking, to let the volatility grow quadrat-

ically with the state variable, because such a volatility function violates the assump-

tions for existence of the solution of a stochastic differential equation, so-called slow-

growth and Lipschitz conditions.
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2.4.4.3 Daglish et. al.

Daglish(2007) discusses the way in which the traders use the volatility smile for hedg-

ing. Derman(1999) also discusses alternative approaches to hedging against asset

price movements. The ’volatility-by-strike’ or ’sticky strike’ rule assumes that the

implied volatility for an option with a given strike price and maturity will be un-

affected by changes in the underlying asset price. Another popular approach is the

’volatility-by-moneyness’ or ’sticky delta’ rule. This assumes that the volatility for a

particular maturity depends only on the moneyness.

Daglish(2007) tests a series of functional forms for the volatility surface from a per-

spective of sticky strike or sticky delta forms, and finally decides on a version like the

following

σ(∆) = c1,tlog(∆) + c2,tlog(∆)2 + c3,tlog(∆)3 + c4,tlog(∆)4

The paper also considers more restricted forms of the model, where progressively c4

and c3 are set to zero, to render a more parsimonious model for the volatility smile,

and looking at their out of sample performances, I decide on this model. In fact, they

also consider the case where the coefficients are time dependent. However, since I are

focused on the smile rather than the surface, I will treat them as constants when I

implement the model.

2.4.4.4 Nelson-Siegel

The Nelson-Siegel curve model can be viewed as a constant plus a Laguerre function,

which is a polynomial times an exponential decay term and is a popular mathemat-

ical approximating function as it can be seen in Courant and Hilbert (1953) The
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corresponding functional form is

σ(∆) = β0,t + β1,t
1− e(−∆/τ)

∆/τ
+ β2,t

(
1− e(−∆/τ)

∆/τ
− e(−∆/τ)

)
(39)

where Θ is the set of the model parameters [β0, β1, β2, τ ] and ∆ is option delta.

Figure 51: Actual and implied volatility curves fitted according to the suggested
version of Nelson-Siegel methodology and two other benchmark methods. The data
used is the BRL/USD option data with 1-month maturity for the date 03 January
2006

I model and forecast the Nelson-Siegel factors as univariate AR(1) processes. The

volatility forecasts based on underlying univariate AR(1) factor specifications are :

σt+h(∆,Θ) = β0,t+h + β1,t+h
1− e(−∆/τ)

∆/τ
+ β2,t+h

(
1− e(−∆/τ)

∆/τ
− e(−∆/τ)

)
(40)
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where

βi,t+h = ci + γiβi,t, i=1,2,3

2.5 Empirical Analysis

The empirical analysis is divided into three parts. In the first part, a number of factors

explaining the variation in implied volatilities are extracted. In the second and third

parts, in-sample and out-of sample performances of the models are compared. In the

fourth part, coefficient stability of the models are provided.

Principal Components:

Investors or portfolio managers can minimize their currency exposure while benefit-

ing international diversification by using out-of-the-money options in each currency

that they invest in. However, this approach brings the cost that is the sum of var-

ious option premiums for the investor. To explain the variation in these currency

options, it is critical to distinguish the systemic risk factors that have general impact

on these options. I use the standard methodology for extracting the most important

uncorrelated sources of variation in the volatility smile across ten currency option

markets. The empirical findings demonstrate that three common factors can explain

a vast proportion of the variation in implied volatilities across currencies. Thus, an

international portfolio can be hedged by using these three factors against currency

risk.

I applied dynamic principal component analysis to determine the nature and com-

monalities on the variation of implied volatilities for five emerging and five developed

markets. To achieve this, I measure the weekly differences of implied volatilities across

different levels of moneyness and different ranges of days to expiry (expiry buckets).
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For each sub-sample, I extract the principal components from the correlation matrix

that has been sustained by the residuals from the regressions. The corresponding

analysis reveals that there are three significant components across currencies for both

emerging and developed markets.

Table 18: Principal Component Analysis
Principal component analysis for implied vol. of developed and emerging market
currencies in the period of 2005-2011

Year Factors Implied Volatility Variations

All Markets Developed Emerging

Entire Period Factor 1 48,88% 76,06% 54,23%
(6 April 2005 - 30 April 2011)

Factor 2 70,84% 87,25% 78,86%

Factor 3 80,05% 94,38% 88,06%

Pre-Crisis Period Factor 1 36,65% 64,43% 45,05%
(6 April 2005 - 8 August 2007)

Factor 2 55,66% 81,67% 64,61%

Factor 3 65,73% 93,29% 81,01%

Crisis Period Factor 1 51,59% 77,25% 57,80%
(9 August 2007 - 29 August 2008)

Factor 2 74,64% 88,56% 83,03%

Factor 3 83,31% 94,96% 90,84%

Post-Crisis Period Factor 1 41,85% 71,74% 43,39%
(1 April 2009 - 30 April 2011)

Factor 2 60,08% 84,96% 67,05%

Factor 3 71,59% 94,29% 81,70%
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Figure 52: The upper left panel shows the first three principal components for emerg-
ing market and the upper right shows for developed market currency options with
1 month expiry. The lower panel shows the first three principal components for all
market currency options with 1 month expiry
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Figure 53: The figure shows the first three principal components for all market currency options with 1 month expiry
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Table 19: Principal Component Analysis for Different Maturity Options
Principal component analysis for implied vol. of developed and emerging market
currencies in the period of 2005-2011 for options with maturity range from 1 month
to 1 year.
The columns indicate the cumulative coverage for each component.

EM w1 w2 w3 w4 w5
1 Month 53,42% 70,98% 83,63% 92,45% 100,00%
3 Month 55,21% 75,01% 84,82% 93,38% 100,00%
6 Month 51,18% 70,64% 84,23% 93,32% 100,00%

1 Year 53,37% 70,27% 85,47% 93,84% 100,00%

Developed w1 w2 w3 w4 w5
1 Month 74,10% 84,98% 91,86% 97,73% 100,00%
3 Month 72,76% 85,06% 92,24% 97,73% 100,00%
6 Month 72,66% 84,72% 92,13% 97,84% 100,00%

1 Year 72,67% 84,09% 92,18% 97,95% 100,00%

All w1 w2 w3 w4 w5
1 Month 50,40% 65,16% 74,41% 80,82% 85,51%
3 Month 51,30% 66,54% 75,96% 81,16% 85,76%
6 Month 50,61% 64,37% 73,81% 80,93% 86,16%

1 Year 50,13% 64,66% 73,14% 80,73% 85,80%

137



In-Sample Results :

Using the FX implied volatility data for five emerging market and five developed

markets, I now estimate the volatility functions of Malz (1997), Dumas et al. (1998),

Daglish et al. (2007) and Nelson-Siegel three factor method. Here, I fixed the time to

maturity of the options as one month. Results for different maturities ranging from

one week to 2 years are available upon request. The results are consistent with the

one-month results. So, I depicted one-month maturity options for each currency.

Summary statistics on the goodness-of-fit are provided in table 20 and 21. To as-

sess the quality of the fitted models, I compare the root mean squared errors (RMSE)

and mean absolute errors (MAE) of four for five emerging market currencies and

five developed market currencies with different deltas. The estimations are run on a

weekly data. Results for daily and monthly data have the similar pattern with weekly

results and are available upon request.

I structure the conclusions derived from the in-sample results into two categories.

The first part of the conclusions would be about each model across different mon-

eyness levels (deltas). The second part of the conclusions would compare different

models with each other at various moneyness levels and for different market currencies.

Across Moneyness Levels

It is obvious from the theoretical formulation of Malz method, it has perfect

goodness-of-fit for the levels of 25, 50 and 75 deltas. However, this leads to a much

worse accuracy for 10 and 90 deltas. This observation is consistent across all ten

currencies explored. Namely, Malz method overfit the 25, 50, 75 deltas and as a

result significantly underfits 10 and 90 deltas. On the contrary, the accuracy struc-

ture is reversed for Dumas’ methodology, i.e. accuracy level for 25, 50, 75 deltas is
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worse than 10 and 90 deltas. This pattern is observed through out all ten currencies

explored. What Malz and Dumas’ method have in common is that they both use

quadratic polynomials to approximate the smile. This yields a trade off between the

goodness-of-fit at or around the money and away from the money.

On the other hand, the story for Daglish and Nelson Siegel models is a little dif-

ferent. For the Daglish methodology, the quality of the goodness-of-fit degrades from

one end to the other end of the smile. In other words, it performs much better at 10

or 25 deltas compared to 75 and 90 deltas. Amongst the investigated four methods,

Nelson Siegel has the most consistent accuracy structure across different deltas and

across different currencies. As a typical example, 50 shows a comparison of the fitting

performances of the discussed three methods for USDTRY currency.

Across Market Currencies

When one compares table 20 and 21, it is clear that all the models perform better

in developed market currencies than in emerging market currencies. This can be ex-

plained in two different ways. Financially speaking, the shape of the volatility smiles

of developed market currencies are indeed smiles whereas the shape of the volatility

smiles of emerging market currencies are rather smirks. Mathematically speaking,

skewness of the implied volatilies for emerging market currencies are much higher

than the skewness of the developed market currencies, see tables 16 and 17. For

emerging market currencies, estimation results are heterogeneous among the models.

When all models are compared, as table 20 suggests, the RMSE’s are almost the same

for the methods Nelson-Siegel, Dumas et al. (1998) and Daglish et al. (2007). In case

of developed markets, Nelson-Siegel three factor model and Daglish et al. (2007) have

slightly better fitting performance when compared to other models.
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In summary, I have a pretty clear idea about when Malz method is more accurate

or less accurate than the others. But it’s hard to argue one way or the other about the

accuracies of other methodologies as they have different accuracy patterns. I can only

argue that the Nelson Siegel method has the most consistent pattern across different

deltas and across different currencies.
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Table 20: In-Sample Fit Results for Emerging Markets
The table reports the in-sample fitting results for five emerging markets as root mean square errors (RMSE) and mean absolute
errors (MAE)

Model Delta

USDTRY USDBRL USDMXN USDINR USDZAR
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Malz 10 53,17 43,38 209,51 1772,49 163,87 1178,51 132,03 738,80 148,55 454,02
25 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
50 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
75 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
90 171,00 170,27 356,04 1880,20 307,54 1202,97 159,31 529,47 236,84 490,07

Dumas et. al. 10 19,43 3,08 40,15 19,83 34,55 19,70 14,38 7,63 41,40 11,77
25 26,18 7,08 67,30 92,89 54,30 76,45 30,06 39,16 65,40 38,47
50 22,60 3,41 59,11 107,21 47,79 64,45 35,13 39,01 24,76 21,84
75 56,04 18,84 105,62 102,86 94,32 78,71 37,92 19,77 83,74 41,81
90 31,07 5,95 55,48 22,27 50,30 20,25 17,10 2,89 48,35 12,59

Hull et. al. 10 3,45 0,06 6,03 0,44 5,03 0,28 2,87 0,12 4,30 0,13
25 18,03 1,61 31,52 12,00 26,29 7,77 14,98 3,34 22,49 3,51
50 49,87 12,29 87,18 91,79 72,72 59,42 41,43 25,56 62,22 26,86
75 73,41 26,64 128,34 198,94 107,05 128,77 60,99 55,39 91,60 58,20
90 38,21 7,22 66,81 53,91 55,72 34,89 31,75 15,01 47,68 15,77

Nelson-Siegel 10 25,03 3,86 34,23 7,56 31,85 8,17 9,00 0,84 42,22 9,05
25 38,16 10,01 57,71 28,56 50,29 25,13 16,49 5,50 70,45 27,36
50 19,45 2,75 49,59 69,15 41,59 44,17 29,19 22,83 23,07 14,80
75 70,35 26,82 128,77 203,60 111,93 135,81 54,67 54,34 99,47 66,61
90 43,00 9,99 75,71 69,89 65,41 41,88 30,81 16,71 62,92 24,75
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Table 21: In-Sample Fit Results for Developed Markets
The table reports the in-sample fitting results for five developed markets as root mean square errors (RMSE) and mean absolute
errors (MAE)

Model Delta

EURUSD USDGBP CHFUSD USDJPY USDCAD
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Malz 10 64,96 28,80 67,15 38,49 62,11 74,54 188,88 266,53 31,40 7,53
25 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
50 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
75 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
90 45,54 16,30 31,88 11,66 53,88 70,07 79,00 68,33 43,99 13,83

Dumas et. al. 10 8,94 0,57 10,92 0,92 7,58 0,66 29,43 6,60 5,81 0,25
25 17,57 2,15 20,37 3,31 15,34 3,60 56,06 23,49 10,04 0,72
50 12,79 1,18 10,94 1,19 14,03 4,44 30,47 7,72 7,61 0,45
75 12,44 1,00 9,98 0,82 12,08 3,18 18,85 5,13 13,81 1,30
90 6,77 0,29 6,41 0,31 5,69 0,56 12,77 2,11 7,57 0,39

Hull et. al. 10 1,07 0,01 0,89 0,01 1,16 0,02 1,64 0,02 0,99 0,01
25 5,58 0,21 4,64 0,16 6,08 0,51 8,59 0,56 5,17 0,16
50 15,45 1,59 12,83 1,21 16,83 3,89 23,76 4,32 14,31 1,24
75 22,74 3,45 18,88 2,62 24,77 8,43 34,98 9,37 21,06 2,69
90 11,84 0,93 9,83 0,71 12,89 2,28 18,21 2,54 10,96 0,73

Nelson-Siegel 10 2,85 0,06 3,05 0,14 7,15 14,69 7,74 1,26 5,08 0,19
25 6,68 0,33 7,05 0,66 10,22 7,70 21,12 5,96 8,48 0,49
50 11,17 0,99 9,42 0,99 13,71 5,90 27,29 6,51 6,77 0,38
75 16,38 1,82 12,93 1,43 18,69 9,19 29,66 9,08 17,29 1,94
90 8,80 0,53 6,81 0,39 12,64 15,25 15,52 3,03 10,40 0,70

142



Out-Of-Sample Results :

In this section, I compare the forecasting capabilities of each methodology on dif-

ferent market currencies across options with different maturities and different forecast

horizons. I use exactly the same time period for the data, i.e. ranging from January

2006 to April 2011. Only this time, I have options with various maturities ranging

from 1 week to 1 year. Similarly, I have different choices for the forecast horizons

again ranging from 1 week to 1 year as opposed to one month maturity data. I have

explored all of these combinations that make sense. Clearly, one would never forecast

1 year ahead implied volatility smile of options with one week maturities. The fol-

lowing table indicates the combinations on which I have done the forecast analysis.

Table 22: Executed forecast analysis

Forecast Horizon

1 Week 1 Month 3 Month 6 Month
Option Maturity 1 Month X X

3 Month X X X
6 Month X X X X

1 Year X X X X

The performance metrics of the methodologies do not change significantly by nei-

ther the maturity of the data set nor the duration of the forecast horizon. Hence, for

the results of table 23 and 24 I used 3 month options in my data set, and 1 month

horizon for the forecast as a representative. The results hold robust regardless of the

choices of forecast horizon and option maturities.

Techniques of Forecasting

If the estimation method of the implied volatility smile is economically more rea-

sonable, simple models of the dynamics of its parameters should be able to perform

better in out-of-sample forecasting. In this section, I deal with such a forecasting
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exercise. Starting from January 2006, I fit all the models on the first 52 observations

in order to estimate implied volatilities for each market currency. Here, the size of the

rolling training window, 52 weeks, is not a random selection. 2 I have tried different

sizes of training window ranging from 1 week to 104 weeks. Any window shorter

than 20 weeks yields dramatically poor results for any of the methods. At the other

extreme, for any window size larger than 70 weeks, the contribution that is supposed

to come from AR(1) extension disappears due to smoothing out effects. Practically,

all of the AR(1) forecasts reduces to AR(0) forecasts.

Main econometric tools used to forecast the future implied volatility smile are

random walk and AR(1). For example, I model and forecast the Nelson-Siegel factors

as random walk and univariate AR(1) processes. The volatility forecasts based on

underlying random walk specifications are :

σt+h(∆) = β0,t + β1,t
1− e(−∆/τ)

∆/τ
+ β2,t

(
1− e(−∆/τ)

∆/τ
− e(−∆/τ)

)
(41)

The volatility forecasts based on underlying univariate AR(1) factor specifications

are :

σt+h(∆,Θ) = β0,t+h + β1,t+h
1− e(−∆/τ)

∆/τ
+ β2,t+h

(
1− e(−∆/τ)

∆/τ
− e(−∆/τ)

)
(42)

where

βi,t+h = ci + γiβi,t, i=1,2,3

Parameter specifications for other methods are summarized in 2.5.

2The forecasts were calculated from rolling samples, keeping the sample size constant each week.
In other words, after calculating each forecast, the furthest observations are dropped, the observa-
tions for the most recent week are added to the sample, and the model is re-estimated
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Although, one can use many other econometric models such as AFRI(1,d), VAR(1),

BVAR(1), VECM, etc as in Chalamandaris (2011) and Diebold et. al. (2005), I have

not observed significant improvements coming from more complex econometric mod-

els. This is partly due to availability of few data points for each volatility smile. As

an example, I presented the results in tables 23 and 24 also for the VAR(1) case, but

clearly the results are almost the same with AR(1). In fact, this is true for many

other more complex econometric models. For a detailed explanation of random walk,

AR(1) and VAR(1) methodologies, I refer to Brooks(2002).

Here, I do not include the Malz methodology for the forecasting results as the na-

ture of the methodology does not allow us to change its parameters from one period

to another. Therefore, it is impossible to apply any of the econometric models that I

have explored.

Forecast Performance

I compare the forecasting capabilities of all the models provided in 2.5. Following

the results of table 23 and 24, one striking observation is that all estimation and

forecasting procedures perform much better for the developed market currencies than

the emerging market counterparts. As 16 and 17 shows, the range and the variance of

implied volatility smiles for emerging market currencies are significantly larger than

the ones for developed market. This makes the forecasting analysis harder for the

emerging market volatility smiles. Hence, all the models generate larger MAE and

RMSE for forecasting emerging market implied volatilities.
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Forecasting Models

1. Random Walk : σt+h(∆,Θ) = σt(∆,Θ)

2. AR(1) on volatility levels : σt+h(∆,Θ) = c(δ) + γσt(∆,Θ)

3. VAR(1) on volatility levels : σt+h(∆,Θ) = c+ Γσt(∆,Θ) where

σt = [σt(10), σt(25), σt(50), σt(75), σt(90)]T .

4. Dumas et al. (1998) model: σt+h(∆) = a0,t + a1,t∆ + a2,t∆
2

5. Dumas’ model with AR(1): σt+h(∆) = a0,t+h + a1,t+h∆ + a2,t+h∆
2

ai,t+h = ci + γiai,t, i=1,2,3

6. Daglish et al. (2007) model : σt+h(∆) = c1,tlog(∆) + c2,tlog(∆)2 +

c3,tlog(∆)3 + c4,tlog(∆)4

7. Daglish with AR(1) : σt+h(∆) = c1,t+hlog(∆) + c2,t+hlog(∆)2 +

c3,t+hlog(∆)3 + c4,t+hlog(∆)4

ci,t+h = di + γici,t, i=1,2,3

8. NS : σt+h(∆) = β0,t + β1,t
1−e(−∆/τ)

∆/τ
+ β2,t

(
1−e(−∆/τ)

∆/τ
− e(−∆/τ)

)
9. NS with AR(1) : σt+h(∆) = β0,t+h + β1,t+h

1−e(−∆/τ)

∆/τ
+

β2,t+h

(
1−e(−∆/τ)

∆/τ
− e(−∆/τ)

)

βi,t+h = ci + γiβi,t, i=1,2,3

The difficulty of forecasting the smile for the emerging market currencies only gets
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worse as the moneyness level (delta) increases, because almost all the smiles have a

tendency to go up towards the right end. Consequently, the range and the variance

of in the money implied volatilities are much higher than out of the money ones. So,

all the models generate larger MAE and RMSE for forecasting in the money implied

volatilities. This phenomenon does not happen for the developed market currencies

since they are rather flat towards the edges of the smile compared to emerging market

currencies.

As far as forecasting performances are concerned, it is hard to distinguish Dumas

from Daglish in both random walk and AR(1) cases. But in both cases, Nelson Siegel

is the winner for the emerging markets and the developed markets. Note that all

of these methods have a better forecasting capability when I use the random walk

model. Hence, one should not compare the Dumas methodology with random walk

to Nelson Siegel with AR(1).

One possible explanation for the superior performance of the Nelson Siegel method-

ology is the fact that ”one may reasonably assume that the degrees of freedom are

only three : (i)level, (ii) slope, and (iii)convexity. In fact, as a principal component

analysis can show, most shape variations can be explained either by a parallel shift

of the smile or by a tilt to the right or left or by a relative change of the wings with

respect to the central strike.” (Castagna, 2010). The connection between level, slope

and curvature of the smile and the β0, β1, β2 parameters are going to be further

explained in section 3.3. This connection ,which the other models do not have, yields

a superior forecasting capability as well as a superior stability which will be shown in

the next section.

Stability Results
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Table 23: Out-Of-Sample Fit Results for Emerging Markets
The table reports the out-of-sample fitting results for five developed markets as root
mean square errors (RMSE) and mean absolute errors (MAE)

Model Delta USDTRY USDBRL USDMXN USDINR USDZAR
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Random Walk 10 1,50 2,42 2,07 3,95 1,98 4,94 1,40 2,22 1,55 3,15
25 1,62 2,64 1,82 3,27 1,69 4,47 1,40 2,24 1,56 3,01
50 1,81 2,95 2,13 3,86 1,97 5,22 1,63 2,71 1,75 3,34
75 2,09 3,41 2,62 4,78 2,40 6,14 2,06 3,37 1,99 3,80
90 2,37 3,88 3,18 5,91 3,04 7,60 2,41 3,58 2,20 4,29

AR(1) on Vol 10 1,49 2,52 2,01 3,61 2,41 8,80 1,44 2,20 1,65 3,52
25 1,63 2,74 1,96 3,89 2,52 13,65 1,43 2,34 1,67 3,22
50 1,93 3,26 2,11 4,24 2,74 14,95 1,51 2,73 1,90 3,57
75 2,11 3,53 2,79 5,29 3,35 16,04 2,12 3,50 2,11 3,98
90 2,39 4,04 3,32 6,67 3,94 17,24 2,43 3,57 2,23 4,25

VAR on Vol 10 1,56 2,57 2,06 3,95 2,73 14,36 1,49 2,40 6,22 60,42
25 1,65 2,80 2,05 4,17 3,07 13,90 1,69 3,42 3,13 19,82
50 1,84 3,13 2,41 5,32 3,50 15,24 1,98 4,20 4,40 33,13
75 2,12 3,59 2,90 6,65 4,06 16,66 2,45 4,96 13,06 156,36
90 2,36 4,07 3,23 6,10 4,41 18,59 2,65 4,49 11,61 132,92

Dumas et. Al. 10 1,51 2,42 2,04 3,86 1,95 4,83 1,38 2,13 1,56 3,11
25 1,58 2,60 1,81 3,30 1,71 4,47 1,36 2,22 1,54 3,01
50 1,78 2,93 2,09 3,83 1,92 5,16 1,62 2,74 1,72 3,30
75 2,16 3,43 2,71 4,84 2,55 6,23 2,11 3,40 2,06 3,83
90 2,32 3,83 3,05 5,79 2,93 7,46 2,35 3,52 2,15 4,24

Daglish et. Al. 10 1,54 2,43 2,11 3,98 2,02 4,94 1,42 2,21 1,61 3,16
25 1,55 2,63 1,75 3,22 1,62 4,41 1,33 2,21 1,52 2,98
50 1,89 2,98 2,22 3,89 2,04 5,23 1,70 2,78 1,82 3,36
75 2,30 3,51 2,90 5,00 2,75 6,36 2,21 3,50 2,22 3,93
90 2,28 3,83 2,95 5,66 2,84 7,34 2,26 3,42 2,10 4,20

NS 10 1,39 2,20 1,90 3,49 1,75 4,41 1,31 2,00 1,47 2,81
25 1,47 2,37 1,73 3,04 1,58 4,09 1,31 2,02 1,42 2,77
50 1,62 2,65 1,97 3,51 1,74 4,66 1,49 2,57 1,60 3,01
75 1,99 3,12 2,51 4,39 2,36 5,68 1,90 3,09 1,93 3,52
90 2,15 3,55 2,78 5,25 2,71 6,78 2,20 3,23 2,01 3,86

AR(1) NS 10 1,42 2,38 2,09 4,20 2,42 7,68 1,40 2,04 1,66 3,51
25 1,47 2,49 2,33 6,33 2,41 7,19 1,32 2,22 1,80 4,02
50 1,66 2,79 2,85 9,06 3,03 8,20 1,64 3,16 2,30 5,90
75 1,99 3,19 3,40 9,49 4,14 11,70 2,17 4,10 3,09 6,41
90 2,17 3,55 3,49 8,80 4,96 15,68 2,33 4,50 3,43 6,61

AR(1) Daglish 10 1,56 2,61 2,43 5,14 3,03 10,27 1,47 2,26 1,89 4,13
25 1,57 2,81 2,75 8,07 3,21 11,35 1,42 2,41 1,93 4,50
50 1,96 3,19 3,62 10,79 4,35 13,47 1,79 2,91 2,58 5,33
75 2,39 3,76 4,55 12,49 5,45 15,57 2,32 3,66 3,12 6,33
90 2,33 4,06 4,44 13,57 5,55 17,53 2,40 3,83 2,91 6,85

AR(1) Dumas 10 1,52 2,55 2,28 4,61 2,66 8,45 1,45 2,21 1,74 3,86
25 1,57 2,71 2,54 6,97 2,64 7,94 1,43 2,42 1,92 4,37
50 1,77 2,99 3,09 10,05 3,27 9,06 1,75 3,48 2,48 6,50
75 2,16 3,46 3,74 10,48 4,53 12,99 2,30 4,45 3,35 9,41
90 2,30 3,84 3,82 9,78 5,49 17,36 2,53 5,00 3,78 11,36
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Table 24: Out-Of-Sample Results for Developed Markets
For the volatility smiles implied by options written on the exchange rates in my
developed markets sample, the table reports root mean squared errors (RMSE) and
mean abolute errors (MAE) of one-month-ahead forecasts for 3 month options

Model Delta EURUSD USDGBP CHFUSD USDJPY USDCAD
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Random Walk 10 1,41 2,14 1,46 2,47 1,21 1,80 2,24 3,35 1,34 1,87
25 1,23 1,84 1,26 2,09 1,11 1,65 1,71 2,57 1,25 1,80
50 1,13 1,69 1,14 1,87 1,04 1,53 1,35 2,05 1,24 1,82
75 1,13 1,69 1,08 1,76 1,06 1,54 1,10 1,64 1,32 2,00
90 1,22 1,84 1,14 1,86 1,17 1,69 1,03 1,46 1,47 2,28

AR(1) on Vol 10 1,42 2,16 1,50 2,50 1,23 1,82 2,28 3,40 1,38 1,91
25 1,23 1,86 1,30 2,13 1,12 1,66 1,73 2,60 1,29 1,85
50 1,38 1,93 1,69 2,34 1,25 1,70 2,51 3,07 1,30 1,87
75 1,15 1,71 1,11 1,80 1,04 1,52 1,09 1,60 1,37 2,03
90 1,24 1,86 1,18 1,91 1,15 1,67 1,00 1,42 1,52 2,29

VAR on Vol 10 1,45 2,20 1,51 2,53 1,30 1,88 2,23 3,34 1,32 1,86
25 1,27 1,91 1,31 2,16 1,18 1,73 1,73 2,61 1,28 1,82
50 1,18 1,76 1,19 1,94 1,10 1,60 1,38 2,08 1,30 1,89
75 1,19 1,76 1,13 1,82 1,12 1,61 1,11 1,66 1,44 2,12
90 1,27 1,88 1,17 1,93 1,23 1,76 1,03 1,46 1,60 2,39

Dumas et. Al. 10 1,38 2,12 1,42 2,44 1,19 1,79 2,17 3,31 1,32 1,85
25 1,23 1,84 1,30 2,11 1,10 1,65 1,83 2,64 1,25 1,80
50 1,11 1,67 1,10 1,84 1,02 1,52 1,30 2,04 1,21 1,80
75 1,13 1,69 1,08 1,75 1,06 1,54 1,08 1,62 1,34 2,00
90 1,21 1,83 1,13 1,85 1,15 1,67 1,03 1,46 1,45 2,26

Daglish et. Al. 10 1,40 2,13 1,45 2,46 1,20 1,79 2,21 3,32 1,34 1,86
25 1,20 1,82 1,24 2,08 1,08 1,64 1,76 2,59 1,21 1,78
50 1,12 1,68 1,11 1,85 1,03 1,52 1,29 2,04 1,23 1,81
75 1,16 1,72 1,12 1,77 1,10 1,57 1,11 1,62 1,39 2,03
90 1,19 1,82 1,10 1,84 1,13 1,66 1,01 1,45 1,41 2,25

NS 10 1,25 1,99 1,31 2,23 1,08 1,64 2,03 3,02 1,23 1,70
25 1,15 1,69 1,27 1,97 1,08 1,53 1,73 2,43 1,14 1,65
50 1,08 1,60 1,06 1,71 0,95 1,45 1,24 1,86 1,12 1,67
75 1,05 1,58 0,99 1,59 1,00 1,44 0,99 1,50 1,26 1,86
90 1,11 1,72 1,08 1,69 1,11 1,60 0,97 1,40 1,31 2,06

AR(1) NS 10 1,35 1,99 1,35 2,26 1,11 1,66 2,01 3,13 1,28 1,79
25 1,21 1,74 1,31 2,02 1,11 1,53 1,75 2,47 1,25 1,70
50 1,11 1,62 1,02 1,77 0,99 1,42 1,30 2,00 1,19 1,72
75 1,07 1,67 1,07 1,62 1,08 1,42 1,08 1,60 1,33 1,93
90 1,19 1,70 1,06 1,73 1,14 1,59 0,98 1,39 1,42 2,17

AR(1) Daglish 10 1,42 2,17 1,51 2,51 1,24 1,83 2,27 3,40 1,40 1,93
25 1,24 1,86 1,29 2,12 1,11 1,67 1,83 2,67 1,26 1,83
50 1,15 1,73 1,14 1,89 1,05 1,54 1,37 2,13 1,27 1,85
75 1,21 1,78 1,15 1,83 1,12 1,58 1,19 1,71 1,43 2,05
90 1,23 1,86 1,13 1,88 1,15 1,66 1,09 1,53 1,43 2,24

AR(1) Dumas 10 1,41 2,16 1,47 2,49 1,23 1,82 2,23 3,39 1,38 1,91
25 1,27 1,90 1,36 2,17 1,14 1,67 1,90 2,71 1,30 1,86
50 1,14 1,72 1,13 1,88 1,03 1,53 1,35 2,11 1,26 1,86
75 1,17 1,75 1,10 1,79 1,09 1,55 1,14 1,68 1,42 2,08
90 1,24 1,86 1,15 1,89 1,18 1,68 1,09 1,51 1,54 2,33
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In order to assess the validity of parameter stability for the methodologies inves-

tigated, I report the coefficient of variations (the ratio of the standard deviation to

the mean) of the model’s parameter estimates across the 358 weeks in table 8. It

is natural to look at the standard deviation of the parameter estimates to find out

if there is any considerable variation in the coefficient estimates from week to week,

implying perhaps that the volatility function is not stable through time. However, the

functional forms used by each methodology to fit the smile is significantly different

from each other. Hence, comparing their stability comparisons using their standard

deviations would be misleading. I have to resort to the coefficient of variation to make

this comparison properly. Also, I are not able to include the Malz methodology in

this section as its parameters are perfectly stable since they are constant all the time.

150



Table 25: Parameter Stability
The table reports the stability comparison of Nelson-Siegel, Dumas et. al. and Daglish et. al. method parameters for emerging
and developed markets from Jan 2006 to Apr 2011.

Stdev/Mean Dumas et. al. Nelson-Siegel Hull et. al.

a0 a1 a2 Beta0 Beta1 Beta2 Tau c0 c1 c2 c3
Emerging Market Currencies

USDTRY 0,37 1,31 0,37 0,39 0,42 0,38 0,01 2,55 0,64 0,54 0,50
USDBRL 0,43 1,99 17,11 0,54 0,61 0,55 0,02 1,75 0,70 0,61 0,58
USDMXN 0,59 2,66 0,76 0,78 0,89 0,83 0,06 3,10 1,13 0,96 0,90
USDINR 0,37 3,48 0,62 0,63 0,83 0,69 0,03 7,63 1,12 0,88 0,81
USDZAR 0,33 1,11 0,55 0,39 0,44 0,47 0,03 5,19 0,89 0,66 0,58

Developed Market Currencies
EURUSD 0,39 0,73 0,57 0,53 0,26 0,51 0,09 0,46 0,87 3,22 7,19
USDGBP 0,44 0,69 0,58 0,42 0,28 0,74 0,10 0,47 0,66 1,70 14,18
CHFUSD 0,31 0,83 0,55 0,43 0,31 0,68 0,07 0,38 1,34 4,11 1,48
USDJPY 0,45 0,78 0,46 0,58 0,22 0,41 0,12 0,71 1,46 5,38 11,10
USDCAD 0,40 2,34 0,45 0,44 0,74 0,52 0,06 0,52 2,26 1,65 0,91
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From the forecasting results, it was clear that the accuracy and forecasting capa-

bilities of all the methodologies are significantly better in developed market currencies

than the emerging market currencies. Surprisingly, I do not observe this feature for

the parameter stability. The coefficient of variation comparion is inconclusive for this

case, it is more or less the same for both sets of currencies. One striking observation

is that the coefficient a1 and a2 in Dumas methodology and c0 and c3 in Daglish’s

methodology show signs of instability for some specific currencies. See USDBRL

and USDCAD currencies for a1 and a2 and see USDINR, USDGBP and USDJPY

currencies for c0 and c3. Notice that these bursts of unstability never happen for

Nelson-Siegel. It has a fairly small coefficient of variations for each of its parameters

across all the currencies.

In order to understand the reason behind this, I further investigate the time series

behavior of the parameters for each method. To examine explicitly the issue of coeffi-

cient stability, 2.5 has three panels containing plots of the time-series estimates of the

implied volatilities for the models Nelson-Siegel, Dumas and Daglish. ”This evidence

indicates that the in-sample estimates for the Deterministic Volatility Function model

seem to be unstable. This inference implies that changes in the coefficient estimates

may not be entirely due to economic factors, but may be the result of overfitting.”

(Dumas et al. (1998)) Indeed Dumas arrives at the same conclusion in his paper and

a similar argument is true for Daglish’s methodology. The three parameters (β0, β1,

β2) of Nelson-Siegel methodology have economic interpretations, therefore immune to

this deficiency. To more clearly express the connection of NS estimation parameters

(β0, β1, β2) with the empirical proxies (ATM, risk-reversal and butterly) , I put the

time evolution of these proxies on top of the parameter estimates. As a last remark

about NS, the parameter τ is harder to interpret in financial terms, but it is by far

the most stable one among all the parameters. Hence, it has no significance as far as
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the stability is concerned.

In order to explicitly examine the issue of parameter stability, graphical represen-

tations of at-the-money, risk-reversal and strangle factors of Nelson-Siegel method are

given in 2.5. As it can be observed from the figure, method is capable of generating

stable and realistic factors. Also, when I compare second and third parameters of

Nelson-Seigel method and the method of Dumas et. al., it can be observed from 25

that deviation in NS factors is much smaller.
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Figure 54: Stability of NS,Dumas et. al. and Daglish et. al. parameters for USD/TRY option date for the period Jan 2006-Apr
2011. The parameters are scaled to match the corresponding empirical quantity.
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CHAPTER III

CONCLUSION

I began by showing why the NS and NSS functional forms were attractive and widely

used for estimating the term structure of interest rates from bond prices. I then noted

that the NS and in particular the NSS functions could lead to potential degeneracy

that would make parameter estimation challenging. However, not all optimization

methods are equally susceptible to these problems. The types of degeneracy that

the NSS function is prone to creating greater problems for gradient and direct search

methods then for methods based on global optimization methods. The relative im-

munity of global optimization algorithms to problems inherent in the NS and NSS

functions was confirmed repeatedly in my in-sample stability and out-of-sample, and

robustness tests. The global optimization methods, and in particular Hybrid PSO al-

gorithm, also generally showed the best in- and out-of-sample goodness-of-fits. Only

in the case computational speed was another method, the Nelder-Mead, clearly su-

perior to the alternatives.

I believe that the method I use to arrive at starting values, derived from Diebold

and Li (2006), starts all the single-point optimizations at a point that may be ex-

pected to be in the general region of the globe minimum. Researchers who do not

use as carefully chosen starting values and are using gradient-based or other methods

that rely on a single starting value, are likely to find their results to be less reliable

than shown in this study, if they perform similar robustness checks.

My hypothesis is that the superior performance of the PSO methods lies in using
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multiple starting values, employing a randomized search process, and keeping track

of past best solutions (i.e., having memory). For ill-conditioned problems such as NS

and NSS can give rise to, BFGS is subject to numerical problems. Variables that are

not uniquely identified can cause oscillation between extreme solutions pairs when

trying to find an improvement in the objective function using gradients that are near

zero. Methods that do not rely on gradients are much less susceptible to problems

when optimizing such ill-conditioned problems.

Single-point methods are susceptible to finding local, rather than global, minima.

They are, therefore, critically dependent on the topography of the objective function

surface and the initial starting value. As I have noted, estimating term structures

from coupon bond prices presents the optimization algorithm with a very complex

surface over which to search for a global minimum. Randomizing within a single-point

search algorithm, as Simulated Annealing does, only partially mitigates the problem

of converging on the first local minimum found in the search. The multiple starting

point algorithms, Nelder-Mead, PSO, and Genetic algorithms, overcome the problem

hanging up on local minimum, which single-point methods are prone to, by beginning

with a wide range of starting points and then converging these to a single solution.

In the process, these methods “sweep” a large area of the objective function surface,

rather than following a single line. Finally, the memory of past individual particle

and global best solutions inherent in the PSO class of optimization algorithms adds

a level of information and flexibility that the other methods lack. The hybrid PSO

improves on previous PSO methods by focusing exclusively on global best in moving

particle forward after there has been a degree of convergence and individual particle

best information is no longer as valuable.

For academics and practitioners estimating term structures, this study provides
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clear evidence of the noise that injudicious choice of optimization method can in-

troduce in the estimated values, as well as suggesting and validating a method that

works well for the NSS model. For researchers interested in optimization methods,

this study presents an example of a problem that is not suited to number of opti-

mizations methods, including the defaults in most statistical packages, but can be

handled by the newer global optimization methods and suggests why this is the case.

Unfortunately, gradient-based methods such as BFGS and GRG are the default

methods used by statistical packages, and therefore are likely to be the ones being used

when estimating term structures using the NS and NSS functions. My conclusion,

therefore, is that empirical researchers and practitioners needing reliable estimates of

the term structure should give careful consideration to the choice of functional form

and the optimization method used to estimate its parameters.

I compared the optimization algorithms using some performance metrics and I

have made several robustness checks such as application of the model and the opti-

mization algorithms to the local currency bonds. Afterward, I checked the trading

performance of the model in terms cheap and rich analysis. As a final step, I applied

the hybrid PSO algorithm in a different asset class, which is foreign exchange options

in emerging markets. I have seen that using a NSS type of deterministic implied

volatility function for the FX options in emerging markets yields more stable results

and has better predictive power and trading results compared to its peers.
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CHAPTER IV

APPENDIX

4.1 Review of Splines

In this section I will take a look to the basic concepts about splines. I tried to explain

the concepts in formal and informal ways to make it easier to understand. First I

will give a formal definition of splines and introduce the notation then, starting with

the linear spline derivation, I will discuss about the conceptual and computational

nature of splines. At last I will examine the functions offered in McCulloch (1971)

and find the logic behind them.

Splines are piecewise polynomials defined between knot points. The word spline

comes from the tools (flat splines) used to draw the curves that cannot be drawn

with French curves. Flat splines are a piece of thin flat wood or some other flexible

material. It’s fixed at some points and passes through the data points.

4.1.1 Spline Definition

(n+ 1)th order (nth degree) spline defined as follows:

S : [a, b]→ R

Splines are defined between the first and last point of the knot sequence. The knot

sequence ti is strictly increasing.
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a = t0 < t1 < ... < tk−1 < tk = b, i = 0, ..., k

I define piecewise polynomials that form our spline between two adjacent points.

Pi : [ti, ti+1]→ R

Pi = ai0 + ai1x+ ai1x
2 + ...+ ainx

n

S(t) = P0(t), t0 ≤ t < t1,

S(t) = P1(t), t1 ≤ t < t2,

...

S(t) = Pk−1(t), tk−1 ≤ t < tk,

At last I impose the continuity constraints.

Pi(xi) = yi = Pi−1(xi), i = 1, ..., n− 1

P ′i (xi) = P ′i−1(xi), i = 1, ..., n− 1

P ′′i (xi) = P ′′i−1(xi), i = 1, ..., n− 1

...

P
(n−1)
i (xi) = P

(n−1)
i−1 (xi), i = 1, ..., n− 1

I denote the continuity of splines as following. This expression means that our

function has a continuous (n− 1)th derivative.
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S(t) ∈ C(n−1)

Continuity is an important parameter of splines. In statistical applications like our

subject, yield curve estimation, cubic splines satisfy our expectations. The more con-

tinuity is the more fluctuation of curve.

4.1.2 Linear Splines

The simplest functions that I can fit on data is linear splines. I can explain the linear

splines as the lines drawn with a ruler between the adjacent data points. They are

continuous but their derivatives are not. It’s useful and easy to implement for plot-

ing data but they are problematic for analytical purposes. Some examples of linear

splines are data plots in MATLAB and Excel and the yield curves on Bloomberg

terminal.

Here I explain two derivation methods for linear splines. Both of them gives the

same result but they differ in the computational aspects.

4.1.2.1 Linear Spline Derivation - I

All linear splines can be defined as

S(x) = a0|t− t0|+ a1|t− t1|+ ...+ ak|t− tk|

In order to determine the coefficients ai I should solve he linear system that

S(ti) = yi, i = 0, 1, ..., k
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I can express this linear system in matrix form as



0 |t0 − t1| . . . |t0 − tn|

|t1 − t0| 0 . . . |t1 − tn|
...

...
. . .

...

|tn − t0| |tn − t1| · · · 0


.



a0

a1

...

an


=



y0

y1

...

yn


Even though these expressions do not look like the formal spline definition, just

because the absolute value function is a piecewise linear function the linear combi-

nation of the absolute values coincide with the definition given above (Bolder and

Gusba, 2002).

4.1.2.2 Linear Spline Derivation - II

Alternatively I can define the linear splines by using the basis functions. The basis

function that I use satisfies the constraint that Bi(tj) = δij. δij is the Kronecker delta

that is equal to 1 if i = j and 0 if i 6= j.

B0(t) =


t1−1
t1−t0 : t0 ≤ t < t1

0 : t1 ≤ t



Bi(t) =



0 : t < ti−1

t−ti−1

ti−ti−1
: ti−1 ≤ t < ti

ti+1−t
ti+1−ti : ti ≤ t < ti+1

0 : ti+1 ≤ t


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Bk(t) =

 0 : t < tk−1

t−tk−1

tk−tk−1
: ti−1 ≤ t < ti


The basis functions also called pyramide or tent functions due to their shapes.

The logic of these basis functions introduces us the further concepts about higher

order splines and B-splines. See the figure below for the tent functions.

Figure 55: Pyramide or tent functions

The coefficients for the basis functions are the ordinate values of data points itself

(remember that Bi(tj) = δij.).

S(t) =
k∑
i=0

yi ·Bi(t)

The spline described above can also be expressed as follows:
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S(t) = yi−1
|t− ti|
ti − ti−1

+ yi
|t− ti−1|
ti − ti−1

: ti−1 ≤ t < ti

(Lancester and Salkauskas, 1986)

4.1.3 Cubic Spline Derivation

Cubic splines are frequently used in curve fitting applications. They have a contin-

uous second derivative in most situations. The higher order splines don’t have too

much benefit but they increase the computational burden. Using the definition above,

I know that a cubic spline defined as follows:

S(t) =



a0,0 + a0,1(t) + a0,2(t)2 + a0,3(t)3 : t0 ≤ t < t1

a1,0 + a1,1(t) + a1,2(t)2 + a1,3(t)3 : t1 ≤ t < t2
...

a(k−1),0 + a(k−1),1(t) + a(k−1),2(t)2 + a(k−1),3(t)3 : tk−1 ≤ t < tk


I could try to find the parameters by using this definition but this makes the ma-

trix I would try to solve too large. Moreover the matrix would have computational

difficulties. Instead I suggest an alternative derivation. I assume that the second

derivative of the spline takes the values zi, i = 0, 1, ..., k at knot points that I find by

constructing an easy-to-solve linear system. From the formal definition of splines I

know that cubic splines should have continuous second derivative at knot points. I

define the second derivative of cubic spline as a linear spline.

zi = S ′′(ti)

hi = ti+1 − ti
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I used the second linear spline method to define the second derivative and then

take the integral of the expression in order to find the spline.

S ′′(t) = zi−1
|t− ti|
ti − ti−1

+ zi
|t− ti−1|
ti − ti−1

S ′(t) =

∫ (
zi−1

ti − t
ti − ti−1

+ zi
|t− ti−1|
ti − ti−1

)
dt

S ′(t) = −zi−1

2hi
(ti − t)2 +

zi
2hi

(t− ti−1)2 + Ci,

S(t) =

∫ (
−zi−1

2hi
(ti − t)2 +

zi
2hi

(t− ti−1)2 + Ci

)
dt

S(t) =
zi−1

6hi
(ti − t)3 +

zi
6hi

(t− ti−1)3 + Cix+Di,

Here I used a math trick. I changed the integral constants Ci and Di in order to

make change of variables possible.

Ci = −ci + di

Di = citi − diti−1

S(t) =
zi−1

6hi
(ti − t)3 +

zi
6hi

(t− ti−1)3 + ci(ti − t) + di(t− ti−1).

By solving S(ti−1) = yi−1 I get that

ci =
1

hi

(
yi−1 −

zi−1h
2
i

6

)
In a similar way I solve S(ti) = yi and I get that

di =
1

hi

(
yi −

zih
2
i

6

)
Since the second derivative of the spline is continuous, the first derivative should

also be continuous. Using this fact I obtain following equations.
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S ′(t) =
∂S(t)

∂t
= −zi−1

2hi
(ti−t)2 +

zi
2hi

(t−ti−1)2− 1

hi

(
yi−1 −

zi−1h
2
i

6

)
+

1

hi

(
yi −

zih
2
i

6

)

lim
t→t−i

S ′(t) = S ′(t−i ) =
zihi

3
+
mi−1hi

6
+
yi − yi−1

hi

lim
t→t+i

S ′(t) = S ′(t+i ) = −zihi+1

3
− mi−1hi

6
+
yi+1 − yi
hi+1

If I solve S ′(t−i ) = S ′(t+i ) I get

∆i =
hi

hi + hi+1

mi−1 + 2mi +
hi+1

hi + hi+1

mi+1 =
6
(
yi+1−yi
hi+1

− yi−yi−1

hi

)
hi + hi+1

, i = 1, 2, ..., k − 1

As you can see I can define this equation only for the intermediate knot points.

This means that I have k − 1 equation where I have k + 1 coefficients. The first

and last knot points don’t have any constraints so I can freely determine the values

that second derivative of spline takes there. I chose to make them zero and I get the

system follows.



2 0 0 0 . . . 0 0 0

1− λ1 2 λ1 0 . . . 0 0 0

0 1− λ2 2 λ2 . . . 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 . . . 1− λk−1 2 λk−1

0 0 0 0 . . . 0 0 2


.



z0

z1

z2

...

zk−1

zk


=



0

∆1

∆2

...

∆k−1

0


where λi = hi+1

hi+hi+1
.

(Bolder and Gusba, 2002)
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Figure 56: Cubic spline

4.1.4 B-Splines

In our final spline derivation, I use basis functions called B-splines. B-splines are

piecewise functions whose linear combinations includes every spline of the same or-

der. Using B-splines make the spline fitting easier and more flexible.

I define the B-spline of order 1 (degree 0) as follows.

B1,i(t) =


0 : t < ti

1 : ti ≤ t < ti+1

0 : ti+1 ≤ t


For the higher degree I can use the recurrence relation.
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Bn,i(t) =
t− ti

ti+j−1 − ti
Bn−1,i(t) +

ti+j − t
ti+j − ti+1

Bn−1,i+1(t)

See the figure following

B-splines never take negative values and they have local support.

Figure 57: B-Spline Basis Functions for knot sequence 0, 0, 0, 0, 1, 2, 3, 4, 5, 5, 5, 5

Bn,i(t) ≥ 0, t ∈ [ti, ti + n)

Bn,i(t) = 0, t /∈ [ti, ti+n)

As I defined B-splines by the recurrence relation, I can also define their derivatives
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recursively.

B′n,i(t) = (n− 1)

[
Bn−1,i(t)

ti+n−1 − ti
− Bn−1,i+1(t)

ti+n − ti+1

]
Integral of B-splines seem to be more complex.

∫ t

ti

Bn,i(u)du =


0 t ≤ ti

ti+n−ti
n

t ≥ ti+n

ti+n−ti
n

∑n−1
j=0

t−ti+j
ti+n−ti+jBn−j,i+j(t) ti < t < ti+n


Integral of B-Splines are crucial when I impose a penalty for roughness.

After having the knowledge of these important properties I can dig into the spline

fitting with cubic B-splines.

As proven in advanced texts all splines of order n with knot sequence ti, i =

0, 1, ..., k can be obtained with the linear combination of the B-splines of same order.

I denote the coefficients of the B-splines with the sequence ai and the column vector

ã and the values of B-spline functions at t with row vector B̃(t).

In our sample the data points I try to fit and the knot points coincide. I have k

points to fit. At these points yi = B̃(ti) · ã. Now I have k + 1 equations. For the

end-point conditions (in this paper I use natural splines whose (n− 2)th derivatives

at end points are equal to zero.) I get 2 additional equations so I need k + 3 B-

splines to find a fit. This implies that I need k + 7 knot points where I have k + 1 of

them. Now I should create an augmented knot sequence with additional knot points

t−3, t−2, t−1, tk+1, tk+2, tk+3 which satisfy t−3 = t−2 = t−1 = t0 < ... < tk = tk+1 =

tk+2 = tk+3. The new knot point sequence requires us to define B-splines with coin-

cident knots.
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B-splines are defined for the knots ti = ti+1 = ... = ti+n−1 < ti+n as follows.

Bn,i(t) =


(
ti+n−t
ti+n−ti

)n−1

t ∈ [ti, ti+n]

0 t /∈ [ti, ti+n]


In a similar way, of the knots ti < ti+1 = ... = ti+n−1 = ti+n:

Bn,i(t) =


(

t−ti
ti+n−ti

)n−1

t ∈ [ti, ti+n]

0 t /∈ [ti, ti+n]


At last I construct our system as follows.



B̃ ′′(t0 )

B̃(t0 )

B̃(t1 )

...

B̃(tk)

B̃ ′′(tk)


·



a−3

a−2

a−1

...

ak−2

ak−1


=



0

y0

y1

...

yk

0


Actually the matrix of B-spline values whose rows are B̃ ′′(t0 ), B̃(ti) and B̃ ′′(tk) is

almost tridiagonal so the calculations become too easy.



B′′4,−3(t0) B′′4,−2(t0) B′′4,−1(t0) 0 . . . 0 0 0

B4,−3(t0) B4,−2(t0) B4,−1(t0) 0 . . . 0 0 0

0 B4,−2(t1) B4,−1(t1) B4,0(t1) . . . 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 . . . B4,k−3(tk) B4,k−2(tk) B4,k−1(tk)

0 0 0 0 . . . B′′4,k−3(tk) B′′4,k−2(tk) B′′4,k−1(tk)


(Dierckx, 1993)
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4.1.5 Cubic Hermite Splines

Another spline worths to investigate is cubic Hermite spline. Similar to the other ex-

amples discussed in this paper, Hermite splines are also cubic but there is a difference

in the continuity equations. Instead of the second-order continuity Hermite spline fix

the first-order derivative to a predetermined number. This provides a chance to ar-

range the slope at knot points thus modify the curve in order to increase smoothness.

But it also causes a discontinuous second derivative or so-called ‘knuckles’ in the first

derivative curves.

To construct the Hermite spline, one can use the four basis functions which have

certain properties. The coefficients of these basis functions are desired function and

derivative values for the both end of the interval.

B0,0(t) = 2(
t− ti
ti+1 − ti

)3 − 3(
t− ti
ti+1 − ti

)2 + 1

B1,0(t) = (
t− ti
ti+1 − ti

)3 − 2(
t− ti
ti+1 − ti

)2 +
t− ti
ti+1 − ti

B0,1(t) = −2(
t− ti
ti+1 − ti

)3 + 3(
t− ti
ti+1 − ti

)2

B1,1(t) = (
t− ti
ti+1 − ti

)3 − (
t− ti
ti+1 − ti

)2

The plots of these basis functions are following:

The spline between ti and ti+1 is defined as

yiB0,0 + siB1,0 + yi+1B0,1 + si+1B1,1

The second issue with the Hermite splines is the choice of the derivatives. One of

them is the Bessel Method which chooses the derivatives at the knot point as

s0 =
1

t2 − t0

[
(t2 + t1 − 2t0)(y1 − y0)

t1 − t0
− (t1 − t0)(y2 − y1)

t2 − t1

]
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si =
1

ti + 1− ti − 1

[
(ti+1 − ti)(yi − yi−1)

ti − ti−1

− (ti − ti−1)(yi+1 − yi)
ti+1 − ti

]

sk =
1

tk − tk+2

[
(tk − tk−1)(yk−1 − yk−2)

tk−1 − tk−2

− (2tk − tk−1 − tk−2)(yk − yk−1)

tk − tk−1

]
Another method is the constrained splines suggested by Kruger (2003). This time

the derivatives at the knot points are:

si =


0 : if slope changes sign

2
ti+1−ti
yi+1−yi

+
ti−ti−1
yi−yi−1

: otherwise


for the intermediate points. For the end-points:

s0 =
3

2

y1 − y0

t1 − t0
− s1

2

Figure 58: Hermite spline basis functions
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sk =
3

2

yk − yk−1

tk − tk−1

− sk−1

2

4.1.6 Least Squares Criterion

In some situations I cannot constructs such a linear system to find spline coefficients.

This can be caused by that I do not observe the data points that I try to fit or I just

do not want a perfect fit for some reason. In this situations I should find the spline

with minimal deviation from data points. In order to do this, I try to minimize the

sum of the residuals.

εtotal =
∑
|S(ti)− yi|

As you can realize the measure of errors given above is not differentiable so it is harder

to find the minimum of it. Instead I use a differentiable measure of errors, simply the

sum of squares of residuals.

l2 =
∑

[S(ti)− yi]2

If I rewrite the equation in matrix form, I obtain that:

l2 = εT ε

where

ε =



B̃ ′′(t0 )

B̃(t0 )

B̃(t1 )

...

B̃(tk)

B̃ ′′(tk)


·



a−3

a−2

a−1

...

ak−2

ak−1


−



0

y0

y1

...

yk

0


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Solving the equation ∂l2

∂~a
= 0 I find:

~a = (BTB)−1BT~y

4.1.7 Smoothing Criterion

In some cases, a perfect fit is undesirable since it cause dramatic moves in curve. To

keep balance between smoothness and goodness of fit, I employ a penalty for excess

roughness. Roughness at a point implied by curvature of curve at that point. The

sharper the corner, the smaller the curvature. Since I wanted our penalty function

to increase when moves of the function sharper I employ integral of the square of the

second derivative.

∫ tk

t0

(S ′′(t))2dt =

∫ tk

t0

(aT · (B̃′′(t))(B̃′′(t))T · adt = aT ·
∫ tk

t0

((B̃′′(t))(B̃′′(t))Tdt · a

Since the matrix H =
∫ tk
t0

((B̃′′(t))(B̃′′(t))Tdt is constant for a certain knot point

sequence, such a formulation makes the calculations easier. It’s also worth to note that

H is a band-diagonal matrix since the B′′k,iB
′′
k,i is equal to 0 where |i− j| < 2(k − 1).

4.1.8 McCulloch Estimation Method

The essence of McCulloch method is the use of linear relation between discount fac-

tor and bond prices. This method does not directly estimate spot rate, it estimates

discount factor which can be transformed into spot rate function.

In McCulloch (1971), the price of the coupon bond calculated as using continuous

coupon payment. See the following for McCulloch’s simplified bond price formulation:
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Figure 59: McCulloch’s Basis Functions

p(t, T ) = cT · d(t, T ) + c

∫ T

t

d(t,m) · ∂m

In our research I used discrete coupon stream that I described above. It results a

better estimation and less error.

McCulloch postulates a linear combination of basis functions :

d(t,m) = a0 +
k∑
j=1

ajfj(m− t)

As the nature of discount factor dictates, the discount factor for zero maturity

d(t, t) should be equal to one. This requires a0 = 1 and fj(0) = 0 for j = 1, 2, ..., k.
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Figure 60: Example of a McCulloch yield curve

Here I assume that ci and Ti represents the cash flow amount and cash flow date of

a coupon bond. The linear system that I use for estimating the parameters calculated

as following:

p(t, Tm) =
m∑
i=0

ci · δ(t, Ti)

p(t, Tm) =
m∑
i=0

ci · [1 +
k∑
j=1

ajfj(Ti − t)]

p(t, Tm)−
m∑
i=0

ci =
m∑
i=0

ci ·
k∑
j=1

ajfj(Ti − t)

p(t, Tm)−
m∑
i=0

ci =
k∑
j=1

aj ·
m∑
i=0

fj(Ti − t) · ci
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If I express it in matrix form I get:

y =



p1 −
∑m

i=0 c1i

p2 −
∑m

i=0 c2i

...

pn −
∑m

i=0 cni



a =



a1

a2

...

ak



X =



∑m
i=0 f1(T1i − t) · c1i

∑m
i=0 f2(T1i − t) · c1i . . .

∑m
i=1 fk(t1i) · C1i∑m

i=0 f1(T2i − t) · c2i

∑m
i=0 f2(t2i) · C2i . . .

∑m
i=1 fk(t2i) · C2i

...
...

. . .
...∑m

i=0 f1(Tni − t) · Cni
∑m

i=1 f2(tni) · Cni . . .
∑m

i=1 fk(tni) · Cni


Our objective is to minimize the residual between y and X · a. As I introduce in

Section 3.5 the usual solution for a is as follows.

a = (XTX)(XTy)

4.1.8.1 Knot points

In McCullochs method, you can control the number of variables by determining the

number of knot points. If one choose the number equal to the number of the bonds

in data set, he will have almost an exact fit but it will cause unwanted oscillations.

McCulloch suggests that using
√
n will be enough for a good fit. Moreover it pre-

vents the oscillations caused by mispriced bonds. For choosing these
√
n knot points,
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McCulloch offers following formula.

dj = th + θ(th+1 − th)

h = greatest integer in
(j − 1)n

k − 1

θ =
(j − 1)n

k − 1
− h

where k is the number of knot points and n is the number of bond in data set. The

formula always results in that d1 = 0 and dk = tn. In need, you can also determine

the k manually. Note that when you increase k, therefore number of parameters, you

will acquire a better fit, though smoothness of curve decreases.

McCulloch Procedure

1. For each bond i

(a) Find the cash flow amounts and dates.

(b) yi = (Price of bond)− (Sum of cash flow amounts)

(c) For each basis function fj

i. Xi,j = Sum of the values of fj at cash flow dates ×

corresponding cash flow amounts

2. Find coefficients a = (XTX)(XTy)
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4.2 Implied Volatility Conventions

4.2.1 Market Quotations

The simplified formula for 0.25 delta volatilities is

σ25C = σATM +
1

2
σ25−RR + σ25−STR (43)

σ25P = σATM −
1

2
σ25−RR + σ25−STR (44)

where σ25C is the call volatility, σ25P is the put volatility, σ25−RR is the risk reversal

quotation and σ25−STR is the quoted strangle volatility. Note that

σ25−RR = σ25C − σ25P (45)

The market strangle volatility is defined as

σ25−STR = σ25C + σ25P − 2σATM (46)

4.2.2 Basics of Hedging by Options

Primary feature of the Black and Scholes (1973) model is that the values of the

contingent claims do not depend on investors’ risk preferences. That means that

an option can be hedged with stock to create an instantaneously riskless portfolio.

Second assumption is that the stock prices evolve lognormally with constant volatility

at any time and market level. The stock price evolution over time is described by

dS

S
= µdt+ σdW (47)

where S is the stock price, µ is the expected return and dW is a Brownian motion

with a mean of zero and a variance equal to dt. The Black-Scholes formula for a call

option follows from applying the general method of risk-neutral valuation to an asset
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whose evaluation is specifically assumed to follow (47).

The value of a vanilla option contract is computed with Black and Scholes (1973)

formula

v(St, K, σ, φ) =v(St, rd, rf , K, σ, t, T, φ) (48)

=φ[Ste
−rf τN(φd+)−Ke−rdτN(φd−)] (49)

=φe−rdτ [f(t, T )N(φd+)−KN(φd−)] (50)

where d± =
ln(

f(t,T )
K

)± 1
2
σ2τ

σ
√
τ

, K is the strike price, σ is the volatility, φ = +1 for call,

φ = −1 for put and N(x) is the cumulative normal distribution function.

The sensitivity of the vanilla option with respect to the underlying could be inter-

preted in several different ways. In equity markets, one would use the spot delta (i.e.

sensitivity with respect to the spot price). However, in the FX markets, the default

is the forward delta (i.e. sensitivity with respect to the forward price). One can also

use the premium adjusted delta. The details of these conventions are described in

Wystup(2010).

The number of forward contracts one would buy to hedge a short position is slightly

different from the number of units of the underlying required when using spot delta.

It is given by the following formula.

∆f (K, σ, φ)
∆
=
∂v

∂S
= φN(φd+) (51)

Put-call parity yields ∆f (K, σ,+1)−∆f (K, σ,−1) = 1.
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One would enter ∆f × N forward contracts to forward-hedge a short vanilla op-

tion position. In FX options smile tables the forward delta is often preferred. The

main reason for this is the fact that the sum deltas of corresponding call and put

options is 1,i.e. the -delta call must have the same volatility as the 75-delta put. This

symmetry only works for forward deltas, and it is due to the put-call parity equation

above.

In terms of the relationship between the implied volatility as a function of delta

and the implied volatility as a function of strike price different markets have different

quoting mechanisms. While it is common in equity markets to quote strike-volatility

or strike-price pairs, this is usually not the case in FX markets. Many customers on

the buy-side receive implied volatility-delta pairs from their market data provider.

This data is usually the result of a suitable calibration and transformation output.

For given forward delta ∆f and the corresponding volatility σ, the strike can be

obtained as

K = fe−φN
−1(φ∆f )σ

√
τ+ 1

2
σ2τ . (52)

4.2.3 Generating Implied Distribution from Option Prices

Approximating function methods begin with the option-pricing relation in Cox et al.

(1976), who show that the price of an option is the discounted risk-neutral expected

value of the payoffs:

C(t,K) = e−r(T−t)
∫ ∞

0

(ST −K)+f(ST )dST (53)

P (t,K) = e−r(T−t)
∫ ∞

0

(K − ST )+f(ST )dST

where C(t,K) and P (t,K) are the prices of European calls and puts observed at time

t having expiries at T and strike prices of K; r is the riskless rate of interest, and
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f(ST ) is the risk-neutral probability density function for the value of the underlying

asset S at time T . Parametric approximating function methods assume that f(ST )

has a particular functional form, chosen to allow for a variety of possible shapes.

Parameter values are found by minimizing some function of the fitted price errors.

For a given expiration T and current stock price St, the collection {er(T−t)C(t,K)} of

undiscounted option prices of different strikes yields the risk-neutral density function

f of the final spot ST thrrough the relationship

er(T−t)C(t,K) =

∫ ∞
0

(ST −K)+f(ST )dST (54)

Differentiate this twice with respect to K to obtain

f(K) =
∂2C

∂K2
(55)

One can look at the work of Dupire (1994) for further details.
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