# T.C. KASTAMONU ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

# 1-METİLİSATİN VE 7-FLUOROİSATİN'İN KARAKTERİSTİK ÖZELLİKLERİNİN TEORİK VE DENEYSEL YÖNTEMLERLE İNCELENMESİ

İlknur ARICAN

Danışman II. Danışman Jüri Üyesi Jüri Üyesi Jüri Üyesi Yrd. Doç. Dr. Turgay POLAT Yrd. Doç. Dr. Gürcan YILDIRIM Prof. Dr. Fatma KANDEMİRLİ Doç. Dr. Ahmet Tolga TAŞÇI Doç. Dr. Cihan PARLAK

YÜKSEK LİSANS FİZİK ANABİLİM DALI

KASTAMONU -2015

#### **TEZ ONAYI**

İlknur ARICANtarafından hazırlanan 1-Metilisatin ve 7-Fluoroisatin'in Karakteristik Özelliklerinin Teorik ve Deneysel Yöntemlerle İncelenmesi" adlı tez çalışması aşağıdaki jüri üyeleri önünde savunulmuş ve oy birliği / oy çokluğu ile Kastamonu Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim Dalı'ndaYÜKSEK LİSANS TEZİolarak kabul edilmiştir.

| Danışman     | Yrd.Doç.Dr. Turgay POLAT<br>Kastamonu Üniversitesi             | Jungoliel |
|--------------|----------------------------------------------------------------|-----------|
| II. Danışman | Yrd.Doç.Dr. Gürcan YILDIRIM<br>Abant İzzet Baysal Üniversitesi | P-41dram  |
| Jüri Üyesi   | Prof.Dr. Fatma KANDEMİRLİ<br>Kastamonu Üniversitesi            | len       |
| Jüri Üyesi   | Doç.Dr. A. Tolga TAŞÇI<br>Kastamonu Üniversitesi               | CANL      |
| Jüri Üyesi   | Doç.Dr. Cihan PARLAK<br>Abant İzzet Baysal Üniversitesi        | A.        |
|              |                                                                |           |

15,06,2015

DAL



Enstitü Müdürü

Prof.Dr. Ömer KÜÇÜK

# ТААННÜТNАМЕ

Tez içindeki bütün bilgilerin etik davranış ve akademik kurallar çerçevesinde elde edilerek sunulduğunu, ayrıca tez yazım kurallarına uygun olarak hazırlanan bu çalışmada bana ait olmayan her türlü ifade ve bilginin kaynağına eksiksiz atıf yapıldığını bildirir ve taahhüt ederim.

The 1

İlknur ARICAN

# ÖZET

Yüksek Lisans / Doktora Tezi

# 1-METİLİSATİN VE 7-FLUOROİSATİN'İN KARAKTERİSTİK ÖZELLİKLERİNİN TEORİK VE DENEYSEL YÖNTEMLERLE İNCELENMESİ

İlknur ARICAN Kastamonu Üniversitesi Fen Bilimleri Enstitüsü Fizik Ana Bilim Dalı

#### Danışman: Yrd. Doç. Dr. Turgay POLAT

#### II. Danışman: Yrd. Doç. Dr. Gürcan YILDIRIM

Bu çalışmada çözücülerin 7-Fluoroisatin ve 1-Metilisatin molekülleri üzerindeki etkileri detaylı bir şekilde incelenmiştir. 7-Fluoroisatin ve 1-Metilisatin molekülleri ile ilgili deneysel ve teorik çalışmalar FT-IR ve FT-Raman spektrumları kullanılarak gerçekleştirilmiştir. Geometrik parametreler ve titreşim frekansları DFT/B3LYP metodu ve 6-311++G(d,p) temel seti ile hesaplanmıştır.

7-Fluoroisatin molekülü için elde edilen beş farklı tautomerik yapıya ait enerjiler hesaplanmıştır. Boltzmann dağılım istatistiği kullanılarak tautomerik yapıların bulunma yüzdeleri hesaplanmış en kararlı yapı bulunmuştur.

Moleküllere ait geometrik parametreler, titreşim frekansları, HOMO-LUMO enerjileri ve yük dağılımları farklı ortamlarda (gaz fazı, benzen, toluen, kloroform, anilin, THF, aseton, etanol, asetonitril, DMSO ve su) incelenmiştir. Çözücü etkisi araştırılmıştır.

Anahtar Kelimeler: 7-Fluoroisatin, 1-Metilisatin, çözücü etkisi, titreşim analizi, DFT, HOMO-LUMO, yük analizi

2015, 123sayfa Bilim Kodu: 202

# ABSTRACT

#### MSc. Thesis

# INVESTIGATION OF CHARACTERISTIC PROPERTIES OF 1-METHYLISATIN AND 7-FLUOROISATIN USING THEORETICAL AND EXPERIMENTAL METHODS

### İlknur ARICAN Kastamonu University Graduate School of Natural and Applied Sciences Department of Physics

#### Supervisor: Asist. Prof. Dr. Turgay POLAT

#### Co-Supervisor: Asist. Prof. Dr. Gürcan YILDIRIM

**Abstract:** In this study solvent effect on 7-Fluoroisatin and 1-Methylisatin molecules has been investigated in detail. This study was performed using FT-IR and FT-Raman spectra about experimental and theoretical studies of 7-Fluoroisatin and 1-Methylisatin compounds. Geometrical parameters and vibrational frequencies have been calculated with DFT/B3LYP method and 6-311++G(d,p) basis set.

Energies related to five different tautomers which areobtained for 7-Fluoroisatin molecule have been calculated. The relative abundances of tautomer have been calculated using Boltzmann distribution and the most stable structure have been found.

Geometrical parameters, vibrational frequencies, HOMO-LUMO energies and charge distributions have been investigated in different medias (gas phase, benzene, toluene, chloroform, aniline, THF, acetone, ethanol, acetonitrile, DMSO and water).Solvent effect has been examinated.

**Key Words:** 7-Fluoroisatin, 1-Methylisatin, solvent effect, vibrational analysis, DFT, HOMO-LUMO, charge analysis

2015, 123 pages Science Code: 202

# TEŞEKKÜR

Çalışmam süresince bana rehberlik eden ve yardımını esirgemeyen değerli hocalarım Yrd. Doç. Dr. Turgay POLAT'a ve Yrd. Doç. Dr. Gürcan YILDIRIM'a teşekkürü bir borç bilirim. Değerli katkılarından dolayı arkadaşım Fatih BULUT'a teşekkür ederim.

Ayrıca desteklerinden dolayı amirlerim Nihal YILMAZ'a, Şule SOLAKOĞLU'na, Erdem ZENGİN'e, Mehmet Salih YARIM'a ve çalışma arkadaşlarıma teşekkürlerimi sunarım.

Hayatım boyunca maddi ve manevi desteklerini esirgemeyen annem Aynur ARICAN'a, babam İsmail ARICAN'a, kardeşlerim Öznur ŞİMŞEK, Gökhan ARICAN, Fatih ŞİMŞEK, Zeynep ARICAN'a ve bilgisayarı benimle paylaşan sevgili yeğenim Nehir Zehra ARICAN'a teşekkür ederim.

İlknur ARICAN Kastamonu, Haziran, 2015

# İÇİNDEKİLER

|                                                                 | Sayfa |
|-----------------------------------------------------------------|-------|
| ÖZET                                                            | iv    |
| ABSTRACT                                                        | V     |
| TEŞEKKÜR                                                        | vi    |
| İÇİNDEKİLER                                                     | vii   |
| SİMGELER VE KISALTMALAR DİZİNİ                                  | Х     |
| ŞEKİLLER DİZİNİ                                                 | xi    |
| TABLOLAR DİZİNİ                                                 | xii   |
| 1. GİRİŞ                                                        | 1     |
| 2. YAPILAN ÇALIŞMALAR                                           | 3     |
| 2.1. Moleküler Titreşim Spektroskopisi                          | 3     |
| 2.1.1.Moleküler Titreşim                                        | 3     |
| 2.1.2. İnfrared Spektroskopisi                                  | 6     |
| 2.1.2.1. Klasik Kuram                                           | 7     |
| 2.1.2.2. Kuantum Kuramı                                         | 8     |
| 2.1.3.Raman Spektroskopisi                                      | 9     |
| 2.1.3.1. Klasik Kuram                                           | 9     |
| 2.1.3.2. Kuantum Kuramı                                         | 11    |
| 2.1.4.İnfrared veRaman Spektroskopilerinin Karşılaştırılması    | 13    |
| 2.1.5.İnfrared ve Raman Aktiflik                                | 14    |
| 2.1.6. Moleküler Simetri                                        | 15    |
| 2.1.7. Çok Atomlu Moleküllerin Titreşimleri                     | 15    |
| 2.1.8. Grup Frekansları                                         | 16    |
| 2.1.9. Moleküler Titreşim Türleri                               | 18    |
| 2.1.9.1. Gerilme Titreşimi (Streching)                          | 18    |
| 2.1.9.2. Açı Bükülme Titreşimleri (Bending)                     | 18    |
| 2.1.9.3. Burulma Titreşimi (Torsion)                            | 19    |
| 2.1.9.4. Düzlem Dışı Açı Bükülmesi (Ouf of Plane Bending)       | 19    |
| 2.2. Bilgisayar Hesaplamalı Moleküler Spektroskopi              | 21    |
| 2.2.1.Kuantum Mekaniksel Enerji İfadeleri ve Born-Oppenheimer   |       |
| Yaklaşımı                                                       | 23    |
| 2.2.2. Yoğunluk Fonksiyonu Teorisi (DFT)                        | 25    |
| 2.2.2.1. Karma Yoğunluk Fonksiyon Teorisi                       | 25    |
| 2.2.2.2. B3LYPKarma Yoğunluk Fonksiyon Teorisi                  | 25    |
| 2.2.3. Geometrik Optimizasyon ve Potansiyel Enerji Yüzeyi (PES) | 26    |
| 2.2.4. Temel Setler                                             | 28    |
| 2.2.5. SQM Metodu                                               | 31    |
| 2.3. Tautomerizm                                                | 32    |
| 2.4. Çözücü Etkisi                                              | 33    |
|                                                                 |       |

| 2.5. HOMO-LUMO Enerjileri                                                        | 3 |
|----------------------------------------------------------------------------------|---|
| 2.6. Yük Analizi                                                                 | 3 |
| 2.7. Boltzmann Dağılımı                                                          | 3 |
| 3. MATERYAL VE YÖNTEM                                                            | 3 |
| 4. BULGULAR VE TARTIŞMA                                                          | 3 |
| 4.1. 7-Fluoroisatin Molekülünün Tautomerik Formlarının Teorik                    |   |
| Hesaplama Sonuçları ve Enerji Analizi                                            | 3 |
| 4.2. 7-Fluoroisatin ve 1-Metilisatin Moleküllerinin Üzerindeki Çözücü            |   |
| Etkisi ve Enerji Analizi                                                         | 4 |
| 4.3. Çözücülerin Yapısal Parametreler Üzerindeki Etkisi                          | 4 |
| 4.4.7-Fluoroisatin ve 1-Metilisatin Moleküllerinin Gaz Fazında                   |   |
| Titreşim Frekanslarının Değerlendirilmesi                                        | 5 |
| 4.4.1.C=O Titreşimleri                                                           | 5 |
| 4.4.2.C-H Titreşimleri                                                           | 5 |
| 4.4.3.C-C Titreşimleri                                                           | 6 |
| 4.4.4.C-N Titreşimleri                                                           | 6 |
| 4.4.5.N-H Titreşimleri                                                           | 6 |
| 4.4.6.C-F Titreşimleri                                                           | 6 |
| 4.5. Titreşim Frekansı Üzerine Çözücü Etkisi                                     | 6 |
| 4.6. HOMO-LUMO Enerjileri                                                        | 7 |
| 4.7. Çözücülerin HOMO-LUMO Enerjileri Üzerine Etkisi                             | 7 |
| 4.8. Yük Analizi                                                                 | 8 |
| 4.9. Çözücülerin Yük Dağılımı Üzerine Etkisi                                     | 8 |
| 5. SONUÇLAR                                                                      | 8 |
| KAYNAKLAR                                                                        | 9 |
| EKLER                                                                            | 1 |
| EK 1- (7-Fluoroisatin Molekülüne Ait Tautomerik Yapılarının Mulliken             |   |
| ve NBO Yük Dağılımları)                                                          | 1 |
| EK 2- (7-Fluoroisatin Molekülünün Farklı Çözücüler İçinde Hesaplanan             |   |
| Bağ Uzunluklarının Karşılaştırılması)                                            | 1 |
| EK 3- (1-Metilisatin Molekülünün Farklı Çözücüler İçinde Hesaplanan              |   |
| Bağ Uzunluklarının Karşılaştırılması)                                            | 1 |
| EK 4- (7-Fluoroisatin Molekülünün Farklı Çözücüler İçinde Hesaplanan             |   |
| Bağ Açılarının Karşılaştırılması)                                                | 1 |
| EK 5- (1-Metilisatin Molekülünün Farklı Çözücüler İçinde Hesaplanan              |   |
| Bağ Açılarının Karşılaştırılması)                                                | 1 |
| EK 6- (7-Fluoroisatin Molekülünün Farklı Çözücüler İçinde Hesaplanan             |   |
| Dihedral Açılarının Karşılaştırılması)                                           | 1 |
| EK 7- (1-Metilisatin Molekülünün Farklı Çözücüler İçinde Hesaplanan              |   |
| Dihedral Açılarının Karşılaştırılması)                                           | 1 |
| EK 8- (7-Fluoroisatin Molekülünün Farklı Ortamlarda Frekans, $I_{IR}$ , $I_{RA}$ |   |
| Değerleri)                                                                       | 1 |

| EK 9- (1-Metilisatin Molekülünün Farklı Ortamlarda Frekans, I <sub>IR</sub> , I <sub>RA</sub> |     |
|-----------------------------------------------------------------------------------------------|-----|
| Değerleri)                                                                                    | 115 |
| ÖZGEÇMİŞ                                                                                      | 123 |

# SİMGELER VE KISALTMALAR DİZİNİ

| Ee             | Molekülün toplam enerjisi                                 |
|----------------|-----------------------------------------------------------|
| E <sup>c</sup> | Korelasyon enerjisi                                       |
| E <sup>x</sup> | Değiş-Tokuş enerjisi                                      |
| Ψ              | Dalga fonksiyonu                                          |
| ν              | Gerilme titreșimi                                         |
| δ              | Düzlemiçi açı bükülme titreşimi                           |
| γ              | Düzlem dışı açı bükülme titreşimi                         |
| τ              | Burulma                                                   |
| m              | Orta şiddetli band                                        |
| W              | Zayıf band                                                |
| VW             | Çok zayıf band                                            |
| S              | Şiddetli band                                             |
| VS             | Çok şiddetli band                                         |
| $\Psi_{i}$     | Moleküler orbital                                         |
| $\Phi_{i}$     | Atomik orbital                                            |
| μ              | Dipol Moment                                              |
| 3              | Dielektrik sabiti                                         |
| B3LYP          | LYP korelasyon enerjili üç parametreli Becke karma modeli |
| CPCM           | Conducter-like screening reaction field model polarized   |
|                | continuum model                                           |
| DFT            | Yoğunluk fonksiyon teorisi                                |
| DMSO           | Dimetil sülfoksit                                         |
| GTO            | Gaussian tipi orbital                                     |
| LYP            | Lee, Yang, Parr korelasyon enerjisi                       |
| NBO            | Naturel bond orbital                                      |
| STO            | Slater tipi orbital                                       |
| THF            | Tetrahidrofuran                                           |

# ŞEKİLLER DİZİNİ

# Sayfa

| Şekil 2.1. İki Atomlu Bir Molekül İçin Elektronik, Titreşim ve Dönü                | Juj |
|------------------------------------------------------------------------------------|-----|
| Geçişleri                                                                          | 6   |
| Şekil 2.2. Rayleigh, Stokes ve Anti-Stokes Saçımlarına Ait Şiddetlerin             |     |
| Şematik Gösterimi                                                                  | 12  |
| Şekil 2.3. Rayleigh, Stokes ve Anti-Stokes Saçımlarının Şematik Gösterimi          | 12  |
| Şekil 2.4. Moleküler Titreşim Türleri                                              | 20  |
| Şekil 2.5. İki Atomlu Bir Molekülde Elektronik Enerji Grafiği                      | 27  |
| Şekil 2.6. İki Boyutta Potansiyel Enerji Yüzeyindeki Eyer Noktaları                | 27  |
| Şekil 2.7. Tautomerik Denge                                                        | 33  |
| Şekil 3.1. 7-Fluoroisatin ve 1-Metilisatin Bileşiklerinin Görünümü                 | 36  |
| Şekil 4.1. 7-Fluoroisatin Molekülünün Tautomerik Formları                          | 38  |
| Şekil 4.2. En Kararlı Yapı Olarak Hesaplanan 7Fl-1'in Moleküler Yapısı ve          |     |
| Atom Numaraları                                                                    | 41  |
| Şekil 4.3. 1-Metilisatin Molekülünün Molekül Yapısı ve Atom Numaraları             | 47  |
| Şekil 4.4. 7- Fluoroisatin molekülüne ait a) deneysel b) teorik IR spektrumları    | 55  |
| Şekil 4.5. 7- Fluoroisatin molekülüne ait a) deneysel b) teorik Raman spektrumları | 56  |
| Şekil 4.6. 1-Metilisatin molekülüne ait a) deneysel b) teorik IR spektrumları      | 57  |
| Şekil 4.7. 1-Metilisatin molekülüne ait a) deneysel b) teorik Raman spektrumları   | 58  |
| Şekil 4.8. 7-Fluoroisatin Molekülünün Farklı Çözücüler İçinde Teorik               |     |
| (B3LYP/6-311++G(d,p) (a) IR ve (b) Raman Spektrumlari                              | 65  |
| Şekil 4.9. 1-Metilisatin Molekülünün Farklı Çözücüler İçinde Teorik                |     |
| (B3LYP/6-311++G(d,p) (a) IR ve (b) Raman Spektrumlari                              | 67  |
| Şekil 4.10. 7-Fluoroisatin Molekülünün Farklı Çözücüler İçinde C=O Gerilme         |     |
| Titreşimlerinin (a) IR ve (b) Raman Spektrumları                                   | 69  |
| Şekil 4.11. 1-Metilisatin Molekülünün Farklı Çözücüler İçinde C=O Gerilme          |     |
| Titreşimlerinin (a) IR ve (b) Raman Spektrumları                                   | 70  |
| Şekil 4.12. 7-Fluoroisatin Molekülünün Farklı Çözücüler İçinde N-H Gerilemt        |     |
| Titreşimlerinin (a) IR ve (b) Raman Spektrumları                                   | 71  |
| Şekil 4.13. 7-Fluoroisatin Molekülünün Gaz Fazına Ait HOMO-LUMO                    |     |
| Değerleri                                                                          | 73  |
| Şekil 4.14. 1-Metilisatin Molekülünün Gaz Fazına Ait HOMO-LUMO                     |     |
| Değerleri                                                                          | 74  |
| Şekil 4.15. 7-Fluoroisatin Molekülünün Sulu Ortama Ait HOMO-LUMO                   |     |
| Değerleri                                                                          | 76  |
| Şekil 4.16. 1-Metilisatin Molekülünün Sulu Ortama Ait HOMO-LUMO                    |     |
| Değerleri                                                                          | 77  |
| Şekil 4.17. 7-Fluoroisatin ve 1-Metilisatin Moleküllerinin LUMO-HOMO               |     |
| Enerji Farkları                                                                    | 81  |

# TABLOLAR DİZİNİ

|                                                                                     | Sayfa   |
|-------------------------------------------------------------------------------------|---------|
| Tablo 2.1. Elektromanyetik Spektrum Bölgeleri                                       | 32      |
| Tablo 2.2. İnfrared Spektral Bölge                                                  | 35      |
| Tablo 2.3. IR ve Raman Spektroskopilerinin Karşılaştırılması                        | 36      |
| Tablo 2.4. Grup Frekansları                                                         | 37      |
| Tablo 2.5.Enerji Türevlerinden Fiziksel Büyüklüklerin Hesaplanması                  | 39      |
| Tablo 4.1. Tautomerler için hesaplanan toplam enerji, enerji farkları, sıfır noktas | 51      |
| doğrulama enerji ve dipol moment değerleri                                          | 37      |
| Tablo 4.2. Tautomerlerin Bulunma Yüzdeleri                                          | 41      |
| Tablo 4.3. 7-Fluoroisatin Molekülünün Tautomerlerine Ait Bağ Uzunluğu ve            |         |
| Açı Değerleri                                                                       | 43      |
| Tablo 4.4. 7-Fluoroisatin Molekülünün Farklı Çözücüler İçinde Hesaplanan End        | erji ve |
| Dipol Moment Değerleri                                                              | 47      |
| Tablo 4.5.1-Metilisatin Molekülünün Farklı Çözücüler İçinde Hesaplanan Ener         | ji ve   |
| Dipol Moment Değerleri                                                              | 47      |
| Tablo 4.6. 7-Fluoroisatin İçin Deneysel ve Hesaplanan Titreşim Frekansları          |         |
| (cm <sup>-1</sup> ) Değerlerinin Karşılaştırılması                                  | 53      |
| Tablo 4.7.1-Metilisatin İçin Deneysel ve Hesaplanan Titreşim Frekansları            |         |
| (cm <sup>-1</sup> ) Değerlerinin Karşılaştırılması                                  | 54      |
| Tablo 4.8. 7-Fluoroisatin Molekülünün HOMO-LUMO Orbitallerinin                      |         |
| Enerjileri                                                                          | 79      |
| Tablo 4.9.1-Metilisatin Molekülünün HOMO-LUMO Orbitallerinin                        |         |
| Enerjileri                                                                          | 80      |
| Tablo 4.10. 7-Fluoroisatin ve 1-Metilisatin Moleküllerinin NBO ve Mulliken          |         |
| Yükleri                                                                             | 83      |
| Tablo 4.11.7-Fluoroisatin Molekülünün Farklı Ortamlardaki NBO ve Mulliken           |         |
| Yükleri                                                                             | 85      |
| Tablo 4.12. 1-Metilisatin Molekülünün Farklı Ortamlardaki NBO ve                    |         |
| Mulliken Yükleri                                                                    | 87      |

# 1.GİRİŞ

İsatin en çok bilinen indol türevlerindendir. 19. yüzyıl ortalarında Erdmann ve Laurent tarafından çivit boyasının kromik asit oksidasyonundan elde edilmiştir [1-3]. İsatin, memelilerin beyinlerinde, periferik dokularda, vücut sıvılarında bulunur. Ayrıca isatin, insan vücudunda adrenalinin metabolik türevi olarak da bulunmaktadır [1,4-6]. İsatin türevlerin antibakteriyel, anti mikrobiyal, antifungal ve anti-HIV gibi çeşitli çeşitli biyolojik aktiviteleri gösterdiği bilinmektedir [7]. Aynı şekilde bazı isatin türevleri kanser ve tümör tedavilerinde kullanılmaktadır [1,8].

İsatin türevleri farmakoloji endüstrisinde çok geniş bir uygulama alanına sahip olmasına rağmen, bazı türevlerinin (1-Metilisatin, 7-Fluoroisatin gibi) yapısal ve titreşim özellikleri hakkında literatürde yeterli bilgi bulunmamaktadır. Özellikle ilaç sektöründe 7-Fluoroisatin ve 1-Metilisatin moleküllerinin çözücü içerisindeki kimyasal davranışları ilaç etkileşimleri açısından önem arz etmektedir.Bu tez kapsamında elde edilen sonuçlarla; kimya, moleküler biyoloji ve farmakolojik endüstrineyararlı bilgileri kazandırılması hedeflenmiştir.

Bu tez teorik ve deneysel olarak iki kısımdan oluşmaktadır. Tezin deneysel kısmında, moleküllerin FT-IR ve FT-Raman spektrumları incelenmiştir. Bu tezin teorik kısmında yapılan tüm hesaplamalarda Gaussian 09 [9] ve Gaussview (5.0) [10] paket programı kullanılmıştır. Bu programda yapılan hesaplamalarda Yoğunluk Fonksiyonu Teorisi (DFT) ile birlikte B3LYP (Becke 3-Lee Yang Parr) karma yoğunluk fonksiyon teorisi ve 6-311++G(d,p) temel seti kullanılmıştır.

İlk olarak 7-Fluoroisatin molekülünün beş ayrı tautomerik formu elde edilmiştir. Yapılan enerji analizi sonucunda bu tautomerik formlar arasından en kararlı yapı seçilerek diğer hesaplamalara bu yapı ile devam edilmiştir. 1-Metilisatin molekülünün tautomerik formu bulunmadığından bu işlem bu molekül için yapılmamıştır.

7-Fluoroisatin için en kararlı yapı olarak bulunan 7Fl-1 ile 1-Metilisatin molekülünün yapısal parametreleri; bağ uzunlukları, bağ açıları, dehidral açılar,

temel titreşim frekansları, IR ve Raman şiddetleri, hesaplanmış ve deneysel değerlerle karşılaştırılmıştır. 7Fl-1 yapısı ile 1-Metilisatin molekülünün yapısal parametreleri ve frekansları ayrıca farklı ortamlarda da incelenmiştir. Titreşim frekansları hesaplanırken dalga sayısı 1700 cm<sup>-1</sup> den az olanlar için 0,983, fazla olanlar için de 0,958 düzeltme çarpanı kullanılmıştır [11-13]. Teorik sonuçların deneysel verilerle oldukça uyumlu olduğu saptanmıştır. TED ve SQM programı kullanılarak titreşim spektrumları açıklanmıştır. Son olarak da bu moleküllerin yük dağılımları, dipol momentleri ve HOMO-LUMO orbitalleri hem gaz fazında hem de farklı ortamlarda hesaplanmış ve karşılaştırma yapılmıştır.

Bu çalışmada 7-Fluoroisatin ve 1-Metilisatin molekülleri yukarıda da belirtildiği üzere benzen, toluen, kloroform, anilin, THF, aseton, etanol, asetonitril, DMSO ve su içinde yeniden optimize edilerek hesaplamalar tekrarlanmıştır. Yapılan hesaplamaların sonuçları karşılaştırılmış, böylece 7-Fluoroisatin ve 1-Metilisatin molekülleri üzerine çözücü etkisi araştırılmıştır. Ortam değiştikçe moleküllerin bağ uzunluklarında, bağ açılarında, titreşim frekanslarında, dipol momentlerinde, HOMO-LUMO enerjilerinde ve yük dağılımında meydana gelen değişimler araştırılmıştır.

Bu moleküllerin kararlı yapılarının FT-IR spektrumları oda sıcaklığında 4000-400 cm<sup>-1</sup> arasında, Raman spektrumları da 3500-200 cm<sup>-1</sup>aralığında bulunmuştur.

#### 2. YAPILAN ÇALIŞMALAR

#### 2.1. Moleküler Titreşim Spektroskopisi

#### 2.1.1. Moleküler Titreşim

Madde ve elektromanyetik dalganın karşılıklı etkileşimi moleküler titreşim spektroskopisinin konusunu oluşturur [14,15]. Madde ile etkileşim içinde bulunan elektromanyetik dalgaların titreşim hareketlerinde değişmeler meydana gelir. Titreşim hareketlerinde meydana gelen bu değişmeler İnfrared Spektroskopisi ve Raman Spektroskopisi yöntemleri ile incelenebilir. İnfrared ve Raman Spektroskopi yöntemleri moleküllerin kimyasal ve fiziksel özellikleri hakkında bilgi verir. Elde edilen bilgiler arasında; bağ kuvvetleri, molekül içi veya moleküller arası kuvvetler, molekülün elektronik dağılımı sayılabilir [16,17].

Molekül üzerine gönderilen elektromanyetik dalga soğurulduğunda, elektromanyetik dalga ile molekül arasında etkileşme meydana gelir, bu etkileşme molekülün enerji düzeyleri arasında geçişlere sebep olur. Bu geçişler, soğurulan elektromanyetik dalganın enerjisi ile bağlantılı olarak belli spektrum bölgelerine ayrılır (Tablo2.1)[16,17].

$$\Delta E = E'' - E' = h \Delta v \tag{2.1}$$

- $\Delta E$ : Seviyeler arasındaki enerji farkı
- E": Üst titreşim seviyesinin enerjisi
- E' : Alt titreşim seviyesinin enerjisi
- E"→ E' : Işığın yayınımı
- E' E'': İşığın soğurulması

| Bölgeler            | Dalga Boyu (λ) | Spektroskopi Türleri        |
|---------------------|----------------|-----------------------------|
| Radyodalgaları      | 10m-1m         | NMR ve ESR                  |
| Mikrodalga          | 1cm-100µm      | ESR ve Moleküler dönme      |
| Infrared            | 100µ-1µm       | Moleküler dönme ve titreşim |
| Görünür ve Morötesi | 1μm-10nm       | Elektronik geçişler         |
| X-ışınları          | 10nm-100pm     | Elektronik geçişler         |
| γ-ışınları          | 100pm-         | Nükleer geçişler            |

Tablo 2.1. Elektromanyetik spektrum bölgeleri

<u>Radyodalgaları</u> <u>Bölgesi:</u> Elektron veya çekirdeğin spininin işaretinin değişimininneden olduğu enerji değişimlerinin spektrumu Radyodalgaları bölgesindedir. Bu bölge, Nükleer Manyetik Rezonans (NMR) ve Elektron Spin Rezonans (ESR) spektrumlarını içerir.

<u>Mikrodalga Bölgesi:</u>Molekülün dönmesinin araştırıldığı bölgedir. Dönme enerjileri arasındaki geçişler mikrodalga bölgesinde gözlemlenir. Çiftleşmiş elektrona sahip olan bir sistem var ise, sistemin manyetik özelliklerindeki değişmeler bu bölgede incelenir.

<u>İnfrared Bölgesi:</u> Bir molekülün titreşim ve dönme enerji düzeyleri arasındaki geçişler infrared bögesinde spektrum verir. Yani molekülün titreşim frekansları bu bölgede gözlemlenir.

<u>Görünür-Morötesi Bölgesi</u>: Bu bölge, atom veya molekülün dış kabuğundaki elektronların çeşitli enerji düzeyleri arasındaki geçişine dayanır. Bundan dolayı bu bölgedeki spektroskopi türü "elektron spektroskopisi" adını alır.

<u>X-ışınları Bölgesi:</u> Bir atom veya molekülün iç kabuktaki elektronlarının geçişleri bu bölgede meydana gelir. Bir başka deyişle X-ışınları atom veya moleküllerde, iç orbitaldeki elektronların enerji düzeylerinin değişmesine neden olur. Bu bölgedeki spektroskopi türü "X-ışınları spektroskopisi" adını alır.

<u> $\gamma$ -ışınları</u> Bölgesi: Çekirdekteki enerji düzeyleri arasındaki geçişler  $\gamma$ -ışınları bölgesinde incelenir. Bu bölgedeki spektroskopi türü "Mössbauer spektroskopisi" adını alır.

Serbest bir molekülün toplam enerjisi ( $E_T$ ); öteleme enerjisi ( $E_{oteleme}$ ), nükleer dönme enerjisi ( $E_{nükleer dönme}$ ), dönme enerjisi ( $E_{dönme}$ ), titreşim enerjisi ( $E_{tit}$ ) ve elektronik enerji ( $E_{elek}$ ) olarak beş kısımdan oluşur.

$$E_{T} = E_{\text{öteleme}} + E_{\text{nükleer dönme}} + E_{\text{dönme}} + E_{\text{tit}} + E_{\text{elek}}$$
(2.2)

Öteleme enerjisi, sürekli bir enerji olduğundan dikkate alınmaz. Protonun kütlesi elektronun kütlesinden yaklaşık 1840 kat daha büyüktür. Bunun sonucu olarak elektronun hareketi çekirdeğin hareketinden daha hızlıdır. Başka bir deyişle elektronun kinetik enerjisinin yanında çekirdeğin kinetik enerjisi ihmal edilebilir. Born-Oppenheimer yaklaşımı olarak bilinen bu durum elektronik, titreşim ve dönme enerjilerinin birbirinden farklı olduklarını gösterir. Buna göre molekülün toplam enerjisi;

$$E_{T} = E_{elek} + E_{tit} + E_{dönme}$$
(2.3)

toplam enerji değişimi ise;

$$\Delta E_{\rm T} = \Delta E_{\rm elek} + \Delta E_{\rm tit} + \Delta E_{\rm dönme}$$
(2.4)

ifadesi ile verilebilir.

Elektronik, titreşim ve dönme enerjilerinin birbirlerine göre oranları;

$$\Delta E_{\text{elek}} \cong \Delta E_{\text{tit}} \ge 10^3 \cong \Delta E_{\text{dönme}} \ge 10^6 \tag{2.5}$$

şeklinde verilir [16,18].

Bir molekülün titreşim enerji seviyelerini incelemek için İnfrared spektroskopisi ile Raman Spektroskopisi teknikleri kullanılır. Bunlardan İnfrared spektroskopisi infrared bölgede (1300-30 cm<sup>-1</sup>) bulunur ve pratikte 4000-10 cm<sup>-1</sup> bölgesinde kullanılır. Raman spektroskopisi ise görünür bölgede kullanılır ve moleküler sistemin genel olarak 4000-2 cm<sup>-1</sup> bölgesine düşen titreşimlerini inceler [19].

Gaz fazındaki örneklerin titreşim enerji geçişleri sırasında, dönme enerjisi de değişebildiğinden titreşim bandları ile üst üste binmiş dönme ince yapısı da gözlemlenebilir. Görünür veya morötesi spektroskopisi ile moleküllerin elektronik geçişleri incelenir. İki atoma sahip bir moleküle ait elektronik, titreşim ve dönü geçişleri Şekil 2.1 de verilmiştir [20].



Şekil 2.1. İki atoma sahip bir molekül için elektronik, titreşim ve dönü geçişleri.

# 2.1.2. İnfrared Spektroskopisi

İnfrared spektroskopisi dalında, infrared bölgede bütün frekansları içeren elektromanyetik dalga numune üzerine düşürür ve geçen veya soğurulan ışık incelenir [21,22].

v frekanslı bir ışın molekül tarafından soğurulduğunda, molekülün elektriksel dipol momenti veya bileşenlerinden en az biri v frekansında titreşecektir. Bu titreşim elektromanyetik spektrumunun infrared bölgesinde gözlemlenir. İnfrared spektroskopisi dalga boyuna bağlı olarak üç kısımda incelenir [16,21,22]. Bu bölgeler Tablo 2.2. de verilmiştir.

| Bölge    | λ (μm)   | $v (cm^{-1})$ | ν (Hz)                    |
|----------|----------|---------------|---------------------------|
| Yakın IR | 0,78-2,5 | 12 800-4000   | $3,8x10^{14}-1,2x10^{14}$ |
| Orta IR  | 2,5-50   | 4000-200      | $1,2x10^{14}-6,0x10^{12}$ |
| Uzak IR  | 200-10   | 200-10        | $6,0x10^{12}-3,0x10^{11}$ |

Tablo 2.2. İnfrared spektral bölge [16].

Yakın İnfrared: Bu bölgede molekül titreşimlerinin üst ton ve harmonikleri incelenir.

<u>Orta İnfrared:</u> Moleküllerin hemen hemen bütün titreşimlerinin gözlemlendiği bölgedir. Başka bir deyişle infrared spektroskopisi denilince akla bu bölge gelir.

<u>Uzak İnfrared:</u> Ağır atomların titreşimlerinin incelendiği bölgedir. Bu bölge mikrodalga bölgesine yakındır ve bundan dolayı moleküllerin dönme hareketleri de bu bölgede incelenebilir. Kimyasal spektroskopide nadiren kullanılır, ancak kristal örgü titreşimleri de bu bölgede incelenir.

#### 2.1.2.1. Klasik kuram

Klasik elektrodinamiğe göre, bir sistemin radyasyon yayabilmesi için elektrik dipol momentinde bir değişme olması gerekir. Dipol titreşimlerinin frekansı yayınlanan radyasyonun frekansı ile aynıdır. Soğurma yayınlamanın tam tersidir ve sistem, yayınlayabildiği frekansın aynı olan frekansta bir ışınımı soğurabilir [16,23,24].

Molekülün dipol momenti  $\vec{\mu}$  kartezyen koordinat sisteminde  $\mu_x$ ,  $\mu_y$ ,  $\mu_z$  olmaküzere üç bileşene sahiptir. Eğer bir molekül, üzerine düşen v frekanslı bir ışını soğurursa, moleküle ait  $\mu$  elektriksel dipol moment (veya bileşenlerinden biri) bir etkileşme sonucunda aynı frekansta titreşecektir [25,26]. Başka bir deyişle, genel olarak, bir molekülün v frekanslı bir ışını soğurabilmesi veya yayabilmesi için  $\mu$  elektrik dipol momentinin bu frekansta titreşim yapması gerekir. Molekülün bu titreşimi, spektrumun infrared bölgesinde olur [22,24]. Basit harmonik yaklaşımda, moleküler dipol momentin titreşim genliği, tüm Q titreşim koordinatlarının bir fonksiyonudur.  $\vec{\mu}$ dipol momenti, molekül denge konumu civarında iken Taylor serisine açılırsa;

$$\vec{\mu} = \vec{\mu}_{o} + \Sigma \{ (\frac{\partial \vec{\mu}}{\partial Q_{k}})_{o} Q_{k} \} + \frac{1}{2} \Sigma \{ \frac{\partial^{2} \vec{\mu}}{\partial Q^{2}_{k}} Q^{2}_{k} \} + \text{yüksek mertebeden terimler}$$
(2.6)

Bu ifade de k tüm titreşim koordinatları üzerinden toplamı gösterir. Genliği küçük salınımlarda  $Q_k$  nın birinci dereceden terimi alınıp, daha yüksek mertebeden terimleri ihmal edersek molekülün dipol momenti;

$$\vec{\mu} = \vec{\mu}_{\rm o} + \Sigma \{ \frac{\partial \vec{\mu}}{\partial \mathcal{Q}k} \}_{\rm o} \mathbf{Q}_{\rm k}$$
(2.7)

olarak ifade edilebilir.

Klasik teoriye göre, titreşimlerin infrared aktif olabilmesi; ilgili molekülün elektriksel dipol momentindeki değişimin veya dipol moment bileşenlerinden en az birindeki değişimin sıfırdan farklı olmasına bağlıdır. Bu durumda;

$$\left(\frac{\partial \overline{\mu} i}{\partial Qk}\right)_{0} \neq 0 \ (i=x, y, z)$$
 (2.8)

olmalıdır [21,27]

### 2.1.2.2. Kuantum kuramı

Kuantum mekaniğinde,  $\Psi$ n ve  $\Psi$ m dalga fonksiyonları ile belirtilen n ve m benzeri iki titreşim enerji düzeyi arasında geçiş olabilmesi,  $\mu_{nm}$  geçiş dipol momentinin veya bileşenlerinden en az birinin sıfırdan farklı olmasına bağlıdır.

$$\vec{\mu}_{nm} = \int \Psi n \, \vec{\mu} \, \Psi m \, d\tau \neq 0 \tag{2.9}$$

Bu denklemde

Ψn: n. uyarılmış enerji düzeyinde bulunan molekülün titreşim dalga fonksiyonu,

Ψm: taban enerji düzeyinde bulunan molekülün titreşim dalga fonksiyonu,

dτ: hacim elemanı,

 $\vec{\mu}$ : elektriksel dipol moment operatörü olarak ifade edilir.

Eşitlik (2.7)'yi eşitlik (2.9)'da yerine koyarsak;

$$\vec{\mu}_{nm} = \vec{\mu}_{o} \int \Psi n \Psi m d\tau + \frac{\partial \vec{\mu}}{\partial Qk} \int \Psi n Q k \Psi m d\tau + \frac{\partial^{2} \vec{\mu}}{\partial Qk^{2}} \int \Psi n Q^{2} k \Psi m d\tau$$
(2.10)

elde edilir. Bu ifadede  $\Psi$ n ve  $\Psi$ m fonksiyonları ortogonal fonksiyonlardır (n $\neq m$ ), bu nedenle bu terim sıfıra eşittir. Taban enerji seviyesinde bulunan bir molekülün, uyarılmış enerji seviyesine geçme olasılığı  $\mu_{nm}^2$  ile orantılı olarak ifade edilir. Bundan dolayı, IR spektroskopisinde herhangi bir molekülde bir titreşim gözlemlenebilmesi için, molekülün o titreşimini sırasında elektriksel dipol momentindeki değişim sıfırdan farklı olmalıdır. Buna ek olarak  $\int \Psi n Qk \Psi m d\tau$ integralinin sıfırdan farklı olması gerekir. Yani  $\int \Psi n Qk \Psi m d\tau \neq 0$  olmalıdır [14,16,21,25].

#### 2.1.3. Raman Spektroskopisi

Raman güneş ışığını kaynak, teleskobu toplayıcı ve gözlerini de kaydedici olarak kullanarak Raman saçılımını keşfetmiştir. 1928'de Hintli Fizikçi C.V. Raman, belirli moleküllerce saçılan ışının ufak bir kesrinin görünür alandaki dalga boyunun, gelen ışığın dalga boyundan farklı olduğunu ve buna ilaveten dalga boylarındaki kaymaların, saçılmadan sorumlu moleküllerin kimyasal yapısına bağlı olduğunu buldu. Bu buluşundan ve olguyu sistematik incelemesinden dolayı 1931 Nobel Fizik ödülünü aldı. Aslında Raman Spektroskopisi, moleküler titreşimleri incelediğinden İnfrared tekniğinin bir tamamlayıcısıdır. Raman Spektroskopisinde örnek moleküller üzerine görünür bölgede monokromatik bir manyetik dalga gönderilerek saçılan ışın incelenir.Raman spektroskopisi molekülün polarlığının değismesi üzerine kurulmuştur [28].

İnfrared spektroskopisindeki gibi klasik ve kuantum mekaniksel olarak iki şekilde açıklanabilir.

#### 2.1.3.1. Klasik mekanik

Numune üzerine v<sub>o</sub>frekanslı elektromanyetik dalga gönderildiğinde molekülün pozitif ve negatif yükleri ile elektromanyetik dalganın elektrik alanı etkileşecektir. Başlangıçta molekülün bir dipol momenti yoksa dış alanın etkisiyle molekülün + ve – yük merkezleri birbirinden ayrılacak, dolayısıyla bir dipol moment oluşacaktır. Eğer başlangıçta molekülün bir dipol mometi varsa yani molekülde + ve – yük merkezleri bulunuyorsa dipol, uygulanan alanın etkisiyle değişecektir [29]. Bu etkileşme;

 $\vec{\mu} = \alpha E \tag{2.11}$ 

ile ifade edilir. Burada  $\mu$  ve E vektörel,  $\alpha$  ise tensördür.

 $\vec{\mu}$ : indüklenmiş dipol moment

α: molekülün polarize olma yatkınlığı

Eşitlik (2.11)'deki terimler daha açık yazılırsa;

$$\mu_x = \alpha_{xx} E_x + \alpha_{xy} E_y + \alpha_{xz} E_z \tag{2.12}$$

$$\mu_{y} = \alpha_{yx} E_{x} + \alpha_{yy} E_{y} + \alpha_{yz} E_{z}$$
(2.13)

$$\mu_z = \alpha_{zx} E_x + \alpha_{zy} E_y + \alpha_{zz} E_z \tag{2.14}$$

$$E^{2} = E^{2}_{x} + E^{2}_{y} + E^{2}_{z}$$
(2.15)

ifadesi elde edilir.

 $\alpha_{i,j}$ : j doğrultusundaki elektrik alan bileşeninin i doğrultusunda indüklediği dipol moment kat sayısıdır. Polarize olma yatkınlığı Taylor serisine açılırsa;

$$\alpha = \alpha_{\rm e} + \left(\frac{\partial \alpha}{\partial Q}\right)_{\rm o} Q + \frac{1}{2} \left(\frac{\partial^2 \alpha}{\partial Q^2}\right)_{\rm o} Q^2 + \dots$$
(2.16)

elde edilir. Burada;

α<sub>e</sub>: Molekülün denge konumundaki kutuplanabilirliği,

 $Q \equiv r - r_e$ : Titreşim koordinatı

r: Verilen bir anda çekirdekler arası uzaklık

Eğer molekül  $v_{tit}$  frekansıyla titreşiyorsa, Q'nun kendisi, zamanın fonksiyonu olmalıdır.

$$Q = _{o} \sin \left(2\pi \, v_{tit} t\right) \tag{2.17}$$

(2.16) denkleminde ilk iki terim alınıp, (2.17) de kullanılırsa;

$$\alpha = \alpha_{\rm e} + \left(\frac{\partial \alpha}{\partial Q}\right)_{\rm o} Q_{\rm o} \sin\left(2\pi \,\nu_{\rm tit}\,t\right) \tag{2.18}$$

Bu ifade (2.12) eşitliğinde yerine yazılırsa ve  $E = E_0 \sin (2\pi v_0 t)$ ;

$$\vec{\mu} = \mathcal{E}_{o}\alpha_{e}\sin\left(2\pi\,\nu_{o}\,t\right) + \mathcal{E}_{o}\left(\frac{\partial\alpha}{\partial Q}\right)_{o}Q_{o}\left[\sin\left(2\pi\,\nu_{o}\,t\right).\sin\left(2\pi\,\nu_{tit}\,t\right)\right]$$
(2.19)

elde edilir. Bu ifade trigonometri kullanılarak yeniden düzenlenecek olursa;

$$\vec{\mu} = E_o \alpha_e \sin(2\pi v_o t) + E_o Q_o \left(\frac{\partial \alpha}{\partial Q}\right)_o [\cos 2\pi (v_{tit} - v_o)t . \cos 2\pi (v_{tit} + v_o)t]$$
(2.20)

bulunur. Eğer molekül titreşimi sırasında  $\alpha$  değişiyorsa, bu titreşim raman spektroskopisinde gözlemlenebilir [29].

#### 2.1.3.2. Kuantum kuramı

Raman saçılması kuantum mekaniğine göre, elektromanyetik dalga ve moleküllerin çarpışması ile açıklanabilir. Örnek moleküller  $v_0$  frekanslı elektromanyetik dalganın  $hv_0$  enerjili fotonlarıyla esnek veya esnek olmayan çarpışma yapabilirler.

Esnek çarpışmada enerji kaybı olmayacağından molekül tarafından saçılan fotonun frekansı  $v_0$  olacaktır. Bu tür saçılmaya Rayleigh saçılması denir. Rayleigh saçılmasında sadece bir pik gözlenir ve titreşim geçişleri ile ilgili bilgi vermez.

Esnek olmayan çarpışmada ise  $hv_0$  enerjili fotonlarla örnek moleküller arasında bir enerji alışverişi olur. Bunun sonucunda kuantum şartlarına uygun olarak örnek moleküllerin enerji düzeyleri değişebilir.

Eğer molekül, başlangıçta taban titreşim enerji seviyesinde ise, fotondan belirli bir enerji soğurarak uyarılmış duruma geçer. Saçılan fotonun enerjisi  $h(v_o-v_{tit})$  olacaktır. Bu saçılmaya Stokes saçılması denir.

Molekül başlangıçta uyarılmış enerji seviyesinde ise, fotona enerji aktararak taban durumuna geçer. Bu durumda saçılan fotonun enerjisi  $h(v_0+v_{tit})$  dir. Bu saçılmaya da Anti-Stokes saçılması denir.

Stokes ve Anti-Stokes saçılmaları Raman saçılmaları olarak da bilinir [29].

Taban titreşim enerji seviyesindeki molekül sayısı; oda sıcaklığında, birinci uyarılmış enerji seviyesindeki molekül sayısından fazla olduğu için Raman Spektrumlarında Stokes saçılmaları Anti-Stokes saçılmalarından daha şiddetlidir. Bu nedenle titreşimsel Raman Spektoskopisinde Stokes çizgileri incelenir [21]. Bu saçılmalar Şekil 2.2 ve Şekil 2.3 de verilmiştir [29].



2.2. Rayleigh, Stokes ve Anti-Stokes saçılımlarına ait şiddetlerin şematik gösterimi



a) Stokes Saçılması







Şekil 2.3. Rayleigh, Stokes ve Anti-Stokes saçılmalarının şematik gösterimi.

# 2.1.4. İnfrared ve Raman Spektroskopilerinin Karşılaştırılması

IR ve Raman Spektroskopileri karşılaştırmalı olarak Tablo 2.3 de verilmiştir.

| IR                                                           | RAMAN                                                                                   |  |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|
| Soğurulan veya geçen ışık incelenir.                         | Saçılan ışık incelenir                                                                  |  |
| Kaynak olarak beyaz ışık kullanılır.                         | Kaynak olarak görünür ve morötesi<br>bölgede monokromatik bir E.M. Dalga<br>kullanılır. |  |
| $\partial \mu / \partial r \neq 0$ ise titreşim IR aktiftir. | ∂α/∂q≠0 ise titreşim Raman aktiftir.                                                    |  |
| Eşit iki atom moleküllerinin IR spektrumu gözlenmez.         | Eşit iki atomlu moleküller Raman'da gözlenir.                                           |  |

Tablo2.3. IR ve Raman Spektroskopilerinin karşılaştırılması [29].

Örnek hazırlamada Raman Spektroskopisi IR ye göre daha avantajlıdır. Çünkü Raman Spektroskopisinde pencereler, mercekler ve diğer optik bileşenler için cam hücreler kullanılırken, IR de daha kırılgan ve atmosferik olarak daha az dayanıklı kristal halojenürler kullanılır [30].

Raman spektroskopisinde lazer kaynağı, numunenin küçük bir alanına kolaylıkla odaklanabilir. Bunun sonucunda çok ufak numuneler bile incelenebilir.

Raman Spektroskopisi tekniğinde, çözünürlüğü sınırlı olan maddeler ince toz halinde ezilir ve bir tarafı açık bir çukurluk içine konularak analiz edilebilir. Polimerler ise herhangi bir ön işlem yapılmadan doğrudan analize alınabilir; oysa bu tip örneklerin IR çalışmalarında polimerin analizden önce film veya kalıp halinde standart bir şekilde hazırlanması gerekir [31].

Raman Spektroskopisi tekniğinin İnfrared tekniğine göre numune hazırlamada temel üstünlüğü sulu çözeltilerin kullanımına olanak vermesidir. Suyun Raman ışını ile saçılması çok zayıf, IR absorbsiyonu ise çok kuvvetlidir. Bu nedenle sulu çözeltiler IR ile değil Raman Spektroskopisiyle incelenir. Bu özellik biyolojik ve inorganik sistemler için ve su kirliliği sorunlarına ilişkin çalışmalarda önemlidir [31].

Raman spektrumlarında, IR spektrumlarından daha az çakışmış pik bulunur. Bunun sonucu olarak kantitatif ölçümler daha kolay yapılır.

Raman numune düzenekleri nemden etkilenmez.

Raman Spektroskopisi numuneye zarar vermeyen bir yöntemdir. Bu sayede aynı örnek diğer analizlerde de kullanılabilir [32].

IR spektrumunda moleküllerin yapısında bulunan ve şiddeti az olan bazı bantlar (-C=C-, -C=C-, -N=N-, -S-S-, -C-O-C-) Raman yöntemi ile rahatça ölçülebilir.

# 2.1.5. İnfrared ve Raman Aktiflik

Kuantum mekaniğine göre bir titreşimin infrared veya raman aktif olabilmesi şartı 2.21 ve 2.22 denklemlerinde verilmiştir.

$$\vec{\mu}_{nm} = \int \Psi n \, \vec{\mu} \, \Psi m \, d\tau \neq 0 \tag{2.21}$$

$$\vec{\mu}_{\rm nm} = \int \Psi n \, \alpha \Psi m \, d\tau \neq 0 \tag{2.22}$$

İki düzey arasındaki geçiş olasılığı, infrared tekniğinde de raman tekniğinde de geçiş dipol momentinin karesi ( $[\mu_{nm}]^2$ ) ile orantılıdır.

Bir moleküle sahip olduğu simetri işlemi uygulanırsa, molekül ilk durumuna göre değişmez. Bundan dolaylı 2.21 ve 2.22 denklemlerindeki integral terimine bir simetri işlemi uygulanırsa değişmemesi gerekir. Yani integral içindeki üç terim de ayrı ayrı bir indirgenemez temsile karşılık gelir. Bu üç indirgenemez temsilin direkt çarpımı tamamen simetrik olan indirgenemez temsile karşılık gelmeli veya onu içermelidir. Taban titreşim enerji düzeyine ait dalga fonksiyonu { $\Psi$ m} tüm simetri işlemleri altında değişmez ve tam simetriktir. Üst titreşim enerji düzeyine ait dal fonksiyonu { $\Psi$ n} ise Q<sub>k</sub> ile aynı simetri türündendir. Bir temel geçişin infrared aktif olabilmesi için µ dipol momentinin x, y, z bileşenlerinden birinin simetrisi normal kiplerin simetrisi ile aynı olmalıdır. Moleküler titreşimlerin raman aktif olabilmesi için ise α polarize olma yatkınlığı tensörünün  $\alpha_{xx}$ ,  $\alpha_{yy}$ , $\alpha_{zz}$ , $\alpha_{xy}$ , $\alpha_{xz}$ , $\alpha_{yz}$  bileşenlerinden en az birinin normal kiplerin simetrileri ile aynı türden olması gerekir [14,21,33].

İnfrared ve raman aktiflik şartları birbirinden farklı olduğu için infrared spektroskopisinde gözlemlenmeyen bir titreşim raman da gözlemlenebilir. Bunun tersi de geçerlidir. Bunların yanı sıra bazı titreşim frekansları her iki spektroskopi tekniğinde de aktif olmayabilir. Eğer bir molekül simetri merkezine sahipse infreredde gözlenen titreşimler ramanda gözlenmez ya da raman da gözlenen titreşimler infraredde gözlenmez. Bu olaya "karşılıklı dışarlama ilkesi" denir [16].

#### 2.1.6. Moleküler Simetri

Molekülün simetrisi, molekülü oluşturan atomların uzaydaki geometrik düzeni ile oluşur. Bir moleküle ait nokta, eksen ve düzlem gibi simetri elemanları bir grup oluşturur. Simetri işlemleri sonunda moleküle ait en az bir noktanın yeri değişmeden kalırsa bu gruplara "nokta grupları" adı verilir.

Moleküllerin simetri özelliğinden yararlanılarak karakter tabloları oluşturulmuştur. Grup teorisi kullanılarak, karakter tabloları yardımıyla her bir temel titreşimin indirgenemez gösterimlerden hangisine temel oluşturduğu ve hangi simetri türünde olduğu bulunabilir. Böylelikle bir molekülün simetrisi biliniyorsa, molekülün 3N-6 tane titreşiminden inftared aktif olanlar bulunabilir [16,25,33].

#### 2.1.7. Çok Atomlu Moleküllerin Titreşimleri

Temel titreşimler; bir moleküle ait tüm atomlarının özdeş faz ve özdeş frekansta basit harmonik hareket yaptıkları titreşimlerdir. N tane atoma sahip bir molekülün 3N serbestlik derecesi vardır. Temel titreşim serbestlik derecesi ise 3N-6 (doğrusal molekül için 3N-5)'dır. Çünkü üç eksen etrafındaki ötelenme ve üç eksen etrafındaki dönme serbestlik derecelerini çıkarmamız gerekir. N atomlu molekülün sadece 3N-6 (doğrusal ise 3N-5) tane titreşim modu vardır. Çok atomlu bir moleküle ait herhangi bir titreşim 3N-6 temel titreşimden bir veya birkaçının üst üste binmesi olarak tanımlanabilir [19].

Boltzmann olasılık dağılımına göre moleküller oda sıcaklığında genellikle taban titreşim enerji düzeyinde bulunurken, çok az bir kısmı ise uyarılmış titreşim enerji düzeyinde bulunur. Bundan dolayı bir molekülün infrared spektrumlarında en şiddetli bandlara temel titreşim düzeyinden birinci titreşim düzeyine geçişlerde rastlanılır. Çünkü en fazla geçiş olasılığı bu seviyeler arasındadır. Bu geçişlerin olduğu frekanslara "temel titreşim frekansları" denir. Temel titreşim bandlarına ek olarak üst ton, birleşim ve fark bandları da gözlenebilir. Temel titreşim frekansının iki veya üstü katlarında (2v, 3v) üst ton geçişleri ortaya çıkar. İki veya daha fazla

temel titreşim frekansının toplamı ve farkı olarak ortaya çıkan frekanslarda da birleşim ve fark frekansları ortaya çıkar. Bu bandların şiddeti, temel titreşim bandlarına göre oldukça zayıftır.

Aynı simetri türünde etkileşme oluşması içinbir temel titreşim ile bir üst ton ya da birleşim frekansı birbirlerine çok yakın olması gerekir. Böyle bir durumda spektrumda şiddetli bir temel titreşim bandı ile zayıf bir üst ton veya birleşim bandı gözlenmez, bunların yerine temel titreşim bandı civarında gerçek değerlerinden sapmış iki şiddetli band gözlenir [19,34]. Bu etkileşmeyi ilk defa Fermi CO<sub>2</sub> molekülünün frekanslarının incelenmesi sırasında gözlemlediğinden bu etkileşme "Fermi Rezonansı" olarak bilinir.

#### 2.1.8. Grup Frekansları

Çok atomlu moleküllerin titreşim spektrumlarının yorumlanmasında en çok başvurulan yöntemlerden biri grup frekansı yöntemidir. Moleküle ait tüm atomlarının özdeş faz ve frekansta hareket etmesi olarak tanımladığımız temel titreşimlerin genlikleri birbirinden farklıdır. Çünkü titreşim frekansları kütle ile ters orantılıdır.

Molekülün yapısındaki bir grup, moleküldeki diğer atomlara göre daha hafif (OH, NH, NH<sub>2</sub>, CN<sub>2</sub> gibi) ya da daha ağır atomlardan (CCl, CBr, Cl gibi) oluşuyorsa, bu grupların harmonik titreşim genlikleri (veya hızları) moleküle ait diğer atomlara oranla daha büyük veya daha küçük olmasından dolayı, bu tür grupların, molekülünün geri kalan kısmından bağımsız hareket ettiği varsayılır. Başka bir deyişle bir molekülde bir grup titreşirken, bu grubun titreşim potansiyeline katkısı ile molekülün diğer kısmının titreşimlerinin potansiyele katkısı birbirinden olabildiğince farklıdır. Bu yüzden; titreşen grup, molekülün diğer bölümünden bağımsız

Harmonik osilatörün frekansı;

$$v = \frac{1}{2} \sqrt{\frac{k}{\mu}}$$
(2.23)

denklemi ile verilir. Bu ifadede

k : kuvvet sabiti,

# μ: İndirgenmiş kütledir.

Eğer kütle sabiti büyük ise; atomların denge pozisyonundaki hareketleri zorlaşır. Bundan dolayı, çift veya üçlü bağların (C=C, C=O, C=N, C≡C, C≡N gibi) gerilme frekansları tekli bağlara göre daha yüksektir [14,16,21,25].

Bazı grup frekansları Tablo2.4' de verilmiştir.

| Gruplar                           | Gösterimleri        | Dalga Sayısı (cm <sup>-1</sup> ) |
|-----------------------------------|---------------------|----------------------------------|
| O-H gerilme                       | v(OH)               | 3640-3600                        |
| N-H gerilme                       | v(NH)               | 3500-3380                        |
| C-H gerilme (Aramotik halkalarda) | v(CH)               | 3100-3000                        |
| C-H gerilme                       | v(CH)               | 3000-2900                        |
| CH3 gerilme                       | v(CH <sub>3</sub> ) | 2962±10 - 2872±5                 |
| CH <sub>2</sub> gerilme           | v(CH <sub>2</sub> ) | 2926±10 - 2853±10                |
| C≡C gerilme                       | v(CC)               | 2260-2100                        |
| C≡N gerilme                       | v(CN)               | 2200-2000                        |
| C≡O gerilme                       | ν(CO)               | 1800-1600                        |
| NH <sub>2</sub> bükülme           | δ(NH <sub>2</sub> ) | 1600-1540                        |
| CH <sub>2</sub> bükülme           | δ(CH <sub>2</sub> ) | 1465-1450                        |
| CH3 bükülme                       | δ(CH <sub>3</sub> ) | 1450-1375                        |
| C-CH₃ bükülme                     | $\rho_r(CH_3)$      | 1150-850                         |
| C-H düzlem dışı açı bükülme       | ү(СН)               | 650-800                          |

Tablo2.4. Grup Frekansları [16,35].

Moleküllerin normal titreşimlerini iki gruba ayırabiliriz:

- a) İskelet titreşimleri
- b) Grup titreşimleri

1400-700 cm<sup>-1</sup> dalga aralığında çok farklı frekanslarda bandların gözlendiği iskelet titreşim bölgesine "parmak izi bölgesi" adı verilir [16,20].

### 2.1.9. Molekül Titreşim Türler

Bir molekülün herhangi bir frekansta titreşim hareketinin belirlenmesine "işaretleme" denir. Titreşim hareketlerinin belirlenmesi çok basit de olabilir, çok karmaşık da olabilir. Eğer bir titreşim hareketi karmaşık ise, temel titreşimlere bölünerek incelenebilir [3,12,13]. Bir molekülün yapabileceği temel titreşim hareketleri Şekil 2.4'de verilmiştir. Çok atomlu moleküllerin titreşimleri dört temel titreşim türüne ayrılabilir.

### 2.1.9.1. Gerilme titreşimi (Stretching)

Bağın eksen doğrultusunda periyodik olarak yaptığı uzama ve kısalma hareketidir. v ile gösterilir. Bağ uzunluğundaki değişim yer değiştirme vektörleri ile verilir. Molekülün tüm bağları periyodik olarak uzuyorsa ya da kısalıyorsa bu harekete "simetrik bağ gerilmesi", bağlardan biri uzarken diğeri kısalıyorsa buna da "asimetrik bağ gerilmesi" adı verilir.

### 2.1.9.2. Açı bükülme titreşimleri (Bending)

İki bağ arasındaki açının periyodik olarak değişmesidir. Yer değiştirme vektörleri bağ doğrultusuna diktir.  $\delta$  ile gösterilir. Açı bükülme titreşimlerinin özel şekilleri şunlardır:

<u>Makaslama (Scissoring)</u>: İki bağ arasındaki açı, bağlar tarafından kesiliyor ve bu nedenle periyodik olarak değişiyor ise bu harekete makaslama denir. Yer değiştirme vektörleri bağa dik doğrultudadır ve yönleri ise terstir..  $\delta_s$ ile gösterilir.

<u>Sallanma (Rocking)</u> : Yer değiştirme vektörleri birbirini takip edecek yöndedir Bağlar arasındaki ya da bir bağ ile bir grup atom arasındaki açının değişmesi hareketidir. Bu titreşim hareketinde bağ uzunluğu ve açının değeri değişmez.  $\rho_r$  ile gösterilir.

<u>Dalgalanma (Wagging)</u> : Bir bağ ile bir düzlem arasındaki açı değişimidir. Tüm atomlar denge konumunda aynı düzlemdeyken bir atomun düzleme dik hareket etmesi durumunda gözlenlenir. Bu titreşim hareketi w ile sembolize edilir.

<u>Kıvırma (Twisting)</u> : Moleküllerin doğrusal ve düzlemsel olmadığı durumlardabağların, atomlar tarafından bükülmesidir. Bağlardan biri ile düzlem arasındaki açı değişimidir. Bu titreşim hareketinde bağdeforme olmaz. Yer değiştirme vektörü bağ doğrultusuna diktir. t ile sembolize edilir.

## 2.1.9.3. Burulma titreşimi (Torsion)

İki düzlem arasındaki açının bir bağ veya açıyı bozarak, periyodik olarak değişimi hareketidir.  $\tau$  harfi ile sembolize edilir.

# 2.1.9.4. Düzlem dışı açı bükülmesi (Out of plane bending)

Atomların hareketi ile düzlemin deforme edilmesi hareketidir. Genellikle kapalı halka oluşturan moleküllerde gözlemlenir. Hareketin şeklinden ötürü "şemsiye titreşimi" olarak bilinir.  $\gamma$  ile sembolize edilir.





Düzlem Dışı Açı Bükülmesi

Şekil 2.4.'ün devamı

### 2.2. Bilgisayar Hesaplamalı Moleküler Spektroskopi

Bilgisayar hesaplamalı moleküler spektroskopi; moleküler yapıyı, kimyasal reaksiyonları ve spektroskopik büyüklükleri temel fizik yasalarına dayanarak hesaplar. Bilgisayar hesaplamalı moleküler spektroskopi yöntemleri, moleküllerin yapısını ve spektroskopik özelliklerini incelerken, iki gruba ayrılır:

a) Moleküler Mekanik

b) Elektronik yapı teorisi

Bu iki metotta da birbirine benzer hesaplamalar yapılır. Bu hesaplamalar;

i) Belirli bir moleküler yapının enerjisini hesaplamaktır.

ii) Geometrik optimizasyon yapmaktır. Geometrik optimizasyon denge durumu geometrisini diğer bir ifadeyle, en düşük enerjiye sahip moleküler yapıyı bulmaktır. Geometrik optimizasyon temelde enerjinin atomik koordinatlara göre birinci türevine dayanır.

iii) Molekülün titreşim frekanslarını hesaplamaktır. Moleküldeki atomların hareketlerinden kaynaklanan molekülün titreşim frekanslarının hesabı, enerjinin atomik koordinatlara göre ikinci türevinden elde edilir [14].

Moleküler mekanik hesaplamaları molekülün yapısının ve özelliklerinin belirlenmesinde klasik fizik yasalarının kullanırken, elektronik yapı metodları ise kunatum mekaniksel yasaları kullanır. Kunatum mekaniğinde bir molekülün enerjisi ve diğer büyüklükleri;

$$H\Psi = E\Psi \tag{2.24}$$

Schröndinger denklemi ile verilir. Burada H, hamiltonyen işlemcisidir. Schröndinger denkleminin çok büyük atomlu sistemler için tam çözümü mümkün olmadığından yaklaşık çözümler yapılır. Bu denklem kullanılarak hidrojen atomunun tam çözümü yapılmıştır. Elektronik yapı metotları, değişik yaklaşık matematiksel metotlar ile karakterize edilir. Bu metotlar iki ana sınıfta toplanır:

- a) Yarı deneysel metotlar.
- b) Ab initio metotlardır.

Yarı deneysel metotlar: Yarı deneysel metotlar kullanılarak yapılan hesaplamalarda, oldukça fazla deneysel veri kullanılır. MINDO, AM1, MP3, PM6 hesaplama metotları yarı deneysel metotlardandır.

Ab initio metotları: Bu metotlar, moleküler mekanik ve yarı deneysel metotların tersine, ilgili molekül için ışık hızı, Planck sabiti, elektronların kütlesi gibi temel fiziksel sabitler dışında deneysel değer kullanmaz [14,36]. Moleküllerin kuvvet alanlarının ve titreşim spektumlarının kuantum mekaniksel ab initio metodlar ile hesaplanması P. Pulay'ın 1969 yılında yaptığı klasik çalışmalarına dayanır [14,37]. Bu çalışmalarında Pulay "kuvvet" ya da "gradyent" metodu adı verilen yöntemi önermiştir. Pulay'ın bu konuya temel katkısı, enerjinin birinci türevinin ab initio metotlarda analitik olarak elde edilebileceğini göstermiş olmasıdır. 1970 yılından sonra birinci ve ikinci türevler kullanılarak ab initio metotları kıllanılarak spektroskopik büyüklükler hesaplanmıştır. Spektroskopik büyüklükler Hartree-Fock (HF), Yoğunluk Fonksiyonu Teorisi (DFT), Möller-Plesset Teorisi (MP2) gibi yöntemler kullanılarak hesaplanmaktadır [25,38,39].

Birinci türevler geometrik optimizasyonu, ikinci türevler kuvvet sabitini ve titreşim frekanslarını, dipol momentlerin türevleri ve IR şiddetlerini verir. Günümüzde kuantum mekaniksel yöntemlerle hesaplama yapan GAUSSIAN XX, GAMESS, HONDO, Q-CHEM, AMPAC gibi paket programların tamamı farklı mertebelerden analitik türevler kullanır. Tablo 2.5'de enerjinin türevlerinden nelerin hesaplanabileceği verilmiştir. Bu tabloda

Ee: Toplam Enerji

R : Atomik Koordinatlar

∈ : Elektrik Alan Bileşenine karşılık gelir [14,25,40].

Tablo 2.5. Enerji türevlerinden fiziksel büyüklüklerin hesaplanması [14,25,41].

| h                                                    | 1                                             |
|------------------------------------------------------|-----------------------------------------------|
| Türev                                                | Hesaplanan Büyüklük                           |
|                                                      | Atomlara etki eden kuvvetler, moleküllerin    |
| OLe / OK                                             | geometrisi, kararlı noktalar                  |
| are / ad.ad.                                         | Kuvvet sabitleri, temel titreşim frekansları, |
|                                                      | IR ve raman spektrumları, titreşim genlikleri |
|                                                      | Dipol moment türevleri, harmonik              |
| $O - L_e / O R_i O C_{\alpha}$                       | yaklaşımda IR şiddeti                         |
|                                                      | Polarizasyon türevleri, harmonik yaklaşımda   |
| $0^{\circ} L_{e} / 0 R_{i} 0 C_{\alpha} 0 C_{\beta}$ | raman şiddeti                                 |

# 2.2.1. Kuantum Mekaniksel Enerji İfadeleri ve Born-Oppenheimer Yaklaşımı

Protonun kütlesi  $(1.673 \times 10^{-24} \text{ g})$  elektronun kütlesinden yaklaşık  $(0.109 \times 10^{-28} \text{ g})$ 1840 kat daha büyüktür. Bunun sonucu olarak elektronun hareketi çekirdekten daha fazladır. Böylece çekirdeğin kinetik enerjisi elektronun kinetik enerjisinin yanında ihmal edilebilir. Bu yaklaşıma "Born-Oppenheimer Yaklaşımı" adı verilir. Bu yaklaşımda çekirdekler arası etkileşim nükleer hamiltonyene dahil edilir. Nükleer hamiltonyen dışında kalan kısım "elektronik hamiltonyen (H<sub>e</sub>)" olarak adlandırılır ve çekirdeğin etkisinde hareket eden elektronlar ile elektronlar arasındaki etkileşimleri göz önüne alır [26]. Bu durumda Schröndinger eşitliği şu şekilde yazılabilir:

$$H_e \Psi_e = E_e \Psi_e \tag{2.25}$$

Sistemin toplam enerjisi de aşağıdaki eşitlikteki gibi ifade edilir.

$$E_e = E^T + E^V + E^J + E^{XC}$$
 (2.26)

Burada;

E<sup>T</sup>: Elektronların hareketinin sebep olduğu kinetik enerji,

 $E^{V}$ : Çekirdek-elektron çekim ve çekirdek çiftleri arasındaki itme potansiyel enerjisi,

E<sup>J</sup> : Elektron-elektron itme terimi

 $E^{XC}$ : Değiş-tokuş ( $E^X$ ) ve korelasyon ( $E^C$ ) terimidir. Bu terim elektron-elektron etkileşimlerinin geri kalanını içerir. Değiş-tokuş enerjisi aynı spinli elektronlar arasındaki etkileşim enerjisidir ve kuantum mekaniksel dalga fonksiyonunun anti-simetriğinden meydana gelir. Farklı spinli elektronlar arasındaki etkileşim enerjisi ise korelasyon enerjisi olarak ifade edilir.

Çekirdek ve elektronların hareketi birbirinden bağımsız olduğu varsayılırsa, çok elektronlu sistemin toplam dalga fonksiyonu,  $\Psi$ , elektron ve çekirdek dalga fonksiyonlarının çarpımı şeklinde yazılabilir [42].

$$\Psi = \Psi_{\rm e} \Psi_{\rm c} \tag{2.27}$$

Born-Oppenheimer yaklaşımından kaynaklanan hatalar, ilk üç periyottaki atomlar için ihmal edilebilecek düzeydeyken, dördüncü ve beşinci periyotlar için önemli hale gelir [42].
#### 2.2.2. Yoğunluk Fonksiyonu Teorisi (DFT)

Yoğunluk Fonksiyonu Teorisinde (DFT) [44, 45] enerji, elektron yoğunluğuna (p) bağlıdır. Bu teoride sıkça kullanılan kavramların tanımları aşağıdaki gibidir.

Elektron Yoğunluğu: Bir noktadaki elektronların yoğunluğudur.

Tekdüze Elektron Gazı Modeli: Bir bölgedeki elektron dağılımının, sisteme düzgün şekilde dağılmış n tane elektron ve sistemi nötr hale getirebilecek miktarda pozitif yükten oluştuğu varsayımına dayanan idealize edilmiş bir modeldir. Yoğunluk Fonksiyonu Teorisi modellerinde enerji ifadeleri elde edilirken elektron dağılımı V hacimli bir küp içinde olduğu, elektron yoğunluğunun da  $\rho = n/V$  ile ifade edildiği ve  $\rho$ 'nun sabit kaldığı kabul edilir [42].

Fonksiyonel: Bağımsız x değişkenine bağımlı değişkene fonksiyon denir ve f(x) ile gösterilir [27,43]. Bir F fonksiyonu f(x)'e bağımlı ise bu bağımlılığa fonksiyonel denir ve F(f) ile gösterilir. Elektronun konuma bağlı olarak yoğunluğundaki değişim fonksiyoneldir.

# 2.2.2.1. Karma yoğunluk fonksiyon teorisi

Dalga mekaniğinde HF teorisi değiş-tokuş ve korelasyon enerjileri açısından iyi sonuç vermez. Ancak kinetik enerji hesaplamalarında çok iyi sonuç vermektedir. DFT modeli ise kinetik enerjiden ziyade değiş-tokuş ve korelasyon enerjilerinde daha iyi sonuç vermektedir. Bundan dolayı HF ve DFT yerine iki hesaplama yönteminin de iyi sonuç verdiği noktaları göz önünde bulunduran karma hesaplama modeli türetilmiştir ve iyi sonuç vermektedir. Bu yöntemlerin iyi sonuç verdiği noktalar; bağ enerjileri, toplam enerjiler, iyonizasyon enerjileri gibi büyüklüklerdir [16,44-49].

### 2.2.2.2. B3LYP karma yoğunluk fonksiyon teorisi

Becke, HF ve DFT enerji ifadelerini birleştirerek farklı bir enerji ifadesi yazılabilir düşüncesi ile değiş-tokuş fonksiyonu ve korelasyon enerjisi için bir karma modelönermiştir.Bu karma model aşağıdaki gibidir [25,46].

$$E^{XC}_{karma} = c_{HF} E^{X}_{HF} + c_{DFT} E^{X}_{DFT}$$
(2.28)

Burada  $c_{HF}$  ve  $c_{DFT}$  sabitlerdir. Bu karma modeller arasında en iyi sonuç verenler BLYP ve B3LYP karma yoğunluk fonksiyonlarıdır. B3LYP modelinde bir molekülün toplam elektronik enerjisi;

$$E_{B3LYP} = E^{T} + E^{V} + E^{J} + E^{XC}_{B3LYP}$$
(2.29)

olarak elde edilmiştir.

#### 2.2.3. Geometrik Optimizasyon ve Potansiyel Enerji Yüzeyi (PES)

Geometrik optimizasyon, moleküllerde denge durum geometrisinin hesaplanma yöntemidir. Bu metot "gradyent metodu" ya da "kuvvet alanı metodu" olarak da ifade edilir. Hesaplamalar moleküler sistem belli bir geometrideyken yapılır. Geometrik yapının değişmesi enerji de dahil birçok parametreyi değiştirir. Molekülün yapısında meydana gelen çok küçük değişiklikler sonucu enerjinin koordinatlara bağımlılığına "potansiyel enerji yüzeyi (PES)" adı verilir [25,36]. Kısaca PES; moleküler yapı ile enerji arasındaki bağdır. Bir molekülün potansiyel enerji yüzeyi bilindiği taktirde, denge durumundaki geometriye karşılık gelen en az enerjili nokta bulunabilir.

Denge konumuna karşılık gelen minimum enerjili noktaları hesaplamak için önce aşağıdaki ifadede görülen gradyent vektörü g hesaplanır.

$$\langle g| = \rho = (\partial E/\partial X_1, \partial E/\partial X_2, ...)$$
 (2.30)

Daha sonra gradyent vektörünün sıfır olduğu noktalar hesaplanır.

$$\langle g| = (0, 0, 0, ...)$$
 (2.31)

Bu geometri, molekülün minimum enerji geometrisi olarak tanımlanır.



Şekil 2.5. İki atomlu bir molekülde elektronik enerji grafiği [42].

PES'deki minimumlar, sistemin dengede olduğu bölgelere karşılık gelmektedir. Bir molekülün potansiyel enerji yüzeyi birçok maksimum ve minimum bölgeler içerir. Bu minimumlara "lokal minimum" denir, lokal minimumların en düşük enerjili olanına "global minimum" adı verilir. Potansiyel enerji yüzeyinde, bir yönde yerel minimum diğer yönde ise yerel maksimum olan yerler vardır. Bunlara eyer noktaları denir. Eyer noktaları iki kararlı yapı arasındaki geçiş halini karşılamaktadır[42]. PES'deki eyer noktaları Şekil 2.6.'da verilmiştir [16].



Şekil 2.6. Potansiyel enerji yüzeyindeki eyer noktaları[16].

#### 2.2.4. Temel Setler

Temel set, atomik orbitallerin matematiksel tanımıdır. Bir molekül orbitali atom orbitallerinin doğrusal toplamları şeklinde yazılabilir. Bu yazım şeklinin dayanağı ise, atomların molekülü oluşturması ve aynı tür atomların farklı moleküllerde benzer özellikler gösterdikleri varsayımıdır [14,19,42].  $\Psi_i$  moleküler orbitali ile  $\Phi_{\mu}$  atomik orbitalleri arasındaki bağıntı aşağıda verilmiştir.

$$\Psi_{i} = \sum_{\mu=1}^{N} c\mu i \, \Phi \mu \tag{2.32}$$

Burada;

 $c_{\mu i}$ : Molekül orbital açılım katsayısı

 $\Phi_{\mu}$ : Tek elektron dalga fonksiyonudur.

Tek elektronlu H atomu için  $\Phi_{nlm}$  atom orbitali küresel koordinat sisteminde radyal fonksiyon  $R_{nl}$  (r) ve küresel fonksiyon  $Y_{lm}$  ( $\theta, \phi$ ) olmak üzere ikiye ayrılır. Küresel harmonik terim  $\theta$  ve  $\phi$  açılarına bağlı iki kısma ayrılır.

$$\Phi_{\text{nlm}}(\mathbf{r},\theta,\phi) = \mathbf{R}_{\text{nl}}(\mathbf{r}) \times \mathbf{Y}_{\text{lm}}(\theta,\phi)$$
(2.33)

$$Y_{lm}(\theta, \varphi) = \Theta_{lm}(\theta) \times \Phi(\varphi)$$
(2.34)

2.31'deki eşitliğindeki radyal terim, çekirdekten ortalama uzaklığı gösterir ve orbitalin enerjisini belirler. Küresel harmonik terim ise, sabitleri verir ve orbitalin şeklini belirler. Yapılan hesaplamalarda önemli olan orbitalin enerjisi olduğu için çoğu zaman radyal fonksiyon ifadesi orbital olarak adlandırılır ( $\Phi_{nlm}$  (r, $\theta,\phi$ ) = R<sub>nl</sub> (r)) [19,42].

J.C. Slater en küçük kareler yöntemini kullanarak temel setleri kolayca açıklayan bir algoritma geliştirmiştir. Slater'in geliştirmiş olduğu bu eşitliğe "Slater Tipi Orbitaller (STO)" adı verilir. Önceleri temel fonksiyon olarak, H atomunun atom orbitallerine benzerliği nedeniyle STO'lar kullanılmıştır. STO eşitliği aşağıdaki gibidir.

STO = 
$$R_{nl}(r) = (2\zeta)^{n+1/2} [(2n)!]^{-1/2} r^{n-1} e^{-\zeta r}$$
 (2.35)

Burada;

$$\zeta = \frac{z-s}{n*}$$

- $\zeta$ : Orbital sabiti
- z : Çekirdek yükü
- s : Perdeleme sabiti
- n<sup>\*</sup> : düzeltilmiş baş kuantum sayısıdır.

STO eşitliği molekül orbitallerinin hesaplanmasında çok iyi sonuçlar vermesine karşın integral hesaplamaları çok uzun zaman alıyordu. Bu sorunu gidermek için 1950 yılında S.F. Boys Gaussian Tipi Orbitaller (GTO) kullanarak atomik orbitallerin doğrusal birleşimi (LCAO) yöntemi ile STO benzeri orbitaller oluşturmuştur [19,42,50]. Boys'un GTO'leri aşağıdaki şekilde verilir. Bunlar gerçek orbitaller değil, sadece basit fonksiyonlardır.

$$g(\alpha, r) = cx^{n} y^{m} z^{l} e^{-\alpha r^{2}}$$
(2.37)

Burada;

- α : Fonksiyon genişliğini belirleyen bir sabit,
- c : l, n, m'ye bağlı bir sabittir.
- s, py, dxx tipi gaussian fonksiyonları aşağıda verilmiştir.

$$g_{s}(\alpha, \mathbf{r}) = \left(\frac{2\alpha}{\pi}\right)^{3/4} e^{-\alpha r^{2}}$$

$$g_{y}(\alpha, \mathbf{r}) = \left(\frac{128\alpha^{5}}{\pi^{3}}\right)^{1/4} y e^{-\alpha r^{2}}$$

$$g_{xy}(\alpha, \mathbf{r}) = \left(\frac{204\alpha^{7}}{\pi^{3}}\right)^{1/4} x y e^{-\alpha r^{2}}$$
(2.38)

$$\Phi_{\mu} = \Sigma \, \mathbf{d}_{\mu p} \, \mathbf{g}_{p} \tag{2.39}$$

Burada;

 $d_{\mu p}$ : Herhangi bir temel set için sınırlı sayıda sabitler,

g<sub>p</sub> : İlkel gaussianlardır.

Sonuçta bir moleküler orbital aşağıdaki gibi verilir.

$$\Psi_{i} = \Sigma c_{\mu i} \Phi_{\mu} = \Sigma c_{\mu i} (\Sigma d_{\mu p} g_{p})$$
(2.40)

Bir molekül orbitali veya dalga fonksiyonu ile ilgili hesaplamalarda temel sorun  $c_{\mu i}$  lineer açılım katsayısının her bir orbital için hesaplanmasıdır.

Farklı üs ve katsayılar içeren çok sayıda GTO'ların toplanması ile STO benzeri fonksiyonlar elde edilebilir. Buna göre STO-3G temel fonksiyonu gaussian tipi fonksiyonlarla şöyle tanımlanabilir.

$$STO-3G = c_1 e^{-\alpha_1 r^2} + c_2 e^{-\alpha_2 r^2} \quad c_3 e^{-\alpha_3 r^2}$$
(2.41)

Burada  $\alpha$  ve c sabitlerdir ve varyasyon hesabında kullanılmazlar. 6 GTO kullanılıyorsa STO-6G elde edilir. Daha çok fonksiyon kullanılmasına rağmen, hesaplamalar daha hızlı fakat sonuçlar çok da doğru değildir. Daha doğru sonuç elde etmek için ilkel gaussian fonksiyonlarının sayısını artırmak gerekir.

Atom orbitallerini tanımlamak için birçok temel set önerilmiştir. Bu temel setlerden bazıları aşağıda verilmiştir.

<u>Minimal Temel Setler</u>: (STO-nG) olarak gösterilebilir. Burada n; bir tane STO'yu oluşturmak için kullanılan ilkel gaussianların sayısıdır. Örneğin STO-3G temel setinde, 3 tane ilkel gaussianın toplamı bir STO'ya karşılık gelir. Minimal temel setler herhangi bir atom için iç kabuk (core) ve değerlik kabuğundaki her tip orbital için birer tane olmak üzere gereken en az sayıda temel fonksiyon içerir.

<u>Split Valans Temel Setleri :</u> Pople tipi temel set olarak da bilinir. K-nlmG genel yapısına sahiptir. Burada

K : İç orbitalleri temsilen kaç tane ilkel gaussian kullanıldığını gösterir.

nlm : Valans orbitallerinin kaç tane temel fonksiyona yarıldığını ve bunları temsilen kaç tane ilkel gaussian kullanıldığını verir. nl split valans, nlm triple valans olarak

adlandırılır. Bu simgelerin kuantum sayıları ile ilgili yoktur. Split valans temel setleri orbitallerin büyüklüklerini değiştirirken şekillerini değiştirmez [42].

3-21G temel setinde core orbitalleri üç tane GTO'dan oluşur. Valans orbitallerinin iç kısmı 2 GTO'dan, dış kısmı 1 GTO'dan meydana gelir. Valans orbitalleri iki fonksiyona yarılmıştır.

6-31G temel setinde core orbitalleri altı tane GTO'dan oluşur. Valans orbitallerinin iç kısmı üç tane ilkel gaussianın daraltılmasından meydana gelir, dış kısmı ise 1 tane ilkel gaussian ile temsil edilir. Valans orbitalleri iki fonksiyona yarılmıştır.

6-311G temel setinde, iç orbitaller 6 tane ilkel gaussianın daralmasından meydana gelirken, değerlik orbitalleri üç fonksiyona yarılmıştır. 3,1,1 ilkel gaussian içerir.

<u>Polarize Temel Setler :</u> Bir atomun temel halini belirlerken, gerekli olandan daha çok açısal momentumu orbitallere ekler ve onların şeklini değiştirir. Polarize temel setler karbon atomları için d fonksiyonlarını da hesaba katar. 3-21G<sup>\*</sup> [3-21G(d)] gibi, temel set hidrojen atomu için p orbitallerini de göz önüne alıyorsa 6-311<sup>\*\*</sup> [6-31G(d,p)] gibi gösterilir.

<u>Difüz Fonksiyonlu Temel Setler</u>: s- ve p- fonksiyonlarının daha küçük versiyonlarıdır. Orbitallerin uzayda daha geniş yer işgal etmesine izin verir. Difüz fonksiyonlu temel setler elektron yoğunluğu çekirdekten uzaktaki sistemler, eksi yüklü sistemler, düşük iyonlaşma enerjili sistemler, uyrılmış haller için önemlidir. Difüz fonksiyonları + ile gösterilir. Örneğin 6-31+G(d) temel seti, 6-31G(d) temel setinde ağır atomlara difüz fonksiyonları eklenmiş anlamına gelir. 6-31++G(d) temel seti ise hidrojen atomuna da difüzyon fonksiyonu eklenmiş halidir [19,42].

#### 2.2.5. SQM Metodu

Pulay'ın [37] gradyent metodunda, enerjinin koordinatlara göre birinci türevi sıfır olduğunda molekülün denge durumu geometrisi bulunur. Enerjinin koordinatlara göre ikinci türevi de kuvvet sabitini verir. Kuvvet sabitinin hesaplanmasıyla molekülün titreşim frekansları bulunur. 1970'li yıllarda çok atomlu moleküllerin kuvvet sabitleri ilk sistematik olarak hesaplanmıştır. Hesaplanan kuvvet sabitlerindeki hata miktarı titreşim frekanslarını etkiler bu nedenle ölçülen frekans

ilehesaplanan frekans arasındaki farkı azaltmak için ölçekleme yöntemi geliştirilmiştir. Bu konudaki ilk çalışmalara bakıldığında 1974'te Pulay ve Meyer tarafından kullanılan basit ölçekler karşımıza çıkmaktadır [51]. Hesaplanan kuvvet sabitleri sistematik olarak gerçeğinden büyük değerler verdiğinden, hesaplanan değer sabit ölçekleme faktörleri ile çarpılarak gerilmelerde %10, bükülmelerde %20 azaltılmıştır. Farklı gruplar tarafından aynı dönemde benzer çalışmalar yapılmıştır [52,53].

DFT/B3LYP 6-31G(d) modeli için SQM metodunu 1995 yılında P. Pulay ve G. Rauhutgeliştirilmiştir [54].

SQM metodu ile hesaplamalarında izlenen yol aşağıda özetlenmiştir.

i) İlk olarak incelenecek molekülün yaklaşık geometrisinin kartezyen koordinatları veri olarak girilir.

ii) Geometrik optimizasyon yapılır: Geometrik optimizasyon için hesaplama yöntemi ve kullanılacak temel set seçilir. Geometrikoptimizasyon seçilen model çerçevesinde enerjinin birinci türevinden hesaplanır. Enerjinin birinci türevi gradyent vektörünü verecek olup, bu vektörün sıfır olması moleküler sistemin denge durumuna karşılık gelecektir. Bu durumda molekülün yapısı hesaplanır.

iii) Molekülün titreşim frekansları hesaplanır: Geometrik optimizasyon yapıldıktan sonra elde edilen geometrinin kartezyen koordinatları veri olarak girilir ve hesaplama modeli seçilir. Seçilen model ile enerjinin ikinci türevi hesaplanır, bu türev kuvvet sabitini verir. Kuvvet sabitlerinden titreşim frekansları harmonik yaklaşımında hesaplanır. Bu durumda molekülün yapısı hesaplanır.Titreşim frekansları uygun ölçekleme faktörleri kullanılarak ölçeklenir.

### 2.3. Tautomerizm

Atomlarının farklı bir düzende yerleşmiş olmalarına karşın, hızlı bir denge ile birbirlerine dönüşebilen izomerlere "tautomer", bu olaya da "tautomerizm" denir [19,55].

Tautomerde bir hidrojen atomu farklı yerde bulunduğundan iki tautomer birbirinin rezonans yapıları değildir. Bunlar Şekil 2.7'de gösterildiği gibi dengede olan iki

farklı yapıdır. Rezonans yapılarda yalnızca elektronların yeri değişiktir [55]. Tautomerler rezonans sınır formülleri değillerdir. Enerji düzeyleri birbirlerine çok yakın ve atomların uygun hareketleriyle birbirlerine dönüşebilen izomer bileşiklerdir. Tautomerik değişmeyi bir kimyasal tepkime gibi kabul etmek doğru bir düşüncedir [56].



Şekil 2.7. Tautomerik denge

Tautomerizm iki grupta incelenebilir.

a) Valans Tautomerizmi: Valans tautomerizmi bir molekülde atomlar arası mesafenin değişmesidir. Bu değişme sırasında herhangi bir atomun molekülden ayrıldığı bir ara ürün yoktur [56].

b) Proton Tautomerizmi: Proton tautomerizminde proton molekülün bir ucundan ayrılıp hızla başka bir ucundaki atoma bağlanması söz konusudur. Organik kimyada en çok kullanılan tautomerizm türüdür [57].

# 2.4.Çözücü Etkisi

Bu bölüme kadar gaz fazında yapılan hesaplamalardan bahsedildi fakat bir molekül için yapılan hesaplamalarda çözücü etkisini de hesaba katmak mümkündür. Molekül ile çözücü arasındaki etkileşimi hesaplamak için kullanılan yöntemlerden biri öz uyumlu olan (SCRF/CPCM) yöntemidir. Çözücü dielektrik ortamı hesaplamalar için önemlidir. SCRF/CPCM metodu ile hesaplanabilecek parametreler arasında; suyun tautomerizme etkisi, su içinde bulunan molekülün çevresel etkilerle değişen dipol momenti ve molekül geometrisi bulunmaktadır. Ayrıca bu yöntem molekülün genel

yapı özelliklerini ve kararlılık durumunu su içinde en verimli şekilde hesaba dayalı olarak veren bir yöntemdir [58].

#### 2.5. HOMO-LUMO Enerjileri

Moleküler orbital teorisinde, moleküller meydana gelirken atomlar gerekli bağ mesafesinde birbirlerine yaklaşırlar ve molekül oluşmasını sağlayan atomik orbitaller karışarak moleküle ait orbitalleri oluşturur. Moleküle ait bu orbitaller, moleküldeki elektronların bulunma olasılığının yüksek olduğu yerler olarak düşünülebilir [59,60]. Kimyasal reaksiyona katıların temel orbitaller HOMO (en yüksek dolu moleküler orbital) ve LUMO (en düşük boş moleküler orbital) orbitalleridir. HOMO enerjisi ( $E_{HOMO}$ ) molekülün elektron verme ( $\pi_{donor}$ ), LUMO enerjisi ( $E_{LUMO}$ )molekülün elektron alma ( $\pi_{acceptor}$ ) yeteneği olarak tanımlanır [59].

HOMO ve LUMO enerji değerleri arasındaki boşluk molekülün kimyasal kararlılığı olarak tanımlanır [59,61]. Etkileşen moleküler orbitallerin enerji seviyeleri birbirine yaklaştıkça etkileşim de daha kolay olacaktır. Başka bir ifadeyle  $\Delta E$  enerji farkı ne kadar küçükse reaktantların etkileşimi ve reaksiyon o kadar kolay olacaktır. Bir molekül için HOMO ve LUMO enerji değerlerini kullanarak İyonizasyon Potansiyeli,Elektron İlgisi, Elektronegatiflik ve Kimyasal sertlik gibi parametreler hesaplanabilir. Bu parametrelerden İyonizasyon potansiyeli (I= -E<sub>HOMO</sub>); gaz fazında bir molekülden bir elektron koparmak için gerekli enerji, Elektron ilgisi (A= -E<sub>LUMO</sub>); gaz fazında bir moleküle bir elektron eklendiği zaman enerji miktarındaki artış olarak ifade edilir. Elektronegatiflik ( $x = \frac{I+A}{2}$ ); moleküldeki bir atomun elektronları çekme gücü olarak tanımlanırken, Kimyasal sertlik ( $\eta = \frac{I-A}{2}$ ) ise, molekül içerisindeki yük transferinin engellenmesinin bir ölçüsüdür. Kimyasal sertlik derecesi yüksek olan moleküllerde molekül içi yük transferi ya hiç gerçekleşmiyordur, ya da çok az gerçekleşiyordur [59,62].

#### 2.6.Yük Analizi

Atomik yükler, elektron yoğunluğunun aksine kuantum mekaniksel olarak tam olarak hesaplanamazlar. Bu nedenle yük analizi için kullanılan bütün metotlar belli ölçülerde rastgelelik ihtiva ederler [15,59]. Yük analizinde en çok kullanılan Mulliken yük dağılımı ile Natural (Doğal) Yük Analizi (NBO) yöntemleridir.

Mulliken yük dağılımı yönteminintemelinde dalga fonksiyonlarının atomlara dağılımını yaparken yükleri eşit olarak dağıtmasına dayanır. Yani bu yöntemde iki orbitalin çakışması ihmal edilmiştir. Mulliken yük dağılım metodu eksikliklerine rağmen çok yaygın olarak kullanılır. Mulliken yükleri deneysel sonuçları nicel olarak tahmin etmekten ziyade nitel bir takım tahminler yapmak için kullanılır [44,59].

NBO metodu HOMO-LUMO etkileşmeleri, molekül içi ve moleküller arası bağlar, yük transferi ve konjugative etkileşmeler hakkında bilgi verir.

#### 2.7. Boltzmann Dağılımı

Temel halde bulunan atomlar enerji absorblayarak uyarılmış hale geçer. Bu olaya "absorbsiyon" denir. Absorbsiyon şiddetide temel halde bulunan atomların sayısına göre değişim gösterir [63,64]. Sistem dengede iken herhangi bir uyarılmış enerji düzeyindeki atom ve moleküllerin sayısı "Boltzmann Dağılımı" ile verilir [65,66].

$$\frac{Ni}{Nj} = \frac{gi}{gj} \exp\left[\frac{-(Ei-Ej)}{RT}\right]$$
(2.42)

$$N_1 + N_2 + N_3 + \dots = 1 \tag{2.43}$$

Burada; N, tautomer sayısı; E enerji, i ve j sırasıyla en yüksek ve en düşük enerjilere karşılık gelen alt indisler ve g ise dejenereliktir [66].

# **3. MATERYAL VE YÖNTEM**

Bu tez kapsamında incelenen 7-Fluoroisatin ve 1-Metilisatin bileşikleri katı halde Alfa Aesar firmasından alınmıştır. İki bileşiğin de saflık derecesi %97 olup, bu kimyasalların görüntüleri Şekil3.1. de verilmiştir. Moleküllerin FT-IR spektrumları Kırıkkale Üniversitesi Merlab laboratuvarlarında bulunan Bruker FT-IR spektrometresi ile 4000–400 cm<sup>-1</sup>aralığında, oda sıcaklığında ve 2 cm<sup>-1</sup>spektral çözünürlük ile kaydedilmiştir. FT-Raman spektrumları ise yine Kırıkkale Üniversitesi Merlab laboratuvarlarında 4.0 cm<sup>-1</sup>çözünürlüğe sahip, 1064 dalga boyu kullanan NXR FT-Raman aleti ile 3500-200 cm<sup>-1</sup>aralığında kaydedilmiştir.



Şekil3.1. 7-Fluoroisatin ve 1-Metilisatin bileşiklerinin yapısı

Bu tezin teorik hesaplamalarında Gaussian 09[9] ve Gaussview 5.0 [10] paket programları kullanılmıştır. Hesaplamalarda Yoğunluk Fonksiyonu Teorisi (DFT) metodu ile B3LYP/6-311++G(d,p) temel seti kullanılmıştır.

#### 4. BULGULAR VE TARTIŞMA

# 4.1. 7-Fluoroisatin Molekülünün Tautomerik Formlarının Teorik Hesaplama Sonuçları ve Enerji Analizi

Bir bileşiğe ait farklı moleküler yapılar bileşiğin fiziksel ve kimyasal özelliklerini ciddi bir şekilde etkiler [67,68]. Bu tez çalışmasında 7-Fluoroisatin molekülün 5 farklı tautomerik formu elde edilmiştir. Bu moleküle ait tautomerlerin atomik yapıları ve uzayda dizilişleri Şekil 4.1.'de, toplam enerji değerleri, enerji farkları ZPE (sıfır noktası doğrulama enerjisi) enerjileri ve dipol moment değerleride Tablo 4.1.'de verilmiştir. Tautomerler sırası ile 7Fl-1, 7Fl-2, 7Fl-3, 7Fl-4 ve 7Fl-5 olarak adlandırılmıştır.Yapılan hesaplamalar, 7-Fluoroisatinin, 5 tautomerik yapısı içerisinde en düşük enerji değerinin 7Fl-1'e (-612.4712505 Hartree) ait olduğunu göstermektedir.

| Үарі  | E <sub>tot</sub><br>(Hartree) | ΔE <sup>a</sup><br>(Hartree) | Zero-point correction<br>(Hartree/Parçacık) | Dipol moment<br>(Debye) |
|-------|-------------------------------|------------------------------|---------------------------------------------|-------------------------|
| 7Fl-1 | -612,4712505                  | 0.00                         | 0,106528                                    | 5,3928                  |
| 7Fl-2 | -612,4479234                  | 0,0233271                    | 0,106504                                    | 1,8737                  |
| 7Fl-3 | -612,4474812                  | 0,0237693                    | 0,106490                                    | 3,4006                  |
| 7Fl-4 | -612,4184789                  | 0,0527716                    | 0,105789                                    | 5,7287                  |
| 7Fl-5 | -612,4078708                  | 0,0633797                    | 0,105255                                    | 7,9368                  |

Tablo4.1.Tautomerler için hesaplanan toplam enerji, enerji farkları, sıfır noktası<br/>doğrulama enerji ve dipol moment değerleri

 ${}^{a}\Delta E = IE_{n} - E_{1}I$  tautomerin enerjisi ile en kararlı form arasındaki enerji farkı

Tablo 4.1'de de görüldüğü üzere molekülün tautomerik formlarının toplam enerjileri 7Fl-1 için-612.4712505 Hartree, 7Fl-2 için -612.4479234 Hartree, 7Fl-3 için -612.4474812 Hartree, 7Fl-4 için -612,4184789Hartree ve 7Fl-5 için de -612.4078708 Hartree olarak hesaplanmıştır. Yapılan bu hesaplamalara göre kararlılık sıralaması 7Fl-1>7Fl-2>7Fl-3>7Fl-4>7Fl5 şeklinde bulunmuştur. Bu gösterime göre yukarıda da belirtildiği üzere en kararlı form 7Fl-1 olmuştur. Tautomerik yapılarda en kararlı yapı (7Fl-1) ile en kararlı ikinci yapı (7Fl-2) arasındaki enerji farkı 0,0233271Hartreeolarak hesaplanmıştır. 7Fl-1 ile kararlılığı en az olan yapı (7Fl-5) arasındaki enerji farkı da 0,0633797Hartree, 7Fl-1 formunda Hidrojen atomu Azot atomuna bağlıyken 7Fl-2 formunda Oksijen atomun bağlanmıştır. Bu da bize en kararlı iki yapı arasındaki enerji farkının Hidrojen atomunun yer değiştirmesinden kaynaklandığını göstermektedir. 7Fl-3 ile 7Fl-4 formları arasındaki enerji farkları da Hidrojen atomunun yer değiştirmesinden kaynaklanmaktadır. 7Fl-2 ile 7Fl-3 ve7Fl-4 ile 7Fl-5 arasındaki enerji farkları da Hidrojen atomunun yöneliminden oluşmaktadır.



7-Fluoroisatin-1 (7Fl-1)



7-Fluroisatin-2 (7Fl-2)



7-Fluroisatin-3 (7Fl-3)

Şekil 4.1. 7-Fluoroisatin molekülün tautomerik formları



7-Fluoroisatin-4 (7Fl-4)



7-Fluoroisatin-5 (7Fl-5)

Şekil 4.1.'in devamı

Boltzman dağılımı kullanılarak tautomerlerin bulunma yüzdeleri hesaplanmıştır. Boltzman dağılımına ait bağıntı aşağıda verilmiştir. Yapılan hesaplamaların sonucu Tablo 4.2.'de verilmiştir. Tablo 4.2. incelendiğinde 7Fl-1 formu % 99.99'luk bulunma yüzdesine sahiptir. 7Fl-2 formu da % 1.862x 10<sup>-9</sup> bulunma yüzdesi ile ikinci sırada yer almaktadır.

$$N_i/N_j = g_i/g_j \exp[-(E_i - E_j)/RT]$$
 (4.1)

Burada R = $kN_0$  olup, k; Boltzman sabiti,  $N_0$  ise Avagadro sayısıdır.

| No    | Toplam Enerji (Hartree) | Bulunma Yüzdesi (%)       |
|-------|-------------------------|---------------------------|
| 7Fl-1 | -612.471251             | 99.99                     |
| 7Fl-2 | -612.447923             | 1.862x 10 <sup>-9</sup>   |
| 7Fl-3 | -612.447481             | 1.166 x 10 <sup>-9</sup>  |
| 7Fl-4 | -612,418479             | 5.333 x 10 <sup>-23</sup> |
| 7Fl-5 | -612.407871             | 7.042 x 10 <sup>-28</sup> |

Tablo 4.2. Tautomerlerin bulunma yüzdeleri

En kararlı yapıya sahip 7Fl-1 formunun atom numaraları Şekil 4.2.'de, DFT metodu ve B3LYP/6-311++G(d,p)temel seti kullanılarak tautomerler için hesaplanan bağ uzunlukları ve bağ açıları da Tablo 4.3.'de, verilmiştir. Tautomerlerde aynı atomlar arasında Hidrojen atomunun yer değiştirmesi veya yöneliminin değişimi sonucu farklı bağ uzunlukları ve bağ açıları hesaplanmıştır.



Şekil 4.2. En kararlı yapı olarak hesaplanan 7Fl-1'in moleküler yapısı ve atom numaraları

|                              | X-ray              | 7Fl-1   | 7Fl-2   | 7Fl-3   | 7F11-4  | 7Fl-5   |
|------------------------------|--------------------|---------|---------|---------|---------|---------|
| <u>Bağ uzunluğu (A°)</u>     |                    |         |         |         |         |         |
| C(1)—C(2)                    | 1,403 <sup>a</sup> | 1,405   | 1,406   | 1,410   | 1,480   | 1,485   |
| C(2)—C(3)                    | 1,385 <sup>a</sup> | 1,391   | 1,384   | 1,385   | 1,429   | 1,434   |
| C(3)—C(4)                    | 1,395 <sup>a</sup> | 1,395   | 1,401   | 1,401   | 1,361   | 1,358   |
| C(4)—C(5)                    | 1,374 <sup>a</sup> | 1,399   | 1,393   | 1,393   | 1,438   | 1,446   |
| C(5)—C(6)                    | 1,388 <sup>a</sup> | 1,389   | 1,399   | 1,399   | 1,364   | 1,357   |
| C(6)—C(1)                    | 1,380 <sup>a</sup> | 1,383   | 1,380   | 1,380   | 1,423   | 1,434   |
| C(2)—C(8)                    | 1,448 <sup>a</sup> | 1,475   | 1,484   | 1,474   | 1,362   | 1,359   |
| C(8)—C(7)                    | 1,464 <sup>a</sup> | 1,578   | 1,546   | 1,540   | 1,561   | 1,563   |
| C(7)—N(13)                   | 1,353 <sup>b</sup> | 1,387   | 1,280   | 1,278   | 1,368   | 1,398   |
| C(1)—N(13)                   | 1,413 <sup>a</sup> | 1,397   | 1,428   | 1,430   | 1,333   | 1,313   |
| C(7)—O(14)                   | 1,241 <sup>b</sup> | 1,202   | 1,325   | 1,326   | 1,213   | 1,201   |
| C(8)—O(15)                   | -                  | 1,203   | 1,202   | 1,209   | 1,307   | 1,320   |
| C(6)—F(12)                   | -                  | 1,355   | 1,346   | 1,344   | 1,343   | 1,341   |
| <u>Açılar (<sup>0</sup>)</u> |                    |         |         |         |         |         |
| C(1)—C(2)—C(3)               | -                  | 121,310 | 122,665 | 122,878 | 122,366 | 121,783 |
| C(2)—C(3)–C(4)               | -                  | 118,593 | 117,793 | 117,758 | 118,195 | 118,456 |
| C(3)—C(4)—C(5)               | -                  | 120,379 | 120,373 | 120,262 | 120,546 | 120,919 |
| C(4)—C(5)—C(6)               | -                  | 120,274 | 120,625 | 120,828 | 122,396 | 122,083 |
| C(5)—C(6)—C(1)               | -                  | 120,158 | 119,942 | 120,004 | 120,878 | 121,004 |
| C(5)—C(6)—F(12)              | -                  | 120,511 | 119,043 | 118,897 | 120,252 | 120,630 |
| C(1)—C(6)—F(12)              | -                  | 119,331 | 121,015 | 121,099 | 118,870 | 118,366 |
| C(6)—C(1)—N(13)              | -                  | 129,156 | 127,740 | 127,427 | 127,119 | 127,232 |
| C(2)—C(1)—N(13)              | -                  | 111,558 | 113,658 | 114,303 | 117,262 | 117,013 |
| C(1)—N(13)—C(7)              | 110,0 <sup>b</sup> | 111,554 | 105,856 | 105,117 | 104,277 | 104,888 |
| N(13)—C(7)—C(8)              | 107,3 <sup>b</sup> | 104,871 | 113,925 | 114,083 | 109,178 | 108,139 |
| C(7)—C(8)—C(2)               | -                  | 104,992 | 101,290 | 102,094 | 106,754 | 106,624 |
| C(8)—C(2)—C(1)               | -                  | 107,025 | 105,271 | 104,403 | 102,529 | 103,336 |
| C(8)—C(2)—C(3)               | -                  | 131,665 | 132,064 | 132,719 | 135,106 | 134,882 |
| C(2)—C(8)—O(15)              | -                  | 130,568 | 131,550 | 133,683 | 132,937 | 133,663 |
| C(7)—C(8)—O(15)              | -                  | 124,440 | 127,160 | 124,223 | 120,309 | 119,713 |
| N(13)—C(7)—O(14)             | 126,5 <sup>b</sup> | 127,359 | 125,938 | 125,602 | 131,727 | 128,350 |
| C(8)—C(7)—O(14)              | -                  | 127,770 | 120,136 | 120,314 | 119,095 | 123,510 |

Tablo 4.3. 7-Fluoroisatin molekülünün tautomerlerine ait bağ uzunluğu ve açı değerleri

<sup>a</sup>: Kaynak [69]'dan alınmıştır.

<sup>b</sup>: Kaynak[70]'den alınmıştır.

En kararlı iki yapı arasındaki bağ uzunlukları incelendiğinde bağlar arasındaki en büyük fark Karbon ve Oksijen atomları arasında oluşmuştur. C(7)-O(14) arasındaki bağ 7Fl-1 de 1,202  $A^0$  iken 7Fl-2 de 1,325  $A^0$  olarak ölçülmüştür. Diğer dikkate değer fark ise Karbon ve Azot atomları arasında ölçülmüştür. C(7)-N(13) arasındaki bağ uzunluğu 7Fl-1'de 1,387  $A^0$  olurken aynı bağ uzunluğu 7Fl-2'de 1,280  $A^0$  olarak gözlenmiştir.İki form arasındaki bu farklılık 7Fl-1'deki Azota bağlı Hidrojen atomunun 7Fl-2'de Oksijen atomuna bağlanmasından kaynaklanmaktadır. Bu farklılık incelendiğinde Hidrojen atomunun bağlandığı atom ile komşusu arasındaki bağ uzunluğunu artırdığı gözlenmiştir. İki form arasındakibağ uzunluklarında oluşan diğer dikkate değer farklar ise yer değiştiren Hidrojen atomunun bağlandığı/koptuğu atomlara komşu atomlar arasında gerçekleşmiştir. Örneğin, C(1)-(N13) arasındaki bağ uzunluğu 7Fl-1 ve 7Fl-2 formlarında sırasıyla 1,397  $A^0$  ve 1,428  $A^0$  elde edilmiştir. C(8)-C(7) arasındaki bağ uzunlukları ise 7Fl-1'de 1,578  $A^0$ , 7Fl-2 'de ise 1,546  $A^0$  olarak elde edilmiştir.

En kararlı iki yapı arasındaki bağ açıları incelendiğinde en büyük fark N(13)-C(7)-C(8) arasında meydana gelmiştir. Bu atomlar arasındaki açı 7Fl-1 ve 7Fl-2 için sırasıyla  $104,871^{\circ}$  ve  $113,925^{\circ}$  olmuştur. Kayda değer diğer fark da C(1)-N(3)-C(7) arasında gözlenmiştir. Bu açı 7Fl-1 için  $111,554^{\circ}$  7Fl-2 için  $105,856^{\circ}$ , dir.

Tautomerlere ait hesaplanan ve deneysel parametreler karşılaştırıldığında farklılıklar olduğu görülmektedir. Bu farklılık deneysel veriler elde edilirken molekülün katı hali, yapılan hesaplamalar da ise molekülün gaz hali kullanıldığından kaynaklanmaktadır.Benzer sonuçlara literatürdede rastlanmaktadır.[25,71].

Tautomerdeki atomların değişen yük dağılımları Mulliken ve NBO yöntemleri ile incelenmiş olup, sonuçlar EK 1'de verilmiştir. Tüm tautomerlerde, her iki yöntemde de Flor, Azot ve Oksijen atomları negatif yüke sahiptir. Bu durum F, N ve O atomlarının elektronegatifliğinin yüksek olmasına bağlanabilir.Aynı şekilde her iki yöntemde de Hidrojen atomları pozitif yüke sahiptir.

En kararlı iki tautomerik yapı incelendiğinde Mulliken yönteminde en büyük fark C(1) ile C(6) atomlarında görülmüştür. 7Fl-1 formu için C(1) ve C(6) atomlarının

yükleri sırasıyla; -1,083 e<sup>-</sup>, -0,698 e<sup>-</sup> olarak elde edilmiştir. Bu değerler 7Fl-2 için sırasıyla; -1,353 e<sup>-</sup> ve -0,386 e<sup>-</sup>'dir. Yük dağılımı NBO yöntemi ile incelendiğinde N(13) ve O(14) atomları 7Fl-1 ile 7Fl-2 formlarında büyük farklılıklar göstermektedir. 7Fl-1'deki N(13) atomu -0,617 e<sup>-</sup> değerine sahipken, aynı atomun 7Fl-2'deki değeri -0,513 e<sup>-</sup> olarak gözlenmiştir. O(14) atomunu yük dağılımını incelediğimizde ise 7Fl-1 ve 7Fl-2 formlarında sırasıyla -0,524 e<sup>-</sup> ve -0,625 e<sup>-</sup>olarak hesaplanmıştır. Buradan da anlaşılacağı gibi Hidrojen atomu Azot atomuna bağlı iken Azot atomunun, Oksijen atomuna bağlı iken ise Oksijen atomunun negatif yük değeri artmaktadır. Başka bir deyişle Hidrojen atomu olduğunda bu atomdan Azot ve Oksijen atomlarına yük geçişi olmaktadır. Bunun sonucu olarak EK 2 incelendiğinde de görüleceği üzere NBO yönteminde Azot ve Oksijen atomlarının negatif yüklerinin diğer atomlara göre daha yüksek olduğu görülmektedir. Bu durum literatüre de uygundur [25,71].

7-Fluoroisatin molekülünün tautomer yapıları ile ilgili yaptığımız hesaplamalar sonucu yukarıda da belirtildiği üzere 7Fl-1 formu en kararlı yapı olarak bulunmuştur. Bundan sonra 7-Fluoroisatin ile ilgili yapılan tüm hesaplamalarda 7Fl-1 formu kullanılmıştır.

# 4.2.7-Fluoroisatin ve 1-Metilisatin Moleküllerinin Üzerindeki Çözücü Etkisi ve Enerji Analizi

Çözücü, bileşiğin yapısı ve kimyasal özellikleri üzerinde büyük roloynar [67,72]. Molekülün üzerindeki çözücü etkisi Tomasi ve yardımcıları tarafından geliştirilmiş PCM (Polarizable Continuum Model), Barone ve yardımcılarının uyarladığı COSMO (Conductor-Like Screen Model) yöntemiyle (CPCM) incelenmiştir [42].

Bu bölümde 7-Fluoroisatin ve 1-Metilisatin moleküllerinin farklı çözücüler (benzen, toluen, kloroform, anilin, THF, aseton, etanol, asetonitril, DMSO ve su) içindeyken enerji ve dipol momentlerindeki değişimler incelenmiştir. Yapılan hesaplamalarda B3LYP modeli ile 6-311++G(d,p) temel seti kullanılmıştır. 7-Fluoroisatin için elde edilen sonuçlar Tablo 4.4.'de ve 1-Metilisatin için ise Tablo 4.5.'de verilmiştir.

Tablo 4.4. dielektrik sabitindeki artışa göre hazırlanmıştır. Tablolardan da görüleceği üzere dielektrik sabiti artarken sistemin(molekül + çözücü) enerjilerinde düşüş meydana gelmiştir. Örneğin 7-Fluoroisatin molekülü gaz fazında ( $\epsilon$ =1) iken enerjisi -612,47125046 Hartree, Aseton ( $\epsilon$ =20,49) içindeyken enerjisi -612,48493927 Hartree ve Su ( $\epsilon$ =78,36) içindeyken enerjisi -612,48559245 Hartree olarak ölçülmüştür. Aynı şekilde 1-Metilisatin molekülü gaz fazında ( $\epsilon$ =1) iken enerjisi -552,52896246 Hartree, Aseton ( $\epsilon$ =20,49) içindeyken enerjisi -552,54253532 Hartree ve su ( $\epsilon$ =78,36) içindeyken enerjisi -552,54321154 Hartree olarak ölçülmüştür. Bu da bize çözücü içerisinde sistemin(molekül + çözücü) kararlılığının arttığını göstermektedir. Başka bir ifade ile çözücü polaritesindeki artış, çözücü-molekül arasındaki etkileşimi de artırmaktadır [67,73,74].

Moleküllerin dipol momentlerindeki değişimi incelersek, dipol moment değerlerinin dielektrik sabitini ile birlikte arttığı görülmektedir. Çevresel polaritedeki artışla birlikte 7-Fluoroisatin molekülünün dipol momenti 5,3928 Debye ile 7,6175 Debye arasında 1-Metilisatin molekülünün dipol momenti de 6,3706 Debye ile 9,1337 Debye arasında kademeli bir şekilde artış göstermektedir. Ortamın polarlığı arttıkça yük merkezleri arasındaki uzaklık da artmaktadır. Bu da dipol momentte artışa sebep olmaktadır. Çözücü etkisinin araştırılmasında CPCM iyi sonuçlar vermektedir.

| Çözücü E <sub>tot</sub> (Hartree) |               | $\Delta E_{cozunme}$ (Hartree) | Dipol             | Dielektrik sabiti |
|-----------------------------------|---------------|--------------------------------|-------------------|-------------------|
|                                   |               |                                | Moment<br>(Debye) | (3)               |
| Gaz Fazı                          | -612,47125046 | -                              | 5,3928            | 1,00              |
| Benzen                            | -612,47859279 | 0.00734233                     | 6,4341            | 2,27              |
| Toluen                            | -612,47887637 | 0.00762591                     | 6,4783            | 2,37              |
| Kloroform                         | -612,48213525 | 0.01088479                     | 7,0103            | 4,11              |
| Anilin                            | -612,48325609 | 0.01200563                     | 7,1981            | 6,89              |
| THF                               | -612,48343532 | 0.01218486                     | 7,2294            | 7,42              |
| Aseton                            | -612,48493927 | 0.01368881                     | 7,4979            | 20,49             |
| Etanol                            | -612,48509318 | 0.01384272                     | 7,5259            | 24,85             |
| Asetonitril                       | -612,48531421 | 0.01406375                     | 7,5663            | 35,69             |
| DMSO                              | -612,48543545 | 0.01418499                     | 7,5886            | 46,83             |
| Su                                | -612,48559245 | 0.01434199                     | 7,6175            | 78,36             |

Tablo 4.4. 7-Fluoroisatin molekülünün farklı çözüler içinde hesaplanan enerji ve dipol moment değerleri

 $\Delta E_{\text{cözünme}} \!=\! l \Delta E_{\text{cözücü içinde}} \!- \Delta E_{\text{gaz fazında}} l$ 

Tablo 4.5.1-Metilisatin molekülünün farklı çözüler içinde hesaplanan enerji ve dipol moment değerleri

| Çözücü      | E <sub>tot</sub> (Hartree) | $\Delta E_{cozunme}$ (Hartree) | Dipol             | Dielektrik sabiti |
|-------------|----------------------------|--------------------------------|-------------------|-------------------|
|             |                            |                                | Moment<br>(Debye) | (3)               |
| Gaz Fazı    | -552.52896246              | -                              | 6.3703            | 1,00              |
| Benzen      | -552.53611092              | 0.00714846                     | 7.6487            | 2,27              |
| Toluen      | -552.53639275              | 0.00743029                     | 7.7034            | 2,37              |
| Kloroform   | -552.53966543              | 0.01070297                     | 8.3642            | 4,11              |
| Anilin      | -552.54080635              | 0.01184389                     | 8.6055            | 6,89              |
| THF         | -552.54098954              | 0.01202708                     | 8.6448            | 7,42              |
| Aseton      | -552.54253532              | 0.01357286                     | 8.9825            | 20,49             |
| Etanol      | -552.54269440              | 0.01373194                     | 9.0178            | 24,85             |
| Asetonitril | -552.54292312              | 0.01396066                     | 9.0690            | 35,69             |
| DMSO        | -552.54304872              | 0.01408626                     | 9.0971            | 46,83             |
| Su          | -552.54321154              | 0.01424908                     | 9.1337            | 78,36             |

 $\Delta E_{\text{cözünme}} = l \Delta E_{\text{cözücü içinde}} - \Delta E_{\text{gaz fazında}} l$ 

# 4.3. Çözücülerin Yapısal Parametreler Üzerindeki Etkisi

7-Fluoroisatin molekülünün yapısı ve atom numaraları Şekil 4.2.'de verilmişti.1-Metilisatin molekülünün yapısı ve atom numaraları Şekil 4.3.'de verilmiştir.



Şekil 4.3. 1-Metilisatin molekülünün molekül yapısı ve atom numaraları

7-Fluoroisatin molekülünün farklı çözücü ortamlar içindeki bağ uzunlukları EK 2'de verilmiştir. Karbon atomları arasındaki bağ uzunluklarına bakarsak, EK 2'de verilen tablo incelendiğinde genel olarak ortamın dielektrik sabitindeki artış ile C(1)-C(2), C(2)-C(3) ve C(5)-C(6) atomları arasındaki bağ uzunluklarının değerlerinin arttığı, C(3)-C(4), C(4)-C(5), C(1)-C(6), C(2)-C(8) ve C(8)-C(7) atomları arasındaki bağ uzunlularının değerleri ise azaldığı görülmektedir. Gaz fazı ile sulu ortam karşılaştırıldığında C(1)-C(2)atomları arasındaki ve C(8)-C(7)bağ uzunlukları0,0014 A<sup>o</sup>, C(2)-C(3) arasındaki bağ uzunluğunun ise 0,0015 A<sup>o</sup> olduğu görülmektedir. Gaz fazından sulu ortama geçerken Karbon atomları arasındaki bağ uzunluklarının değerlerinde azalma görülen atom çiftlerine baktığımızda en fazla azalma 0,026 A<sup>o</sup> ile C(8)-C(7) atomları arasındaki bağda görülmüştür. En az azalma ise; 0,0004 A<sup>o</sup> ile C(3)-C(4) atomları arasında hesaplanmıştır.Karbon-Azot atomları arasındaki bağ uzunluklarını incelersek, C(7)-N(13) atomları arasındaki bağ uzunluğunun değeri azalırken, C(1)-N(13) atomları arasındaki bağ uzunluğunun değerinin arttığı saptanmıştır. C-O atomları arasındaki tüm bağ uzunluklarının değerlerinde artış gözlenirken C-H atomları arasındaki tüm bağ uzunluklarının değerlerinde azalma gözlenmiştir.

C(3)-C(4) bağları arasındaki bağın uzunluğu gaz fazı, kloroform, benzen, toluen, anilin, THF, aseton, etanol, asetonitril, DMSO ve su sıralaması ile C(4)-C(5)arasındaki bağın uzunluğugaz fazı, benzen, toluen, anilin, THF, aseton, etanol, kloroform, asetonitril, DMSO ve su sıralaması ile, C(1)-C(6) ve C(6)-F(12) atomları arasındaki bağların uzunlukları gaz fazı, benzen, toluen, , anilin, THF, aseton, kloroform, etanol, asetonitril, DMSO ve su sıralaması ile ile azalmaktadır.

1-Metilisatin molekülünün farklı ortamlardaki bağ uzunlukları EK 3'te verilmiştir. C(1)-C(2) atomları arasındaki bağ uzunluğu ortamın artan dielektrik sabiti ile birlikte artış göstermektedir. İki atom arasındaki bağ uzunluğu en az gaz fazında (1,4079 A°), en fazla sulu ortamda (1,4085 A°) olarak ölçülmüştür. C(2)-C(3) atomları arasındaki bağın uzunluğu da 1,3884 A° olarak en az gaz fazında; 1,3912 A° olarak sulu ortamda kaydedilmiştir. Aynı şekilde C(4)-C(5) ve C(5)-C(6) atomlarının aralarındaki bağlarda artan dielektrik sabitine paralel olarak artış göstermektedir. Bu iki bağ uzunluğunun gaz fazı ile sulu çözelti arasındaki fark sırasıyla 0,0013 A° ve

0,0012 A° olarak hesaplanmıştır. C(3)-C(4), C(2)-C(8) ve C(8)-C(7) arasındaki bağların uzunlukları ise ortamın dielektrik sabiti artarken azalmaktadır. Bu bağ uzunlukları gaz fazında sırasıyla 1,3961 A°, 1,4702 A° ve 1,5710 A° olarak, sulu ortamda ise 1,3952 A°, 1,4609 A° ve 1,5695 A° olarak hesaplanmıştır.

C-N atomları arasındaki bağ uzunluklarını incelediğimizde, 7-Fluoroisatinde olduğu gibi, C(7)-N(13) arasında azalırken, C(1)-N(13) arasında artmış olduğunu görmekteyiz. C(16)-N(13) arasındaki bağ uzunluğu ise artış göstermektedir. 7-Fluoroisatin molekülünde olduğu gibi1-Metilisatin molekülünde de ortamın dielektrik sabiti artarken C-O arasındaki bağ uzunluklarının arttığı, C-H arasındaki bağ uzunluklarının da azaldığı saptanmıştır.

7-Fluoroisatin ve 1-Metilisatin moleküllerinde C(8)-C(7) bağları en uzun bağlardır ve  $\alpha$ -dikarbonil bileşiklerin en büyükleri arasındadır. Bu literatüre de uygundur. [75,76].

7-Fluoroisatin ve 1-Metilisatin moleküllerinin bağ açıları EK 4. ve EK 5.'de verilmiştir. Benzen halkasının deneysel CCC bağ açıları  $120^{\circ}$  civarındadır [77,78]. 7-Fluoroisatin molekülünün bağ açılarına bakacak olursak; C(3)-C(4)-C(5), C(4)-C(5)-C(6) ve C(5)-C(6)-C(1) bağ açılarının her ortamda  $120^{\circ}$  civarında iken, C(2)-C(3)-C(4) bağ açısı  $120^{\circ}$ 'dendaha düşük, C(1)-C(2)-C(3) bağ açısı ise daha büyüktür. Benzen halkası dışında kalan CCC bağ açıları ise  $104^{\circ}$  ile  $107^{\circ}$  arasında değerler almıştır. 1-Metilisatin molekülündeki CCC bağ açıları ise; C(2)-C(1)-C(6) bağ açısı  $120^{\circ}$  civarındadır. C(1)-C(2)-C(3) ve C(4)-C(5)-C(6) bağ açıları  $120^{\circ}$  den daha büyükken, C(5)-C(6)-C(1), C(2)-C(3) ve C(4)-C(5)-C(6) bağ açıları daha küçüktür. Benzen halkası dışındaki CCC bağ açıları ise;  $104^{\circ}$ - $131^{\circ}$  arasında değer almaktadır. En büyük CCC bağ açısı değeri sulu ortamda  $131,756^{\circ}$  olarak ölçülen C(8)-C(2)-C(3) bağ açısına aittir.

7-Fluoroisatin molekülünde en büyük açı değeri C(2)-C(8)-O(15) bağ açısına aittir. Bu bağ açısı gaz fazında 130,568° iken sulu ortamda 131,303° olarak ölçülmüştür. Aynı molekülde bağ açılarının değerleri ortam değiştikçe çok az farklılıklar göstermiştir. En büyük açı değeri farkı C(8)-C(7)-O(14) açısında hesaplanmıştır. Bu açı faz fazında 127,770° olarak hesaplanırken, sulu ortamda 126,507°'ye düştüğü görülmüştür.

1-Metilisatin molekülünde en büyük açı değeri, C(8)-C(2)-C(3) atomları arasındaki açıya aittir. Bu açı faz fazında 131,397°, sulu ortamda 131,756° hesaplanmıştır. 7-Fluoroisatin molekülünde en büyük bağ açısı değerine sahip olan C(2)-C(8)-O(15) atomları arasındaki açı 1-Metilisatinde de 130° civarında hesaplanmış olup, bu değer en büyük ikinci değerdir. En büyük açı değeri farkı ise 7-Fluoroisatin molekülünde olduğu gibi C(8)-C(7)-O(14) atomları arasında hesaplanmıştır. Bu bağ açısı gaz fazında 127,547° iken, sulu ortamda 126,148° olduğu saptanmıştır. Bu bağ açısı her iki molekülde de ortamın artan dielektrik sabitinin tersine düşüş göstermiştir.

EK 6. Ve EK 7.'de sırasıyla 7-Fluoroisatin ve 1-Metilisatin molekülüne ait dihedral açılar verilmiştir. EK 6. incelendiğinde görüleceği üzere 7-Fluoroisatin molekülünün dihedral açı değerleri 0° ve 180° olarak hesaplanmıştır. Bu değerler 7-Fluoroisatin molekülünün düzlemsel olduğunu göstermektedir. 1-Metilisatin molekülünün dihedral açıları 0° ve 180° dışında; -60,7° (C1-N13-C14-H15), 60,7° (C1-N13-C14-H16), 119,3° (C7-N13-C14-H15) ve -119,3° (C7-N13-C14-H16) değerlerini almıştır. Bu değerlerden de anlaşılacağı üzere, Azot atomuna bağlı Metil grubu 1-Metilisatin molekülünün düzlemselliğini bozmuştur.

7-Fluoroisatin ve 1-Metilisatinin farklı ortamlardaki bağ uzunlukları bağ açılarına göre daha fazla değişmiştir. Ayrıca iki molekül farklı ortamlarda iken bağ uzunlukları deneysel değerlerle farklılık göstermektedir. Bu farklılığı deneysel verilerin moleküller katı halde iken, teorik verilerin de moleküller gaz fazında ve sıvı halde iken elde edilmesine bağlayabiliriz. Ortamın artan polaritesinin (1-78,36 arasında) etkisiyle yük dağılımı en verimli şekilde yeniden olmakta ve bu durumda bağ uzunlukları ile bağ açılarında değişiklik meydana getirmektedir. Bu da bağ uzunluklarındaki farklılığın diğer bir sebebidir.

# 4.4. 7-Fluoroisatin ve 1-Metilisatin Moleküllerinin Gaz Fazında Titreşim Frekanslarının Değerlendirilmesi

Gaz fazında bulunan 7-Fluoroisatin ve 1-Metilisatin moleküllerinin titreşim frekansları sırasıyla Tablo 4.6. ve Tablo 4.7.'de verilmiştir. Tablolarda teorik sonuçlar deneysel sonuçlarla karşılaştırılmalı olarak verilmiştir. Bileşiklerin titreşim frekansları B3LYP metodu ve 6-311++G(d,p) temel seti kullanarak hesaplanmıştır. Tablolarda görüldüğü üzere teorik sonuçlarla deneysel sonuçlar karşılaştırıldığında aralarında iyi bir korelasyon olduğu görülmüştür. 7-Fluoroisatin molekülünün deneysel ve hesaplanan FT-IR ve FT-Raman spektrumları da sırasıyla Şekil 4.4. ve Şekil 4.5'de verilmiştir. 1-Metilisatin molekülünün deneysel ve hesaplanan FT-IR ve FT-Raman spektrumları da Şekil 4.6 ve Şekil 4.7'de verilmiştir.

7-Fluoroisatin molekülü Cs simetrisine sahiptir ve 16 atomdan oluşmaktadır. Molekülün toplam 42 tane normal titreşim frekansı vardır. 1-Metilisatin molekülü de 7-Fluoroisain molekülü gibi Cs simetrisine sahiptir. 19 atoma sahip 1-Metilisatin molekülünün 51 tane de normal titreşim frekansı bulunmaktadır. Hem 7-Fluoroisatin hem de 1-Metilisatin moleküllerinin sahip oldukları tüm frekanslar İnfrared ve Raman aktiftir. SQM programı kullanılarak TED dağılımları elde edilmiş ve bu şekilde frekans işaretlemeleri yapılabilmiştir.

Flor atomu ile Metil grubunun frekanslara etkisini açıklamak için, 7-Fluoroisatin ve 1-Metilisatin'in önemli titreşim modları karşılaştırılmıştır. 1-Metilisatin molekülünün C=O gerilme titreşimleri 7-Fluoroisatin'e göre daha düşük bir bölgede gözlenmiştir. Bu –CH<sub>3</sub>'ün elektron veren yapısından kaynaklanmaktadır. C-C gerilme titreşimleri karşılaştırıldığında 1-Metilisatin'in C-C gerilme titreşimi 7-Fluoroisatin ile karşılaştırıldığında beklenen değerden biraz düşük olduğu görülmüştür. Bu da Flor ve CH<sub>3</sub>'ün pozisyonu ve yapısından kaynaklanmaktadır. 7-Fluoroisatin'in C-N gerilme titreşimi beklenen bölgeden daha düşük dalga sayılı bölgede gözlemlenmiştir. Bu şekilde gözlemlenmesinin sebebi Flor atomunun etkisi ve diğer gruplarla karıştırılması olabilir. C-H gerilme titreşimlerinde -F ile -CH<sub>3</sub> grubunun etkisi ihmal edilebilir derecededir.

| No              | o Denevsel       |            | Uns.    | Scal.       | I      | IPA    | Denevsel (TED>%10)                                                                     |
|-----------------|------------------|------------|---------|-------------|--------|--------|----------------------------------------------------------------------------------------|
| 110             | ID               | Domon      | - freq. | freq        | -11    | -KA    |                                                                                        |
|                 | IK               | Kalliali   |         |             |        |        |                                                                                        |
| $\upsilon_1$    | 3265 m           | 3279 sh    | 3631    | 3478        | 18,45  | 0,05   | 99 v N13-H16                                                                           |
| $v_2$           | 3136 m           | 3078 m     | 3206    | 3071        | 0,70   | 9,02   | 99 v CHbenzen halka                                                                    |
| $v_3$           | 3066vw           | -          | 3197    | 3063        | 0,30   | 9,40   | 99 v CHbenzen halka                                                                    |
| $v_4$           | -                | -          | 3187    | 3053        | 0,24   | 7,29   | 99 v CHbenzen halka                                                                    |
| $v_5$           | 1758 sh          | 1739 vs    | 1836    | 1759        | 74,47  | 20,33  | 78 v C7-O14                                                                            |
| $v_6$           | 1734 vs          | 1729 vs    | 1816    | 1740        | 100,00 | 100,00 | 82 v C8-O15                                                                            |
| $v_7$           | 1634 vs          | 1636 s     | 1674    | 1646        | 61,48  | 0,79   | 62 v CCbenzen halka                                                                    |
| $\upsilon_8$    | 1598 s           | 1600 w     | 1634    | 1606        | 9,10   | 43,94  | 69 v CCbenzen halka                                                                    |
| V9              | 1492 s           | 1494 m     | 1525    | 1499        | 25,73  | 0,29   | 37.6 CCHbenzen halka + $31.v$ CCbenzen halka                                           |
| $v_{10}$        | 1425 m           | 1454 w     | 1477    | 1452        | 11,72  | 1,26   | $32 \delta$ CCHbenzen halka + $21 v$ CC                                                |
| $v_{11}$        | 1390 m           | 1398 m     | 1403    | 1379        | 8,28   | 0,34   | $38 \delta \text{CNH} + 21 \text{ v CC}$                                               |
| $\upsilon_{12}$ | 1321 s           | -          | 1334    | 1311        | 27,15  | 0,64   | 42 v CCbenzen halka + 16 $\delta$ CNH + 15 $\delta$ CCH                                |
| $v_{13}$        | 1253 s           | 1281 m     | 1300    | 1278        | 10,15  | 3,33   | 33 v CC +22 δ CCH + 18 v CN                                                            |
| $v_{14}$        | 1215 m           | 1259 vs    | 1270    | 1248        | 18,98  | 37,43  | $36 \delta$ CCHbenzen halka + $28 v$ CF + $20 v$ CC                                    |
| $v_{15}$        | -                | -          | 1232    | 1211        | 15,06  | 14,47  | $24 \text{ v CC} + 14 \delta \text{ CNH} + 11 \delta \text{ CCC}$                      |
| $v_{16}$        | -                | -          | 1179    | 1159        | 4,96   | 1,35   | 66 δ CCHbenzen halka + 22 v CC                                                         |
| $v_{17}$        | 1188 vs          | 1190 s     | 1160    | 1140        | 27,84  | 7,15   | 48 v CN + 16 v CC + 11 δ CCH                                                           |
| $\upsilon_{18}$ | 1054 w           | 1055 m     | 1075    | 1057        | 3,40   | 1,15   | 49 v CCbenzen halka + 36 $\delta$ CCHbenzen halka                                      |
| $v_{19}$        | 999 m            | -          | 1000    | 983         | 8,57   | 0,46   | 41 v CC + 19 v CF                                                                      |
| $\upsilon_{20}$ | 976 m            | -          | 982     | 965         | 0,13   | 0,80   | 57 γ HCCH + 30 γ CCCH                                                                  |
| $\upsilon_{21}$ | -                | -          | 934     | 918         | 0,07   | 0,19   | 49 $\gamma$ CCCH + 26 $\gamma$ HCCH + 16 $\gamma$ HCCF                                 |
| $\upsilon_{22}$ | 909 m            | 911 w      | 910     | 895         | 1,17   | 0,44   | 26 v CC + 18 δ CCO + 13 v CN                                                           |
| $v_{23}$        | 866 m            | 868 m      | 875     | 860         | 6,74   | 1,20   | 33 δ CCC + 13 δ CCH + 11 v CC                                                          |
| $\upsilon_{24}$ | 823 m            | -          | 831     | 817         | 1,72   | 0,38   | $17 \gamma \text{ OCCO} + 15 \gamma \text{ CCCH} + 13 \gamma \text{ CCCN} + 11 \gamma$ |
|                 |                  |            |         | <b>-</b> <0 | 0.46   | 0.00   |                                                                                        |
| $v_{25}$        | 774 s            | 781 w      | 782     | 769         | 9,46   | 0,20   | $55 \gamma$ CCCH                                                                       |
| $v_{26}$        | -                | -          | 734     | 722         | 3,43   | 0,38   | $32 \gamma \text{CCCC} + 19 \gamma \text{CCCH} + 11 \gamma \text{FCCN}$                |
| $v_{27}$        | 703 m            | 704 m      | 689     | 677         | 0,66   | 4,20   | $39 \text{ v CC} + 12 \delta \text{ CCO}$                                              |
| $v_{28}$        | 653 vs           | 655 m      | 662     | 651         | 1,50   | 11,33  | $23 \delta CCC + 15 \delta CCO + 15 \delta NCO$                                        |
| $v_{29}$        | 583 m            | -          | 585     | 575         | 2,44   | 2,17   | 41 8 CCC                                                                               |
| $v_{30}$        | -                | 566 m      | 570     | 560         | 1,92   | 16,50  | $24 \text{ v CC} + 18 \text{ \delta CCF} + 12 \text{ \delta CCN}$                      |
| $v_{31}$        | 564 s            | -          | 559     | 549         | 3,36   | 17,46  | $35 \gamma$ CCCC + $13 \gamma$ CCCH                                                    |
| $\upsilon_{32}$ | 534 m            | -          | 543     | 534         | 2,26   | 10,63  | $18 \gamma \text{CCCC} + 13 \gamma \text{CCCO} + 12 \gamma \text{CCCN} + 10 \gamma$    |
| •               |                  |            | 402     | 191         | 21.97  | 0.83   | $24 \approx CCNH \pm 20 \approx HNCO$                                                  |
| 033             | -                | -<br>170 m | 492     | 404         | 24,07  | 2.96   | $34 \gamma \text{CCNH} \pm 50 \gamma \text{ INCO}$                                     |
| U <sub>34</sub> | 408 III<br>420 m | 470 m      | 408     | 400         | 0,45   | 3,00   | $57 \times CCNIL + 16 \times CCCO + 10 \times NCCO$                                    |
| 035             | 420 III          | -<br>277 m | 274     | 260         | 2,23   | 1,05   | $37$ $\gamma$ CCNH + 10 $\gamma$ CCCO + 10 $\gamma$ NCCO                               |
| 036             | -                | 320 °      | 3/4     | 308         | 0,61   | 0,40   | $530000 \pm 20 \times CC$                                                              |
| 037             | -                | 320.8      | 200     | 201         | 0,05   | 13,31  | $300000 \pm 20000$                                                                     |
| U <sub>38</sub> | -                | -          | 290     | 200         | 0,11   | 11,20  | $24 \gamma \text{ CCC} + 19 \gamma \text{ CCC} + 19 \gamma \text{ CCC}$                |
| U <sub>39</sub> | -                | 218 m      | 218     | 214         | 0,01   | 11,55  | $29 \gamma \text{CCCN} + 10 \gamma \text{CCCF} + 12 \gamma \text{FCCN} + 11 \gamma$    |
| 1) 40           | -                | -          | 211     | 207         | 1.19   | 27.96  | $25 \delta \text{CCF} + 24 \delta \text{CCC} + 22 \delta \text{CCN}$                   |
| €40<br>1)41     | -                | -          | 119     | 117         | 0.48   | 3.43   | $24 \gamma \text{CCCC} + 23 \gamma \text{CCNC}$                                        |
| ~41<br>1)42     | -                | _          | 92      | 90          | 0.35   | 4.73   | $22 \gamma CCCO + 16 \gamma CCCC + 14 \gamma CCCN$                                     |
| V4Z             |                  |            | / -     | / /         | 0,00   | .,     |                                                                                        |

Tablo 4.6. 7-Fluoroisatin için deneysel ve hesaplanan titreşim frekansları(cm<sup>-1</sup>) değerlerinin karşılaştırılması

Düzeltme Çarpanı : 4000–1700 cm<sup>-1</sup> aralığı için0,958 ve 1700 cm<sup>-1</sup>'den daha küçük frekanslar için 0,983 v; gerime.  $\delta$ ; düzlemiçi açı bükülmesi.  $\gamma$ ; düzlem dışı açı bükülmesi. v; çok. s; şiddetli. w; zayıf. m; orta. sh; omuz

Not:  $I_{IR}$  ve  $I_{RA}$  değerlerinde maksimum değerler 100'e eşitlenmiş diğer değerler de bu orana göre değerlendirilmiştir.

| No              | lo Deneysel |         | Uns   | Scal. | I <sub>ır</sub> | I <sub>RA</sub> | Assigment (TED ≥%10)                                                                                      |
|-----------------|-------------|---------|-------|-------|-----------------|-----------------|-----------------------------------------------------------------------------------------------------------|
|                 | IR Raman    |         | freq. | freq  |                 |                 |                                                                                                           |
| 1)1             | 3060 w      | 3060 s  | 3200  | 3066  | 1.22            | 0.31            | 99 v CHbenzen halka                                                                                       |
| υ <sub>2</sub>  | -           | -       | 3195  | 3061  | 1,83            | 0,34            | 98 v CHbenzen halka                                                                                       |
| V3              | -           | -       | 3184  | 3050  | 0,41            | 0.18            | 99 v CHbenzen halka                                                                                       |
| V4              | -           | -       | 3173  | 3040  | 0,49            | 0,06            | 99 v CHbenzen halka                                                                                       |
| υ5              | -           | -       | 3140  | 3008  | 0,07            | 0,10            | 100 v CH <sub>3</sub> (C-H) asimetrik                                                                     |
| U6              | 2948 w      | 2950 m  | 3080  | 2951  | 3,90            | 0,10            | 100 v CH <sub>3</sub> (C-H) asimetrik                                                                     |
| υ <sub>7</sub>  |             | -       | 3025  | 2898  | 7,26            | 0,22            | $100 \text{ v CH}_3$ (C-H) simetrik                                                                       |
| $v_8$           | 1743 s      | 1740 vs | 1816  | 1740  | 18,86           | 52,54           | 54 v C8-O15 + 33 v C7-O14                                                                                 |
| Ŭ9              | 1718 vs     | 1717 s  | 1807  | 1731  | 100,00          | 100,00          | 53 v C7-O14 + 35 v C8-O15                                                                                 |
| $v_{10}$        | 1603 vs     | 1610 vs | 1650  | 1622  | 62,62           | 1,08            | 61 v CC benzen halka                                                                                      |
| v <sub>11</sub> | -           | -       | 1632  | 1604  | 4,29            | 2,44            | 70 v CC benzen halka                                                                                      |
| $v_{12}$        | 1486 sh     | -       | 1520  | 1494  | 2,01            | 0,43            | 47 $\rho$ CH <sub>2</sub> of CH <sub>3</sub>                                                              |
| $v_{13}$        | 1467 vs     | -       | 1501  | 1475  | 27,58           | 0,51            | $40 \delta$ CCH benzen halka + 25 v CC                                                                    |
| $v_{14}$        | -           | 1488 w  | 1499  | 1474  | 2,18            | 0,68            | 21 $\rho$ CH <sub>2</sub> of CH <sub>3</sub> + 20 $\delta$ CHH + 14 $\nu$ CC                              |
| $v_{15}$        | -           | 1456 w  | 1495  | 1470  | 2,16            | 1,12            | 58 α CH3 + 21 γ CNCH                                                                                      |
| $v_{16}$        | -           | -       | 1452  | 1427  | 0,47            | 3,13            | 87 CH <sub>3</sub> şemsiye                                                                                |
| $v_{17}$        | 1364 s      | -       | 1388  | 1364  | 13,61           | 0,56            | $36 v CN + 24 v CC + 11 \delta CCH$                                                                       |
| $\upsilon_{18}$ | 1325 vs     | 1328 s  | 1353  | 1330  | 17,52           | 17,37           | $42 \delta CCH + 19 \nu CN + 17 \nu CC$                                                                   |
| $v_{19}$        | -           | 1308 w  | 1334  | 1311  | 4,49            | 2,12            | 36 v CC + 32 δ CCH + 14 v CN                                                                              |
| $\upsilon_{20}$ | 1253 m      | 1253 vs | 1262  | 1241  | 2,07            | 1,44            | 19 v CN + 19 δ CCH + 13 δ NCH + 12 v CC                                                                   |
| $\upsilon_{21}$ | 1192 m      | 1194 m  | 1207  | 1186  | 1,69            | 3,16            | 59 v CC + 30 δ CCH                                                                                        |
| $\upsilon_{22}$ | 1161 m      | 1161 m  | 1183  | 1163  | 2,73            | 26,76           | 67 δ CCH + 22 ν CC                                                                                        |
| $\upsilon_{23}$ | -           | -       | 1146  | 1127  | 0,06            | 4,91            | 99 t $CH_2$ ( $CH_3$ )                                                                                    |
| $\upsilon_{24}$ | 1114 s      | 1117 s  | 1130  | 1111  | 2,32            | 3,09            | 29 v CC + 27 δ CCH                                                                                        |
| $v_{25}$        | 1089 vs     | 1091 sh | 1106  | 1087  | 12,45           | 35,83           | 27 v CC + 22 δ CCH + 13 δ CCC                                                                             |
| $\upsilon_{26}$ | 1035 m      | -       | 1042  | 1024  | 9,39            | 2,11            | 37  v CN + 22  v CC                                                                                       |
| $\upsilon_{27}$ | -           | 1019 s  | 1039  | 1021  | 0,38            | 2,99            | $40 \text{ v}$ CC benzen halka + $10 \delta$ CCH                                                          |
| $\upsilon_{28}$ | -           | -       | 996   | 979   | 0,002           | 5,03            | 86 γ CH benzen halka                                                                                      |
| $v_{29}$        | 993 sh      | -       | 968   | 952   | 0,31            | 1,23            | $77 \gamma CH$ benzen halka                                                                               |
| $v_{30}$        | 955 m       | 956w    | 956   | 940   | 1,96            | 0,87            | $32 \text{ v CC} + 23 \text{ \delta CCO}$                                                                 |
| $v_{31}$        | 880 m       | 865w    | 877   | 862   | 2,90            | 0,18            | 17.8  CCC + 128  CCO + 12  v CN + 11.8  NCO                                                               |
| $\upsilon_{32}$ | 863 s       | -       | 875   | 860   | 0,11            | 0,17            | 83 γ CCH benzen halka                                                                                     |
| $v_{33}$        | 816 m       | 817w    | 826   | 812   | 0,59            | 0,15            | $21 \gamma \text{ OCCO} + 14 \gamma \text{ CCCN} + 11 \gamma \text{ CCCO}$                                |
| $v_{34}$        | 757 vs      | -       | 766   | 753   | 12,20           | 0,40            | $67 \gamma$ CH benzen halka                                                                               |
| $v_{35}$        | -           | -       | 732   | 720   | 0,48            | 1,21            | $39 \gamma \text{CC} + 26 \gamma \text{CH}$                                                               |
| $v_{36}$        | 701 s       | 703 vs  | 712   | 700   | 0,56            | 5,55            | $29 \text{ v CC} + 26 \delta \text{ CCC}$                                                                 |
| $v_{37}$        | 684 m       | 685m    | 698   | 686   | 0,32            | 76,00           | $23 \delta CCC + 17 \delta CCO + 10 \delta NCO$                                                           |
| $v_{38}$        | 556 m       | 560 m   | 560   | 550   | 0,18            | 5,39            | 43.8  CCC + 10.8  CCN                                                                                     |
| V39             | 543 m       | -       | 553   | 544   | 0,08            | 16,46           | $32 \gamma$ CCCC + $14 \gamma$ CCCH + $11 \gamma$ CCCN                                                    |
| $v_{40}$        | -           | 527 s   | 530   | 521   | 2,14            | 8,29            | $24 \delta CCN + 17 v CC + 17 v CN + 15 \delta CNC$                                                       |
| $v_{41}$        | -           | 483 vs  | 485   | 477   | 0,32            | 9,39            | $26 \text{ v CC} + 19  \delta \text{ CCC} + 17 \text{ v CN}$                                              |
| $v_{42}$        | 473 vs      | -       | 481   | 473   | 5,09            | 34,28           | $36 \gamma CCCO + 23 \gamma CNCO$                                                                         |
| $v_{43}$        | -           | -       | 405   | 398   | 0,16            | 1,20            | $46 \gamma \text{CCCC} + 24 \gamma \text{CCCH}$                                                           |
| $v_{44}$        | -           | 328 m   | 329   | 323   | 1,07            | 5,44            | $40 \circ CCO + 21 \circ CNO + 15 \circ CC$                                                               |
| $v_{45}$        | -           | 296 m   | 295   | 290   | 0,53            | 8,69            | $32.0 \text{ CCU} + 29.0 \text{ N-CH}_3 + 14.0 \text{ CC}_3$                                              |
| $v_{46}$        | -           | 252 W   | 2/1   | 266   | 0,01            | 4,27            | $28 \gamma \text{ CCCC} + 21 \gamma \text{ CCCN} + 12 \gamma \text{ CNCH}$                                |
| $v_{47}$        | -           | 1/1 m   | 259   | 235   | 0,19            | 5,96            | $50 0 \text{ C-N-CH}_3 + 24 0 \text{ CCC} + 14 0 \text{ CCN}$                                             |
| υ <sub>48</sub> | -           | 101 m   | 144   | 142   | 0,04            | 10,00           | $5/1 CH_3 + 1/\gamma CCCC$                                                                                |
| U <sub>49</sub> | -           | 138 sn  | 134   | 132   | 0,07            | 18,94           | $\begin{array}{c} \text{OI I } CH_3 + 10 \gamma CCCC \\ \text{OI I } N CH \text{ collorma} \end{array}$   |
| υ <sub>50</sub> | -           | -       | 122   | 120   | 0,39            | 20,21           | $01 \gamma$ IN-CH <sub>3</sub> salianma<br>22 $\alpha$ CNCC $\pm$ 20 $\alpha$ CCCC $\pm$ 16 $\alpha$ CCCC |
| 051             | -           | -       | 101   | 77    | 0,02            | 7,40            | $+ 14 \gamma$ CCCN                                                                                        |

Tablo 4.7.1-Metilisatin için deneysel ve hesaplanan titreşim frekansları (cm<sup>-1</sup>) değerlerinin karşılaştırılması

Düzeltme Çarpanı :  $4000-1700 \text{ cm}^{-1}$  aralığı için0,958 ve 1700 cm<sup>-1</sup>'den daha küçük frekanslar için 0,983 v; gerime.  $\delta$ ; düzlemiçi açı bükülmesi.  $\gamma$ ; düzlem dışı açı bükülmesi. v; çok. s; şiddetli. w; zayıf. m; orta. sh; omuzNot: I<sub>IR</sub> ve I<sub>RA</sub> değerlerinde maksimum değerler 100'e eşitlenmiş diğerleri de bu orana göre değerlendirilmiştir.



Dalga Sayısı





(b)

Şekil 4.4. 7- Fluoroisatin molekülüne ait a) deneysel b) teorik IR spektrumları



(b)

Şekil 4.5 7- Fluoroisatin molekülüne ait a) deneysel b) teorik Raman spektrumları



Şekil 4.6. 1-Metilisatin molekülüne ait a) deneysel b) teorik IR spektrumları



Şekil 4.7. 1-Metilisatin molekülüne ait a) deneysel b) teorik Raman spektrumları

# 4.4.1. C=O Titreşimleri

Karbonil gerilme C=O titreşimleri [79] 1850-1600 cm<sup>-1</sup> bölgesinde beklenilmektedir. Naumov ve diğerleri [75] tarafından bu titreşimler FT-IR spektrumunda 5-Fluoroisatin için 1762,1750 cm<sup>-1</sup> de, 5-Methylisatin için 1757,1745 cm<sup>-1</sup> olarak hesaplanmıştır. 7-Fluoroisatin'in iki karbonil grubu titreşiminin C=O gerilme bantları FTIR'de 1758 ve 1734 cm<sup>-1</sup>'de ve FT Raman'da 1739 ve 1729 cm<sup>-1</sup> olarak saptanmış şiddetli bantlardır. Bu frekanslar teorik olarak 1759 cm<sup>-1</sup>de %78'lik TED ile (düzeltilmemiş frekansı 1836 cm<sup>-1</sup>) ve 1740 cm<sup>-1</sup> de %82'lik bir TED ile (düzletilmemiş frekansı 1816 cm<sup>-1</sup>) olarak hesaplanmıştır. 7-Fluoroisaitin için C=O titreşimleri çok şiddetli yoğunluğa sahiptir. IR ve Raman spektrumlarında, bu titreşimler yüksek yoğunlukta ve şiddetli piklere sahip oldukları görülmektedir.

1-Metilisatin'in C=O karbonil grubunun titreşimleri 5-Metilisatin ve 7-Fluoroisatin ile karşılaştırıldığında beklenen değerlerin çok az altındadır. Bu durum Metil grubunun pozisyonundan ve yapısından kaynaklanmaktadır. Bu titreşimler FT-IR spektrumunda 1743 ve 1718 cm<sup>-1</sup>, Raman spektrumunda 1740 ve 1717 cm<sup>-1</sup> da gözlemlenmiştir. Teorik olarak ise bu titreşimler 1740 cm<sup>-1</sup> (düzeltilmemiş frekansı 1816 cm<sup>-1</sup>) ve 1731 cm<sup>-1</sup> (düzeltilmemiş frekansı 1807 cm<sup>-1</sup>) olarak hesaplanmıştır. C=O düzlemiçi ve düzlem dışı frekansları diğer frekanslarla diğer frekanslarla çiftleşmiştir. 1-Metilisatin'deki C=O gerilme titreşimlerinin küçük olması, Metil grubunun elektron veren yapısından kaynaklanıyor olabilir.

#### 4.4.2. C-H Titreşimleri

C-H gerilme titreşimleri aromatik bileşiklerde 3000-3100 cm<sup>-1</sup> civarında gözlenmektedir [80,81]. 5-Fluoroisatin ve 5-Metilisatin için bu titreşimler FT-IR spektrumunda sırasıyla 3014 ve 3059 cm<sup>-1</sup> olarak gözlemlenmiştir [75]. C-H gerilme titreşimleri 7-Fluoroisatin için FT-IR'da 3136,3066 cm<sup>-1</sup>'de FT-Raman'da 3078 cm<sup>-1</sup> de gözlemlenmiştir. 1-Metilisatin için benzen halkası C-H gerilme titreşimi FT-IR'da 3060 cm<sup>-1</sup>'de FT-Raman'da 3060 cm<sup>-1</sup> olarak gözlenmiştir. Bu gerilme titreşimleri –F ve –CH<sub>3</sub>'ün pozisyonundan ve yapısından çok fazla etkilenmemiştir. 7-Fluoroisatin için FT-IR'da 1215 cm<sup>-1</sup> ve FT-Raman'da 1259 cm<sup>-1</sup>'de C-H düzlemiçi açı bükülmesi gözlenmiştir. C-H düzlem içi açı bükülme titreşimleri genellikle 1300-1000 cm<sup>-1</sup> bölgesinde keskin bantlar şeklinde gözlenir [82-84]. 1-Metilisatin için C-H düzlem içi açı bükülmeleri FT-IR'de 1161 cm<sup>-1</sup> ve FT-Raman'da 1161 cm<sup>-1</sup>'da gözlenmiştir.

1000-675 cm<sup>-1</sup>aralığında C-H düzlem dışı açı bükülmesi titreşimleri görülmektedir [85]. 7-Fluoroisatin'de C-H düzlem dışı açı bükülmesi FT-IR'de 774 cm<sup>-1</sup>'de, FT-Raman'da ise 781 cm<sup>-1</sup>'de gözlenmiştir. Bu değerler 1-Metilisatin'in benzen halkası için FT-IR'de 993, 863 ve 757 cm<sup>-1</sup>'de gözlenmiştir.

1-Metilisatin molekülde bulunan Metil grubu için simetrik C-H gerilme titresimleri 2840-2970 cm<sup>-1</sup>aralığında, asimetrik C-H gerilme titresimleri 2940-3010 cm<sup>-1</sup> aralığında gözlenmiştir [86]. Tablo 4.5 incelendiğinde mod 7 simetrik Metil grubu gerilme titreșimine, 5 ve 6. modlarda asimetrik Metil grubu gerilme titreșimine karşılık gelmektedir. Simetrik Metil grubu gerilme titreşimi 2898 cm<sup>-1</sup>'de, asimetrik Metil grubu titreşimleri ise 3008 ve 2951 cm<sup>-1</sup>'de gözlenmiştir. FT-IR spektrumunda 2948 cm<sup>-1</sup>'de görülen zayıf bant Metil grubu asimetrik gerilme titreşimi göstermektedir. Bu titreşim FT-Raman'da 2950 cm<sup>-1</sup>'de gözlenmiştir. CH<sub>3</sub> asimetrik gerilme titreşimleri için deneysel ve teorik sonuçlar birbiriyle oldukça uyumludur. Asimetrik simetrik değerler arasındaki farklar elektronik ve etkiden kavnaklanmaktadır [87].

CH<sub>3</sub> şemsiye açı bükülmesi titreşimi değeri 1427 cm<sup>-1</sup>'de, deformasyon titreşimi ise 1470 cm<sup>-1</sup>'de hesaplanmıştır. Bu iki titreşim FT-Raman'da 1456 cm<sup>-1</sup>'de gözlenmiştir ve zayıf pik vermiştir. N-CH<sub>3</sub> düzlem dışı açı bükülmesi (sallanma) titreşimi 120 cm<sup>-1</sup>'de, CH<sub>3</sub> kıvırma titreşimi 142 ve 132 cm<sup>-1</sup>'de hesaplanmıştır. Bu titreşimler deneysel FT-Raman'da 161 ve 138 cm<sup>-1</sup>'de gözlenmiştir.
### 4.4.3. C-C Titreşimleri

İsatin ve türevlerinin spektrumlarında Karbon-Karbon halka titreşimleri önemli titreşimlerdendir. Bu titreşimler heteroaromatik halkanın karakteristik bölgesinde yer alır [75]. Benzen in C=C gerilme titreşimlerinin 1200-1650cm<sup>-1</sup>aralığındagözlenmesi beklenir [88,89].Benzen halkasında, 1612 cm<sup>-1</sup> (4-hydroxyquinazoline için) [90] ve 1639 cm<sup>-1</sup>'de (2-hydroxyquinazoline için) [77] gözlenen deneysel şiddetli IR bantları C-C gerilme titreşimlerine aittir. Bu titreşimler quinaxaline için 1623 cm<sup>-1</sup> olarak bulunmuştur [91,92]. Singh ve diğerleri tarafından Pirol halkasında C-C gerilme titreşimleri FT-IR spektrumunda 1546 cm<sup>-1</sup>'de gözlenmiştir [93]. Metil 4-(trifluoromethil)-1H-pirol-3-carboxylate için, C-C gerilme titreşimleri İnfraredde 1563, 1543 ve 1343 cm<sup>-1</sup> de gözlenmiştir. Bu titreşimler Raman'da sırasıyla 1566,1543 ve 1345 cm<sup>-1</sup> olarak gözlenmiştir [94].

Aromatik halkalar için bazı bantlar daha düşük frekanslarda gözlenebilir. Bu bantlar eklenen atom ya da grupların pozisyonundaki ve yapısındaki değişimlere karşı oldukça hassastır [95,96]. Bazı bantlar eklenen atom ya grubun sayısına, kimyasal yapısına veya kütlesine bağlı olmasına rağmen, eklenen atom ya da grubun pozisyonu aromatik halka titreşimlerini tanımlamak için oldukça yararlıdır [95,97].

7-Fluoroisatin molekülünün C-C gerileme titreşim frekansları, IR'de 1634, 1598, 1321, 1253, 1054, 999, 909 ve 703 cm<sup>-1</sup>'de, Raman spektrumunda 1636, 1600, 1282, 1055, 911, 704 ve 566 cm<sup>-1</sup>'de gözlemlenmiştir. C-C titreşimlerinin hesaplanan değerlerini şiddetlerine göre çoktan aza doğru sıralarsak; 1646, 1606, 1311, 1278, 1211, 1057, 983, 895, 677 ve 560 cm<sup>-1</sup> şeklindedir (Tablo 4.6.).

1-Metilisatin molekülünün C-C gerilme titreşimleri Ir spektrumunda 1603, 1192, 1114, 1089, 955, 775 ve 701 cm<sup>-1</sup>'de , Raman spektrumunda 1610, 1308, 1194, 117, 1091, 1019, 956 ve 703 cm<sup>-1</sup>'de bulunmuştur (Tablo 4.7.). Bu gerilme titreşimlerini Metil grubunun eklenmesi etkilediğinden daha düşük sayıda gerilme görülmüştür. Bu işaretlemeler literatürle de uygundur [75, 80, 82].

C-C-C açı burulması genelde 600 cm<sup>-1</sup> değerinin altında olmaktadır [82, 98]. 7- Fluoroisatin molekülü için İnfrared'de 583 ve 468 cm<sup>-1</sup>'de, Raman'da 470 cm<sup>-1</sup>'de C-C-C düzlem içi açı bükülmesi; Raman'da 218 cm<sup>-1</sup>'de düzlem dışı açı bükülmesi olmaktadır. 1-Metilisatin molekülünde, C-C-C- düzlem içi açı bükülmesi IR'de 684,ve 556 cm<sup>-1</sup>'de, Raman'da 685 ve 560 cm<sup>-1</sup>'de bulunmuştur. Aynı molekül için düzlem dışı açı bükülmeleri İnfrared'de 543 cm<sup>-1</sup>'de, Raman'da 252 cm<sup>-1</sup>'de oluşmuştur. Her iki molekül için C-C-C açı bükülmelerinin değerleri farklıdır. Bu da bize açı bükülmelerinin –F ve -CH<sub>3</sub>'ün eklenmesinden etkilendiğini göstermektedir. Bu değerler literatürdeki değerlerle de örtüşmektedir [82, 99].

## 4.4.4. C-N Titreşimleri

C-N gerilme titreşimleri genellikle diğer titreşimlerle karıştırılır. Bu titreşimler genelde 1200-1400 cm<sup>-1</sup> bölgesinde olur [100,101]. Bu titreşimler C-C ve C-C-H bantları ile karıştığından şiddetli yoğunluğa sahiptir. 5-Fluoroisatin ve 5-Metilisatin moleküllerinde C-N gerilme titreşimleri FT-IR spektrumunda sırasıyla 1283 ve 1293 cm<sup>-1</sup> olarak gözlenmiştir [75]. Polat ve diğerleri [100] imidazole halkası için bu titreşimi 1300-1350 cm<sup>-1</sup> bölgesinde bulmuşlardır. Benzotriazole için iki C-N gerilme titreşimi 1307 ve 1382 cm<sup>-1</sup>'de gözlenmiştir [102]. Benzamide için C-N gerilme titreşimi 1368 cm<sup>-1</sup> olarak bildirilmiştir [103]. 7-Fluoroisatin için bu değerler 1253, 1188, ve 909 cm<sup>-1</sup> olarak FT-IR spektrumunda, 1281, 1190 ve 911 cm<sup>-1</sup> olarak da Raman spektrumundabulunmuştur. Bu işaretlemeler TED değerleri ile de uyumludur. 7-Fluoroisatin için elde edilen bu değerler beklenen değerlerden daha küçüktür. Bu C-N gerilme titreşimi ile aynı frekansta olan C-C titreşimi ile karışmasından kaynaklanıyor olabilir. 1-Metilisatin için FT-IR'de 1364, 1325, 1253 ve 1035 cm<sup>-1</sup>'e, FT-Raman'da ise 1328, 1308 ve 1253 cm<sup>-1</sup>'e karşılık gelen titreşimler C-N gerilme titreşimleridir.

# 4.4.5. N-H Titreşimleri

N-H gerilme titreşimleri genellikle 3500-3300 cm<sup>-1</sup> bölgesinde ortaya çıkar [88,104]. 5-Fluoroisatinde Pirol grubunun N-H gerilme modu İnfrared spektrumunda 3440cm<sup>-1</sup> olarak bulunmuştur [75]. Metil 4-(trifluoromethil)-1H-pirol-3-carboxylate molekülünde pirol grubunun N-H gerilme titreşimleri deneysel FT-IR spektrumunda 3333 cm<sup>-1</sup> olarak gözlenmiş, DFT-B3LYP metodu kullanılarak yapılan hesaplamalarda ise 3518 cm<sup>-1</sup> olarak hesaplanmıştır [94]. 7-Fluoroisatin için N-H gerilme titreşimi IR'de 3265 cm<sup>-1</sup>, Raman'da 3279 cm<sup>-1</sup> olarak bulunmuştur. Bu titreşim, aynı molekül için DFT/B3LYP metodu kullanılarak yapılan hesaplamada ise 3478 cm<sup>-1</sup> olarak bulunmuştur. Bu işaretlemelerii TED'de desteklemektedir. N-H gerilme titreşimi %99'luk bir katkı ile saf bir titreşim olmuştur. 7-Fluoroisatin için IR ve Raman'da görülen değerler yukarıda belirtilen bölgenin altında kalmaktadır. Bunun nedeni teorik sonuçların gaz fazında elde edilirken, deneysel sonuçların katı halde elde edilmesi olabilir.

7-Fluoroisatin için IR'de 1390 cm<sup>-1</sup> ve Raman'da 1398 cm<sup>-1</sup>'de orta derecede gözlenen bantlar N-H düzlem içi açı titreşimlerine aittir. N-H düzlem dışı açı bükülmeleri ise IR'de 420 cm<sup>-1</sup> olarak gözlenmiştir. Bu titreşim 472 ve 397 cm<sup>-1</sup> olarak hesaplanmıştır.

## 4.4.6. C-F Titreşimi

C-F gerilme titreşimleri diğer bantlarda çift oluşturdukları için tanımlaması oldukça zordur. C-X (X=F, Cl, Br, I) grup titreşimleri Mooney tarafından 1129-480 cm<sup>-1</sup> olarak bulunmuştur [105]. C-F gerilme modları birçok fluoro-benzens için 1000-1300 cm<sup>-1</sup> olarak belirtilmiştir [106,107]. 7-Fluoroisatin bir tane flor atomun sahiptir ve bu flor atomu benzen halkasına bağlanmıştır. FT-IR'de bu titreşim 1215 ve 999 cm<sup>-1</sup>'de orta derecede bir titreşim olarak kaydedilmiştir. Bu titreşim FT-Raman'da ise 1259 cm<sup>-1</sup> olarak diğer titreşimlerle birlikte kaydedilmiştir. Tek florlu benzen için C-F düzlem içi açı titreşimi 250-350 cm<sup>-1</sup> olarak gözlenmiştir [108,109]. Bu çalışmada C-F düzlem içi açı bükülmesi titreşimi FT-Raman spektrumunda orta dereceli titreşim olarak 377 cm<sup>-1</sup>'de gözlenmiştir. Bu titreşimi hesaplanan değeri 368 cm<sup>-1</sup>'dir. Bu işaretleme TED değerleri ile desteklenmektedir. C-F düzlem dışı açı bükülmesi titreşimi se FT-Raman'da 218 cm<sup>-1</sup> olarak gözlenmiş ve 214 cm<sup>-1</sup> olarak hesaplanmıştır. Bu değerler literatür ile uyumludur [110,111].

#### 4.5. Titreşim Frekansı Üzerine Çözücü Etkisi

7-Fluoroisatin ve 1-Metilisatin moleküllerinin farklı çözücülerde titreşim spektrumları B3LYP yöntemi ile 6-311++G(d,p) temel seti ve CPCM modeli kullanılarak hesaplanmıştır. Şekil 4.8. ve Şekli 4.9.'de sırasıyla 7-Fluoroisatin ve 1-Metilisatin'in farklı çözücüler içinde teorik IR ve Raman spektrumları verilmiştir. Titreşim frekansları üzerine çözücü etkisi, IR yoğunluğu, Raman Yoğunluğu ve gaz fazı ile çözücü fazı arasında frekans farkı ( $\Delta v$ ) 7-Fluoroisatin için EK 8. ve 1-Metilisatin için EK 9.'da verilmiştir. Gaz fazından çözücüye geçerken titreşim frekanslarında meydana gelen bu değişiklik önemli ölçüdedir. Bu değişikliğin çevresel etkenlerden kaynaklandığını söylemek mümkündür[100,112]. Ortamın değişen dielektrik sabiti moleküle ait dipol momentte net bir değişime sebep olmaktadır. Bu da moleküle ait titreşim frekanslarında değişikliğe neden olur.

7-Fluoroisain molekülünde gaz fazından farklı ortamlara geçilirken  $v_{13}$ ,  $v_{15}$ ,  $v_{18}$ ,  $v_{23}$ ,  $v_{24}$ ,  $v_{26}$ ,  $v_{28}$ ,  $v_{29}$ ,  $v_{30}$ ,  $v_{31}$ ,  $v_{32}$ ,  $v_{34}$ ,  $v_{36}$ ,  $v_{38}$ ,  $v_{39}$  ve  $v_{42}$  modlarında çok az değişiklik olurken  $v_1$ ,  $v_5$ ,  $v_6$ ,  $v_{16}$ ,  $v_{17}$ , ve  $v_{20}$  modlarında önemli ölçüde değişiklikler olmuştur. EK 8. incelendiğinde en büyük değişikliğin  $v_5$  ve  $v_6$  modlarında olduğu görülmektedir. Bu frekanslar C=O gerilme titreşimlerine karşılık gelmektedir. C=O gerilme titreşim frekanslarında meydana gelen bu kayma gaz fazından sulu ortama geçerken 30 cm<sup>-1</sup>, den daha büyüktür. Sulu ortamda 1714, 1707 cm<sup>-1</sup> olarak hesaplanan bu titresim frekansı gaz fazında 1759, 1740 cm<sup>-1</sup> olarak hesaplanmıştır. C=O titresim frekanslarında meydana gelen bu kaymalar elektronegatifliği yüksek olan Oksijen atomundan kaynaklanmaktadır. C=O düzlem içi açı titreşimleri incelendiğinde gerilme titreşimlerindeki gibi büyük kaymalar görülmemektedir. Gaz fazından sulu ortama geçişlerde C=O düzlem içi açı titreşimleri 5 cm<sup>-1</sup> civarında bir değişim göstermektedir. Gaz fazında bu titreşimler 895, 677, 651, 301 cm<sup>-1</sup> bölgesinde hesaplanırken su içindeyken 900, 683, 653, 306 cm<sup>-1</sup> olarak hesaplanmıştır. C=O düzlem dışı açı titreşimlerinde ise 1 ile 4 cm<sup>-1</sup>arasında bir kayma görülmektedir. Bu titresimler gaz fazında 817, 534, 484, 392 ve 90 cm<sup>-1</sup> bölgesinde, sulu ortamda ise 818, 535, 488, 396 ve 94 cm<sup>-1</sup> bölgesinde hesaplanmıştır. N-H titresim frekansları en fazla kayma tespit edilen frekanslardandır. Bu gerilme titreşimi gaz fazında 3478 cm<sup>-1</sup> bölgede iken, su içinde 3462 cm<sup>-1</sup> bölgesinde hesaplanmıştır. N-H düzlem

içi açı titreşimleri ise gaz fazında 1379, 1311 cm<sup>-1</sup> bölgesinde hesaplanmıştır. Sulu ortamda aynı titreşim 1384 ile 1316 cm<sup>-1</sup> bölgelerinde hesaplanmıştır. N-H düzlem dışı açı titreşimi gaz fazında 392 cm<sup>-1</sup> bölgesinde hesaplanırken sulu ortamda 396 cm<sup>-1</sup> bölgesinde hesaplanmıştır. N-H bandlarında meydana gelen bu kaymalar elektronegatifliği yüksek olan Azot atomdan kaynaklanmaktadır. 7-Fluoroisatin molekülünün frekanslarında meydana gelen değişiklikler bağ uzunluklarını da etkilemiştir. EK 2. incelendiğinde ortamlar değişirken bağ uzunluklarında en fazla değişimlerden biri C-O arasındaki bağ uzunluklarında görülmektedir. C=O gerileme titreşimleri ortamın polarlığı artarken daha küçük frekanslara kayarken C-O arasındaki bağ uzunlukları değerlerinde de artış görülmektedir. Aynı şekilde N-H titreşim frekansı ortamın artan dielektrik sabiti ile daha düşük frekanslara kayarken bağ uzunluklarındaki değerde artmaktadır. N-H bandlarında meydana gelen kaymalar Şekil 4.12.'de verilmiştir. Bağ uzunluklarında kayda değer diğer değişiklikler ise pirol halkasındaki C2-C8 veC7-C8 atomları arasında görülmektedir. Bu bağ uzunluğundaki değişimin nedeni ise C8 atomuna bağlı olan Oksijen atomundan kaynaklanmaktadır. Şekil 4.10. incelendiğinde C=O titreşimlerinin, ortamın dielektrik sabiti artarken, daha düşük frekanslara kaydığını gözleyebiliriz. Bu oksijen atomunun elektronegatifliğinin çözücü polaritesiyle birlikte artma eğilimi göstermesinden kaynaklanmaktadır [100]. Çevresel polariti artarken Oksijen atomunun üstünde daha fazla negatif yük kutuplanmaktadır. Böylece C=O grupları ile çözücünün uygun grupları arasında hidrojen bağı oluşmaktadır. Bu literatüre de uygundur [67,100].

1-Metilisatin molekülü ortam değiştirirken frekanslarda meydan gelen kaymalar EK 9.'da verilmiştir. Bu tabloya göre  $v_{11}$ ,  $v_{12}$ ,  $v_{16}$ ,  $v_{17}$ , $v_{18}$ ,  $v_{19}$ ,  $v_{23}$ ,  $v_{24}$ ,  $v_{25}$ ,  $v_{32}$ ,  $v_{33}$ ,  $v_{35}$ ,  $v_{37}$ ,  $v_{38}$ ,  $v_{40}$ ,  $v_{42}$ ,  $v_{43}$ ,  $v_{45}$ ,  $v_{47}$ , $v_{48}$  ve $v_{51}$  modlarında çok az değişiklik olurken,  $v_5$ ,  $v_6$ ,  $v_7$ ,  $v_8$ , $v_9$ ,  $v_{10}$ ,  $v_{15}$ ,  $v_{20}$ , ve  $v_{28}$  modlarından önemli ölçüde kaymalar olmuştur.  $v_{22}$ ,  $v_{26}$ ,  $v_{27}$ ,  $v_{34}$ , $v_{36}$ ,  $v_{39}$ ,  $v_{41}$  ve  $v_{44}$  modlarındaherhangi bir değişiklik olmamıştır. En fazla kayma  $v_8$ , $v_9$  modlarına karşılık gelen C=O gerilme titreşimlerine karşılık gelmektedir. 7-Fluoroisatin'de olduğu gibi bu kaymalar 30 cm<sup>-1</sup>'in üstündedir. C=O gerilme titreşimi sulu ortamda 1701, 1687 cm<sup>-1</sup> olarak hesaplanırken, aynı titreşim gaz fazında 1740, 1731 cm<sup>-1</sup>olarak hesaplanmıştır. Frekanslarda meydana gelen bu değişiklikler moleküler ile çözücüler arasında hidrojen bağı oluşumuna bağlanabilir.C=O düzlem içi titreşimleri 940, 862, 290 cm<sup>-1</sup> bölgesinde iken sulu ortamda 945, 868, 293 cm<sup>-1</sup> bölgelerinde hesaplanmıştır. Gaz fazından sulu ortama geçerken C=O düzlem içi açı titreşimlerindeki kaymalar 3 ile 6 cm<sup>-1</sup>'lik bir kayma görülmektedir. C=O düzlem dışı açı titreşimleri gaz fazında 812, 473, 99 cm<sup>-1</sup> bölgesinde hesaplanmıştır. Sulu ortamda aynı titreşimler 814, 476 ve 102 cm<sup>-1</sup> bölgelerinde hesaplanmıştır. Bu titreşimlerdeki kaymalar da 3 cm<sup>-1</sup> civarındadır. 1-Metilisatin molekülünde C-O atomları arasındaki bağ uzunlukları da 7- Fluoroisatinde olduğu gibi C=O titreşmleri daha düşük frekanslara kayarken artmıştır. Yine pirol halkasında bulunan C2-C8 ve C7-C8 atomları arasındaki bağlar elektronegatifliği yüksek olan Oksijen atomun etkisiyle uzunluğu en çok değişen bağlardan olmuşlardır. Şekil 4.11.'de 1-Metilisatin molekülünde C=O titreşim frekanslarında meydana gelen kaymalar yer almaktadır. Tablolar incelendiğinde de anlaşılacağı gibi, titreşim frekansları sadece moleküllerin yapısına bağlı değildir. Titreşim frekansları aynı zamanda çevresel faktörlerden de etkilenmektedir. Bunu en güzel çözücünün dielektrik sabitinin değişimi ile frekanslarda oluşan kaymalar açıklar.

EK 8. ve EK 9. incelendiğinde değişen dielektrik sabiti ile birlikte IR ve Raman yoğunluklarının da değiştiğini görebiliriz.



(a)



Şekil 4.8. 7-Fluoroisatin molekülünün farklı çözücüler içinde teorik (B3LYP/6-311++G(d,p) (a) IR ve (b)Raman Spekturumları





Şekil 4.9. 1-Metilisatin molekülünün farklı çözücüler içinde teorik (B3LYP/6-311++G(d,p) (a) IR ve (b)Raman Spekturumları



(a)



Şekil 4.10. 7-Fluoroisatin molekülünün farklı çözücüler içinde C=O gerilme titreşimlerinin (a) IR ve (b)Raman Spekturumları



Şekil 4.11. 1-Metilisatin molekülünün farklı çözücüler içinde C=O gerilme titreşimlerinin (a) IR ve (b)Raman Spekturumları



(a)



Şekil 4.12. 7-Fluoroisatin molekülünün farklı çözücüler içinde N-H gerilme titreşimlerinin (a) IR ve (b)Raman Spekturumları

### 4.6. HOMO-LUMO Enerjileri

Bir molekülde bulunan en önemli orbitaller sınır moleküler orbitallerdir. Bu orbitaller en küçük enerjili boş orbital (lowest unoccupied molecular orbital; LUMO) ve en yüksek enerjili dolu orbital (highest occupied molecular orbital; HOMO) olarak da bilinmektedir. HOMO enerjisi elektron verme kabiliyetini, LUMO enerjisi ise elektron alma kabiliyetini göstermektedir. Ayrıca HOMO enerjisi iyonizasyon potansiyeli ile ilgili iken, LUMO enerjisi ise elektron ilgisi ile ilgilidir. HOMO ve LUMO enerjileri arasındaki fark kimyasal kararlılık ve moleküllerin elektriksel özelliklerini tanımlar [113]. Eğer HOMO-LUMO enerjileri arasındaki fark düşükse, bu molekülde kutuplaşma yüksektir [114]. Şekillerdeki kırmızı renk pozitif bölge, yeşil renk ise negatif bölgeye karşılık gelmektedir.

7-Fluoroisatin ve 1-Metilisatin moleküllerinin HOMO-LUMO şekilleri sırasıyla Şekil 4.12. ve Şekil 4.13.'de verilmiştir. Şekil 4.12. ve Şekil 4.13. incelendiğinde HOMO'nun O(14) üzerinde odaklandığı görülmektedir. Ayrıca C(7) üzerinde de HOMO görülmektedir. LUMO'yu inceleyecek olursak; 7-Fluoroisatin molekülünde C(6) ve C(1) üzerinde odaklandığı, ancak N(13), C(5) ve C(2) üzerinde de LUMO gözlenmektedir. 1-Metilisatin için ise LUMO O(14) ve C(7) üzerinde odaklanmış, ayrıca N(13) ve C(8) üzerinde de bulunmuştur. İsatin molekülüne eklenen Flor atomu ile CH<sub>3</sub> grubu nedeniye LUMO; 7-Fluoroisatin ve 1-Metilisatin'de farklı atomlarda odaklanmıştır.

Şekil 4.12 ve 4.13.'de 7-Fluoroisatin ile 1-Metilisatin moleküllerine  $E_{LUMO-HOMO}$  farkı da verilmiştir. HOMO-LUMO arasındaki fark incelendiğinde 1-Metilisatine ait değer 7-Fluoroisatine göre daha düşüktür. HOMO-LUMO arasındaki farkın düşük olması kimyasal reaksiyonlarda molekülün daha reaktif olduğunun göstermektedir [115]. Bu nedenle 1-Metilisatinin moleküler reaktivitesi 7-Fluoroisatin molekülüne göre daha fazladır. Bu da 1-Metilisitin molekülündeki yük transferinin 7-Fluoroisatin molekülüne göre daha fazla olduğunu göstermektedir.













#### 4.7. Çözücülerin HOMO-LUMO EnerjileriÜzerine Etkisi

7-Fluoroisatin ve 1-Metilisatin moleküllerinin gaz fazındaki HOMO-LUMO enerji değerleri Şekil4.12. ve 4.13.'de verilmişti. Aynı moleküllerin sulu ortamdaki HOMO-LUMO enerji değerleri ve  $E_{LUMO-HOMO}$  değerleri ise sırasıyla Şekil 4.14. ve 4.15.'de verilmiştir. Burada su en yüksek dielektrik sabiti değerine sahip olduğu için seçilmiştir.

Moleküller gaz fazında iken HOMO değerleri O(14) ve C(7) atomları üzerinde odaklanmıştı. Moleküller sulu ortamda iken HOMO değerleri C(4) ve C(5) atomları üzerinde odaklanmıştır. Ayrıca C(3) ve C(6) atomları üzerinde de HOMO değerleri bulunmuştur. 7-Fluoroisatin molekülü gaz fazında iken LUMO C(6) ve C(1) üzerinde odaklanmış, N(13), C(5) ve C(2) atomları üzerinde de LUMO bulunmuştu. Aynı molekül sulu ortamda iken LUMO değerleri O(14) ve C(7) atomları üzerinde odaklanmış N(13), C(5) ve C(2) atomları üzerinde de aynı değerlere rastlanılmıştır. 1-Metilisatin molekülü gaz fazında iken LUMO O(14) ve C(7) üzerinde odaklanmış, N(13) ve C(8) atomları üzerinde de aynı değerlere rastlanılmıştır. 1-Metilisatin molekülü gaz fazında iken LUMO O(14) ve C(7) üzerinde odaklanmış, N(13) ve C(8) üzerinde de LUMO gözlenmiştir. Molekül sulu ortamda iken LUMO yine aynı atomlar üzerinde gözlemlenmiştir. Çevresel polarite kademeli olarak artarken (1-78,36) bağ açılarında ve dipol momentte değişikliğe sebep olduğu gibi HOMO-LUMO enerji değerlerinde de değişikliğe sebep olmuştur. Ayrıca çevresel polaritenin artışı HOMO ve LUMO orbitallerinin moleküller üzerinde yer değiştirmesine de sebep olmuştur.

7-Fluoroisatin gaz fazındayken HOMO-LUMO enerjileri arasındaki fark 0,14024 Hartree iken sulu ortamda bu fark 0,13378 Hartree olarak hesaplanmıştır. 1-Metilisatin gaz fazında iken aynı enerji farkı 0,13690 Hartree iken sulu ortamda 0,13062 Hartree olarak hesaplanmıştır. Hesaplamalarda da görüleceği üzere moleküller gaz fazından sulu ortama geçerken  $E_{LUMO-HOMO}$  enerjileri azalmış, dolayısıyla kimyasal reaktiviteleri artmıştır.













7-Fluoroisatin ve 1-Metilisatin moleküllerinin farklı ortamlarda B3LYP/6-311++G(d,p) metodu kullanılarak hesaplanan HOMO-1, HOMO, LUMO, LUMO-1 ve enerji farkları sırasıyla Tablo 4.8. ve Tablo 4.9.'da verilmiştir. İlgili tablolar incelendiğinde moleküllerin hesaplanan  $E_{HOMO-1}$ ,  $E_{HOMO}$ ,  $E_{LUMO}$ ,  $E_{LUMO+1}$ enerjilerinin ortam değiştikçe değiştiği görülmektedir. Hesaplanan HOMO enerjileri artan dielektrik sabiti ile artış göstermiştir. LUMO enerjileri ise ortamın dielektrik sabiti artarken azalmıştır. Sadece 7-Fluoroisatin molekülünün gaz fazında hesaplanan LUMO enerjisi bu genellemeyi bozmaktadır. İlgili molekül gaz fazında iken en düşük LUMO enerjisine sahiptir. LUMO-HOMO arasındaki enerji farkları ( $\Delta E_{LUMO-1}$ )  $_{HOMO}$ ) ortamın dielektrik sabiti artarken azalmıştır. Bu da moleküllerin çözücü içerisinde daha reaktif olduklarını göstermektedir.  $\Delta E_{(LUMO+1)-(HOMO)}$  ve  $\Delta E_{(LUMO+1)-}$  $_{(HOMO-1)}$  enerjileri de ortamın dielektrik sabiti ile birlikte artış göstermektedir.

7-Fluoroisatin ve 1-Metilisatin moleküllerinin farklı ortamlardaki  $E_{LUMO-HOMO}$  enerji farkı Şekil 4.16.' daverilmiştir. Çözücülerin HOMO ve LUMO enerjilerini değiştirmesi iki faktöre bağlıdır: Çözünen maddenin elektronik dağılımının polarizasyonu ve çözünen maddenin geometrisindeki değişim [100,116].

| Enerji                         |          |          |          |           |          | Ortam    |          |          |                 |          |          |
|--------------------------------|----------|----------|----------|-----------|----------|----------|----------|----------|-----------------|----------|----------|
|                                | Gaz      | Benzen   | Toluen   | Kloroform | Anilin   | THF      | Aseton   | Etanol   | Asetonitr<br>il | DMSO     | Su       |
| DUMO                           | -0,12222 | -0,12175 | -0,12175 | -0,12184  | -0,12192 | -0,12193 | -0,12206 | -0,12208 | -0,12210        | -0,12212 | -0,12213 |
| HOMO                           | -0,26246 | -0,25903 | -0,25890 | -0,25744  | -0,25692 | -0,25684 | -0,25619 | -0,25612 | -0,25603        | -0,25597 | -0,25591 |
| $\Delta E_{(LUMO-HOMO)}$       | 0,14024  | 0,13728  | 0,13715  | 0,13560   | 0,13500  | 0,13491  | 0,13413  | 0,13404  | 0,13393         | 0,13385  | 0,13378  |
| LUM0+1                         | -0,04214 | -0,03778 | -0,03761 | -0,03568  | -0,03502 | -0,03491 | -0,03403 | -0,03394 | -0,03381        | -0,03374 | -0,03365 |
| HOMO-1                         | -0,27053 | -0,27297 | -0,27309 | -0,27455  | 0,27514  | -0,27523 | -0,27604 | -0,27612 | -0,27625        | -0,27631 | -0,27640 |
| $\Delta E_{(LUM0+1)-(H0M0)}$   | 0,22032  | 0,22125  | 0,22129  | 0,22176   | 0,22190  | 0,22193  | 0,22216  | 0,22218  | 0,22222         | 0,2223   | 0,22226  |
| $\Delta E_{(LUM0+1),(H0M0-1)}$ | 0,22839  | 0,23519  | 0,23548  | 0,23887   | 0,24012  | 0,24032  | 0,24201  | 0,24218  | 0,24244         | 0,24257  | 0,24275  |
|                                |          |          |          |           |          |          |          |          |                 |          |          |

Tablo 4.9. 1-Metilisatin molekülünün HOMO-LUMO enerjileri (Hartree)

| Enerji                           |          |          |          |           |          | Ortam    |          |          |             |           |          |
|----------------------------------|----------|----------|----------|-----------|----------|----------|----------|----------|-------------|-----------|----------|
| -                                | G az     | Benzen   | Tolven   | Kloroform | Anilin   | 闺        | Aseton   | Etanol   | Asetonitril | DMISO     | Su Su    |
| OWNT                             | -0,11091 | -0,11269 | -0,11278 | -0,11385  | -0,11427 | -0,11434 | -0,11495 | -0,11502 | -0,11511    | -0,11516  | -0,11523 |
| OWOH                             | -0,24781 | -0,24667 | -0,24664 | -0,24623  | -0,24610 | -0,24608 | -0,24592 | -0,24590 | -0,24588    | -0,24587  | -0,24585 |
| $\Delta E_{(IUN0.40M0)}$         | 0,13690  | 0,13398  | 0,13386  | 0,13,238  | 0,13183  | 0,13174  | 0,13097  | 0,13 088 | 0,13077     | 0,13071   | 0,13062  |
| L-0MU-1                          | -0,03916 | -0,03673 | -0,03663 | -0,03551  | -0,03510 | -0,03503 | -0,03447 | -0,03441 | -0,0343.2   | -0,03428  | -0,03422 |
| HOMO-1                           | -0,26057 | -0,26513 | -0,26533 | -0,26774  | -0,26865 | -0,26880 | -0,27007 | -0,27020 | -0,27039    | -0,2.7050 | -0,27064 |
| $\Delta E_{(1UNO=1)-(30MO)}$     | 0,20865  | 0,20994  | 0,21001  | 0,21 072  | 0,21100  | 0,21105  | 0,21145  | 0,21 149 | 0,21156     | 0,21159   | 0,21 163 |
| $\Delta E_{(117M0-4),(300M0-4)}$ | 0,22141  | 0,22840  | 0,22870  | 0,23 223  | 0,23355  | 0,23377  | 0,23560  | 0,23.579 | 0,23607     | 0,23622   | 0,23642  |
|                                  |          |          |          |           |          |          |          |          |             |           |          |



Şekil 4.17. 7-Fluoroisatin ve 1-Metilisatin moleküllerinin LUMO-HOMO enerji farkları.

### 4.8.Yük Analizi

7-Fluoroisatin ve 1-Metilisatin moleküllerinin Mulliken ve NBO yükleri B3LYP/6-311++G(d,p) yöntemi kullanılarak hesaplanmıştır. Moleküllere ait yükler Tablo 4.10.'da verilmiştir. İki molekülde de bütün hidrojen atomları pozitif yüke sahiptir. Hidrojen atomunun Mulliken yükleri 0,169-0,344 arasında, NBO yükleri ise 0,197-0,420 arasında değerler almaktadır. Pirol halkasındaki Karbon atomları (C7 ve C8) elektronegatifliği yüksek bir atom olan Oksijene (O14 ve O15) bağlandıklarından NBO yükleri pozitiftir. Aynı şeklide Benzen halkasındaki C1 atomu elektronegatif olan N13 atomuna bağlandığı için pozitif yüklüdür. C2, C3, C4, C5 ve C16 atomlarının NBO yükleri ise negatiftir. C6 atomunun NBO yükü 7-Fluoroisatinde pozitif değer alırken, 1-Metilisatinde negatif değer almıştır. Buna sebep olarak C6 atomuna 7-Fluoroisatin molekülünde elektronegetifliği yüksek Flor (F12) atomunun bağlı olmasını gösterebiliriz. 1-Metilisatin de ise C6 atomuna H12 atomu bağlıdır. C1, C3, C5, C6 ve C8 atomlarının Mulliken yükleri negatifken C2, ve C7 atomlarının Mulliken yükleri pozitiftir. C5 atomu ise 7-Fluoroisatin molekülünde pozitif değer alırken 1-Metilisatin molekülünde negatif değer almıştır. Buna benzer sonuçlara literatürde de bulunmaktadır [80,82]. Tablo 4.8. incelendiğinde de görüleceği üzere NBO yük analizi Mulliken yöntemine göre daha doğru sonuçlar vermektedir. Ancak, Mulliken dipol moment değişiminden daha fazla etkilenmektedir. Yani, moleküller arası yük değişiminin moleküldeki varlığını daha fazla ortaya koyar.

| Atom         | 7-Flu  | oroisatin | 1-Met  | ilisatin |
|--------------|--------|-----------|--------|----------|
|              | NBO    | Mulliken  | NBO    | Mulliken |
| <b>C1</b>    | 0,146  | -1,083    | 0,228  | -1,250   |
| C2           | -0,178 | 2.011     | -0,192 | 1,845    |
| C3           | -0,138 | -0,508    | -0,122 | -0,190   |
| <b>C4</b>    | -0,214 | -0,025    | -0,233 | -0,205   |
| C5           | -0,209 | 0,142     | -0,142 | -0,394   |
| C6           | 0,369  | -0,068    | -0,258 | -0,214   |
| <b>C7</b>    | 0,612  | 0,234     | 0,622  | 0,369    |
| <b>C8</b>    | 0,476  | -0,066    | 0,483  | -0,457   |
| H9           | 0,228  | 0,184     | 0,224  | 0,193    |
| H10          | 0,216  | 0,186     | 0,212  | 0,171    |
| H11          | 0,228  | 0,208     | 0,209  | 0,184    |
| N13          | -0,617 | -0,187    | 0,218  | 0,061    |
| <b>O14</b>   | -0,524 | -0,298    | -0,546 | -0,303   |
| 015          | -0,473 | -0,252    | -0,481 | -0,253   |
| H(16)        | 0,420  | 0,344     | -      | -        |
| <b>F(12)</b> | -0,348 | -0,194    | -      | -        |
| C16          | -      | -         | -0,367 | -0,263   |
| H17          | -      | -         | 0,197  | 0,169    |
| H18          | -      | -         | 0,197  | 0,169    |
| H19          | -      | -         | 0,234  | 0,197    |

Tablo 4.10. 7-Fluoroisatin ve 1-Metilisatin moleküllerinin NBO ve Mulliken yükleri (e<sup>-</sup>)

### 4.9.Çözücülerin Yük Dağılımı Üzerine Etkisi

7-Fluoroisatin ve 1-Metilisatin moleküllerinin farklı ortamlarda sahip oldukları Mulliken ve NBO yükleri sırasıyla Tablo 4.11. ve Tablo 4.12.'de verilmiştir.

İki tablo da incelendiğinde Hidrojen atomlarının tümünün NBO ve Mulliken yükleri pozitiftir. H19 atomu hariç bütün Hidrojen atomlarının yükleri ortamın artan dielektrik sabiti ile birlikte artmıştır. Sadece H19 atomunun yük değerlerinde azalma gözlenmiştir. Her iki molekülde de bulunan Oksijen atomları (O14 ve O15) negatif yüklüdür ve ortamın dielektrik sabiti artarken bu atomların NBO ve Mulliken yük değerleri de artmıştır. N13 atomu 7-Fluoroisatinde negatif değer alırken dielektrik sabiti artıkça yük değerihem NBO'da hem de Mulliken'de azalmıştır. 1-Metilisatinde ise Mulliken'de pozitif değer alırken NBO'da negatif değer almıştır. Ortamın polaritesi arttıkça yük değerleri Mullikende artarken NBO'da azalmıştır.

C1, C7 ve C8 atomları pozitif NBO yüküne sahip olup, ortamın dielektrik sabiti arttıkça bu atomların yüklerinde de artış görülmüştür. C2, C3, C4, C5 ve C16 atomlarının NBO yükleri negatif olarak hesaplanmıştır. Bu atomlardan C3'ün yükü dilektrik sabiti artarken artmış, diğerleri (C4 hariç) ise azalmıştır. C4 atomunun NBO yükü 7-Fluoroisatin molekülünde artan dielektrik sabiti ile azalmış, 1-Metilisatin molekülünde ise önce artma daha sonra azalma görülmüştür. C6 atomunun NBO yükü ise 7-Fluoroisatin de pozitif olarak ölçülmüştür ve ortamın artan dielektrik sabitiyle birlikte artış göstermiştir. 1-Metilisatinde ise bu atomun NBO yükü negatif olarak ölçülmüş ve ortamın artan dielektrik sabitinin aksine azalmıştır.

C2 ve C7 atomlarının Mulliken yükleri pozitif olarak hesaplanmıştır. Bu iki atomun Mulliken yükleri ortamın dielektrik sabiti arttıkça artmaktadır. C1, C3, C4, C6, C8 ve C16 atomları negatif Mulliken yüküne sahiptir. Bu atomlardan C6'nın Mulliken yükü artan dielektrik sabitinin tersine azalmış, diğerlerinin ise artmıştır. C5 atomu ise 7-Fluoroisatin moelkülünde pozitif Mulliken yüküne sahiptir. 7-Fluoroisatin molekülünde C5 atomunun Mulliken yükü dielektrik sabiti artarken azalmış, 1-Metilisatin molekülünde ise aynı atomun yükü dielektrik sabiti artarken artmıştır.

| Atom    | Ga       | Z      | Ben      | ten    | Tolu     | en     | Kloro    | form   | Ani      | lin    | HT       | F      |
|---------|----------|--------|----------|--------|----------|--------|----------|--------|----------|--------|----------|--------|
| -       | Mulliken | NBO    | Mulliken | NBO    | Mulliken | NBO    | Mulliken | NBO    | Mulliken | NBO    | Mulliken | NBO    |
| CI      | -1,083   | 0,146  | -1,091   | 0,151  | -1,092   | 0,151  | -1,092   | 0,153  | -1,094   | 0,154  | -1,094   | 0,154  |
| 3       | 2,011    | -0,178 | 2,047    | -0,181 | 2,048    | -0,181 | 2,061    | -0,183 | 2,067    | -0,184 | 2,067    | -0,184 |
| ຮ       | -0,508   | -0,138 | -0,521   | -0,135 | -0,521   | -0,134 | -0,528   | -0,133 | -0,530   | -0,132 | -0.530   | -0,132 |
| 5       | -0,025   | -0,214 | -0,051   | -0,214 | -0,052   | -0,213 | -0,062   | -0,213 | -0,064   | -0,212 | -0,065   | -0,212 |
| C       | 0,142    | -0,209 | 0,134    | -0,204 | 0,134    | -0,204 | 0,131    | -0,200 | 0,131    | -0,199 | 0,131    | -0,199 |
| C6      | -0,698   | 0,369  | -0,680   | 0,371  | -0,679   | 0,371  | -0,671   | 0,372  | -0,668   | 0,372  | -0,668   | 0,372  |
| C1      | 0,234    | 0,612  | 0,261    | 0,620  | 0,261    | 0,620  | 0,273    | 0,623  | 0,277    | 0,624  | 0,278    | 0,624  |
| 3       | -0,066   | 0,479  | -0,067   | 0,489  | -0,067   | 0,490  | -0,068   | 0,494  | -0,070   | 0,495  | -0,070   | 0,496  |
| $H_{0}$ | 0,184    | 0,228  | 0,192    | 0,231  | 0,193    | 0,231  | 0,195    | 0,232  | 0,195    | 0,232  | 0,197    | 0,232  |
| H10     | 0,186    | 0,216  | 0,203    | 0,222  | 0,204    | 0,222  | 0,211    | 0,225  | 0,214    | 0,226  | 0,214    | 0,226  |
| H11     | 0,208    | 0,228  | 0,225    | 0,234  | 0,225    | 0,235  | 0,232    | 0,237  | 0,234    | 0,238  | 0,235    | 0,238  |
| H16     | 0,344    | 0,420  | 0,361    | 0,429  | 0,362    | 0,430  | 0,368    | 0,434  | 0,370    | 0,435  | 0,371    | 0,435  |
| F12     | -0,194   | -0,348 | -0,198   | -0,350 | -0,198   | -0,350 | -0,200   | -0,350 | -0,200   | -0,350 | -0,200   | -0,350 |
| N13     | -0,187   | -0,617 | -0,176   | -0,607 | -0,175   | -0,607 | -0,169   | -0,603 | -0,167   | -0,601 | -0,167   | -0,601 |
| 014     | -0,298   | -0,524 | -0,346   | -0,556 | -0,348   | -0,557 | -0,371   | -0,572 | -0,379   | -0,577 | -0,380   | -0,578 |
| 015     | -0,252   | -0,473 | -0,291   | -0,501 | -0,293   | -0,502 | -0,311   | -0,515 | -0,318   | -0,519 | -0,319   | -0,520 |

Tablo 4.11. 7-Fluoroisatin molekülünün farklı ortamlardaki NBO ve Mulliken yükleri (e)

| Atom    | Aset     | uo     | Etan     | loi    | Aseton   | itril  | DMG      | 00     | S        | _      |
|---------|----------|--------|----------|--------|----------|--------|----------|--------|----------|--------|
|         | Mulliken | NBO    | Mulliken | NBO    | Mulliken | NBO    | Mulliken | NBO    | Mulliken | NBO    |
| CI      | -1,094   | 0,155  | -1,094   | 0,155  | -1,094   | 0,155  | -1,094   | 0,155  | -1,094   | 0,155  |
| 3       | 2,073    | -0,185 | 2,073    | -0,185 | 2,074    | -0,185 | 2,074    | -0,185 | 2,075    | -0,185 |
| ប       | -0,533   | -0,131 | -0,534   | -0,131 | -0,534   | -0,131 | -0,534   | -0,131 | -0,535   | -0,130 |
| 5       | -0,068   | -0,212 | -0,068   | -0,212 | -0,069   | -0,212 | -0,069   | -0,212 | -0,069   | -0,212 |
| S       | 0,130    | -0,197 | 0,130    | -0,197 | 0,130    | -0,197 | 0,130    | -0,197 | 0,130    | -0,197 |
| C6      | -0,663   | 0,373  | -0,663   | 0,373  | -0,662   | 0,373  | -0,662   | 0,373  | -0,662   | 0,373  |
| C       | 0,283    | 0,625  | 0,283    | 0,625  | 0,284    | 0,625  | 0,284    | 0,625  | 0,285    | 0,625  |
| 8       | -0,070   | 0,497  | -0,071   | 0,498  | -0,071   | 0,498  | -0,071   | 0,498  | -0,071   | 0,498  |
| $H_{0}$ | 0,198    | 0,233  | 0,198    | 0,233  | 0,198    | 0,233  | 0,198    | 0,233  | 0,198    | 0,233  |
| H10     | 0,217    | 0,227  | 0,218    | 0,227  | 0,218    | 0,227  | 0,218    | 0,227  | 0,219    | 0,228  |
| H11     | 0,238    | 0,239  | 0,238    | 0,240  | 0,239    | 0,240  | 0,239    | 0,240  | 0,239    | 0,240  |
| H16     | 0,374    | 0,437  | 0,374    | 0,437  | 0,374    | 0,437  | 0,375    | 0,438  | 0,375    | 0,438  |
| F12     | -0,201   | -0,350 | -0,201   | -0,350 | -0,201   | -0,350 | -0,201   | -0,350 | -0,201   | -0,350 |
| N13     | -0,164   | -0,598 | -0,164   | -0,598 | -0,163   | -0,598 | -0,163   | -0,598 | -0,163   | -0,597 |
| 014     | -0,391   | -0,586 | -0,392   | -0,586 | -0,394   | -0,587 | -0,394   | -0,588 | -0,396   | -0,589 |
| 015     | -0.328   | -0.526 | -0.329   | -0.527 | -0.330   | -0.528 | -0.331   | -0.529 | -0.332   | -0.529 |

Tablo 4.11.'in devamı

| Atom     | Ga       | Z      | Benz     | en     | Tolu     | en     | Klorof   | orm    | Anil     | i.     | TH       | F      |
|----------|----------|--------|----------|--------|----------|--------|----------|--------|----------|--------|----------|--------|
|          | Mulliken | NBO    | Mulliken | NBO    | Mulliken | NBO    | Mulliken | NBO    | Mulliken | NBO    | Mulliken | NBO    |
| CI       | -1,250   | 0,228  | -1,282   | 0,231  | -1,283   | 0,231  | -1,295   | 0,233  | -1,298   | 0,234  | -1,299   | 0,234  |
| C2       | 1,846    | -0,192 | 1,900    | -0,197 | 1,902    | -0,197 | 1,923    | -0,200 | 1,930    | -0,201 | 1,931    | -0,201 |
| ប        | -0,190   | -0,122 | -0,204   | -0,121 | -0,204   | -0,121 | -0,212   | -0,121 | -0,215   | -0,120 | -0,215   | -0,120 |
| C4       | -0,205   | -0,233 | -0,218   | -0,235 | -0,219   | -0,235 | -0,222   | -0,235 | -0,223   | -0,235 | -0,223   | -0,235 |
| CS       | -0,394   | -0,142 | -0,422   | -0,139 | -0,423   | -0,139 | -0,433   | -0,136 | -0,437   | -0,135 | -0,438   | -0,135 |
| C6       | -0,214   | -0,258 | -0,202   | -0,256 | -0,201   | -0,256 | -0,193   | -0,254 | -0,189   | -0,253 | -0,189   | -0,253 |
| C7       | 0,369    | 0,622  | 0,396    | 0,628  | 0,398    | 0,628  | 0,409    | 0,630  | 0,413    | 0,631  | 0,414    | 0,631  |
| <b>3</b> | -0,457   | 0,483  | -0,459   | 0,493  | -0,459   | 0,494  | -0,461   | 0,498  | -0,461   | 0,499  | -0,461   | 0,499  |
| C16      | -0,263   | -0,367 | -0,269   | -0,367 | -0,269   | -0,367 | -0,272   | -0,368 | -0,273   | -0,368 | -0,273   | -0,368 |
| $H_{0}$  | 0,193    | 0,224  | 0,200    | 0,227  | 0,200    | 0,227  | 0,203    | 0,228  | 0,203    | 0,228  | 0,203    | 0,228  |
| H10      | 0,171    | 0,212  | 0,188    | 0,218  | 0,188    | 0,218  | 0,195    | 0,220  | 0,197    | 0,221  | 0,198    | 0,221  |
| H11      | 0,184    | 0,209  | 0,202    | 0,215  | 0,202    | 0,215  | 0,210    | 0,218  | 0,213    | 0,219  | 0,213    | 0,219  |
| H12      | 0,170    | 0,218  | 0,191    | 0,226  | 0,192    | 0,226  | 0,201    | 0,230  | 0,204    | 0,231  | 0,205    | 0,231  |
| H17      | 0,169    | 0,197  | 0,180    | 0,204  | 0,180    | 0,204  | 0,185    | 0,207  | 0,187    | 0,208  | 0,188    | 0,209  |
| H18      | 0,169    | 0,197  | 0,180    | 0,204  | 0,180    | 0,204  | 0,185    | 0,207  | 0,187    | 0,208  | 0,188    | 0,209  |
| H19      | 0,197    | 0,234  | 0,193    | 0,232  | 0,192    | 0,231  | 0,190    | 0,230  | 0,188    | 0,229  | 0,188    | 0,229  |
| N13      | 0,061    | -0,484 | 0,074    | -0,475 | 0,074    | -0,475 | 0,080    | -0,470 | 0,082    | -0,468 | 0,083    | -0,468 |
| 014      | -0,303   | -0,546 | -0,353   | -0,577 | -0,355   | -0,579 | -0,378   | -0,594 | -0,386   | -0,599 | -0,388   | -0,600 |
| 015      | -0,253   | -0,481 | -0,294   | -0.510 | -0,295   | -0,511 | -0,316   | -0,525 | -0,323   | -0.530 | -0,324   | -0,531 |
|          | 1        |        |          |        |          |        |          |        |          |        |          |        |

Tablo 4.12.1-Metilisatin molekülünün farklı ortamlardaki NBO ve Mulliken yükleri (e)

| Atom     | Aset     | on     | Etan     | loi    | Aseton   | iitril | DM       | <b>SO</b> | S        | _      |
|----------|----------|--------|----------|--------|----------|--------|----------|-----------|----------|--------|
|          | Mulliken | NBO    | Mulliken | NBO    | Mulliken | NBO    | Mulliken | NBO       | Mulliken | NBO    |
| CI       | -1,303   | 0,235  | -1,303   | 0,235  | -1,304   | 0,235  | -1,304   | 0,235     | -1,305   | 0,235  |
| 3        | 1,940    | -0,202 | 1,941    | -0,203 | 1,942    | -0,203 | 1,943    | -0,203    | 1,944    | -0,203 |
| C        | -0,220   | -0,120 | -0,220   | -0,120 | -0,221   | -0,120 | -0,221   | -0,120    | -0,222   | -0,120 |
| <u>C</u> | -0,224   | -0,234 | -0,224   | -0,234 | -0,224   | -0,234 | -0,224   | -0,234    | -0,224   | -0,234 |
| S        | -0,442   | -0,133 | -0,443   | -0,133 | -0,444   | -0,133 | -0,444   | -0,132    | -0,444   | -0,132 |
| C6       | -0,184   | -0,251 | -0,184   | -0,251 | -0,183   | -0,251 | -0,183   | -0,251    | -0,182   | -0,251 |
| C1       | 0,420    | 0,631  | 0,420    | 0,631  | 0,421    | 0,632  | 0,422    | 0,632     | 0,422    | 0,632  |
| <u>3</u> | -0,462   | 0,501  | -0,463   | 0,501  | -0,463   | 0,502  | -0,463   | 0,502     | -0,463   | 0,502  |
| C16      | -0,274   | -0,368 | -0,274   | -0,368 | -0,274   | -0,368 | -0,274   | -0,368    | -0,274   | -0,368 |
| $H_{0}$  | 0,204    | 0,228  | 0,204    | 0,228  | 0,204    | 0,228  | 0,204    | 0,228     | 0,205    | 0,228  |
| H10      | 0,201    | 0,222  | 0,201    | 0,222  | 0,202    | 0,222  | 0,202    | 0,223     | 0,202    | 0,223  |
| H11      | 0,217    | 0,221  | 0,217    | 0,221  | 0,217    | 0,221  | 0,218    | 0,221     | 0,218    | 0,221  |
| H12      | 0,209    | 0,233  | 0,209    | 0,233  | 0,210    | 0,234  | 0,210    | 0,234     | 0,211    | 0,234  |
| H17      | 0,190    | 0,210  | 0,190    | 0,210  | 0,191    | 0,210  | 0,191    | 0,211     | 0,191    | 0,211  |
| H18      | 0,190    | 0,210  | 0,190    | 0,210  | 0, 191   | 0,210  | 0, 191   | 0,211     | 0,191    | 0,211  |
| H19      | 0,187    | 0,228  | 0,187    | 0,228  | 0,186    | 0,228  | 0,186    | 0,228     | 0,186    | 0,228  |
| N13      | 0,085    | -0,466 | 0,086    | -0,465 | 0,086    | -0,465 | 0,086    | -0,465    | 0,086    | -0,465 |
| 014      | -0,399   | -0,608 | -0,400   | -0,608 | -0,402   | -0,610 | -0,403   | -0,610    | -0,404   | -0,611 |
| 015      | -0,334   | -0,538 | -0,335   | -0,539 | -0,337   | -0,540 | -0,337   | -0,541    | -0,339   | -0,541 |

Tablo 4.12.'nin devamı

## **5. SONUÇLAR**

7-Fluoroisatin molekülünün beş farklı tautomer yapısı bulunmuştur. Bu tautomerlerden en kararlısı 7Fl-1 olarak tespit edilmiştir. Beş farklı tautomer için yapılan toplam enerji analizine göre kararlılık sıralaması 7Fl-1>7Fl-2>7Fl-3>7Fl-4>7Fl-5 şeklindedir.

7-Fluoroisatin molekülünün beş farklı tautomer yapısı için Boltzman dağılımı kullanılarak bulunma yüzdeleri hesaplanmıştır. 7Fl-1 yapısı %99,99'luk bir oranla en yüksek bulunma olasılığına sahiptir.

7-Fluoroisatin molekülünün tautomerlerinin geometrik parametreleri karşılaştırıldığında Hidrojen atomunun yer değiştirmesi sonucunda farklı bağ uzunlukları ve bağ açıları elde edilmiştir.

7-Fluoroisatin ve 1-Metilisatin molekülleri farklı çözücüler içinde iken yapılan hesaplamalar sonucu çözücü içerisindeyken sistemin enerjisinin daha düşük olduğu görülmüştür. Başka bir deyişle moleküller çözücü içerisinde iken sistemin kararlılığı artmaktadır.

7-Fluoroisatin ve 1-Metilisatin moleküllerinin farklı ortamlarda bağ uzunlukları, bağ açıları ve dihedral açıları hesaplanmıştır. C(8)-C(7) bağları en uzun bağlardır. Benzen halkasında bulunan CCC bağ açıları 120° civarında hesaplanmıştır. 7-Fluoroisatin molekülünün dihedral açıları 0° ve 180° olarak hesaplanmıştır. Bu açılarda 7-Fluoroisatin molekülünün düzlemsel olduğunu göstermektedir. 1-Metilisatin molekülünde ise Metil grubu düzlemselliği bozmaktadır.

1-Metilisatin molekülünün C=O gerilme titreşimleri 7-Fluoroisatine göre daha düşük bir bölgede tespit edilmiştir. 1-Metilisatin molekülünün C-C gerilme titreşimi 7-Fluoroisatin molekülünün değeri ile karşılaştırıldığında beklenen değerden daha düşük bulunmuştur. 7-Fluoroisatin molekülünde C-N gerilme titreşimi daha düşük bir bölgede gözlenmiştir. Bu değişiklikler İsatin molekülüne bağlanan –F atomu ve CH<sub>3</sub> grubundan kaynaklanmaktadır. C-H titreşimleri ise moleküle bağlanan –F atomu ve CH<sub>3</sub> grubundan fazla etkilenmemektedir.

Moleküller farklı çözücü içindeyken en fazla C=O titreşiminde değişme meydana gelmiştir. C=O titreşimlerinin, ortamın dielektrik sabiti artarken, daha düşük frekanslara kaydığı gözlenmiştir. Bu oksijen atomunun elektronegatifliğinin çözücü polaritesiyle birlikte artma eğilimi göstermesinden kaynaklanmaktadır.

Titreşim frekansları çevresel faktörlerden de etkilenmektedir. Bunu en güzel çözücünün dielektrik sabitinin değişimi ile frekanslarda oluşan kaymalar açıklar.

HOMO ve LUMO enerjileri arasındaki fark hesaplandığında 1-Metilisatin molekülünün enerji farkı 7-Fluoroisatine göre daha düşük bulunmuşur. Başka bir deyişle 1-Metilisatin molekülünün, 7-Fluoroisatin molekülüne göre daha reaktif olduğu görülmüştür.

Moleküller farklı ortamlarda iken  $E_{LUMO-HOMO}$  farkı daha düşük olarak hesaplanmıştır. Moleküllerin reaktifliği ortamın dielektrik sabiti arttıkça artmaktadır.

Moleküllerin yük dağılımı çevresel polaritedeki artışla birlikte değişmiştir. Oksijen atomu her ortamda (NBO ve Mulliken yükleri) negatif değer alırken, hidrojen atomu pozitif değer almıştır.

Moleküllerin ortamları değiştiğinde molekülü oluşturan atomların yük dağılımı yenilenmektedir. Yani değişen ortamla birlikte atomlar yeni yük değerlerine sahip olmaktadır. Atomların yük dağılımındaki bu değişim bağ uzunlukları ile dipol momentlerinde değişime, frekanslarda ise kaymalara neden olmaktadır.

## KAYNAKLAR

- Deparati, R., Bijan, K.P., Nikhil, G. (2013). Differential Binding Modes of Anticancer, anti-HIV Drugs Belonging to Isatin Family with a Model Transport Protein: A Joint Refinement From Spectroscopic and Molekular Modeling Approaches. *Journal of Photochemistry and Photobiology B: Biology*, 127, 18-27.
- 2. Erdmann, O.L. (1840). Untersuchungen über den Indigo. *Journal für Praktische Cheme, J. Prak Chem*, 19, 321-362.
- 3. Laurent, A., (1840). Recherches sur l'indigo. Ann. Chim. Phys, 3, 393-434.
- 4. Ischia, M., Palumbo, A., Prota, G. (1988). Adranalin Oxidation Revisited. New Products Beyond the Adrenochrome Stage. *Tetrahedran*, 44, 6441-6446
- 5. Palumbo, A., Ischia, M., Misuraca, G., Prota, G.(1989ment). A New Look at the Rearrangement of Adrenochrome Under Biomimetic Conditions. *Biochimica etBiophysica Acta*, 990, 297-302
- 6.Halket, J.M., Watkins, P.J., Przyborowska, A., Goodwin, B.L., Clow, A., Glover, V., Sandler, M. (1991). Isatin (indole-2,3-dione) in Urine and Tissues: Detection and Determination by Gaz Chromatography-mass Spectrometry. *Journal of Chromatography B: Biomedical Sciences Applications*, 562,279-287.
- Ferrali, M. B., Pelizzi, C., Pelosi, G. Rodriguez-Argüelles, M.C. (2002). Preparition, Characterization and X-Ray Structures of 1-Metilisatin 3thiosemicarbazone Copper, Nickel and Cobalt Complexes. *Polyhedran*, 21, 2593-2599.
- Prene, H., Cools, J., Mentens, N., Folens, C., Sciot, R., Schoffski, P., Van Oosterom., Marynen, P., Debiec-Rychter, M. (2006). Efficacy of the Kinase Inhibitor SU11248 Against Gaztrointestian Stromal Tumor Mutants Refractory to Imatinib Mesylate. *Clinical Cancer Research*, 12, 2622-2627.
- 9. Frisch, M.J., Trucks, G.W., Schlegel, H.B., at al., Gaussian 09, Revision B.01, Gaussian Inc., Wallingford, CT, 2010.
- 10. Denningtan, R.D., Keith, T.A., Millam, J.M., GaussView 5 09, Gaussian Inv., 2008.
- Karabacak, M., Sinha, L., Prasad, O., Asiri, A.M., Cinar, M., Shukla, V.K. (2014). FT-IR, FT-Raman, NMR, UV and quantum chemical studies on monomeric and dimeric conformations of 3,5-dimethyl-4-

methoxybenzoic acid. Spectrochimica Acta Part A: Molecular and Biomelocular Spectroscopy, 123, 352-362.

- Karabacak, M., Kurt, M., Cinar, M., Coruh, A. (2009) Experimental (UV, NMR, IR and Raman) and theoretical spectroscopic properties of 2-chloro-6methylanilin. Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, 107, 253-264.
- Sundaraganesan, N., Ilakiamani, S., Saleem, H., Wojciechowski, P.M., Michalska, D. (2005). FT-Raman and FT-IR spectra, vibrational assignments and density functional studies of 5-bromo-2-nitropyridine. Spectrochimica Acta Part A: Molecular and Biomelecular Spectroscopy, 61, 2995-3001.
- 14. Özhamam, Z. (2007). 1,2-bis(2-pridil)etilen ve trans 1,2-bis(4-pridil)etilen moleküllerinin serbest halde ve kompleks yapıdaki titreşim frekanslarının hesaplanması. Doktora Tezi, *Gazi Üniversitesi Fen Bilimleri Enstitüsü*.Ankara.
- 15. Woodward, L.A. (1972). Introduction to the Theory and Molecular Vibration Spectroscopy. Oxford: Longman.
- 16. Eroğlu, Y. (2008). 1,3-Bis(4-Piperidyl) propane molekülü ve 1,3-bis(4pyridyl)propane molekülünün serbest ve metal (11) halide komplekslerinin teorik ve deneysel olarak incelenmesi. Doktora Tezi, *Gazi Üniversitesi Fen Bilimleri Enstitüsü*.Ankara.
- 17. Chang, R. (1971). Basic Principles of Spectroscopy. New York: Mc Graw-Hill.
- 18. Whiffen, D.H. (1971). *Spectroscopy* 2<sup>*nd*</sup>*ed*. London: Longman.
- 19. Polat, T. (2003). Hofmann- tdtipi bazı konak konuk bileşiklerinin titreşim spektroskopisi ile incelenmesi. Yüksek Lisans Tezi, *Gazi Üniversitesi Fen Bilimleri Enstitüsü*.Ankara.
- 20.Nakamoto, K. (1997). Infrared and Raman Spectra of Inorganic and Coordination Compounds. New York: Wiley
- 21. Sertbakan, T.R. (2000). Hofmann-dadn ve hofmann-td-tipi bazı konak-konuk ve konak bileşiklerinin titreşim spektroskopisi ile incelenmesi. Doktora Tezi, *Gazi Üniversitesi Fen Bilimleri Enstitüsü*.Ankara.
- 22. Arkins, P.W. (1985). Quanta. Oxford: Oxford University Clarenden Press.
- 23. Kurt, M. (2003). Bazı Metal(II) benzimidazol bileşiklerinin yapılarının kırmızı altı spektroskopisi yöntemiyle araştırılması ve 1,2-bis(4-pyridyl) ethan molekülünün titreşim spektrumunun teorik olarak incelenmesi.Doktora Tezi, *Gazi Üniversitesi Fen Bilimleri Enstitüsü*.Ankara.

- 24. Güllüoğlu, M.T. (2000). Bazı metal(11) bileşiklerin yapılarının titreşimsel spektroskopi ile araştırılması. Doktora Tezi, *Gazi Üniversitesi Fen Bilimleri Enstitüsü*. Ankara.
- 25. Polat, T. (2010). 2-Hydroxyquinoxaline ve 4-hydroxyquinazoline moleküllerinin teorik ve deneysel incelenmesi. doktora tezi, *Gazi Üniversitesi Fen Bilimleri Enstitüsü*.Ankara.
- 26.Gans, P. (1971). Vibrating Molecules. London: Chapman and Hall.
- 27.Bransden, B.H., Joachim, C.J. (1983). *Physics of Atom and Molecules*. London: Longman.
- 28.Deniz, K. Buzlukdağı (Kırşehir) alkali magmatik kayaçların jeolojisi, petrolojisi ve konfokal raman spektroskopisi ile incelenmesi. Doktora Tezi, *Ankara Üniversitesi Fen Bilimleri Enstitüsü*. Ankara.
- 29. Yurdakul, Ş. (2010). Spektroskopi ve Grup Teorisinin Temelleri Ders Notları. Ankara: Gazi Kitabevi.
- 30. URL-1 file:///C:/Users/win7/Downloads/TiRYAKi%20(1).pdf. adresinden alınmıştır. 14.03,2014
- 31.URL-2 www. bayar.edu.tr/besergil/raman\_spektroskopi.pdf. adresinden alınmıştır. 14.03.2014
- 32. URL-3www.imzabilirkisi.com/.../5-dokuman-incelemede-murekkepanalizleriadresinden alınmıştır. 14.03.2014
- 33.Cotton, F.A. Chemical Applications of Grup Theory. London: Wiley.
- 34. Banwell, C. (1983). *Fundamentals of Molacular Spectroscopy*. London: McGrawHill.
- 35. Rao, C. (1963). *Chemical Application of Infrared Spectroscopy*. New York: Academic Press Inc.
- 36.Jensen, F. (1999). *Introduction to Computational Chemistry*. New York: Jhon Wiley and Sons.
- 37. Pulay, P. (1969). Molecular Stracture of Prydine. Mol. Phys, 17, 197.
- 38.Pople, J.A., Krishan, R., Schlegel, H.B., Binkley, J.S. (1979). International Journal of Quantum Symposium, 13. 225

- 39. Pulay, P. (1987). Analitical Derivative Methods in Quantum Chemistry, Ab Initio Methods in Quantum Chemistry. New York: Jhon Wiley and Sons.
- 40. Gi Xue, Juenfong, Gaoquan Shi, Yipei Wu, Biao Shuen. (1989). spectroscopic studies on the polymerization of benzimidazone with metallic copper. *J.Chem. Soc.Perkin Trans,II*, 40.
- 41. Albert, N.L., Keiser, W.E., Szymanski, H.A. (1970). *IR Theory and Practica of Infrared Spectroscopy*. New York: Pienum Pres.
- 42. Özdemir, M. (2007) benzensülfonikasit hidrazit'in konformasyon analizi, titreşim ve kimyasal kayma değerlerinin dft metodu ile hesaplanması.Yüksek Lisans Tezi, *Gazi Üniversitesi Fen Bilimleri Enstitüsü*. Ankara.
- 43. Koch, W., Holthausen, M.C.(2000). *A Chemist's Guide to Density Functional Theory*. Amsterdam: Wiley-VCH.
- 44.Hohenberg, P., Kohn, W. (1964). inhomogeneous electron gas. *Physical Review*, (3B), 864-871.
- 45. Kohn, W., Sham, L.J. (1965). Self consistent equations including exchange and correlation affects. *Physical Review*, 140 (4A), 1113-1138.
- 46. Becke, A.D. (1988). Density functional exchange energy approximation with correct asymtotic behavior. *Physical Review*, A, 38(6), 3098-3100.
- 47. Vosko, S.H., Wilk, L., Nusair, M. (1980). Accurate spin dependent electron liquid correlation energies for local spin density calculations: a critical analysis. *Canadian Journal of Physics*, 58(8), 1200-1211.
- 48. Lee, C., Yang, W., Parr, R.G. (1988). Development of the colle-salvetti correlation energy formula in to a functional of the elektron density. *Physical Review*, B37(2), 785-789.
- 49. Miehlich, B., Savin, A., Stoll, H., Preuss, H. (1989). Results obtained with the correlation energy density functionals of becke and lee, yang and parr. *Chemical Physics Letter*, 157(3), 200-206.
- 50. East Allan, L.L., Leo, R. (1996). A comparison of high-quality ab initio basis sets: the inversion barrier in ammonia. *Journal of Molecular Structure*, 376,437-447.
- 51. Pulay, P., Meyer, W. (1974). Comparasion of the ab initio force constant of ethane, ethylene and acetylene.*Molecular Pyhsics*, 27(2), 473-490.

- 52. Botschvina, P., Bleicher, W. (1975). Quantum chemical calculations of formyl radicals. *Molecular Physics*, 30(4), 1029-1036.
- 53. Bloom, C.E., Altona, C. (1976). Geometry of the substituted cyclohexane ring: xray structure determinations and empirical valence-force calculations.*Molecular Physics*, 31(5), 1377-1391.
- 54. Rauhut, G., Pulay, P. (1995). Transferable scaling factors for density functional derived vibrational force field. *Journal of Physical Chemistry*, 99(10), 3094.
- 55. Fessenden, R.J., Fessenden J.S. (1997). Organic chemistry. University of Montana. 627-637.
- 56. Uyar, T. (1981). Organik kimya temel kavramlar. Ankara: Gazi Üniversitesi.
- 57. Zor, L. (1991). Kimya, *Organik Kimya*.Eskişehir: Anadolu Üniversitesi, Açıköğretim Fakültesi lisans tamamlama programı, 18-80.
- 58. Joo Cho, S., Mohamed, A.A., Elroby, S.A.K. (2007). Theoretical investigation of the tautomerism of isoorotic acid in gazeous and aqueous phases. *International Journal of Quantum Chemistry*,2006 Wiley Peridicals, Inc. 107, 63-71.
- 59. Günay, N., Pir, H., Atalay, Y. (2011). L-Asparaginyum pikrat molekülünün spektroskopik özelliklerinin teorik olarak incelenmesi. *SAÜ Fen Edebiyat Dergisi*,2011-1,15-32.
- 60. Avcı, D. (2009). Heteroatom içeren bazı aromatik moleküllerin lineer olmayan optik ve spektroskopik özelliklerinin teorik olarak incelenmesi. Doktora Tezi, *Sakarya ÜniversitesiFen Bilimleri Enstitüsü*.Sakarya.
- 61. Fukui, K. (1982). Role of frontier orbitals in chemical reactions. *Science*, 218, 747-754.
- 62.Pearson, R. (1989). Absolute electronegativity and hardness: applications to organic chemistry. J. Org. Chem, 54, 1423-1430.
- 63.Çevik, S.İ. (2012). Sulardaki antimonun önzenginleştirilmesi ve hidrür oluşturmalı atomik absorbsiyon spektrometresi (HGAAS) ile tayini. Tezi, *Ankara Üniversitesi Fen Bilimleri Enstitüsü*.Ankara.
- 64. Kürekçi, E. (2011). Sulardaki arsenigin hidrür sistemli atomik absorpsiyon spektormetresi ile tayin edilmesi. yüksek lisans tezi, *Ankara Üniversitesi Fen Bilimleri Enstitüsü*.Ankara.

- 65. URL-4 Yaman, M. Enstrumental Ders Notlarıhttpwww.bayar.edu.trbesergil11\_BOLUM\_8.pdf. Erişim Tarihi: 01.04.2015.
- 66.Çatıkkaş, B., Aktan, E., Seferoğlu, Z. (2013). DFT, FT-Raman, FTIR. NMR, and UV-Vis studies of a hetarylazo indole dye. International Journal of *Quantum Chemistry*, 113, 683-689. Doi: 10.1002/qua.24043.
- 67. Polat, T., Yıldırım, G. (2014). Investigation of solvent polarity effect on molecular structure and vibrational spectrum of xanthine with the aid of quantum chemical computations. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 123, 98-109.
- 68. Padmaja, L., Amalanathan, C., Ravikular, C., Joe, I.H. (2009). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 74, 349-356.
- 69.Rodriquez-Argüelles, M.C., Sanchez, A., Ferrari, M.B., Fava, G.G., Pelizzi, C, Pelosi, G., Albertini, R., Lunghi, P., Pinelli, S. (1997). *Journal of Inorganic Biochemistry*, 73,7.
- 70. Zhong, T.H., Min, W.W., Li, S.J., Bin, S.H., Ming, L.Z., Guo, W.J. (2011) *Chinese J. Struct. Chem*istry, 30,502.
- 71. Padmaja, L., Amalanathan, C., Ravikular, C., Joe, I.H. (1987). Structure of 5methylcytosine hydrochloride.*Acta Crys.* C. 43, 2157-2160.
- 72. Karaboğa, F., Soykan, U., Doğruer, M., Öztürk, B., Yıldırım, G., Çetin, S., Terzioğlu, C. (2013).Experimental and theoretical approaches for identification of p-benzophenoneoxycarbonylphenyl acrylate. *Spectrochimica Acta Part A*,113, 80-91.
- 73. Yıldırım, G., Şenol, S.D., Doğruer, M., Öztürk, Ö., Şenol, A., Taşçı A.T., Terzioğlu, C. (2012)Theoretical investigations of α,α,α-trifluoro-3, -p and o-nitrotoluene by means of density functional theory. *Spectrochimica Acta Part A*,112, 271-282.
- 74. Tomasi, J., Mennucci, B., Cammi, R. (2005)Chem. Rev. 105, 2999-3093.
- 75. Naumov, P., Anastasova, F. (2001). Experimental and theoretical vibrational study of 1satin, Its 5-(NO2, F, Cl, Br, I, CH3) analogues and the 1satinato anion. *Spectrochima Acta Part A*, 57, 469-481.
- 76. Palmer, M.H., Blake, A.J., Gould, R.O. (1987). Chem. Physics, 115, 219.
- 77.Yurdakul, Ş., Polat, T. (2010). FT-IR, FT-Raman spectra, density functional computation of the vibrational spectra and molecular geometry of 2-hydroxyquinoxaline. *Journal of Melecular Structure*. 963, 194-201.
- Kurt, M., Yurdakul, Ş. (2005). Molecular structure and vibrational spectra of lepidine and 2-chlorolepidine by density functional theory and ab initio hartree fock calculations. *Journal of Melecular Structure Thechem.* 730, 59-67.
- 79. Prasad, R.L., Kushwaha, A., Suchita, Kumar, M., Yadav, R.A. (2008) Infrared and ab initio studies of conducting molecules: 2,5-diamino-3,6dichloro-1,4-benzoquinone. *Spectrochim. Acta A Mol. Biomol. Spectrosc.* 69, 304.
- 80.Arjunan, V., Jayaprakash, A., Carthigayan, K., Periandy, S., Mohan, S. (2013) Conformational, structural, vibrational and quantum chemical analysis on 4-aminobenzohydrazide and 4-hydroxybenzohydrazide--a comparative study.*Spectrochim. Acta A Mol. Biomol. Spectrosc.* 108, 100.
- 81. Silverstein, R.M., Bassler, G.C., Morrill, T.C. (1981). Spectrometric Indentification of Organic Compounds, fifth ed. New York: JohnWiley&Sons,Inc.
- Balachandran, V., Lakshmi, A., Janaki, A. (2012) Conformational stability, vibrational spectral studies, HOMO–LUMO and NBO analyses of 2hydroxy-4-methyl-3-nitropyridine and 2-hydroxy-4-methyl-5nitropyridine based on density functional theory. J. Mol. Struc. 75.
- 83. Socrates, G. (2001). *Infrared and raman characteristic group frequencies, third ed.* New York: Wiley.
- 84.Varsanyi, G. (1969). Vibrational spectra of benzene derivatives. New York: Academic Press.
- 85.Smith, B. (1999). *Infrared spectralinterpretation, a systematic approach*. Washington DC: CRC Press.
- 86.Roages, N.P.G. (1994). A guide to the complete interpretation of infrared spectra of organic structures. New York: Wiley.
- Bovindarajan, K., Ganasan, K., Periandy, S., Karabacak, M., Varsanyi, G. (2011). Experimental (FT-IR and FT-Raman), electronic structure and DFT studies on 1-methoxynaphthalene. *Spectrochim. Acta A Mol. Biomol. Spectrosc.* 79, 646.
- 88.Bellamy, L.J. (1975). *The infrared spectra of complex molecules, third ed.* New York: Wiley.
- 89. Versanyi, G. (1974). Assignments for vibrational spectra of seven hundred benzene derivatives, Vol I. Londra: Adam Hilher.

- 90.Polat, T., Yurdakul, Ş. (2011) Structure and vibrational assignment of tautomerism of 4-hydroxyquinazoline in gaseous and aqueous phases. J. Mol. Struct. 1001,16.
- 91. Mitchell, R.J., Glass, R.W., Merrith, J.A. (1970). J. Mol. Specrosc. 36, 310.
- 92. Kessler, R.J., Tripatti, G.N.R. (1987). J. Chem. Phys. 86 (8), 4347.
- 93. Singh, R.N., Kumar, A., Tiwari, R.K., Rawat, P., Gupta, V.P. (2013). A combined experimental and quantum chemical (DFT and AIM) study on molecular structure, spectroscopic properties, NBO and multiple interaction analysis in a novel ethyl 4-[2-(carbamoyl)hydrazinylidene]-3,5-dimethyl-1H-pyrrole-2-carboxylate and its dimer. J. Mol. Struct. 1035, 427.
- 94. Sert, Y., Sreenivasa, S., Dogan, H., Manojkumar, K.E., Suchetan, P.A., Ucun, F. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 127, 122.
- 95.Gulluoglu, M.T., Erdogdu, Y., Karpagam, J., Sundaraganesan, N., Yurdakul, Ş. (2011). DFT, FT-Raman, FT-IR and FT-NMR studies of 4phenylimidazole.J. Mol. Struct. 990, 14.
- 96. Jakobsen, R.J., Bentely, F.F. (1964). Spectros. 18, 88.
- 97.Silverstein, M., Bassler, G.C., Morill, C. (1981).Spectrometric Indentification of Organic Compounds, fifth ed. New York: Wiley.
- 98.Gunasekaren, S., Sailatha, E. (2009). Vibrational analysis of pyrazinamide. *Indian J. Pure Appl. Phys.* 47, 259.
- 99.Fu, A., Du, D., Zhou, Z. (2003). Spectrochim. Acta A Mol. Biomol. Spectrosc. 59, 245.
- 100.Polat, T., Yurdakul, Ş. (2014). Quantum Chemical and Spectroscopic (FT-IR and FT-Raman) Investigations of 3-Methyl-3h-imidazole-4carbaldehyde. *Spectrochim. Acta A Mol. Biomol. Spectrosc.* 133, 683-696.
- 101. Arivazhagan, M., Jeyavijayan, S. (2011). Spectrochim. Acta A Mol. Biomol. Spectrosc. 79, 161.
- 102.Sundaraganesan, N., Ayyappan, S., Umamaheswari, H., Joshua, B.D. (2011). Spectrochim. Acta A Mol. Biomol. Spectrosc. 66A, 17.

- 103. Shanmugan, R., Sathyanarayana, D. (1984) Spectrochim. Acta A Mol. Biomol. Spectrosc. 40A, 764.
- 104.Spire, A., Barthes, M., Kallouai, H., De Nunzio, G. (2000). Physics D. 137, 392.
- 105. Mooney, E.F. (1964) Spectrochim. Acta A Mol. Biomol. Spectrosc. 20, 1021.
- 106. Pearce R.A.R., Steel, D., Radcliffe, K.J. (1973). J. Mol. Struct. 15, 409.
- 107. Kumpawat, M.P., Ojha, A., Patel, N.D. (1980). Canadian Journal of Spectroscopy, 25,1.
- 108. Honda, M., Fujji, A., Fujimaki, E., Ebata, T., Mikami, N. (1969). Journal of Physics, 7,250.
- 109. Shashidar, K., Suryanarayana, R.K., Jayadevappa, E.S. (1970). Spectrochim. Acta A Mol. Biomol. Spectrosc. 26, 2373.
- 110. Ramalingam, S., Periandy, S., Elanchezhian, B., Mohand, S. (2011). FT-IR and FT-Raman spectra and vibrational investigation of 4-chloro-2-fluoro toluene using ab initio HF and DFT (B3LYP/B3PW91) calculations. *Spectrochim. Acta A Mol. Biomol. Spectrosc.*78, 429.
- 111. Navti, M.S., Shashidar, M.A. (1994). Indian Journal of Physiscs, 668, 371.
- 112.Halim, M.A., Shaw, D.M., Poirler, R.A. (2010). Medium effect on the equilibrium geometries, vibrational frequencies and solvation energies of sulfanilamine. *Journal of Molecular Structure: THEOCHEM*. 960, 63-72.
- 113. Fukui, K. (1982).Role of frontier orbitals in chemical reactions.*Science*, 218, 747.
- 114. Gece, G. (2008). The use of quantum chemical methods in corrosion inhibitor studies. *Corrossien Science*, 50, 2981.
- 115. Sert, Y., Puttaraju, K.B., Keskinoglu, s., Shivashankar, K., Ucun, F. (2015). FT-IR and Raman vibrational analysis, b3lyp and m06-2x simulations of 4bromomethyl-6-tert-butyl-2h-chromen-2-one. *Journal of Molecular Structure*, 1079, 194.
- 116.Martins-Costa, M.T.C., Ruiz-Lopez, M.F. (2007). Molecular dynamics of hydrogen peroxide in liquid water using a combined quantum/classical force field. *Chemical Physics*, 332, 341-347.

# **EKLER**

- EK 1 7-Fluoroisatin molekülüne ait tautomerik yapıların Mulliken ve NBO yük dağılımları
- EK 2 7-Fluoroisatin molekülünün farklı çözücüler içinde bağ uzunluklarının karşılaştırılması
- EK 3 1-Metilisatin molekülünün farklı çözücüler içinde bağ uzunluklarının karşılaştırılması
- EK 4 7-Fluoroisatin molekülünün farklı çözücüler içinde hesaplanan bağ açılarının karşılaştırılması
- EK 51-Metilisatin molekülünün farklı çözücüler içinde hesaplanan bağ<br/>açılarının karşılaştırılması
- EK 67-Fluoroisatin molekülünün farklı çözücüler içinde hesaplanan<br/>dihedral açılarının karşılaştırılması
- EK 71-Metilisatin molekülünün farklı çözücüler içinde hesaplanan<br/>dihedral açılarının karşılaştırılması
- EK 8 7-Fluoroisatin molekülünün farklı ortamlarda hesaplanan frekans, I<sub>IR</sub>, I<sub>RA</sub> değerleri
- EK 9 1-Metilisatin molekülünün farklı ortamlarda hesaplanan frekans, I<sub>IR</sub>, I<sub>RA</sub> değerleri

| Atomlar | 7.F      | ·      | 7FI.     | -7     | 7FI      | ę      | 7FI.     | 4      | 7FI.     | Ś      |
|---------|----------|--------|----------|--------|----------|--------|----------|--------|----------|--------|
|         | Mulliken | NBO    | Mulliken | NBO    | Mulliken | NBO    | Mulliken | NBO    | Mulliken | NBO    |
| C(1)    | -1,083   | 0,146  | -1,353   | 0,113  | -1,229   | 0,123  | -0,851   | 0,258  | -0,895   | 0,249  |
| C(2)    | 2,011    | -0,178 | 1,777    | -0,177 | 1,699    | -0,187 | 1,562    | -0,231 | 1,815    | -0,235 |
| C(3)    | -0,508   | -0,138 | -0,378   | -0,143 | -0,386   | -0,136 | -0,526   | -0,137 | -0,609   | -0,173 |
| C(4)    | -0,025   | -0,214 | -0,035   | -0,206 | -0,015   | -0,209 | -0,019   | -0,231 | 0,041    | -0,214 |
| C(5)    | 0,142    | -0,209 | 0,166    | -0,214 | 0,181    | -0,206 | 0,185    | -0,178 | 0,166    | -0,204 |
| C(6)    | -0,698   | 0,369  | -0,386   | 0,396  | -0,441   | 0,396  | -0,595   | 0,366  | -0,478   | 0,381  |
| C(7)    | 0,234    | 0,612  | 0,266    | 0,521  | 0,273    | 0,511  | 0,426    | 0,618  | 0,335    | 0,632  |
| C(8)    | -0,066   | 0,479  | -0,178   | 0,502  | -0,190   | 0,491  | -0,248   | 0,410  | -0,448   | 0,384  |
| H(9)    | 0,184    | 0,228  | 0,180    | 0,224  | 0,178    | 0,223  | 0,168    | 0,221  | 0,113    | 0,206  |
| H(10)   | 0,186    | 0,216  | 0,183    | 0,214  | 0,184    | 0,214  | 0,188    | 0,216  | 0,188    | 0,214  |
| H(11)   | 0,208    | 0,228  | 0,208    | 0,226  | 0,207    | 0,226  | 0,212    | 0,226  | 0,209    | 0,227  |
| H(16)   | 0,344    | 0,420  | 0,301    | 0,489  | 0,298    | 0,491  | 0,307    | 0,502  | 0,283    | 0,481  |
| F(12)   | -0,194   | -0,348 | -0,177   | -0,336 | -0,171   | -0,333 | -0,162   | -0,330 | -0,157   | -0,328 |
| N(13)   | -0,187   | -0,617 | -0,110   | -0,513 | -0,116   | -0,472 | -0,143   | -0,585 | -0,137   | -0,562 |
| 0(14)   | -0,298   | -0,524 | -0,223   | -0,625 | -0,201   | -0,620 | -0,333   | -0,532 | -0,255   | -0,466 |
| 0(15)   | -0,252   | -0,473 | -0,241   | -0,471 | -0,273   | -0,511 | -0,169   | -0,592 | -0,169   | -0,592 |

EK 1. 7-Fluoroisatin molekülüne ait tautomerik yapılarının Mulliken ve NBO yük (e<sup>-</sup>) dağılımları

| Bağ<br>Uzunlukları | Gaz<br>ɛ=1 | Benzen<br>ɛ=2,27 | Toluen<br>ɛ=2,37 | Kloroform<br>ɛ=4,71 | Anilin<br>ɛ=6,89 | THF<br>E=7,42 | Aseton<br>ɛ=20,49 | Etanol<br>ɛ=24,85 | Asetonitril<br>ɛ=35,69 | DMSO<br>ɛ=46,83 | Su<br>78,36 |
|--------------------|------------|------------------|------------------|---------------------|------------------|---------------|-------------------|-------------------|------------------------|-----------------|-------------|
| C(1)-(C2)          | 1,4050     | 1,4057           | 1,4057           | 1,4062              | 1,4062           | 1,4062        | 1,4063            | 1,4064            | 1,4064                 | 1,4064          | 1,4064      |
| C(2)-(C3)          | 1,3907     | 1,3914           | 1,3915           | 1,3917              | 1,3919           | 1,3919        | 1,3921            | 1,3922            | 1,3922                 | 1,3922          | 1,3922      |
| C(3)-C(4)          | 1,3946     | 1,3945           | 1,3945           | 1,3946              | 1,3944           | 1,3944        | 1,3943            | 1,3943            | 1,3943                 | 1,3943          | 1,3943      |
| C(4)-C(5)          | 1,3989     | 1,3988           | 1,3988           | 1,3985              | 1,3986           | 1,3986        | 1,3986            | 1,3986            | 1,3985                 | 1,3985          | 1,3985      |
| C(5)-C(6)          | 1,3885     | 1,3891           | 1,3891           | 1,3897              | 1,3896           | 1,3896        | 1,3898            | 1,3898            | 1,3899                 | 1,3899          | 1,3899      |
| C(1)-C(6)          | 1,3826     | 1,3818           | 1,3818           | 1,3811              | 1,3812           | 1,3812        | 1,3810            | 1,3809            | 1,3809                 | 1,3809          | 1,3809      |
| C(2)-C(8)          | 1,4750     | 1,4707           | 1,4705           | 1,4683              | 1,4678           | 1,4676        | 1,4665            | 1,4664            | 1,4662                 | 1,4661          | 1,4660      |
| C(8)-C(7)          | 1,5779     | 1,5766           | 1,5766           | 1,5760              | 1,5757           | 1,5757        | 1,5754            | 1,5754            | 1,5754                 | 1,5754          | 1,5753      |
| C(7)-N(13)         | 1,3867     | 1,3782           | 1,3779           | 1,3737              | 1,3726           | 1,3724        | 1,3706            | 1,3704            | 1,3701                 | 1,3700          | 1,3698      |
| C(1)-N(13)         | 1,3970     | 1,3991           | 1,3992           | 1,4003              | 1,4006           | 1,4006        | 1,4012            | 1,4013            | 1,4013                 | 1,4014          | 1,4014      |
| C(7)-O(14)         | 1,2015     | 1,2057           | 1,2059           | 1,2080              | 1,2087           | 1,2088        | 1,2100            | 1,2101            | 1,2103                 | 1,2104          | 1,2105      |
| C(8)-O(15)         | 1,2028     | 1,2054           | 1,2055           | 1,2069              | 1,2074           | 1,2075        | 1,2081            | 1,2081            | 1,2082                 | 1,2083          | 1,2083      |
| C(6)-F(12)         | 1,3549     | 1,3553           | 1,3553           | 1,3552              | 1,3553           | 1,3553        | 1,3552            | 1,3551            | 1,3551                 | 1,3551          | 1,3551      |
| C(3)-H(9)          | 1,0833     | 1,0831           | 1,0831           | 1,0830              | 1,0830           | 1,0830        | 1,0830            | 1,0830            | 1,0830                 | 1,0830          | 1,0830      |
| C(4)-H(10)         | 1,0827     | 1,0825           | 1,0825           | 1,0824              | 1,0824           | 1,0824        | 1,0823            | 1,0823            | 1,0823                 | 1,0823          | 1,0823      |
| C(5)-H(11)         | 1,0834     | 1,0834           | 1,0834           | 1,0833              | 1,0833           | 1,0833        | 1,0833            | 1,0833            | 1,0833                 | 1,0833          | 1,0833      |
| N(13)-H(16)        | 1,0094     | 1,0102           | 1,0102           | 1,0106              | 1,0107           | 1,0107        | 1,0109            | 1,0109            | 1,0109                 | 1,0109          | 1,0109      |

EK 2. 7-Fluoroisatin molekülünün farklı çözücüler içinde hesaplanan bağ uzunluklarının (A<sup>0</sup>) karşılaştırılması

| Bağ<br>Uzunlukları | Gaz<br>ɛ=l | Benzen<br>ɛ=2,27 | Toluen<br>ɛ=2,37 | Kloroform<br>ɛ=4,71 | Anilin<br>ɛ=6,89 | THF<br>E=7,42 | Aseton<br>ɛ=20,49 | Etanol<br>ɛ=24,85 | Asetonitril<br>ɛ=35,69 | DMSO<br>e=46,83 | Su<br>ɛ=78,36 |
|--------------------|------------|------------------|------------------|---------------------|------------------|---------------|-------------------|-------------------|------------------------|-----------------|---------------|
| C(1)-C(2)          | 1,4079     | 1,4082           | 1,4082           | 1,4083              | 1,4084           | 1,4084        | 1,4085            | 1,4085            | 1,4085                 | 1,4085          | 1,4085        |
| C(2)-C(3)          | 1,3884     | 1,3897           | 1,3898           | 1,3904              | 1,3906           | 1,3907        | 1,3910            | 1,3911            | 1,3912                 | 1,3912          | 1,3912        |
| C(3)-C(4)          | 1,3961     | 1,3958           | 1,3958           | 1,3956              | 1,3954           | 1,3954        | 1,3953            | 1,3953            | 1,3952                 | 1,3952          | 1,3952        |
| C(4)-C(5)          | 1,3968     | 1,3975           | 1,3975           | 1,3978              | 1,3979           | 1,3979        | 1,3980            | 1,3980            | 1,3980                 | 1,3981          | 1,3981        |
| C(5)-C(6)          | 1,4007     | 1,4013           | 1,4014           | 1,4016              | 1,4017           | 1,4017        | 1,4018            | 1,4018            | 1,4019                 | 1,4019          | 1,4019        |
| C(2)-C(8)          | 1,4702     | 1,4658           | 1,4656           | 1,4634              | 1,4626           | 1,4624        | 1,4613            | 1,4611            | 1,4610                 | 1,4609          | 1,4607        |
| C(8)-C(7)          | 1,5710     | 1,5701           | 1,5700           | 1,5702              | 1,5699           | 1,5499        | 1,5696            | 1,5696            | 1,5695                 | 1,5695          | 1,5695        |
| C(7)-N(13)         | 1,3859     | 1,3771           | 1,3767           | 1,3726              | 1,3712           | 1,3709        | 1,3690            | 1,3688            | 1,3685                 | 1,3683          | 1,3681        |
| C(1)-N(13)         | 1,4051     | 1,4081           | 1,4082           | 1,4098              | 1,4104           | 1,4105        | 1,4113            | 1,4114            | 1,4116                 | 1,4116          | 1,4117        |
| C(7)-O(14)         | 1,2057     | 1,2101           | 1,2103           | 1,2127              | 1,2135           | 1,2136        | 1,2147            | 1,2149            | 1,2150                 | 1,2151          | 1,2152        |
| C(8)-O(15)         | 1,2043     | 1,2073           | 1,2074           | 1,2089              | 1,2095           | 1,2096        | 1,2104            | 1,2105            | 1,2106                 | 1,2107          | 1,2108        |
| N(13)-C(16)        | 1,4507     | 1,4530           | 1,4531           | 1,4539              | 1,4542           | 1,4543        | 1,4548            | 1,4548            | 1,4549                 | 1,4549          | 1,4550        |
| C(3)-H(9)          | 1,0840     | 1,0838           | 1,0834           | 1,0838              | 1,0837           | 1,0837        | 1,0837            | 1,0837            | 1,0837                 | 1,0837          | 1,0837        |
| C(4)-H(10)         | 1,0830     | 1,0829           | 1,0829           | 1,0828              | 1,0828           | 1,0828        | 1,0828            | 1,0828            | 1,0828                 | 1,8080          | 1,0828        |
| C(5)-H(11)         | 1,0844     | 1,0842           | 1,0842           | 1,0841              | 1,0841           | 1,0840        | 1,0840            | 1,0840            | 1,0840                 | 1,0840          | 1,0840        |
| C(6)-H(12)         | 1,0828     | 1,0825           | 1,0825           | 1,0823              | 1,0822           | 1,0822        | 1,0822            | 1,0822            | 1,0822                 | 1,0821          | 1,0821        |
| C(16)-H(17)        | 1,0937     | 1,0928           | 1,0928           | 1,0925              | 1,0923           | 1,0923        | 1,0921            | 1,0921            | 1,0921                 | 1,0921          | 1,0920        |
| C(16)-H(18)        | 1,0937     | 1,0928           | 1,0928           | 1,9250              | 1,0923           | 1,0923        | 1,0921            | 1,0921            | 1,0921                 | 1,0921          | 1,0920        |
| C(16)-H(19)        | 1,0892     | 1,0886           | 1,0886           | 1,0883              | 1,0882           | 1,0882        | 1,0881            | 1,0881            | 1,0881                 | 1,0881          | 1,0881        |
|                    |            |                  |                  |                     |                  |               | -                 |                   |                        |                 |               |

EK 3. 1-Metilisatin molekülünün farklı çözücüler içinde hesaplanan bağ uzunluklarının  $(A^0)$  karşılaştırılması

| Açılar           | Gaz<br>ɛ=l | Benzen<br>ɛ=2,27 | Toluen<br>ɛ=2,37 | Kloroform<br>ɛ=4,71 | Anilin<br>ɛ=6,89 | THF<br>=7,42 | Aseton<br>e=20,49 | Etanol<br>e=24,85 | Asetonitril<br>ɛ=35,69 | DMSO<br>E=46,83 | Su<br>78,36 |
|------------------|------------|------------------|------------------|---------------------|------------------|--------------|-------------------|-------------------|------------------------|-----------------|-------------|
| C(1)-C(2)-C(3)   | 121,310    | 121,365          | 121,367          | 121,390             | 121,403          | 121,404      | 121,410           | 121,410           | 121,411                | 121,411         | 121,412     |
| C(2)-C(3)-C(4)   | 118,593    | 118,536          | 118,534          | 118,500             | 118,493          | 118,492      | 118,478           | 118,477           | 118,475                | 118,474         | 118,473     |
| C(3)-C(4)-C(5)   | 120,379    | 120,379          | 120,379          | 120,382             | 120,382          | 120,382      | 120,384           | 120,384           | 120,384                | 120,385         | 120,385     |
| C(4)-C(5)-C(6)   | 120,274    | 120,311          | 120,313          | 120,344             | 120,347          | 120,348      | 120,363           | 120,364           | 120,366                | 120,368         | 120,369     |
| C(5)-C(6)-C(1)   | 120,158    | 120,161          | 120,160          | 120,137             | 120,146          | 120,144      | 120,133           | 120,132           | 120,130                | 120,129         | 120,127     |
| C(5)-C(6)-F(12)  | 120,511    | 120,365          | 120,360          | 120,290             | 120,278          | 120,275      | 120,251           | 120,249           | 120,245                | 120,243         | 120,241     |
| C(1)-C(6)-F(12)  | 119,331    | 119,474          | 119,480          | 119,574             | 119,577          | 119,581      | 119,616           | 119,620           | 119,625                | 119,628         | 119,632     |
| C(6)-C(1)-N(13)  | 129,156    | 129,213          | 129,215          | 129,235             | 129,240          | 129,241      | 129,248           | 129,248           | 129,249                | 129,250         | 129,250     |
| C(1)-N(13)-C(7)  | 111,554    | 111,444          | 111,439          | 111,391             | 111,362          | 111,359      | 111,333           | 111,331           | 111,327                | 111,325         | 111,322     |
| N(13)-C(7)-C(8)  | 104,871    | 105,093          | 105,102          | 105,209             | 105,247          | 105,252      | 105,296           | 105,301           | 105,307                | 105,311         | 105,315     |
| C(7)-C(8)-C(2)   | 104,992    | 105,042          | 105,044          | 105,072             | 105,081          | 105,083      | 105,101           | 105,103           | 105,106                | 105,107         | 105,109     |
| C(8)-C(2)-C(1)   | 107,026    | 106,882          | 106,877          | 106,811             | 106,780          | 106,777      | 106,749           | 106,747           | 106,743                | 106,741         | 106,738     |
| C(2)-C(8)-O(15)  | 130,568    | 130,915          | 130,929          | 131,093             | 131,169          | 131,179      | 131,265           | 131,274           | 131,286                | 131,294         | 131,303     |
| C(7)-C(8)-O(15)  | 124,440    | 124,044          | 124,027          | 123,835             | 123,750          | 123,738      | 123,634           | 123,623           | 123,608                | 123,599         | 123,588     |
| N(13)-C(7)-(014) | 127,359    | 127,754          | 127,771          | 127,960             | 128,028          | 128,039      | 128,135           | 128,145           | 128,159                | 128,167         | 128,177     |
| C(8)-C(7)-O(14)  | 127,770    | 127,152          | 127,127          | 126,831             | 126,726          | 126,709      | 126,569           | 126,554           | 126,533                | 126,522         | 126,507     |
| C(2)-C(3)-H(9)   | 119,977    | 120,176          | 120,184          | 120,289             | 120,313          | 120,318      | 120,362           | 120,367           | 120,373                | 120,377         | 120,381     |
| C(6)-C(5)-H(11)  | 118,583    | 118,657          | 118,659          | 118,663             | 118,679          | 118,680      | 118,690           | 118,691           | 118,692                | 118,693         | 118,694     |
| C(5)-C(4)-H(10)  | 119,277    | 119,272          | 119,272          | 119,278             | 119,268          | 119,268      | 119,265           | 119,264           | 119,264                | 119,263         | 119,263     |
| C(4)-C(5)-H(11)  | 121,143    | 121,032          | 121,028          | 120,994             | 120,975          | 120,972      | 120,948           | 120,945           | 120,942                | 120,940         | 120,937     |
| C(4)-C(3)-H(9)   | 121,430    | 121,288          | 121,282          | 121,211             | 121,193          | 121,190      | 121,159           | 121,156           | 121,152                | 121,149         | 121,146     |
| C(3)-C(4)-H(10)  | 120,344    | 120,349          | 120,349          | 120,339             | 120,350          | 120,350      | 120,352           | 120,352           | 120,352                | 120,352         | 120,352     |
| C(1)-N(13)-H(16) | 124,809    | 124,736          | 124,732          | 124,696             | 124,692          | 124,688      | 124,661           | 124,658           | 124,654                | 124,652         | 124,649     |
| C(7)-N(13)-H(16) | 123,637    | 123,821          | 123,829          | 123,913             | 123,947          | 123,953      | 124,006           | 124,011           | 124,019                | 124,023         | 124,029     |

EK 4. 7-Fluoroisatin molekülünün farklı çözücüler içinde hesaplanan bağ açılarının (derece) karşılaştırılması

| Bağ         | Gaz     | Benzen  | Toluen  | Kloroform | Anilin  | THF     | Aseton   | Etanol  | Asetonitril | DMSO               | Su      |
|-------------|---------|---------|---------|-----------|---------|---------|----------|---------|-------------|--------------------|---------|
| Uzunlukları | 1       | ɛ=2,27  | ε=2,37  | ε=4,71    | e=6,89  | ɛ=7,42  | ɛ=20,49  | ɛ=24,85 | e=35,69     | <del>с=46,83</del> | ε=78,36 |
| C1-C2-C3    | 121,008 | 121,007 | 121,007 | 121,005   | 121,002 | 121,001 | 120,995  | 120,994 | 120,993     | 120,993            | 120,992 |
| C8-C2-C1    | 107,596 | 107,415 | 107,409 | 107,332   | 107,305 | 107,301 | 107, 267 | 107,264 | 107,259     | 107,256            | 107,253 |
| C1-N13-C7   | 111,105 | 110,964 | 110,958 | 110,885   | 110,858 | 110,854 | 110,817  | 110,814 | 110,808     | 110,805            | 110,801 |
| C1-N13-C16  | 125,143 | 124,874 | 124,863 | 124,758   | 124,713 | 124,706 | 124,643  | 124,637 | 124,628     | 124,623            | 124,616 |
| C1-C6-H12   | 121,770 | 121,846 | 121,849 | 121,907   | 121,925 | 121,928 | 121,954  | 121,957 | 121,961     | 121,963            | 121,966 |
| C5-C6-C1    | 117,571 | 117,485 | 117,481 | 117,435   | 117,417 | 117,414 | 117,389  | 117,387 | 117,383     | 117,381            | 117,378 |
| C2-C1-C6    | 120,862 | 120,958 | 120,962 | 121,007   | 121,028 | 121,031 | 121,031  | 121,064 | 121,068     | 121,071            | 121,074 |
| C2-C1-N13   | 111,004 | 111,023 | 111,023 | 111,040   | 111,037 | 111,036 | 111,030  | 111,030 | 111,029     | 111,028            | 111,027 |
| C2-C8-015   | 130,790 | 131,121 | 131,135 | 131,314   | 131,373 | 131,383 | 131,464  | 131,472 | 131,485     | 131,491            | 131,500 |
| C7-C8-C2    | 104,710 | 104,795 | 104,799 | 104,835   | 104,853 | 104,856 | 104,882  | 104,885 | 104,889     | 104,891            | 104,894 |
| C2-C3-H9    | 119,882 | 120,097 | 120,106 | 120,202   | 120,237 | 120,243 | 120,290  | 120,294 | 120,301     | 120,305            | 120,301 |
| C2-C3-C4    | 118,658 | 118,577 | 118,573 | 118,533   | 118,519 | 118,517 | 118,498  | 118,496 | 118,493     | 118,491            | 118,485 |
| C8-C2-C3    | 131,397 | 131,577 | 131,585 | 131,663   | 131,693 | 131,698 | 131,738  | 131,742 | 131,748     | 131,751            | 131,756 |
| C3-C4-H10   | 120,231 | 120,204 | 120,203 | 120,193   | 120,190 | 120,190 | 120,186  | 120,186 | 120,186     | 120,185            | 120,185 |
| C3-C4-C5    | 119,922 | 119,949 | 119,950 | 119,965   | 119,970 | 119,970 | 119,978  | 119,978 | 119,979     | 119,980            | 119,981 |
| H9-C3-C4    | 121,460 | 121,326 | 121,321 | 121,264   | 121,244 | 121,240 | 121,213  | 121,210 | 121,206     | 121,204            | 121,201 |
| H10-C4-C5   | 119,848 | 119,848 | 119,847 | 119,843   | 119,841 | 119,840 | 119,836  | 119,836 | 119,835     | 119,835            | 119,834 |
| C4-C5-H11   | 119,289 | 119,276 | 119,276 | 119,270   | 119,267 | 119,267 | 119,264  | 119,263 | 119,263     | 119,262            | 119,262 |
| C4-C5-C6    | 121,979 | 122,025 | 122,037 | 122,055   | 122,065 | 122,066 | 122,080  | 122,081 | 122,084     | 122,085            | 122,086 |

EK 5. 1-Metilisatin molekülünün farklı çözücüler içinde hesaplanan bağ açılarının (derece) karşılaştırılması

| Baň         | Gar     | Ranzan  | Toluon  | Kloroform | Anilin  | T L L   | Acatom  | Frand   | Acatonitri | DMG     | 5       |
|-------------|---------|---------|---------|-----------|---------|---------|---------|---------|------------|---------|---------|
| Uzunlukları | 1       | £=2.27  | e=2.37  | s=4.71    | e=6.89  | s=7.42  | s=20.49 | e=24.85 | s=35.69    | e=46.83 | s=78.36 |
| HII CS CK   | 118 737 | 118,600 | 118 608 | 118 676   | 118 668 | 118 667 | 118 657 | 118 655 | 118 654    | 118 653 | 118 657 |
| 00-00-1111  | 70/011  | 110,077 | 020,011 | 110,070   | 110,000 | 100,011 | 100,011 | 000     | +00,011    | 000,011 | 700,011 |
| C5-C6-H12   | 120,659 | 120,669 | 120,670 | 120,659   | 120,658 | 120,658 | 120,657 | 120,657 | 120,656    | 120,656 | 120,656 |
| C6-C1-N13   | 128,134 | 128,020 | 128,015 | 127,953   | 127,935 | 127,932 | 127,909 | 127,906 | 127,903    | 127,901 | 127,899 |
| N13-C16-H17 | 110,876 | 110,679 | 110,671 | 110,591   | 110,560 | 110,554 | 110,512 | 110,508 | 110,501    | 110,498 | 110,493 |
| N13-C16-H18 | 110,876 | 110,679 | 110,671 | 110,591   | 110,560 | 110,554 | 110,512 | 110,508 | 110,501    | 110,498 | 110,493 |
| N13-C16-H19 | 107,530 | 107,717 | 107,724 | 107,800   | 107,828 | 107,832 | 107,870 | 107,873 | 107,879    | 107,882 | 107,886 |
| C16-N13-C7  | 123,752 | 124,163 | 124,180 | 124,357   | 124,429 | 124,441 | 124,539 | 124,549 | 124,564    | 124,572 | 124,583 |
| N13-C7-014  | 126,867 | 127,327 | 127,346 | 127,583   | 127,660 | 127,673 | 127,779 | 127,790 | 127,806    | 127,815 | 127,826 |
| N13-C7-C8   | 105,585 | 105,804 | 105,813 | 105,909   | 105,946 | 105,952 | 106,003 | 106,009 | 106,063    | 106,021 | 106,026 |
| C8-C7-014   | 127,547 | 126,869 | 126,842 | 126,509   | 126,393 | 126,375 | 126,217 | 126,201 | 126,178    | 126,165 | 126,148 |
| C7-C8-015   | 124,500 | 124,085 | 124,067 | 123,851   | 123,774 | 123,761 | 123,654 | 123,643 | 123,627    | 123,618 | 123,607 |
|             |         |         |         |           |         |         |         |         |            |         |         |

EK 5.'in devamı

| Dihedral Açılar | Gaz        | Benzen | Toluen | Kloroform          | Anilin | THF    | Aseton  | Etanol  | Asetonitril | DMSO    | Su      |
|-----------------|------------|--------|--------|--------------------|--------|--------|---------|---------|-------------|---------|---------|
| I               | <b>1</b> ≣ | ε=2,27 | ε=2,37 | <del>с=4</del> ,71 | e=6,89 | ɛ=7,42 | e=20,49 | ɛ=24,85 | e=35,69     | ɛ=46,83 | ε=78,36 |
| C2-C1-C5-C6     | 0,0        | 0,0    | 0,0    | 0,0                | 0,0    | 0,0    | 0,0     | 0,0     | 0,0         | 0,0     | 0,0     |
| C2-C1-C6-F12    | 180,0      | 180,0  | 180,0  | 180,0              | 180,0  | 180,0  | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| C1-C2-C3-C4     | 0,0        | 0,0    | 0,0    | 0,0                | 0,0    | 0,0    | 0,0     | 0,0     | 0,0         | 0,0     | 0,0     |
| C2-C3-C4-H10    | 180,0      | 180,0  | 180,0  | 180,0              | 180,0  | 180,0  | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| C2-C8-C7-N13    | 0,0        | 0,0    | 0,0    | 0,0                | 0,0    | 0,0    | 0,0     | 0,0     | 0,0         | 0,0     | 0,0     |
| C2-C8-C7-014    | 180,0      | 180,0  | 180,0  | 180,0              | 180,0  | 180,0  | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| C2-C1-N13-C7    | 0,0        | 0,0    | 0,0    | 0,0                | 0,0    | 0,0    | 0,0     | 0,0     | 0,0         | 0,0     | 0,0     |
| C2-C1-N13-H16   | 180,0      | 180,0  | 180,0  | 180,0              | 180,0  | 180,0  | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| C1-C6-C5-C4     | 0,0        | 0,0    | 0,0    | 0,0                | 0,0    | 0,0    | 0,0     | 0,0     | 0,0         | 0,0     | 0,0     |
| C1-C6-C5-H11    | 180,0      | 180,0  | 180,0  | 180,0              | 180,0  | 180,0  | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| C1-C2-C3-C4     | 0,0        | 0,0    | 0,0    | 0,0                | 0,0    | 0,0    | 0,0     | 0,0     | 0,0         | 0,0     | 0,0     |
| C1-C2-C3-H9     | 180,0      | 180,0  | 180,0  | 180,0              | 180,0  | 180,0  | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| C-C2-C8-C7      | 0,0        | 0,0    | 0,0    | 0,0                | 0,0    | 0,0    | 0,0     | 0,0     | 0,0         | 0,0     | 0,0     |
| C1-C2-C8-015    | 180,0      | 180,0  | 180,0  | 180,0              | 180,0  | 180,0  | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| C1-N13-C7-C78   | 0,0        | 0,0    | 0,0    | 0,0                | 0,0    | 0,0    | 0,0     | 0,0     | 0,0         | 0,0     | 0,0     |
| C1-N13-C7-014   | 180,0      | 180,0  | 180,0  | 180,0              | 180,0  | 180,0  | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| C6-C5-C4-C3     | 0,0        | 0,0    | 0,0    | 0,0                | 0,0    | 0,0    | 0,0     | 0,0     | 0,0         | 0,0     | 0,0     |
| C6-C5-C4-H10    | 180,0      | 180,0  | 180,0  | 180,0              | 180,0  | 180,0  | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| C3-C2-C1-C6     | 0,0        | 0,0    | 0,0    | 0,0                | 0,0    | 0,0    | 0,0     | 0,0     | 0,0         | 0,0     | 0,0     |
| C6-C1-C2-C3     | 180,0      | 180,0  | 180,0  | 180,0              | 180,0  | 180,0  | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| C6-C1-N13-H16   | 0,0        | 0,0    | 0,0    | 0,0                | 0,0    | 0,0    | 0,0     | 0,0     | 0,0         | 0,0     | 0,0     |
|                 |            |        |        |                    |        |        |         |         |             |         |         |

EK 6. 7-Fluoroisatin molekülünün farklı çözücüler içinde hesaplanan dihedral açılarının (derece) karşılaştırılması

| Dihedral Açılar | Gaz   | Benzen | Toluen | Kloroform | Anilin | THF    | Aseton  | Etanol  | Asetonitril | DMSO    | Su      |
|-----------------|-------|--------|--------|-----------|--------|--------|---------|---------|-------------|---------|---------|
|                 | [‼    | e=2,27 | ε=2,37 | 8=4,71    | s=6,89 | ɛ=7,42 | e=20,49 | e=24,85 | e=35,69     | e=46,83 | e=78,36 |
| C6-C1-N13-C7    | 180,0 | 180,0  | 180,0  | 180,0     | 180,0  | 180,0  | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| F12-C6-C1-N13   | 0,0   | 0,0    | 0,0    | 0'0       | 0,0    | 0,0    | 0,0     | 0,0     | 0,0         | 0,0     | 0,0     |
| F12-C6-C5-H11   | 0,0   | 0,0    | 0,0    | 0'0       | 0,0    | 0,0    | 0,0     | 0,0     | 0,0         | 0,0     | 0,0     |
| H9-C3-C4-H10    | 0,0   | 0,0    | 0,0    | 0'0       | 0,0    | 0,0    | 0,0     | 0,0     | 0,0         | 0,0     | 0,0     |
| H10-C4-C5-H11   | 0,0   | 0,0    | 0,0    | 0'0       | 0,0    | 0,0    | 0,0     | 0,0     | 0,0         | 0,0     | 0,0     |
| C3-C2-C8-C7     | 180,0 | 180,0  | 180,0  | 180,0     | 180,0  | 180,0  | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| C3-C2-C8-015    | 0,0   | 0,0    | 0,0    | 0'0       | 0,0    | 0,0    | 0,0     | 0,0     | 0,0         | 0,0     | 0,0     |
| C8-C7-N13-H16   | 180,0 | 180,0  | 180,0  | 180,0     | 180,0  | 180,0  | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| C8-C2-C3-H9     | 0,0   | 0,0    | 0,0    | 0'0       | 0,0    | 0,0    | 0,0     | 0,0     | 0,0         | 0,0     | 0,0     |
| 015-C8-C7-N13   | 180,0 | 180,0  | 180,0  | 180,0     | 180,0  | 180,0  | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| 015-C8-C7-014   | 0,0   | 0'0    | 0,0    | 0'0       | 0,0    | 0,0    | 0,0     | 0,0     | 0,0         | 0,0     | 0,0     |
| 014-C7-N13-H16  | 0,0   | 0,0    | 0,0    | 0,0       | 0,0    | 0,0    | 0,0     | 0,0     | 0,0         | 0,0     | 0,0     |
|                 | •     |        | •      | -         | -      | •      | -       | -       |             | -       |         |

EK 6.'nın devamı

| Dihedral Açılar | Gaz   | Benzen | Toluen | Kloroform | Anilin | THF    | Aseton  | Etanol  | Asetonitril | DMSO    | Su      |
|-----------------|-------|--------|--------|-----------|--------|--------|---------|---------|-------------|---------|---------|
|                 | [=3   | ε=2,27 | ε=2,37 | ε=4,71    | £=6,89 | s=7,42 | e=20,49 | e=24,85 | ε=35,69     | e=46,83 | c=78,36 |
| C1-C2-C3-H9     | 180,0 | 180,0  | 180,0  | 180,0     | 180,0  | 180,0  | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| C1-C2-C3-C4     | 0,0   | 0,0    | 0'0    | 0,0       | 0'0    | 0,0    | 0,0     | 0,0     | 0,0         | 0,0     | 0'0     |
| C1-C2-C8-019    | 180,0 | 180,0  | 180,0  | 180,0     | 180,0  | 180,0  | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| C1-C2-C8-C7     | 0'0   | 0,0    | 0'0    | 0,0       | 0'0    | 0,0    | 0'0     | 0,0     | 0,0         | 0,0     | 0'0     |
| C1-N13-C7-C8    | 0'0   | 0,0    | 0'0    | 0,0       | 0'0    | 0,0    | 0,0     | 0,0     | 0,0         | 0,0     | 0'0     |
| CI-NI3-C7-018   | 180,0 | 180,0  | 180,0  | 180,0     | 180,0  | 180,0  | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| C1-N13-C14-H15  | -60,7 | -60,7  | -60,7  | -60,6     | -60,6  | -60,6  | -60,6   | -60,6   | -60,6       | -60,6   | -60,7   |
| C1-N13-C14-H16  | 60,7  | 60,7   | 60,7   | 9'09      | 9'09   | 60,6   | 60,6    | 9'09    | 9'09        | 60,6    | 60,7    |
| CI-NI3-CI4-HI7  | 180,0 | 180,0  | 180,0  | 180,0     | 180,0  | 180,0  | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| C2-C8-C7-N13    | 0,0   | 0,0    | 0'0    | 0,0       | 0'0    | 0,0    | 0,0     | 0,0     | 0,0         | 0,0     | 0'0     |
| C2-C8-C7-018    | 180,0 | 180,0  | 180,0  | 180,0     | 180,0  | 180,0  | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| C2-C3-C4-C5     | 0,0   | 0,0    | 0'0    | 0,0       | 0'0    | 0,0    | 0,0     | 0,0     | 0,0         | 0'0     | 0'0     |
| C2-C3-C4-H10    | 180,0 | 180,0  | 180,0  | 180,0     | 180,0  | 180,0  | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| C3-C2-C8-019    | 0'0   | 0,0    | 0'0    | 0,0       | 0'0    | 0,0    | 0,0     | 0,0     | 0,0         | 0,0     | 0'0     |
| C3-C2-C8-C7     | 180,0 | 180,0  | 180,0  | 180,0     | 180,0  | 180,0  | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| C3-C4-C5-C6     | 0,0   | 0,0    | 0'0    | 0,0       | 0'0    | 0,0    | 0,0     | 0,0     | 0,0         | 0'0     | 0'0     |
| C3-C4-C5-H11    | 180,0 | 180,0  | 180,0  | 180,0     | 180,0  | 180,0  | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| H9-C3-C2-C8     | 0,0   | 0,0    | 0'0    | 0,0       | 0'0    | 0,0    | 0,0     | 0,0     | 0,0         | 0,0     | 0'0     |
| H9-C3-C4-H10    | 0'0   | 0,0    | 0'0    | 0'0       | 0'0    | 0,0    | 0'0     | 0,0     | 0,0         | 0,0     | 0'0     |
| H9-C3-C4-C5     | 180,0 | 180,0  | 180,0  | 180,0     | 180,0  | 180,0  | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| C4-C3-C2-C8     | 180,0 | 180,0  | 180,0  | 180,0     | 180,0  | 180,0  | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| C4-C5-C6-C1     | 0'0   | 0,0    | 0'0    | 0,0       | 0'0    | 0'0    | 0'0     | 0,0     | 0,0         | 0'0     | 0'0     |
| C4-C5-C6-H12    | 180,0 | 180,0  | 180,0  | 180,0     | 180,0  | 180,0  | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |

EK 7. 1-Metilisatin molekülünün farklı çözücüler içinde hesaplanan dihedral açılarının (derece) karşılaştırılması

| Dihedral Acılar | Gaz    | Benzen | Toluen | Kloroform | Anilin | THF             | Aseton  | Etanol  | Asetonitril | DMSO    | Su      |
|-----------------|--------|--------|--------|-----------|--------|-----------------|---------|---------|-------------|---------|---------|
|                 | 11     | ε=2,27 | ε=2,37 | ε=4,71    | e=6,89 | ε=7, <b>4</b> 2 | e=20,49 | e=24,85 | e=35,69     | ɛ=46,83 | ε=78,36 |
| H10-C4-C5-H11   | 0,0    | 0,0    | 0,0    | 0,0       | 0,0    | 0,0             | 0,0     | 0,0     | 0,0         | 0,0     | 0,0     |
| H10-C4-C5-C6    | 180,0  | 180,0  | 180,0  | 180,0     | 180,0  | 180,0           | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| C5-C6-C1-C2     | 0,0    | 0,0    | 0,0    | 0,0       | 0,0    | 0,0             | 0,0     | 0,0     | 0,0         | 0,0     | 0,0     |
| C5-C6-C1-N13    | 180,0  | 180,0  | 180,0  | 180,0     | 180,0  | 180,0           | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| H11-C5-C6-H12   | 0,0    | 0,0    | 0,0    | 0,0       | 0,0    | 0,0             | 0,0     | 0,0     | 0,0         | 0,0     | 0,0     |
| H11-C5-C6-C1    | 180,0  | 180,0  | 180,0  | 180,0     | 180,0  | 180,0           | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| H12-C6-C1-N13   | 0,0    | 0,0    | 0,0    | 0,0       | 0,0    | 0,0             | 0,0     | 0,0     | 0,0         | 0,0     | 0,0     |
| H12-C6-C1-C2    | 180,0  | 180,0  | 180,0  | 180,0     | 180,0  | 180,0           | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| C6-C1-N13-C14   | 0,0    | 0,0    | 0,0    | 0,0       | 0,0    | 0,0             | 0,0     | 0,0     | 0,0         | 0,0     | 0,0     |
| C6-C1-N13-C7    | 180,0  | 180,0  | 180,0  | 180,0     | 180,0  | 180,0           | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| C6-C1-C2-C3     | 0,0    | 0,0    | 0,0    | 0,0       | 0,0    | 0,0             | 0,0     | 0,0     | 0,0         | 0,0     | 0,0     |
| C6-C1-C2-C8     | 180,0  | 180,0  | 180,0  | 180,0     | 180,0  | 180,0           | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| C7-N13-C14-H15  | 119,3  | 119,3  | 119,3  | 119,4     | 119,4  | 119,4           | 119,4   | 119,4   | 119,4       | 119,4   | 119,3   |
| C7-N13-C14-H16  | -119,3 | -119,3 | -119,3 | -119,4    | -119,4 | -119,4          | -119,4  | -119,4  | -119,4      | -119,4  | -119,3  |
| C7-N13-C14-H17  | 0,0    | 0,0    | 0,0    | 0,0       | 0,0    | 0,0             | 0,0     | 0,0     | 0,0         | 0,0     | 0,0     |
| C14-N13-C7-018  | 0,0    | 0,0    | 0,0    | 0,0       | 0,0    | 0,0             | 0,0     | 0,0     | 0,0         | 0,0     | 0,0     |
| C14-N13-C7-C8   | 180,0  | 180,0  | 180,0  | 180,0     | 180,0  | 180,0           | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| N13-C1-C2-C3    | 180,0  | 180,0  | 180,0  | 180,0     | 180,0  | 180,0           | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| 018-C7-C8-019   | 0,0    | 0,0    | 0,0    | 0,0       | 0,0    | 0,0             | 0,0     | 0,0     | 0,0         | 0,0     | 0,0     |
| N13-C7-C8-019   | 180,0  | 180,0  | 180,0  | 180,0     | 180,0  | 180,0           | 180,0   | 180,0   | 180,0       | 180,0   | 180,0   |
| N13-C1-C2-C8    | 0'0    | 0,0    | 0,0    | 0,0       | 0,0    | 0,0             | 0,0     | 0,0     | 0,0         | 0,0     | 0,0     |

EK 7.'nin devamı

| Mod             | B          | enzen (a        | =2,27)          |         | J          | <b>Foluen</b> ( | ε=2,37)         |         | Kl         | oroform         | ( <b>ε=4,71</b> ) | )       |
|-----------------|------------|-----------------|-----------------|---------|------------|-----------------|-----------------|---------|------------|-----------------|-------------------|---------|
|                 | Freq.      | I <sub>IR</sub> | I <sub>RA</sub> | Δυ      | Freq.      | I <sub>IR</sub> | I <sub>RA</sub> | Δυ      | Freq.      | I <sub>IR</sub> | I <sub>RA</sub>   | Δυ      |
| $v_1$           | 3470       | 106,6           | 4,4             | 8       | 3470       | 108,0           | 4,4             | 8       | 3465       | 124,7           | 4,3               | 13      |
| $v_2$           | 3074       | 3,6             | 12,2            | -3      | 3074       | 3,6             | 12,1            | -3      | 3075       | 4,0             | 11,8              | -4      |
| v3              | 3065       | 2,0             | 4,0             | -2      | 3065       | 2,0             | 4,0             | -2      | 3066       | 2,5             | 3,9               | -3      |
| $v_4$           | 3056       | 0,7             | 2,9             | -3      | 3056       | 0,8             | 2,9             | -4      | 3058       | 0,6             | 2,9               | -5      |
| $v_5$           | 1737       | 357,1           | 13,3            | 22      | 1736       | 356,7           | 13,2            | 23      | 1726       | 355,9           | 12,7              | 33      |
| $v_6$           | 1725       | 688,9           | 74,7            | 14      | 1725       | 704,2           | 75,9            | 15      | 1716       | 887,1           | 90,6              | 23      |
| $\upsilon_7$    | 1643       | 398,7           | 43,8            | 3       | 1643       | 406,0           | 44,5            | 3       | 1641       | 502,8           | 53,8              | 4       |
| $\upsilon_8$    | 1604       | 60,5            | 3,2             | 2       | 1604       | 61,9            | 3,2             | 2       | 1603       | 83,7            | 3,9               | 3       |
| V9              | 1497       | 135,9           | 10,4            | 2       | 1497       | 137,2           | 10,6            | 2       | 1496       | 150,5           | 12,2              | 3       |
| $\upsilon_{10}$ | 1450       | 71,2            | 3,4             | 2       | 1450       | 72,3            | 3,5             | 2       | 1449       | 84,7            | 3,9               | 3       |
| $v_{11}$        | 1381       | 47,0            | 14,4            | -2      | 1381       | 47,5            | 14,5            | -2      | 1383       | 53,9            | 16,6              | -4      |
| $\upsilon_{12}$ | 1314       | 158,3           | 4,1             | -2      | 1314       | 160,5           | 4,1             | -2      | 1315       | 189,9           | 4,3               | -4      |
| $\upsilon_{13}$ | 1278       | 63,0            | 46,3            | -0      | 1279       | 64,1            | 46,2            | 0       | 1279       | 79,3            | 43,8              | -1      |
| $\upsilon_{14}$ | 1245       | 106,9           | 45,5            | 3       | 1244       | 108,2           | 46,6            | 4       | 1243       | 124,3           | 61,1              | 5       |
| $\upsilon_{15}$ | 1213       | 90,3            | 15,8            | -2      | 1213       | 91,4            | 16,1            | -2      | 1213       | 101,8           | 21,0              | -2      |
| $\upsilon_{16}$ | 1161       | 108,5           | 28,7            | -1      | 1161       | 116,2           | 30,8            | -1      | 1165       | 192,4           | 54,2              | -6      |
| $\upsilon_{17}$ | 1152       | 80,2            | 30,2            | -       | 1153       | 74,9            | 28,9            | -13     | 1155       | 29,6            | 14,8              | -       |
|                 |            |                 |                 | 12      |            |                 |                 |         |            |                 |                   | 15      |
| $v_{18}$        | 1057       | 18,9            | 36,7            | -1      | 1057       | 19,1            | 36,8            | -1      | 1057       | 21,7            | 37,7              | -1      |
| $v_{19}$        | 985        | 52,6            | 1,7             | -2      | 985        | 53,4            | 1,3             | -2      | 987        | 63,2            | 1,8               | -4      |
| $\upsilon_{20}$ | 970        | 0,5             | 0,2             | -5      | 970        | 0,5             | 0,2             | -5      | 972        | 0,5             | 0,2               | -7      |
| $v_{21}$        | 921        | 0,4             | 0,0             | -4      | 922        | 0,4             | 0,0             | -4      | 923        | 0,4             | 0,1               | -5      |
| $v_{22}$        | 898        | 10,6            | 11,0            | -3      | 898        | 10,9            | 11,0            | -3      | 899        | 15,0            | 11,8              | -4      |
| $v_{23}$        | 859        | 39,7            | 10,5            | 1       | 859        | 40,2            | 10,6            | 1       | 859        | 46,9            | 11,3              | 1       |
| $v_{24}$        | 818        | 9,0             | 0,5             | -1      | 818        | 9,1             | 0,5             | -1      | 818        | 10,0            | 0,6               | -1      |
| $v_{25}$        | 769        | 47,2            | 2,5             | -1      | 769        | 47,5            | 2,6             | -1      | 769        | 51,2            | 3,4               | -1      |
| $v_{26}$        | /21        | 19,3            | 2,8             | 0       | /21        | 19,5            | 2,8             | 0       | /21        | 22,2            | 3,6               | 0       |
| $v_{27}$        | 680        | 5,0             | 58,6            | -3      | 680        | 5,2             | 58,5            | -3      | 682        | 6,/             | 57,8              | -4      |
| $v_{28}$        | 652        | 8,5             | 42,9            | -1      | 652        | 8,/             | 43,2            | -1      | 653        | 9,9             | 46,0              | -2      |
| $v_{29}$        | 5/6        | 13,6            | 14,6            | -0      | 5/6        | 13,8            | 14,5            | 0       | 5/6        | 15,7            | 14,0              | 0       |
| U <sub>30</sub> | 560        | 11,8            | 56,4<br>2.4     | 1       | 560        | 12,0            | 50,1<br>2.5     | 1       | 560        | 14,3            | 52,0              | 0       |
| $v_{31}$        | 549        | 19,4            | 3,4             | 1       | 548        | 19,7            | 3,3<br>1.9      | 1       | 548        | 24,5            | 3,9               | 2       |
| $v_{32}$        | 534<br>494 | 12,2            | 1,8             | -1<br>1 | 534<br>495 | 12,3            | 1,8             | -1<br>1 | 333        | 13,8            | 1,5               | -1      |
| V <sub>33</sub> | 484        | 129,6           | 0,1             | -1      | 485        | 130,7           | 0,1             | -1      | 486        | 143,8           | 0,0               | -3      |
| U <sub>34</sub> | 401        | 2,3             | 47,7            | -0      | 401        | 2,3             | 47,0            | 1       | 401        | 2,5             | 47,5              | 0       |
| U <sub>35</sub> | 393        | 12,5            | 1,5             | -1<br>1 | 393        | 12,4            | 1,5             | -1<br>1 | 393        | 12,5            | 0,9<br>72 5       | -5      |
| U <sub>36</sub> | 308<br>202 | 4,9             | /0,5            | -1      | 202        | 5,0             | /0,3            | -1      | 309<br>204 | 5,9<br>5 7      | /3,5              | -1<br>2 |
| U <sub>37</sub> | 303<br>296 | 4,5             | 93,4<br>25.2    | -2      | 303        | 4,5             | 95,0<br>25 1    | -2      | 304<br>297 | 5,7             | 95,8<br>24 1      | -5      |
| U <sub>38</sub> | 280<br>215 | 0,4             | 55,2<br>100.0   | -1<br>1 | 280<br>215 | 0,4             | 55,1<br>100 0   | -1<br>1 | 287<br>216 | 0,3             | 34,1<br>100.0     | -Z<br>1 |
| U39             | 213        | 0,1             | 20.1            | -1<br>2 | 213        | 0,1             | 20.1            | -1<br>2 | 210<br>210 | 0,2<br>7 7      | 21.0              | -1<br>2 |
| U <sub>40</sub> | 209<br>110 | 0,1             | 20,1<br>19 5    | -∠<br>2 | 209<br>110 | 0,0             | 20,1<br>195     | -∠<br>2 | 210<br>120 | /,/<br>2.4      | 21,0<br>19.6      | -3<br>2 |
| U <sub>41</sub> | 02         | 2,0<br>2.0      | 10,J<br>65 7    | -∠<br>1 | 02         | 2,0<br>2.0      | 10,J<br>65.0    | -∠<br>1 | 120        | 5,4<br>2 2      | 10,0<br>67.0      | -5<br>2 |
| $v_{42}$        | 92         | 2,0             | 03,7            | -1      | 92         | ∠,0             | 03,9            | -1      | 93         | 2,3             | 07,9              | -2      |

EK 8. 7-Fluoroisatin molekülünün farklı ortamlarda frekans,  $I_{IR}$ ,  $I_{RA}$  değerleri

EK 8.'in devamı

| Mod             |       | Anilin (ε       | :=6,89)         |     |            | THF (ε=         | =7,42)          |     | 4     | Aseton (E       | =20,49)         |     |
|-----------------|-------|-----------------|-----------------|-----|------------|-----------------|-----------------|-----|-------|-----------------|-----------------|-----|
|                 | Freq. | I <sub>IR</sub> | I <sub>RA</sub> | Δυ  | Freq.      | I <sub>IR</sub> | I <sub>RA</sub> | Δυ  | Freq. | I <sub>IR</sub> | I <sub>RA</sub> | Δυ  |
| $v_1$           | 3465  | 131,1           | 4,2             | 14  | 3464       | 132,1           | 4,2             | 14  | 3463  | 140,9           | 4,1             | 16  |
| $v_2$           | 3075  | 4,1             | 11,7            | -4  | 3075       | 4,2             | 11,6            | -4  | 3076  | 4,3             | 11,1            | -5  |
| $v_3$           | 3066  | 2,7             | 3,9             | -3  | 3066       | 2,7             | 3,9             | -3  | 3066  | 3,0             | 3,8             | -4  |
| $v_4$           | 3058  | 0,6             | 2,9             | -6  | 3058       | 0,6             | 2,9             | -6  | 3059  | 0,5             | 2,9             | -6  |
| $v_5$           | 1722  | 364,5           | 12,8            | 37  | 1721       | 356,8           | 12,8            | 37  | 1716  | 293,9           | 14,6            | 43  |
| $v_6$           | 1713  | 945,0           | 96,0            | 26  | 1713       | 963,4           | 97,0            | 26  | 1709  | 1119,8          | 100,0           | 30  |
| $v_7$           | 1640  | 542,1           | 58,0            | 5   | 1640       | 548,7           | 58,6            | 6   | 1639  | 607,7           | 62,6            | 6   |
| $\upsilon_8$    | 1603  | 91,8            | 4,2             | 4   | 1603       | 93,5            | 4,3             | 4   | 1602  | 110,3           | 4,9             | 4   |
| V9              | 1496  | 156,8           | 12,7            | 4   | 1496       | 157,6           | 12,8            | 4   | 1495  | 164,6           | 13,4            | 4   |
| $\upsilon_{10}$ | 1448  | 89,5            | 4,0             | 3   | 1448       | 90,2            | 4,0             | 3   | 1448  | 96,9            | 4,0             | 4   |
| $v_{11}$        | 1383  | 55,9            | 17,1            | -4  | 1383       | 56,3            | 17,2            | -4  | 1384  | 59,0            | 17,6            | -5  |
| $\upsilon_{12}$ | 1316  | 199,1           | 4,5             | -4  | 1316       | 200,9           | 4,6             | -4  | 1316  | 216,5           | 4,6             | -4  |
| $\upsilon_{13}$ | 1279  | 86,5            | 43,9            | -1  | 1279       | 87,6            | 43,8            | -1  | 1280  | 97,6            | 41,3            | -2  |
| $\upsilon_{14}$ | 1243  | 129,9           | 65,5            | 5   | 1243       | 130,9           | 66,4            | 5   | 1242  | 139,6           | 72,3            | 6   |
| $\upsilon_{15}$ | 1213  | 107,3           | 23,7            | -2  | 1214       | 107,7           | 24,1            | -2  | 1214  | 111,1           | 27,3            | -3  |
| $\upsilon_{16}$ | 1167  | 208,2           | 58,9            | -8  | 1167       | 210,7           | 59,7            | -8  | 1170  | 230,6           | 63,5            | -10 |
| $\upsilon_{17}$ | 1155  | 26,2            | 13,2            | -15 | 1155       | 25,7            | 13,0            | -15 | 1155  | 24,0            | 11,2            | -15 |
| $\upsilon_{18}$ | 1058  | 22,9            | 38,0            | -1  | 1058       | 23,1            | 38,1            | -1  | 1058  | 24,6            | 37,3            | -1  |
| $\upsilon_{19}$ | 987   | 66,9            | 2,0             | -4  | 987        | 67,5            | 2,0             | -4  | 987   | 72,8            | 2,3             | -5  |
| $\upsilon_{20}$ | 973   | 0,5             | 0,2             | -8  | 973        | 0,5             | 0,2             | -8  | 974   | 0,5             | 0,2             | -9  |
| $\upsilon_{21}$ | 923   | 0,5             | 0,1             | -6  | 923        | 0,5             | 0,1             | -6  | 924   | 0,5             | 0,2             | -6  |
| $v_{22}$        | 900   | 16,6            | 12,0            | -5  | 900        | 16,8            | 12,0            | -5  | 900   | 19,2            | 12,0            | -5  |
| $v_{23}$        | 858   | 49,4            | 11,6            | 1   | 858        | 49,8            | 11,6            | 1   | 858   | 53,4            | 11,7            | 1   |
| $v_{24}$        | 818   | 10,4            | 0,6             | -1  | 818        | 10,4            | 0,6             | -1  | 818   | 10,9            | 0,6             | -1  |
| $v_{25}$        | 769   | 52,5            | 3,7             | -1  | 769        | 52,7            | 3,8             | -1  | 769   | 54,3            | 4,1             | -1  |
| $v_{26}$        | 721   | 23,1            | 3,9             | 1   | 721        | 23,3            | 4,0             | 1   | 721   | 24,6            | 4,3             | 1   |
| $v_{27}$        | 682   | 7,2             | 57,6            | -4  | 682        | 7,3             | 57,6            | -5  | 682   | 8,2             | 55,7            | -5  |
| $v_{28}$        | 653   | 10,4            | 47,0            | -2  | 653        | 10,5            | 47,1            | -2  | 653   | 11,1            | 47,2            | -2  |
| $v_{29}$        | 576   | 16,4            | 13,9            | 0   | 576        | 16,5            | 13,9            | 0   | 576   | 17,4            | 13,6            | -1  |
| $v_{30}$        | 560   | 15,2            | 50,5            | 0   | 560        | 15,4            | 50,3            | 0   | 559   | 16,6            | 4/,0            |     |
| $v_{31}$        | 548   | 25,9            | 4,0             | 2   | 548        | 26,2            | 4,0             | 2   | 548   | 29,2            | 4,1             | 2   |
| $v_{32}$        | 535   | 14,1            | 1,5             | -1  | 555<br>497 | 14,2            | 1,5             | -1  | 333   | 14,/            | 1,2             | -1  |
| V <sub>33</sub> | 486   | 148,5           | 0,1             | -5  | 48/        | 149,2           | 0,1             | -5  | 48/   | 155,4           | 0,1             | -4  |
| V <sub>34</sub> | 461   | 2,5             | 4/,4            | 0   | 461        | 2,5             | 4/,4            | 0   | 461   | 2,6             | 46,2            | 0   |
| $v_{35}$        | 395   | 13,0            | 6,8<br>72.5     | -3  | 395        | 13,0            | 6,/<br>72.2     | -5  | 396   | 13,0            | 6,4             | -4  |
| V36             | 369   | 6,3             | 12,5            | -2  | 369        | 6,3             | 12,3            | -2  | 369   | 6,8             | 68,9<br>07 C    | -2  |
| V <sub>37</sub> | 305   | 6,1             | 96,/<br>22.7    | -4  | 305        | 6,2             | 96,9<br>22 7    | -4  | 305   | 6,9             | 95,6<br>22.2    | -5  |
| V <sub>38</sub> | 287   | 0,3             | <i>33,1</i>     | -2  | 287        | 0,3             | <i>33,1</i>     | -2  | 287   | 0,2             | 32,2<br>07.2    | -2  |
| V39             | 210   | 0,5             | 100,0           | -1  | 210        | 0,5             | 100,0           | -1  | 216   | 0,4             | 97,2            | -2  |
| V <sub>40</sub> | 210   | 8,1             | 21,5<br>19.5    | -5  | 210        | 8,1             | 21,4            | -5  | 211   | 8,/             | 21,2            | -4  |
| $v_{41}$        | 121   | 3,6             | 18,5            | -5  | 121        | <i>3</i> ,6     | 18,5            | -5  | 121   | 3,8<br>2,7      | 1/,9            | -4  |
| $v_{42}$        | 93    | 2,4             | 69,0            | -2  | 93         | 2,4             | 69,1            | -2  | 93    | 2,7             | 68,4            | -3  |

EK 8.'in devamı

| Mod             | Etanol (=24,85) |                 |          | Asetonitril (E=35,69) |       |                 |          | DMSO (E=46,83) |       |                 |          |     |
|-----------------|-----------------|-----------------|----------|-----------------------|-------|-----------------|----------|----------------|-------|-----------------|----------|-----|
|                 | Freq.           | I <sub>IR</sub> | $I_{RA}$ | Δυ                    | Freq. | I <sub>IR</sub> | $I_{RA}$ | Δυ             | Freq. | I <sub>IR</sub> | $I_{RA}$ | Δυ  |
| $v_1$           | 3462            | 141,8           | 4,1      | 16                    | 3462  | 143,1           | 4,0      | 16             | 3462  | 143,9           | 4,0      | 16  |
| $v_2$           | 3076            | 4,3             | 11,1     | -5                    | 3076  | 4,4             | 11,0     | -5             | 3076  | 4,4             | 11,0     | -5  |
| $v_3$           | 3066            | 3,0             | 3,8      | -4                    | 3066  | 3,1             | 3,7      | -4             | 3066  | 3,1             | 3,7      | -4  |
| $v_4$           | 3059            | 0,5             | 2,8      | -6                    | 3059  | 0,5             | 2,8      | -6             | 3059  | 0,5             | 2,8      | -7  |
| $v_5$           | 1715            | 288,7           | 15,1     | 43                    | 1715  | 282,1           | 15,9     | 44             | 1714  | 278,9           | 1,6      | 45  |
| $v_6$           | 1709            | 1134,7          | 100,0    | 31                    | 1708  | 1155,3          | 100,0    | 32             | 1708  | 1166,3          | 100,0    | 32  |
| $v_7$           | 1639            | 614,2           | 63,0     | 7                     | 1639  | 623,6           | 63,7     | 7              | 1639  | 628,8           | 64,1     | 7   |
| $v_8$           | 1602            | 112,2           | 5,0      | 4                     | 1602  | 115,1           | 5,2      | 4              | 1602  | 116,7           | 5,2      | 4   |
| V9              | 1495            | 165,3           | 13,4     | 4                     | 1495  | 166,4           | 13,5     | 4              | 1495  | 166,9           | 13,6     | 4   |
| $v_{10}$        | 1448            | 97,6            | 4,0      | 4                     | 1448  | 98,6            | 4,0      | 4              | 1448  | 99,2            | 4,0      | 4   |
| $v_{11}$        | 1384            | 59,3            | 17,6     | -5                    | 1384  | 59,7            | 17,7     | -5             | 1384  | 59,9            | 17,7     | -5  |
| $v_{12}$        | 1316            | 218,2           | 4,6      | -4                    | 1316  | 220,6           | 4,6      | -4             | 1316  | 222,0           | 4,6      | -5  |
| $v_{13}$        | 1280            | 98,7            | 41,0     | -2                    | 1280  | 100,3           | 40,7     | -2             | 1280  | 101,1           | 40,5     | -2  |
| $v_{14}$        | 1242            | 140,5           | 72,9     | 6                     | 1242  | 141,9           | 73,9     | 6              | 1242  | 142,7           | 74,4     | 6   |
| $v_{15}$        | 1214            | 111,3           | 27,6     | -3                    | 1214  | 111,7           | 28,2     | -3             | 1214  | 111,9           | 28,5     | -3  |
| $v_{16}$        | 1170            | 232,6           | 63,8     | -11                   | 1170  | 235,4           | 64,3     | -11            | 1170  | 236,9           | 64,6     | -11 |
| $v_{17}$        | 1155            | 24,0            | 11,0     | -15                   | 1155  | 24,1            | 10,9     | -15            | 1155  | 24,1            | 10,8     | -15 |
| $\upsilon_{18}$ | 1058            | 24,7            | 37,2     | -1                    | 1058  | 25,0            | 37,1     | -1             | 1058  | 25,1            | 37,0     | -1  |
| $v_{19}$        | 988             | 73,3            | 2,3      | -5                    | 988   | 74,1            | 2,3      | -5             | 988   | 74,6            | 2,4      | -5  |
| $\upsilon_{20}$ | 974             | 0,5             | 0,2      | -9                    | 974   | 0,5             | 0,2      | -9             | 974   | 0,4             | 0,2      | -9  |
| $\upsilon_{21}$ | 925             | 0,5             | 0,2      | -7                    | 924   | 0,5             | 0,2      | -6             | 924   | 0,5             | 0,2      | -6  |
| $v_{22}$        | 900             | 19,4            | 12,0     | -5                    | 900   | 19,8            | 12,0     | -5             | 900   | 20,0            | 12,0     | -5  |
| $v_{23}$        | 858             | 53,8            | 11,7     | 1                     | 858   | 54,3            | 11,7     | 1              | 858   | 54,6            | 11,7     | 1   |
| $\upsilon_{24}$ | 818             | 11,0            | 0,6      | -1                    | 818   | 11,0            | 0,6      | -1             | 818   | 11,1            | 0,6      | -1  |
| $v_{25}$        | 769             | 54,5            | 4,1      | -1                    | 769   | 54,7            | 4,1      | -1             | 769   | 54,8            | 4,2      | -1  |
| $v_{26}$        | 721             | 24,8            | 4,3      | 1                     | 721   | 25,0            | 4,4      | 1              | 721   | 25,1            | 4,4      | 1   |
| $v_{27}$        | 683             | 8,3             | 55,4     | -5                    | 683   | 8,4             | 55,2     | -5             | 683   | 8,5             | 55,1     | -5  |
| $\upsilon_{28}$ | 653             | 11,2            | 47,2     | -2                    | 653   | 11,3            | 47,2     | -2             | 653   | 11,3            | 47,3     | -2  |
| $v_{29}$        | 576             | 17,5            | 13,5     | -1                    | 576   | 17,7            | 13,5     | -1             | 576   | 17,7            | 13,5     | -1  |
| $\upsilon_{30}$ | 559             | 16,8            | 46,7     | 1                     | 559   | 17,0            | 46,2     | 1              | 559   | 17,1            | 46,0     | 1   |
| $v_{31}$        | 548             | 29,5            | 4,1      | 2                     | 548   | 30,0            | 4,2      | 2              | 548   | 30,3            | 4,2      | 2   |
| $v_{32}$        | 535             | 14,7            | 1,2      | -1                    | 535   | 14,8            | 1,2      | -1             | 535   | 14,8            | 1,2      | -1  |
| $v_{33}$        | 487             | 156,0           | 0,1      | -4                    | 461   | 156,9           | 0,1      | 23             | 488   | 157,4           | 0,1      | -4  |
| $\upsilon_{34}$ | 461             | 2,6             | 46,1     | 0                     | 461   | 2,6             | 45,9     | -1             | 461   | 2,6             | 45,7     | -1  |
| $v_{35}$        | 396             | 13,0            | 6,4      | -4                    | 396   | 12,9            | 6,3      | -4             | 396   | 12,9            | 6,3      | -4  |
| $v_{36}$        | 369             | 6,9             | 68,5     | -2                    | 369   | 7,0             | 68,1     | -2             | 369   | 7,0             | 67,9     | -2  |
| $\upsilon_{37}$ | 305             | 6,9             | 95,4     | -5                    | 306   | 7,0             | 95,3     | -5             | 306   | 7,1             | 95,3     | -5  |
| $\upsilon_{38}$ | 288             | 0,2             | 32,1     | -2                    | 288   | 0,2             | 31,9     | -2             | 288   | 0,2             | 31,8     | -3  |
| V39             | 216             | 0,4             | 96,9     | -2                    | 216   | 0,4             | 96,5     | -2             | 216   | 0,4             | 96,6     | -2  |
| $\upsilon_{40}$ | 211             | 8,7             | 21,1     | -4                    | 211   | 8,8             | 21,1     | -4             | 211   | 8,8             | 21,1     | -4  |
| $\upsilon_{41}$ | 121             | 3,8             | 17,8     | -4                    | 121   | 3,9             | 17,7     | -4             | 121   | 3,9             | 17,7     | -4  |
| $v_{42}$        | 93              | 2,7             | 68,3     | -3                    | 94    | 2,7             | 69,8     | -3             | 94    | 2,8             | 68,3     | -3  |

EK 8.'in devamı

| Mod             | Su (ε=78,36) |                 |                 |     |  |  |  |  |
|-----------------|--------------|-----------------|-----------------|-----|--|--|--|--|
|                 | Freq.        | I <sub>IR</sub> | I <sub>RA</sub> | Δυ  |  |  |  |  |
| $v_1$           | 3462         | 144,8           | 4,0             | 17  |  |  |  |  |
| $v_2$           | 3076         | 4,4             | 11,0            | -5  |  |  |  |  |
| $v_3$           | 3066         | 3,1             | 3,7             | -4  |  |  |  |  |
| $v_4$           | 3059         | 0,5             | 2,8             | -7  |  |  |  |  |
| $v_5$           | 1714         | 275,4           | 17,1            | 45  |  |  |  |  |
| $v_6$           | 1707         | 1179,8          | 100,0           | 32  |  |  |  |  |
| $v_7$           | 1639         | 635,6           | 64,7            | 6,9 |  |  |  |  |
| $\upsilon_8$    | 1602         | 118,9           | 5,3             | 4,5 |  |  |  |  |
| V9              | 1495         | 167,7           | 13,7            | 4,2 |  |  |  |  |
| $\upsilon_{10}$ | 1448         | 99,9            | 4,0             | 4,1 |  |  |  |  |
| $v_{11}$        | 1384         | 60,2            | 17,8            | -5  |  |  |  |  |
| $v_{12}$        | 1316         | 223,8           | 4,7             | -5  |  |  |  |  |
| $\upsilon_{13}$ | 1280         | 102,3           | 40,3            | -2  |  |  |  |  |
| $\upsilon_{14}$ | 1242         | 143,6           | 75,2            | 6,3 |  |  |  |  |
| $v_{15}$        | 1214         | 112,2           | 28,9            | -3  |  |  |  |  |
| $\upsilon_{16}$ | 1171         | 238,9           | 64,9            | -11 |  |  |  |  |
| $\upsilon_{17}$ | 1155         | 24,2            | 10,7            | -15 |  |  |  |  |
| $\upsilon_{18}$ | 1058         | 25,3            | 37,0            | -1  |  |  |  |  |
| $v_{19}$        | 988          | 75,1            | 2,4             | -5  |  |  |  |  |
| $\upsilon_{20}$ | 974          | 0,4             | 0,2             | -9  |  |  |  |  |
| $\upsilon_{21}$ | 924          | 0,5             | 0,2             | -7  |  |  |  |  |
| $\upsilon_{22}$ | 900          | 20,3            | 12,0            | -5  |  |  |  |  |
| $\upsilon_{23}$ | 858          | 55,0            | 11,7            | 1,5 |  |  |  |  |
| $\upsilon_{24}$ | 818          | 11,1            | 0,6             | -1  |  |  |  |  |
| $v_{25}$        | 769          | 55,0            | 4,2             | -1  |  |  |  |  |
| $\upsilon_{26}$ | 721          | 25,2            | 4,5             | 0,9 |  |  |  |  |
| $\upsilon_{27}$ | 683          | 8,6             | 55,0            | -5  |  |  |  |  |
| $\upsilon_{28}$ | 653          | 11,4            | 47,4            | -2  |  |  |  |  |
| $v_{29}$        | 576          | 17,8            | 13,5            | -1  |  |  |  |  |
| $\upsilon_{30}$ | 559          | 17,2            | 45,7            | 0,6 |  |  |  |  |
| $v_{31}$        | 548          | 30,6            | 4,2             | 2,3 |  |  |  |  |
| $v_{32}$        | 535          | 14,9            | 1,2             | -2  |  |  |  |  |
| $\upsilon_{33}$ | 488          | 158,0           | 0,1             | -4  |  |  |  |  |
| $\upsilon_{34}$ | 461          | 2,6             | 45,8            | -1  |  |  |  |  |
| $v_{35}$        | 396          | 12,9            | 6,3             | -4  |  |  |  |  |
| $v_{36}$        | 370          | 7,0             | 67,6            | -2  |  |  |  |  |
| $\upsilon_{37}$ | 306          | 7,2             | 95,3            | -5  |  |  |  |  |
| $\upsilon_{38}$ | 288          | 0,2             | 31,7            | -3  |  |  |  |  |
| V39             | 216          | 0,4             | 96,2            | -2  |  |  |  |  |
| $\upsilon_{40}$ | 211          | 8,9             | 21,1            | -4  |  |  |  |  |
| $\upsilon_{41}$ | 121          | 3,9             | 17,6            | -4  |  |  |  |  |
| $\upsilon_{42}$ | 94           | 2,8             | 68,3            | -3  |  |  |  |  |

| Mod             | Benzen (ε=2,27) |                 |                 |     | Г     | foluen (&       | =2,37)          |     | Kl    | oroforn         | <b>ι (ε=4,</b> ′ | 71) |
|-----------------|-----------------|-----------------|-----------------|-----|-------|-----------------|-----------------|-----|-------|-----------------|------------------|-----|
|                 | Freq.           | I <sub>IR</sub> | I <sub>RA</sub> | Δυ  | Freq. | I <sub>IR</sub> | I <sub>RA</sub> | Δυ  | Freq. | I <sub>IR</sub> | I <sub>RA</sub>  | Δυ  |
| $\upsilon_1$    | 3069            | 6,3             | 18,0            | -3  | 3069  | 6,3             | 18,0            | -3  | 3071  | 5,6             | 15,4             | -5  |
| $v_2$           | 3064            | 14,2            | 4,9             | -3  | 3064  | 14,4            | 5,1             | -4  | 3065  | 16,7            | 6,3              | -5  |
| $v_3$           | 3053            | 3,4             | 6,2             | -2  | 3053  | 3,5             | 6,3             | -2  | 3054  | 4,5             | 5,9              | -3  |
| $\upsilon_4$    | 3043            | 3,0             | 4,4             | -4  | 3043  | 3,0             | 4,5             | -4  | 3045  | 3,1             | 4,2              | -6  |
| $v_5$           | 3014            | 1,0             | 3,6             | -6  | 3015  | 1,1             | 3,7             | -7  | 3017  | 1,6             | 3,4              | -9  |
| $\upsilon_6$    | 2962            | 23,0            | 6,0             | -11 | 2962  | 23,1            | 6,0             | -12 | 2967  | 23,3            | 5,5              | -17 |
| $\upsilon_7$    | 2906            | 44,1            | 14,8            | -8  | 2907  | 44,2            | 14,9            | -9  | 2910  | 45,6            | 13,7             | -12 |
| $\upsilon_8$    | 1722            | 259,8           | 56,3            | 18  | 1721  | 269,5           | 58,7            | 19  | 1712  | 408,0           | 79,7             | 28  |
| V9              | 1712            | 712,0           | 50,8            | 19  | 1711  | 716,7           | 51,0            | 20  | 1699  | 753,7           | 44,6             | 32  |
| $\upsilon_{10}$ | 1616            | 565,3           | 67,1            | 6   | 1616  | 577,0           | 69,0            | 6   | 1613  | 733,1           | 81,4             | 9   |
| $\upsilon_{11}$ | 1604            | 31,4            | 8,4             | 0   | 1604  | 31,6            | 8,5             | 0   | 1604  | 37,1            | 8,5              | 1   |
| $\upsilon_{12}$ | 1493            | 17,7            | 3,7             | 1   | 1493  | 18,0            | 3,7             | 1   | 1493  | 22,1            | 3,7              | 1   |
| $\upsilon_{13}$ | 1474            | 155,1           | 2,1             | 2   | 1473  | 155,5           | 2,2             | 2   | 1473  | 163,6           | 1,9              | 3   |
| $\upsilon_{14}$ | 1469            | 56,6            | 11,3            | 4   | 1469  | 58,2            | 11,5            | 4   | 1467  | 75,6            | 12,1             | 6   |
| $\upsilon_{15}$ | 1462            | 15,5            | 7,6             | 7   | 1462  | 15,6            | 7,6             | 7   | 1459  | 17,4            | 6,8              | 10  |
| $\upsilon_{16}$ | 1426            | 2,2             | 1,7             | 1   | 1426  | 2,2             | 1,7             | 1   | 1426  | 1,9             | 1,5              | 1   |
| $\upsilon_{17}$ | 1362            | 114,0           | 10,8            | 3   | 1362  | 115,9           | 10,7            | 3   | 1361  | 139,2           | 8,0              | 3   |
| $\upsilon_{18}$ | 1332            | 142,8           | 15,6            | -2  | 1332  | 144,7           | 16,1            | -2  | 1332  | 167,8           | 20,7             | -3  |
| $\upsilon_{19}$ | 1310            | 34,4            | 16,9            | 1   | 1309  | 34,9            | 17,2            | 1   | 1309  | 41,5            | 18,0             | 2   |
| $\upsilon_{20}$ | 1246            | 9,4             | 77,0            | -5  | 1246  | 9,2             | 79,0            | -5  | 1248  | 7,1             | 92,3             | -8  |
| $\upsilon_{21}$ | 1189            | 16,0            | 44,2            | -3  | 1189  | 16,3            | 44,8            | -3  | 1191  | 20,4            | 44,0             | -5  |
| $v_{22}$        | 1162            | 20,2            | 8,0             | 0   | 1162  | 20,4            | 8,1             | 0   | 1162  | 23,4            | 7,5              | 0   |
| $v_{23}$        | 1126            | 0,3             | 1,4             | 1   | 1126  | 0,3             | 1,4             | 1   | 1125  | 0,3             | 1,1              | 1   |
| $\upsilon_{24}$ | 1110            | 17,4            | 72,9            | 1   | 1110  | 17,6            | 74,4            | 1   | 1110  | 19,3            | 80,2             | 1   |
| $v_{25}$        | 1088            | 108,2           | 13,4            | -1  | 1088  | 110,1           | 13,8            | -1  | 1088  | 133,3           | 16,2             | -1  |
| $\upsilon_{26}$ | 1025            | 60,6            | 21,0            | -1  | 1025  | 60,8            | 21,1            | -1  | 1025  | 63,6            | 19,8             | -1  |
| $\upsilon_{27}$ | 1021            | 0,3             | 68,0            | 0   | 1021  | 1038,4          | 69,2            | 0   | 1021  | 0,1             | 72,0             | 0   |
| $\upsilon_{28}$ | 985             | 0,1             | 0,3             | -6  | 985   | 1002,5          | 0,3             | -7  | 988   | 0,2             | 0,2              | -9  |
| $\upsilon_{29}$ | 956             | 2,1             | 0,0             | -4  | 956   | 972,3           | 0,0             | -4  | 958   | 2,2             | 0,0              | -6  |
| $\upsilon_{30}$ | 943             | 16,3            | 15,6            | -3  | 943   | 959,4           | 16,0            | -3  | 944   | 20,1            | 19,2             | -4  |
| $\upsilon_{31}$ | 864             | 1,2             | 1,0             | -2  | 864   | 879,2           | 1,1             | -2  | 866   | 1,7             | 1,8              | -4  |
| $\upsilon_{32}$ | 861             | 24,1            | 1,3             | -1  | 861   | 875,7           | 1,4             | -1  | 860   | 29,0            | 2,4              | 0   |
| $\upsilon_{33}$ | 813             | 5,1             | 2,6             | -1  | 814   | 827,6           | 2,7             | -1  | 814   | 6,3             | 3,1              | -2  |
| $\upsilon_{34}$ | 753             | 87,0            | 7,5             | -0  | 753   | 765,9           | 7,8             | 0   | 753   | 97,6            | 10,3             | 0   |
| $v_{35}$        | 720             | 2,2             | 0,2             | -0  | 720   | 732,7           | 0,2             | -1  | 720   | 1,8             | 0,2              | -1  |

EK 9. 1-Metilisatin molekülünün farklı ortamlarda frekans,  $I_{IR}$ ,  $I_{RA}$  değerleri

EK 9.'un devamı

| Mod             | B     | enzen (         | (ε=2,27)        |    | Т     | Toluen (ε=2,37) |                 |    |       | roforn   | n (ε=4,7        | 1) |
|-----------------|-------|-----------------|-----------------|----|-------|-----------------|-----------------|----|-------|----------|-----------------|----|
|                 | Freq. | I <sub>IR</sub> | I <sub>RA</sub> | Δυ | Freq. | $I_{IR}$        | I <sub>RA</sub> | Δυ | Freq. | $I_{IR}$ | I <sub>RA</sub> | Δυ |
| $\upsilon_{37}$ | 686   | 2,7             | 23,1            | 0  | 686   | 698,0           | 23,6            | 0  | 686   | 3,3      | 25,9            | 0  |
| $\upsilon_{38}$ | 551   | 8,6             | 97,6            | -1 | 551   | 560,6           | 98,9            | -1 | 551   | 9,7      | 100,0           | -1 |
| V39             | 544   | 0,9             | 0,5             | -0 | 544   | 553,0           | 0,5             | 0  | 543   | 1,3      | 0,5             | 0  |
| $\upsilon_{40}$ | 520   | 15,8            | 54,9            | 1  | 520   | 529,2           | 55,2            | 1  | 520   | 18,2     | 49,8            | 2  |
| $\upsilon_{41}$ | 477   | 2,8             | 100,0           | -0 | 477   | 485,2           | 100,0           | 0  | 477   | 3,6      | 85,7            | 0  |
| $v_{42}$        | 474   | 38,5            | 7,3             | -2 | 474   | 482,3           | 7,4             | -2 | 475   | 44,5     | 6,9             | -2 |
| $v_{43}$        | 398   | 1,1             | 5,5             | 0  | 398   | 405,0           | 5,5             | 0  | 398   | 1,1      | 5,0             | 0  |
| $v_{44}$        | 323   | 9,2             | 57,7            | 0  | 323   | 328,2           | 58,6            | 0  | 322   | 11,4     | 60,7            | 1  |
| $v_{45}$        | 292   | 4,4             | 59,5            | -1 | 292   | 296,7           | 60,1            | -1 | 292   | 5,3      | 58,7            | -2 |
| $v_{46}$        | 270   | 0,0             | 35,8            | -4 | 270   | 274,7           | 36,1            | -4 | 272   | 0,0      | 34,3            | -5 |
| $\upsilon_{47}$ | 236   | 1,4             | 39,7            | -1 | 236   | 239,7           | 39,6            | -1 | 236   | 1,5      | 33,1            | -1 |
| $\upsilon_{48}$ | 140   | 0,4             | 0,5             | 2  | 140   | 142,3           | 0,5             | 2  | 140   | 0,3      | 0,4             | 1  |
| V49             | 123   | 0,0             | 0,3             | 9  | 123   | 125,2           | 0,2             | 9  | 123   | 3,5      | 1,7             | 9  |
| $\upsilon_{50}$ | 122   | 3,1             | 2,0             | -2 | 122   | 124,2           | 2,1             | -2 | 118   | 0,1      | 0,6             | 2  |
| $v_{51}$        | 101   | 0,3             | 0,1             | -1 | 101   | 102,3           | 0,1             | -1 | 101   | 0,4      | 0,1             | -2 |

EK 9.'un devamı

| Mod                          | A     | Anilin (e       | =6,89)          |     | THF (ε=7,42) |                 |                 |     | Aseton (ε=20,49) |                 |                 |     |
|------------------------------|-------|-----------------|-----------------|-----|--------------|-----------------|-----------------|-----|------------------|-----------------|-----------------|-----|
|                              | Freq. | I <sub>IR</sub> | I <sub>RA</sub> | Δυ  | Freq.        | I <sub>IR</sub> | I <sub>RA</sub> | Δυ  | Freq.            | I <sub>IR</sub> | I <sub>RA</sub> | Δυ  |
| $\upsilon_1$                 | 3072  | 5,5             | 14,6            | -6  | 3072         | 5,5             | 14,4            | -6  | 3073             | 5,3             | 12,9            | -7  |
| $\upsilon_2$                 | 3066  | 17,4            | 6,6             | -5  | 3066         | 17,6            | 6,6             | -5  | 3067             | 18,6            | 6,7             | -6  |
| $\upsilon_3$                 | 3054  | 4,9             | 5,8             | -4  | 3054         | 5,0             | 5,8             | -4  | 3055             | 5,7             | 5,4             | -4  |
| $\upsilon_4$                 | 3046  | 3,0             | 4,1             | -6  | 3046         | 3,0             | 4,0             | -7  | 3047             | 2,8             | 3,7             | -8  |
| $\upsilon_5$                 | 3018  | 1,8             | 3,3             | -10 | 3018         | 1,9             | 3,3             | -10 | 3019             | 2,2             | 3,1             | -11 |
| $v_6$                        | 2969  | 23,2            | 5,3             | -19 | 2970         | 23,2            | 5,3             | -19 | 2972             | 23,1            | 4,8             | -21 |
| $\upsilon_7$                 | 2911  | 45,9            | 13,2            | -13 | 2912         | 45,9            | 13,1            | -14 | 2913             | 46,3            | 12,0            | -15 |
| $\upsilon_8$                 | 1709  | 450,6           | 85,4            | 31  | 1708         | 457,6           | 86,4            | 32  | 1704             | 519,0           | 91,0            | 36  |
| V9                           | 1695  | 775,5           | 43,7            | 36  | 1695         | 778,9           | 43,6            | 36  | 1690             | 807,0           | 40,8            | 42  |
| $\upsilon_{10}$              | 1612  | 801,8           | 86,7            | 10  | 1611         | 813,6           | 87,6            | 10  | 1610             | 922,7           | 92,8            | 12  |
| $\boldsymbol{\upsilon_{11}}$ | 1604  | 36,3            | 7,9             | 1   | 1604         | 36,1            | 7,8             | 1   | 1604             | 32,6            | 6,2             | 1   |
| $\upsilon_{12}$              | 1493  | 23,6            | 3,7             | 1   | 1493         | 23,9            | 3,7             | 1   | 1493             | 26,2            | 3,7             | 1   |
| $\upsilon_{13}$              | 1472  | 167,5           | 1,8             | 3   | 1472         | 168,1           | 1,8             | 3   | 1472             | 174,5           | 1,5             | 4   |
| $\upsilon_{14}$              | 1466  | 81,0            | 12,2            | 7   | 1466         | 81,9            | 12,2            | 7   | 1465             | 88,8            | 11,8            | 8   |
| $\upsilon_{15}$              | 1458  | 18,1            | 6,5             | 11  | 1458         | 18,2            | 6,5             | 11  | 1457             | 19,2            | 5,9             | 12  |
| $\upsilon_{16}$              | 1426  | 1,8             | 1,5             | 1   | 1426         | 1,8             | 1,5             | 1   | 1426             | 1,7             | 1,4             | 1   |
| $\upsilon_{17}$              | 1361  | 148,4           | 6,9             | 3   | 1361         | 150,0           | 6,7             | 3   | 1361             | 163,4           | 5,1             | 3   |
| $\upsilon_{18}$              | 1333  | 175,4           | 22,2            | -3  | 1333         | 176,6           | 22,4            | -3  | 1333             | 186,5           | 23,2            | -3  |
| $\upsilon_{19}$              | 1309  | 44,5            | 18,2            | 2   | 1309         | 45,1            | 18,2            | 2   | 1309             | 49,8            | 17,7            | 2   |
| $\upsilon_{20}$              | 1249  | 6,2             | 96,8            | -8  | 1249         | 6,1             | 97,5            | -9  | 1250             | 4,9             | 100,0           | -10 |
| $\upsilon_{21}$              | 1192  | 22,1            | 43,2            | -5  | 1192         | 22,4            | 43,1            | -5  | 1193             | 25,0            | 40,2            | -6  |
| $\upsilon_{22}$              | 1162  | 24,5            | 7,3             | 0   | 1162         | 24,7            | 7,2             | 0   | 1163             | 26,3            | 6,7             | 0   |
| $\upsilon_{23}$              | 1125  | 0,3             | 1,0             | 1   | 1125         | 0,3             | 1,0             | 1   | 1125             | 0,3             | 0,9             | 2   |
| $\upsilon_{24}$              | 1110  | 19,8            | 81,8            | 1   | 1110         | 19,9            | 82,1            | 1   | 1110             | 20,3            | 81,3            | 1   |
| $\upsilon_{25}$              | 1088  | 142,4           | 17,1            | -1  | 1088         | 143,9           | 17,2            | -1  | 1088             | 157,2           | 17,8            | -2  |
| $\upsilon_{26}$              | 1025  | 64,3            | 19,1            | -1  | 1025         | 64,4            | 19,0            | -1  | 1025             | 65,3            | 17,7            | -1  |
| $\upsilon_{27}$              | 1021  | 0,1             | 72,6            | 0   | 1021         | 0,1             | 72,6            | 0   | 1021             | 0,1             | 70,3            | 0   |
| $\upsilon_{28}$              | 989   | 0,2             | 0,2             | -10 | 989          | 0,3             | 0,2             | -11 | 991              | 0,3             | 0,2             | -12 |
| $\upsilon_{29}$              | 958   | 2,3             | 0,0             | -7  | 958          | 2,3             | 0,0             | -7  | 959              | 2,4             | 0,0             | -8  |
| $\upsilon_{30}$              | 944   | 21,3            | 20,4            | -5  | 945          | 21,5            | 20,5            | -5  | 945              | 23,2            | 21,4            | -5  |
| $\upsilon_{31}$              | 867   | 1,8             | 2,1             | -5  | 867          | 1,8             | 2,1             | -5  | 867              | 2,1             | 2,4             | -5  |
| $\upsilon_{32}$              | 860   | 30,7            | 2,8             | 0   | 860          | 31,0            | 2,9             | 0   | 860              | 33,3            | 3,4             | 1   |
| $\upsilon_{33}$              | 814   | 6,6             | 3,3             | -2  | 814          | 6,7             | 3,3             | -2  | 814              | 7,3             | 3,3             | -2  |
| $\upsilon_{34}$              | 753   | 101,0           | 11,1            | 0   | 753          | 101,5           | 11,2            | 0   | 753              | 106,2           | 11,8            | 0   |
| $v_{35}$                     | 720   | 1,7             | 0,2             | -1  | 720          | 1,7             | 0,2             | -1  | 720              | 1,4             | 0,2             | -1  |

EK 9.'un devamı

| Mod             | A     | Anilin (ε=6,89) |                 |    |       | FHF (ε          | =7,42)          |    | As    | eton (e         | =20,49          | )  |
|-----------------|-------|-----------------|-----------------|----|-------|-----------------|-----------------|----|-------|-----------------|-----------------|----|
|                 | Freq. | I <sub>IR</sub> | I <sub>RA</sub> | Δυ | Freq. | I <sub>IR</sub> | I <sub>RA</sub> | Δυ | Freq. | I <sub>IR</sub> | I <sub>RA</sub> | Δι |
| $v_{37}$        | 686   | 3,5             | 26,6            | 0  | 686   | 3,5             | 26,7            | 0  | 686   | 3,8             | 26,6            | 1  |
| $\upsilon_{38}$ | 551   | 10,1            | 100,0           | -1 | 552   | 10,1            | 100,0           | -1 | 552   | 10,6            | 96,4            | -1 |
| V39             | 543   | 1,4             | 0,5             | 0  | 543   | 1,4             | 0,5             | 0  | 543   | 1,6             | 0,5             | (  |
| $\upsilon_{40}$ | 519   | 19,0            | 47,8            | 2  | 519   | 19,1            | 47,4            | 2  | 519   | 20,2            | 43,1            | 4  |
| $\upsilon_{41}$ | 477   | 3,8             | 80,4            | 0  | 477   | 3,9             | 79,5            | 0  | 477   | 4,3             | 70,0            | (  |
| $\upsilon_{42}$ | 475   | 46,6            | 6,7             | -3 | 475   | 47,0            | 6,6             | -3 | 475   | 49,9            | 6,1             | -3 |
| $\upsilon_{43}$ | 398   | 1,2             | 4,9             | 0  | 398   | 1,2             | 4,8             | 0  | 398   | 1,2             | 4,4             |    |
| $\upsilon_{44}$ | 322   | 12,2            | 60,9            | 1  | 322   | 12,3            | 61,0            | 1  | 323   | 13,5            | 58,9            |    |
| $\upsilon_{45}$ | 292   | 5,6             | 58,0            | -2 | 292   | 5,7             | 57,9            | -2 | 293   | 6,2             | 54,9            | -2 |
| $v_{46}$        | 273   | 0,0             | 33,5            | -6 | 273   | 0,0             | 33,4            | -6 | 273   | 0,0             | 31,1            | -′ |
| $\upsilon_{47}$ | 236   | 1,6             | 30,9            | -1 | 236   | 1,6             | 30,6            | -1 | 236   | 1,6             | 26,8            | -  |
| $\upsilon_{48}$ | 141   | 0,3             | 0,4             | 1  | 141   | 0,3             | 0,4             | 1  | 141   | 0,2             | 0,4             |    |
| V49             | 123   | 3,7             | 1,8             | 9  | 123   | 3,7             | 1,8             | 9  | 123   | 4,0             | 1,7             | ļ  |
| $\upsilon_{50}$ | 117   | 0,0             | 0,5             | 4  | 116   | 0,0             | 0,5             | 4  | 114   | 0,0             | 0,4             | (  |
| $\upsilon_{51}$ | 102   | 0,4             | 0,1             | -2 | 102   | 0,4             | 0,1             | -2 | 102   | 0,5             | 0,1             | -2 |

EK 9.'un devamı

| Mod             | E     | Ctanol (e       | =24,85)         |     | Ase   | tonitril        | (ε=35,6         | 9)  | Γ     | DMSO (E=46,83)  |                 |     |  |
|-----------------|-------|-----------------|-----------------|-----|-------|-----------------|-----------------|-----|-------|-----------------|-----------------|-----|--|
|                 | Freq. | I <sub>IR</sub> | I <sub>RA</sub> | Δυ  | Freq. | I <sub>IR</sub> | I <sub>RA</sub> | Δυ  | Freq. | I <sub>IR</sub> | I <sub>RA</sub> | Δυ  |  |
| $v_1$           | 3073  | 5,2             | 12,7            | -7  | 3073  | 5,2             | 12,4            | -7  | 3073  | 5,2             | 12,3            | -7  |  |
| $v_2$           | 3067  | 18,7            | 6,7             | -6  | 3067  | 18,8            | 6,6             | -6  | 3067  | 18,9            | 6,6             | -6  |  |
| $v_3$           | 3055  | 5,7             | 5,3             | -4  | 3055  | 5,9             | 5,3             | -4  | 3055  | 5,9             | 5,2             | -4  |  |
| $\upsilon_4$    | 3047  | 2,8             | 3,7             | -8  | 3047  | 2,8             | 3,6             | -8  | 3047  | 2,8             | 3,6             | -8  |  |
| $\upsilon_5$    | 3020  | 2,2             | 3,0             | -12 | 3020  | 2,3             | 3,0             | -12 | 3020  | 2,3             | 3,0             | -12 |  |
| $\upsilon_6$    | 2972  | 23,1            | 4,8             | -22 | 2973  | 23,1            | 4,7             | -22 | 2973  | 23,0            | 4,7             | -22 |  |
| $\upsilon_7$    | 2914  | 46,3            | 11,9            | -16 | 2914  | 46,3            | 11,7            | -16 | 2914  | 46,4            | 11,6            | -16 |  |
| $\upsilon_8$    | 1703  | 525,5           | 91,2            | 37  | 1702  | 534,9           | 91,5            | 38  | 1702  | 540,1           | 91,7            | 38  |  |
| V9              | 1689  | 809,8           | 40,5            | 42  | 1688  | 813,7           | 39,9            | 43  | 1688  | 815,9           | 39,6            | 43  |  |
| $\upsilon_{10}$ | 1610  | 934,9           | 93,1            | 12  | 1609  | 952,9           | 93,7            | 13  | 1609  | 962,9           | 94,0            | 13  |  |
| $\upsilon_{11}$ | 1604  | 32,1            | 6,0             | 1   | 1604  | 31,4            | 5,7             | 1   | 1604  | 30,9            | 5,5             | 1   |  |
| $\upsilon_{12}$ | 1493  | 26,4            | 3,7             | 1   | 1493  | 26,7            | 3,7             | 1   | 1493  | 26,9            | 3,7             | 1   |  |
| $\upsilon_{13}$ | 1472  | 175,2           | 1,5             | 4   | 1472  | 176,2           | 1,5             | 4   | 1472  | 176,8           | 1,4             | 4   |  |
| $\upsilon_{14}$ | 1465  | 89,5            | 11,7            | 8   | 1465  | 90,5            | 11,6            | 8   | 1465  | 91,1            | 11,6            | 8   |  |
| $\upsilon_{15}$ | 1457  | 19,3            | 5,8             | 12  | 1456  | 19,4            | 5,7             | 13  | 1456  | 19,5            | 5,6             | 13  |  |
| $\upsilon_{16}$ | 1426  | 1,7             | 1,4             | 1   | 1426  | 1,6             | 1,4             | 1   | 1426  | 1,6             | 1,4             | 1   |  |
| $\upsilon_{17}$ | 1361  | 164,9           | 4,9             | 3   | 1361  | 167,0           | 4,7             | 3   | 1361  | 168,1           | 4,6             | 3   |  |
| $\upsilon_{18}$ | 1333  | 187,5           | 23,3            | -3  | 1333  | 188,9           | 23,3            | -3  | 1333  | 189,7           | 23,3            | -3  |  |
| $\upsilon_{19}$ | 1309  | 50,3            | 17,6            | 2   | 1309  | 51,0            | 17,4            | 2   | 1308  | 51,5            | 17,3            | 2   |  |
| $\upsilon_{20}$ | 1250  | 4,7             | 100,0           | -10 | 1251  | 4,6             | 100,0           | -10 | 1251  | 4,5             | 100,0           | -10 |  |
| $\upsilon_{21}$ | 1193  | 25,3            | 39,8            | -6  | 1193  | 25,7            | 39,2            | -6  | 1193  | 25,9            | 38,9            | -7  |  |
| $\upsilon_{22}$ | 1163  | 26,5            | 6,6             | 0   | 1163  | 26,8            | 6,5             | 0   | 1163  | 26,9            | 6,4             | 0   |  |
| $\upsilon_{23}$ | 1125  | 0,3             | 0,9             | 2   | 1125  | 0,3             | 0,9             | 2   | 1125  | 0,3             | 0,8             | 2   |  |
| $\upsilon_{24}$ | 1110  | 20,3            | 81,0            | 1   | 1110  | 20,4            | 80,6            | 1   | 1110  | 20,4            | 80,3            | 1   |  |
| $\upsilon_{25}$ | 1088  | 158,6           | 17,8            | -2  | 1088  | 160,7           | 17,8            | -2  | 1089  | 161,8           | 17,8            | -2  |  |
| $\upsilon_{26}$ | 1025  | 65,4            | 17,5            | -1  | 1025  | 65,5            | 17,3            | 0   | 1025  | 65,6            | 17,1            | 0   |  |
| $\upsilon_{27}$ | 1021  | 0,1             | 69,8            | 0   | 1021  | 0,1             | 69,2            | 0   | 1021  | 0,1             | 68,8            | 0   |  |
| $\upsilon_{28}$ | 991   | 0,3             | 0,2             | -12 | 991   | 0,3             | 0,2             | -12 | 991   | 0,3             | 0,2             | -12 |  |
| $\upsilon_{29}$ | 959   | 2,4             | 0,0             | -8  | 959   | 2,4             | 0,0             | -8  | 959   | 2,4             | 0,0             | -8  |  |
| $\upsilon_{30}$ | 945   | 23,3            | 21,4            | -5  | 945   | 23,6            | 21,4            | -5  | 945   | 23,7            | 21,5            | -6  |  |
| $\upsilon_{31}$ | 867   | 2,1             | 2,4             | -6  | 868   | 2,1             | 2,4             | -6  | 868   | 2,2             | 2,4             | -6  |  |
| $v_{32}$        | 860   | 33,5            | 3,4             | 1   | 860   | 33,9            | 3,5             | 1   | 860   | 34,1            | 3,5             | 1   |  |
| $v_{33}$        | 814   | 7,3             | 3,3             | -2  | 814   | 7,4             | 3,3             | -2  | 814   | 7,4             | 3,3             | -2  |  |
| $v_{34}$        | 753   | 106,6           | 11,8            | 0   | 753   | 107,3           | 11,9            | 0   | 753   | 107,7           | 11,9            | 0   |  |
| $v_{35}$        | 750   | 1,4             | 0,2             | -30 | 720   | 1,4             | 0,2             | -1  | 720   | 1,4             | 0,2             | -1  |  |

EK 9.'un devamı

| Mod             | Eta   | Etanol (ε=24,85) |                 |    | Aset  | onitril         | ( <b>ε=35</b> , | 69) | DN    | 1SO (e          | =46,83          | 5) |
|-----------------|-------|------------------|-----------------|----|-------|-----------------|-----------------|-----|-------|-----------------|-----------------|----|
|                 | Freq. | I <sub>IR</sub>  | I <sub>RA</sub> | Δυ | Freq. | I <sub>IR</sub> | I <sub>RA</sub> | Δυ  | Freq. | I <sub>IR</sub> | I <sub>RA</sub> | Δυ |
| $v_{37}$        | 686   | 3,9              | 26,6            | 1  | 686   | 3,9             | 26,5            | 1   | 686   | 4,0             | 26,4            | 1  |
| $v_{38}$        | 552   | 10,6             | 95,8            | -1 | 552   | 10,7            | 94,9            | -1  | 552   | 10,7            | 94,5            | -1 |
| V39             | 543   | 1,6              | 0,4             | 0  | 543   | 1,7             | 0,4             | 0   | 543   | 1,7             | 0,4             | 0  |
| $\upsilon_{40}$ | 519   | 20,3             | 42,6            | 2  | 519   | 20,5            | 41,8            | 2   | 519   | 20,6            | 41,4            | 2  |
| $\upsilon_{41}$ | 477   | 4,3              | 68,9            | 0  | 477   | 4,4             | 67,4            | 0   | 477   | 4,4             | 66,6            | 0  |
| $v_{42}$        | 475   | 50,2             | 6,0             | -3 | 476   | 50,7            | 5,9             | -3  | 476   | 50,9            | 5,8             | -3 |
| $v_{43}$        | 398   | 1,2              | 4,4             | 1  | 398   | 1,2             | 4,3             | 1   | 398   | 1,2             | 4,2             | 1  |
| $v_{44}$        | 323   | 13,7             | 58,6            | 0  | 323   | 13,8            | 58,0            | 0   | 323   | 14,0            | 57,8            | 0  |
| $v_{45}$        | 293   | 6,2              | 54,4            | -2 | 292   | 6,3             | 53,8            | -2  | 293   | 6,4             | 53,5            | -3 |
| $v_{46}$        | 274   | 0,0              | 30,8            | -7 | 274   | 0,0             | 30,4            | -7  | 274   | 0,0             | 30,1            | -7 |
| $\upsilon_{47}$ | 236   | 1,7              | 26,4            | -1 | 236   | 1,7             | 25,8            | -1  | 236   | 1,7             | 25,5            | -1 |
| $\upsilon_{48}$ | 141   | 0,2              | 0,4             | 1  | 141   | 0,2             | 0,4             | 1   | 141   | 0,2             | 0,4             | 1  |
| V49             | 124   | 4,0              | 1,7             | 8  | 124   | 4,0             | 1,7             | 8   | 124   | 4,0             | 1,7             | 8  |
| $\upsilon_{50}$ | 114   | 0,0              | 0,4             | 7  | 113   | 0,0             | 0,4             | 7   | 113   | 0,0             | 0,4             | 7  |
| v <sub>51</sub> | 102   | 0,5              | 0,0             | -2 | 102   | 0,5             | 0,0             | -2  | 102   | 0,5             | 0,0             | -2 |

EK 9.'un devamı

| Mod             |       | Su (ε='  | 78,36)          |     |
|-----------------|-------|----------|-----------------|-----|
|                 | Freq. | $I_{IR}$ | I <sub>RA</sub> | Δυ  |
| $\upsilon_1$    | 3073  | 5,2      | 12,1            | -7  |
| $\upsilon_2$    | 3067  | 19,0     | 6,6             | -6  |
| $v_3$           | 3055  | 6,0      | 5,2             | -4  |
| $v_4$           | 3047  | 2,8      | 3,5             | -8  |
| $v_5$           | 3020  | 2,4      | 2,9             | -12 |
| $v_6$           | 2973  | 23,0     | 4,6             | -23 |
| $v_7$           | 2914  | 46,4     | 11,5            | -16 |
| $\upsilon_8$    | 1701  | 546,8    | 91,9            | 39  |
| V9              | 1687  | 818,7    | 39,3            | 44  |
| $\upsilon_{10}$ | 1609  | 976,1    | 94,4            | 13  |
| $\upsilon_{11}$ | 1604  | 30,4     | 5,3             | 1   |
| $\upsilon_{12}$ | 1493  | 27,2     | 3,7             | 1   |
| $\upsilon_{13}$ | 1472  | 177,6    | 1,4             | 4   |
| $\upsilon_{14}$ | 1465  | 91,8     | 11,5            | 8   |
| $\upsilon_{15}$ | 1456  | 19,6     | 5,6             | 13  |
| $\upsilon_{16}$ | 1426  | 1,6      | 1,4             | 1   |
| $\upsilon_{17}$ | 1361  | 169,6    | 4,4             | 3   |
| $\upsilon_{18}$ | 1333  | 190,7    | 23,3            | -3  |
| $\upsilon_{19}$ | 1308  | 52,0     | 17,2            | 2   |
| $\upsilon_{20}$ | 1251  | 4,3      | 100,0           | -10 |
| $\upsilon_{21}$ | 1193  | 26,2     | 38,5            | -7  |
| $\upsilon_{22}$ | 1163  | 27,1     | 6,3             | 0   |
| $\upsilon_{23}$ | 1125  | 0,3      | 0,8             | 2   |
| $\upsilon_{24}$ | 1110  | 20,4     | 80,0            | 1   |
| $\upsilon_{25}$ | 1089  | 163,3    | 17,8            | -2  |
| $\upsilon_{26}$ | 1025  | 65,6     | 17,0            | 0   |
| $\upsilon_{27}$ | 1021  | 0,1      | 68,4            | 0   |
| $\upsilon_{28}$ | 991   | 0,3      | 0,2             | -12 |
| $\upsilon_{29}$ | 959   | 2,4      | 0,0             | -8  |
| $\upsilon_{30}$ | 945   | 23,9     | 21,5            | -6  |
| $\upsilon_{31}$ | 868   | 2,2      | 2,5             | -6  |
| $\upsilon_{32}$ | 860   | 34,3     | 3,6             | 1   |
| $\upsilon_{33}$ | 814   | 7,5      | 3,3             | -2  |
| $\upsilon_{34}$ | 753   | 108,2    | 11,9            | 0   |
| $\upsilon_{35}$ | 720   | 1,4      | 0,2             | -1  |

EK 9.'un devamı

| Mod             | S     | Su (ε=7         | '8,36)          |    |
|-----------------|-------|-----------------|-----------------|----|
|                 | Freq. | I <sub>IR</sub> | I <sub>RA</sub> | Δυ |
| $v_{37}$        | 686   | 4,0             | 26,3            | 1  |
| $\upsilon_{38}$ | 552   | 10,8            | 93,9            | -1 |
| V39             | 543   | 1,7             | 0,4             | 0  |
| $\upsilon_{40}$ | 519   | 20,7            | 40,9            | 2  |
| $\upsilon_{41}$ | 477   | 4,5             | 65,5            | 0  |
| $\upsilon_{42}$ | 476   | 51,2            | 5,8             | -3 |
| $\upsilon_{43}$ | 397   | 1,2             | 4,2             | 1  |
| $\upsilon_{44}$ | 323   | 14,1            | 56,4            | 0  |
| $\upsilon_{45}$ | 293   | 6,4             | 53,1            | -3 |
| $\upsilon_{46}$ | 274   | 0,0             | 29,9            | -7 |
| $\upsilon_{47}$ | 236   | 1,7             | 25,1            | -1 |
| $\upsilon_{48}$ | 141   | 0,2             | 0,4             | 1  |
| V49             | 124   | 4,1             | 1,6             | 8  |
| $\upsilon_{50}$ | 113   | 0,0             | 0,4             | 8  |
| $\upsilon_{51}$ | 102   | 0,5             | 0,0             | -2 |

## ÖZGEÇMİŞ

| Adı Soyadı         | : İlknur ARICAN           |
|--------------------|---------------------------|
| Doğum Yeri ve Yılı | : Mengen -1982            |
| Medeni Hali        | : Bekar                   |
| Yabancı Dili       | : İngilizce               |
| E-posta            | :iarican@kastamonu.edu.tr |



### Eğitim Durumu

| Lise   | : Sincan Lisesi                                |
|--------|------------------------------------------------|
| Lisans | : Abant İzzet Baysal Üniversitesi/Fizik Bölümü |

#### Mesleki Deneyim

| Özel Enis Furat Dershanesi                 | 2005-2006    |
|--------------------------------------------|--------------|
| Cemal Yüksel İlköğretim Okulu              | 2008-2009    |
| Sincan İMKB Ticaret ve Anadolu Tic. Lisesi | 2009-2010    |
| Kastamonu Üniversitesi                     | 2010-(halen) |

#### Yayınları

- Polat, T., Kandemirli, F., Vurdu, C.D., Arıcan, İ. (2013). Ab Initio Studies of Solvent Effect on Molecular Structure and Vibrational Specta of Isatin. BSW2013 Fourth Bozok Science Workshop: Studies on Structure and Dynamics From Nucleus to Clusters, 10, Yozgat.
- Muğlu, H., Vurdu, C.D., Polat, T., Arıcan, İ., Uludağ, L., Kandemirli, F. (2013) Quantum Chemical Investigation of 5-Fluoroisatin. BSW2013 Fourth Bozok Science Workshop: Studies on Structure and Dynamics From Nucleus to Clusters, 19, Yozgat.